WO2012102151A1 - 陰イオン交換性層状複水酸化物の製造方法及び炭酸イオンを含む層状複水酸化物の炭酸イオンを置換する方法 - Google Patents

陰イオン交換性層状複水酸化物の製造方法及び炭酸イオンを含む層状複水酸化物の炭酸イオンを置換する方法 Download PDF

Info

Publication number
WO2012102151A1
WO2012102151A1 PCT/JP2012/050976 JP2012050976W WO2012102151A1 WO 2012102151 A1 WO2012102151 A1 WO 2012102151A1 JP 2012050976 W JP2012050976 W JP 2012050976W WO 2012102151 A1 WO2012102151 A1 WO 2012102151A1
Authority
WO
WIPO (PCT)
Prior art keywords
anion
layered double
ion
double hydroxide
ldh
Prior art date
Application number
PCT/JP2012/050976
Other languages
English (en)
French (fr)
Inventor
井伊 伸夫
山田 裕久
佐々木 高義
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to US13/982,153 priority Critical patent/US20140021404A1/en
Priority to EP12739423.7A priority patent/EP2669252A4/en
Priority to JP2012554741A priority patent/JP5867831B2/ja
Publication of WO2012102151A1 publication Critical patent/WO2012102151A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/10Inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • C01P2002/22Two-dimensional structures layered hydroxide-type, e.g. of the hydrotalcite-type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to a method for producing an anion-exchange layered double hydroxide having an anion (X ⁇ ) easily exchanged between layers.
  • the present invention uses a layered double hydroxide containing carbonate ions (CO 3 2 ⁇ ), which are difficult to exchange ions between layers, as a raw material, and by replacing carbonate ions, anion exchange layered double hydroxides are obtained.
  • the present invention relates to a method for producing a product and a method for replacing carbonate ions of a layered double hydroxide containing carbonate ions.
  • LDH Layered double hydroxide
  • Patent Document 1 Non-Patent Document 3
  • the decarboxylation ion reaction using a hydrochloric acid-NaCl mixed solution is a revolutionary method for producing LDH containing chlorine ions, which are anions that can be easily anion-exchanged, without affecting the particle size and uniformity. Is.
  • LDH containing chlorine ions which are anions that can be easily anion-exchanged, without affecting the particle size and uniformity.
  • the present inventors use an acetate buffer solution having a low acidity, and an aqueous solution obtained by adding a neutral salt such as NaCl (sodium chloride), sodium perchlorate, or sodium nitrate to this acetate buffer solution is used as a carbonate ion type LDH. It has been found that when it is allowed to act at room temperature, a decarboxylation ion reaction occurs, and it is converted to LDH containing the added anion (Patent Document 2, Non-Patent Documents 5 and 6). By this method, conversion to an anion exchange type LDH other than the Cl ⁇ type (for example, ClO 4 ⁇ type or NO 3 ⁇ type) has become possible.
  • a neutral salt such as NaCl (sodium chloride), sodium perchlorate, or sodium nitrate
  • carbonate ion-type LDH is used as a starting material, and a decarboxylation ion reaction is carried out easily and quickly with a small amount and amount of reagents, and the anion exchange property is maintained while maintaining the crystal shape, crystal structure and crystallinity. It aims at providing the method of manufacturing rich LDH.
  • the present inventors have found the following facts through experiments. That is, (1) In alcohol such as methanol and ethanol, dissolution of LDH by acid is considerably suppressed compared to that in aqueous solution. (2) Since the generated carbon dioxide does not remain in the form of carbonate ions in the alcohol solvent and is released from the solvent, a large excess of anions are not required as in the case of ion exchange in an aqueous solution. The reaction occurs almost quantitatively, (3) Carbon dioxide is also released by an amine / acid salt formed by combining an amine with an acid, which is an acidic compound other than an acid, and a similar decarboxylation reaction occurs.
  • an acid is generated by hydrolysis of the metal salt due to a trace amount of water contained in the salt or solvent, so that a decarboxylation reaction occurs.
  • an acidic compound means the compound which shows acidity in water, and the salt produced
  • the present invention is a method for producing LDH having anion exchange properties, which has been completed based on the above-described findings.
  • a first method for producing an anion (anion) exchangeable LDH of the present invention comprises a carbonate ion type LDH having a composition represented by the general formula (1) and an acidic compound represented by the general formula (2). It is characterized by increasing the b value in the general formula (1) to 0.5 or more and 1 or less by contacting with an organic solvent to be contained.
  • a represents a numerical range of 1.8 ⁇ a ⁇ 4.2.
  • z is 2 (a + 1).
  • b represents a numerical range of 0 ⁇ b ⁇ 0.5.
  • Q is a divalent metal.
  • T is a trivalent metal.
  • X is a monovalent anion.
  • n is 0 or more and 5 or less.
  • X means an element or an atomic group corresponding to a monovalent anion (X ⁇ ), and m is either 1, 2 or 3.
  • the metal salt represented by MX 2 or MX 3 is a metal salt that generates a protic acid (HX) by hydrolysis. It is a manufacturing method of described anion exchange LDH.
  • the X is a chlorine ion (Cl ⁇ ), a bromine ion (Br ⁇ ), a nitrate ion (NO 3 ⁇ ), a perchlorate ion (ClO 4 ⁇ ), a chlorate ion (ClO). 3 ⁇ ) and an anion-exchangeable LDH production method according to the first production method, which is an anion of acetate ion (CH 3 COO ⁇ ).
  • R, R ′ and R ′′ of the amine / acid salt are a substituent selected from hydrogen, a hydroxyl group, an alkyl group or an alkyl group substituted with a hydroxyl group. It is a manufacturing method of anion exchange LDH as described in a manufacturing method.
  • the alkyl group is a methyl group or an ethyl group
  • the alkyl group substituted with a hydroxyl group is a hydroxymethyl group or a hydroxyethyl group. It is a manufacturing method of ion-exchange LDH.
  • the seventh configuration of the present invention is a method for producing an anion-exchangeable LDH as described in the fifth production method, wherein the amine / acid salt is an ammonium salt.
  • the 8th structure of this invention is a manufacturing method of the anion exchangeable LDH as described in a 5th manufacturing method method whose X ⁇ - > is a chlorine ion.
  • the ninth configuration of the present invention is a method for producing an anion-exchanging LDH according to the third production method, wherein M is a metal selected from divalent Zn, Mg, and Ca.
  • a tenth configuration of the present invention is a method for producing an anion-exchangeable LDH according to the third production method, wherein M is a metal of trivalent Fe or Al.
  • the eleventh configuration of the present invention is a method for producing an anion-exchangeable LDH according to the first production method, wherein the organic solvent is an organic solvent having one or more carbon atoms of 1 to 4.
  • a twelfth configuration of the present invention is a method for producing an anion-exchangeable LDH according to the first production method, wherein the organic solvent is methanol, ethanol, 2-propanol, tetrahydrofuran or acetone.
  • the carbonate ion type LDH represented by the general formula (1) is dispersed in an organic solvent containing an acidic compound represented by the general formula (2), and the temperature is 10 ° C. or more and 50 It is a manufacturing method of the anion exchangeable LDH as described in the 1st manufacturing method made to react on temperature conditions less than ° C.
  • the fourteenth configuration of the present invention is a carbonate ion type layered double hydroxide represented by the general formula (1):
  • the method of replacing carbonate ions in the carbonate ion type layered double hydroxide of the present invention with a monovalent anion includes a carbonate ion type layered double hydroxide represented by the general formula (1):
  • X means an element or an atomic group corresponding to a monovalent anion (X ⁇ )
  • m is 1, 2 or 3
  • MX is Protic acid (HX) or an amine represented by NRR′R ′′ ⁇ HX (wherein R, R ′ and R ′′ are each H or an organic group and may be the same or different).
  • -It is an acid salt.
  • M is a divalent or trivalent metal.
  • the effects of the present invention are as follows. 1) In a conventionally known method such as a hydrochloric acid-NaCl method (Patent Document 1) or a method using an acetate buffer (Patent Document 2), particularly in the synthesis of LDH containing perchlorate ions and nitrate ions.
  • a conventionally known method such as a hydrochloric acid-NaCl method (Patent Document 1) or a method using an acetate buffer (Patent Document 2), particularly in the synthesis of LDH containing perchlorate ions and nitrate ions.
  • an excessive amount of salt is not necessarily used.
  • a protic acid when a protic acid is used, it is sufficient to use one kind of minimum amount of acid as the reagent, and the amount of acid is equivalent to the total amount of carbonate ions in LDH. It is economical because only an excess amount of about 50% is sufficient.
  • the amount of the reagent is about 3 to 5 times the total amount of carbonate ions in the sample, which is economical.
  • a decarboxylation reaction from LDH can be performed with a small number and amount of reagents. 2) Since only an acidic compound containing an anion for the purpose of ion exchange is used in the present invention, only the target anion exists in the reaction system, and there is a concern that other types of anions may be mixed. There is no. 3) According to the present invention, the reaction time is completed in about 30 to 60 minutes in the case of acid, and is as fast as 2 hours or less even in the case of using an amine / acid salt.
  • the conversion to perchlorate ion or nitrate ion type requires at least 3 hours, preferably about 5 hours.
  • the organic solvent does not contain carbonate ions, there is no need for degassing operation as in the case of using water, and there is no generation of carbonate ions due to carbon dioxide dissolution in the air even after washing. Therefore, it is difficult for carbonate ions to be taken in secondarily. Because of these effects and advantages, the present invention is suitable for industrial production, and its significance is great.
  • the LDH rich in anion exchange obtained in the present invention can be easily exchanged with various inorganic and organic anions by anion exchange. Therefore, the anion-exchange layered double hydroxide obtained by the method of the present invention can be used for the synthesis of a novel functional layered compound by introducing an anionic functional molecule. It is conceivable to spread and develop into application fields.
  • Example 1 shows the conversion scheme from carbonate ion type
  • the reaction was carried out by reacting perchloric acid with carbonate ion type LDH (CO 3 2- MgAl-LDH3) in (a) methanol solvent and (b) water solvent.
  • 2 is a Fourier transform infrared spectroscopic spectrum (transmittance) of LDH (MgAl-LDH3) containing (a) carbonate ion and (b) perchlorate ion between layers in Example 1.
  • Example 1 In Example 1, (a) in methanol solvent and (b) water solvent, the product of the reaction when perchloric acid was allowed to react with carbonate ion type LDH (CO 3 2- MgAl-LDH3) It is a graph which shows Mg / Al ratio (molar ratio).
  • FIG. 2 is a graph showing powder X-ray profiles of (a) carbonate ion type and (b) perchlorate ion type MgAl-LDH 3 in Example 1.
  • FIG. 2 is a diagram showing SEM (scanning electron microscope) images of sample (a) carbonate ion type and (b) perchlorate ion type MgAl-LDH 3 in Example 1.
  • Example 1 a nitrogen stream (0.5 L / min), the case of performing the reaction in perchlorate in methanol solution, is a graph showing a carbon dioxide (CO 2) concentration change of the exhaust nitrogen gas.
  • 4 is a graph showing Fourier transform infrared spectroscopy (transmittance) of (a) carbonate ion type and (b) perchlorate ion type MgAl-LDH2 in Example 2.
  • Transmittance Fourier transform infrared spectroscopy (transmittance) of (a) carbonate ion type and (b) perchlorate ion type MgAl-LDH2 in Example 2.
  • Transmittance Fourier transform infrared spectroscopy
  • Example 2 a graph showing changes in Mg / Al ratio of the product when allowed to act perchlorate methanol carbonate ion type LDH (CO 3 2- MgAl-LDH2 ) ( molar ratio).
  • FIG. 4 shows SEM (scanning electron microscope) images of sample (a) carbonate ion type and (b) perchlorate ion type MgAl-LDH 2 in Example 2.
  • Example 3 it is a graph which shows the weight change of the product at the time of making ethanol ethanol act on carbonate ion type LDH (CO 3 2- MgAl-LDH3).
  • 6 is a graph showing a Fourier transform infrared spectroscopic spectrum (transmittance) of LDH (MgAl—LDH3) after reaction in Example 3.
  • LDH MgAl—LDH3
  • 6 is a graph showing changes in the weight of the product when the nitric acid methanol was applied to the carbonate ion type LDH (CO 3 2- MgAl-LDH3 ).
  • 6 is a graph showing Fourier transform infrared spectroscopy (transmittance) of (a) carbonate ion type and (b) perchlorate ion type NiAl-LDH2 in Example 5.
  • FIG. 7 is a diagram showing a powder X-ray profile of -LDH3; and (3a) carbonate ion type and (3b) perchlorate ion type NiAl-LDH4 in Example 7.
  • 10 is a graph showing Fourier transform infrared spectroscopy (transmittance) of (a) carbonate ion type and (b) perchlorate ion type NiAl-LDH3 in Example 6.
  • Example 8 a graph showing changes in the weight of the product when subjected to reaction by the action of perchloric acid (HClO 4) the carbonate ion type LDH (CO 3 2- MgAl-LDH3 ) in various solvents is there.
  • perchloric acid (HClO 4 ) was allowed to act on carbonate ion type LDH (CO 3 2 —MgAl—LDH3) in various solvents in Example 8, CO with respect to the amount of added perchloric acid (HClO 4 ).
  • 3 is a graph showing a change in residual carbonate ion content in 3 2- MgAl-LDH3.
  • Example 9 when CO 3 2- MgAl-LDH3 was reacted with ammonium salt (NH 4 ClO 4 , NH 4 Cl, NH 4 NO 3 ), which is a kind of amine / acid salt, in methanol. It is a graph which shows the change (1a, b, c) of a product weight with respect to the addition amount of ammonium salt, and the change (2a, b, c) of residual carbonate ion content.
  • CO 3 2- MgAl-LDH3 was reacted with dimethylamine hydrochloride in methanol to react with it.
  • FIG. 1 is a schematic diagram of a production process of a method for producing an anion-exchangeable LDH according to an embodiment of the present invention, wherein carbonate ion-type LDH and an acidic compound are brought into contact with each other in an organic solvent, and anion-exchangeable LDH is obtained. Shows how to generate.
  • an acidic compound is a compound which shows acidity in water, and the salt produced
  • the carbonate ion type LDH is represented by the following general formula (1).
  • n represents the amount of interlayer water, and may vary in the range of 0 ⁇ n ⁇ 5 depending on the humidity of the atmosphere.
  • the carbonate ion (CO 3 2 ⁇ ) has a maximum value of 0.5.
  • 0 ⁇ b ⁇ 0.5 that is, a part of the raw material is already exchanged for an anion for some reason, and even a raw material with a small amount of carbonate ion causes a decarboxylation ion reaction easily by this method. Of course, it may be a starting material.
  • the carbonate ion type LDH represented by the general formula (1) is brought into contact with an organic solvent containing an acidic compound represented by the following general formula (2) to produce anion exchangeable LDH.
  • X ⁇ - > in Formula 1 and X in Formula 2 mean the same element or atomic group.
  • the acidic compound is specifically as follows.
  • An acid salt represented by NRR′R ′′ ⁇ HX comprising a protic acid (HX) containing a monovalent anion (X ⁇ ) and an amine (NRR′R ′′) (hereinafter referred to as the present specification) Among them, they are called amines and acid salts.)
  • a metal salt (MX 2 or MX 3 ) that generates the protic acid (HX) by hydrolysis.
  • the anion (X ⁇ ) is a chlorine ion (Cl ⁇ ), a bromine ion (Br ⁇ ), a nitrate ion (NO 3 ⁇ ), a perchlorate ion (ClO 4 ⁇ ), a chlorate ion (ClO 3 ⁇ ) or
  • the acetate ion (CH 3 COO ⁇ ) is preferred.
  • X in the general formula (2) is an atom corresponding to this, and is released as an anion (X ⁇ ) in an aqueous solution.
  • Protic acids (HX) are HCl, HBr, HNO 3. , HClO 4 , HClO 3 , or CH 3 COOH are preferred. However, it may be a monovalent anion, and it does not exclude substances other than the above-mentioned anions regardless of organic or inorganic.
  • R, R ′, and R ′′ are hydrogen, a hydroxyl group, or an organic group.
  • the organic group is an alkyl group having 1 to 6 carbon atoms that is substituted with an alkyl group having 1 to 6 carbon atoms or a hydroxyl group. It is an alkyl group.
  • M of the metal salt is any metal of divalent Zn, Mg or Ca, trivalent Fe or Al.
  • other metal salts that generate an acid in an aqueous solution are not excluded.
  • a represents a numerical range of 1.8 ⁇ a ⁇ 4.2.
  • z is 2 (a + 1).
  • Q is a divalent metal.
  • T is a trivalent metal.
  • X is an atom that becomes a monovalent anion.
  • n indicates the amount of interlayer water, which varies depending on the humidity of the atmosphere, and 0 ⁇ n ⁇ 5.
  • the anion exchange LDH represented by the general formula (3) is rich in anion exchange.
  • the chemical formula in which the anion (X ⁇ ) is completely substituted represents a composition in which ion exchange is most completely performed.
  • b should be larger than the value of b of the starting material to reach the target value, and strictly Q a T (OH) z (X ⁇ ) ⁇ nH 2 It is not limited to O.
  • anion exchange LDH will be supplementarily described.
  • ions having a large valence for example, polyvalent anions such as divalent and trivalent
  • monovalent anions are known to be rich in anion exchange, and the anion exchange becomes higher as the ion size increases.
  • X in the anion-exchangeable LDH is chlorine ion (Cl ⁇ ), bromine ion (Br ⁇ ), nitrate ion (NO 3 ⁇ ), perchlorate ion (ClO 4 ⁇ ), chlorate ion (ClO).
  • the organic solvent is preferably an organic solvent having 1 to 4 carbon atoms, and examples thereof include alcohols, acetone and tetrahydrofuran.
  • the alcohol methanol, ethanol, n-propanol, i-propanol (2-propanol), n-butanol or t-butanol can be preferably applied.
  • An organic solvent having 1 to 4 carbon atoms is easy to handle, easy to obtain, highly volatile, and has a low boiling point, so that the solvent can be easily removed after the reaction. Further, since carbon dioxide in the air does not dissolve and does not generate carbonate ions, secondary carbonate ions are not taken into the LDH layer.
  • f 1 is the minimum amount necessary for 100% substitution of CO 3 2- Therefore, f is required to be 1 or more theoretically for complete substitution.
  • HCl When preparing an alcohol solution containing a protic acid, HCl may be obtained in a form dissolved in ethanol, such as ethanol hydrochloride.
  • ethanol such as ethanol hydrochloride
  • a perchloric acid methanol solution is prepared by adding methanol to a 60% aqueous solution of perchloric acid. There is no problem because the final moisture content is 0.1% or less.
  • Acidic compounds can be mixed and used when anions are common. For example, as shown in Example 9, both acid and amine / acid salt are used by mixing acid and amine / acid salt under the condition that decarboxylation reaction occurs only partially by itself. As a result, residual carbonate ions almost disappeared. It is also possible to use a mixture obtained by adding a neutral salt having a common anion to an acidic compound.
  • polar solvents such as acetone and tetrahydrofuran can also be used as a solvent other than alcohol.
  • Example 8 shows the experimental results when HClO 4 was used in various solvents. The quantitative decarboxylation reaction occurred as in the alcohol solvent. However, in the case of HClO 4 , dissolution by excess acid was greater in solvents other than alcohol compared to alcohol solvents. Also, when using amines and acid salts, there is a problem that the solubility of salts in solvents other than alcohol is generally very low, so there is no particular advantage over alcohol in that respect, but it can be used. is there. Moreover, there is no problem in performing mixed use of solvents as necessary.
  • Amine and acid salts are mostly in the form of hydrochlorides in commercially available chemicals, but when amines and acids that cannot be obtained as reagents are used, they are synthesized in situ by mixing an equivalent amount of acid and amine in a solvent. Can be used. In addition, when the acidity of an acid is strong, acidity can be reduced by adding an equivalent amount of amine.
  • this reaction is an equilibrium reaction, it is desirable to remove the generated carbon dioxide (CO 2 ) out of the system, for example, by performing the reaction under a nitrogen stream.
  • CO 2 carbon dioxide
  • carbon dioxide in the air does not dissolve in the organic solvent to generate carbonate ions, and when a strong acid is present in the solvent, the equilibrium predominates on the side of CO 2 release.
  • the carbon dioxide concentration in the air is about 400 ppm, in this case, there is no problem even under an air stream instead of a nitrogen stream (see Example 13).
  • amine / acid salt 10-20% of residual carbonate ions were observed.
  • the acid dissociation constant which is an index of the ease of proton release of an acid in a solvent, serves as one standard.
  • hydrochloric acid shows a value of -8 (minus 8).
  • amines and acid salts with weak acidity show values between 0 and 14.
  • the acid dissociation constant varies depending on the solvent, and many measured values are values when water is used as a solvent. Therefore, the acid dissociation constant does not have a quantitative meaning in a solvent other than water. It can be used as an index of safety.
  • the “protic acid” described herein has a pKa value of 0 or less, and the “amine / acid salt” has a pKa value of 0 to 14. . For this reason, even if a compound not described in the present invention is an acidic compound having a pKa of 14 or less, it can be easily estimated that the same decarboxylation ion reaction occurs, and therefore, these are not excluded.
  • Examples 1 to 15 are reacted under conditions of room temperature (20 to 25 ° C.).
  • the acidity can be adjusted by changing the temperature.
  • an increase in temperature has the effect of increasing the reaction rate.
  • the reaction temperature is set to a temperature of 10 ° C. or higher and lower than 50 ° C. If this is set to 50 ° C. or higher, (1) depending on the type of acid, there is a possibility that weight loss due to dissolution may occur. (2) The operation of heating and the operation of cooling to prevent evaporation of alcohol and acidic compounds are required. (3) In many cases, heating is not particularly required, and it is more economical not to perform heating.
  • the temperature range is specified for the reason described above, and there is a special advantage by increasing the reaction rate or increasing the acidity, it is not excluded to employ a reaction temperature of 50 ° C. or higher. Absent. Further, the reason why the temperature is set to 10 ° C. or higher is only 10 ° C. or higher in the present invention because the common-sense room temperature is 10 ° C. or higher. If there is an advantage that the temperature is lower than 10 ° C., such as reducing the acidity, the reaction at a lower temperature is not excluded as long as the solution is at or above the freezing temperature of the organic solvent that does not freeze. From the above, although the optimum temperature range varies depending on the pKa, it can be set arbitrarily or appropriately. In general, the temperature is preferably 10 ° C. or more and less than 50 ° C., and particularly preferably room temperature (20 ° C. or more and 25 ° C. or less).
  • the process of decarboxylation ion reaction is, for example, a process in which carbonate ion type LDH is immersed in an organic solvent containing an acidic compound and proton (H + ) and anion (X ⁇ ) are brought into contact with LDH.
  • carbonate ion type LDH that is difficult to exchange anions without bringing about change in particle size and uniformity by contacting carbonate ion type LDH with an organic solvent containing an acidic compound. Is converted to LDH rich in anion exchange at room temperature and in a short time by decarboxylation reaction.
  • the mixture was filtered through a membrane filter having a pore size of 0.2 ⁇ m under a nitrogen stream, and the precipitate was sufficiently washed with methanol.
  • the precipitate collected by filtration was collected by collecting, immediately depressurized, and dried under vacuum for 1 hour or longer to obtain a white powder.
  • degassed water ion-exchanged water boiled for 15 minutes or more to remove carbon dioxide, hereinafter simply referred to as water
  • FIG. 2 shows the relationship between the product weight and the f value.
  • the reason why the weight of the product increases at an f value of 0.5 to 1.0 is that CO 3 2 ⁇ is replaced by ClO 4 ⁇ and the molecular weight increases. Assuming that CO 3 2 ⁇ is completely replaced by ClO 4 ⁇ and the recovery rate is 95%, it will increase to about 116%.
  • FIG. 3 shows a Fourier transform infrared spectrum (transmittance).
  • (A) is a carbonate ion-type MgAl-LDH3
  • (B) the there is a strong absorption by perchloric acid ion (1090 ⁇ 1100cm -1), absorption by carbon ions (1370 cm -1) no, it is found that no residual carbonate ions.
  • ICP inductively coupled plasma
  • FIG. 5A shows carbonate ion type MgAl—LDH 3
  • FIG. 5B shows LDH after reaction. It can be seen that the angle of the diffraction peak is shifted by substituting carbonate ions with perchlorate ions.
  • MgCl 2 ⁇ 6H 2 O 508mg
  • AlCl 3 ⁇ 6H 2 Weigh O 302 mg
  • a solution of 12.5mL ion-exchanged water was added to this to melt the hexamethylenetetramine (613 mg) 12 5 mL aqueous solution was added, and the mixed solution was filtered through a 0.2 micron membrane filter, then placed in a 50 mL pressure-resistant Teflon (registered trademark) container, sealed in a pressure-resistant stainless steel container, and sealed at 140 ° C.
  • Hydrothermal treatment was performed for 1 day. After filtration and washing with water, it was dried in vacuum to obtain 279 mg of white powder.
  • the obtained product (denoted as CO 3 2- MgAl-LDH2) had a particle size of about 0.5 to 2 ⁇ m and a Mg / Al molar ratio of 1.94 ( ⁇ 0.04).
  • a CO 3 2- MgAl—LDH2 infrared absorption spectrum is shown in FIG.
  • the reaction was carried out in methanol containing perchloric acid. 80.7 mg of CO 3 2- MgAl-LDH2 was weighed and placed in a three-necked flask, and 45 mL of methanol was added to prepare a suspension. Further, perchloric acid methanol solutions having various concentrations were prepared by dissolving perchloric acid (60%) in 5 mL of methanol. While stirring a suspension of CO 3 2- MgAl-LDH3 with a magnetic stirrer under a nitrogen stream (0.5 L / min), a methanolic solution of perchloric acid was added dropwise, and further at room temperature (20-25 ° C.) for 1 hour. The reaction was carried out with stirring. A white powder was obtained by filtration and drying under the same conditions as in Example 1.
  • the Mg / Al ratio was examined by analyzing Mg and Al by ICP. As shown in FIG. 10, in the reaction with methanol, the Mg / Al ratio hardly changed and selective elution was not observed.
  • Carbonate type NiAl-LDH was synthesized by the following method.
  • a 12.5 mL mixed aqueous solution in which Ni (NO 3 ) 2 ⁇ 6H 2 O (364 mg), Al (NO 3 ) 3 ⁇ 9H 2 O (235 mg) and hexamethylenetetramine (307 mg) are dissolved is added to a 25 mL capacity pressure-resistant Teflon. (Registered trademark) put into a container, sealed in a pressure resistant stainless steel container, and hydrothermally treated at 180 ° C. for 3 days. Filtration, washing and drying gave a blue-green powder (185 mg). The particle diameter was 0.3 to 0.6 ⁇ m, and the Ni / Al molar ratio was 2.00 ( ⁇ 0.06) from ICP analysis. This LDH is represented as CO 3 2- NiAl-LDH2.
  • FIG. 15 The infrared absorption profile by FTIR (Fourier transform infrared absorption method) is shown in FIG.
  • (a) is a carbonate ion type
  • (b) is a ClO 4 ⁇ type. Absorption characteristics were observed in each. In the generated ClO 4 ⁇ type, absorption due to carbonate ions at 1360 cm ⁇ 1 disappears, and strong absorption characteristics of ClO 4 ⁇ at 1090 to 1100 cm ⁇ 1 are observed, so that high purity ClO 4 ⁇ LDH is generated. It shows that.
  • Powder X-ray diffraction measurement was performed under the same conditions as in Example 5 (see FIG. 16).
  • (2a) is, CO 3 2-type
  • (2b) is, ClO 4 - type is.
  • (2b) no reflection by the CO 3 2 ⁇ type is observed, and it can be seen that it is converted to the ClO 4 ⁇ type.
  • Powder X-ray diffraction measurement was performed under the same conditions as in Example 5 (see FIG. 16).
  • (3a) in FIG. 16 is CO 3 2- mold
  • (3b) no reflection due to the CO 3 2 ⁇ type is recognized, and it can be seen that it is converted to the ClO 4 ⁇ type.
  • FIG. 18 shows the weight (%) of the product when HClO 4 is added in various solvents versus the amount of acid (f).
  • (A) is methanol (indicated by a black square mark ( ⁇ )), ethanol (indicated by a white diamond mark ())), and (b) is ethanol containing 10 wt% H 2 O (white square shape).
  • (c) are acetone (indicated by a black circle mark ( ⁇ )), THF (indicated by a white circle mark ( ⁇ )), and (d) are water (black). (Shown with diamond marks ( ⁇ )).
  • FIG. 19 shows the amount of residual carbonate ions in the product in the same experiment.
  • (A) is methanol (represented by a black square mark ( ⁇ )), ethanol (represented by a black circle mark ( ⁇ )), 10 wt% H 2 O-containing ethanol (a black triangle mark ( ⁇ )) And acetone (represented by black diamond marks ( ⁇ )), THF (represented by black pentagon marks), and (b) water (represented by white triangle marks ( ⁇ )).
  • black square mark
  • black circle mark
  • acetone represented by black diamond marks ( ⁇ )
  • THF represented by black pentagon marks
  • (b) water represented by white triangle marks ( ⁇ )
  • Ammonium salt-methanol system MgAl-LDH3
  • Ammonium salt a kind of amine / acid salt, specifically ammonium chloride (NH 4 Cl), ammonium perchlorate (NH 4 ClO 4 ), ammonium nitrate (NH 4 NO 3 ), decarboxylated with methanol solution
  • NH 4 Cl ammonium chloride
  • NH 4 ClO 4 ammonium perchlorate
  • NH 4 NO 3 ammonium nitrate
  • decarboxylated with methanol solution An ionic reaction was performed. These are salts composed of a combination of ammonia (NH 3 ), which is a weak base, and hydrochloric acid (HCl), perchloric acid (HClO 4 ), and nitric acid (HNO 3 ), which are strong acids.
  • LDH CO 3 2- MgAl-LDH3 was used as a starting material. The amount added was expressed as f value.
  • the ammonium salt was dissolved in 10-20 mL of methanol, and CO 3 2- MgAl-LDH3 was suspended with the remaining methanol.
  • the experimental method is the same as in Example 1. Under a nitrogen stream, a methanol solution of ammonium salt was added and the reaction was carried out with stirring. The same applies to other ammonium salts. Also discharged nitrogen gas a large amount of CO 2 by decarbonation reaction was observed (peak of emissions, 2-5 minutes after the addition) either is, since the emission of CO 2 after 1 hour was observed slightly The reaction time was 1.5 hours.
  • the obtained product was identified by FTIR and powder X-ray diffraction measurement as in Examples 1 to 4 so far, and it was confirmed that MgAl-LDH3 containing an anion component of an ammonium salt was formed. did.
  • FIG. 20 shows the relationship between the amount of ammonium salt added and the content or weight change of residual carbonate ions in the obtained product.
  • (1a) shows NH 4 ClO 4
  • (1b) shows NH 4 Cl
  • (1c) shows a curve of weight change when NH 4 NO 3 is used.
  • (2a) shows NH 4 ClO 4
  • (2b) shows NH 4 Cl
  • (2c) shows a curve of the change in the content of residual carbonate ions in the case of NH 4 NO 3 .
  • Alkylamine hydrochloride-methanol system MgAl-LDH3
  • R j NH (3-j) ⁇ HCl alkylamines and hydrochloric acid is a weak base, was subjected to decarbonation reaction in a methanol solution.
  • R of the alkylamine hydrochloride used is a methyl group and an ethyl group.
  • methylamine hydrochloride ((CH 3 ) NH 2 ⁇ HCl), dimethylamine hydrochloride ((CH 3 ) 2 NH ⁇ HCl), trimethylamine hydrochloride ((CH 3 ) 3 N ⁇ HCl), ethylamine Hydrochloride ((CH 3 CH 2 ) NH 2 .HCl), diethylamine hydrochloride ((CH 3 CH 2 ) 2 NH ⁇ HCl), and triethylamine hydrochloride ((CH 3 CH 2 ) 3 N ⁇ HCl) were used. .
  • CO 3 2- MgAl-LDH3 was used as a starting material, and the amount added was expressed by f value.
  • the concentration of carbon dioxide in the exhausted nitrogen gas increased remarkably and showed the maximum value in 2 to 5 minutes.
  • the product was confirmed to be Cl - MgAl-LDH3.
  • the amount of residual carbonate ions was 5% or less, and no weight loss of the product due to dissolution was observed.
  • CO 3 2- MgAl-LDH3 was used as a starting material, and the amount added was expressed by f value.
  • f [H + ]). / (2 ⁇ [CO 3 2 ⁇ ])
  • 100 mg of CO 3 2- MgAl-LDH3 and 50 mL of methanol were used.
  • the amine / acid salt was dissolved in 10 to 20 mL of methanol, and CO 3 2 —MgAl—LDH 3 was suspended in the remaining methanol.
  • the experimental method was the same as in Example 9, but the experiment was conducted with the f value fixed at 3.
  • Metal salt-methanol system MgAl-LDH3
  • MgAl-LDH3 Metal salt-methanol system
  • HX protic acid
  • metal salts include salts of divalent and trivalent metal hydroxides and strong acids.
  • AlCl 3 .6H 2 O containing trivalent Al was used as the metal salt.
  • Al there is sufficient water for hydrolysis because of the hydrated salt.
  • FIG. 22 A graph in which the f value and the residual amount of carbonate ions in the product are plotted is shown in FIG.
  • the amount of residual carbonate ions did not fall below 70%.
  • an experiment was also conducted with LiCl and KCl, which are also neutral salts. The experiment showed the same behavior as NaCl, and the amount of residual carbonate ions did not fall below 70%.
  • Example 2 An experiment was conducted using HCl as an acid in ethanol under the same conditions as in Example 2 except for the nitrogen gas atmosphere of Example 2.
  • HClO 4 was used as an acid, and an experiment was performed in a methanol solvent under the same conditions except for the nitrogen gas atmosphere of Example 1.
  • the product was identified by FTIR and the amount of residual carbonate ions was measured. In both cases, the amount of residual carbonate ions in the product was 3% or less.
  • NH 4 Cl was used as an ammonium salt, and an experiment was performed in methanol under the same conditions except for the nitrogen gas atmosphere of Example 9.
  • the amount of residual carbonate ions in the product was 20%.
  • dimethylamine hydrochloride was used as the amine / acid salt, and the experiment was performed in ethanol under the same conditions except for the nitrogen gas atmosphere of Example 10.
  • the amount of residual carbonate ions in the product was 10%. From the above results, when acid was used, there was no effect under nitrogen flow or under air flow, but when amine / acid salt was used, there were many residual carbonate ions under air flow, and the influence of the atmosphere. I can see that.
  • the reaction was carried out in methanol containing ammonium acetate (CH 3 COONH 4 ).
  • 100 mg (0.331 mmol) of CO 3 2 —MgAl—LDH 3 was placed in a three-necked flask, 40 mL of methanol was added, and the mixture was dispersed with ultrasonic waves to prepare a suspension.
  • a solution of f 8 ammonium acetate (Cica special grade) (204.2 mg; 2.65 mmol) dissolved in 10 mL methanol under a nitrogen stream (0.5 L / min). added.
  • NaCl sodium chloride
  • a methanol solution of NaCl was added while stirring the suspension of CO 3 2- MgAl-LDH3 with a magnetic stirrer and reacted at 50 ° C. for 2 hours. No release of CO 2 was seen in the exhaust nitrogen gas.
  • a white powder was obtained by filtration and drying under the same conditions as in Example 1.
  • FTIR although inclusion of chlorine ions was recognized, it was basically a profile of carbonate ion type LDH, and the amount of carbonate ions was 75%, which was almost the same as when reacted at room temperature. From the above, it can be seen that the acceleration of the reaction by heating is caused by using an ammonium salt that is an acidic compound.
  • anion exchangeable LDH which has not been easily obtained conventionally, can be obtained in a short time, simply and more safely.
  • the obtained anion-exchangeable LDH can be produced and provided by, for example, a so-called soft chemical reaction by an extremely simple operation such as an anion exchange process. It is expected to lead to the development and promotion of new materials with functions. It has already been proposed that organic molecules having biological functions are protected between layers to be used for drug delivery and the like. Moreover, it is also possible to obtain a swellable LDH that can form an LDH nanosheet using these anion-exchangeable LDH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一般式:QaT(OH)z(CO3 2-0.5-b/2(X-b・nH2O(式中、1.8≦a≦4.2。z=2(a+1)。0≦b<0.5。0≦n≦5。Qは2価の金属。Tは3価の金属。X-は1価の陰イオンとなる原子又は原子団。)で表される炭酸イオン型層状複水酸化物を原料とし、bを0.5以上最大1にまで増加させた陰イオン交換性LDHの製造方法であって、酸性化合物(MXm)(式中、m=1、2又は3。m=1の場合、MはH又はNRR'R"・Hであり、R、R'及びR"はH又は有機基である。m=2又は3の場合、Mは2価又は3価の金属である金属塩。)を含むアルコール溶液に接触させる。

Description

陰イオン交換性層状複水酸化物の製造方法及び炭酸イオンを含む層状複水酸化物の炭酸イオンを置換する方法
 本発明は、層間にイオン交換容易な陰イオン(X-)を有する陰イオン交換性層状複水酸化物の製造方法に関する。詳しくは、本発明は、層間にイオン交換性が困難な炭酸イオン(CO3 2-)を含む層状複水酸化物を原料とし、炭酸イオンを置換することにより、陰イオン交換性層状複水酸化物を製造する方法及び炭酸イオンを含む層状複水酸化物の炭酸イオンを置換する方法に関する。
 従来、粘土鉱物などの層状化合物を使用し、各種の陽イオンや陽イオン性の機能性有機物をこの層状化合物に包接させることによって多くの層状化合物が開発されてきた。これは、粘土鉱物において層が陰電荷を持ち、層間の陽イオンが容易にイオン交換することを利用したものである。層状複水酸化物(Layered Double Hydroxide、以下、LDHと略記する。)は、粘土鉱物と異なり、層は陽電荷を持ち、層間に陰イオン(アニオン)を有し、陰イオン交換性を有する。無機の陰イオン交換性材料は種類が少ないため、LDHが注目されている(非特許文献1)。
 LDHの層間に陰イオンを有する層状化合物を合成する手法として、層間に炭酸イオンを含むLDH(以下、炭酸イオン型LDHという。)を用い、炭酸イオンを他の陰イオンに交換するための幾つかの方法が知られている。
 炭酸イオン型LDHは、合成が容易であり、また、結晶性の良い高品質な結晶が得られるため、工業的に最も多く製造されているLDHのほとんどがこの炭酸イオン型である。しかしながら、炭酸イオン型LDHはイオン交換性が極めて低く、通常の陰イオン交換によって炭酸イオン以外の陰イオンを含むLDHへの変換は難しかった(非特許文献2)。炭酸イオン型LDHをより簡単な化学的手法によって、イオン交換が容易な陰イオン(例えば、過塩素酸イオン、硝酸イオン、塩素イオンなど)を含む陰イオン交換性LDHに変換できるならば、工業的にも研究・試験レベルにも広い応用が期待できることから、炭酸イオン型LDHをより一層簡単な化学的手法によって、陰イオン交換性LDHに変換する方法が望まれていた。
 本発明者らは、炭酸イオン型LDHに、塩酸-NaCl(塩化ナトリウム)混合溶液を室温で作用させると脱炭酸イオン反応が起こり、塩素イオン(Cl-)を含むLDHに変換することを見出した(特許文献1、非特許文献3)。
 塩酸-NaCl混合溶液を使用する脱炭酸イオン反応は簡便であるが、溶液が強酸性で、また、LDH自体は酸の水溶液に溶解しやすいため、LDHが溶けない条件で脱炭酸イオン反応を行なう必要があった。また、塩酸-NaCl混合溶液による脱炭酸イオン反応では、Cl-型以外の陰イオン交換型LDH(例えば、ClO4 -型やNO3 -型)への完全な変換は困難であった(非特許文献4)。このように塩酸-NaCl混合溶液による脱炭酸イオン反応は、陰イオン交換が容易な陰イオンである塩素イオンを含むLDHを、粒径や均一性に変化を及ぼすことがなく製造する方法として画期的である。しかし、前述した課題があり、さらなる改善が求められていた。
 本発明者らは、酸性度の弱い酢酸緩衝溶液を使用し、この酢酸緩衝溶液にNaCl(塩化ナトリウム)や過塩素酸ナトリウム、硝酸ナトリウムなどの中性塩を加えた水溶液を、炭酸イオン型LDHに室温で作用させると、脱炭酸イオン反応が起こり、添加した陰イオンを含むLDHに変換することを見出した(特許文献2、非特許文献5、6)。この方法により、Cl-型以外の陰イオン交換型LDH(例えば、ClO4 -型やNO3 -型)への変換も可能となった。
 しかしながら、この反応では、化学平衡によるイオン交換反応も起こっているため、反応系内にはLDH層間に入れたい陰イオンが大過剰に存在する必要がある。特に、過塩素酸イオンや硝酸イオンは、LDHに対する親和性が低く、これらの陰イオンを導入するには、かなり過剰の塩が必要であった(非特許文献6)。また、酸性度の調整に酢酸緩衝溶液を使用することによって、系内に陰イオン性の酢酸イオンが存在するため、LDHの種類によっては、酢酸イオンが層間に入ってしまうおそれがあった。このように、酢酸緩衝溶液を使う方法によって、pHが安定した条件での脱炭酸イオン反応が可能となったが、使用する試薬の種類も多く、また試薬の量は大過剰量が必要であり、LDHの種類によっては、系内に存在する酢酸イオンが混入する危惧もあり、これらの点での改善が必要であった。
特許第4228077号公報 WO2009/072488号パンフレット 特開2005-335965号公報
Cavani,F.,Trifiro,F.,Vaccari, A.,Catal.Today 11,173-301(1991). Miyata,S.,Clays Clay Miner.31, 305-311(1983). 井伊 伸夫、,Matsumoto,T.,Kaneko,Y.,Kitamura,K.,Chem.Mater.16,2926-2932(2004). 井伊 伸夫,Okamoto,K.,Kaneko,Y.,Matsumoto,T.,Chem.Lett.34,932-933(2005). 井伊 伸夫、佐々木 高義、J.Colloid Interface Sci.322、237-245 (2008). 井伊 伸夫、山田 裕久、Chem.Lett.39、591-593 (2010). 井伊 伸夫、Fujii、K.、Okamoto、K.、佐々木 高義、Appl.Clay Sci.35、218-227(2007).
 本発明は、炭酸イオン型LDHを出発物質とし、少ない種類および量の試薬で簡便・迅速に脱炭酸イオン反応を行なって、結晶外形・結晶構造・結晶性を保ったまま、陰イオン交換性に富むLDHを製造する方法を提供することを目的とする。
 本発明者らは、実験により下記の事実を見出した。すなわち、
 (1)メタノールやエタノールなどのアルコール中では、酸によるLDHの溶解が水溶液中と比べてかなり抑制されること、
 (2)発生した二酸化炭素がアルコール溶媒中に炭酸イオンの形で残留せず、溶媒から放出されるため、水溶液中でのイオン交換のように大過剰の陰イオンが必要でなく、酸との反応がほぼ定量的に起こること、
 (3)酸以外の酸性化合物である、酸にアミンが化合してなるアミン・酸塩によっても、二酸化炭素が放出されて、同様の脱炭酸イオン反応が生じること、
 (4)アミンを含まない酸性化合物である金属塩においても、塩や溶媒中に含まれる微量な水分によって、金属塩の加水分解で酸が生成するため、脱炭酸イオン反応が生じること。
 なお、酸性化合物とは、水中で酸性を示す化合物をいい、酸又は、強酸と弱塩基から生成する塩がこれに該当する。
 本発明は、上述した知見に基づき完成した、陰イオン交換性を有するLDHの製造方法である。
 本発明の陰イオン(アニオン)交換性LDHを製造する第1の方法は、一般式(1)で表される組成を有する炭酸イオン型LDHと、一般式(2)で表される酸性化合物を含む有機溶媒とを接触させて、一般式(1)中のb値を0.5以上1以下にまで増加させることを特徴とする。
Figure JPOXMLDOC01-appb-C000008
 式(1)中、aは、1.8≦a≦4.2の数値範囲を示す。zは、2(a+1)である。bは、0≦b<0.5の数値範囲を示す。Qは、2価の金属。Tは、3価の金属。Xは1価の陰イオン。nは、0以上5以下である。
Figure JPOXMLDOC01-appb-C000009
 式(2)中、Xは1価の陰イオン(X-)に対応する元素又は原子団を意味し、mは1、2又は3のいずれかである。m=1の場合、MXはプロトン性の酸HX又はNRR’R”・HX(ここで、R、R’及びR”は水素、ヒドロキシル基又は有機基であって、それぞれは、同一又は異なっていてもよい。)で示されるアミン・酸塩である。m=2又は3の場合、MXは2価又は3価の金属の金属塩である。
 本発明の第2の構成は、前記MX2又はMX3で表される金属塩が加水分解によってプロトン性の酸(HX)を生成する金属塩であることを特徴とする第1の製造方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第3の構成は、前記Xが、塩素イオン(Cl-)、臭素イオン(Br-)、硝酸イオン(NO3 -)、過塩素酸イオン(ClO4 -)、塩素酸イオン(ClO3 -)及び酢酸イオン(CH3COO-)のいずれかの陰イオンである第1の製造方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第4の構成は、式(2)の前記アミン・酸塩のR、R’及びR”がそれぞれ、組成式Ctpq(t=0~6、p=1~13、q=0~2)である第1の製造方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第5の構成は、前記アミン・酸塩のR、R’及びR”が水素、ヒドロキシル基、アルキル基又はヒドロキシル基で置換されたアルキル基から選ばれる置換基である、第4の製造法方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第6の構成は、前記アルキル基がメチル基又はエチル基であり、ヒドロキシル基で置換されたアルキル基がヒドロキシメチル基又はヒドロキシエチル基である、第5の製造法方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第7の構成は、前記アミン・酸塩がアンモニウム塩である、第5の製造法方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第8の構成は、X-が塩素イオンである、第5の製造法方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第9の構成は、前記Mが2価のZn、Mg又はCaのいずれかの金属である、第3の製造方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第10の構成は、前記Mが3価のFe又はAlのいずれかの金属である、第3の製造方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第11の構成は、前記有機溶媒が、炭素数1乃至4のいずれか一種以上の有機溶媒である、第1の製造方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第12の構成は、前記有機溶媒がメタノール、エタノール、2-プロパノール、テトラヒドロフラン又はアセトンである、第1の製造方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第13の構成は、前記一般式(1)で表される炭酸イオン型LDHを、前記一般式(2)で表される酸性化合物を含む有機溶媒に分散させて、10℃以上50℃未満の温度条件において反応させる、第1の製造方法に記載の陰イオン交換性LDHの製造方法である。
 本発明の第14の構成は、一般式(1)で表される炭酸イオン型層状複水酸化物と、
Figure JPOXMLDOC01-appb-C000010
 (式(1)中、1.8≦a≦4.2、0≦b<0.5、z=2(a+1)、Qは2価の金属、Tは3価の金属、X-は1価の陰イオン、0≦n≦5である。)
 一般式(2)で表される化合物を含む有機溶媒と、を接触させて、下記一般式(3)の陰イオン交換性層状複水酸化物を製造する、陰イオン交換性層状複水酸化物の製造方法である。
Figure JPOXMLDOC01-appb-C000011
 (式(2)中、Xは1価の陰イオン(X-)に対応する元素又は原子団を意味し、mは1、2又は3のいずれかであり、m=1の場合、MXはプロトン性の酸(HX)、又は、アミンの酸塩(NRR’R”・HX、ここでR、R’及びR”は水素、ヒドロキシル基又は有機基であって、それぞれは同一又は異なっていてもよい。)である。m=2又は3の場合、Mは2価又は3価の金属である。)
Figure JPOXMLDOC01-appb-C000012
 (式(3)中、1.8≦a≦4.2、z=2(a+1)、Qは2価の金属、Tは3価の金属、X-は1価の陰イオン、0≦n≦5である。)
 また、本発明の炭酸イオン型層状複水酸化物中の炭酸イオンを1価の陰イオンと置換する方法は、一般式(1)で表される炭酸イオン型層状複水酸化物と、
Figure JPOXMLDOC01-appb-C000013
 (式(1)中、1.8≦a≦4.2、0≦b<0.5、z=2(a+1)、Qは2価の金属、Tは3価の金属、X-は1価の陰イオン、0≦n≦5である。)
 一般式(2)で表される酸性化合物と、を有機溶媒中で接触させる方法である。
Figure JPOXMLDOC01-appb-C000014
 (式(2)中、Xは1価の陰イオン(X-)に対応する元素又は原子団を意味し、mは1、2又は3のいずれかであり、m=1の場合、MXはプロトン性の酸(HX)、又は、NRR’R”・HX(ここでR、R’及びR”はそれぞれH又は有機基であって、同一の又は異なっていてもよい。)で示されるアミン・酸塩である。m=2又は3の場合、Mは2価又は3価の金属である。)
 本発明の効果は以下のとおりである。
 1)塩酸-NaCl法(特許文献1)や酢酸バッファーを使用する方法(特許文献2)などの従来知られている方法において、特に、過塩素酸イオンや硝酸イオンを含むLDHの合成の際には、大過剰量の過塩素酸イオンや硝酸イオンが必要であったが、本発明においては、過剰量の塩の使用は必ずしも必要でない。本発明では、プロトン性の酸を使用する場合は、試薬は最小限の量の酸を一種類使うのみで充分であり、また、酸の量は、LDH中の炭酸イオンの総量に対し、当量~50%程度過剰量とするだけで充分なため、経済的である。また、アミン・酸塩を使用する場合には、試薬量は、試料中の炭酸イオンの総量に対し3~5倍程度で充分なため、経済的である。
 このように、本発明によれば、少ない種類・量の試薬でLDHからの脱炭酸イオン反応が可能となる。
 2)本発明で使用するのは、イオン交換の目的とする陰イオンを含む酸性化合物だけであるため、反応系内に目的とする陰イオンしか存在せず、他種の陰イオンが混入する危惧がない。
 3)本発明によれば、反応時間は、酸の場合は30~60分程度で完了し、また、アミン・酸塩を使用する場合でも2時間以内と、迅速である。従来法では、例えば酢酸バッファーを使用する方法において、過塩素酸イオンや硝酸イオン型への変換には、少なくとも3時間以上、好ましくは、5時間程度必要である。(非特許文献6参照)。
 4)本発明では、有機溶媒は炭酸イオンを含まないため、水を使用する場合のような脱ガス操作を必要せず、また、洗浄後も空気中の二酸化炭素溶解による炭酸イオンの発生がないため、二次的に炭酸イオンが取り込まれにくい。
 これらの効果・利点のため、本発明は工業的製造にも適しており、その意義は大きい。
 本発明で得られた陰イオン交換性に富むLDHは、陰イオン交換によって容易に、各種の無機や有機の陰イオンと交換可能である。そのため、本発明法で得られた陰イオン交換性層状複水酸化物は、陰イオン性機能性分子の導入による新規な機能性層状化合物の合成に利用することができ、ナノデバイスの構築といった新しい応用分野にまで波及・発展することが考えられる。
酸、アミン・酸塩、又は金属塩を含む有機溶媒との接触による、炭酸イオン型LDHから、陰イオン交換性に富むLDHへの変換スキームを示す図である。 本発明の実施例1において、(a)メタノール溶媒中及び(b)水溶媒中で、炭酸イオン型LDH(CO3 2-MgAl-LDH3)に過塩素酸を作用させて反応をおこなった場合の生成物重量の変化を示すグラフである。 実施例1における、(a)炭酸イオン及び(b)過塩素酸イオンを層間に含むLDH(MgAl-LDH3)のフーリエ変換赤外分光スペクトル(透過度)である。 実施例1において、(a)メタノール溶媒中及び(b)水溶媒中で、炭酸イオン型LDH(CO3 2-MgAl-LDH3)に過塩素酸を作用させて反応をおこなった場合の生成物のMg/Al比(モル比)を示すグラフである。 実施例1における、(a)炭酸イオン型及び(b)過塩素酸イオン型MgAl-LDH3の粉末X線プロファイルを示す図である。 実施例1における試料(a)炭酸イオン型及び(b)過塩素酸イオン型MgAl-LDH3のSEM(走査電子顕微鏡)像を示す図である。 実施例1において、窒素気流下(0.5L/分)、過塩素酸メタノール溶液中で反応を行なった場合の、排出窒素ガス中の二酸化炭素(CO2)濃度変化を示すグラフである。 実施例2における、(a)炭酸イオン型及び(b)過塩素酸イオン型MgAl-LDH2のフーリエ変換赤外分光スペクトル(透過度)を示すグラフである。 実施例2において、炭酸イオン型LDH(CO3 2-MgAl-LDH2)に過塩素酸メタノールを作用させた場合の生成物の重量変化を示すグラフである。 実施例2において、炭酸イオン型LDH(CO3 2-MgAl-LDH2)に過塩素酸メタノールを作用させた場合の生成物のMg/Al比(モル比)の変化を示すグラフである。 実施例2における試料(a)炭酸イオン型及び(b)過塩素酸イオン型MgAl-LDH2のSEM(走査電子顕微鏡)像を示す図である。 実施例3において、炭酸イオン型LDH(CO3 2-MgAl-LDH3)に塩酸エタノールを作用させた場合の生成物の重量変化を示すグラフである。 実施例3における、反応後のLDH(MgAl-LDH3)のフーリエ変換赤外分光スペクトル(透過度)を示すグラフである。 実施例4において、炭酸イオン型LDH(CO3 2-MgAl-LDH3)に硝酸メタノールを作用させた場合の生成物の重量変化を示すグラフである。 実施例5における、(a)炭酸イオン型及び(b)過塩素酸イオン型NiAl-LDH2のフーリエ変換赤外分光スペクトル(透過度)を示すグラフである。 実施例5における、(1a)炭酸イオン型及び(1b)過塩素酸イオン型NiAl-LDH2の粉末X線プロファイル;実施例6における、(2a)炭酸イオン型及び(2b)過塩素酸イオン型NiAl-LDH3の粉末X線プロファイル;及び、実施例7における、(3a)炭酸イオン型及び(3b)過塩素酸イオン型NiAl-LDH4の粉末X線プロファイルを示す図である。 実施例6における、(a)炭酸イオン型及び(b)過塩素酸イオン型NiAl-LDH3のフーリエ変換赤外分光スペクトル(透過度)を示すグラフである。 実施例8における、炭酸イオン型LDH(CO3 2-MgAl-LDH3)に各種溶媒中で過塩素酸(HClO4)を作用させて反応をおこなった場合の生成物の重量の変化を示すグラフである。 実施例8における、炭酸イオン型LDH(CO3 2-MgAl-LDH3)に各種溶媒中で過塩素酸(HClO4)を作用させた実験において、添加した過塩素酸(HClO4)の量に対するCO3 2-MgAl-LDH3中の残留炭酸イオン含有率の変化を示すグラフである。 実施例9における、CO3 2-MgAl-LDH3にメタノール中でアミン・酸塩の一種であるアンモニウム塩(NH4ClO4,NH4Cl,NH4NO3)を作用させて反応をおこなった場合のアンモニウム塩の添加量に対する生成物重量の変化(1a,b,c)及び残留炭酸イオン含有率の変化(2a,b,c)を示すグラフである。 実施例10における、CO3 2-MgAl-LDH3にメタノール中でジメチルアミン塩酸塩を作用させて反応をおこなった場合のアンモニウム塩の添加量に対する(1)生成物重量の変化、及び(2)残留炭酸イオン含有率の変化を示すグラフである。 実施例12における、CO3 2-MgAl-LDH3にメタノール中で、(a)NaCl(塩化ナトリウム)、及び(b)AlCl3・6H2O、を作用させて反応をおこなった場合の生成物重量変化を示すグラフである。
 以下、添付図面を参照しながら、本発明の実施形態である陰イオン交換性LDHの製造方法について説明する。
 図1は、本発明の実施形態に係る陰イオン交換性LDHの製造方法の製造プロセスの概要図で、炭酸イオン型LDHと酸性化合物とを有機溶媒中で接触させ、陰イオン交換性のLDHを生成する方法を示している。なお、酸性化合物とは、水中で酸性を示す化合物であり、酸又は、強酸と弱塩基から生成する塩がこれに該当する。
 炭酸イオン型LDHは、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000015
 上記式(1)中、1.8≦a≦4.2、0≦b<0.5、z=2(a+1)、Qは2価の金属、Tは3価の金属、X-は1価の陰イオン、0≦n≦5である。ここで、nは層間水の量を示しており、雰囲気の湿度によって0≦n≦5の範囲で変化することがある。
 一般式(1)において、b=0のとき、炭酸イオン(CO3 2-)は最大値の0.5となる。これは、炭酸イオンが最も多い炭酸イオン型LDHを表し、脱炭酸イオン反応が最も困難であり、本発明ではこれを出発物質とする。しかし、0<b<0.5のとき、すなわち、一部がすでに何らかの理由で陰イオンに交換され、炭酸イオンの少ない原料においても、当該方法により簡単に脱炭酸イオン反応が起こるため、これを出発物質としてもよいことは当然のことである。
 また、出発物である炭酸イオン型LDHにおいては、製造過程上、意図しない不純物が微量入り、式(1)のような理想的な式で完全に表されない場合も考えられるが、本発明においては、これを除外するものではない。
 前記一般式(1)に示す炭酸イオン型LDHを、下記一般式(2)で表される酸性化合物を含む有機溶媒と接触させ、陰イオン交換性のLDHを生成する。
Figure JPOXMLDOC01-appb-C000016
 上記式(2)中、Xは1価の陰イオン(X-)に対応する元素又は原子団を意味し、mは1、2又は3のいずれかであり、m=1の場合、MXはプロトン性の酸(HX)、又は、NRR’R”・HX(ここでR、R’及びR”は水素、ヒドロキシル基又は有機基であって、それぞれは同一又は異なっていてもよい。)で示されるアミン・酸塩である。m=2又は3の場合、MXは2価又は3価の金属の金属塩である。なお、式1中のX-と式2中のXは、同じ元素又は原子団を意味する。
 すなわち、酸性化合物は、具体的には以下のものである。
(1)1価の陰イオン(X-)を含むプロトン性の酸(HX)。
(2)1価の陰イオン(X-)を含むプロトン性の酸(HX)とアミン(NRR’R”)とからなるNRR’R”・HXで表される酸塩(以下、本明細書中では、アミン・酸塩という。)。
(3)加水分解によって前記プロトン性の酸(HX)を生成する金属塩(MX2又はMX3)。
 前記陰イオン(X-)は、塩素イオン(Cl-)、臭素イオン(Br-)、硝酸イオン(NO3 -)、過塩素酸イオン(ClO4 -)、塩素酸イオン(ClO3 -)又は酢酸イオン(CH3COO-)が好ましい。また、一般式(2)のXは、これに対応する原子で、水溶液中で陰イオン(X-)として放出されるものであり、プロトン性の酸(HX)は、HCl、HBr、HNO3、HClO4、HClO3、又はCH3COOHが好ましい。ただし、1価の陰イオンであればよく、有機、無機性を問わず、前述の陰イオン以外のものも排除するものではない。
 前記アミン・酸塩(NRR’R”・HX)のR、R’及びR”は、それぞれ、組成式Ctpq(t=0~6、p=1~13、q=0~2)で表される基である。
 以下、実施例にて使用したアミン・酸塩の内、3点について、この組成式でどのように表されるかを例示する。
 R、R’及びR”が共に、t=q=0でp=1のときは、NH3・HXとなり、これは、NH4Cl、NH4ClO4などのアンモニウム塩である。
 Rがt=2、p=5、q=0で、R’、R”が共に、t=q=0かつp=1のときは、C25NH2・HXとなり、X=Clの場合、アミン・酸塩の1つであるエチルアミン・塩酸塩を表す。
 また、R、R’が共にt=2、p=5、q=1で、R”がt=q=0かつp=1のときは、C25ONH・HXとなり、X=Clの場合、アミン・酸塩の1つであるジエタノールアミン・塩酸塩がこの式で表される。
 具体的には、R、R’及びR”は、水素、ヒドロキシル基又は有機基である。有機基とは、炭素数1~6のアルキル基又はヒドロキシル基で置換された炭素数1~6のアルキル基である。
 金属塩のMは、2価のZn、Mg又はCa、3価のFe又はAlのいずれかの金属である。ただし、水溶液中で酸を生成する金属塩なら、これ以外のものも排除するものではない。
 LDHに含まれる炭酸イオンが陰イオンに交換されることは、式(1)において、bの値が、出発物質のbの値よりも増大することであり、炭酸イオンが陰イオン(X-)に完全に置換された場合、得られる陰イオン交換性LDHは、下記一般式(3)となる。
Figure JPOXMLDOC01-appb-C000017
 式(3)中、aは、1.8≦a≦4.2の数値範囲を示す。zは2(a+1)。Qは2価の金属。Tは3価の金属。Xは1価の陰イオンとなる原子。nは層間水の量を示しており、雰囲気の湿度によって変化し、0≦n≦5である。
 一般式(3)で表される陰イオン交換性LDHは、陰イオン交換性に富む。一般式(3)において、完全に陰イオン(X-)に置換した化学式を示したのは、イオン交換が最も完全に行われた組成を代表させたものである。反応条件を緩和させることにより、部分的に陰イオン(X-)に置換し、炭酸イオンが残留した化合物が得られるのは当然のことである。
 なお、実用上、完全な置換体が要求されない場合や、実用上、一部の置換が要求される場合においても、本発明の範囲内である。すなわち、式(1)において、bが出発物質のbの値よりも増大して、目的とする値になれば良いのであって、厳密にQaT(OH)z(X-)・nH2Oに限定されるものではない。
 陰イオン交換性LDHについて、補足説明する。一般的に、水溶媒中においては、価数の大きいイオン(例えば、2価、3価などの多価の陰イオン)やサイズの小さいイオンは、陰イオン交換性が乏しい。逆に、1価の陰イオンは、陰イオン交換性に富むことが知られており、その陰イオン交換性は、イオンサイズが大きくなるほどより高くなる。本発明では、陰イオン交換性LDHのXは、塩素イオン(Cl-)、臭素イオン(Br-)、硝酸イオン(NO3 -)、過塩素酸イオン(ClO4 -)、塩素酸イオン(ClO3 -)又は酢酸イオン(CH3COO-)のいずれかの陰イオンである。これらは、いずれも1価の陰イオンであり、イオンサイズも大きいので、LDHに対する親和性が弱く、これを含むLDHは、陰イオン交換性が高くなる。それ故、同じような条件を満たす陰イオンならば、前述の陰イオン以外のものも排除するものではない。
 有機溶媒は炭素数1~4の有機溶媒が好ましく、例えば、アルコール類、アセトン、テトラヒドロフランがある。
 アルコール類は、メタノール、エタノール、n-プロバノール、i-プロパノール(2-プロパノール)、n-ブタノール又はt-ブタノールが好ましく適用できる。炭素数1~4の有機溶媒は、扱いやすく手に入れやすく、揮発性が高く、沸点も低いため、反応後の溶媒除去も容易である。また、空気中の二酸化炭素が溶け込んで炭酸イオンを発生させることもないため、二次的な炭酸イオンのLDH層間への取り込みが起こらない。
 酸性化合物を含む有機溶媒において、酸性化合物の量は、出発物質である炭酸イオン型LDH内に存在する炭酸イオン(CO3 2-)の量を基準として算出される。CO3 2-は、-2価であるため、これを完全に補償するH+(プロトン)の量は、炭酸イオンのモル量の2倍が必要である。これがすなわち、1価換算した当量ということになる。すなわち、f=[H+]/(2×[CO3 2-])となる。
 アミン・酸塩の場合は、NRR’R”・HXからプロトン1つが放出されるとしてf値を決めた。また、酸性の金属塩では、MXmから、加水分解により、m個のHXが生成されるとしてf値を決めた。プロトン量のみならず、系内に存在する陰イオン(X-)量もCO3 2-を100%置換するのにf=1が最低限必要な量となるので、完全置換のためには、理論的に、fは1以上であることが必要である。
 水溶媒においては、炭酸イオンが他の陰イオンに完全にイオン交換される前に、重量減少が生じてしまう。しかし、水溶媒中に比べ、有機溶媒中ではLDHの溶解が抑制されるため、重量減少が生じる前にイオンの交換が生じる。
 プロトン性の酸とアルコールを用いた脱炭酸イオン反応の場合、完全な置換には、f=1以上の酸性化合物が必要であるが、酸の量が多すぎると、アルコール溶媒中においてもLDHは溶解し、重量減少が起こる。重量減少の程度は、アルコール及び酸性化合物の種類、含有水分量によっても異なるが、大概、f=1~2において、LDHの溶解がなく、脱炭酸イオン反応が完全に行なわれる。アミン・酸塩とアルコールを用いた脱炭酸イオン反応の場合、f=2~3が必要となるが、酸性度が弱いため、f=6といった過剰量を添加した場合でも溶解による重量減がない。
 プロトン性の酸を含むアルコール溶液を作製する場合、塩酸エタノールのようにHClがエタノールに溶けた形で取得できるときもある。しかし、そのような溶液がない場合、例えば、過塩素酸メタノール溶液では、過塩素酸の60%水溶液にメタノールを加えることによって作製する。最終的な水分量は、0.1%以下であるので問題ない。
 プロトン性の酸を含むアルコールを用いると、1)LDHの溶解が抑えられること、2)必要となる陰イオン量も酸性化合物から供給される陰イオンで充分であることなど、単に水をアルコールに置き換えただけではない、プロトン性酸-水溶液の反応系では実現できない多くの利点があることが分かった。
 また、アミン・酸塩とアルコールを用いた場合、当量に対し2~3倍の試薬が必要となるものの、1)大過剰に加えても、また長時間接触してもLDHの溶解が見られないこと、2)必要となる陰イオン量もアミン・酸塩から供給される陰イオンで充分であること、などの長所がある。酸性度の低いアミン・酸塩を水溶媒中で使用した場合には、実施例9、10、11にも示したように脱炭酸イオン反応がほとんど生じないので、アミン・酸塩とアルコールの組み合わせによって初めて可能となる反応である。
 酸性化合物は、陰イオンが共通の場合、混合して用いることも可能である。例えば、実施例9にも示したように、酸でもアミン・酸塩でも、各々、単独では部分的にしか脱炭酸イオン反応が起こらない条件で、酸とアミン・酸塩を混合して使用することによって、残留炭酸イオンがほぼ消失した。また、酸性化合物に対し、共通の陰イオンを持つ中性塩を加えた混合物を用いることも可能である。
 前述したように、アルコール以外の溶媒として、アセトンやテトラヒドロフランなどの極性溶媒も使用可能である。実施例8に、各種溶媒中でHClO4を使用した場合の実験結果を示している。定量的に脱炭酸イオン反応が起こることは、アルコール溶媒中と同じであった。ただ、HClO4の場合、アルコール以外の溶媒では、過剰な酸による溶解がアルコール溶媒の場合に比べ大きかった。また、アミン・酸塩を使用する場合、アルコール以外の溶媒に対する塩の溶解度が一般的に極めて低いという問題があるため、その点でアルコールに比べ特段の利点があるわけではないが、使用可能である。また、必要に応じて溶媒の混合使用を行なうことに問題はない。
 アミン・酸塩は、市販の薬品では塩酸塩が多いが、試薬として手に入れることができないアミン・酸を用いる場合は、溶媒中で当量の酸とアミンを混合させることによって、その場で合成して使用することが可能である。なお、酸の酸性度が強い場合、アミンを当量、加えることによって、酸性度を減少させることができる。
 脱炭酸イオン反応においては、炭酸イオンがプロトンと結合し、LDH層間から出て、二酸化炭素が発生する。これは、以下の化学反応式(4)で表される。
Figure JPOXMLDOC01-appb-C000018
 この反応は、平衡反応であるため、反応を窒素気流下で行なうなど、発生した二酸化炭素(CO2)を系外に取り除くことが望ましい。脱炭酸イオン反応においては、空気中の二酸化炭素が有機溶媒中に溶け込んで炭酸イオンを発生させることがなく、また、強い酸が溶媒中に存在する場合、平衡がCO2放出の側に優勢になる。空気中の二酸化炭素濃度は400ppm程度であるため、この場合、窒素気流下でなく空気気流下でも、問題ない(実施例13参照)。しかし、アミン・酸塩の場合には、残留炭酸イオンが10~20%、観察された。これは、酸性度が弱いアミン・酸塩の場合には、空気中の二酸化炭素の影響があり、反応式(4)のCO2排出が妨げられたためと考えられる。そのため、アミン・酸塩での反応の場合には、窒素気流下で行うことが望ましい。また、一般的には、溶媒へのCO2の溶解度は、温度を上げることによって減少するので、温度を上げる方法も使うことができ、また窒素気流下で行うこともできる。
 脱炭酸イオン反応において、水は無いことが好ましい。なお、化学反応式(4)で、同時に発生するH2Oは微量であるため影響がない。なお、実施例8では、アルコールに10重量%の水を加えた溶媒を使用した実験結果を示したが、純粋なアルコールに対して重量減は大きいものの、定量的な反応が起こっており、この程度の加水では、脱炭酸イオン反応に問題が生じなかった。そのため、使用するアルコールは、特段の脱水処理を行なう必要はない。
 また、反応後の洗浄にはアルコールを使用できる。アルコールは水に比べて、炭酸イオンをほとんど溶存しないので、特別な脱ガス操作(煮沸によって溶存する二酸化炭素を除去する操作)を行なう必要がない。
 酸性度に関して補足説明する。酸性度は、プロトン放出のし易さであるため、溶媒中での酸のプロトン放出のし易さの指標である酸解離定数(pKa)が一つの目安となる。pKaは、その値が小さいほど酸性は強くなり、例えば、塩酸は、-8(マイナス8)という値を示す。一方、酸性度の弱いアミン・酸塩は、ほとんど0~14の間の値を示している。酸解離定数は、溶媒によって変化し、多くの測定値は、水を溶媒とした場合の値であるため、水以外の溶媒中では定量的な意味を持つものではないが、プロトン放出のし易さの一つの指標として使うことができる。本明細書で記載する「プロトン性の酸」は、pKaが、0以下の値を示しており、また、「アミン・酸塩」は、pKaが、0~14の間の値を示している。そのため、本発明に記載されていない化合物についても、pKaが14以下の酸性化合物であるならば、同様な脱炭酸イオン反応が起きることは、容易に推測できるので、これらを排除するものではない。
 以下に示す実施例のうち、実施例1~15は、室温(20~25℃)の条件下で反応を行なっている。一般にpKaの値は、温度依存性があるため、温度を変化させることによって、酸性度の調整を行うことができる。温度の上昇が、酸性度の増加につながるとは一概に言えないが、温度の上昇は、反応速度を速める効果がある。実施例16~18に、加温した場合の実施例を記載している。
 NH4Clにおいては、反応温度が室温(20~25℃)の場合、f=1では50%の残留炭酸イオンが観察された(実施例9)が、反応温度を40℃に上げることによって、残留炭酸イオンが2%に減少した(実施例18)。これは、反応温度の増加によって、pKaが減少し、酸性度が増して脱炭酸イオン反応が促進したためと考えることができる。酢酸アンモニウム(実施例16)や酢酸(実施例17)においても同様の結果が得られた。
 本発明においては、反応温度を、10℃以上50℃未満の温度としているが、これは、50℃以上にすると、(1)酸の種類によっては、溶解による重量減が生じる可能性があること、(2)加熱の操作やアルコールや酸性化合物の蒸発を防ぐための冷却の操作が必要となること、(3)多くの場合、加熱を特段必要とせず、また、加熱を行なわないほうが経済的である、といった理由により温度範囲を指定したのであって、反応速度を増したり、酸性度を増すことによる特段の利点があるならば、50℃以上の反応温度を採用することを排除するものではない。
 また、10℃以上としているのは、常識的な室温は10℃以上であるので、本発明において10℃以上としているだけである。酸性度を小さくするなど、10℃未満の温度にする利点があるならば、溶液が凍結しない有機溶媒の凍結温度以上であれば、より低温で反応を行なうことについても排除するものではない。
 以上より、pKaによって最適な温度域は異なるものの任意又は適宜に設定できるが、一般的には、温度は10℃以上50℃未満が好ましく、室温(20℃以上25℃以下)が特に好ましい。
 脱炭酸イオン反応の工程は、例えば、炭酸イオン型LDHを、酸性化合物を含む有機溶媒に浸漬させて、LDHにプロトン(H+)と陰イオン(X-)とを接触させる工程である。
 以上説明したように、本発明は、炭酸イオン型LDHと酸性化合物を含む有機溶媒とを接触させることにより、粒径や均一性に変化を及ぼさずに、陰イオン交換が困難な炭酸イオン型LDHを、脱炭酸イオン反応により室温でしかも短時間で、陰イオン交換性に富むLDHへ変換するものである。
以下、実施例に基づいて本発明を具体的に説明する。但し、本発明は、実施例に限定されるものではない。
(過塩素酸-メタノール系;MgAl-LDH3)
 一般式Mg3Al(OH)8(CO3 2-0.5・2H2Oで示される市販のハイドロタルサイト(DHT-6、協和化学工業株式会社製。)を用いた。粒径分布は約0.1~1μm、Mg/Alモル比は、2.99(±0.06)を使用した。このLDHをCO3 2-MgAl-LDH3と表す。
 CO3 2-MgAl-LDH3を100mg、秤量して、三口フラスコに入れ、メタノール45mLを加え、懸濁液を作製した。また、各種濃度の過塩素酸メタノール溶液を、過塩素酸(60%)をメタノール5mLに溶かすことによって作った。
 窒素気流下(0.5L/分)、マグネティックスターラーでCO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、過塩素酸メタノール溶液を滴下し、室温(20~25℃)で1時間、撹拌しつつ反応させた。
 その後、窒素気流下、孔径0.2μmのメンブランフィルターでろ過し、メタノールで沈殿物を充分に洗浄した。ろ別した沈殿物をかき集めて回収し、直ちに減圧し、真空下で1時間以上乾燥して白色粉末を得た。
 比較のため、メタノールの代わりに脱ガス水(イオン交換水を15分以上煮沸して二酸化炭素を除去した水である。以降、単に水という。)を使った実験を行なった。
 なお、この実験において、過塩素酸は、f=[H+]/(2×[CO3 2-])=0.5、0.75、1.0、1.25、1.5、2.0、3.0、4.0、5.0、8.0となる量を使用した。例えば、f=1では、使用する過塩素酸の量は、56mgであった。
 図2に生成物重量とf値との関係を示す。
 メタノールの場合(図2中の(a)で示す)、生成物の重量はf値1~8において、ほとんど変化しないが、水の場合(図2中の(b)で示す)、f値が2からCO3 2-MgAl-LDH3の溶解が始まり、f=8ではほとんど溶失している。
 メタノールのf値0.5~1.0において生成物の重量が増加しているのは、CO3 2-がClO4 -に置換されて分子量が増加するためである。CO3 2-がClO4 -に完全に置換したと仮定し、回収率を95%とすると、116%程度に増加することになる。メタノールを使用した場合の重量は、f=1以上でこの値に到達しており、仮定値と一致する。
 FTIR(フーリエ変換赤外吸収法)によって得られた赤外吸収プロファイルを調べたところ、メタノールでは、f=1.0においては、まだわずかに(数%)の炭酸イオンの残留による、1370cm-1の炭酸イオン(CO3 2-)による吸収が見られるが、f=1.25においては、1370cm-1の炭酸イオン(CO3 2-)による吸収が消失し、1090~1100cm-1にClO4 -の強い吸収特性があることから、高純度のClO4 -MgAl-LDH3が生成していることを示していた。
 図3にフーリエ変換赤外分光スペクトル(透過度)を示す。(a)は、炭酸イオン型MgAl-LDH3、(b)は、f=1.25の条件で得たClO4 -型LDH3のFTIRプロファイルを示す。(b)では、過塩素酸イオンによる強い吸収(1090~1100cm-1)があるが、炭酸イオンによる吸収(1370cm-1)がなく、炭酸イオンの残留がないことがわかる。
 メタノールでは、f=1.25~8において、ClO4 -MgAl-LDH3が生成しており、また、他の相の存在も観察されなかった。
 一方、水を用いた時には、f=2においても、30%近い残留炭酸イオンがあり、f=3以上で、残留炭酸イオンが消失し、ClO4 -MgAl-LDH3の生成が観察された。しかし、図2からもわかるように、f=3では、20%程度の重量減が観察されており、LDH自体の溶解が起こっている。このように水を溶媒とした場合は、溶解による重量減がなく、かつ残留炭酸イオンがないLDHを製造する実験条件が存在しなかった。
 また、金属イオンが溶出してMg/Al比が変化する可能性があるため、誘導結合プラズマ(ICP)発光分析によるMg、Alの分析を行いMg/Al比を調べた。
 図4に結果を示す。図中の(a)がメタノール中で反応を行なった場合、(b)が水中で反応を行なった場合を示す。Mg/Al比の減少は、LDHからMgが選択的に溶出したことを示す。
 メタノール中での反応においては、ほとんどMg/Al比が変化しなかったが、水を使用した場合、Mg/Al比がわずかに減少して、f=4では、2.82になっていた。これは、酸に弱い成分であるMgが選択的に溶出したためであると考えられる。
 メタノール中、f=1.25の条件で反応をおこなった試料について、粉末X線回折による測定を行なった。結果を図5に示す。図5中の(a)は、炭酸イオン型MgAl-LDH3、(b)は、反応後のLDHを示す。炭酸イオンが過塩素酸イオンに置換することによって、回折ピークの角度がシフトしていることがわかる。
 (b)の底面間隔は、0.915nm(RH=10%で測定)を示し、非特許文献7の値(0.917nm)とよく一致しており、他の相によるピークもなく、また、その回折ピークはブロードになっておらず、結晶性に変化の無い良質なClO4 -MgAl-LDH3が得られたことを示していた。
 走査型電子顕微鏡(SEM)を用いて、CO3 2-型MgAl-LDH3、及びメタノール中、f=1.25の条件で反応をおこなって得られたClO4 -型のMgAl-LDH3の形状観察を行った。結果を図6に示す。過塩素酸イオン型LDH(図6(b))は、出発物の炭酸イオン型LDH(図6(a))の形状を継承しており、イオン交換によって外形を保ちつつ、変換が行われたことを示していた。なお、図中のバーは1μmで、2つの像は同一倍率である。粒径、形状に変化はなく、また、穴なども生じておらず、変換反応によって、LDH自体の溶解が起こっていないことを示している。
 反応時間を調べるために、メタノール中、f=1.25の条件で反応を行ない、排出される窒素中の二酸化炭素濃度を、二酸化炭素濃度計(TESTO-535)を用いて測定した。結果を図7に示す。過塩素酸メタノール溶液を滴下して、2分~4分で二酸化炭素量は最大値を示し、20分後には、ほとんど検出されないことがわかった。反応時間としては、1時間で充分であることを示している。
 比較のため、中性塩であるNaClO4のメタノール溶液を用いて、同様な実験を行なった。反応時間を2時間とし、f=[NaClO4]/(2×[CO3 2-])=6に相当するNaClO4の添加をおこなって実験を行なったが、排出窒素ガス中に二酸化炭素が観測されず、また、イオン交換によるClO4 -の導入は多少見られたものの、残留炭酸イオンは70~80%と、多くの残留が認められ、酸を用いない場合、ClO4 -の導入と脱炭酸イオン反応が十分に起こらないことを示していた。
 他の溶媒での実験は、実施例8にまとめて記載した。
(過塩素酸-メタノール系;MgAl-LDH2)
 本実施例において、一般式Mg2Al(OH)6(CO3 2-0.5・2H2Oで示されるLDHを合成して使用した。
 Mg/Alモル比はほぼ2であり、実施例1のMgAl-LDH3よりも層電荷密度が高い。合成方法は、特許文献3に従って行った。すなわち、MgCl2・6H2O(508mg)、AlCl3・6H2O(302mg)を秤量し、イオン交換水を加えて12.5mLの溶液とし、これにヘキサメチレンテトラミン(613mg)を溶かして12.5mL水溶液としたものを加え、混合した溶液を0.2ミクロンのメンブランフィルターでろ過したのち、50mL容量の耐圧テフロン(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、140℃で1日、水熱処理を行なった。ろ過、水洗後、真空中で乾燥し、279mgの白色粉末を得た。
 得られた生成物(CO3 2-MgAl-LDH2と表す)の粒径は約0.5~2μm、Mg/Alモル比は、1.94(±0.04)であった。CO3 2-MgAl-LDH2赤外吸収スペクトルを、図8の(a)で示す。
 過塩素酸を含むメタノール中で反応をおこなった。CO3 2-MgAl-LDH2を80.7mg秤量して、三口フラスコに入れ、メタノール45mLを加え、懸濁液を作製した。また、各種濃度の過塩素酸メタノール溶液を、過塩素酸(60%)をメタノール5mLに溶かして作製した。窒素気流下(0.5L/分)、マグネティックスターラーでCO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、過塩素酸メタノール溶液を滴下し、さらに室温(20~25℃)で1時間撹拌しつつ反応させた。実施例1と同じ条件のろ過、乾燥処理により、白色粉末を得た。
 過塩素酸は、f=0.5、0.75、0.875、1.0、1.25、1.5、2.0、4.0、8.0とした。f=1の場合の過塩素酸の量は、56mgである。
 f値と得られた生成物の重量との関係を図9に示す。f=0.5~8まで重量の変化はほとんどなく、過剰の酸の添加でも重量減がほとんど生じていないことがわかる。f=0.5~1.0へと重量が増加しているのは、CO3 2-がClO4 -に置換し分子量が増加するためである。CO3 2-がClO4 -に完全に置換したとすると、重量は129%程度まで増加することになり、本実施例の場合、これとほぼ一致している。
 メタノール中、f=1.25の条件で反応をおこなった試料について、粉末X線回折では、底面間隔0.879nm(RH=0%で測定)を示し、非特許文献7の値(0.881nm)とよく一致しており、また、その回折ピーク形は、結晶性にほとんど変化無く、良質なClO4 -MgAl-LDH2が製造されたことを示している。FTIRによって得られた赤外吸収プロファイルも、f=1.25で、1360cm-1の炭酸イオンによる吸収が消失し、1090cm-1にClO4 -の強い吸収特性が現れていることから、純度の高いClO4 -LDH2が生成していることを示している(図8中の(b)参照)。実施例1と同様に、(b)では、炭酸イオンによる吸収(1360cm-1)がなく、炭酸イオンの残留がないことがわかる。
 ICPによるMg、Alの分析を行い、Mg/Al比を調べた。図10にも示したように、メタノールでの反応においては、ほとんどMg/Al比が変化せず、選択的溶出は見られなかった。
 走査型電子顕微鏡(SEM)を用いて、CO3 2-型MgAl-LDH2及びメタノール中、f=1.25の条件で反応をおこなって得られたClO4 -型のMgAl-LDH2の形状観察を行った(図11参照)。過塩素酸イオン型LDH(図11中の(b))は、炭酸イオン型LDH(図11中の(a))の六角板状を継承しており、イオン交換によって外形を保ちつつ、変換が行われたことを示しており、LDH自体の溶解が起こっていないことを示している。
 反応に要する時間を調べるために、メタノール中、f=1.25の条件で反応を行ない、排出される二酸化炭素濃度を測定した。その結果、このMgAl-LDHにおいても、実施例1と同様に、過塩素酸メタノール溶液を滴下して、2分~4分で二酸化炭素量は最大値を示し、20分後には、ほとんど検出されないことがわかった。反応時間としては、1時間で充分であることを示している。
(塩酸-エタノール系;MgAl-LDH3)
 CO3 2-MgAl-LDH3塩酸、アルコールとしてエタノールを用い、実験を行なった。
 CO3 2-MgAl-LDH3を100mg秤量して、三口フラスコに入れ、エタノールを加え、懸濁液を作製した。窒素気流下(0.5L/分)、マグネティックスターラーでCO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、塩酸エタノール溶液(0.1mol/L)を滴下し、さらに室温(20~25℃)で1時間撹拌しつつ反応させた。実施例1と同じ条件のろ過、乾燥処理により、白色粉末を得た。
 滴下した塩酸エタノール溶液(0.1mol/L)は、f=0.5、0.75、1.0、1.25、1.5、2.0、3.0、4.0、6.0、8.0の量を使用した。f=1は、塩酸エタノール溶液の3.33mLに相当する。CO3 2-MgAl-LDH3の懸濁液を作るためのエタノール量は、50mLから滴下の溶液量を引いた容量とし、滴下後に全体量が50mLになるように調整している。
 得られた生成物の重量は、図12に示すように、エタノールの場合、f=2までほとんど変化ないが、f=2以上で溶解が始まっている。
 f=1.25以上で、残留炭酸イオンのないCl-LDHが得られた。FTIRによる赤外吸収プロファイルを図13に示す(f=1.5)。1370cm-1の炭酸イオン(CO3 2-)による吸収が消失しており、高純度なCl-LDHの生成を示している。なお、Cl-は、赤外吸収で吸収特性がないため、新たな吸収ピークは現れていない。f=1.25以上のもの(f=8.0まで)についても、Cl-MgAl-LDH3が生成していた。
 ICPによるMg、Alの分析を行い、Mg/Al比を調べた。重量減が観察される領域(f=2.0を超える酸の量の滴下)においても、ほとんどMg/Al比が変化しなかった。これは、LDHの溶解が生じる場合でも、選択的にMgが減少するのでなく、Mg,Al共に溶解して減少することを示している。
 エタノール中、f=1.25の条件で反応をおこなった試料について、粉末X線回折による測定を行なった。その結果、底面間隔0.795nm(RH=20%で測定)を示し、非特許文献7の値(RH=10%で、0.795nm)とよく一致しており、他の相によるピークもなく、また、その回折ピークはブロードになっておらず、結晶性に変化の無い良質なCl-MgAl-LDH3が製造されていることを示していた。
 反応に要する時間を調べるために、エタノール中、f=1.25の条件で反応を行ない、排出される窒素中の二酸化炭素濃度を測定した。その結果、実施例1、2と同様に、塩酸エタノール溶液を滴下して、2分~5分で二酸化炭素量は最大値を示し、20分後には、ほとんど検出されないことがわかった。反応時間としては、1時間で充分であることを示していた。
 エタノールの代わりにメタノール、i-プロパノール(2-プロパノール)を用いて、同様の実験を行なったが、反応時間、脱炭酸イオン量の割合、重量変化について、同等の結果が得られた。これは、酸を用いた脱炭酸イオン反応において、アルコールの種類による影響がほとんどないことを示している。
 水を溶媒として反応を行なった時のデータはすでに特許文献1の実施例2でも示されている。これによると、重量減が認められる塩酸濃度になっても、60%程度の残留炭酸イオンが認められ、残留炭酸イオンが5%以下になった時点では、20~30%の重量減が観察されている。そのため、塩酸のみを用いて水溶媒中で反応させる条件では、溶解によるLDHの重量減がなく、かつLDH中に炭酸イオンを残留させないようにすることはできない。
 塩酸/エタノール溶液を用いた場合、溶解がf=2を超える量から起こり、LDHの溶解が酸濃度の低い段階から生じた。実施例1、2の過塩素酸メタノールによる反応の場合、f=1.25~2の量で残留炭酸イオンは消失しているので、水を溶媒とした反応とは異なり、溶解による重量減がなく、且つ脱炭酸イオン反応がないLDHを製造できる条件が存在することがわかった。
(硝酸-メタノール系;MgAl-LDH3)
 CO3 2-MgAl-LDH3、硝酸及びメタノールを用い、実験を行なった。
 CO3 2-MgAl-LDH3を100mg、秤量して、三口フラスコに入れ、45mLのメタノールを加え、懸濁液を作製した。窒素気流下(0.5L/分)、マグネティックスターラーでCO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、各種濃度の硝酸メタノール溶液5mLを滴下し、さらに室温(20~25℃)で1時間、撹拌しつつ反応させた。
 実施例1と同じ条件のろ過、乾燥処理により、白色粉末を得た。
 なお、排出される窒素中の二酸化炭素濃度を測定より、反応時間としては、1時間で充分であることを確認した。
 滴下した硝酸メタノール溶液は、1Nの硝酸水溶液を用い、f=0.5、0.75、1.0、1.25、1.5、2.0、3.0、4.0、5.0とし、メタノール5mLを加えて作製した。f=1の場合の1N硝酸量は、0.33mLに相当する。
 得られた生成物の重量は、f=2を超える量の酸の添加で減少を示し、LDHの溶解が始まっていることがわかる(図14参照)。
 FTIR(フーリエ変換赤外吸収法)による赤外吸収プロファイルでは、f=1.25において、1360cm-1の炭酸イオン(CO3 2-)による吸収が消失し、1380cm-1に硝酸イオン(NO3 -)による吸収が生じていた。
 また、f=1.25の試料について、粉末X線回折による測定を行なった結果、底面間隔0.835nm(RH=30%で測定)を示し、非特許文献7の値とよく一致しており、他の相による回折ピークもなく、また、その回折ピークはブロードになっておらず、結晶性に変化の無い良質なNO3 -MgAl-LDH3が製造されていることを示していた。f=1.25以上のもの(f=5.0まで)についても、同様に、NO3 -MgAl-LDH3が生成していた。
 残留するCO3 2-の量をさらに詳しく調べるため、f=1.0、1.25、1.50、2.0について、炭素分析計(LECO,CS-444LS型)を用いて、Cの分析を行なった。その結果、いずれの試料についても、残留するCO3 2-は多くて5%であり、残留はほとんどないことがわかった。
 今回の硝酸メタノール溶液を用いた場合、溶解がf=2を超える量から起こり、これは、実施例3と同程度に、溶解が酸の濃度が低い段階から生じている。
 しかし、f=1の量ですでに残留炭酸イオンは消失しているので、水を溶媒とした反応とは異なり、溶解が見られず、かつ残留炭酸イオンがないLDHを作製する反応条件が存在することがわかった。
(過塩素酸-メタノール系;NiAl-LDH2)
 実施例5,6,7においては、Niイオン、Alイオンを含むLDHについて実験を行なった。すなわちNi/Al比を変えた炭酸イオン型NiAl-LDHを合成し、過塩素酸メタノール溶液を用いて、過塩素酸イオン型LDHに変換した。過塩素酸は、炭酸イオン型LDHの炭酸イオンと1価換算で同一モルの量を基準とし、その1.25倍量を使用した。
 炭酸イオン型NiAl-LDHを以下の方法で合成した。
 Ni(NO32・6H2O(364mg)、Al(NO33・9H2O(235mg)及びヘキサメチレンテトラミン(307mg)を溶かした12.5mLの混合水溶液を、25mL容量の耐圧テフロン(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、180℃で3日、水熱処理を行なった。ろ過、洗浄、乾燥により、青緑色粉末(185mg)を得た。粒径は0.3~0.6μm、ICP分析より、Ni/Alモル比は、2.00(±0.06)であった。このLDHをCO3 2-NiAl-LDH2と表す。
 過塩素酸アルコール溶液を用い、CO3 2-NiAl-LDH2の過塩素酸イオン型への変換を行なった。
 CO3 2-NiAl-LDH2を155mg秤量して、メタノール45mLを加え、懸濁液を作製した。窒素気流下、マグネティックスターラーで撹拌しつつ、この懸濁液に、f=1.25量である過塩素酸(60%)105mgをメタノール5mLに溶かした溶液を滴下し、さらに25℃で1時間、撹拌しつつ反応させた。
 実施例1と同じ条件のろ過、乾燥処理により、青緑色粉末(180mg)を得た。ICP分析より、Ni/Alモル比は、出発原料と同じであった。
 FTIR(フーリエ変換赤外吸収法)による赤外吸収プロファイルを図15に示す。図15中の(a)は炭酸イオン型、(b)はClO4 -型である。それぞれに吸収特性が認められた。生成したClO4 -型では、1360cm-1の炭酸イオンによる吸収が消失し、1090~1100cm-1のClO4 -の強い吸収特性が見られることから、純度の高いClO4 -LDHが生成していることを示している。
 粉末X線回折測定結果を図16中の(1a)及び(1b)に示す。測定は、窒素雰囲気下で行なった(RH=0%、窒素雰囲気下で、15分保持してから測定)。図16中(1a)は、CO3 2-型を示し、(1b)は、ClO4 -型を示す。(1b)には、CO3 2-型による反射も認められず、ClO4 -型に変換されていることがわかる。
 走査型電子顕微鏡(SEM)を用いて、CO3 2-、ClO4 -型のNiAl-LDHの形状観察を行った。過塩素酸イオン型LDHは、出発物の炭酸イオン型LDHの形状を継承しており、イオン交換によって外形を保ちつつ、変換が行われたことを示していた。
 以上により、MgAl-LDH以外の金属イオンを含むLDHにおいてもMgAl-LDHと同様に脱炭酸イオン反応が起こることがわかった。
(過塩素酸-メタノール系;NiAl-LDH3)
 実施例5のCO3 2-NiAl-LDH2よりNi含有量の多いNi/Al=3であるCO3 2-NiAl-LDH3を合成した。
 Ni(NO32・6H2O(409mg)、Al(NO33・9H2O(176mg)及び尿素(254mg)を溶かした12.5mLの混合水溶液を、25mL容量の耐圧テフロン(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、180℃で3日、水熱処理を行なった。ろ過、洗浄、乾燥により、188mgの生成物が得られた。粒径は0.2~0.6μm、Ni/Alモル比は、2.91(±0.06)であった。
 実施例5と同様、CO3 2-NiAl-LDH3の過塩素酸イオン型への変換を行なった。CO3 2-NiAl-LDH3を268mg秤量して、メタノール45mLを加え、懸濁液を作製した。窒素気流下、マグネティックスターラーで撹拌しつつ、この懸濁液に、過塩素酸(60%)140mgをメタノール5mLに溶かした溶液を滴下し、さらに20~25℃で1時間、撹拌しつつ反応させた。実施例1と同じ条件のろ過、乾燥処理により、青緑色粉末(297mg)を得た。Ni/Alモル比は、出発原料とほぼ同じ(2.96)であった(ICP分析による)。
 FTIR(フーリエ変換赤外吸収法)による赤外吸収プロファイル(図17参照)によると、生成したClO4 -型(図17中の(b))では、1360cm-1の炭酸イオンによる吸収が消失し、1090~1100cm-1のClO4 -の強い吸収特性が見られることから、純度の高いClO4 -LDHであることを示している。
 実施例5と同じ条件で、粉末X線回折測定を行った(図16参照)。
 図16において、(2a)は、CO3 2-型、(2b)は、ClO4 -型、である。(2b)において、CO3 2-型による反射も認められず、ClO4 -型に変換されていることがわかる。
 走査型電子顕微鏡を用いて、CO3 2-、ClO4 -型のNiAl-LDHの形状観察を行った。過塩素酸イオン型LDHは、出発物の炭酸イオン型LDHの形状を継承しており、イオン交換によって外形を保ちつつ、変換が行われたことを示していた。
 実施例5と同様、MgAl-LDH以外の金属イオンを含むLDHにおいても脱炭酸イオン反応が起こることがわかった。
(過塩素酸-メタノール系;NiAl-LDH4)
 実施例6より、Ni含有量の多いNi/Al=4となるCO3 2-NiAl-LDH4を合成した。Ni(NO32・6H2O(436mg)、Al(NO33・9H2O(141mg)及び尿素(248mg)を溶かした12.5mLの混合水溶液を、25mL容量の耐圧(登録商標)容器に入れ、耐圧ステンレス容器に収めて密封し、180℃で3日、水熱処理を行なった。223mgの生成物が得られた。粒径は0.2~0.8μm、Ni/Alモル比は、3.83(±0.08)であった。
 CO3 2-NiAl-LDH4を用い、過塩素酸イオン型への変換を行なった。CO3 2-NiAl-LDH4を329mg秤量して、メタノール45mLを加え、懸濁液を作製した。窒素気流下、マグネティックスターラーで撹拌しつつ、この懸濁液に、過塩素酸(60%)140mgをメタノール5mLに溶かした溶液を滴下し、さらに25℃で1時間撹拌しつつ反応させた。実施例1と同じ条件のろ過、乾燥処理により、青緑色粉末(353mg)を得た。Ni/Alモル比は、出発原料と誤差範囲内で一致していた。
 FTIR(フーリエ変換赤外吸収法)による赤外吸収プロファイルより、生成したClO4 -型では、1360cm-1の炭酸イオンによる吸収が消失し、1090~1100cm-1のClO4 -の強い吸収特性が見られることから、純度の高いClO4 -LDHが生成していることがわかった。
 実施例5と同じ条件で、粉末X線回折測定を行った(図16参照)。
 図16中の(3a)はCO3 2-型、(3b)はClO4 -型である。(3b)にはCO3 2-型による反射も認められず、ClO4 -型に変換されていることがわかる。
 走査型電子顕微鏡を用いて、CO3 2-、ClO4 -型のNiAl-LDHの形状観察を行った。出発物の炭酸イオン型LDH及び過塩素酸イオン型LDHの形状を継承しており、イオン交換によって外形を保ちつつ、変換が行われたことを示していた。
 実施例5と同様、MgAl-LDH以外の金属イオンを含むLDHにおいても脱炭酸イオン反応が起こることがわかった。
(過塩素酸-各種溶媒系;MgAl-LDH3)
実施例1のメタノール溶媒に代えて、エタノール、含水エタノール(10重量%の水を含む)、テトラヒドロフラン(THF)、アセトンを用いて、実験を行なった。実験条件は、実施例1と同じである。反応時間は、0.5時間であった。酸の添加量と生成物の重量変化の結果を、実施例1でのメタノール及び水を使用した結果と合わせて図18に示す。
 図18は、各種溶媒中でHClO4を加えたときの生成物の重量(%)を、酸の量(f)に対して示す。(a)は、メタノール(黒四角形の印(■)で示す。)、エタノール(白ひし形の印(◇)で示す。)、(b)は、10重量% H2O含有エタノール(白四角形の印(□)で示す。)、(c)は、アセトン(黒丸形の印(●)で示す。)、THF(白丸形の印(○)で示す。)、(d)は、水(黒ひし形の印(◆)で示す。)である。
また、図19に同じ実験における生成物中の残留炭酸イオン量を示す。(a)は、メタノール(黒四角形の印(■)で表す。)、エタノール(黒丸形の印(●)で表す。)、10重量% H2O含有エタノール(黒三角形の印(▲)で表す。)、アセトン(黒ひし形の印(◆)で表す。)、THF(黒五角形の印で表す。)であり、(b)は、水(白三角形の印(△)で表す。)である。定量的に反応した場合、f=1.0において、残留炭酸イオンがなくなるはずである。図19より、水溶媒のみがf=2~2.5のHClO4が必要となるが、他の有機溶媒、すなわち(a)では、ほぼf=1で残留の炭酸イオンがなくなり、定量的な反応が起こっていることがわかる。
 図18で、HClO4の添加によって重量が増加しているのは、炭酸イオンが、ClO4 -に置換し、分子量が増したためであり、重量は、f=1付近で最大となっている。さらに過剰に酸を加えた場合、メタノール、エタノールなどのアルコール中においては、f=1からの重量減はほとんどないが、10重量%H2O含有エタノール溶媒中(図18の(b))では、エタノール中よりも過剰の酸による重量減は大きい。これは、溶解によるものである。
 一方、アルコール以外の有機溶媒中では、図19に示したように定量的に脱炭酸イオン反応が起こるが、過剰な酸を加えた場合の重量減(図18の(c))はさらに大きくなる。水を溶媒とする場合、ろ過の操作などでの重量損失が有機溶媒の場合と比べ大きいこともあるが、脱炭酸イオン反応が定量的な反応とならず、しかも過剰の酸によって溶解が始まるため、重量の最大値が、有機極性溶媒の場合と比べ低くなっている。これらの結果は、酸を加えることによる脱炭酸イオン反応は、有機極性溶媒中では定量的に起こること、また有機溶媒中ではLDH自体の溶解が抑制されることを示している。
(アンモニウム塩-メタノール系;MgAl-LDH3)
 アミン・酸塩の一種であるアンモニウム塩、具体的には、塩化アンモニウム(NH4Cl)、過塩素酸アンモニウム(NH4ClO4)、硝酸アンモニウム(NH4NO3)を用い、メタノール溶液で脱炭酸イオン反応を行なった。これらは、それぞれ、弱塩基であるアンモニア(NH3)と強酸である塩酸(HCl)、過塩素酸(HClO4)、硝酸(HNO3)との化合からなる塩である。また、LDHとして、CO3 2-MgAl-LDH3を出発原料とした。添加量はf値で表した。例えば、NH4Clは、4つのHの内プロトン性のものは1つであると考え、NH4Clからは、1つのプロトンが供給されるものとした。それ故、f=[H+]/(2×[CO3 2-])=[NH4Cl]/(2×[CO3 2-])となる。CO3 2-MgAl-LDH3は、100mgを使用し、メタノールは、50mLを使用した。
 アンモニウム塩は、10~20mLのメタノールで溶解し、残りのメタノールで、CO3 2-MgAl-LDH3を懸濁させた。実験方法は実施例1と同じである。窒素気流下、アンモニウム塩のメタノール溶液を加えて撹拌しつつ反応を行なった。他のアンモニウム塩についても同様である。いずれも排出窒素ガス中に脱炭酸イオン反応による大量のCO2が認められた(排出のピークは、添加後2~5分)が、1時間後にもCO2の排出がわずかながら認められたので、反応時間は1.5時間とした。
 得られた生成物は、これまでの実施例1~4と同様、FTIR、粉末X線回折測定で同定し、それぞれ、アンモニウム塩の陰イオン成分を含むMgAl-LDH3が生成していることを確認した。
 アンモニウム塩の添加量と得られた生成物中の残留炭酸イオンの含有量又は重量変化との関係を図20に示す。
 図20中、(1a)はNH4ClO4、(1b)はNH4Cl、(1c)はNH4NO3の場合の重量変化の曲線を示す。(2a)はNH4ClO4、(2b)はNH4Cl、(2c)はNH4NO3の場合の残留炭酸イオンの含有率変化の曲線を示す。
 得られた生成物中の残留炭酸イオンの含有量は、図20に示すように、硝酸アンモニウムを使用した場合を除き、f=2~3までの添加で5%以下になった。硝酸アンモニウムの場合は12%以下であった。f値を3以上にしても残留量に大きな変化はなかった。
 得られた生成物の重量は、f値が3まででは増加している。これは陰イオンが置換して分子量が増えたためであり、3以上6までの添加でも重量に変化がなく、溶解に起因すると考えられる重量減は全く認められなかった。
 以上のことから、添加量がf=2以上で、ほとんど残留炭酸イオンが無くなること、また過剰のアンモニウム塩の添加による生成物の重量減が無いことがわかる。
 長時間の反応による重量変化を調べるために、NH4Cl、NH4ClO4、NH4NO3について、f=5の条件で、窒素気流下で1.5時間反応させた後、5日間窒素密封したのち、生成物を取り出し重量を測定したが、1.5時間後に取り出した生成物の重量と5日後に取り出した生成物の重量に差がなく、溶解による重量減少は認められなかった。
 アンモニウム塩と塩酸を混合した場合について実験を行なった。HCl量は、f=0.75、そしてNH4Cl量はf=1であった。HCl(f=0.75)単独だと25%、NH4Cl(f=1)単独だと50%の残留炭酸イオンが認められるが、混合して使用した場合、残留炭酸イオン量は、3%以下であった。
 メタノールの代わりにエタノールを使った実験を行なった。NH4Clをf=3の量で加え、2時間反応させた結果、メタノールの場合と同じ結果が得られた。
 比較のため、メタノールの代わりに脱炭酸水を使用し、NH4Clを大過剰の添加であるf=8の条件で、3時間反応させる実験を行なったが、残留炭酸イオン量は91%であり、ほとんどCl-に置換されておらず、脱炭酸イオン反応は見られず、排出窒素ガス中にCO2は観察されなかった。
 他のアンモニウム塩として、陰イオンがBr-であるNH4Brを使った実験を行なった。f=3でメタノール中、1時間反応を行なった。排出窒素ガス中に脱炭酸イオン反応による大量のCO2が認められ、生成物であるBr-MgAl-LDH3も残留炭酸イオン量が3%とごくわずかであった。
(アルキルアミン塩酸塩-メタノール系;MgAl-LDH3)
 弱塩基であるアルキルアミンと塩酸の化合したRjNH(3-j)・HClで示されるアルキルアミン塩酸塩を用い、メタノール溶液で脱炭酸イオン反応を行なった。使用したアルキルアミン塩酸塩のRは、メチル基とエチル基である。具体的には、メチルアミン塩酸塩((CH3)NH2・HCl)、ジメチルアミン塩酸塩((CH3)2NH・HCl)、トリメチルアミン塩酸塩((CH3)3N・HCl)、エチルアミン塩酸塩((CH3CH2) NH2・HCl)、ジエチルアミン塩酸塩((CH3CH22NH・HCl)、及びトリエチルアミン塩酸塩((CH3CH23N・HCl)を使用した。
 CO3 2-MgAl-LDH3を出発原料とし、添加量はf値で表した。例えば、HCl成分の1つのHのみプロトン性であるため、これらの化学式で表される酸性塩からは、1つのプロトンが供給されるものとした。f値は次のようになる。f=[H+]/(2×[CO3 2-])=[RjNH(3-j)・HCl]/(2×[CO3 2-])。
 100mgのCO3 2-MgAl-LDH3、と、メタノール50mLを使用した。アミン・酸塩を10~20mLのメタノールで溶解し、残りのメタノールでCO3 2-MgAl-LDH3を懸濁させた。実験方法は実施例9と同じであるが、f=3で実験を行なった。
 その結果、上記の全てのアミン・酸塩を用いた実験において、排出窒素ガス中の二酸化炭素濃度は顕著に増加し、2分~5分で最大値を示した。生成物は、赤外吸収プロファイル、粉末X線プロファイルより、Cl-MgAl-LDH3であることが確認された。残留炭酸イオン量は5%以下で、溶解による生成物の重量減も見られなかった。
 (CH32NH・HClについて、f値を変化させて残留炭酸イオンの量との関係及び重量変化を調べた。f値と生成物中の炭酸イオンの残留量をプロットしたグラフを図21に示す。図21中の(1)は炭酸イオンの含有率を示す曲線であり、(2)は生成物の重量変化を示す曲線である。f=3で、残留炭酸イオン量は3%以下となり、また、f値を6まで増加させても生成物の重量変化はなく、溶解による重量減は観察されなかった。
 (CH32NH・HCl、(CH33N・HClにおいて、メタノールの代わりにエタノールを用いf=3に固定した実験をおこなった。その結果、Cl-MgAl-LDH3の生成が確認された。残留炭酸イオン量は3%以下で、重量もメタノールの場合とほぼ同じであった。
 比較のため、(CH32NH・HCl、(CH33N・HClにおいて、アルコールの代わりに脱炭酸水を使用し、f=8の条件で3時間の反応を行なった。残留炭酸イオン量は80%位であり、ほとんどCl-に置換されておらず、また、排出窒素ガス中にCO2は観察されず、脱炭酸イオン反応は見られなかった。
(ヒドロキシルアミン塩酸塩又はエタノールアミン塩酸塩-メタノール系;MgAl-LDH3)
 実施例10で使用した以外のアミン・酸塩を用いて脱炭酸イオン反応の実験をおこなった。使用したアミン・酸塩は、
 (1)RNH2・HClにおいて、Rがヒドロキシル基であるヒドロキシルアミン塩酸塩及びメチル基であるメトキシアミン塩酸塩、
 (2)RjNH(3-j)・HClにおいて、Rがエチル基であるエタノールアミン塩酸塩、ジエタノールアミン塩酸及びトリエタノールアミン塩酸塩である。
 CO3 2-MgAl-LDH3を出発原料とし、添加量はf値で表した。実施例10と同様、HCl成分の1つのHのみプロトン性であるため、これらの化学式で表されるアミン・酸塩からは、1つのプロトンが供給されるものとした(f=[H+]/(2×[CO3 2-]))。
 100mgのCO3 2-MgAl-LDH3と、50mLのメタノールを使用した。アミン・酸塩は、10~20mLのメタノールで溶解し、残りのメタノールでCO3 2-MgAl-LDH3を懸濁させた。実験方法は実施例9と同じであるが、f値を3に固定して実験を行なった。
 上記の全てのアミン・酸塩を用いた実験において、排出される窒素ガス中のCO2濃度は顕著に増加し、2分~5分で最大値を示した。生成物は、赤外吸収プロファイル、粉末X線プロファイルより、Cl-MgAl-LDH3であることが確認された。全ての実験において、残留炭酸イオン量は5%以下で、生成物の溶解による重量減も見られなかった。
 HO(CH22NH2・HCl(エタノールアミン塩酸塩)について、比較のため、アルコールの代わりに脱炭酸水を使用し、大過剰の添加であるf=8の条件で、3時間反応させた。しかし、残留炭酸イオン量は、86%位であり、ほとんどCl-に置換されておらず、また、排出窒素ガス中にCO2は観察されず、脱炭酸イオン反応は見られなかった。
 以上、実施例9,10,11で示したように、アルコール中、アミン・酸塩で脱炭酸イオン反応が起きることがわかった。
(金属塩-メタノール系;MgAl-LDH3)
 弱アルカリの金属水酸化物と強酸が化合して生成した金属塩は、加水分解によって前記プロトン性の酸(HX)を平衡的に生成する。このような金属塩として、2価、3価の金属の水酸化物と強酸との塩が挙げられる。
 本実施例では、金属塩として3価のAlを含むAlCl3・6H2Oを用いた。Alの場合は含水塩のため、加水分解に充分な水が存在する。
 添加量はf値で表した。AlCl3・6H2Oは加水分解して、3つのHClを生成するため、Clの数と同じ3つのプロトンが供給されるものとした。それ故、f=[H+]/(2×[CO3 2-])=[Cl-]/(2×[CO3 2-])となる。
 100mgのCO3 2-MgAl-LDHを使い、メタノールは50mL使用した。金属塩は、10~30mLのメタノールで溶解し、残りのメタノールでCO3 2-MgAl-LDH3を懸濁させた。実験方法は実施例1と同じである。窒素気流下、金属塩のメタノール溶液を加えて撹拌しつつ反応を行なった。
 比較のため、中性塩であるNaClについても実験を行なった。反応時間は2時間とし、得られた生成物をFTIRで同定した。
 f値と生成物中の炭酸イオンの残留量とをプロットしたグラフを図22に示す。図22中の(b)で示したように、AlCl3・6H2Oではほぼ定量的に反応が起こり、f=1以上で5%以下の残留炭酸イオン量となった。一方、図22中の(a)で示したように、NaClでは、残留炭酸イオン量が70%以下になることはなかった。
 NaCl以外にも同じく中性塩であるLiCl及びKClでも実験を行なったが、Naclと同じ挙動を示し、残留炭酸イオン量が70%以下になることはなかった。
 AlCl3・6H2Oでは、排出窒素ガス中にCO2の急増が認められた(排出のピークは、添加後2~5分)が、中性塩のNaCl、LiCl,KClでは、排出窒素ガス中に脱炭酸イオン反応によるCO2は観察されなかった。
(空気気流下;MgAl-LDH3)
 本実施例では、CO3 2-MgAl-LDH3を用い、窒素ガスの代わりにエアポンプにて大気を送り込み、窒素気流下でなく空気気流下で実験を行なった。なお、ろ過のみ窒素気流下で行なった。いずれも、窒素気流下では、残留炭酸イオン量が3%以下に成る実験条件である。
 酸としてHClを用い、エタノール中で、実施例2の窒素ガス雰囲気以外は同じ条件で実験を行なった。HClの量はf=1.25であった。また、酸としてHClO4を用い、メタノール溶媒中で、実施例1の窒素ガス雰囲気以外は同じ条件で実験を行なった。HClO4の量はf=1.25であった。FTIRで生成物の同定と残留炭酸イオンの量を測定したが、両者とも、生成物中の残留炭酸イオン量は3%以下であった。
 次に、アンモニウム塩としてNH4Clを用い、メタノール中で、実施例9の窒素ガス雰囲気以外は同じ条件で実験を行なった。NH4Clの量はf=3とした。生成物中の残留炭酸イオン量は20%であった。
 また、アミン・酸塩として、ジメチルアミン塩酸塩を用い、エタノール中で実施例10の窒素ガス雰囲気以外は同じ条件で実験を行なった。ジメチルアミン塩酸塩の量はf=3とした。生成物中の残留炭酸イオン量は10%であった。
 以上の結果より、酸を用いた場合、窒素気流下でも空気気流下でも影響がなかったが、アミン・酸塩を用いた場合には、空気気流下では残留炭酸イオンが多く、雰囲気の影響が見られることがわかった。
(酢酸アンモニウム-メタノール、エタノール系)
 X-がCH3COO-(酢酸イオン)の場合について実験をおこなった。得られるLDHは、陰イオン交換の容易な酢酸イオン型LDHである。酸性化合物として、酢酸アンモニウム(CH3COONH4)を用いた。酢酸アンモニウムは、NRR’R”・HXという表記では、R=R’=R”=Hであり、またX=CH3COOであるため、CH3COOH・NH3で表される。酢酸アンモニウムの量は、f=[H+]/(2×[CO3 2-])=[CH3COONH4]/(2×[CO3 2-])で表す。
 酢酸アンモニウム(CH3COONH4)を含むメタノール中で反応をおこなった。100mg(0.331mmol)のCO3 2-MgAl-LDH3を三口フラスコに入れ、メタノール40mLを加え、超音波で分散させて懸濁液を作製した。この懸濁液をマグネティックスターラーで撹拌しつつ、窒素気流下(0.5L/分)、f=8の酢酸アンモニウム(Cica特級)(204.2mg; 2.65mmol)を10mL メタノールに溶かした溶液を加えた。マグネティックスターラーを用い、窒素気流下で、CO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、室温(20~25℃)で2時間、反応させた。排出窒素ガス中に脱炭酸イオン反応による大量のCO2が認められた。実施例1と同じ条件のろ過、乾燥処理により、白色粉末を得た。
 FTIRで、酢酸イオン型LDHの生成が確認でき、また、炭酸イオンの残留は認められなかった。
 上記のf=8以外の条件、f=4、6及び10で実験した。f=4及び6では、わずかに炭酸イオンの残留が認められた。f=10では、FTIRで炭酸イオンの残留は認められなかった。
 また、f=8及び10では収率は定量的で、10倍量を用いた場合においても、溶解などによる重量減は認められなかった。
 比較のため、プロトンを放出しない酢酸塩である酢酸ナトリウムを使用して、同じ条件で実験を行なった。酢酸ナトリウムの量は、f=[CH3COONa]/(2×[CO3 2-])=8に相当する217.3mgを用いた。窒素気流下で、マグネティックスターラーでCO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、f=8の酢酸ナトリウムのメタノール溶液を加え、室温(20~25℃)で2時間、反応させた。排出窒素ガス中にCO2の放出は、見られなかった。実施例1と同じ条件のろ過、乾燥処理により、白色粉末を得た。
 FTIRでは、数%の酢酸イオンの包接は認められたものの、基本的には、炭酸イオン型LDHのプロファイルであった。
 以上より、酢酸塩であれば何でも可ではなく、酸性化合物であるアンモニウム塩を使うことによって、はじめて効率的に起こることがわかる。
(酢酸を用いた酢酸イオン型LDHの合成)
 酸性化合物として、酢酸(CH3COOH;HXにおいてX=CH3COOに相当)を用い、実施例14と同じ条件で、脱炭酸イオン反応による酢酸イオン型LDHの合成を行なった。酢酸をf=[CH3COOH]/(2×[CO3 2-])=2及び3使用し、室温(20~25℃程度)で1~2時間反応させた。f=2及び3も共に、FTIRで酢酸イオン型LDHの生成が確認でき、また、炭酸イオンの残留は認められなかった。なお、メタノールの代わりにエタノールを用いても(f=3の条件で実験)、酢酸イオン型LDHが生成し、残留炭酸イオンは認められなかった。
(酢酸アンモニウム-メタノール、エタノール系;加温)
 f=1に相当する量の酢酸アンモニウムを使用して、45℃で2時間、窒素雰気流中で反応を行なった。溶媒としてメタノールを用い、実施例14と同じ条件で、100mgのCO3 2-MgAl-LDH3を用いて実験を行なった。実施例1と同じ条件で、ろ過、乾燥処理を行ない、白色粉末を得た。
 FTIRで酢酸イオン型LDHの生成が確認され、残留炭酸イオンは観察されなかった。溶媒としてエタノールを用いた場合、酢酸アンモニウム量がf=1では、45℃において、酢酸イオン型LDHが生成したが、5%程度の残留炭酸イオンが観察された。酢酸アンモニウムの量を増やし、f=3とした場合、40℃、2時間の反応で、残留炭酸イオンのない酢酸イオン型LDHが合成できた。
(酢酸-メタノール、エタノール系;加温)
 溶媒としてメタノールを用い、f=1に相当する量の酢酸を使用して、45℃で2時間、窒素雰気流中で反応を行なった。実施例1同じ条件で、ろ過、乾燥処理を行ない、白色粉末を得た。FTIRで酢酸イオン型LDHの生成が確認され、残留炭酸イオンは観察されなかった。溶媒として、エタノールを用いた場合も同様に、45℃において酢酸イオン型LDHが生成した。
(塩化アンモニウム-メタノール系;MgAl-LDH3;加温)
 反応温度を上げ、塩化アンモニウム(NH4Cl)を用い、メタノール溶液で脱炭酸イオン反応を行なった。
 100mgのCO3 2-MgAl-LDH3(0.331mmol)を三口フラスコに入れ、メタノール40mLを加え、超音波で分散させて懸濁液を作製した。この懸濁液をマグネティックスターラーで撹拌しつつ、窒素気流下(0.5L/分)、f=1の塩化アンモニウム(Cica特級)(17.7mg; 0.331mmol)を10mL メタノールに溶かした溶液を加えた。マグネティックスターラーでCO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、30℃及び40℃で2時間反応させた。排出窒素ガス中に脱炭酸イオン反応による大量のCO2が認められた。実施例1と同じ条件のろ過、乾燥処理により、白色粉末を得た。30℃の場合も、また40℃の場合も、FTIRで、塩素イオン型LDHの生成が確認できた。
 残留炭酸イオン量は、30℃の場合で8%、40℃の場合で2%であり、室温(20~25℃)での実施例9において、塩化アンモニウム(NH4Cl)を用いた場合、50%程度の残留炭酸イオン量であるので、加温することによって、残留炭酸イオン量が減少することがわかる。
 さらに、より高い反応温度(50℃)で、塩化アンモニウム(NH4Cl)量もf=3とし、2時間、反応させた。残留炭酸イオン量は、ほとんどなく、また、溶解等による重量減も見られなかった。
 比較のため、プロトンを放出しない中性の塩である塩化ナトリウム(NaCl)を用い、同じ条件で実験を行なった。NaClの量は、f=[NaCl]/(2×[CO3 2-])=1である19.4mgを用いた。窒素気流下で、マグネティックスターラーでCO3 2-MgAl-LDH3の懸濁液を撹拌しつつ、NaClのメタノール溶液を加え、50℃で2時間、反応させた。排出窒素ガス中にCO2の放出は、見られなかった。実施例1と同じ条件のろ過、乾燥処理により、白色粉末を得た。FTIRでは、塩素イオンの包接は認められたものの、基本的には、炭酸イオン型LDHのプロファイルであり、炭酸イオン量は、75%で、室温で反応させた場合とほとんど差がなかった。
 以上より、加温による反応促進は、酸性化合物であるアンモニウム塩を用いることによって、生じることがわかる。
 本発明は、発明の効果の欄でも触れたように、その意義は格別のものがある。
 すなわち、本発明は、従来、容易には得られなかった陰イオン交換性のLDHを短時間に、簡単に、そしてより安全に得ることができる。
 そして得られる陰イオン交換性のLDHは、例えば、陰イオン性機能性有機分子を陰イオン交換プロセスといった極めて簡単な操作によるいわゆるソフトケミカル的な反応によって製造でき、提供することができるため、新規な機能を有してなる新規物質開発・促進につながるものと期待される。生体機能性の有する有機分子を層間に入れることによって、保護し、ドラッグ・デリバリーなどに利用することもすでに提案されている。
 また、これらの陰イオン交換性LDHを使って、LDHナノシートを形成することができる膨潤性LDHにとすることも可能である。

Claims (15)

  1.  一般式(1)で表される炭酸イオン型層状複水酸化物と、
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、1.8≦a≦4.2、0≦b<0.5、z=2(a+1)、Qは2価の金属、Tは3価の金属、X-は1価の陰イオン、0≦n≦5である。)
     一般式(2)で表される酸性化合物を含む有機溶媒と、を接触させて、一般式(1)のbが0.5以上1以下である陰イオン交換性層状複水酸化物の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、Xは1価の陰イオン(X-)に対応する元素又は原子団を意味し、mは1、2又は3のいずれかであり、m=1の場合、MXはプロトン性の酸(HX)、又は、NRR’R”・HX(ここでR、R’及びR”は水素、ヒドロキシル基又は有機基であって、それぞれは同一又は異なっていてもよい)で示されるアミン・酸塩である。m=2又は3の場合、MXは2価又は3価の金属の金属塩である。)
  2.  前記MX2又はMX3で表される酸性化合物が加水分解によってプロトン性の酸(HX)を生成する金属塩である、請求項1に記載の陰イオン交換性層状複水酸化物の製造方法。
  3.  前記X-が、塩素イオン(Cl-)、臭素イオン(Br-)、硝酸イオン(NO3 -)、過塩素酸イオン(ClO4 -)、塩素酸イオン(ClO3 -)及び酢酸イオン(CH3COO-)のいずれかの陰イオンである、請求項1記載の陰イオン交換性層状複水酸化物の製造方法。
  4.  前記アミン・酸塩のR、R’及びR”がそれぞれ、組成式Ctpq(t=0~6、p=1~13、q=0~2)ある、請求項1に記載の陰イオン交換性層状複水酸化物の製造方法。
  5.  前記アミン・酸塩のR、R’及びR”が水素、ヒドロキシル基、アルキル基又はヒドロキシル基で置換されたアルキル基から選ばれる置換基である、請求項4記載の陰イオン交換性層状複水酸化物の製造方法。
  6.  前記アルキル基がメチル基又はエチル基であり、ヒドロキシル基で置換されたアルキル基がヒドロキシメチル基又はヒドロキシエチル基である、請求項5記載の陰イオン交換性層状複水酸化物の製造方法。
  7.  前記アミン・酸塩が、アンモニウム塩である、請求項5記載の陰イオン交換性層状複水酸化物の製造方法。
  8.  前記X-が、塩素イオン(Cl-)である、請求項5記載の陰イオン交換性層状複水酸化物の製造方法。
  9.  前記Mが2価のZn、Mg及びCaのいずれかの金属である、請求項2に記載の陰イオン交換性層状複水酸化物の製造方法。
  10.  前記Mが3価のFe又はAlである、請求項2に記載の陰イオン交換性層状複水酸化物の製造方法。
  11.  前記有機溶媒が、炭素数1乃至4のいずれか一種以上の有機溶媒である、請求項1記載の陰イオン交換性層状複水酸化物の製造方法。
  12.  前記有機溶媒が、メタノール、エタノール、2-プロパノール、テトラヒドロフラン又はアセトンである、請求項1に記載の陰イオン交換性層状複水酸化物の製造方法。
  13.  前記一般式(1)で表される炭酸イオン型層状複水酸化物を、前記一般式(2)で表される酸性化合物を含む有機溶媒に分散させて、10℃以上50℃未満の温度条件において反応させる、請求項1記載の陰イオン交換性層状複水酸化物の製造方法。
  14.  一般式(1)で表される炭酸イオン型層状複水酸化物と、
    Figure JPOXMLDOC01-appb-C000003
     (式(1)中、1.8≦a≦4.2、0≦b<0.5、z=2(a+1)、Qは2価の金属、Tは3価の金属、X-は1価の陰イオン、0≦n≦5である。)
     一般式(2)で表される化合物を含む有機溶媒と、を接触させて、
    Figure JPOXMLDOC01-appb-C000004
     (式(2)中、Xは1価の陰イオン(X-)に対応する元素又は原子団を意味し、mは1、2又は3であり、m=1の場合、MXはプロトン性の酸(HX)、又は、アミンの酸塩(NRR’R”・HX、ここでR、R’及びR”は水素、ヒドロキシル基又は有機基であって、それぞれは同一又は異なっていてもよい)である。m=2又は3の場合、Mは2価又は3価の金属である。)
     一般式(3)の陰イオン交換性層状複水酸化物を製造する、請求項1の陰イオン交換性層状複水酸化物製造方法。
    Figure JPOXMLDOC01-appb-C000005
     (式(1)中、1.8≦a≦4.2、z=2(a+1)、Qは2価の金属、Tは3価の金属、X-は1価の陰イオン、0≦n≦5である。)
  15.  一般式(1)で表される炭酸イオン型層状複水酸化物と、
    Figure JPOXMLDOC01-appb-C000006
     (式(1)中、1.8≦a≦4.2、0≦b<0.5、z=2(a+1)、Qは2価の金属、Tは3価の金属、X-は1価の陰イオン、0≦n≦5である。)
     一般式(2)で表される酸性化合物と、を有機溶媒中で接触させる、炭酸イオン型層状複水酸化物中の炭酸イオンを1価の陰イオンと置換する方法。
    Figure JPOXMLDOC01-appb-C000007
     (式(2)中、Xは1価の陰イオン(X-)に対応する元素又は原子団を意味し、mは1、2又は3であり、m=1の場合、MXはプロトン性の酸(HX)、又は、NRR’R”・HX(ここでR、R’及びR”はそれぞれH又は有機基であって、同一の又は異なっていてもよい)で示されるアミン・酸塩である。m=2又は3の場合、Mは2価又は3価の金属である。)
PCT/JP2012/050976 2011-01-27 2012-01-18 陰イオン交換性層状複水酸化物の製造方法及び炭酸イオンを含む層状複水酸化物の炭酸イオンを置換する方法 WO2012102151A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/982,153 US20140021404A1 (en) 2011-01-27 2012-01-18 Method for producing anion-exchanging layered double hydroxide and method for substituting carbonate ion of layered double hydroxide
EP12739423.7A EP2669252A4 (en) 2011-01-27 2012-01-18 METHOD FOR PRODUCING A HISTORIZED ANION EXCHANGE DOUBLE HYDROXIDE AND METHOD FOR REPLACING CARBONATE IONES OF A SHAPED DOUBLE HYDROXIDE WITH CARBONATE IONES
JP2012554741A JP5867831B2 (ja) 2011-01-27 2012-01-18 陰イオン交換性層状複水酸化物の製造方法及び炭酸イオンを含む層状複水酸化物の炭酸イオンを置換する方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011014710 2011-01-27
JP2011-014710 2011-01-27
JP2011-188138 2011-08-31
JP2011188138 2011-08-31

Publications (1)

Publication Number Publication Date
WO2012102151A1 true WO2012102151A1 (ja) 2012-08-02

Family

ID=46580723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050976 WO2012102151A1 (ja) 2011-01-27 2012-01-18 陰イオン交換性層状複水酸化物の製造方法及び炭酸イオンを含む層状複水酸化物の炭酸イオンを置換する方法

Country Status (4)

Country Link
US (1) US20140021404A1 (ja)
EP (1) EP2669252A4 (ja)
JP (1) JP5867831B2 (ja)
WO (1) WO2012102151A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064497A (ja) * 2012-09-25 2014-04-17 Toyo Tire & Rubber Co Ltd 陽イオンまたは陰イオン系肥料成分担持人工土壌
JP2014136673A (ja) * 2013-01-18 2014-07-28 Univ Of Tokyo 複合化層状複水酸化物
JP2015013283A (ja) * 2013-06-04 2015-01-22 国立大学法人佐賀大学 イオン吸着材及びその製造方法
WO2015012078A1 (ja) * 2013-07-25 2015-01-29 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
JP2015020101A (ja) * 2013-07-18 2015-02-02 国立大学法人島根大学 放射線遮蔽能を有するヨウ素捕集材料
JP2016108177A (ja) * 2014-12-05 2016-06-20 丸尾カルシウム株式会社 ハイドロタルサイト類化合物、該化合物を含有してなる樹脂組成物及び成形体
CN111792678A (zh) * 2020-07-24 2020-10-20 福州大学 一种纯钴类水滑石化合物及其制备方法
JPWO2020262053A1 (ja) * 2019-06-28 2020-12-30
JPWO2020262052A1 (ja) * 2019-06-28 2020-12-30
JPWO2021166836A1 (ja) * 2020-02-17 2021-08-26
WO2023084917A1 (ja) 2021-11-10 2023-05-19 セトラスホールディングス株式会社 イオン交換されたハイドロタルサイトの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368238A (zh) 2018-07-12 2021-02-12 国立研究开发法人物质·材料研究机构 含有硫化氢缓释剂的包装体及其制造方法和硫化氢缓释剂、硫化氢缓释体以及使用了它们的硫化氢的产生方法
KR20210138685A (ko) 2019-04-19 2021-11-19 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 질소계 가스 서방제 및 이것으로 구성된 질소계 가스 서방체, 그리고 그 서방체를 사용한 질소계 가스의 서방 방법, 호흡 기구, 포장체 및 서방 장치
CN111250099B (zh) * 2020-03-31 2021-05-07 中国科学院过程工程研究所 一种复合金属氧化物催化剂的制备方法及应用
CN115869914A (zh) * 2022-12-09 2023-03-31 清华大学 阴离子粘土材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024658A (ja) * 1998-07-08 2000-01-25 Kaisui Kagaku Kenkyusho:Kk 水の脱リン剤およびリンの除去、再生方法
JP2005255441A (ja) * 2004-03-10 2005-09-22 National Institute For Materials Science ハイドロタルサイトの脱炭酸イオンによる、イオン交換性のある陰イオンを有する層状複水酸化物の製造方法およびその用途
JP2005335965A (ja) 2004-05-24 2005-12-08 National Institute For Materials Science ヘキサメチレンテトラミンを用いた均一沈殿法による良質な層状複水酸化物の製造方法およびその用途
WO2009072488A2 (ja) 2007-12-05 2009-06-11 National Institute For Materials Science 陰イオン交換性層状複水酸化物の製造方法
JP2009173482A (ja) * 2008-01-23 2009-08-06 National Institute For Materials Science 膨潤性層状複水酸化物およびその製造方法とそれを用いたゲル状物質、ゾル状物質ならびにナノシート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024658A (ja) * 1998-07-08 2000-01-25 Kaisui Kagaku Kenkyusho:Kk 水の脱リン剤およびリンの除去、再生方法
JP2005255441A (ja) * 2004-03-10 2005-09-22 National Institute For Materials Science ハイドロタルサイトの脱炭酸イオンによる、イオン交換性のある陰イオンを有する層状複水酸化物の製造方法およびその用途
JP4228077B2 (ja) 2004-03-10 2009-02-25 独立行政法人物質・材料研究機構 ハイドロタルサイトの脱炭酸イオンによる、イオン交換性のある陰イオンを有する層状水酸化物の製造方法
JP2005335965A (ja) 2004-05-24 2005-12-08 National Institute For Materials Science ヘキサメチレンテトラミンを用いた均一沈殿法による良質な層状複水酸化物の製造方法およびその用途
WO2009072488A2 (ja) 2007-12-05 2009-06-11 National Institute For Materials Science 陰イオン交換性層状複水酸化物の製造方法
JP2009173482A (ja) * 2008-01-23 2009-08-06 National Institute For Materials Science 膨潤性層状複水酸化物およびその製造方法とそれを用いたゲル状物質、ゾル状物質ならびにナノシート

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AKI HAYASHI ET AL.: "Alcohol Yoeki Chu ni Okeru Tansangata Sojo Fukusui Sankabutsu eno Intercalation Hanno", DAI 54 KAI NENDO KAGAKU TORONKAI KOEN YOSHISHU, 7 September 2010 (2010-09-07), pages 150 - 151, XP008170639 *
CAVANI, F.; TRIFIRO, F.; VACCARI, A., CATAL. TODAY, vol. 11, 1991, pages 173 - 301
HAYASHI A. ET AL.: "Intercalation Reaction of Carbonate MgAl-layered Double Hydroxide Using Alcohol as Solvent", CHEM LETT, vol. 40, no. 3, 11 February 2011 (2011-02-11), pages 276 - 278, XP055092513 *
IYI, N.; FUJII, K.; OKAMOTO, K.; SASAKI, TAKAYOSHI, APPL. CLAY SCI., vol. 35, 2007, pages 218 - 227
IYI, NOBUO, MATSUMOTO, T.; KANEKO, Y.; KITAMURA, K., CHEM MATER., vol. 16, 2004, pages 2926 - 2932
IYI, NOBUO, OKAMOTO, K.; KANEKO, Y.; MATSUMOTO, T., CHEM LETT., vol. 34, 2005, pages 932 - 933
IYI, NOBUO, SASAKI, TAKAYOSHI, J. COLLOID INTERFACE SCI., vol. 322, 2008, pages 237 - 245
IYI, NOBUO, YAMADA, HIROHISA, CHEM. LETT., vol. 39, 2010, pages 591 - 593
MIYATA, S., CLAYS CLAY MINER., vol. 31, 1983, pages 305 - 311
See also references of EP2669252A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064497A (ja) * 2012-09-25 2014-04-17 Toyo Tire & Rubber Co Ltd 陽イオンまたは陰イオン系肥料成分担持人工土壌
JP2014136673A (ja) * 2013-01-18 2014-07-28 Univ Of Tokyo 複合化層状複水酸化物
JP2015013283A (ja) * 2013-06-04 2015-01-22 国立大学法人佐賀大学 イオン吸着材及びその製造方法
JP2016155130A (ja) * 2013-06-04 2016-09-01 国立大学法人佐賀大学 イオン吸着材
JP2015020101A (ja) * 2013-07-18 2015-02-02 国立大学法人島根大学 放射線遮蔽能を有するヨウ素捕集材料
WO2015012078A1 (ja) * 2013-07-25 2015-01-29 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
JPWO2015012078A1 (ja) * 2013-07-25 2017-03-02 株式会社ノリタケカンパニーリミテド 陰イオン伝導材料およびその製造方法
JP2016108177A (ja) * 2014-12-05 2016-06-20 丸尾カルシウム株式会社 ハイドロタルサイト類化合物、該化合物を含有してなる樹脂組成物及び成形体
JPWO2020262052A1 (ja) * 2019-06-28 2020-12-30
JPWO2020262053A1 (ja) * 2019-06-28 2020-12-30
WO2020262053A1 (ja) * 2019-06-28 2020-12-30 国立研究開発法人物質・材料研究機構 亜塩素酸イオン含有層状複水酸化物、二酸化塩素ガス徐放剤とその包装体、二酸化塩素ガスの徐放方法及び二酸化塩素ガス徐放装置
WO2020262052A1 (ja) * 2019-06-28 2020-12-30 国立研究開発法人物質・材料研究機構 塩素酸イオン含有層状複水酸化物、二酸化塩素ガス徐放剤とその包装体、二酸化塩素ガスの徐放方法及び二酸化塩素ガス徐放装置
JP7160292B2 (ja) 2019-06-28 2022-10-25 国立研究開発法人物質・材料研究機構 二酸化塩素ガス徐放剤とその包装体、二酸化塩素ガスの徐放方法及び二酸化塩素ガス徐放装置
JP7179385B2 (ja) 2019-06-28 2022-11-29 国立研究開発法人物質・材料研究機構 二酸化塩素ガス徐放剤とその包装体、二酸化塩素ガスの徐放方法及び二酸化塩素ガス徐放装置
JPWO2021166836A1 (ja) * 2020-02-17 2021-08-26
WO2021166836A1 (ja) * 2020-02-17 2021-08-26 国立研究開発法人科学技術振興機構 層状複水酸化物エレクトライド及びその製造方法
JP7296170B2 (ja) 2020-02-17 2023-06-22 国立研究開発法人科学技術振興機構 層状複水酸化物エレクトライド及びその製造方法
CN111792678A (zh) * 2020-07-24 2020-10-20 福州大学 一种纯钴类水滑石化合物及其制备方法
WO2023084917A1 (ja) 2021-11-10 2023-05-19 セトラスホールディングス株式会社 イオン交換されたハイドロタルサイトの製造方法
KR20240067264A (ko) 2021-11-10 2024-05-16 세토라스 홀딩스 가부시키가이샤 이온 교환된 하이드로탈사이트의 제조 방법

Also Published As

Publication number Publication date
EP2669252A4 (en) 2016-12-14
US20140021404A1 (en) 2014-01-23
EP2669252A1 (en) 2013-12-04
JPWO2012102151A1 (ja) 2014-06-30
JP5867831B2 (ja) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5867831B2 (ja) 陰イオン交換性層状複水酸化物の製造方法及び炭酸イオンを含む層状複水酸化物の炭酸イオンを置換する方法
JP5317293B2 (ja) 陰イオン交換性層状複水酸化物の製造方法
Iyi et al. Factors influencing the hydration of layered double hydroxides (LDHs) and the appearance of an intermediate second staging phase
Chitrakar et al. Lithium recovery from salt lake brine by H 2 TiO 3
JP5910887B2 (ja) 水膨潤性層状複水酸化物とその製造方法、ゲル状又はゾル状物質及び、複水酸化物ナノシートとその製造方法
Yang et al. Alkali metal ion assisted synthesis of faceted anatase TiO 2
Das et al. Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis
Perez-Barrado et al. Ultrasound-assisted reconstruction and delamination studies on CaAl layered double hydroxides
Iyi et al. Deintercalation of carbonate ions and anion exchange of an Al-rich MgAl-LDH (layered double hydroxide)
US20230234848A1 (en) Process to produce lithium compounds
JP4845188B2 (ja) 排水処理剤および排水中のフッ素イオンを低減させる方法
Cheng et al. Adsorption sites and electron transfer characteristics of methyl orange on three-dimensional hierarchical flower-like nanostructures of Co-Al-layered double hydroxides: Experimental and DFT investigation
Li et al. Porous La2O2CO3 derived from solvent-guided metal-organic frameworks for high-efficient phosphorus removal
JP2005335965A (ja) ヘキサメチレンテトラミンを用いた均一沈殿法による良質な層状複水酸化物の製造方法およびその用途
Alexa et al. NON-TOXIC NANOCOMPOSITE CONTAINING CAPTOPRIL INTERCALATED INTO GREEN INORGANIC CARRIER.
Huang et al. Malate-aided selective crystallization and luminescence comparison of tetragonal and monoclinic LaVO 4: Eu nanocrystals
JP4228077B2 (ja) ハイドロタルサイトの脱炭酸イオンによる、イオン交換性のある陰イオンを有する層状水酸化物の製造方法
Stepanova et al. Effect of the composition of initial components and the conditions of activation on the mechanochemical synthesis of magnesium–aluminum layered double hydroxides
Kovalenko et al. Determination of the applicability of Zn-Al layered double hydroxide, intercalated by food dye Orange Yellow S, as a cosmetic pigment
JPWO2004080898A1 (ja) 酸性水性アルミナゾルの製造方法
WO2009085908A1 (en) Luminescent samarium-doped titanium dioxide
Zandevakili et al. Synthesis of lithium ion sieve nanoparticles and optimizing uptake capacity by taguchi method
Qiu et al. Controlled‐release of Avermectin from Organically Modified Hydrotalcite‐like Compound Nanohybrids
JP2008290072A (ja) 二酸化炭素除去剤とその再生方法
Koh et al. Precipitation and growth of magnesium hydroxide nanopetals on zeolite 4A surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012739423

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13982153

Country of ref document: US