WO2012101818A1 - 燃料電池システム - Google Patents
燃料電池システム Download PDFInfo
- Publication number
- WO2012101818A1 WO2012101818A1 PCT/JP2011/051776 JP2011051776W WO2012101818A1 WO 2012101818 A1 WO2012101818 A1 WO 2012101818A1 JP 2011051776 W JP2011051776 W JP 2011051776W WO 2012101818 A1 WO2012101818 A1 WO 2012101818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel gas
- fuel
- fuel cell
- flow rate
- gas
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04291—Arrangements for managing water in solid electrolyte fuel cell systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04388—Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04492—Humidity; Ambient humidity; Water content
- H01M8/04514—Humidity; Ambient humidity; Water content of anode exhausts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04552—Voltage of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04828—Humidity; Water content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04865—Voltage
- H01M8/04873—Voltage of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell system including a solid polymer electrolyte fuel cell, particularly a fuel cell system that operates a fuel cell under non-humidified conditions, and avoids a dry state inside the fuel cell even during high-temperature operation.
- the present invention relates to a fuel cell system that enables stable power generation.
- Fuel cells convert chemical energy directly into electrical energy by supplying fuel and oxidant to two electrically connected electrodes and causing the fuel to oxidize electrochemically. Unlike thermal power generation, fuel cells are not subject to the Carnot cycle, and thus exhibit high energy conversion efficiency.
- a fuel cell is usually configured by laminating a plurality of single cells having a basic structure of a membrane / electrode assembly in which an electrolyte membrane is held between a pair of electrodes.
- a solid polymer electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte membrane has advantages such as easy miniaturization and operation at a low temperature. It is attracting attention as a power source for the body.
- the reaction of the formula (A) proceeds at the anode electrode (fuel electrode).
- the electrons generated in the formula (A) reach the cathode electrode (oxidant electrode) after working with an external load via an external circuit.
- the proton generated in the formula (A) moves in the solid polymer electrolyte from the anode electrode side to the cathode electrode side by electroosmosis in a hydrated state.
- the reaction of the formula (B) proceeds at the cathode electrode.
- Water generated by the cathode electrode is discharged to the outside through a gas flow path and the like.
- the fuel cell is a clean power generation device having no emission other than water.
- the power generation performance is greatly influenced by the amount of water in the electrolyte membrane and the electrode. That is, when the water content is excessive, the water condensed in the fuel cell closes the gaps in the electrodes and further the gas flow path to supply the reaction gas (fuel gas or oxidant gas). There is a problem that the reaction gas for power generation does not sufficiently reach the electrodes, the concentration overvoltage increases, and the output of the fuel cell and the power generation efficiency decrease. On the other hand, when the moisture in the fuel cell is insufficient and the electrolyte membrane or electrode is dried, the conductivity of protons (H + ) in the electrolyte membrane or electrode is reduced, resulting in an increase in resistance overvoltage and fuel.
- Patent Document 1 discloses a fuel cell system that operates under a non-humidified condition and / or a high temperature condition, and an oxidant gas based on any one of the resistance value, voltage, and pressure loss of the oxidant gas.
- a system that prevents the occurrence of an in-plane moisture content distribution of a fuel cell by determining a dry state in the vicinity of a flow path inlet and controlling the flow rate of fuel gas or the pressure of fuel gas based on the determination. Yes.
- Patent Document 2 discloses a current sensor that measures the output current value of the fuel cell, a voltage sensor that measures the output voltage value of the fuel cell, and a fuel cell.
- a storage unit that stores a relationship between the output voltage value and the output current value, which is a reference when the operating state of the vehicle is in an optimal operating state, and that corresponds to the measured current value measured by the current sensor
- the moisture state of the fuel cell is in a dry state.
- Patent Document 3 discloses a measurement unit that measures voltage at a plurality of measurement points of a fuel cell, and a plurality of measurement points estimated from a difference between voltages measured at different measurement points among the measured voltages.
- a fuel cell system that estimates the uneven distribution of moisture in a fuel cell based on the difference in water content is disclosed.
- Patent Document 4 includes an execution condition for determining the moisture content of the fuel cell based on the voltage decrease corresponding to the transient load increase from the time-series transition of the voltage of the fuel cell.
- the conventional moisture management technique in a fuel cell cannot sufficiently avoid the occurrence of a dry state in the fuel cell.
- the technique described in Patent Document 1 can suppress dry-up in the vicinity of the inlet of the oxidant gas flow path, which is likely to occur during a non-humidified condition or a high temperature condition. Since the feedback control is to control the flow rate and pressure of the fuel gas based on the pressure loss, the inside of the fuel cell may temporarily become dry. Once the electrolyte membrane or electrode is in a dry state (dry-up), it becomes an optimal water-containing state, that is, it takes time for the power generation performance to recover, and the material of the electrolyte membrane or electrode in the dry state There is a problem that the deterioration is accelerated.
- the resistance and voltage of the fuel cell do not necessarily correspond. That is, the peak voltage is not obtained when the resistance value is the lowest. Therefore, there is a possibility that the peak voltage cannot be obtained even if the flow rate and pressure of the fuel gas are controlled based on the resistance value of the fuel cell as in Patent Document 1.
- a cell monitor for measuring voltage and resistance is indispensable, which increases the cost and complexity of the fuel cell system.
- the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to manage the water content in the fuel cell to an optimum state that can achieve high output and avoid the occurrence of dry-up. It is an object of the present invention to provide a fuel cell system that can be used.
- the first fuel cell system of the present invention comprises: A polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode; A fuel gas flow path disposed facing the anode electrode to supply a fuel gas containing at least a fuel component to the anode electrode; An oxidant gas flow path disposed facing the cathode electrode to supply an oxidant gas containing at least an oxidant component to the cathode electrode; A fuel cell system that is operated under non-humidified conditions, The flow directions of the fuel gas in the fuel gas channel and the oxidant gas in the oxidant gas channel are opposed to each other; A water vapor amount control means for controlling the water vapor amount based on a target value of the water vapor amount set in advance from a relationship between a voltage of the fuel cell and a water vapor amount at an outlet of the fuel gas flow path; To do.
- the first fuel cell system it is possible to appropriately control the amount of water in the surface direction so that uniform power generation proceeds in the surface direction of the electrolyte membrane of the fuel cell. Since the feed-forward control is performed in which the water vapor amount is controlled based on the target value of the amount, it is possible to prevent the dry state in the fuel cell from occurring.
- the water vapor amount control means for example, based on the target value of the water vapor amount, at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell. Can be controlled.
- the water vapor amount control means may control, for example, the flow rate of the fuel gas and / or the pressure of the fuel gas in the fuel cell based on the target value of the water vapor amount. it can.
- the water vapor amount control means for example, has a correlation between the target value of the water vapor amount and at least one of the flow rate of the fuel gas, the pressure and temperature of the fuel gas in the fuel cell. Based on the map acquired based on the above, at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell can be controlled. Thus, when controlling the amount of water vapor based on the map, additional means such as measurement means for water vapor control are not required, so that the system can be simplified and the cost can be reduced.
- the water vapor amount control means is configured such that the water vapor amount measured by the water vapor amount measuring means is a target value of the water vapor amount. So that at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell can be controlled.
- the first fuel cell system A fuel gas supply path for supplying the fuel component gas from a fuel supply means to the fuel gas flow path; A fuel gas circulation path for recirculating the exhaust fuel gas from the fuel cell to the fuel gas supply path; A recirculation pump disposed in the fuel gas circulation path for recirculating the exhaust fuel gas to the fuel gas supply path; If you have The water vapor amount control means can control the flow rate of the fuel gas in the fuel cell by controlling the flow rate of the exhaust fuel gas recirculated by the recirculation pump.
- the water vapor amount control means for example, based on the target value of the water vapor amount, the pressure of the fuel gas at the inlet of the fuel gas channel and / or the outlet of the fuel gas channel.
- the pressure of the fuel gas in can be controlled.
- the second fuel cell system of the present invention is A polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode; A fuel gas passage disposed facing the anode electrode to supply fuel gas to the anode electrode; An oxidant gas flow path disposed facing the cathode electrode to supply an oxidant gas to the cathode electrode; A fuel cell system that is operated under non-humidified conditions, The flow directions of the fuel gas in the fuel gas channel and the oxidant gas in the oxidant gas channel are opposed to each other; An average flow rate control means for controlling the average flow rate based on a target value of the average flow rate set in advance from a relationship between the voltage of the fuel cell and the average flow rate of the fuel gas in the fuel gas flow path;
- the inventors appropriately correlate the amount of water in the fuel cell by controlling the average flow rate by controlling the average flow rate as the average flow rate correlates with the water vapor amount. I found out that it can be controlled. That is, according to the second fuel cell system, it is possible to appropriately control the amount of moisture in the surface direction so that uniform power generation proceeds in the surface direction of the electrolyte membrane of the fuel cell, Since feedforward control is performed in which the water vapor amount is controlled based on the target value of the water vapor amount, it is possible to prevent the occurrence of a dry state in the fuel cell.
- the average flow rate control means for example, based on the target value of the average flow rate, at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell. Can be controlled.
- the average flow rate control unit may control the flow rate of the fuel gas and / or the pressure of the fuel gas in the fuel cell, for example, based on a target value of the average flow rate. it can.
- the average flow rate control means is acquired based on a correlation between the target value of the average flow rate and at least one of the fuel gas flow rate, the fuel gas pressure, and the temperature in the fuel cell. Based on the map, at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell can be controlled.
- the second fuel cell system A fuel gas supply path for supplying the fuel component gas from a fuel supply means to the fuel gas flow path; A fuel gas circulation path for recirculating the exhaust fuel gas from the fuel cell to the fuel gas supply path; A recirculation pump disposed in the fuel gas circulation path for recirculating the exhaust fuel gas to the fuel gas supply path; If you have
- the average flow rate control means can control the flow rate of the fuel gas in the fuel cell by controlling the flow rate of the exhaust fuel gas recirculated by the recirculation pump. At this time, the average flow rate can be calculated by, for example, the following formula (1).
- Qave Qa + Qb / 2 Formula (1)
- Qave Average flow rate of the fuel gas in the fuel gas flow path
- Qa Flow rate of the exhausted fuel gas recirculated by the recirculation pump
- Qb Flow rate of the fuel component gas supplied from the fuel supply means
- the average flow rate can be calculated by the following equation (2), for example.
- Qave nRT / P (2)
- Qave Average flow rate of the fuel gas in the fuel gas flow path n: Number of moles of the fuel gas at a position that is 1/2 of the total length of the fuel gas flow path R: Gas constant T: Fuel cell temperature P: The fuel gas Pressure of the fuel gas at a position that is 1/2 of the total length of the flow path
- the second fuel cell system A fuel gas supply path for supplying the fuel component gas from a fuel supply means to the fuel gas flow path; A fuel gas circulation path for recirculating the exhaust fuel gas from the fuel cell to the fuel gas supply path; A recirculation pump disposed in the fuel gas circulation path for recirculating the exhaust fuel gas to the fuel gas supply path; If you have The average flow rate can also be calculated by the following formula (4).
- the average flow rate control means is configured to determine the pressure of the fuel gas at the inlet of the fuel gas channel and / or the outlet of the fuel gas channel based on the target value of the average flow rate.
- the pressure of the fuel gas can be controlled.
- the generation of a dry state can be prevented and a stable power generation amount can be provided.
- the fuel cell system provided by the present invention realizes high voltage, prevents dry-up in advance, and exhibits stable power generation performance even under high temperature conditions.
- FIG. 1 is a diagram illustrating an example embodiment 100 of a first fuel cell system.
- FIG. It is sectional drawing which shows the structural example of the single cell in a 1st fuel cell system. It is a figure which shows embodiment example 101 of a 1st fuel cell system. It is a figure which shows embodiment example 200 of a 2nd fuel cell system. It is an image figure which shows the example of the map used in a 2nd fuel cell system.
- the first fuel cell system of the present invention comprises: A polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode; A fuel gas flow path disposed facing the anode electrode to supply a fuel gas containing at least a fuel component to the anode electrode; An oxidant gas flow path disposed facing the cathode electrode to supply an oxidant gas containing at least an oxidant component to the cathode electrode; A fuel cell system that is operated under non-humidified conditions, The flow directions of the fuel gas in the fuel gas channel and the oxidant gas in the oxidant gas channel are opposed to each other; A water vapor amount control means for controlling the water vapor amount based on a target value of the water vapor amount set in advance from a relationship between a voltage of the fuel cell and a water vapor amount at an outlet of the fuel gas flow path; To do.
- the second fuel cell system of the present invention is A polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode; A fuel gas passage disposed facing the anode electrode to supply fuel gas to the anode electrode; An oxidant gas flow path disposed facing the cathode electrode to supply an oxidant gas to the cathode electrode; A fuel cell system that is operated under non-humidified conditions, The flow directions of the fuel gas in the fuel gas channel and the oxidant gas in the oxidant gas channel are opposed to each other; An average flow rate control means for controlling the average flow rate based on a target value of the average flow rate set in advance from a relationship between the voltage of the fuel cell and the average flow rate of the fuel gas in the fuel gas flow path;
- the present inventors have conducted a non-humidified condition operation in a so-called counter flow fuel cell in which the flow directions of the fuel gas in the fuel gas channel and the oxidant gas channel in the oxidant gas channel face each other.
- the water content in the fuel cell can be estimated from the amount of water vapor (fuel gas outlet water vapor amount) at the outlet of the fuel gas flow path, and by grasping the amount of water vapor at the fuel gas outlet when showing the peak voltage, The knowledge that appropriate moisture management was realized and high voltage was obtained was obtained.
- the state where the amount of water vapor at the fuel gas outlet is very small is that the surface direction of the electrolyte membrane of the fuel cell (that is, the surface direction of the electrode and the direction perpendicular to the stacking direction of the electrolyte membrane and the electrode).
- the region near the oxidant gas flow channel inlet (that is, the region near the fuel gas flow channel outlet) is in a dry state, and no power is generated in the region, and the region near the oxidant gas flow channel outlet. In other words, power generation is concentrated in the region near the fuel gas flow path inlet.
- the amount of water vapor at the fuel gas outlet is considered to be small. Also, in the region near the oxidant gas flow channel inlet, the resistance overvoltage increases due to drying, while in the region near the oxidant gas flow channel outlet, the concentration overvoltage increases due to a decrease in the concentration of the oxidant component.
- the battery voltage is expected to be low.
- the voltage of the fuel cell becomes high (state 2).
- the state in which a slight amount of water vapor is discharged in this manner is that the water content is uniform and good in the above-described plane direction of the fuel cell, and uniform power generation is performed in the plane, so that the concentration overvoltage is reduced. Furthermore, it is considered that a high voltage can be obtained because the resistance overvoltage in the region near the outlet of the oxidant gas flow path is also reduced.
- the increase / decrease in the concentration overvoltage and the increase / decrease in the resistance overvoltage do not correspond one-to-one. Therefore, as shown in FIG. Does not match. That is, even if the operating condition of the fuel cell is controlled by detecting the bottom of the resistance, the operating condition for obtaining the peak voltage is not necessarily obtained, and thus the power generation efficiency may be lowered.
- the operating conditions of the fuel cell are controlled based on the detected voltage and resistance, there is a sufficient risk that a region in the fuel cell may be in a dry-up state due to a delay in control. is there. A region that is in a dry-up state temporarily takes time to recover its power generation performance, or may not recover the power generation performance.
- the present inventors obtain in advance a fuel gas outlet water vapor amount that can provide a high voltage from the relationship between the voltage of the fuel cell and the fuel gas outlet water vapor amount, and use this water vapor amount as a target value.
- a fuel gas outlet water vapor amount that can provide a high voltage from the relationship between the voltage of the fuel cell and the fuel gas outlet water vapor amount, and use this water vapor amount as a target value.
- the present inventors can obtain stable and high output as a result of appropriate management of the moisture content, and can prevent the occurrence of dry-up. The inventors have found that the reduction can be suppressed and have completed the first fuel cell system of the present invention.
- the present inventors have found that there is a high correlation between the amount of water vapor at the fuel gas outlet and the average flow rate of the fuel gas in the fuel gas flow path (hereinafter sometimes referred to as the average fuel gas flow rate). . That is, as shown in FIG. 2, when the average flow rate of the fuel gas in the fuel gas flow path is low, the amount of water vapor at the fuel gas outlet is small and the voltage of the fuel cell is low (the above state 1). When the fuel gas average flow rate is increased, the amount of water vapor at the fuel gas outlet is slightly increased, and a high fuel cell voltage is obtained (state 2 above).
- the present inventors obtain in advance a fuel gas average flow rate at which a high voltage can be obtained from the relationship between the voltage of the fuel cell and the fuel gas average flow rate.
- a fuel gas average flow rate at which a high voltage can be obtained from the relationship between the voltage of the fuel cell and the fuel gas average flow rate.
- the fuel cell system of the present invention will be described below with reference to the drawings.
- the use of the fuel cell system of the present invention is not particularly limited, for example, as a power supply source for supplying power to a driving device such as a vehicle or a ship which is a moving body, and the power of various other devices. It can be used as a source.
- the fuel gas is a gas containing a fuel component and means a gas flowing in a fuel gas passage in the fuel cell, and also includes components other than the fuel component (for example, water vapor and nitrogen gas). obtain.
- the oxidant gas is a gas containing an oxidant component, which means a gas flowing through the oxidant gas flow path in the fuel cell, and includes components other than the oxidant component (for example, water vapor and nitrogen gas). obtain.
- Fuel gas and oxidant gas may be collectively referred to as reaction gas.
- FIG. 4 shows a fuel cell system 100 which is an embodiment of the first fuel cell system of the present invention.
- the fuel cell system 100 includes at least a fuel cell 1 that generates power upon receiving a reaction gas, a fuel gas piping system 2, an oxidant gas piping system (not shown), and a control unit 3 that performs integrated control of the system.
- a fuel cell system of the present invention supplies an oxidant gas to the fuel cell and discharges a gas (exhaust oxidant gas) containing unreacted oxidant components, water vapor, etc. from the fuel cell.
- the oxidant gas is oxidized if the direction of the fuel gas flowing through the fuel gas flow path and the direction of the oxidant gas flowing through the oxidant gas flow path are so-called counterflows facing each other. Since the specific form of supply and discharge of the agent gas is not particularly limited, description of the oxidant gas piping system will be omitted.
- the fuel cell 1 is constituted by a solid polymer electrolyte fuel cell, and usually has a stack structure in which a large number of single cells are stacked, and generates electric power upon receiving supply of an oxidant gas and a fuel gas.
- Supply of the oxidant gas and fuel gas to the fuel cell 1 and discharge of the oxidant gas and fuel gas from the fuel cell 1 are performed by the oxidant gas piping system and the fuel gas piping system 2, respectively.
- air containing oxygen as an oxidant gas is taken as an example
- gas containing hydrogen gas as a fuel gas is taken as an example.
- FIG. 5 is a schematic cross-sectional view of the single cell 12 constituting the fuel cell 1.
- Each single cell 12 has a basic structure of a membrane / electrode assembly 16 in which a solid polymer electrolyte membrane 13 is held between a cathode electrode (air electrode) 14 and an anode electrode (fuel electrode) 15.
- the cathode electrode 14 has a structure in which a cathode catalyst layer 21 and a gas diffusion layer 22 are laminated in order from the electrolyte membrane 13 side
- the anode electrode 15 has an anode catalyst layer 23 and a gas diffusion layer in order from the electrolyte membrane 13 side.
- 24 has a laminated structure.
- the membrane / electrode assembly 16 has a pair of separators 17 and 18 sandwiching the cathode electrode 14 and the anode electrode 15 from both sides.
- the cathode-side separator 17 is provided with a groove that forms an oxidant gas flow path for supplying an oxidant gas to the cathode electrode 14, and an oxidant gas flow path 19 is formed by the groove and the cathode electrode 14. It is defined.
- the anode-side separator 18 is provided with a groove that forms a fuel gas flow path for supplying fuel gas to the anode electrode 15, and a fuel gas flow path 20 is defined by the groove and the anode. .
- the oxidant gas flow path 19 and the fuel gas flow path 20 are arranged such that the flow direction of the oxidant gas flowing through the oxidant gas flow path 19 and the flow direction of the fuel gas flowing through the fuel gas flow path 20 are opposed to each other. (So-called counterflow structure).
- the symbol “circle dot” in the oxidant gas flow path 19 and the fuel gas flow path 20 means that the gas flow direction is the direction from the far side of the paper to the near side.
- the symbol “circular cross mark” means that the gas flow direction is the direction from the present side of the paper to the other side.
- the region in the vicinity of the inlet of the oxidant gas channel 19 and the region in the vicinity of the outlet of the fuel gas channel 20 are disposed with the electrolyte membrane 1 interposed therebetween, and the oxidant gas.
- a region in the vicinity of the outlet of the flow channel 19 and a region in the vicinity of the inlet of the fuel gas flow channel 20 are disposed with the electrolyte membrane 1 interposed therebetween.
- the gas flow path is depicted as a meandering flow path (serpentine flow path), but the form of the gas flow path is not particularly limited as long as it has a counter flow structure. Whatever form you can take.
- Each member constituting the fuel cell is not particularly limited, and may have a general structure formed of a general material.
- the fuel cell 1 is provided with a temperature sensor (temperature measuring means) 9 for measuring the temperature T of the fuel cell 1.
- the temperature sensor 9 may directly measure the temperature in the fuel cell, or may measure the temperature of the heat exchange medium flowing in the fuel cell.
- the fuel cell 1 is provided with a pressure sensor 10 for measuring the pressure of the fuel gas flowing through the fuel gas passage.
- a pressure sensor can grasp
- an inlet pressure sensor that is provided at the inlet of the fuel gas channel and measures the pressure of the fuel gas at the inlet
- an outlet pressure sensor that is provided at the outlet of the fuel gas channel and measures the pressure of the fuel gas at the outlet
- the average value of the fuel gas inlet pressure Pin and the fuel gas outlet pressure Pout detected by these pressure sensors can be detected and controlled as the fuel gas pressure.
- the pressure sensor is not limited to the inlet and outlet of the fuel gas passage, and pressure sensors may be provided at a plurality of locations in the fuel gas passage to detect and control the pressure of the fuel gas at each position, and an average value is calculated. The average value may be controlled. Further, there may be one pressure sensor in the fuel cell.
- the pressure of the fuel gas may be estimated by a pressure sensor provided outside the fuel gas flow path.
- the fuel cell 1 is provided with a dew point meter (water vapor amount measuring means) 25 for measuring the water vapor amount S in the fuel gas at the outlet of the fuel gas flow path.
- the dew point meter may be provided in the fuel gas piping system 2 as long as the fuel gas outlet water vapor amount S can be detected.
- the fuel gas piping system 2 has a hydrogen tank 4, a fuel gas supply path 5, and a fuel gas circulation path 6.
- the hydrogen tank 4 is a hydrogen gas supply source that stores high-pressure hydrogen gas (fuel component), and is a fuel supply means.
- the fuel supply means instead of the hydrogen tank 4, for example, a reformer that generates a hydrogen-rich reformed gas from a hydrocarbon-based fuel, and the reformed gas generated by the reformer is put in a high-pressure state. It is also possible to employ a tank having a hydrogen storage alloy that is slaughtered.
- the fuel gas supply path 5 is a flow path for supplying hydrogen gas as a fuel component to the fuel cell 1 from the hydrogen tank 4 as a fuel supply means, and includes a main flow path 5A and a mixing path 5B.
- the main flow path 5A is located upstream of the connecting portion 7 where the fuel gas supply path 5 and the fuel gas circulation path 6 are connected.
- the main flow path 5A may be provided with a shut valve (not shown) that functions as an original valve of the hydrogen tank 4, a regulator that decompresses hydrogen gas, and the like.
- the flow rate of hydrogen gas (flow rate of fuel component gas) Qb supplied from the hydrogen tank 4 is controlled based on the required output for the fuel cell, and the required output is secured.
- the mixing path 5B is located on the downstream side of the connecting portion 7, and the mixed gas of the hydrogen gas from the hydrogen tank 4 and the exhausted fuel gas from the fuel gas circulation path 6 is supplied to the fuel gas channel inlet of the fuel cell 1. Lead.
- the fuel gas circulation path 6 recirculates the exhaust fuel gas discharged from the fuel gas flow path outlet of the fuel cell 1 to the fuel gas supply path 5.
- the fuel gas circulation path 6 is provided with a recirculation pump 8 for recirculating the exhaust fuel gas to the fuel gas supply path 5.
- the flow rate and pressure of the exhaust fuel gas are lower than the fuel gas supplied to the fuel cell.
- a system in which the fuel gas circulation path 6, the fuel gas supply path 5, and the fuel gas flow path in the fuel cell 1 are connected together constitutes a circulation system that circulates and supplies the fuel gas to the fuel cell.
- Exhaust fuel gas discharged from the fuel cell 1 includes generated water generated by a power generation reaction of the fuel cell, nitrogen gas that has permeated from the cathode electrode of the fuel cell to the anode electrode side through the electrolyte membrane, that is, cross leaked nitrogen gas, Unconsumed hydrogen gas is included.
- a gas-liquid separator (not shown) may be provided on the fuel gas circulation path 6 upstream of the recirculation pump 8. The gas-liquid separator separates water contained in the discharged fuel gas from unconsumed hydrogen gas or other gas.
- the fuel gas piping system has a circulation system by a fuel gas circulation path, a recirculation pump, etc. from a viewpoint of effective utilization of hydrogen gas (fuel component), it does not have a circulation system. Alternatively, it may have a dead end structure.
- the oxidant gas piping system has an oxidant gas supply path for supplying oxidant gas to the fuel cell 1, an oxidant gas discharge path for discharging oxidant gas discharged from the fuel cell 1, and a compressor.
- the compressor is provided on the oxidant gas supply path, and air in the atmosphere taken in by the compressor flows through the oxidant gas supply path and is pumped and supplied to the fuel cell 1.
- the discharged oxidant gas discharged from the fuel cell 1 flows through the oxidant gas discharge path and is discharged to the outside.
- the operation of the fuel cell system is controlled by the control unit 3.
- the control unit 3 is configured as a microcomputer having a CPU, a RAM, a ROM, and the like inside, and according to various programs and maps stored in the ROM, the RAM, etc., the required output (output current density, that is, output current density). , The magnitude of the load connected to the fuel cell), the temperature sensor connected to the fuel cell, the gas pressure sensor, the gas flow sensor, the dew point meter, etc.
- Various processes and controls such as various pumps, a fuel gas piping system, an oxidant gas piping system, and a heat exchange medium circulation system are executed.
- the control unit 3 has a fuel gas outlet water vapor amount based on a target value of the fuel gas outlet water vapor amount set in advance from the relationship between the voltage of the fuel cell 1 and the fuel gas outlet water vapor amount. It has a great feature in that it is provided with water vapor amount control means for controlling the water vapor.
- the amount of water vapor (fuel gas outlet water vapor amount) at the outlet of the fuel gas passage is the amount of water vapor contained in the fuel gas flowing through the outlet of the fuel gas passage.
- the water vapor amount control means of the control unit 3 detects the temperature T of the fuel cell 1 with the temperature sensor 9. Further, the control unit 3 detects the pressure P of the fuel gas in the fuel gas flow path with the pressure sensor 10. In addition, the control unit 3 detects the water vapor amount S of the fuel gas at the fuel gas flow path outlet by the dew point meter 11.
- the control unit 3 controls the flow rate Q of the fuel gas so that the detected fuel gas outlet water vapor amount S approaches the target value St.
- the target value St is acquired in advance based on the correlation between the fuel gas outlet water vapor amount S and the fuel cell voltage.
- the fuel gas flow rate Q is the flow rate of the fuel gas flowing through the fuel gas flow path.
- the fuel gas flow rate Q in the fuel cell can be controlled by controlling the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8, for example.
- the flow rate Qb of the fuel component gas supplied from the hydrogen pump 4 that is the fuel supply source is not controlled by the water vapor amount control means.
- the required output is sufficiently secured, the use efficiency of hydrogen as a fuel component is increased, and the water distribution of the fuel cell is effectively controlled. can do.
- the control of the fuel gas flow rate Q by the water vapor amount control means is not limited to the control by Qa, but is not particularly limited as long as the required output for the fuel cell can be ensured. For example, only by Qb after ensuring the required output. Control or control by both Qa and Qb may be performed. Furthermore, other means for controlling the fuel gas flow rate may be used.
- the target value of the fuel gas water vapor amount is calculated based on the relationship between the fuel gas outlet water vapor amount acquired in advance and the voltage of the fuel cell, and the fuel gas amount is realized so as to realize the water vapor amount.
- Gas flow rate, pressure and fuel cell temperature can be controlled. That is, the feed forward control can be performed on the water content in the fuel cell, and hence the voltage of the fuel cell. By performing such feedforward control, the voltage of the fuel cell is actually detected to determine the water content in the fuel cell, and compared with the case where feedback control is performed, the occurrence of dry-up is prevented in advance.
- the fuel cell operation control that realizes a high voltage can be realized. Further, in the present invention, since the voltage sensor and the resistance sensor can be omitted, the control in the fuel cell system can be further simplified and the cost of the fuel cell can be reduced.
- the water vapor amount control process by the water vapor amount control means may be executed periodically during the fuel cell operation, or may be executed only under a condition where the fuel cell temperature is equal to or higher than a predetermined value.
- the water vapor control process by the water vapor control means may be executed only under a high temperature condition in which dry-up is particularly likely to occur, for example, a temperature condition of 80 ° C. or higher.
- the steam control process is performed at least at 70 ° C. or higher, and further at 80 ° C. or higher.
- the target value of the fuel gas water vapor amount acquired in advance may be defined by one point of the water vapor amount at which the voltage peak is obtained, or the water vapor amount having a predetermined width including the water vapor amount at which the voltage peak is obtained. You may prescribe
- the fuel gas outlet water vapor amount is controlled by controlling the flow rate Q of fuel gas (specifically, the exhaust fuel gas flow rate Qa).
- the control parameter for bringing the gas outlet water vapor amount S close to the water vapor amount target value St is not limited to the flow rate Q of the fuel gas.
- at least one of a fuel gas flow rate, a fuel gas pressure, and a fuel cell temperature can be selected.
- control is easy, and control of water vapor amount and average flow rate is fast, so at least one of fuel gas flow rate and fuel gas pressure is controlled. It is preferable to do.
- only the fuel gas flow rate Q, only the fuel gas pressure P, or both the fuel gas flow rate Q and the fuel gas pressure P can be controlled. Since the pressure of the fuel gas varies with the control of the fuel gas flow rate, it can be expected that the flow rate and the pressure of the fuel gas are both controlled to approach the target value of the water vapor amount more efficiently.
- the control of the pressure of the fuel gas can be performed, for example, by controlling the pressure of the fuel gas at the inlet of the fuel gas channel and / or the pressure of the fuel gas at the outlet of the fuel gas channel.
- a back pressure valve provided downstream of the outlet of the fuel gas flow path, a regulator for supplying hydrogen from the hydrogen tank to the fuel cell, and if the fuel gas piping system is a circulation system, piping from the hydrogen tank
- the pressure of the fuel gas can be controlled by an injector for supplying hydrogen to the system, a circulation pump provided in the piping system, or the like.
- the fuel cell system 101 shown in FIG. 6 does not include the dew point meter 11 and is the same as the fuel cell system 100 except that the specific water vapor amount control process by the water vapor amount control means of the control unit 3 is different. It is a configuration.
- the fuel cell system 101 will be described focusing on differences from the fuel cell system 100.
- the water vapor amount control means includes a target value for the fuel gas outlet water vapor amount set in advance from the relationship between the voltage of the fuel cell 1 and the water vapor amount at the outlet of the fuel gas flow path, and the fuel in the fuel cell 1. At least one of the flow rate of the fuel gas in the fuel cell, the pressure of the fuel gas, and the temperature of the fuel cell based on the map obtained based on the correlation with at least one of the gas flow rate, the fuel gas pressure, and the temperature To control.
- the fuel gas outlet water vapor amount is actually detected by a dew point meter, and the flow rate of the fuel gas is controlled based on the detected fuel gas outlet water vapor amount.
- the fuel cell system 101 At least one of the flow rate of the fuel gas, the fuel gas pressure, and the fuel cell temperature that realizes the target value of the fuel gas outlet water vapor amount acquired in advance is also acquired in advance. Then, based on the obtained fuel gas flow rate, pressure, and fuel cell temperature, the fuel outlet water vapor amount is set by controlling at least one of the fuel gas flow rate, temperature, and fuel cell temperature. Control to be That is, as compared with the fuel cell system 100, the fuel cell system 101 can simplify the system because it does not have a fuel gas outlet water vapor amount measuring means such as a dew point meter.
- the water vapor amount control means of the control unit 3 detects the temperature T of the fuel cell 1 with the temperature sensor 9. Further, the control unit 3 detects the pressure P of the fuel gas in the fuel gas flow path with the pressure sensor 10.
- the control unit 3 controls the flow rate Q of the fuel gas so that the fuel gas outlet water vapor amount S approaches the target value St acquired in advance.
- the target value St is acquired in advance based on the correlation between the fuel gas outlet water vapor amount S and the fuel cell voltage.
- the flow rate Q of the fuel gas is determined by using a map acquired based on the target value St of the fuel gas outlet water vapor amount and the correlation between the temperature T, the fuel gas pressure P, and the fuel gas flow rate Q.
- a value Qt is calculated and controlled according to the target value.
- the fuel gas flow rate Q in the fuel cell can be controlled by controlling the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8, as in the fuel cell system 100.
- the flow rate Qb of the fuel component gas supplied from the hydrogen pump 4 as the fuel supply source is not controlled by the water vapor amount control means, but the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8 is controlled.
- the control of the fuel gas flow rate Q by the water vapor amount control means is not limited to the control by the above Qa, and is not particularly limited as long as the required output for the fuel cell can be secured, for example, only by Qb after ensuring the required output. Control or control by both Qa and Qb may be performed.
- other means for controlling the fuel gas flow rate may be used.
- the above map shows the correlation between the target value of the water vapor outlet water vapor amount and at least two of the fuel gas flow rate, fuel gas pressure and temperature in the fuel cell. Is preferably acquired based on the correlation with all of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature.
- the map acquired based on the correlation between the target value St of the fuel gas water vapor amount and at least one of the temperature T, the fuel gas pressure P, and the fuel gas flow rate Q is the target value of the fuel gas water vapor amount. It may represent a correlation between St and at least one of temperature T, fuel gas pressure P, and fuel gas flow rate Q.
- FIG. 7 shows a fuel cell system 200 which is an embodiment of the second fuel cell system of the present invention.
- the fuel cell system 200 is an inlet pressure sensor (fuel gas inlet pressure measuring means) 25 for measuring the fuel gas pressure Pin at the inlet of the fuel gas flow path as a fuel gas pressure measuring means for measuring the pressure of the fuel gas in the fuel cell.
- an outlet pressure sensor (fuel gas outlet pressure measuring means) 26 for measuring the pressure Pout of the fuel gas at the outlet of the fuel gas flow path, and the control unit 3 determines the voltage of the fuel cell 1 and the average fuel gas flow rate.
- the configuration is the same as that of the fuel cell system 101 except that an average flow rate control means for controlling the average fuel gas flow rate is provided based on a target value of the average fuel gas flow rate set in advance.
- the pressure sensor is not limited to a specific installation position as long as the pressure of the fuel gas in the fuel gas passage at a desired position can be grasped. An outlet pressure sensor may not be used.
- the average flow rate control means is a target value Qavet of the fuel gas average flow rate set in advance from the relationship between the voltage of the fuel cell and the average flow rate (fuel gas average flow rate) Qave of the fuel gas in the fuel gas flow path. And a flow rate Q of the fuel gas in the fuel cell, a flow rate Q of the fuel gas in the fuel cell, and a fuel gas pressure P and a temperature T At least one of the pressure P and the temperature of the fuel cell is controlled. In the fuel cell system 200, at least one of the flow rate of fuel gas, the fuel gas pressure, and the fuel cell temperature that realizes the target value of the fuel gas average flow rate acquired in advance is also acquired in advance. Then, based on the obtained fuel gas flow rate, pressure, and fuel cell temperature, by controlling at least one of the fuel gas flow rate, temperature, and fuel cell temperature, the target value in which the average fuel gas flow rate is set. Control to be
- the control unit 3 controls the fuel gas flow rate Q based on the detected temperature T and the calculated average pressure Pave so that the fuel gas average flow rate Qave approaches the target value Qavet acquired in advance.
- the target value Qavet is acquired in advance based on the correlation between the fuel gas average flow rate Qave and the fuel cell voltage.
- the average fuel gas flow rate Qave is calculated using a map obtained based on the target value Qavet of the average fuel gas flow rate and the correlation between the temperature T, the fuel gas pressure P, and the fuel gas flow rate Q.
- a value Qavet is calculated and controlled according to the target value.
- the fuel gas flow rate Q in the fuel cell can be controlled by controlling the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8, as in the fuel cell system 100.
- the fuel component gas flow rate Qb supplied from the hydrogen pump 4 as the fuel supply source is not controlled by the water vapor amount control means, but the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8 is controlled.
- control of the fuel gas flow rate Q by the average flow rate control means is not limited to the control by the above Qa, and is not particularly limited as long as the required output for the fuel cell can be ensured. Control or control by both Qa and Qb may be performed. Furthermore, other means for controlling the fuel gas flow rate may be used.
- the above map includes a target value of the average flow rate of the fuel gas and at least two of the flow rate of the fuel gas, the pressure and the temperature of the fuel gas in the fuel cell. It is preferably obtained based on the correlation, particularly based on the correlation with all of the flow rate of the fuel gas, the pressure and the temperature of the fuel gas.
- the map acquired based on the target value Qavet of the fuel gas average flow rate and the correlation between at least one of the temperature T, the fuel gas pressure P, and the fuel gas flow rate Q is a target value of the fuel gas average flow rate. It may represent a correlation between Qavet and at least one of temperature T, fuel gas pressure P, and fuel gas flow rate Q.
- the average flow rate of fuel gas (fuel gas average flow rate) Qave in the fuel gas flow channel is the average flow rate of fuel gas flowing through the fuel gas flow channel, and the calculation method is particularly For example, when the fuel gas piping system has a circulation system as in the fuel cell system 200, it can be calculated by the following equation (1).
- Qave Qa + Qb / 2 Formula (1)
- Qave Average flow rate of fuel gas in the fuel gas flow path
- Qa Flow rate of discharged fuel gas recirculated by the recirculation pump
- Qb Flow rate of fuel component gas supplied from the fuel supply means
- FIG. 8 shows an example of the map used for the average flow rate control process based on the average flow rate Qave of the fuel gas calculated by the above equation (1).
- the average fuel gas flow rate Qave can also be calculated by the following equation (2).
- the flow rate of the fuel gas at a position that is 1 ⁇ 2 of the total flow length of the fuel gas flow channel is adopted as the fuel gas average flow rate Qave.
- the average flow rate Qave of the fuel gas is calculated from the number of moles of fuel gas and the pressure at the 1/2 position based on the gas state equation.
- the number of moles of the fuel gas is the total amount of components contained in the fuel gas at a position that is 1/2 of the total length of the fuel gas channel (hydrogen gas, nitrogen gas, More specifically, it is consumed from the total number of moles of fuel gas at the inlet of the fuel gas channel until it reaches a position that is 1/2 of the total channel length of the fuel gas channel.
- the number of moles obtained by subtracting the number of moles of the fuel component.
- the number of moles of the fuel component consumed until reaching the position of 1/2 of the total length of the fuel gas channel is half of the required fuel component amount from the required output of the fuel cell.
- the total number of moles of fuel gas at the fuel gas channel inlet is determined from the temperature and pressure of the total flow rate of the fuel gas flow returned to the fuel gas channel inlet by the circulation pump and the amount of hydrogen replenished from the hydrogen tank. be able to.
- the pressure of the fuel gas may be actually detected by detecting the pressure of the fuel gas at a position that is 1/2 of the total length of the fuel gas flow path.
- the average value may be calculated by measuring the pressure of the fuel gas.
- it may be calculated on the assumption that 1/2 of the pressure loss occurring in the entire length of the fuel gas flow path is generated at a position that is 1/2 of the total length of the fuel gas flow path.
- the fuel gas pressure assuming loss can be calculated by the following equation (3).
- the average flow rate Qave of the fuel gas is calculated by the following equation (4) as a modification of the equation (2). be able to.
- Qave n'RT / P (4)
- Qave Average flow rate of the fuel gas in the fuel gas flow path n ′: Of the fuel gas supplied to the fuel gas flow path, 1 ⁇ 2 of the fuel component supplied from the fuel gas supply means to the fuel gas flow path is The number of moles of fuel gas at a position that is 1/2 of the total length of the fuel gas flow path calculated on the assumption that it has been consumed
- R gas constant
- T fuel cell temperature
- P fuel gas flow calculated by the above equation (3)
- the average fuel gas flow rate Qave is not calculated based on the above assumption, but is obtained by actually measuring and averaging the fuel gas flow rates at a plurality of locations in the fuel gas flow path. Or a flow rate value of the fuel gas actually measured at a position of 1 ⁇ 2 of the total length of the fuel gas flow path may be used. From the viewpoint that a fuel cell system can be easily constructed, it is preferable to calculate the average fuel gas flow rate using the above formula (1), (2) or (4).
- the fuel gas average flow rate control processing by the average flow rate control means may be periodically executed during the fuel cell operation, or only under a condition where the fuel cell temperature is equal to or higher than a predetermined value. May be executed.
- the fuel gas average flow rate control process by the average flow rate control means may be executed only under a high temperature condition in which dry-up is particularly likely to occur, for example, a temperature condition of 80 ° C. or higher.
- the average flow rate control process is performed at least at 70 ° C. or higher, and further at 80 ° C. or higher.
- Fuel gas channel 21 ... Cathode catalyst layer 22 ... Gas diffusion layer 23 ... Anode catalyst layer 24 ... Gas diffusion layer 25 ... Pressure sensor (fuel gas flow path inlet pressure measuring means) 26 ... Pressure sensor (fuel gas channel outlet pressure measuring means) DESCRIPTION OF SYMBOLS 100 ... Fuel cell system 101 ... Fuel cell system 200 ... Fuel cell system
Landscapes
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
Abstract
Description
H2 → 2H+ + 2e- ・・・(A)
前記式(A)で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、カソード電極(酸化剤極)に到達する。そして、前記式(A)で生じたプロトンは、水和した状態で、固体高分子電解質内をアノード電極側からカソード電極側に、電気浸透により移動する。
2H+ + (1/2)O2 + 2e- → H2O ・・・(B)
カソード電極で生成した水は、ガス流路等を経て外部へと排出される。このように、燃料電池は、水以外の排出物がなく、クリーンな発電装置である。
また、固体高分子電解質型燃料電池では、電解質膜の面方向(すなわち、電極の面方向)において、不均一な水分布、すなわち、水の偏在が生じる。その結果、電解質膜の面方向において、不均一な発電量分布が生じ、さらなる水の偏在化、ひいては、燃料電池の出力及び発電効率が低下する。
そこで、反応ガスを加湿しない無加湿条件で、燃料電池の含水状態を適切に管理し、安定した発電性能を得る試みがなされている。
さらに、燃料電池の抵抗と電圧は、必ずしも対応していない。つまり、抵抗値が最も低い時にピーク電圧が得られるわけではない。従って、特許文献1のように、燃料電池の抵抗値に基づいて燃料ガスの流量や圧力を制御したとしてもピーク電圧が得られない可能性が充分にある。
その上、特許文献1等では、電圧や抵抗を測定するためのセルモニタが必要不可欠であり、燃料電池システムの高コスト化、煩雑化を招く。
アノード電極及びカソード電極に挟持された高分子電解質膜と、
前記アノード電極に対して、燃料成分を少なくとも含む燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
前記カソード電極に対して、酸化剤成分を少なくとも含む酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
前記燃料電池の電圧と前記燃料ガス流路の出口における水蒸気量との関係から予め設定された前記水蒸気量の目標値に基づいて、前記水蒸気量を制御する水蒸気量制御手段を備えることを特徴とする。
このように、マップに基づく前記水蒸気量の制御を行う場合、水蒸気制御のための測定手段等の付加的な手段を必要としないため、システムの簡素化やコスト削減が可能である。
燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
を備える場合、
前記水蒸気量制御手段は、前記再循環ポンプにより再循環させる前記排出燃料ガスの流量を制御することによって、前記燃料電池における前記燃料ガスの流量を制御することができる。
アノード電極及びカソード電極に挟持された高分子電解質膜と、
前記アノード電極に対して燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
前記カソード電極に対して酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
前記燃料電池の電圧と前記燃料ガス流路における前記燃料ガスの平均流量との関係から予め設定された前記平均流量の目標値に基づいて、前記平均流量を制御する平均流量制御手段を備えることを特徴とする。
燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
を備える場合、
前記平均流量制御手段は、前記再循環ポンプにより再循環させる前記排出燃料ガスの流量を制御することによって、前記燃料電池における前記燃料ガスの流量を制御することができる。
このとき、前記平均流量は、例えば、下記式(1)により算出することができる。
Qave=Qa+Qb/2・・・式(1)
Qave:前記燃料ガス流路における前記燃料ガスの平均流量
Qa:前記再循環ポンプにより再循環させる前記排出燃料ガスの流量
Qb:前記燃料供給手段から供給される前記燃料成分ガスの流量
Qave=nRT/P・・・(2)
Qave:前記燃料ガス流路における前記燃料ガスの平均流量
n:前記燃料ガス流路の全長の1/2の位置における前記燃料ガスのモル数
R:気体定数
T:燃料電池温度
P:前記燃料ガス流路の全長の1/2の位置における前記燃料ガスの圧力
前記nを、前記燃料ガス流路に供給される前記燃料ガスに含まれる燃料成分のうち、前記燃料電池の発電量に対して最低限必要な燃料成分量の1/2が消費されたと仮定して算出し、
前記Pを、下記式(3)により算出することもできる。
P=(Pin+Pout)/2・・・(3)
Pin:前記燃料ガス流路の入口における前記燃料ガスの圧力
Pout:前記燃料ガス流路の出口における前記燃料ガスの圧力
燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
を備える場合、
前記平均流量を、下記式(4)により算出することもできる。
Qave=n’RT/P・・・(4)
Qave:前記燃料ガス流路における前記燃料ガスの平均流量
n’:前記燃料ガス流路に供給された前記燃料ガスのうち、前記燃料供給手段から前記燃料ガス流路に供給された前記燃料成分の1/2が消費されたと仮定して算出される前記燃料ガス流路の全長の1/2の位置における前記燃料ガスのモル数
R:気体定数
T:燃料電池温度
P:下記式(3)により算出される前記燃料ガス流路の全長の1/2の位置における前記燃料ガスの圧力
P=(Pin+Pout)/2・・・(3)
Pin:前記燃料ガス流路の入口における前記燃料ガスの圧力
Pout:前記燃料ガス流路の出口における前記燃料ガスの圧力
アノード電極及びカソード電極に挟持された高分子電解質膜と、
前記アノード電極に対して、燃料成分を少なくとも含む燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
前記カソード電極に対して、酸化剤成分を少なくとも含む酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
前記燃料電池の電圧と前記燃料ガス流路の出口における水蒸気量との関係から予め設定された前記水蒸気量の目標値に基づいて、前記水蒸気量を制御する水蒸気量制御手段を備えることを特徴とする。
また、本発明の第二の燃料電池システムは、
アノード電極及びカソード電極に挟持された高分子電解質膜と、
前記アノード電極に対して燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
前記カソード電極に対して酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
前記燃料電池の電圧と前記燃料ガス流路における前記燃料ガスの平均流量との関係から予め設定された前記平均流量の目標値に基づいて、前記平均流量を制御する平均流量制御手段を備えることを特徴とする。
すなわち、燃料ガス流路出口から排出される水蒸気量(以下、燃料ガス出口水蒸気量ということがある)が非常に少ない場合、燃料電池の電圧は低くなる(状態1)。
このように燃料ガス出口水蒸気量が非常に少ない状態というのは、燃料電池の電解質膜の面方向(すなわち電極の面方向であって、電解質膜と電極との積層方向に対して直交する方向)において、酸化剤ガス流路入口近傍の領域(つまり、燃料ガス流路出口近傍の領域)が乾燥している状態であり、該領域での発電が行われず、酸化剤ガス流路出口近傍の領域(つまり、燃料ガス流路入口近傍の領域)で集中的に発電が行われる。このとき、アノード電極側の水蒸気は、カソード電極側の乾燥を補うべく、乾燥状態のカソード電極側へと移動するために、燃料ガス出口水蒸気量は少なくなると考えられる。また、酸化剤ガス流路入口近傍の領域では、乾燥により抵抗過電圧が大きくなり、一方、酸化剤ガス流路出口近傍の領域では、酸化剤成分の濃度低下により濃度過電圧が大きくなるために、燃料電池の電圧は低くなると考えられる。
このように若干の水蒸気が排出される状態というのは、燃料電池の上記面方向において、含水状態が均一且つ良好な状態であり、面内で均一な発電が行われるため、濃度過電圧が低下し、さらには酸化剤ガス流路出口近傍の領域における抵抗過電圧も低くなるため、高い電圧が得られると考えられる。
このように燃料ガス出口水蒸気量が多い状態では、燃料電池の上記面方向の酸化剤ガス流路入口近傍領域では、充分な湿潤状態であると共に酸化剤成分の濃度が充分に確保されているため発電が集中的に進行すると考えられる。一方、燃料ガス流路入口近傍の領域(つまり、酸化剤ガス流路出口近傍の領域)では、燃料ガスによって燃料ガス流路出口側へと水分が持ち去られて乾燥し且つ酸化剤成分濃度も低いため、抵抗過電圧の増加と濃度過電圧との両方が生じるため、面内において均一な発電分布が得られず、燃料電池の電圧が低くなると考えられる。
さらに、本発明者らは、図3に示すように、燃料ガス出口水蒸気量と燃料ガス平均流量とが、燃料ガス流路における燃料ガスの圧力に関わらず、一定の相関関係を示すことから、燃料ガス平均流量を制御することで、燃料ガス出口水蒸気量を間接的に制御できることを見出した。
尚、本発明の燃料電池システムの用途は、特に限定されず、例えば、移動体である車両、船舶等の駆動装置に対して電力を供給する電力供給源として、また、その他さまざまな装置の電力供給源として、利用可能である。
また、本発明において、燃料ガスとは燃料成分を含むガスであって、燃料電池内の燃料ガス流路を流れるガスを意味し、燃料成分以外の成分(例えば、水蒸気や窒素ガス等)も含み得る。また、酸化剤ガスとは酸化剤成分を含むガスであって、燃料電池内の酸化剤ガス流路を流れるガスを意味し、酸化剤成分以外の成分(例えば、水蒸気や窒素ガス等)も含み得る。燃料ガスと酸化剤ガスをまとめて反応ガスということがある。
燃料電池システム100は、少なくとも、反応ガスの供給を受けて発電する燃料電池1と、燃料ガス配管系2と、酸化剤ガス配管系(図示せず)と、システムを統合制御する制御部3とを有する。尚、本発明の燃料電池システムは、燃料電池に酸化剤ガスを供給し、燃料電池から未反応の酸化剤成分や水蒸気等を含むガス(排出酸化剤ガス)を排出する、酸化剤ガス配管系を有するが、本発明において、酸化剤ガスは、燃料ガス流路を流れる燃料ガスの方向と酸化剤ガス流路を流れる酸化剤ガスの方向とが、互いに対向するいわゆるカウンターフローであれば、酸化剤ガスの供給、排出の具体的な形態は特に限定されないため、酸化剤ガス配管系については、図中の説明を省略する。
各単セル12は、固体高分子電解質膜13を、カソード電極(空気極)14及びアノード電極(燃料極)15で狭持した膜・電極接合体16を基本構造としている。カソード電極14は、電解質膜13側から順にカソード触媒層21とガス拡散層22とが積層した構造を有しており、アノード電極15は、電解質膜13側から順にアノード触媒層23とガス拡散層24とが積層した構造を有している。
膜・電極接合体16は、一対のセパレータ17、18で、カソード電極14及びアノード電極15を両側から挟みこまれている。カソード側のセパレータ17には、カソード電極14に酸化剤ガスを供給するための酸化剤ガス流路を形成する溝が設けられており、該溝とカソード電極14とによって酸化剤ガス流路19が画成されている。アノード側のセパレータ18には、アノード電極15に燃料ガスを供給するための燃料ガス流路を形成する溝が設けられており、該溝とアノードとによって燃料ガス流路20が画成されている。
また、燃料電池1には、燃料ガス流路を流れる燃料ガスの圧力を計測する圧力センサ10が配置されている。尚、圧力センサは、所望の位置における燃料ガス流路内の燃料ガスの圧力を把握することができれば、具体的な設置位置は限定されない。例えば、燃料ガス流路の入口に設けられ、該入口における燃料ガスの圧力を測定する入口圧力センサと、燃料ガス流路の出口に設けられ、該出口における燃料ガスの圧力を測定する出口圧力センサとを用い、これら圧力センサで検出された燃料ガス入口圧力Pinと燃料ガス出口圧力Poutの平均値を燃料ガス圧力として検出、制御することができる。また、燃料ガス流路の入口及び出口に限らず、燃料ガス流路の複数個所に圧力センサを備え、それぞれの位置における燃料ガスの圧力を検出、制御してもよいし、平均値を算出し、平均値として制御してもよい。また、燃料電池内の圧力センサは一つであってもよい。さらに、燃料ガス流路外に設けられた圧力センサにより燃料ガスの圧力を推定してもよい。
また、燃料電池1には、燃料ガス流路の出口における燃料ガス中の水蒸気量Sを計測する露点計(水蒸気量測定手段)25が設置される。尚、露点計は、燃料ガス出口水蒸気量Sを検出することができれば、燃料ガス配管系2に設けられてもよい。
燃料ガス循環路6は、燃料電池1の燃料ガス流路出口から排出された排出燃料ガスを燃料ガス供給路5に再循環させる。燃料ガス循環路6には、排出燃料ガスを燃料ガス供給路5に再循環させるための再循環ポンプ8が設けられている。排出燃料ガスは、燃料電池の発電によって水素が消費された結果、燃料電池に供給される燃料ガスよりも流量及び圧力が低下しているため、再循環ポンプにより流量や圧力が適宜制御され、連結部7へ圧送される。燃料ガス循環路6、燃料ガス供給路5及び燃料電池1内の燃料ガス流路を連ねた系統によって、燃料ガスを燃料電池に循環供給する循環系が構成される。
尚、燃料ガス配管系は、水素ガス(燃料成分)の有効利用の観点から、燃料ガス循環路、再循環ポンプ等による循環系を有するものが好ましいといえるが、循環系を有していなくてもよいし、或いは、デッドエンド構造を有していてもよい。
尚、本発明において、燃料ガス流路の出口における水蒸気量(燃料ガス出口水蒸気量)とは、燃料ガス流路の出口を流れる燃料ガス中に含まれる水蒸気量である。
また、制御部3は、圧力センサ10により、燃料ガス流路における燃料ガスの圧力Pを検出する。
また、制御部3は、露点計11によって燃料ガス流路出口における燃料ガスの水蒸気量Sを検出する。
具体的には、燃料電池における燃料ガス流量Qは、例えば、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaの制御によって制御することができる。燃料電池システム100のように、燃料排出ガスを循環させる循環系の場合、燃料供給源である水素ポンプ4から供給される燃料成分ガスの流量Qbは水蒸気量制御手段による制御を行わずに、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaを制御することによって、要求出力を充分に担保した上で、燃料成分である水素の利用効率を高め、燃料電池の水分布を効果的に制御することができる。
尚、水蒸気量制御手段による燃料ガス流量Qの制御は、上記Qaによる制御に限定されず、燃料電池に対する要求出力を担保できれば特に限定されず、例えば、要求出力を担保した上で、Qbのみによる制御、或いは、Qa及びQbの両方による制御を行ってもよい。さらには、燃料ガス流量を制御するその他の手段を用いてもよい。
また、予め取得された燃料ガス水蒸気量の目標値は、電圧ピークが得られる水蒸気量の1点で規定してもよいし、電圧ピークが得られる水蒸気量を含む、所定の幅を有する水蒸気量の範囲で規定してもよい。
図6に示す燃料電池システム101は、露点計11を備えておらず、また、制御部3の水蒸気量制御手段による具体的な水蒸気量制御処理が異なる点以外は、上記燃料電池システム100と同じ構成である。
以下、燃料電池システム101について、燃料電池システム100と異なる点を中心に説明する。
上記にて説明した燃料電池システム100は、燃料ガス出口水蒸気量を、露点計で実際に検出し、検出された燃料ガス出口水蒸気量に基づいて、燃料ガスの流量等を制御するのに対し、燃料電池システム101は、予め取得された燃料ガス出口水蒸気量の目標値を実現させる、燃料ガスの流量、燃料ガス圧力及び燃料電池温度の少なくとも1つもまた、予め取得されている。そして、これら取得された燃料ガス流量、圧力及び燃料電池温度に基づいて、燃料ガスの流量、温度及び燃料電池の温度の少なくとも1つを制御することによって、燃料出口水蒸気量を設定された目標値となるように制御する。すなわち、燃料電池システム101は、燃料電池システム100と比較して、露点計のような燃料ガス出口水蒸気量測定手段を有していない分、システムの簡易化が可能である。
また、制御部3は、圧力センサ10により、燃料ガス流路における燃料ガスの圧力Pを検出する。
具体的には、燃料電池における燃料ガス流量Qは、上記燃料電池システム100と同様、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaの制御によって制御することができる。このように、燃料供給源である水素ポンプ4から供給される燃料成分ガスの流量Qbは水蒸気量制御手段による制御を行わずに、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaを制御することによって、要求出力を充分に担保した上で、燃料成分である水素の利用効率を高め、燃料電池の水分布を効果的に制御することができる。また、水蒸気量制御手段による燃料ガス流量Qの制御は、上記Qaによる制御に限定されず、燃料電池に対する要求出力を担保できれば特に限定されず、例えば、要求出力を担保した上で、Qbのみによる制御、或いは、Qa及びQbの両方による制御を行ってもよい。さらには、燃料ガス流量を制御するその他の手段を用いてもよい。
また、上記燃料ガス水蒸気量の目標値Stと、温度T、燃料ガス圧力P、及び燃料ガス流量Qの少なくとも1つとの相関関係とに基づいて取得されるマップは、燃料ガス水蒸気量の目標値Stと、温度T、燃料ガス圧力P、及び燃料ガス流量Qの少なくとも1つとの相関関係を表わすものであってもよい。
図7は、本発明の第2の燃料電池システムの実施形態例である燃料電池システム200を示している。
燃料電池システム200は、燃料電池の燃料ガスの圧力を測定する燃料ガス圧力測定手段として、燃料ガス流路の入口における燃料ガスの圧力Pinを測定する入口圧力センサ(燃料ガス入口圧力測定手段)25及び燃料ガス流路の出口における燃料ガスの圧力Poutを測定する出口圧力センサ(燃料ガス出口圧力測定手段)26を備え、また、制御部3が、燃料電池1の電圧と燃料ガス平均流量との関係から予め設定された燃料ガス平均流量の目標値に基づいて、燃料ガス平均流量を制御する平均流量制御手段を備えている点以外は、上記燃料電池システム101と同じ構成である。
燃料電池システム101と同様、圧力センサは、所望の位置における燃料ガス流路内の燃料ガスの圧力を把握することができれば、具体的な設置位置は限定されず、上記のように入口圧力センサと出口圧力センサとを用いなくてもよい。
燃料電池システム200は、予め取得された燃料ガス平均流量の目標値を実現させる、燃料ガスの流量、燃料ガス圧力及び燃料電池温度の少なくとも1つもまた、予め取得されている。そして、これら取得された燃料ガス流量、圧力及び燃料電池温度に基づいて、燃料ガスの流量、温度及び燃料電池の温度の少なくとも1つを制御することによって、燃料ガス平均流量を設定された目標値となるように制御する。
また、制御部3は、圧力センサ25、26により検出された、燃料ガス流路入口における燃料ガスの圧力Pin及び燃料ガス流路出口における燃料ガスの圧力Poutに基づいて、燃料ガス流路における平均圧力Pave[Pave=(Pin+Pout)/2]を算出する。
具体的には、燃料電池における燃料ガス流量Qは、上記燃料電池システム100と同様、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaの制御によって制御することができる。このように、燃料供給源である水素ポンプ4から供給される燃料成分ガス流量Qbは水蒸気量制御手段による制御を行わずに、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaを制御することによって、要求出力を充分に担保した上で、燃料成分である水素の利用効率を高め、燃料ガスの平均流量を調整し、燃料電池の水分布を効果的に制御することができる。また、平均流量制御手段による燃料ガス流量Qの制御は、上記Qaによる制御に限定されず、燃料電池に対する要求出力を担保できれば特に限定されず、例えば、要求出力を担保した上で、Qbのみによる制御、或いは、Qa及びQbの両方による制御を行ってもよい。さらには、燃料ガス流量を制御するその他の手段を用いてもよい。
また、上記燃料ガス平均流量の目標値Qavetと、温度T、燃料ガス圧力P、及び燃料ガス流量Qの少なくとも1つとの相関関係とに基づいて取得されるマップは、燃料ガス平均流量の目標値Qavetと、温度T、燃料ガス圧力P、及び燃料ガス流量Qの少なくとも1つとの相関関係を表わすものであってもよい。
Qave:燃料ガス流路における燃料ガスの平均流量
Qa:再循環ポンプにより再循環させる排出燃料ガスの流量
Qb:燃料供給手段から供給される燃料成分ガスの流量
図8に示すマップにおいては、検出された温度Tと平均圧力Pave[Pave=(Pin+Pout)/2]と燃料ガス平均流量の目標値Qavetとの相関関係が表わされている。従って、例えば、検出された温度Tにおける、平均圧力Paveと平均流量Qavetとの相関関係を表わすマップに従って、検出された平均圧力Paveにおける目標平均流量Qavetが算出される。そして、式(1)により算出されるQaveがマップにより算出されたQavetとなるように、排出燃料ガス流量Qaを制御することができる。
Qave:燃料ガス流路における燃料ガスの平均流量
n:燃料ガス流路の全長の1/2の位置における燃料ガスのモル数
R:気体定数
T:燃料電池温度
P:燃料ガス流路の全長の1/2の位置における燃料ガスの圧力
Pin:燃料ガス流路の入口における燃料ガスの圧力
Pout:燃料ガス流路の出口における燃料ガスの圧力
Qave=n’RT/P・・・(4)
Qave:燃料ガス流路における燃料ガスの平均流量
n’:燃料ガス流路に供給された前記燃料ガスのうち、燃料ガス供給手段から燃料ガス流路に供給された前記燃料成分の1/2が消費されたと仮定して算出される燃料ガス流路の全長の1/2の位置における燃料ガスのモル数
R:気体定数
T:燃料電池温度
P:上記式(3)により算出される燃料ガス流路の全長の1/2の位置における燃料ガスの圧力
2…燃料ガス配管系
3…制御部
4…水素タンク(燃料供給手段)
5…燃料ガス供給路
5A…主流路
5B…混合路
6…燃料ガス循環路
7…連結部
8…再循環ポンプ
9…温度センサ(温度測定手段)
10…圧力センサ
11…露点計(水蒸気量測定手段)
12…単セル
13…高分子電解質膜
14…カソード電極
15…アノード電極
16…膜・電極接合体
17…セパレータ
18…セパレータ
19…酸化剤ガス流路
20…燃料ガス流路
21…カソード触媒層
22…ガス拡散層
23…アノード触媒層
24…ガス拡散層
25…圧力センサ(燃料ガス流路入口圧力測定手段)
26…圧力センサ(燃料ガス流路出口圧力測定手段)
100…燃料電池システム
101…燃料電池システム
200…燃料電池システム
Claims (18)
- アノード電極及びカソード電極に挟持された高分子電解質膜と、
前記アノード電極に対して、燃料成分を少なくとも含む燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
前記カソード電極に対して、酸化剤成分を少なくとも含む酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
前記燃料電池の電圧と前記燃料ガス流路の出口における水蒸気量との関係から予め設定された前記水蒸気量の目標値に基づいて、前記水蒸気量を制御する水蒸気量制御手段を備えることを特徴とする、燃料電池システム。 - 前記水蒸気量制御手段は、前記水蒸気量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御する、請求の範囲第1項に記載の燃料電池システム。
- 前記水蒸気量制御手段は、前記水蒸気量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量及び/又は前記燃料ガスの圧力を制御する、請求の範囲第1項又は第2項に記載の燃料電池システム。
- 前記水蒸気量制御手段は、前記水蒸気量の目標値と、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力及び温度の少なくとも一つとの相関関係に基づいて取得されたマップに基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び前記温度の少なくとも1つを制御する、請求の範囲第1項乃至第3項のいずれかに記載の燃料電池システム。
- 前記水蒸気量を測定する水蒸気量測定手段を備え、
前記水蒸気量制御手段は、前記水蒸気量測定手段により測定される前記水蒸気量が前記水蒸気量の目標値に近づくように、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御する、請求の範囲第1項乃至第3項のいずれかに記載の燃料電池システム。 - 燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
を備え、
前記水蒸気量制御手段は、前記再循環ポンプにより再循環させる前記排出燃料ガスの流量を制御することによって、前記燃料電池における前記燃料ガスの流量を制御する、請求の範囲第2項乃至第5項のいずれかに記載の燃料電池システム。 - 前記水蒸気量制御手段は、前記水蒸気量の目標値に基づいて、前記燃料ガス流路の入口における前記燃料ガスの圧力及び/又は前記燃料ガス流路の出口における前記燃料ガスの圧力を制御する、請求の範囲第2項乃至第6項のいずれかに記載の燃料電池システム。
- アノード電極及びカソード電極に挟持された高分子電解質膜と、前記アノード電極に対して燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、前記カソード電極に対して酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
前記燃料電池の電圧と前記燃料ガス流路における前記燃料ガスの平均流量との関係から予め設定された前記平均流量の目標値に基づいて、前記平均流量を制御する平均流量制御手段を備えることを特徴とする、燃料電池システム。 - 前記平均流量制御手段は、前記平均流量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御する、請求の範囲第8項に記載の燃料電池システム。
- 前記平均流量制御手段は、前記平均流量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量及び/又は前記燃料ガスの圧力を制御する、請求の範囲第8項又は第9項に記載の燃料電池システム。
- 前記平均流量制御手段は、前記平均流量の目標値と、前記燃料電池における、前記燃料ガス流量、前記燃料ガス圧力及び温度の少なくとも一つとの相関関係に基づいて取得されたマップに基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び前記温度の少なくとも1つを制御する、請求の範囲第8項乃至第10項のいずれかに記載の燃料電池システム。
- 燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
を備え、
前記平均流量制御手段は、前記再循環ポンプにより再循環させる前記排出燃料ガスの流量を制御することによって、前記燃料電池における前記燃料ガスの流量を制御する、請求の範囲第9項乃至第11項のいずれかに記載の燃料電池システム。 - 前記平均流量が、下記式(1)により算出される、請求の範囲第12項に記載の燃料電池システム。
Qave=Qa+Qb/2・・・式(1)
Qave:前記燃料ガス流路における前記燃料ガスの平均流量
Qa:前記再循環ポンプにより再循環させる前記排出燃料ガスの流量
Qb:前記燃料供給手段から供給される前記燃料成分ガスの流量 - 前記平均流量が、下記式(2)により算出される、請求の範囲第9項乃至第12項のいずれかに記載の燃料電池システム。
Qave=nRT/P・・・(2)
Qave:前記燃料ガス流路における前記燃料ガスの平均流量
n:前記燃料ガス流路の全長の1/2の位置における前記燃料ガスのモル数
R:気体定数
T:燃料電池温度
P:前記燃料ガス流路の全長の1/2の位置における前記燃料ガスの圧力 - 前記式(2)において、
前記nが、前記燃料ガス流路に供給される前記燃料ガスに含まれる燃料成分のうち、前記燃料電池の発電量に対して最低限必要な燃料成分量の1/2が消費されたと仮定して算出され、
前記Pが、下記式(3)により算出される、請求の範囲第14項に記載の燃料電池システム。
P=(Pin+Pout)/2・・・(3)
Pin:前記燃料ガス流路の入口における前記燃料ガスの圧力
Pout:前記燃料ガス流路の出口における前記燃料ガスの圧力 - 前記平均流量が、下記式(4)により算出される、請求の範囲第12項に記載の燃料電池システム。
Qave=n’RT/P・・・(4)
Qave:前記燃料ガス流路における前記燃料ガスの平均流量
n’:前記燃料ガス流路に供給された前記燃料ガスのうち、前記燃料供給手段から前記燃料ガス流路に供給された前記燃料成分の1/2が消費されたと仮定して算出される前記燃料ガス流路の全長の1/2の位置における前記燃料ガスのモル数
R:気体定数
T:燃料電池温度
P:下記式(3)により算出される前記燃料ガス流路の全長の1/2の位置における前記燃料ガスの圧力
P=(Pin+Pout)/2・・・(3)
Pin:前記燃料ガス流路の入口における前記燃料ガスの圧力
Pout:前記燃料ガス流路の出口における前記燃料ガスの圧力 - 前記平均流量制御手段は、前記平均流量の目標値に基づいて、前記燃料ガス流路の入口における前記燃料ガスの圧力及び/又は前記燃料ガス流路の出口における前記燃料ガスの圧力を制御する、請求の範囲第9項乃至第16項のいずれかに記載の燃料電池システム。
- 前記燃料電池の温度が80℃以上である、請求の範囲第1項乃至第17項のいずれかに記載の燃料電池システム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011526315A JP4868095B1 (ja) | 2011-01-28 | 2011-01-28 | 燃料電池システム |
PCT/JP2011/051776 WO2012101818A1 (ja) | 2011-01-28 | 2011-01-28 | 燃料電池システム |
KR1020127024690A KR101423853B1 (ko) | 2011-01-28 | 2011-01-28 | 연료 전지 시스템 |
EP11856624.9A EP2669978B1 (en) | 2011-01-28 | 2011-01-28 | Fuel cell system |
US13/574,709 US10003093B2 (en) | 2011-01-28 | 2011-01-28 | Fuel cell system including a fuel cell and a controller for controlling water vapor amount or average flow rate of a fuel gas |
CN201180019370.4A CN102986070B (zh) | 2011-01-28 | 2011-01-28 | 燃料电池系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/051776 WO2012101818A1 (ja) | 2011-01-28 | 2011-01-28 | 燃料電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012101818A1 true WO2012101818A1 (ja) | 2012-08-02 |
Family
ID=45781877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051776 WO2012101818A1 (ja) | 2011-01-28 | 2011-01-28 | 燃料電池システム |
Country Status (6)
Country | Link |
---|---|
US (1) | US10003093B2 (ja) |
EP (1) | EP2669978B1 (ja) |
JP (1) | JP4868095B1 (ja) |
KR (1) | KR101423853B1 (ja) |
CN (1) | CN102986070B (ja) |
WO (1) | WO2012101818A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018190496A (ja) * | 2017-04-28 | 2018-11-29 | 株式会社Soken | 燃料電池システム |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108091907B (zh) * | 2016-11-22 | 2020-09-25 | 通用电气公司 | 燃料电池系统及其停机方法 |
US10985388B2 (en) * | 2016-12-14 | 2021-04-20 | Hyundai Motor Company | Method and apparatus for estimating hydrogen crossover loss of fuel cell system |
JP7110925B2 (ja) * | 2018-11-09 | 2022-08-02 | トヨタ自動車株式会社 | 燃料電池システム |
US10916788B2 (en) * | 2019-01-31 | 2021-02-09 | Toyota Jidosha Kabushiki Kaisha | Hydrogen supply system low pressure state estimator |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146230A (ja) * | 2002-10-25 | 2004-05-20 | Matsushita Electric Ind Co Ltd | 燃料電池のセパレータ |
JP2009117066A (ja) | 2007-11-02 | 2009-05-28 | Nissan Motor Co Ltd | 燃料電池システムおよび燃料電池システムの制御方法 |
JP2009193817A (ja) | 2008-02-14 | 2009-08-27 | Toyota Motor Corp | 燃料電池システム |
JP2009259758A (ja) | 2008-03-26 | 2009-11-05 | Toyota Motor Corp | 燃料電池システム及び燃料電池の運転方法 |
JP2010114039A (ja) | 2008-11-10 | 2010-05-20 | Toyota Motor Corp | 燃料電池システム |
WO2010064366A1 (ja) * | 2008-12-02 | 2010-06-10 | パナソニック株式会社 | 燃料電池 |
JP2010186696A (ja) * | 2009-02-13 | 2010-08-26 | Toyota Motor Corp | 燃料電池システム |
JP2010205593A (ja) * | 2009-03-04 | 2010-09-16 | Toshiba Corp | 燃料電池 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5366818A (en) * | 1991-01-15 | 1994-11-22 | Ballard Power Systems Inc. | Solid polymer fuel cell systems incorporating water removal at the anode |
US5260143A (en) * | 1991-01-15 | 1993-11-09 | Ballard Power Systems Inc. | Method and apparatus for removing water from electrochemical fuel cells |
US6126311A (en) * | 1998-11-02 | 2000-10-03 | Claud S. Gordon Company | Dew point sensor using mems |
US6300000B1 (en) * | 1999-06-18 | 2001-10-09 | Gore Enterprise Holdings | Fuel cell membrane electrode assemblies with improved power outputs and poison resistance |
JP3530793B2 (ja) * | 1999-12-28 | 2004-05-24 | 本田技研工業株式会社 | 燃料電池およびその運転方法 |
JP2001256988A (ja) * | 2000-03-08 | 2001-09-21 | Toyota Motor Corp | 燃料電池システムおよび燃料電池の運転方法 |
US20050221134A1 (en) * | 2004-04-06 | 2005-10-06 | Liu Wen K | Method and apparatus for operating a fuel cell |
JP4924786B2 (ja) * | 2004-09-06 | 2012-04-25 | ソニー株式会社 | 燃料電池発電装置の運転方法及び燃料電池発電装置 |
JP2008269841A (ja) * | 2007-04-17 | 2008-11-06 | Toyota Motor Corp | 燃料電池システム |
JP2010009759A (ja) * | 2008-06-24 | 2010-01-14 | Toyota Motor Corp | 膜評価方法、および、膜評価補助装置 |
JP2010067485A (ja) * | 2008-09-11 | 2010-03-25 | Panasonic Corp | 燃料電池に供給する燃料の流量を制御する方法と燃料供給装置、それを用いた燃料電池システム |
-
2011
- 2011-01-28 WO PCT/JP2011/051776 patent/WO2012101818A1/ja active Application Filing
- 2011-01-28 CN CN201180019370.4A patent/CN102986070B/zh not_active Expired - Fee Related
- 2011-01-28 EP EP11856624.9A patent/EP2669978B1/en active Active
- 2011-01-28 US US13/574,709 patent/US10003093B2/en active Active
- 2011-01-28 JP JP2011526315A patent/JP4868095B1/ja not_active Expired - Fee Related
- 2011-01-28 KR KR1020127024690A patent/KR101423853B1/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146230A (ja) * | 2002-10-25 | 2004-05-20 | Matsushita Electric Ind Co Ltd | 燃料電池のセパレータ |
JP2009117066A (ja) | 2007-11-02 | 2009-05-28 | Nissan Motor Co Ltd | 燃料電池システムおよび燃料電池システムの制御方法 |
JP2009193817A (ja) | 2008-02-14 | 2009-08-27 | Toyota Motor Corp | 燃料電池システム |
JP2009259758A (ja) | 2008-03-26 | 2009-11-05 | Toyota Motor Corp | 燃料電池システム及び燃料電池の運転方法 |
JP2010114039A (ja) | 2008-11-10 | 2010-05-20 | Toyota Motor Corp | 燃料電池システム |
WO2010064366A1 (ja) * | 2008-12-02 | 2010-06-10 | パナソニック株式会社 | 燃料電池 |
JP2010186696A (ja) * | 2009-02-13 | 2010-08-26 | Toyota Motor Corp | 燃料電池システム |
JP2010205593A (ja) * | 2009-03-04 | 2010-09-16 | Toshiba Corp | 燃料電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2669978A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018190496A (ja) * | 2017-04-28 | 2018-11-29 | 株式会社Soken | 燃料電池システム |
Also Published As
Publication number | Publication date |
---|---|
EP2669978A4 (en) | 2015-05-20 |
KR20120136367A (ko) | 2012-12-18 |
JP4868095B1 (ja) | 2012-02-01 |
KR101423853B1 (ko) | 2014-07-25 |
JPWO2012101818A1 (ja) | 2014-06-30 |
CN102986070B (zh) | 2015-06-24 |
CN102986070A (zh) | 2013-03-20 |
US10003093B2 (en) | 2018-06-19 |
EP2669978B1 (en) | 2016-07-13 |
US20130295477A1 (en) | 2013-11-07 |
EP2669978A1 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4868094B1 (ja) | 燃料電池システム | |
EP2269257B1 (en) | Fuel cell system and operating method of a fuel cell | |
RU2598361C2 (ru) | Управление работой резервного электрического генератора с батареей топливных пом-элементов | |
US9306230B2 (en) | Online estimation of cathode inlet and outlet RH from stack average HFR | |
US9385380B2 (en) | Fuel cell humidification management method and system | |
JP2006210004A (ja) | 燃料電池システム | |
JP2010055927A (ja) | 燃料電池システム | |
JP4868095B1 (ja) | 燃料電池システム | |
JP2004039357A (ja) | 固体高分子型燃料電池 | |
WO2015001845A1 (ja) | 燃料電池システム及び燃料電池システムの制御方法 | |
JP2007066565A (ja) | 燃料電池システム | |
US10164275B2 (en) | Fuel cell system | |
JP2008153032A (ja) | 燃料電池システム | |
US9318760B2 (en) | Fuel cell and method of operating fuel cell | |
JP5509728B2 (ja) | 燃料電池システム | |
JP5212765B2 (ja) | 燃料電池システム | |
US20140377674A1 (en) | Fuel cell air flow method and system | |
JP2007250438A (ja) | 燃料電池および燃料電池システム | |
JP2010177078A (ja) | 燃料電池の性能判断方法 | |
JP2008041624A (ja) | 燃料電池システム | |
JP2008004310A (ja) | 燃料電池の温度制御方法および温度制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180019370.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011526315 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13574709 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2011856624 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011856624 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11856624 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127024690 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |