WO2012101818A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2012101818A1
WO2012101818A1 PCT/JP2011/051776 JP2011051776W WO2012101818A1 WO 2012101818 A1 WO2012101818 A1 WO 2012101818A1 JP 2011051776 W JP2011051776 W JP 2011051776W WO 2012101818 A1 WO2012101818 A1 WO 2012101818A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
fuel
fuel cell
flow rate
gas
Prior art date
Application number
PCT/JP2011/051776
Other languages
English (en)
French (fr)
Inventor
良一 難波
荒木 康
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011526315A priority Critical patent/JP4868095B1/ja
Priority to PCT/JP2011/051776 priority patent/WO2012101818A1/ja
Priority to KR1020127024690A priority patent/KR101423853B1/ko
Priority to EP11856624.9A priority patent/EP2669978B1/en
Priority to US13/574,709 priority patent/US10003093B2/en
Priority to CN201180019370.4A priority patent/CN102986070B/zh
Publication of WO2012101818A1 publication Critical patent/WO2012101818A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04514Humidity; Ambient humidity; Water content of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04873Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system including a solid polymer electrolyte fuel cell, particularly a fuel cell system that operates a fuel cell under non-humidified conditions, and avoids a dry state inside the fuel cell even during high-temperature operation.
  • the present invention relates to a fuel cell system that enables stable power generation.
  • Fuel cells convert chemical energy directly into electrical energy by supplying fuel and oxidant to two electrically connected electrodes and causing the fuel to oxidize electrochemically. Unlike thermal power generation, fuel cells are not subject to the Carnot cycle, and thus exhibit high energy conversion efficiency.
  • a fuel cell is usually configured by laminating a plurality of single cells having a basic structure of a membrane / electrode assembly in which an electrolyte membrane is held between a pair of electrodes.
  • a solid polymer electrolyte fuel cell using a solid polymer electrolyte membrane as an electrolyte membrane has advantages such as easy miniaturization and operation at a low temperature. It is attracting attention as a power source for the body.
  • the reaction of the formula (A) proceeds at the anode electrode (fuel electrode).
  • the electrons generated in the formula (A) reach the cathode electrode (oxidant electrode) after working with an external load via an external circuit.
  • the proton generated in the formula (A) moves in the solid polymer electrolyte from the anode electrode side to the cathode electrode side by electroosmosis in a hydrated state.
  • the reaction of the formula (B) proceeds at the cathode electrode.
  • Water generated by the cathode electrode is discharged to the outside through a gas flow path and the like.
  • the fuel cell is a clean power generation device having no emission other than water.
  • the power generation performance is greatly influenced by the amount of water in the electrolyte membrane and the electrode. That is, when the water content is excessive, the water condensed in the fuel cell closes the gaps in the electrodes and further the gas flow path to supply the reaction gas (fuel gas or oxidant gas). There is a problem that the reaction gas for power generation does not sufficiently reach the electrodes, the concentration overvoltage increases, and the output of the fuel cell and the power generation efficiency decrease. On the other hand, when the moisture in the fuel cell is insufficient and the electrolyte membrane or electrode is dried, the conductivity of protons (H + ) in the electrolyte membrane or electrode is reduced, resulting in an increase in resistance overvoltage and fuel.
  • Patent Document 1 discloses a fuel cell system that operates under a non-humidified condition and / or a high temperature condition, and an oxidant gas based on any one of the resistance value, voltage, and pressure loss of the oxidant gas.
  • a system that prevents the occurrence of an in-plane moisture content distribution of a fuel cell by determining a dry state in the vicinity of a flow path inlet and controlling the flow rate of fuel gas or the pressure of fuel gas based on the determination. Yes.
  • Patent Document 2 discloses a current sensor that measures the output current value of the fuel cell, a voltage sensor that measures the output voltage value of the fuel cell, and a fuel cell.
  • a storage unit that stores a relationship between the output voltage value and the output current value, which is a reference when the operating state of the vehicle is in an optimal operating state, and that corresponds to the measured current value measured by the current sensor
  • the moisture state of the fuel cell is in a dry state.
  • Patent Document 3 discloses a measurement unit that measures voltage at a plurality of measurement points of a fuel cell, and a plurality of measurement points estimated from a difference between voltages measured at different measurement points among the measured voltages.
  • a fuel cell system that estimates the uneven distribution of moisture in a fuel cell based on the difference in water content is disclosed.
  • Patent Document 4 includes an execution condition for determining the moisture content of the fuel cell based on the voltage decrease corresponding to the transient load increase from the time-series transition of the voltage of the fuel cell.
  • the conventional moisture management technique in a fuel cell cannot sufficiently avoid the occurrence of a dry state in the fuel cell.
  • the technique described in Patent Document 1 can suppress dry-up in the vicinity of the inlet of the oxidant gas flow path, which is likely to occur during a non-humidified condition or a high temperature condition. Since the feedback control is to control the flow rate and pressure of the fuel gas based on the pressure loss, the inside of the fuel cell may temporarily become dry. Once the electrolyte membrane or electrode is in a dry state (dry-up), it becomes an optimal water-containing state, that is, it takes time for the power generation performance to recover, and the material of the electrolyte membrane or electrode in the dry state There is a problem that the deterioration is accelerated.
  • the resistance and voltage of the fuel cell do not necessarily correspond. That is, the peak voltage is not obtained when the resistance value is the lowest. Therefore, there is a possibility that the peak voltage cannot be obtained even if the flow rate and pressure of the fuel gas are controlled based on the resistance value of the fuel cell as in Patent Document 1.
  • a cell monitor for measuring voltage and resistance is indispensable, which increases the cost and complexity of the fuel cell system.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to manage the water content in the fuel cell to an optimum state that can achieve high output and avoid the occurrence of dry-up. It is an object of the present invention to provide a fuel cell system that can be used.
  • the first fuel cell system of the present invention comprises: A polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode; A fuel gas flow path disposed facing the anode electrode to supply a fuel gas containing at least a fuel component to the anode electrode; An oxidant gas flow path disposed facing the cathode electrode to supply an oxidant gas containing at least an oxidant component to the cathode electrode; A fuel cell system that is operated under non-humidified conditions, The flow directions of the fuel gas in the fuel gas channel and the oxidant gas in the oxidant gas channel are opposed to each other; A water vapor amount control means for controlling the water vapor amount based on a target value of the water vapor amount set in advance from a relationship between a voltage of the fuel cell and a water vapor amount at an outlet of the fuel gas flow path; To do.
  • the first fuel cell system it is possible to appropriately control the amount of water in the surface direction so that uniform power generation proceeds in the surface direction of the electrolyte membrane of the fuel cell. Since the feed-forward control is performed in which the water vapor amount is controlled based on the target value of the amount, it is possible to prevent the dry state in the fuel cell from occurring.
  • the water vapor amount control means for example, based on the target value of the water vapor amount, at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell. Can be controlled.
  • the water vapor amount control means may control, for example, the flow rate of the fuel gas and / or the pressure of the fuel gas in the fuel cell based on the target value of the water vapor amount. it can.
  • the water vapor amount control means for example, has a correlation between the target value of the water vapor amount and at least one of the flow rate of the fuel gas, the pressure and temperature of the fuel gas in the fuel cell. Based on the map acquired based on the above, at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell can be controlled. Thus, when controlling the amount of water vapor based on the map, additional means such as measurement means for water vapor control are not required, so that the system can be simplified and the cost can be reduced.
  • the water vapor amount control means is configured such that the water vapor amount measured by the water vapor amount measuring means is a target value of the water vapor amount. So that at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell can be controlled.
  • the first fuel cell system A fuel gas supply path for supplying the fuel component gas from a fuel supply means to the fuel gas flow path; A fuel gas circulation path for recirculating the exhaust fuel gas from the fuel cell to the fuel gas supply path; A recirculation pump disposed in the fuel gas circulation path for recirculating the exhaust fuel gas to the fuel gas supply path; If you have The water vapor amount control means can control the flow rate of the fuel gas in the fuel cell by controlling the flow rate of the exhaust fuel gas recirculated by the recirculation pump.
  • the water vapor amount control means for example, based on the target value of the water vapor amount, the pressure of the fuel gas at the inlet of the fuel gas channel and / or the outlet of the fuel gas channel.
  • the pressure of the fuel gas in can be controlled.
  • the second fuel cell system of the present invention is A polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode; A fuel gas passage disposed facing the anode electrode to supply fuel gas to the anode electrode; An oxidant gas flow path disposed facing the cathode electrode to supply an oxidant gas to the cathode electrode; A fuel cell system that is operated under non-humidified conditions, The flow directions of the fuel gas in the fuel gas channel and the oxidant gas in the oxidant gas channel are opposed to each other; An average flow rate control means for controlling the average flow rate based on a target value of the average flow rate set in advance from a relationship between the voltage of the fuel cell and the average flow rate of the fuel gas in the fuel gas flow path;
  • the inventors appropriately correlate the amount of water in the fuel cell by controlling the average flow rate by controlling the average flow rate as the average flow rate correlates with the water vapor amount. I found out that it can be controlled. That is, according to the second fuel cell system, it is possible to appropriately control the amount of moisture in the surface direction so that uniform power generation proceeds in the surface direction of the electrolyte membrane of the fuel cell, Since feedforward control is performed in which the water vapor amount is controlled based on the target value of the water vapor amount, it is possible to prevent the occurrence of a dry state in the fuel cell.
  • the average flow rate control means for example, based on the target value of the average flow rate, at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell. Can be controlled.
  • the average flow rate control unit may control the flow rate of the fuel gas and / or the pressure of the fuel gas in the fuel cell, for example, based on a target value of the average flow rate. it can.
  • the average flow rate control means is acquired based on a correlation between the target value of the average flow rate and at least one of the fuel gas flow rate, the fuel gas pressure, and the temperature in the fuel cell. Based on the map, at least one of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature in the fuel cell can be controlled.
  • the second fuel cell system A fuel gas supply path for supplying the fuel component gas from a fuel supply means to the fuel gas flow path; A fuel gas circulation path for recirculating the exhaust fuel gas from the fuel cell to the fuel gas supply path; A recirculation pump disposed in the fuel gas circulation path for recirculating the exhaust fuel gas to the fuel gas supply path; If you have
  • the average flow rate control means can control the flow rate of the fuel gas in the fuel cell by controlling the flow rate of the exhaust fuel gas recirculated by the recirculation pump. At this time, the average flow rate can be calculated by, for example, the following formula (1).
  • Qave Qa + Qb / 2 Formula (1)
  • Qave Average flow rate of the fuel gas in the fuel gas flow path
  • Qa Flow rate of the exhausted fuel gas recirculated by the recirculation pump
  • Qb Flow rate of the fuel component gas supplied from the fuel supply means
  • the average flow rate can be calculated by the following equation (2), for example.
  • Qave nRT / P (2)
  • Qave Average flow rate of the fuel gas in the fuel gas flow path n: Number of moles of the fuel gas at a position that is 1/2 of the total length of the fuel gas flow path R: Gas constant T: Fuel cell temperature P: The fuel gas Pressure of the fuel gas at a position that is 1/2 of the total length of the flow path
  • the second fuel cell system A fuel gas supply path for supplying the fuel component gas from a fuel supply means to the fuel gas flow path; A fuel gas circulation path for recirculating the exhaust fuel gas from the fuel cell to the fuel gas supply path; A recirculation pump disposed in the fuel gas circulation path for recirculating the exhaust fuel gas to the fuel gas supply path; If you have The average flow rate can also be calculated by the following formula (4).
  • the average flow rate control means is configured to determine the pressure of the fuel gas at the inlet of the fuel gas channel and / or the outlet of the fuel gas channel based on the target value of the average flow rate.
  • the pressure of the fuel gas can be controlled.
  • the generation of a dry state can be prevented and a stable power generation amount can be provided.
  • the fuel cell system provided by the present invention realizes high voltage, prevents dry-up in advance, and exhibits stable power generation performance even under high temperature conditions.
  • FIG. 1 is a diagram illustrating an example embodiment 100 of a first fuel cell system.
  • FIG. It is sectional drawing which shows the structural example of the single cell in a 1st fuel cell system. It is a figure which shows embodiment example 101 of a 1st fuel cell system. It is a figure which shows embodiment example 200 of a 2nd fuel cell system. It is an image figure which shows the example of the map used in a 2nd fuel cell system.
  • the first fuel cell system of the present invention comprises: A polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode; A fuel gas flow path disposed facing the anode electrode to supply a fuel gas containing at least a fuel component to the anode electrode; An oxidant gas flow path disposed facing the cathode electrode to supply an oxidant gas containing at least an oxidant component to the cathode electrode; A fuel cell system that is operated under non-humidified conditions, The flow directions of the fuel gas in the fuel gas channel and the oxidant gas in the oxidant gas channel are opposed to each other; A water vapor amount control means for controlling the water vapor amount based on a target value of the water vapor amount set in advance from a relationship between a voltage of the fuel cell and a water vapor amount at an outlet of the fuel gas flow path; To do.
  • the second fuel cell system of the present invention is A polymer electrolyte membrane sandwiched between an anode electrode and a cathode electrode; A fuel gas passage disposed facing the anode electrode to supply fuel gas to the anode electrode; An oxidant gas flow path disposed facing the cathode electrode to supply an oxidant gas to the cathode electrode; A fuel cell system that is operated under non-humidified conditions, The flow directions of the fuel gas in the fuel gas channel and the oxidant gas in the oxidant gas channel are opposed to each other; An average flow rate control means for controlling the average flow rate based on a target value of the average flow rate set in advance from a relationship between the voltage of the fuel cell and the average flow rate of the fuel gas in the fuel gas flow path;
  • the present inventors have conducted a non-humidified condition operation in a so-called counter flow fuel cell in which the flow directions of the fuel gas in the fuel gas channel and the oxidant gas channel in the oxidant gas channel face each other.
  • the water content in the fuel cell can be estimated from the amount of water vapor (fuel gas outlet water vapor amount) at the outlet of the fuel gas flow path, and by grasping the amount of water vapor at the fuel gas outlet when showing the peak voltage, The knowledge that appropriate moisture management was realized and high voltage was obtained was obtained.
  • the state where the amount of water vapor at the fuel gas outlet is very small is that the surface direction of the electrolyte membrane of the fuel cell (that is, the surface direction of the electrode and the direction perpendicular to the stacking direction of the electrolyte membrane and the electrode).
  • the region near the oxidant gas flow channel inlet (that is, the region near the fuel gas flow channel outlet) is in a dry state, and no power is generated in the region, and the region near the oxidant gas flow channel outlet. In other words, power generation is concentrated in the region near the fuel gas flow path inlet.
  • the amount of water vapor at the fuel gas outlet is considered to be small. Also, in the region near the oxidant gas flow channel inlet, the resistance overvoltage increases due to drying, while in the region near the oxidant gas flow channel outlet, the concentration overvoltage increases due to a decrease in the concentration of the oxidant component.
  • the battery voltage is expected to be low.
  • the voltage of the fuel cell becomes high (state 2).
  • the state in which a slight amount of water vapor is discharged in this manner is that the water content is uniform and good in the above-described plane direction of the fuel cell, and uniform power generation is performed in the plane, so that the concentration overvoltage is reduced. Furthermore, it is considered that a high voltage can be obtained because the resistance overvoltage in the region near the outlet of the oxidant gas flow path is also reduced.
  • the increase / decrease in the concentration overvoltage and the increase / decrease in the resistance overvoltage do not correspond one-to-one. Therefore, as shown in FIG. Does not match. That is, even if the operating condition of the fuel cell is controlled by detecting the bottom of the resistance, the operating condition for obtaining the peak voltage is not necessarily obtained, and thus the power generation efficiency may be lowered.
  • the operating conditions of the fuel cell are controlled based on the detected voltage and resistance, there is a sufficient risk that a region in the fuel cell may be in a dry-up state due to a delay in control. is there. A region that is in a dry-up state temporarily takes time to recover its power generation performance, or may not recover the power generation performance.
  • the present inventors obtain in advance a fuel gas outlet water vapor amount that can provide a high voltage from the relationship between the voltage of the fuel cell and the fuel gas outlet water vapor amount, and use this water vapor amount as a target value.
  • a fuel gas outlet water vapor amount that can provide a high voltage from the relationship between the voltage of the fuel cell and the fuel gas outlet water vapor amount, and use this water vapor amount as a target value.
  • the present inventors can obtain stable and high output as a result of appropriate management of the moisture content, and can prevent the occurrence of dry-up. The inventors have found that the reduction can be suppressed and have completed the first fuel cell system of the present invention.
  • the present inventors have found that there is a high correlation between the amount of water vapor at the fuel gas outlet and the average flow rate of the fuel gas in the fuel gas flow path (hereinafter sometimes referred to as the average fuel gas flow rate). . That is, as shown in FIG. 2, when the average flow rate of the fuel gas in the fuel gas flow path is low, the amount of water vapor at the fuel gas outlet is small and the voltage of the fuel cell is low (the above state 1). When the fuel gas average flow rate is increased, the amount of water vapor at the fuel gas outlet is slightly increased, and a high fuel cell voltage is obtained (state 2 above).
  • the present inventors obtain in advance a fuel gas average flow rate at which a high voltage can be obtained from the relationship between the voltage of the fuel cell and the fuel gas average flow rate.
  • a fuel gas average flow rate at which a high voltage can be obtained from the relationship between the voltage of the fuel cell and the fuel gas average flow rate.
  • the fuel cell system of the present invention will be described below with reference to the drawings.
  • the use of the fuel cell system of the present invention is not particularly limited, for example, as a power supply source for supplying power to a driving device such as a vehicle or a ship which is a moving body, and the power of various other devices. It can be used as a source.
  • the fuel gas is a gas containing a fuel component and means a gas flowing in a fuel gas passage in the fuel cell, and also includes components other than the fuel component (for example, water vapor and nitrogen gas). obtain.
  • the oxidant gas is a gas containing an oxidant component, which means a gas flowing through the oxidant gas flow path in the fuel cell, and includes components other than the oxidant component (for example, water vapor and nitrogen gas). obtain.
  • Fuel gas and oxidant gas may be collectively referred to as reaction gas.
  • FIG. 4 shows a fuel cell system 100 which is an embodiment of the first fuel cell system of the present invention.
  • the fuel cell system 100 includes at least a fuel cell 1 that generates power upon receiving a reaction gas, a fuel gas piping system 2, an oxidant gas piping system (not shown), and a control unit 3 that performs integrated control of the system.
  • a fuel cell system of the present invention supplies an oxidant gas to the fuel cell and discharges a gas (exhaust oxidant gas) containing unreacted oxidant components, water vapor, etc. from the fuel cell.
  • the oxidant gas is oxidized if the direction of the fuel gas flowing through the fuel gas flow path and the direction of the oxidant gas flowing through the oxidant gas flow path are so-called counterflows facing each other. Since the specific form of supply and discharge of the agent gas is not particularly limited, description of the oxidant gas piping system will be omitted.
  • the fuel cell 1 is constituted by a solid polymer electrolyte fuel cell, and usually has a stack structure in which a large number of single cells are stacked, and generates electric power upon receiving supply of an oxidant gas and a fuel gas.
  • Supply of the oxidant gas and fuel gas to the fuel cell 1 and discharge of the oxidant gas and fuel gas from the fuel cell 1 are performed by the oxidant gas piping system and the fuel gas piping system 2, respectively.
  • air containing oxygen as an oxidant gas is taken as an example
  • gas containing hydrogen gas as a fuel gas is taken as an example.
  • FIG. 5 is a schematic cross-sectional view of the single cell 12 constituting the fuel cell 1.
  • Each single cell 12 has a basic structure of a membrane / electrode assembly 16 in which a solid polymer electrolyte membrane 13 is held between a cathode electrode (air electrode) 14 and an anode electrode (fuel electrode) 15.
  • the cathode electrode 14 has a structure in which a cathode catalyst layer 21 and a gas diffusion layer 22 are laminated in order from the electrolyte membrane 13 side
  • the anode electrode 15 has an anode catalyst layer 23 and a gas diffusion layer in order from the electrolyte membrane 13 side.
  • 24 has a laminated structure.
  • the membrane / electrode assembly 16 has a pair of separators 17 and 18 sandwiching the cathode electrode 14 and the anode electrode 15 from both sides.
  • the cathode-side separator 17 is provided with a groove that forms an oxidant gas flow path for supplying an oxidant gas to the cathode electrode 14, and an oxidant gas flow path 19 is formed by the groove and the cathode electrode 14. It is defined.
  • the anode-side separator 18 is provided with a groove that forms a fuel gas flow path for supplying fuel gas to the anode electrode 15, and a fuel gas flow path 20 is defined by the groove and the anode. .
  • the oxidant gas flow path 19 and the fuel gas flow path 20 are arranged such that the flow direction of the oxidant gas flowing through the oxidant gas flow path 19 and the flow direction of the fuel gas flowing through the fuel gas flow path 20 are opposed to each other. (So-called counterflow structure).
  • the symbol “circle dot” in the oxidant gas flow path 19 and the fuel gas flow path 20 means that the gas flow direction is the direction from the far side of the paper to the near side.
  • the symbol “circular cross mark” means that the gas flow direction is the direction from the present side of the paper to the other side.
  • the region in the vicinity of the inlet of the oxidant gas channel 19 and the region in the vicinity of the outlet of the fuel gas channel 20 are disposed with the electrolyte membrane 1 interposed therebetween, and the oxidant gas.
  • a region in the vicinity of the outlet of the flow channel 19 and a region in the vicinity of the inlet of the fuel gas flow channel 20 are disposed with the electrolyte membrane 1 interposed therebetween.
  • the gas flow path is depicted as a meandering flow path (serpentine flow path), but the form of the gas flow path is not particularly limited as long as it has a counter flow structure. Whatever form you can take.
  • Each member constituting the fuel cell is not particularly limited, and may have a general structure formed of a general material.
  • the fuel cell 1 is provided with a temperature sensor (temperature measuring means) 9 for measuring the temperature T of the fuel cell 1.
  • the temperature sensor 9 may directly measure the temperature in the fuel cell, or may measure the temperature of the heat exchange medium flowing in the fuel cell.
  • the fuel cell 1 is provided with a pressure sensor 10 for measuring the pressure of the fuel gas flowing through the fuel gas passage.
  • a pressure sensor can grasp
  • an inlet pressure sensor that is provided at the inlet of the fuel gas channel and measures the pressure of the fuel gas at the inlet
  • an outlet pressure sensor that is provided at the outlet of the fuel gas channel and measures the pressure of the fuel gas at the outlet
  • the average value of the fuel gas inlet pressure Pin and the fuel gas outlet pressure Pout detected by these pressure sensors can be detected and controlled as the fuel gas pressure.
  • the pressure sensor is not limited to the inlet and outlet of the fuel gas passage, and pressure sensors may be provided at a plurality of locations in the fuel gas passage to detect and control the pressure of the fuel gas at each position, and an average value is calculated. The average value may be controlled. Further, there may be one pressure sensor in the fuel cell.
  • the pressure of the fuel gas may be estimated by a pressure sensor provided outside the fuel gas flow path.
  • the fuel cell 1 is provided with a dew point meter (water vapor amount measuring means) 25 for measuring the water vapor amount S in the fuel gas at the outlet of the fuel gas flow path.
  • the dew point meter may be provided in the fuel gas piping system 2 as long as the fuel gas outlet water vapor amount S can be detected.
  • the fuel gas piping system 2 has a hydrogen tank 4, a fuel gas supply path 5, and a fuel gas circulation path 6.
  • the hydrogen tank 4 is a hydrogen gas supply source that stores high-pressure hydrogen gas (fuel component), and is a fuel supply means.
  • the fuel supply means instead of the hydrogen tank 4, for example, a reformer that generates a hydrogen-rich reformed gas from a hydrocarbon-based fuel, and the reformed gas generated by the reformer is put in a high-pressure state. It is also possible to employ a tank having a hydrogen storage alloy that is slaughtered.
  • the fuel gas supply path 5 is a flow path for supplying hydrogen gas as a fuel component to the fuel cell 1 from the hydrogen tank 4 as a fuel supply means, and includes a main flow path 5A and a mixing path 5B.
  • the main flow path 5A is located upstream of the connecting portion 7 where the fuel gas supply path 5 and the fuel gas circulation path 6 are connected.
  • the main flow path 5A may be provided with a shut valve (not shown) that functions as an original valve of the hydrogen tank 4, a regulator that decompresses hydrogen gas, and the like.
  • the flow rate of hydrogen gas (flow rate of fuel component gas) Qb supplied from the hydrogen tank 4 is controlled based on the required output for the fuel cell, and the required output is secured.
  • the mixing path 5B is located on the downstream side of the connecting portion 7, and the mixed gas of the hydrogen gas from the hydrogen tank 4 and the exhausted fuel gas from the fuel gas circulation path 6 is supplied to the fuel gas channel inlet of the fuel cell 1. Lead.
  • the fuel gas circulation path 6 recirculates the exhaust fuel gas discharged from the fuel gas flow path outlet of the fuel cell 1 to the fuel gas supply path 5.
  • the fuel gas circulation path 6 is provided with a recirculation pump 8 for recirculating the exhaust fuel gas to the fuel gas supply path 5.
  • the flow rate and pressure of the exhaust fuel gas are lower than the fuel gas supplied to the fuel cell.
  • a system in which the fuel gas circulation path 6, the fuel gas supply path 5, and the fuel gas flow path in the fuel cell 1 are connected together constitutes a circulation system that circulates and supplies the fuel gas to the fuel cell.
  • Exhaust fuel gas discharged from the fuel cell 1 includes generated water generated by a power generation reaction of the fuel cell, nitrogen gas that has permeated from the cathode electrode of the fuel cell to the anode electrode side through the electrolyte membrane, that is, cross leaked nitrogen gas, Unconsumed hydrogen gas is included.
  • a gas-liquid separator (not shown) may be provided on the fuel gas circulation path 6 upstream of the recirculation pump 8. The gas-liquid separator separates water contained in the discharged fuel gas from unconsumed hydrogen gas or other gas.
  • the fuel gas piping system has a circulation system by a fuel gas circulation path, a recirculation pump, etc. from a viewpoint of effective utilization of hydrogen gas (fuel component), it does not have a circulation system. Alternatively, it may have a dead end structure.
  • the oxidant gas piping system has an oxidant gas supply path for supplying oxidant gas to the fuel cell 1, an oxidant gas discharge path for discharging oxidant gas discharged from the fuel cell 1, and a compressor.
  • the compressor is provided on the oxidant gas supply path, and air in the atmosphere taken in by the compressor flows through the oxidant gas supply path and is pumped and supplied to the fuel cell 1.
  • the discharged oxidant gas discharged from the fuel cell 1 flows through the oxidant gas discharge path and is discharged to the outside.
  • the operation of the fuel cell system is controlled by the control unit 3.
  • the control unit 3 is configured as a microcomputer having a CPU, a RAM, a ROM, and the like inside, and according to various programs and maps stored in the ROM, the RAM, etc., the required output (output current density, that is, output current density). , The magnitude of the load connected to the fuel cell), the temperature sensor connected to the fuel cell, the gas pressure sensor, the gas flow sensor, the dew point meter, etc.
  • Various processes and controls such as various pumps, a fuel gas piping system, an oxidant gas piping system, and a heat exchange medium circulation system are executed.
  • the control unit 3 has a fuel gas outlet water vapor amount based on a target value of the fuel gas outlet water vapor amount set in advance from the relationship between the voltage of the fuel cell 1 and the fuel gas outlet water vapor amount. It has a great feature in that it is provided with water vapor amount control means for controlling the water vapor.
  • the amount of water vapor (fuel gas outlet water vapor amount) at the outlet of the fuel gas passage is the amount of water vapor contained in the fuel gas flowing through the outlet of the fuel gas passage.
  • the water vapor amount control means of the control unit 3 detects the temperature T of the fuel cell 1 with the temperature sensor 9. Further, the control unit 3 detects the pressure P of the fuel gas in the fuel gas flow path with the pressure sensor 10. In addition, the control unit 3 detects the water vapor amount S of the fuel gas at the fuel gas flow path outlet by the dew point meter 11.
  • the control unit 3 controls the flow rate Q of the fuel gas so that the detected fuel gas outlet water vapor amount S approaches the target value St.
  • the target value St is acquired in advance based on the correlation between the fuel gas outlet water vapor amount S and the fuel cell voltage.
  • the fuel gas flow rate Q is the flow rate of the fuel gas flowing through the fuel gas flow path.
  • the fuel gas flow rate Q in the fuel cell can be controlled by controlling the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8, for example.
  • the flow rate Qb of the fuel component gas supplied from the hydrogen pump 4 that is the fuel supply source is not controlled by the water vapor amount control means.
  • the required output is sufficiently secured, the use efficiency of hydrogen as a fuel component is increased, and the water distribution of the fuel cell is effectively controlled. can do.
  • the control of the fuel gas flow rate Q by the water vapor amount control means is not limited to the control by Qa, but is not particularly limited as long as the required output for the fuel cell can be ensured. For example, only by Qb after ensuring the required output. Control or control by both Qa and Qb may be performed. Furthermore, other means for controlling the fuel gas flow rate may be used.
  • the target value of the fuel gas water vapor amount is calculated based on the relationship between the fuel gas outlet water vapor amount acquired in advance and the voltage of the fuel cell, and the fuel gas amount is realized so as to realize the water vapor amount.
  • Gas flow rate, pressure and fuel cell temperature can be controlled. That is, the feed forward control can be performed on the water content in the fuel cell, and hence the voltage of the fuel cell. By performing such feedforward control, the voltage of the fuel cell is actually detected to determine the water content in the fuel cell, and compared with the case where feedback control is performed, the occurrence of dry-up is prevented in advance.
  • the fuel cell operation control that realizes a high voltage can be realized. Further, in the present invention, since the voltage sensor and the resistance sensor can be omitted, the control in the fuel cell system can be further simplified and the cost of the fuel cell can be reduced.
  • the water vapor amount control process by the water vapor amount control means may be executed periodically during the fuel cell operation, or may be executed only under a condition where the fuel cell temperature is equal to or higher than a predetermined value.
  • the water vapor control process by the water vapor control means may be executed only under a high temperature condition in which dry-up is particularly likely to occur, for example, a temperature condition of 80 ° C. or higher.
  • the steam control process is performed at least at 70 ° C. or higher, and further at 80 ° C. or higher.
  • the target value of the fuel gas water vapor amount acquired in advance may be defined by one point of the water vapor amount at which the voltage peak is obtained, or the water vapor amount having a predetermined width including the water vapor amount at which the voltage peak is obtained. You may prescribe
  • the fuel gas outlet water vapor amount is controlled by controlling the flow rate Q of fuel gas (specifically, the exhaust fuel gas flow rate Qa).
  • the control parameter for bringing the gas outlet water vapor amount S close to the water vapor amount target value St is not limited to the flow rate Q of the fuel gas.
  • at least one of a fuel gas flow rate, a fuel gas pressure, and a fuel cell temperature can be selected.
  • control is easy, and control of water vapor amount and average flow rate is fast, so at least one of fuel gas flow rate and fuel gas pressure is controlled. It is preferable to do.
  • only the fuel gas flow rate Q, only the fuel gas pressure P, or both the fuel gas flow rate Q and the fuel gas pressure P can be controlled. Since the pressure of the fuel gas varies with the control of the fuel gas flow rate, it can be expected that the flow rate and the pressure of the fuel gas are both controlled to approach the target value of the water vapor amount more efficiently.
  • the control of the pressure of the fuel gas can be performed, for example, by controlling the pressure of the fuel gas at the inlet of the fuel gas channel and / or the pressure of the fuel gas at the outlet of the fuel gas channel.
  • a back pressure valve provided downstream of the outlet of the fuel gas flow path, a regulator for supplying hydrogen from the hydrogen tank to the fuel cell, and if the fuel gas piping system is a circulation system, piping from the hydrogen tank
  • the pressure of the fuel gas can be controlled by an injector for supplying hydrogen to the system, a circulation pump provided in the piping system, or the like.
  • the fuel cell system 101 shown in FIG. 6 does not include the dew point meter 11 and is the same as the fuel cell system 100 except that the specific water vapor amount control process by the water vapor amount control means of the control unit 3 is different. It is a configuration.
  • the fuel cell system 101 will be described focusing on differences from the fuel cell system 100.
  • the water vapor amount control means includes a target value for the fuel gas outlet water vapor amount set in advance from the relationship between the voltage of the fuel cell 1 and the water vapor amount at the outlet of the fuel gas flow path, and the fuel in the fuel cell 1. At least one of the flow rate of the fuel gas in the fuel cell, the pressure of the fuel gas, and the temperature of the fuel cell based on the map obtained based on the correlation with at least one of the gas flow rate, the fuel gas pressure, and the temperature To control.
  • the fuel gas outlet water vapor amount is actually detected by a dew point meter, and the flow rate of the fuel gas is controlled based on the detected fuel gas outlet water vapor amount.
  • the fuel cell system 101 At least one of the flow rate of the fuel gas, the fuel gas pressure, and the fuel cell temperature that realizes the target value of the fuel gas outlet water vapor amount acquired in advance is also acquired in advance. Then, based on the obtained fuel gas flow rate, pressure, and fuel cell temperature, the fuel outlet water vapor amount is set by controlling at least one of the fuel gas flow rate, temperature, and fuel cell temperature. Control to be That is, as compared with the fuel cell system 100, the fuel cell system 101 can simplify the system because it does not have a fuel gas outlet water vapor amount measuring means such as a dew point meter.
  • the water vapor amount control means of the control unit 3 detects the temperature T of the fuel cell 1 with the temperature sensor 9. Further, the control unit 3 detects the pressure P of the fuel gas in the fuel gas flow path with the pressure sensor 10.
  • the control unit 3 controls the flow rate Q of the fuel gas so that the fuel gas outlet water vapor amount S approaches the target value St acquired in advance.
  • the target value St is acquired in advance based on the correlation between the fuel gas outlet water vapor amount S and the fuel cell voltage.
  • the flow rate Q of the fuel gas is determined by using a map acquired based on the target value St of the fuel gas outlet water vapor amount and the correlation between the temperature T, the fuel gas pressure P, and the fuel gas flow rate Q.
  • a value Qt is calculated and controlled according to the target value.
  • the fuel gas flow rate Q in the fuel cell can be controlled by controlling the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8, as in the fuel cell system 100.
  • the flow rate Qb of the fuel component gas supplied from the hydrogen pump 4 as the fuel supply source is not controlled by the water vapor amount control means, but the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8 is controlled.
  • the control of the fuel gas flow rate Q by the water vapor amount control means is not limited to the control by the above Qa, and is not particularly limited as long as the required output for the fuel cell can be secured, for example, only by Qb after ensuring the required output. Control or control by both Qa and Qb may be performed.
  • other means for controlling the fuel gas flow rate may be used.
  • the above map shows the correlation between the target value of the water vapor outlet water vapor amount and at least two of the fuel gas flow rate, fuel gas pressure and temperature in the fuel cell. Is preferably acquired based on the correlation with all of the flow rate of the fuel gas, the pressure of the fuel gas, and the temperature.
  • the map acquired based on the correlation between the target value St of the fuel gas water vapor amount and at least one of the temperature T, the fuel gas pressure P, and the fuel gas flow rate Q is the target value of the fuel gas water vapor amount. It may represent a correlation between St and at least one of temperature T, fuel gas pressure P, and fuel gas flow rate Q.
  • FIG. 7 shows a fuel cell system 200 which is an embodiment of the second fuel cell system of the present invention.
  • the fuel cell system 200 is an inlet pressure sensor (fuel gas inlet pressure measuring means) 25 for measuring the fuel gas pressure Pin at the inlet of the fuel gas flow path as a fuel gas pressure measuring means for measuring the pressure of the fuel gas in the fuel cell.
  • an outlet pressure sensor (fuel gas outlet pressure measuring means) 26 for measuring the pressure Pout of the fuel gas at the outlet of the fuel gas flow path, and the control unit 3 determines the voltage of the fuel cell 1 and the average fuel gas flow rate.
  • the configuration is the same as that of the fuel cell system 101 except that an average flow rate control means for controlling the average fuel gas flow rate is provided based on a target value of the average fuel gas flow rate set in advance.
  • the pressure sensor is not limited to a specific installation position as long as the pressure of the fuel gas in the fuel gas passage at a desired position can be grasped. An outlet pressure sensor may not be used.
  • the average flow rate control means is a target value Qavet of the fuel gas average flow rate set in advance from the relationship between the voltage of the fuel cell and the average flow rate (fuel gas average flow rate) Qave of the fuel gas in the fuel gas flow path. And a flow rate Q of the fuel gas in the fuel cell, a flow rate Q of the fuel gas in the fuel cell, and a fuel gas pressure P and a temperature T At least one of the pressure P and the temperature of the fuel cell is controlled. In the fuel cell system 200, at least one of the flow rate of fuel gas, the fuel gas pressure, and the fuel cell temperature that realizes the target value of the fuel gas average flow rate acquired in advance is also acquired in advance. Then, based on the obtained fuel gas flow rate, pressure, and fuel cell temperature, by controlling at least one of the fuel gas flow rate, temperature, and fuel cell temperature, the target value in which the average fuel gas flow rate is set. Control to be
  • the control unit 3 controls the fuel gas flow rate Q based on the detected temperature T and the calculated average pressure Pave so that the fuel gas average flow rate Qave approaches the target value Qavet acquired in advance.
  • the target value Qavet is acquired in advance based on the correlation between the fuel gas average flow rate Qave and the fuel cell voltage.
  • the average fuel gas flow rate Qave is calculated using a map obtained based on the target value Qavet of the average fuel gas flow rate and the correlation between the temperature T, the fuel gas pressure P, and the fuel gas flow rate Q.
  • a value Qavet is calculated and controlled according to the target value.
  • the fuel gas flow rate Q in the fuel cell can be controlled by controlling the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8, as in the fuel cell system 100.
  • the fuel component gas flow rate Qb supplied from the hydrogen pump 4 as the fuel supply source is not controlled by the water vapor amount control means, but the flow rate Qa of the fuel exhaust gas recirculated by the recirculation pump 8 is controlled.
  • control of the fuel gas flow rate Q by the average flow rate control means is not limited to the control by the above Qa, and is not particularly limited as long as the required output for the fuel cell can be ensured. Control or control by both Qa and Qb may be performed. Furthermore, other means for controlling the fuel gas flow rate may be used.
  • the above map includes a target value of the average flow rate of the fuel gas and at least two of the flow rate of the fuel gas, the pressure and the temperature of the fuel gas in the fuel cell. It is preferably obtained based on the correlation, particularly based on the correlation with all of the flow rate of the fuel gas, the pressure and the temperature of the fuel gas.
  • the map acquired based on the target value Qavet of the fuel gas average flow rate and the correlation between at least one of the temperature T, the fuel gas pressure P, and the fuel gas flow rate Q is a target value of the fuel gas average flow rate. It may represent a correlation between Qavet and at least one of temperature T, fuel gas pressure P, and fuel gas flow rate Q.
  • the average flow rate of fuel gas (fuel gas average flow rate) Qave in the fuel gas flow channel is the average flow rate of fuel gas flowing through the fuel gas flow channel, and the calculation method is particularly For example, when the fuel gas piping system has a circulation system as in the fuel cell system 200, it can be calculated by the following equation (1).
  • Qave Qa + Qb / 2 Formula (1)
  • Qave Average flow rate of fuel gas in the fuel gas flow path
  • Qa Flow rate of discharged fuel gas recirculated by the recirculation pump
  • Qb Flow rate of fuel component gas supplied from the fuel supply means
  • FIG. 8 shows an example of the map used for the average flow rate control process based on the average flow rate Qave of the fuel gas calculated by the above equation (1).
  • the average fuel gas flow rate Qave can also be calculated by the following equation (2).
  • the flow rate of the fuel gas at a position that is 1 ⁇ 2 of the total flow length of the fuel gas flow channel is adopted as the fuel gas average flow rate Qave.
  • the average flow rate Qave of the fuel gas is calculated from the number of moles of fuel gas and the pressure at the 1/2 position based on the gas state equation.
  • the number of moles of the fuel gas is the total amount of components contained in the fuel gas at a position that is 1/2 of the total length of the fuel gas channel (hydrogen gas, nitrogen gas, More specifically, it is consumed from the total number of moles of fuel gas at the inlet of the fuel gas channel until it reaches a position that is 1/2 of the total channel length of the fuel gas channel.
  • the number of moles obtained by subtracting the number of moles of the fuel component.
  • the number of moles of the fuel component consumed until reaching the position of 1/2 of the total length of the fuel gas channel is half of the required fuel component amount from the required output of the fuel cell.
  • the total number of moles of fuel gas at the fuel gas channel inlet is determined from the temperature and pressure of the total flow rate of the fuel gas flow returned to the fuel gas channel inlet by the circulation pump and the amount of hydrogen replenished from the hydrogen tank. be able to.
  • the pressure of the fuel gas may be actually detected by detecting the pressure of the fuel gas at a position that is 1/2 of the total length of the fuel gas flow path.
  • the average value may be calculated by measuring the pressure of the fuel gas.
  • it may be calculated on the assumption that 1/2 of the pressure loss occurring in the entire length of the fuel gas flow path is generated at a position that is 1/2 of the total length of the fuel gas flow path.
  • the fuel gas pressure assuming loss can be calculated by the following equation (3).
  • the average flow rate Qave of the fuel gas is calculated by the following equation (4) as a modification of the equation (2). be able to.
  • Qave n'RT / P (4)
  • Qave Average flow rate of the fuel gas in the fuel gas flow path n ′: Of the fuel gas supplied to the fuel gas flow path, 1 ⁇ 2 of the fuel component supplied from the fuel gas supply means to the fuel gas flow path is The number of moles of fuel gas at a position that is 1/2 of the total length of the fuel gas flow path calculated on the assumption that it has been consumed
  • R gas constant
  • T fuel cell temperature
  • P fuel gas flow calculated by the above equation (3)
  • the average fuel gas flow rate Qave is not calculated based on the above assumption, but is obtained by actually measuring and averaging the fuel gas flow rates at a plurality of locations in the fuel gas flow path. Or a flow rate value of the fuel gas actually measured at a position of 1 ⁇ 2 of the total length of the fuel gas flow path may be used. From the viewpoint that a fuel cell system can be easily constructed, it is preferable to calculate the average fuel gas flow rate using the above formula (1), (2) or (4).
  • the fuel gas average flow rate control processing by the average flow rate control means may be periodically executed during the fuel cell operation, or only under a condition where the fuel cell temperature is equal to or higher than a predetermined value. May be executed.
  • the fuel gas average flow rate control process by the average flow rate control means may be executed only under a high temperature condition in which dry-up is particularly likely to occur, for example, a temperature condition of 80 ° C. or higher.
  • the average flow rate control process is performed at least at 70 ° C. or higher, and further at 80 ° C. or higher.
  • Fuel gas channel 21 ... Cathode catalyst layer 22 ... Gas diffusion layer 23 ... Anode catalyst layer 24 ... Gas diffusion layer 25 ... Pressure sensor (fuel gas flow path inlet pressure measuring means) 26 ... Pressure sensor (fuel gas channel outlet pressure measuring means) DESCRIPTION OF SYMBOLS 100 ... Fuel cell system 101 ... Fuel cell system 200 ... Fuel cell system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

 燃料電池内の含水状態を、高出力の達成及びドライアップ発生の回避を実現可能とする最適な状態に管理することが可能な燃料電池システムを提供する無加湿条件下で運転される燃料電池システムであって、燃料ガス流路における燃料ガスと酸化剤ガスにおける流路における酸化剤ガスの流れ方向が互いに対向しており、前記燃料電池の電圧と前記燃料ガス流路の出口における水蒸気量との関係から予め設定された前記水蒸気量の目標値に基づいて、前記水蒸気量を制御する水蒸気量制御手段を備えることを特徴とする、第一の燃料電池システム、並びに、前記燃料ガス流路における前記燃料ガスと前記酸化剤ガスにおける流路における前記酸化剤ガスの流れ方向が互いに対向しており、前記燃料電池の電圧と前記燃料ガス流路における前記燃料ガスの平均流量との関係から予め設定された前記平均流量の目標値に基づいて、前記平均流量を制御する平均流量制御手段を備えることを特徴とする、第二の燃料電池システム。 

Description

燃料電池システム
 本発明は、固体高分子電解質型燃料電池を備えた燃料電池システム、特に、無加湿条件下、燃料電池を運転させる燃料電池システムであって、高温運転時にも燃料電池内部の乾燥状態を回避し、安定した発電を可能とする燃料電池システムに関する。
 燃料電池は、燃料と酸化剤を電気的に接続された2つの電極に供給し、電気化学的に燃料の酸化を起こさせることで、化学エネルギーを直接電気エネルギーに変換する。火力発電とは異なり、燃料電池はカルノーサイクルの制約を受けないため、高いエネルギー変換効率を示す。燃料電池は、通常、電解質膜を一対の電極で狭持した膜・電極接合体を基本構造とする単セルを複数積層して構成されている。中でも、電解質膜として固体高分子電解質膜を用いた固体高分子電解質型燃料電池は、小型化が容易であること、低い温度で作動すること、などの利点があることから、特に携帯用、移動体用電源として注目されている。
 固体高分子電解質型燃料電池では、水素を燃料とした場合、アノード電極(燃料極)では式(A)の反応が進行する。
 H → 2H + 2e  ・・・(A)
 前記式(A)で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、カソード電極(酸化剤極)に到達する。そして、前記式(A)で生じたプロトンは、水和した状態で、固体高分子電解質内をアノード電極側からカソード電極側に、電気浸透により移動する。
 また、酸素を酸化剤とした場合、カソード電極では式(B)の反応が進行する。
 2H + (1/2)O + 2e → HO  ・・・(B)
 カソード電極で生成した水は、ガス流路等を経て外部へと排出される。このように、燃料電池は、水以外の排出物がなく、クリーンな発電装置である。
 固体高分子電解質型燃料電池では、電解質膜や電極内の水分量によって、その発電性能が大きく左右される。すなわち、排出物である水分が過剰である場合には、燃料電池内部において凝縮した水が、電極内の空隙、さらにはガス流路を塞いで反応ガス(燃料ガスや酸化剤ガス)の供給を阻害し、発電のための反応ガスが電極に充分に行き渡らずに、濃度過電圧が増大し、燃料電池の出力や発電効率が低下するという問題が生じる。一方、燃料電池内の水分が不足し、電解質膜や電極が乾燥した場合には、電解質膜や電極内におけるプロトン(H)の伝導性が低下し、その結果、抵抗過電圧が増大し、燃料電池の出力及び発電効率が低下するという問題が生じる。
 また、固体高分子電解質型燃料電池では、電解質膜の面方向(すなわち、電極の面方向)において、不均一な水分布、すなわち、水の偏在が生じる。その結果、電解質膜の面方向において、不均一な発電量分布が生じ、さらなる水の偏在化、ひいては、燃料電池の出力及び発電効率が低下する。
 以上のように、固体高分子電解質型燃料電池において、高出力及び高発電効率を実現するためには、適切な水分管理が非常に重要である。水分の不足、特にいわゆるドライアップを回避すべく、加湿した反応ガスを供給することも提案されているが、この場合、上記のような水分過剰による問題がさらに生じやすくなる。また、加湿器搭載による燃料電池の大型化やシステムの煩雑化等が生じる。
 そこで、反応ガスを加湿しない無加湿条件で、燃料電池の含水状態を適切に管理し、安定した発電性能を得る試みがなされている。
 例えば、特許文献1には、無加湿条件及び/又は高温条件下、運転する燃料電池システムであって、燃料電池の抵抗値、電圧、酸化剤ガスの圧力損失のいずれかに基づいて酸化剤ガス流路入口近傍の乾燥状態を判定し、該判定に基づいて、燃料ガスの流量又は燃料ガスの圧力を制御することによって、燃料電池の面内水分量分布の発生を防止するシステムが開示されている。
 また、燃料電池内の含水状態を管理する技術として、例えば、特許文献2には、燃料電池の出力電流値を測定する電流センサと、燃料電池の出力電圧値を測定する電圧センサと、燃料電池の運転状態が最適な運転状態であるときの基準となる前記出力電圧値と前記出力電流値との関係を記憶する記憶部とを備え、前記電流センサにより測定された測定電流値に対応する最適電圧値を前記記憶部から読み出し、読みだした前記最適電圧値と前記電圧センサにより測定された測定電圧値の差が予め定められた閾値よりも大きい場合に、燃料電池の水分状態が乾燥状態であると判定する燃料電池システムが開示されている。
 また、特許文献3には、燃料電池の複数の計測箇所で電圧計測する計測手段と、計測された電圧のうち異なる計測箇所において計測された電圧の差から推定される前記複数の計測箇所間の含水量の差に基づいて、燃料電池の水分の偏在状況を推定する燃料電池システムが開示されている。
 また、特許文献4には、燃料電池の電圧の時系列的な推移から、過渡的な負荷増加に対応した電圧の低下幅に基づいて、燃料電池の含水状態判定を行うための実行条件を具備するか判定し、該実行条件を具備すると判定された場合に、前記電圧の低下幅と、抵抗の時系列的な推移とに基づいて、燃料電池の含水状態を判定する、燃料電池システムが開示されている。
特開2009-259758号公報 特開2010-114039号公報 特開2009-193817号公報 特開2009-117066号公報
 しかしながら、従来の燃料電池における水分管理技術では、燃料電池内における乾燥状態の発生を充分に回避することができない。例えば、特許文献1に記載の技術は、無加湿条件や高温条件の際に発生しやすい、酸化剤ガス流路の入口近傍におけるドライアップを抑制できるが、検出された燃料電池の電圧、抵抗や圧力損失に基づいて燃料ガスの流量や圧力を制御するフィードバック制御であるため、一時的に燃料電池内が乾燥状態になるおそれがある。一旦、乾燥状態(ドライアップ)になった電解質膜や電極は、最適な含水状態になる、すなわち、発電性能が回復するまでに時間がかかり、また、乾燥状態になった電解質膜や電極の材料劣化が加速するという問題がある。従って、一時的であっても、燃料電池内のドライアップの発生は回避すべきである。
 さらに、燃料電池の抵抗と電圧は、必ずしも対応していない。つまり、抵抗値が最も低い時にピーク電圧が得られるわけではない。従って、特許文献1のように、燃料電池の抵抗値に基づいて燃料ガスの流量や圧力を制御したとしてもピーク電圧が得られない可能性が充分にある。
 その上、特許文献1等では、電圧や抵抗を測定するためのセルモニタが必要不可欠であり、燃料電池システムの高コスト化、煩雑化を招く。
 本発明は、上記実情を鑑みて成し遂げられたものであり、本発明の目的は、燃料電池内の含水状態を、高出力の達成及びドライアップ発生の回避を実現可能とする最適な状態に管理することが可能な燃料電池システムを提供することである。
 本発明の第一の燃料電池システムは、
 アノード電極及びカソード電極に挟持された高分子電解質膜と、
 前記アノード電極に対して、燃料成分を少なくとも含む燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
 前記カソード電極に対して、酸化剤成分を少なくとも含む酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
 前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
 前記燃料電池の電圧と前記燃料ガス流路の出口における水蒸気量との関係から予め設定された前記水蒸気量の目標値に基づいて、前記水蒸気量を制御する水蒸気量制御手段を備えることを特徴とする。
 第一の燃料電池システムによれば、燃料電池の電解質膜の面方向において、均一な発電が進行するように、該面方向における水分量を適切に制御することが可能であり、しかも、前記水蒸気量の目標値に基づいて、前記水蒸気量が制御されるフィードフォワード制御であるため、燃料電池内の乾燥状態の発生を未然に防止することができる。
 第一の燃料電池システムにおいて、前記水蒸気量制御手段は、例えば、前記水蒸気量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御することができる。
 第一の燃料電池システムにおいて、前記水蒸気量制御手段は、例えば、前記水蒸気量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量及び/又は前記燃料ガスの圧力を制御することができる。
 第一の燃料電池システムにおいて、前記水蒸気量制御手段は、例えば、前記水蒸気量の目標値と、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力及び温度の少なくとも一つとの相関関係に基づいて取得されたマップに基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び前記温度の少なくとも1つを制御することができる。
 このように、マップに基づく前記水蒸気量の制御を行う場合、水蒸気制御のための測定手段等の付加的な手段を必要としないため、システムの簡素化やコスト削減が可能である。
 或いは、第一の燃料電池システムが、前記水蒸気量を測定する水蒸気量測定手段を備える場合、前記水蒸気量制御手段は、前記水蒸気量測定手段により測定される前記水蒸気量が前記水蒸気量の目標値に近づくように、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御することができる。
 第一の燃料電池システムが、
 燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
 前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
 前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
を備える場合、
 前記水蒸気量制御手段は、前記再循環ポンプにより再循環させる前記排出燃料ガスの流量を制御することによって、前記燃料電池における前記燃料ガスの流量を制御することができる。
 第一の燃料電池システムにおいて、前記水蒸気量制御手段は、例えば、前記水蒸気量の目標値に基づいて、前記燃料ガス流路の入口における前記燃料ガスの圧力及び/又は前記燃料ガス流路の出口における前記燃料ガスの圧力を制御することができる。
 本発明の第二の燃料電池システムは、
 アノード電極及びカソード電極に挟持された高分子電解質膜と、
 前記アノード電極に対して燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
 前記カソード電極に対して酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
 前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
 前記燃料電池の電圧と前記燃料ガス流路における前記燃料ガスの平均流量との関係から予め設定された前記平均流量の目標値に基づいて、前記平均流量を制御する平均流量制御手段を備えることを特徴とする。
 本発明者らは、前記平均流量が、前記水蒸気量と相関関係を有し、前記平均流量を制御することで、前記水蒸気量を制御する場合と同様に、燃料電池内の水分量を適切に制御することができることを見出した。すなわち、第二の燃料電池システムによれば、燃料電池の電解質膜の面方向において、均一な発電が進行するように、該面方向における水分量を適切に制御することが可能であり、しかも、前記水蒸気量の目標値に基づいて、前記水蒸気量が制御されるフィードフォワード制御であるため、燃料電池内の乾燥状態の発生を未然に防止することができる。
 第二の燃料電池システムにおいて、前記平均流量制御手段は、例えば、前記平均流量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御することができる。
 第二の燃料電池システムにおいて、前記平均流量制御手段は、例えば、前記平均流量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量及び/又は前記燃料ガスの圧力を制御することができる。
 第二の燃料電池システムにおいて、前記平均流量制御手段は、前記平均流量の目標値と、前記燃料電池における、前記燃料ガス流量、前記燃料ガス圧力及び温度の少なくとも一つとの相関関係に基づいて取得されたマップに基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び前記温度の少なくとも1つを制御することができる。
 第二の燃料電池システムが、
 燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
 前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
 前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
を備える場合、
 前記平均流量制御手段は、前記再循環ポンプにより再循環させる前記排出燃料ガスの流量を制御することによって、前記燃料電池における前記燃料ガスの流量を制御することができる。
 このとき、前記平均流量は、例えば、下記式(1)により算出することができる。
  Qave=Qa+Qb/2・・・式(1)
   Qave:前記燃料ガス流路における前記燃料ガスの平均流量
   Qa:前記再循環ポンプにより再循環させる前記排出燃料ガスの流量
   Qb:前記燃料供給手段から供給される前記燃料成分ガスの流量
 或いは、第二の燃料電池システムにおいて、前記平均流量は、例えば、下記式(2)により算出することができる。
  Qave=nRT/P・・・(2)
   Qave:前記燃料ガス流路における前記燃料ガスの平均流量
   n:前記燃料ガス流路の全長の1/2の位置における前記燃料ガスのモル数
   R:気体定数
   T:燃料電池温度
   P:前記燃料ガス流路の全長の1/2の位置における前記燃料ガスの圧力
 このとき、前記式(2)において、
 前記nを、前記燃料ガス流路に供給される前記燃料ガスに含まれる燃料成分のうち、前記燃料電池の発電量に対して最低限必要な燃料成分量の1/2が消費されたと仮定して算出し、
 前記Pを、下記式(3)により算出することもできる。
  P=(Pin+Pout)/2・・・(3)
   Pin:前記燃料ガス流路の入口における前記燃料ガスの圧力
   Pout:前記燃料ガス流路の出口における前記燃料ガスの圧力
 或いは、第二の燃料電池システムが、
 燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
 前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
 前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
を備える場合、
 前記平均流量を、下記式(4)により算出することもできる。
  Qave=n’RT/P・・・(4)
   Qave:前記燃料ガス流路における前記燃料ガスの平均流量
   n’:前記燃料ガス流路に供給された前記燃料ガスのうち、前記燃料供給手段から前記燃料ガス流路に供給された前記燃料成分の1/2が消費されたと仮定して算出される前記燃料ガス流路の全長の1/2の位置における前記燃料ガスのモル数
   R:気体定数
   T:燃料電池温度
   P:下記式(3)により算出される前記燃料ガス流路の全長の1/2の位置における前記燃料ガスの圧力
    P=(Pin+Pout)/2・・・(3)
     Pin:前記燃料ガス流路の入口における前記燃料ガスの圧力
     Pout:前記燃料ガス流路の出口における前記燃料ガスの圧力
 第二の燃料電池システムにおいて、前記平均流量制御手段は、前記平均流量の目標値に基づいて、前記燃料ガス流路の入口における前記燃料ガスの圧力及び/又は前記燃料ガス流路の出口における前記燃料ガスの圧力を制御することができる。
 本発明の第一及び第二の燃料電池システムにおいては、前記燃料電池の温度が80℃以上であっても、乾燥状態の発生を防止し、安定した発電量を提供することができる。
 本発明により提供される燃料電池システムは、高電圧を実現すると共に、ドライアップの発生を未然に防止して、高温条件下の運転でも安定した発電性能を示す。また、本発明においては、電圧や抵抗を測定するためのセルモニタを必要としないシステム構成を採用することも可能であり、燃料電池システムの簡略化、低コスト化を達成することも可能である。
燃料電池の温度と、ピーク電圧が得られる燃料ガス出口水蒸気量との関係を示すグラフである。 燃料ガス平均流量と、燃料電池電圧及び燃料電池抵抗との関係を示すグラフである。 燃料ガス出口水蒸気量と燃料ガス平均流量との関係を示すグラフである。 第一の燃料電池システムの実施形態例100を示す図である。 第一の燃料電池システムにおける単セルの構造例を示す断面図である。 第一の燃料電池システムの実施形態例101を示す図である。 第二の燃料電池システムの実施形態例200を示す図である。 第二の燃料電池システムにおいて用いられるマップの例を示すイメージ図である。
 本発明の第一の燃料電池システムは、
 アノード電極及びカソード電極に挟持された高分子電解質膜と、
 前記アノード電極に対して、燃料成分を少なくとも含む燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
 前記カソード電極に対して、酸化剤成分を少なくとも含む酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
 前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
 前記燃料電池の電圧と前記燃料ガス流路の出口における水蒸気量との関係から予め設定された前記水蒸気量の目標値に基づいて、前記水蒸気量を制御する水蒸気量制御手段を備えることを特徴とする。
 また、本発明の第二の燃料電池システムは、
 アノード電極及びカソード電極に挟持された高分子電解質膜と、
 前記アノード電極に対して燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
 前記カソード電極に対して酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
 前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
 前記燃料電池の電圧と前記燃料ガス流路における前記燃料ガスの平均流量との関係から予め設定された前記平均流量の目標値に基づいて、前記平均流量を制御する平均流量制御手段を備えることを特徴とする。
 本発明者らは、鋭意検討の結果、燃料ガス流路における燃料ガスと酸化剤ガス流路における酸化剤ガス流路の流れ方向が互いに対向する、いわゆるカウンターフローの燃料電池において、無加湿条件運転する場合、燃料ガス流路出口における水蒸気量(燃料ガス出口水蒸気量)によって燃料電池内の含水状態が推定でき、ピーク電圧を示す際の燃料ガス出口水蒸気量を把握することによって、燃料電池内の適切な水分管理が実現され、高電圧が得られるという知見を得た。
 また、ピーク電圧を示す際の燃料ガス水蒸気量と燃料電池の温度との関係を調べたところ、燃料ガス水蒸気量が図1に示すような若干量の場合にピーク電圧が得られることが見出された。図1により、燃料電池温度が、70℃以上、特に80℃以上の条件下において、燃料ガス出口から排出される水蒸気量が約0.02~約0.067モル/minという若干量であるとき、ピーク電圧が得られることがわかる。
 さらには、図2に示すように燃料ガス平均流量を変化させた際の燃料電池の電圧と抵抗値とを測定しつつ、燃料ガス出口水蒸気量を測定したところ、図2における状態1~3においては、以下のような燃料ガス出口水蒸気量と燃料電池電圧及び抵抗値との関係が観察された。
 すなわち、燃料ガス流路出口から排出される水蒸気量(以下、燃料ガス出口水蒸気量ということがある)が非常に少ない場合、燃料電池の電圧は低くなる(状態1)。
 このように燃料ガス出口水蒸気量が非常に少ない状態というのは、燃料電池の電解質膜の面方向(すなわち電極の面方向であって、電解質膜と電極との積層方向に対して直交する方向)において、酸化剤ガス流路入口近傍の領域(つまり、燃料ガス流路出口近傍の領域)が乾燥している状態であり、該領域での発電が行われず、酸化剤ガス流路出口近傍の領域(つまり、燃料ガス流路入口近傍の領域)で集中的に発電が行われる。このとき、アノード電極側の水蒸気は、カソード電極側の乾燥を補うべく、乾燥状態のカソード電極側へと移動するために、燃料ガス出口水蒸気量は少なくなると考えられる。また、酸化剤ガス流路入口近傍の領域では、乾燥により抵抗過電圧が大きくなり、一方、酸化剤ガス流路出口近傍の領域では、酸化剤成分の濃度低下により濃度過電圧が大きくなるために、燃料電池の電圧は低くなると考えられる。
 一方、燃料ガス流路出口から若干の水蒸気が排出される場合、燃料電池の電圧は高くなる(状態2)。
 このように若干の水蒸気が排出される状態というのは、燃料電池の上記面方向において、含水状態が均一且つ良好な状態であり、面内で均一な発電が行われるため、濃度過電圧が低下し、さらには酸化剤ガス流路出口近傍の領域における抵抗過電圧も低くなるため、高い電圧が得られると考えられる。
 また、燃料ガス流路出口から排出される水蒸気量が多い場合、燃料電池の電圧は低くなる(状態3)。
 このように燃料ガス出口水蒸気量が多い状態では、燃料電池の上記面方向の酸化剤ガス流路入口近傍領域では、充分な湿潤状態であると共に酸化剤成分の濃度が充分に確保されているため発電が集中的に進行すると考えられる。一方、燃料ガス流路入口近傍の領域(つまり、酸化剤ガス流路出口近傍の領域)では、燃料ガスによって燃料ガス流路出口側へと水分が持ち去られて乾燥し且つ酸化剤成分濃度も低いため、抵抗過電圧の増加と濃度過電圧との両方が生じるため、面内において均一な発電分布が得られず、燃料電池の電圧が低くなると考えられる。
 また、燃料電池の面方向において、濃度過電圧の増減と抵抗過電圧の増減は、一対一で対応しないため、図2に示すように、抵抗のボトム値を示す運転条件とピーク電圧を示す運転条件とは一致しない。すなわち、抵抗のボトムの検知により燃料電池の運転条件を制御しても、ピーク電圧が得られる運転条件には必ずしもならないため、発電効率が低くなるおそれがある。また、検知された電圧や抵抗に基づいて、燃料電池の運転条件を制御した場合には、制御の遅れにより、燃料電池内に一時的にでもドライアップ状態となる領域が発生するおそれが充分にある。一時的にでもドライアップ状態となった領域は、その発電性能が回復するのに時間を要するか、或いは、発電性能を回復しない場合もある。
 本発明者らは、上記知見に基づき、燃料電池の電圧と燃料ガス出口水蒸気量との関係から、高い電圧が得られる燃料ガス出口水蒸気量を予め取得しておき、この水蒸気量を目標値として、燃料ガス流路の出口における水蒸気量を制御することによって、燃料電池の電解質膜の面方向において、均一な発電が進行するように、該面方向における水分量を適切に制御することが可能であることを見出した。さらに、本発明者らは、このような水分量の適切な管理の結果、安定且つ高い出力が得られると共に、ドライアップの発生を未然に防止することが可能であり、さらには、発電効率の低下を抑制できることを見出し、本発明の第1の燃料電池システムを完成するに至った。
 また、本発明者らは、燃料ガス出口水蒸気量と、燃料ガス流路における燃料ガスの平均流量(以下、燃料ガス平均流量ということがある)との間に高い相関関係があることを見出した。すなわち、図2に示すように、燃料ガス流路における燃料ガスの平均流量が低い場合、燃料ガス出口水蒸気量が少なく、燃料電池の電圧が低い状態(上記状態1)となり、該状態1よりも燃料ガス平均流量を高くした場合、燃料ガス出口水蒸気量が若干量となり、高い燃料電池の電圧が得られる状態(上記状態2)となり、該状態2よりもさらに燃料ガス平均流量を高くした場合、燃料ガス出口水蒸気量が多くなり、燃料電池の電圧が低い状態(上記状態3)になるという知見を得た。
 さらに、本発明者らは、図3に示すように、燃料ガス出口水蒸気量と燃料ガス平均流量とが、燃料ガス流路における燃料ガスの圧力に関わらず、一定の相関関係を示すことから、燃料ガス平均流量を制御することで、燃料ガス出口水蒸気量を間接的に制御できることを見出した。
 上記知見に基づき、本発明者らは、燃料電池の電圧と燃料ガス平均流量との関係から、高い電圧が得られる燃料ガス平均流量を予め取得しておき、この平均流量を目標値として、燃料ガス流路における燃料ガス平均流量を制御することによって、燃料電池の電解質膜の面方向において、均一な発電が進行するように、該面方向における水分量を適切に制御することが可能となり、安定且つ高い出力が得られると共に、ドライアップの発生を未然に防止することが可能であり、さらには、発電効率の低下を抑制できることを見出し、本発明の第2の燃料電池システムを完成するに至った。
 以下、本発明の燃料電池システムについて、図を参照しながら説明する。
 尚、本発明の燃料電池システムの用途は、特に限定されず、例えば、移動体である車両、船舶等の駆動装置に対して電力を供給する電力供給源として、また、その他さまざまな装置の電力供給源として、利用可能である。
 また、本発明において、燃料ガスとは燃料成分を含むガスであって、燃料電池内の燃料ガス流路を流れるガスを意味し、燃料成分以外の成分(例えば、水蒸気や窒素ガス等)も含み得る。また、酸化剤ガスとは酸化剤成分を含むガスであって、燃料電池内の酸化剤ガス流路を流れるガスを意味し、酸化剤成分以外の成分(例えば、水蒸気や窒素ガス等)も含み得る。燃料ガスと酸化剤ガスをまとめて反応ガスということがある。
 図4は、本発明の第1の燃料電池システムの実施形態例である燃料電池システム100を示している。
 燃料電池システム100は、少なくとも、反応ガスの供給を受けて発電する燃料電池1と、燃料ガス配管系2と、酸化剤ガス配管系(図示せず)と、システムを統合制御する制御部3とを有する。尚、本発明の燃料電池システムは、燃料電池に酸化剤ガスを供給し、燃料電池から未反応の酸化剤成分や水蒸気等を含むガス(排出酸化剤ガス)を排出する、酸化剤ガス配管系を有するが、本発明において、酸化剤ガスは、燃料ガス流路を流れる燃料ガスの方向と酸化剤ガス流路を流れる酸化剤ガスの方向とが、互いに対向するいわゆるカウンターフローであれば、酸化剤ガスの供給、排出の具体的な形態は特に限定されないため、酸化剤ガス配管系については、図中の説明を省略する。
 燃料電池1は、固体高分子電解質型燃料電池により構成されており、通常、多数の単セルを積層したスタック構造を有し、酸化剤ガス及び燃料ガスの供給を受けて電力を発生させる。燃料電池1への酸化剤ガス及び燃料ガスの供給及び燃料電池1からの酸化剤ガス及び燃料ガスの排出は、それぞれ、酸化剤ガス配管系及び燃料ガス配管系2によりなされる。以下では、酸化剤ガスとして酸素を含む空気を例に、また、燃料ガスとして水素ガスを含むガスを例に説明する。
 図5は、燃料電池1を構成する単セル12の概略断面図である。
 各単セル12は、固体高分子電解質膜13を、カソード電極(空気極)14及びアノード電極(燃料極)15で狭持した膜・電極接合体16を基本構造としている。カソード電極14は、電解質膜13側から順にカソード触媒層21とガス拡散層22とが積層した構造を有しており、アノード電極15は、電解質膜13側から順にアノード触媒層23とガス拡散層24とが積層した構造を有している。
 膜・電極接合体16は、一対のセパレータ17、18で、カソード電極14及びアノード電極15を両側から挟みこまれている。カソード側のセパレータ17には、カソード電極14に酸化剤ガスを供給するための酸化剤ガス流路を形成する溝が設けられており、該溝とカソード電極14とによって酸化剤ガス流路19が画成されている。アノード側のセパレータ18には、アノード電極15に燃料ガスを供給するための燃料ガス流路を形成する溝が設けられており、該溝とアノードとによって燃料ガス流路20が画成されている。
 酸化剤ガス流路19と燃料ガス流路20は、酸化剤ガス流路19を流れる酸化剤ガスの流通方向と燃料ガス流路20を流れる燃料ガスの流通方向が互い対向するように配置されている(いわゆるカウンターフロー構造)。図5においては、酸化剤ガス流路19及び燃料ガス流路20中の「丸に点」の記号は、ガスの流れ方向が、紙面の向こう側からこちら側の向かう方向であることを意味し、「丸にバツ印」の記号は、ガスの流れ方向が、紙面のこちら側から向こう側に向かう方向であることを意味している。さらに、図に具体的に示されてはいないが、酸化剤ガス流路19の入口近傍領域と燃料ガス流路20の出口近傍領域とが電解質膜1を挟んで配置され、且つ、酸化剤ガス流路19の出口近傍領域と燃料ガス流路20の入口近傍領域とが電解質膜1を挟んで配置されている。尚、図5では、ガス流路が蛇行型流路(サーペンタイン型流路)であるものとして描かれているが、ガス流路の形態は特に限定されず、カウンターフロー構造を有していれば、どのような形態もとることができる。
 燃料電池を構成する各部材は、特に限定されず、一般的な材料で形成された、一般的な構造を有するものであってよい。
 燃料電池1には、燃料電池1の温度Tを計測する温度センサ(温度測定手段)9が設置されている。温度センサ9は、燃料電池内の温度を直接測定するものであってもよいし、燃料電池内を流通する熱交換媒体の温度を測定するものであってもよい。
 また、燃料電池1には、燃料ガス流路を流れる燃料ガスの圧力を計測する圧力センサ10が配置されている。尚、圧力センサは、所望の位置における燃料ガス流路内の燃料ガスの圧力を把握することができれば、具体的な設置位置は限定されない。例えば、燃料ガス流路の入口に設けられ、該入口における燃料ガスの圧力を測定する入口圧力センサと、燃料ガス流路の出口に設けられ、該出口における燃料ガスの圧力を測定する出口圧力センサとを用い、これら圧力センサで検出された燃料ガス入口圧力Pinと燃料ガス出口圧力Poutの平均値を燃料ガス圧力として検出、制御することができる。また、燃料ガス流路の入口及び出口に限らず、燃料ガス流路の複数個所に圧力センサを備え、それぞれの位置における燃料ガスの圧力を検出、制御してもよいし、平均値を算出し、平均値として制御してもよい。また、燃料電池内の圧力センサは一つであってもよい。さらに、燃料ガス流路外に設けられた圧力センサにより燃料ガスの圧力を推定してもよい。
 また、燃料電池1には、燃料ガス流路の出口における燃料ガス中の水蒸気量Sを計測する露点計(水蒸気量測定手段)25が設置される。尚、露点計は、燃料ガス出口水蒸気量Sを検出することができれば、燃料ガス配管系2に設けられてもよい。
 燃料ガス配管系2は、水素タンク4、燃料ガス供給路5、燃料ガス循環路6を有する。水素タンク4は、高圧の水素ガス(燃料成分)を貯留した水素ガス供給源であり、燃料供給手段である。尚、燃料供給手段としては、水素タンク4に代えて、例えば、炭化水素系の燃料から水素リッチな改質ガスを生成する改質器と、改質器で生成した改質ガスを高圧状態にして畜圧する水素貯蔵合金を有するタンクを採用することもできる。
 燃料ガス供給路5は、燃料供給手段である水素タンク4から燃料成分である水素ガスを燃料電池1に供給するための流路であり、主流路5Aと、混合路5Bで構成される。主流路5Aは、燃料ガス供給路5と燃料ガス循環路6とが連結する連結部7の上流に位置している。主流路5Aには、水素タンク4の元弁として機能するシャットバルブ(図示せず)や水素ガスを減圧するレギュレータ等が設けられてもよい。水素タンク4から供給される水素ガスの流量(燃料成分ガスの流量)Qbは、燃料電池に対する要求出力に基づいて、制御され、要求出力が担保される。混合路5Bは、連結部7の下流側に位置しており、水素タンク4からの水素ガスと燃料ガス循環路6からの排出燃料ガスとの混合ガスを燃料電池1の燃料ガス流路入口に導く。
 燃料ガス循環路6は、燃料電池1の燃料ガス流路出口から排出された排出燃料ガスを燃料ガス供給路5に再循環させる。燃料ガス循環路6には、排出燃料ガスを燃料ガス供給路5に再循環させるための再循環ポンプ8が設けられている。排出燃料ガスは、燃料電池の発電によって水素が消費された結果、燃料電池に供給される燃料ガスよりも流量及び圧力が低下しているため、再循環ポンプにより流量や圧力が適宜制御され、連結部7へ圧送される。燃料ガス循環路6、燃料ガス供給路5及び燃料電池1内の燃料ガス流路を連ねた系統によって、燃料ガスを燃料電池に循環供給する循環系が構成される。
 燃料電池1から排出される排出燃料ガスには、燃料電池の発電反応により生じた生成水や、燃料電池のカソード電極から電解質膜を介してアノード電極側に透過、すなわち、クロスリークした窒素ガス、未消費の水素ガス等が含まれる。燃料ガス循環路6上には、再循環ポンプ8の上流側に、気液分離器(図示せず)が設けられてもよい。気液分離器は、排出燃料ガスに含まれる水と、未消費の水素ガス等のガスとを分離する。また、燃料ガス循環路6上には、再循環ポンプ8の上流側に、排出燃料ガスの一部を燃料電池の外部に排出し、再循環させる排出燃料ガスの圧力を調整する排出燃料ガス圧力調整弁(図示せず)等が設けられてもよい。
 尚、燃料ガス配管系は、水素ガス(燃料成分)の有効利用の観点から、燃料ガス循環路、再循環ポンプ等による循環系を有するものが好ましいといえるが、循環系を有していなくてもよいし、或いは、デッドエンド構造を有していてもよい。
 酸化剤ガス配管系は、燃料電池1へ酸化剤ガスを供給する酸化剤ガス供給路、燃料電池1からの排出酸化剤ガスを排出する酸化剤ガス排出路、及びコンプレッサを有する。コンプレッサは、酸化剤ガス供給路上に設けられ、コンプレッサにより取り込まれた大気中の空気が酸化剤ガス供給路を流れて圧送され、燃料電池1に供給される。燃料電池1から排出される排出酸化剤ガスは、酸化剤ガス排出路を流れて、外部に排出される。
 燃料電池システムの運転は、制御部3によって制御される。制御部3は、内部にCPU、RAM、ROM等を備えるマイクロコンピューターとして構成されており、ROMやRAM等に記憶された各種のプログラムやマップ等に従って、燃料電池に対する要求出力(出力電流密度、すなわち、燃料電池に接続される負荷の大きさ)や、燃料電池に接続された温度センサ、ガス圧力センサ、ガス流量センサ、露点計等、各種センサの測定結果等に基づいて、CPUが、各種バルブ、各種ポンプ、燃料ガス配管系、酸化剤ガス配管系、熱交換媒体循環系等、種々の処理や制御を実行する。
 本発明の燃料電池システム100は、制御部3が、燃料電池1の電圧と燃料ガス出口水蒸気量との関係から予め設定された燃料ガス出口水蒸気量の目標値に基づいて、燃料ガス出口水蒸気量を制御する水蒸気量制御手段を備えている点に特徴を大きな有している。
 尚、本発明において、燃料ガス流路の出口における水蒸気量(燃料ガス出口水蒸気量)とは、燃料ガス流路の出口を流れる燃料ガス中に含まれる水蒸気量である。
 具体的には、燃料電池1の作動時、制御部3の水蒸気量制御手段は、温度センサ9によって燃料電池1の温度Tを検出する。
 また、制御部3は、圧力センサ10により、燃料ガス流路における燃料ガスの圧力Pを検出する。
 また、制御部3は、露点計11によって燃料ガス流路出口における燃料ガスの水蒸気量Sを検出する。
 そして、制御部3は、検出された温度T及び圧力Pに基づき、検出された燃料ガス出口水蒸気量Sが目標値Stに近づくように、燃料ガスの流量Qを制御する。目標値Stは、燃料ガス出口水蒸気量Sと燃料電池の電圧との相関関係に基づいて予め取得されている。尚、燃料ガスの流量Qとは、燃料ガス流路を流れる燃料ガスの流量である。
 具体的には、燃料電池における燃料ガス流量Qは、例えば、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaの制御によって制御することができる。燃料電池システム100のように、燃料排出ガスを循環させる循環系の場合、燃料供給源である水素ポンプ4から供給される燃料成分ガスの流量Qbは水蒸気量制御手段による制御を行わずに、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaを制御することによって、要求出力を充分に担保した上で、燃料成分である水素の利用効率を高め、燃料電池の水分布を効果的に制御することができる。
 尚、水蒸気量制御手段による燃料ガス流量Qの制御は、上記Qaによる制御に限定されず、燃料電池に対する要求出力を担保できれば特に限定されず、例えば、要求出力を担保した上で、Qbのみによる制御、或いは、Qa及びQbの両方による制御を行ってもよい。さらには、燃料ガス流量を制御するその他の手段を用いてもよい。
 本実施形態では、予め取得しておいた燃料ガス出口水蒸気量と燃料電池の電圧との関係に基づいて、該燃料ガス水蒸気量の目標値を算出し、該水蒸気量を実現させるように、燃料ガスの流量、圧力や燃料電池温度を制御することができる。すなわち、燃料電池内の含水状態、ひいては燃料電池の電圧を、フィードフォワード制御を行うことができる。このようなフィードフォワード制御を行うことによって、燃料電池の電圧を実際に検出して燃料電池内の含水状態を判定し、フィードバック制御を行う場合と比較して、ドライアップの発生を未然に防ぎつつ、高電圧を実現する燃料電池運転制御を実現させることができる。さらには、本発明においては、電圧センサや抵抗センサを省くこともできるため、燃料電池システムにおける制御をより簡素化することが可能となるとともに、燃料電池の費用削減も可能となる。
 尚、水蒸気量制御手段による水蒸気量制御処理は、燃料電池運転中、定期的に実行されてもよいし、燃料電池温度が所定以上の条件下においてのみ、実行されてもよい。例えば、特にドライアップが発生しやすい高温条件下、例えば、80℃以上の温度条件下においてのみ、水蒸気制御手段による水蒸気制御処理が実行されてもよい。特にドライアップが発生しやすいことから、少なくとも、70℃以上、さらに80℃以上においては、水蒸気制御処理が実行されることが好ましい。
 また、予め取得された燃料ガス水蒸気量の目標値は、電圧ピークが得られる水蒸気量の1点で規定してもよいし、電圧ピークが得られる水蒸気量を含む、所定の幅を有する水蒸気量の範囲で規定してもよい。
 燃料電池システム100の具体的な水蒸気量制御処理においては、燃料ガスの流量Q(具体的には排出燃料ガス流量Qa)を制御することによって、燃料ガス出口水蒸気量を制御しているが、燃料ガス出口水蒸気量Sを水蒸気量の目標値Stに近づけるための制御パラメータは燃料ガスの流量Qに限られない。例えば、燃料ガスの流量、燃料ガスの圧力、及び燃料電池温度の少なくとも1つを選択することができる。これら燃料ガス流量、燃料ガス圧力及び燃料電池温度のうち、制御が容易であり、また、水蒸気量や平均流量の制御応答が速いことから、特に燃料ガス流量及び燃料ガス圧力の少なくとも1つを制御することが好ましい。具体的には、燃料ガスの流量Qのみ、燃料ガスの圧力Pのみ、或いは、燃料ガスの流量Qと燃料ガスの圧力Pの両方を制御することができる。燃料ガス流量の制御に伴い、燃料ガスの圧力も変動することから、これら燃料ガスの流量及び圧力の両方を制御することにより、より効率良く水蒸気量の目標値に近づけることが期待できる。
 燃料ガスの圧力の制御は、例えば、燃料ガス流路の入口における燃料ガスの圧力及び/又は燃料ガス流路の出口における燃料ガスの圧力を制御することでできる。具体的には、燃料ガス流路出口の下流側に設けられた背圧弁、水素タンクから燃料電池に水素を供給するためのレギュレータ、燃料ガス配管系が循環系の場合には、水素タンクから配管系に水素を供給するためのインジェクタ、配管系に設けた循環用ポンプ等によって、燃料ガスの圧力を制御することができる。
 次に、図6を用いて、本発明の第1の燃料電池システムの実施形態例である燃料電池システム101を説明する。
 図6に示す燃料電池システム101は、露点計11を備えておらず、また、制御部3の水蒸気量制御手段による具体的な水蒸気量制御処理が異なる点以外は、上記燃料電池システム100と同じ構成である。
 以下、燃料電池システム101について、燃料電池システム100と異なる点を中心に説明する。
 燃料電池システム101において、水蒸気量制御手段は、燃料電池1の電圧と燃料ガス流路の出口における水蒸気量との関係から予め設定された燃料ガス出口水蒸気量の目標値と、燃料電池1における燃料ガスの流量、燃料ガスの圧力及び温度の少なくとも1つとの相関関係に基づいて取得されたマップに基づいて、燃料電池における燃料ガスの流量、燃料ガスの圧力、及び燃料電池の温度の少なくとも1つを制御する。
 上記にて説明した燃料電池システム100は、燃料ガス出口水蒸気量を、露点計で実際に検出し、検出された燃料ガス出口水蒸気量に基づいて、燃料ガスの流量等を制御するのに対し、燃料電池システム101は、予め取得された燃料ガス出口水蒸気量の目標値を実現させる、燃料ガスの流量、燃料ガス圧力及び燃料電池温度の少なくとも1つもまた、予め取得されている。そして、これら取得された燃料ガス流量、圧力及び燃料電池温度に基づいて、燃料ガスの流量、温度及び燃料電池の温度の少なくとも1つを制御することによって、燃料出口水蒸気量を設定された目標値となるように制御する。すなわち、燃料電池システム101は、燃料電池システム100と比較して、露点計のような燃料ガス出口水蒸気量測定手段を有していない分、システムの簡易化が可能である。
 具体的には、燃料電池1の作動時、制御部3の水蒸気量制御手段は、温度センサ9によって燃料電池1の温度Tを検出する。
 また、制御部3は、圧力センサ10により、燃料ガス流路における燃料ガスの圧力Pを検出する。
 そして、制御部3は、検出した温度Tと圧力Pに基づき、燃料ガス出口水蒸気量Sが予め取得された目標値Stに近づくように、燃料ガスの流量Qを制御する。目標値Stは、燃料ガス出口水蒸気量Sと燃料電池の電圧との相関関係に基づいて予め取得されている。また、燃料ガスの流量Qは、燃料ガス出口水蒸気量の目標値Stと、温度T、燃料ガス圧力P、及び燃料ガス流量Qとの相関関係とに基づいて取得されたマップを用いて、目標値Qtが算出され、該目標値に対応して制御される。
 具体的には、燃料電池における燃料ガス流量Qは、上記燃料電池システム100と同様、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaの制御によって制御することができる。このように、燃料供給源である水素ポンプ4から供給される燃料成分ガスの流量Qbは水蒸気量制御手段による制御を行わずに、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaを制御することによって、要求出力を充分に担保した上で、燃料成分である水素の利用効率を高め、燃料電池の水分布を効果的に制御することができる。また、水蒸気量制御手段による燃料ガス流量Qの制御は、上記Qaによる制御に限定されず、燃料電池に対する要求出力を担保できれば特に限定されず、例えば、要求出力を担保した上で、Qbのみによる制御、或いは、Qa及びQbの両方による制御を行ってもよい。さらには、燃料ガス流量を制御するその他の手段を用いてもよい。
 尚、上記マップは、水蒸気量をより高い精度で制御するためには、燃料ガス出口水蒸気量の目標値と、燃料電池における燃料ガスの流量、燃料ガスの圧力及び温度の少なくとも2つとの相関関係に基づいて、特に燃料ガスの流量、燃料ガスの圧力及び温度の全てとの相関関係に基づいて、取得されることが好ましい。
 また、上記燃料ガス水蒸気量の目標値Stと、温度T、燃料ガス圧力P、及び燃料ガス流量Qの少なくとも1つとの相関関係とに基づいて取得されるマップは、燃料ガス水蒸気量の目標値Stと、温度T、燃料ガス圧力P、及び燃料ガス流量Qの少なくとも1つとの相関関係を表わすものであってもよい。
 次に、本発明の第2の燃料電池システムについて説明する。尚、本発明の第2の燃料電池システムについては、上記本発明の第1の燃料電池システムと異なる点を中心に説明する。
 図7は、本発明の第2の燃料電池システムの実施形態例である燃料電池システム200を示している。
 燃料電池システム200は、燃料電池の燃料ガスの圧力を測定する燃料ガス圧力測定手段として、燃料ガス流路の入口における燃料ガスの圧力Pinを測定する入口圧力センサ(燃料ガス入口圧力測定手段)25及び燃料ガス流路の出口における燃料ガスの圧力Poutを測定する出口圧力センサ(燃料ガス出口圧力測定手段)26を備え、また、制御部3が、燃料電池1の電圧と燃料ガス平均流量との関係から予め設定された燃料ガス平均流量の目標値に基づいて、燃料ガス平均流量を制御する平均流量制御手段を備えている点以外は、上記燃料電池システム101と同じ構成である。
 燃料電池システム101と同様、圧力センサは、所望の位置における燃料ガス流路内の燃料ガスの圧力を把握することができれば、具体的な設置位置は限定されず、上記のように入口圧力センサと出口圧力センサとを用いなくてもよい。
 燃料電池システム200において、平均流量制御手段は、燃料電池の電圧と燃料ガス流路における燃料ガスの平均流量(燃料ガス平均流量)Qaveとの関係から予め設定された燃料ガス平均流量の目標値Qavetと、燃料電池1における燃料ガスの流量Q、燃料ガスの圧力P及び温度Tの少なくとも1つとの相関関係に基づいて取得されたマップに基づいて、燃料電池における燃料ガスの流量Q、燃料ガスの圧力P、及び燃料電池の温度の少なくとも1つを制御する。
 燃料電池システム200は、予め取得された燃料ガス平均流量の目標値を実現させる、燃料ガスの流量、燃料ガス圧力及び燃料電池温度の少なくとも1つもまた、予め取得されている。そして、これら取得された燃料ガス流量、圧力及び燃料電池温度に基づいて、燃料ガスの流量、温度及び燃料電池の温度の少なくとも1つを制御することによって、燃料ガス平均流量を設定された目標値となるように制御する。
 具体的には、燃料電池システム200において、燃料電池1の作動時、制御部3の平均流量制御手段は、温度センサ9によって燃料電池1の温度Tを検出する。
 また、制御部3は、圧力センサ25、26により検出された、燃料ガス流路入口における燃料ガスの圧力Pin及び燃料ガス流路出口における燃料ガスの圧力Poutに基づいて、燃料ガス流路における平均圧力Pave[Pave=(Pin+Pout)/2]を算出する。
 そして、制御部3は、検出した温度Tと算出した平均圧力Paveに基づき、燃料ガス平均流量Qaveが予め取得された目標値Qavetに近づくように、燃料ガスの流量Qを制御する。目標値Qavetは、燃料ガス平均流量Qaveと燃料電池の電圧との相関関係に基づいて予め取得されている。また、燃料ガスの平均流量Qaveは、燃料ガス平均流量の目標値Qavetと、温度T、燃料ガス圧力P、及び燃料ガス流量Qとの相関関係とに基づいて取得されたマップを用いて、目標値Qavetが算出され、該目標値に対応して制御される。
 具体的には、燃料電池における燃料ガス流量Qは、上記燃料電池システム100と同様、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaの制御によって制御することができる。このように、燃料供給源である水素ポンプ4から供給される燃料成分ガス流量Qbは水蒸気量制御手段による制御を行わずに、再循環ポンプ8により再循環させる燃料排出ガスの流量Qaを制御することによって、要求出力を充分に担保した上で、燃料成分である水素の利用効率を高め、燃料ガスの平均流量を調整し、燃料電池の水分布を効果的に制御することができる。また、平均流量制御手段による燃料ガス流量Qの制御は、上記Qaによる制御に限定されず、燃料電池に対する要求出力を担保できれば特に限定されず、例えば、要求出力を担保した上で、Qbのみによる制御、或いは、Qa及びQbの両方による制御を行ってもよい。さらには、燃料ガス流量を制御するその他の手段を用いてもよい。
 尚、上記マップは、燃料ガスの平均流量をより高い精度で制御するためには、燃料ガス平均流量の目標値と、燃料電池における燃料ガスの流量、燃料ガスの圧力及び温度の少なくとも2つとの相関関係に基づいて、特に燃料ガスの流量、燃料ガスの圧力及び温度の全てとの相関関係に基づいて、取得されることが好ましい。
 また、上記燃料ガス平均流量の目標値Qavetと、温度T、燃料ガス圧力P、及び燃料ガス流量Qの少なくとも1つとの相関関係とに基づいて取得されるマップは、燃料ガス平均流量の目標値Qavetと、温度T、燃料ガス圧力P、及び燃料ガス流量Qの少なくとも1つとの相関関係を表わすものであってもよい。
 本発明の第二の燃料電池システムにおいて、燃料ガス流路における燃料ガスの平均流量(燃料ガス平均流量)Qaveとは、燃料ガス流路を流れる燃料ガスの平均流量であり、その算出方法は特に限定されず、例えば、燃料電池システム200のように燃料ガス配管系が循環系を有する場合には、下記式(1)により算出することができる。
  Qave=Qa+Qb/2・・・式(1)
   Qave:燃料ガス流路における燃料ガスの平均流量
   Qa:再循環ポンプにより再循環させる排出燃料ガスの流量
   Qb:燃料供給手段から供給される燃料成分ガスの流量
 上記式(1)では、燃料ガス流路の全流路長の1/2の位置において、要求出力に応じて燃料供給手段から供給された燃料成分ガスの流量Qbの半分が消費されているという仮定に基づいて、燃料ガスの平均流量Qaveを算出している。
 ここで、上記式(1)により算出される燃料ガスの平均流量Qaveに基づいた平均流量制御処理に用いられる上記マップの例を図8に示す。
 図8に示すマップにおいては、検出された温度Tと平均圧力Pave[Pave=(Pin+Pout)/2]と燃料ガス平均流量の目標値Qavetとの相関関係が表わされている。従って、例えば、検出された温度Tにおける、平均圧力Paveと平均流量Qavetとの相関関係を表わすマップに従って、検出された平均圧力Paveにおける目標平均流量Qavetが算出される。そして、式(1)により算出されるQaveがマップにより算出されたQavetとなるように、排出燃料ガス流量Qaを制御することができる。
 また、本発明の第二の燃料電池システムにおいて、燃料ガス平均流量Qaveは、下記式(2)により算出することもできる。
  Qave=nRT/P・・・(2)
   Qave:燃料ガス流路における燃料ガスの平均流量
   n:燃料ガス流路の全長の1/2の位置における燃料ガスのモル数
   R:気体定数
   T:燃料電池温度
   P:燃料ガス流路の全長の1/2の位置における燃料ガスの圧力
 上記式(2)では、燃料ガス流路の全流路長の1/2の位置における燃料ガスの流量を、燃料ガス平均流量Qaveとして採用しており、燃料ガス流路の全流路長の1/2の位置における燃料ガスのモル数及び圧力から、気体の状態方程式に基づいて、燃料ガスの平均流量Qaveを算出している。
 ここで、式(2)において、燃料ガスのモル数は、燃料ガス流路の全流路長の1/2の位置における燃料ガス中に含まれる、全成分(水素ガスの他、窒素ガスや水蒸気等)のモル数であり、具体的には、燃料ガス流路入口の燃料ガスの全モル数から、燃料ガス流路の全流路長の1/2の位置に到達するまでに消費された燃料成分のモル数を減じたモル数である。燃料ガス流路の全流路長の1/2の位置に到達するまでに消費された燃料成分のモル数は、燃料電池の要求出力から必要燃料成分量の半分である。また、燃料ガス流路入口の燃料ガスの全モル数は、循環ポンプにより燃料ガス流路入口に戻ってくる燃料ガス流量と水素タンクから追加補充される水素量の合計流量の温度と圧力により求めることができる。
 また、式(2)において、燃料ガスの圧力は、燃料ガス流路の全長の1/2の位置における燃料ガスの圧力を実際に検出してもよいし、燃料ガス流路の全長の複数個所における燃料ガスの圧力を測定し、平均値を算出してもよい。或いは、燃料ガス流路の全長で発生する圧力損失の1/2が、燃料ガス流路の全長の1/2の位置において発生していると仮定して算出してもよく、このような圧力損出を仮定した上記燃料ガス圧力は、以下の式(3)により算出することができる。
  P=(Pin+Pout)/2・・・(3)
   Pin:燃料ガス流路の入口における燃料ガスの圧力
   Pout:燃料ガス流路の出口における燃料ガスの圧力
 上記燃料電池システム200のように、燃料ガス配管系が循環系を有している場合には、式(2)の変形例として、下記式(4)により、燃料ガスの平均流量Qaveを算出することができる。
  Qave=n’RT/P・・・(4)
   Qave:燃料ガス流路における燃料ガスの平均流量
   n’:燃料ガス流路に供給された前記燃料ガスのうち、燃料ガス供給手段から燃料ガス流路に供給された前記燃料成分の1/2が消費されたと仮定して算出される燃料ガス流路の全長の1/2の位置における燃料ガスのモル数
   R:気体定数
   T:燃料電池温度
   P:上記式(3)により算出される燃料ガス流路の全長の1/2の位置における燃料ガスの圧力
 尚、第2の燃料電池システムにおいて、燃料ガス平均流量Qaveは、上記のような仮定に基づく算出ではなく、燃料ガス流路内の複数個所における燃料ガス流量を実際に測定して平均化して得られる値や、燃料ガス流路の全長の1/2の位置において実際に測定される燃料ガスの流量値を用いてもよい。簡便に燃料電池システムを構築できるという観点からは、上記式(1)、(2)又は(4)を用いて燃料ガス平均流量を算出することが好ましい。
 また、第二の燃料電池システムにおいて、平均流量制御手段による燃料ガス平均流量制御処理は、燃料電池運転中、定期的に実行されてもよいし、燃料電池温度が所定以上の条件下においてのみ、実行されてもよい。例えば、特にドライアップが発生しやすい高温条件下、例えば、80℃以上の温度条件下においてのみ、平均流量制御手段による燃料ガス平均流量制御処理が実行されてもよい。特にドライアップが発生しやすいことから、少なくとも、70℃以上、さらに80℃以上においては、平均流量制御処理が実行されることが好ましい。
 1…燃料電池
 2…燃料ガス配管系
 3…制御部
 4…水素タンク(燃料供給手段)
 5…燃料ガス供給路
 5A…主流路
 5B…混合路
 6…燃料ガス循環路
 7…連結部
 8…再循環ポンプ
 9…温度センサ(温度測定手段)
 10…圧力センサ
 11…露点計(水蒸気量測定手段)
 12…単セル
 13…高分子電解質膜
 14…カソード電極
 15…アノード電極
 16…膜・電極接合体
 17…セパレータ
 18…セパレータ
 19…酸化剤ガス流路
 20…燃料ガス流路
 21…カソード触媒層
 22…ガス拡散層
 23…アノード触媒層
 24…ガス拡散層
 25…圧力センサ(燃料ガス流路入口圧力測定手段)
 26…圧力センサ(燃料ガス流路出口圧力測定手段)
 100…燃料電池システム
 101…燃料電池システム
 200…燃料電池システム

Claims (18)

  1.  アノード電極及びカソード電極に挟持された高分子電解質膜と、
     前記アノード電極に対して、燃料成分を少なくとも含む燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、
     前記カソード電極に対して、酸化剤成分を少なくとも含む酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、
    を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
     前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
     前記燃料電池の電圧と前記燃料ガス流路の出口における水蒸気量との関係から予め設定された前記水蒸気量の目標値に基づいて、前記水蒸気量を制御する水蒸気量制御手段を備えることを特徴とする、燃料電池システム。
  2.  前記水蒸気量制御手段は、前記水蒸気量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御する、請求の範囲第1項に記載の燃料電池システム。
  3.  前記水蒸気量制御手段は、前記水蒸気量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量及び/又は前記燃料ガスの圧力を制御する、請求の範囲第1項又は第2項に記載の燃料電池システム。
  4.  前記水蒸気量制御手段は、前記水蒸気量の目標値と、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力及び温度の少なくとも一つとの相関関係に基づいて取得されたマップに基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び前記温度の少なくとも1つを制御する、請求の範囲第1項乃至第3項のいずれかに記載の燃料電池システム。
  5.  前記水蒸気量を測定する水蒸気量測定手段を備え、
     前記水蒸気量制御手段は、前記水蒸気量測定手段により測定される前記水蒸気量が前記水蒸気量の目標値に近づくように、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御する、請求の範囲第1項乃至第3項のいずれかに記載の燃料電池システム。
  6.  燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
     前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
     前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
    を備え、
     前記水蒸気量制御手段は、前記再循環ポンプにより再循環させる前記排出燃料ガスの流量を制御することによって、前記燃料電池における前記燃料ガスの流量を制御する、請求の範囲第2項乃至第5項のいずれかに記載の燃料電池システム。
  7.  前記水蒸気量制御手段は、前記水蒸気量の目標値に基づいて、前記燃料ガス流路の入口における前記燃料ガスの圧力及び/又は前記燃料ガス流路の出口における前記燃料ガスの圧力を制御する、請求の範囲第2項乃至第6項のいずれかに記載の燃料電池システム。
  8.  アノード電極及びカソード電極に挟持された高分子電解質膜と、前記アノード電極に対して燃料ガスを供給するために該アノード電極に対面して配置された燃料ガス流路と、前記カソード電極に対して酸化剤ガスを供給するために前記カソード電極に対面して配置された酸化剤ガス流路と、を有する燃料電池を備え、無加湿条件下で運転される燃料電池システムであって、
     前記燃料ガス流路における前記燃料ガスと前記酸化剤ガス流路における前記酸化剤ガスの流れ方向が互いに対向しており、
     前記燃料電池の電圧と前記燃料ガス流路における前記燃料ガスの平均流量との関係から予め設定された前記平均流量の目標値に基づいて、前記平均流量を制御する平均流量制御手段を備えることを特徴とする、燃料電池システム。
  9.  前記平均流量制御手段は、前記平均流量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び温度の少なくとも1つを制御する、請求の範囲第8項に記載の燃料電池システム。
  10.  前記平均流量制御手段は、前記平均流量の目標値に基づいて、前記燃料電池における、前記燃料ガスの流量及び/又は前記燃料ガスの圧力を制御する、請求の範囲第8項又は第9項に記載の燃料電池システム。
  11.  前記平均流量制御手段は、前記平均流量の目標値と、前記燃料電池における、前記燃料ガス流量、前記燃料ガス圧力及び温度の少なくとも一つとの相関関係に基づいて取得されたマップに基づいて、前記燃料電池における、前記燃料ガスの流量、前記燃料ガスの圧力、及び前記温度の少なくとも1つを制御する、請求の範囲第8項乃至第10項のいずれかに記載の燃料電池システム。
  12.  燃料供給手段から前記燃料ガス流路へ前記燃料成分ガスを供給する燃料ガス供給路と、
     前記燃料電池からの排出燃料ガスを前記燃料ガス供給路に再循環させる燃料ガス循環路と、
     前記燃料ガス循環路に配置され、前記排出燃料ガスを前記燃料ガス供給路に再循環させる再循環ポンプと、
    を備え、
     前記平均流量制御手段は、前記再循環ポンプにより再循環させる前記排出燃料ガスの流量を制御することによって、前記燃料電池における前記燃料ガスの流量を制御する、請求の範囲第9項乃至第11項のいずれかに記載の燃料電池システム。
  13.  前記平均流量が、下記式(1)により算出される、請求の範囲第12項に記載の燃料電池システム。
      Qave=Qa+Qb/2・・・式(1)
       Qave:前記燃料ガス流路における前記燃料ガスの平均流量
       Qa:前記再循環ポンプにより再循環させる前記排出燃料ガスの流量
       Qb:前記燃料供給手段から供給される前記燃料成分ガスの流量
  14.  前記平均流量が、下記式(2)により算出される、請求の範囲第9項乃至第12項のいずれかに記載の燃料電池システム。
      Qave=nRT/P・・・(2)
       Qave:前記燃料ガス流路における前記燃料ガスの平均流量
       n:前記燃料ガス流路の全長の1/2の位置における前記燃料ガスのモル数
       R:気体定数
       T:燃料電池温度
       P:前記燃料ガス流路の全長の1/2の位置における前記燃料ガスの圧力
  15.  前記式(2)において、
     前記nが、前記燃料ガス流路に供給される前記燃料ガスに含まれる燃料成分のうち、前記燃料電池の発電量に対して最低限必要な燃料成分量の1/2が消費されたと仮定して算出され、
     前記Pが、下記式(3)により算出される、請求の範囲第14項に記載の燃料電池システム。
      P=(Pin+Pout)/2・・・(3)
       Pin:前記燃料ガス流路の入口における前記燃料ガスの圧力
       Pout:前記燃料ガス流路の出口における前記燃料ガスの圧力
  16.  前記平均流量が、下記式(4)により算出される、請求の範囲第12項に記載の燃料電池システム。
      Qave=n’RT/P・・・(4)
       Qave:前記燃料ガス流路における前記燃料ガスの平均流量
       n’:前記燃料ガス流路に供給された前記燃料ガスのうち、前記燃料供給手段から前記燃料ガス流路に供給された前記燃料成分の1/2が消費されたと仮定して算出される前記燃料ガス流路の全長の1/2の位置における前記燃料ガスのモル数
       R:気体定数
       T:燃料電池温度
       P:下記式(3)により算出される前記燃料ガス流路の全長の1/2の位置における前記燃料ガスの圧力
        P=(Pin+Pout)/2・・・(3)
         Pin:前記燃料ガス流路の入口における前記燃料ガスの圧力
         Pout:前記燃料ガス流路の出口における前記燃料ガスの圧力
  17.  前記平均流量制御手段は、前記平均流量の目標値に基づいて、前記燃料ガス流路の入口における前記燃料ガスの圧力及び/又は前記燃料ガス流路の出口における前記燃料ガスの圧力を制御する、請求の範囲第9項乃至第16項のいずれかに記載の燃料電池システム。
  18.  前記燃料電池の温度が80℃以上である、請求の範囲第1項乃至第17項のいずれかに記載の燃料電池システム。
PCT/JP2011/051776 2011-01-28 2011-01-28 燃料電池システム WO2012101818A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011526315A JP4868095B1 (ja) 2011-01-28 2011-01-28 燃料電池システム
PCT/JP2011/051776 WO2012101818A1 (ja) 2011-01-28 2011-01-28 燃料電池システム
KR1020127024690A KR101423853B1 (ko) 2011-01-28 2011-01-28 연료 전지 시스템
EP11856624.9A EP2669978B1 (en) 2011-01-28 2011-01-28 Fuel cell system
US13/574,709 US10003093B2 (en) 2011-01-28 2011-01-28 Fuel cell system including a fuel cell and a controller for controlling water vapor amount or average flow rate of a fuel gas
CN201180019370.4A CN102986070B (zh) 2011-01-28 2011-01-28 燃料电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051776 WO2012101818A1 (ja) 2011-01-28 2011-01-28 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2012101818A1 true WO2012101818A1 (ja) 2012-08-02

Family

ID=45781877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051776 WO2012101818A1 (ja) 2011-01-28 2011-01-28 燃料電池システム

Country Status (6)

Country Link
US (1) US10003093B2 (ja)
EP (1) EP2669978B1 (ja)
JP (1) JP4868095B1 (ja)
KR (1) KR101423853B1 (ja)
CN (1) CN102986070B (ja)
WO (1) WO2012101818A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190496A (ja) * 2017-04-28 2018-11-29 株式会社Soken 燃料電池システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091907B (zh) * 2016-11-22 2020-09-25 通用电气公司 燃料电池系统及其停机方法
US10985388B2 (en) * 2016-12-14 2021-04-20 Hyundai Motor Company Method and apparatus for estimating hydrogen crossover loss of fuel cell system
JP7110925B2 (ja) * 2018-11-09 2022-08-02 トヨタ自動車株式会社 燃料電池システム
US10916788B2 (en) * 2019-01-31 2021-02-09 Toyota Jidosha Kabushiki Kaisha Hydrogen supply system low pressure state estimator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146230A (ja) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd 燃料電池のセパレータ
JP2009117066A (ja) 2007-11-02 2009-05-28 Nissan Motor Co Ltd 燃料電池システムおよび燃料電池システムの制御方法
JP2009193817A (ja) 2008-02-14 2009-08-27 Toyota Motor Corp 燃料電池システム
JP2009259758A (ja) 2008-03-26 2009-11-05 Toyota Motor Corp 燃料電池システム及び燃料電池の運転方法
JP2010114039A (ja) 2008-11-10 2010-05-20 Toyota Motor Corp 燃料電池システム
WO2010064366A1 (ja) * 2008-12-02 2010-06-10 パナソニック株式会社 燃料電池
JP2010186696A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 燃料電池システム
JP2010205593A (ja) * 2009-03-04 2010-09-16 Toshiba Corp 燃料電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366818A (en) * 1991-01-15 1994-11-22 Ballard Power Systems Inc. Solid polymer fuel cell systems incorporating water removal at the anode
US5260143A (en) * 1991-01-15 1993-11-09 Ballard Power Systems Inc. Method and apparatus for removing water from electrochemical fuel cells
US6126311A (en) * 1998-11-02 2000-10-03 Claud S. Gordon Company Dew point sensor using mems
US6300000B1 (en) * 1999-06-18 2001-10-09 Gore Enterprise Holdings Fuel cell membrane electrode assemblies with improved power outputs and poison resistance
JP3530793B2 (ja) * 1999-12-28 2004-05-24 本田技研工業株式会社 燃料電池およびその運転方法
JP2001256988A (ja) * 2000-03-08 2001-09-21 Toyota Motor Corp 燃料電池システムおよび燃料電池の運転方法
US20050221134A1 (en) * 2004-04-06 2005-10-06 Liu Wen K Method and apparatus for operating a fuel cell
JP4924786B2 (ja) * 2004-09-06 2012-04-25 ソニー株式会社 燃料電池発電装置の運転方法及び燃料電池発電装置
JP2008269841A (ja) * 2007-04-17 2008-11-06 Toyota Motor Corp 燃料電池システム
JP2010009759A (ja) * 2008-06-24 2010-01-14 Toyota Motor Corp 膜評価方法、および、膜評価補助装置
JP2010067485A (ja) * 2008-09-11 2010-03-25 Panasonic Corp 燃料電池に供給する燃料の流量を制御する方法と燃料供給装置、それを用いた燃料電池システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146230A (ja) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd 燃料電池のセパレータ
JP2009117066A (ja) 2007-11-02 2009-05-28 Nissan Motor Co Ltd 燃料電池システムおよび燃料電池システムの制御方法
JP2009193817A (ja) 2008-02-14 2009-08-27 Toyota Motor Corp 燃料電池システム
JP2009259758A (ja) 2008-03-26 2009-11-05 Toyota Motor Corp 燃料電池システム及び燃料電池の運転方法
JP2010114039A (ja) 2008-11-10 2010-05-20 Toyota Motor Corp 燃料電池システム
WO2010064366A1 (ja) * 2008-12-02 2010-06-10 パナソニック株式会社 燃料電池
JP2010186696A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 燃料電池システム
JP2010205593A (ja) * 2009-03-04 2010-09-16 Toshiba Corp 燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669978A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190496A (ja) * 2017-04-28 2018-11-29 株式会社Soken 燃料電池システム

Also Published As

Publication number Publication date
EP2669978A4 (en) 2015-05-20
KR20120136367A (ko) 2012-12-18
JP4868095B1 (ja) 2012-02-01
KR101423853B1 (ko) 2014-07-25
JPWO2012101818A1 (ja) 2014-06-30
CN102986070B (zh) 2015-06-24
CN102986070A (zh) 2013-03-20
US10003093B2 (en) 2018-06-19
EP2669978B1 (en) 2016-07-13
US20130295477A1 (en) 2013-11-07
EP2669978A1 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP4868094B1 (ja) 燃料電池システム
EP2269257B1 (en) Fuel cell system and operating method of a fuel cell
RU2598361C2 (ru) Управление работой резервного электрического генератора с батареей топливных пом-элементов
US9306230B2 (en) Online estimation of cathode inlet and outlet RH from stack average HFR
US9385380B2 (en) Fuel cell humidification management method and system
JP2006210004A (ja) 燃料電池システム
JP2010055927A (ja) 燃料電池システム
JP4868095B1 (ja) 燃料電池システム
JP2004039357A (ja) 固体高分子型燃料電池
WO2015001845A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
JP2007066565A (ja) 燃料電池システム
US10164275B2 (en) Fuel cell system
JP2008153032A (ja) 燃料電池システム
US9318760B2 (en) Fuel cell and method of operating fuel cell
JP5509728B2 (ja) 燃料電池システム
JP5212765B2 (ja) 燃料電池システム
US20140377674A1 (en) Fuel cell air flow method and system
JP2007250438A (ja) 燃料電池および燃料電池システム
JP2010177078A (ja) 燃料電池の性能判断方法
JP2008041624A (ja) 燃料電池システム
JP2008004310A (ja) 燃料電池の温度制御方法および温度制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019370.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011526315

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13574709

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011856624

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011856624

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024690

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE