WO2012101805A1 - 高電気抵抗アルミニウム合金 - Google Patents
高電気抵抗アルミニウム合金 Download PDFInfo
- Publication number
- WO2012101805A1 WO2012101805A1 PCT/JP2011/051615 JP2011051615W WO2012101805A1 WO 2012101805 A1 WO2012101805 A1 WO 2012101805A1 JP 2011051615 W JP2011051615 W JP 2011051615W WO 2012101805 A1 WO2012101805 A1 WO 2012101805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- aluminum alloy
- casting
- toughness
- present
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
- C22C21/04—Modified aluminium-silicon alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D25/00—Special casting characterised by the nature of the product
- B22D25/06—Special casting characterised by the nature of the product by its physical properties
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/02—Casings or enclosures characterised by the material thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K5/00—Casings, cabinets or drawers for electric apparatus
- H05K5/04—Metal casings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/06—Cast metal casings
Definitions
- the present invention generally relates to a high electrical resistance aluminum alloy, and more particularly to a high electrical resistance aluminum alloy casting excellent in toughness and corrosion resistance, which is suitable for use in manufacturing a motor casing, and a method for manufacturing the same.
- AC motors are frequently used as power sources.
- An AC motor is composed of a stator and a rotor, an induction motor in which an electromagnet is adopted for both the stator and the rotor, and an electromagnet is adopted for either the stator or the rotor, and a permanent magnet is used for the other. Is roughly divided into synchronous motors.
- Both the stator and the rotor of the induction motor are composed of a coil element that generates magnetic flux and an iron core element that concentrates the magnetic flux generated by the coil element.
- a current is supplied to at least one coil element of the stator and the rotor, a magnetic field is generated according to the electromagnetic induction law, a magnetic flux is formed between the stator and the rotor, and a rotational force is generated on the rotor.
- the stator or rotor in which the electromagnet of the synchronous motor is employed is configured in the same manner as that of the induction motor.
- the stator or rotor in which the permanent magnet is employed includes a magnet element that generates magnetic flux, and a magnet element. It is comprised from the core element which concentrates the magnetic flux generated by.
- a magnetic field is generated in accordance with the electromagnetic induction law, and a magnetic flux is formed between the stator and the rotor. A rotational force is generated against the child.
- the magnetic flux formed by the magnetic field generated in accordance with the electromagnetic induction law leaks not only between the stator and the rotor but also to the periphery thereof. Therefore, if the casing of the motor is excellent in electrical conductivity, eddy current is generated in the casing, resulting in eddy current loss, and the casing is heated to a high temperature.
- Patent Document 1 discloses a technique for improving heat dissipation by using an aluminum alloy having high thermal conductivity for the casing.
- Patent Document 2 is generated by installing an opening at a location where eddy current is generated in the casing, or adopting a ceramic or resin that is a non-magnetic material and has high electrical resistivity as the casing.
- Patent Document 3 proposes an aluminum alloy having a high electrical resistivity that can be used as a casing of an electric motor.
- Patent Document 1 Although the aluminum alloy disclosed in Patent Document 1 is excellent in heat dissipation, no countermeasures against eddy current loss have been taken, and the problem of reduction in the output of the motor accompanying the generation of eddy current has been solved. Absent.
- the aluminum alloy disclosed in Patent Document 3 has a sufficiently high electrical resistivity and can solve the problems remaining in the invention of Patent Document 2, but according to the study by the present inventors, In addition to insufficient strength, toughness, and corrosion resistance required for the casing of the electric motor, and a large amount of expensive Mn, Mg, and Cu, it has been found that there is an economical problem.
- the present invention has been devised to solve the above-described problems, and has as its main object to provide a high electrical resistance aluminum alloy casting that can be suitably used for manufacturing a motor casing and a manufacturing method thereof. .
- the present invention also provides a motor housing formed by the aluminum alloy casting.
- Si 11.0 to 13.0 mass%
- Fe 0.2 to 1.0 mass%
- Mn 0.2 to 2.2 mass%
- Mg 0.7 to 1 3 mass%
- Cr 0.5 to 1.3 mass%
- Ti 0.1 to 0.5 mass%
- the balance being Al and unavoidable impurities
- the content of Cu as an unavoidable impurity being
- a high electrical resistance aluminum alloy casting excellent in toughness and corrosion resistance characterized by having a composition limited to 0.2% by mass or less.
- an electric motor casing formed by such an aluminum alloy casting is provided.
- the aluminum alloy casting is preferably cast by any one of a gravity casting method, a low pressure casting method, a die casting method, and a squeeze method. Such aluminum alloy castings may be used without being subjected to heat treatment after casting, or may be subjected to heat treatment after casting.
- the high electrical resistance aluminum alloy casting according to the present invention is subjected to a solution treatment at 510 to 530 ° C. for 2 to 5 hours after casting, and further after that, at 160 to 200 ° C. for 4 to 8 hours. Artificial age hardening treatment has been performed.
- Si 11.0 to 13.0% by mass
- Fe 0.2 to 1.0% by mass
- Mn 0.2 to 2.2% by mass
- Mg 0.7 to 1.3% by mass
- Cr 0.5 to 1.3% by mass
- Ti 0.1 to 0.5% by mass
- the balance being Al and inevitable impurities
- the content of Cu is inevitable impurities
- a method for producing a high electrical resistance aluminum alloy casting excellent in toughness and corrosion resistance characterized by casting a molten aluminum alloy having a composition limited to 0.2% by mass or less.
- the casting is preferably performed by any one of a gravity casting method, a low pressure casting method, a die casting method, and a squeeze method. Moreover, it is not necessary to heat-process after aluminum alloy casting, and you may heat-process.
- a solution treatment treatment is performed at 510 to 530 ° C. for 2 to 5 hours, followed by an artificial age hardening treatment at 160 to 200 ° C. for 4 to 8 hours.
- the aluminum alloy casting that is produced is the housing of the motor.
- the aluminum alloy casting of the present invention has high electrical resistivity and excellent toughness, it can be suitably used as a casing for an electric motor.
- the present inventors have intensively studied a means for increasing the electrical resistivity at a low cost for an aluminum alloy having high strength, high toughness, and high corrosion resistance that can be suitably used as a casing of an electric motor.
- an aluminum alloy having high corrosion resistance and high electrical resistivity can be obtained by adding appropriate amounts of Fe and Mn to an Al—Si based alloy.
- Mg, Cr and Ti it was further determined that the electrical resistance can be further increased, the strength and toughness can be improved by refining the crystal grains, and the corrosion resistance can be improved, thereby completing the present invention. It came.
- One embodiment of the present invention is a high electrical resistance Al—Si based alloy for casting having excellent toughness and corrosion resistance, Si: 11.0 to 13.0 mass%, Fe: 0.2 to 1.0 mass %, Mn: 0.2 to 2.2 mass%, Mg: 0.7 to 1.3 mass%, Cr: 0.5 to 1.3 mass%, and Ti: 0.1 to 0.5 mass% In which the balance is made of Al and inevitable impurities, and the content of Cu as the inevitable impurities is limited to 0.2% by mass or less.
- Another embodiment of the present invention is a high electrical resistance Al—Si based alloy casting excellent in toughness and corrosion resistance, wherein Si: 11.0 to 13.0 mass%, Fe: 0.2 to 1.0 % By mass, Mn: 0.2 to 2.2% by mass, Mg: 0.7 to 1.3% by mass, Cr: 0.5 to 1.3% by mass, and Ti: 0.1 to 0.5% by mass %, The balance is made of Al and inevitable impurities, and the content of Cu as an inevitable impurity is limited to 0.2% by mass or less.
- Further embodiments of the present invention include: Si: 11.0-13.0 wt%, Fe: 0.2-1.0 wt%, Mn: 0.2-2.2 wt%, Mg: 0.7 -1.3% by mass, Cr: 0.5-1.3% by mass, and Ti: 0.1-0.5% by mass, with the balance being Al and inevitable impurities, containing Cu as an inevitable impurity
- the present invention relates to the use of an alloy having a composition whose amount is limited to 0.2% by mass or less or a casting of the alloy as a high electrical resistance material excellent in toughness and corrosion resistance.
- Si 11.0-13.0 mass%
- Fe 0.2-1.0 mass%
- Mn for the production of a high electrical resistance material excellent in toughness and corrosion resistance 0.2 to 2.2% by mass
- Mg 0.7 to 1.3% by mass
- Cr 0.5 to 1.3% by mass
- Ti 0.1 to 0.5% by mass
- the balance Relates to the use of an alloy or a casting of the alloy having a composition in which the content of Cu as an inevitable impurity is limited to 0.2% by mass or less.
- Si 11.0 to 13.0 mass%
- the addition of Si up to the Al—Si eutectic point has the effect of improving strength, toughness, and castability without impairing the corrosion resistance, so in the present invention it is added within the range up to the eutectic point.
- the eutectic composition is Al-12.6% by mass Si, but 0.7 to 1.3% by mass of Mg is added to the alloy of the present invention.
- the eutectic point when Al is added at 7 mass% is Al-13.1 mass% Si
- the eutectic point when Mg is added at 1.3 mass% is Al-13.8 mass% Si.
- the Si addition amount of 11.0 to 13.0% by mass in the alloy of the present invention is equal to or lower than the eutectic point.
- the addition amount of Si is less than 11.0% by mass, the effect of improving strength, toughness, and castability is insufficient, which is not preferable.
- addition of Si beyond the eutectic point is not preferable because the castability is lowered due to an increase in the liquidus temperature and the toughness is lowered when the primary crystal becomes Si.
- Fe 0.2 to 1.0% by mass
- the addition of 0.2 to 1.0% by mass of Fe has the effect of preventing seizure to the mold during casting, and also has the effect of improving strength and increasing electrical resistance. In the invention, it is added within that range. If the amount of Fe added is less than 0.2% by mass, the effect of preventing seizure to the mold during casting is insufficient, and a significant strength improvement effect is not recognized, which is not preferable. On the other hand, if the addition amount of Fe exceeds 1.0% by mass in the Al—Si based alloy, an Al—Fe—Si based coarse intermetallic compound is formed, and brittle fracture tends to occur, resulting in a decrease in toughness. It is not preferable.
- Mn 0.2 to 2.2% by mass
- the addition of 0.2 to 2.2% by mass of Mn has the effect of improving the strength and increasing the electric resistance while maintaining the corrosion resistance.
- Addition of 0.2 to 2.2% by mass of Mn to an Al—Si based alloy containing 0.2 to 1.0% by mass of Fe contributes to improvement of toughness, but 2.2% by mass of
- the excessive addition of Mn causes embrittlement accompanying the formation of an Al—Mn—Si based coarse intermetallic compound, resulting in a decrease in toughness.
- the range is 2 to 2.2% by mass. If the amount of Mn added is less than 0.2% by mass, a significant strength improving effect, toughness improving effect and electrical resistance increasing effect are not recognized, which is not preferable. On the other hand, as described above, if the amount of Mn added exceeds 2.2% by mass, the toughness decreases, which is not preferable.
- Mg 0.7 to 1.3% by mass
- the addition of 0.7 to 1.3% by mass of Mg is not only due to the strength improvement effect accompanying the addition, but also by performing a heat treatment for artificial age hardening described in detail later.
- it is added within the title range because it has a further effect of improving the strength and an effect of increasing the electric resistance. If the added amount of Mg is less than 0.7% by mass, the above effect is insufficient, which is not preferable.
- the added amount of Mg exceeds 1.3% by mass, the above-described effect is saturated, while further addition is possible with the castability associated with the formation of oxides (in the melt) during casting. This is not preferable because it becomes a cause of deterioration and an increase in cost.
- Cr 0.5 to 1.3% by mass
- Ti 0.1 to 0.5% by mass
- Cr is added in the range of 0.5 to 1.3% by mass
- Ti is added in the range of 0.1 to 0.5% by mass. If the addition amount of Cr is less than 0.5% by mass or the addition amount of Ti is less than 0.1% by mass, significant toughness improvement effect, strength improvement effect, and corrosion resistance improvement effect are not recognized, which is not preferable.
- the toughness decreases due to the formation of coarse Al—Cr intermetallic compounds, such being undesirable.
- the addition amount of Ti exceeds 0.5% by mass, the toughness improving effect, the strength improving effect, and the corrosion resistance improving effect are saturated, and further addition causes an increase in cost, which is not preferable.
- Cu have been conventionally added to Al—Si alloys for the purpose of improving the strength.
- the addition of Cu is effective for improving the strength, but deteriorates toughness and corrosion resistance. Therefore, in the present invention, various melting raw materials such as metal, scrap and additive alloy are selected, and the content of Cu as an impurity is 0.2% by mass or less, preferably 0.1% by mass or less, more preferably 0.05 mass% or less, most preferably 0.01 mass% or less.
- the melting raw material is selected in consideration of the effect and cost.
- Si 11.0 to 13.0% by mass
- Fe 0.2 to 1.0% by mass
- Mn 0.2 to 2.2% by mass
- Mg 0.7 -1.3% by mass
- Cr 0.5-1.3% by mass
- Ti 0.1-0.5% by mass
- the present invention relates to a method for producing an aluminum alloy casting, characterized by casting a molten aluminum alloy having a composition whose amount is limited to 0.2% by mass or less.
- an aluminum alloy motor casing is conventionally manufactured by a known casting method such as a gravity casting method, a low pressure casting method, a die casting method, or a squeeze method.
- a known casting method such as a gravity casting method, a low pressure casting method, a die casting method, or a squeeze method.
- these casting methods can be suitably used in the practice of the present invention.
- the aluminum alloy casting of the present invention has high strength, high toughness and high corrosion resistance even when it is cast, and has a high electrical resistivity, so that it can be suitably used as a casing for an electric motor. It is possible to further improve the strength and corrosion resistance by performing the heat treatment.
- the heat treatment for artificial age hardening is preferably 160 to 200 ° C. and 4 to 8 hours.
- the heat treatment temperature is less than 160 ° C. or the heat treatment time is less than 4 hours, there is little precipitation of fine intermetallic compounds in the heat treatment, and the effect of further improving the strength by performing artificial age hardening treatment is obtained. This is not preferable because it is insufficient and there is little significant difference from the case where heat treatment for artificial age hardening is not performed.
- the heat treatment temperature exceeds 200 ° C. or the heat treatment time exceeds 8 hours a so-called overaging phenomenon occurs due to the growth and coarsening of the deposited intermetallic compound, which in turn has the effect of improving the strength. This is not preferable because the electrical resistivity is also lowered.
- the present invention it is preferable to perform heat treatment for solution treatment after casting and before the artificial age hardening treatment.
- the heat treatment for forming the solution is preferably performed at 510 to 530 ° C. for 2 to 5 hours. If the heat treatment temperature is less than 510 ° C. or if the heat treatment time is less than 2 hours, the effect of solution treatment is not sufficient, and there is less significant difference from the case where heat treatment for solution treatment is not performed. Absent. On the other hand, 530 ° C. and 5 hours are sufficient for the heat treatment for solution treatment, and heat treatment exceeding this temperature and time is meaningless and is not preferable.
- the aluminum alloy casting of the present invention can be suitably used for applications requiring a material having high strength, high toughness, high corrosion resistance and high electrical resistivity even for applications other than the casing of an electric motor. Is.
- each characteristic in an Example was evaluated with the following method.
- (1) Strength The strength was evaluated by a so-called tensile test method. That is, a tensile test piece having the shape shown in FIG. 1 was prepared by cutting from each test material, the distance between the gripping devices was 75 mm, the tensile speed was 2.0 mm / min, and the tensile strength at room temperature was 0.2%. Yield strength and elongation at break were measured. At that time, 0.2% proof stress was calculated by the offset method. That is, in the relationship between the load and the displacement shown in FIG.
- the displacement is parallel to the tangential line OE and the tangent line OE with respect to the elastic deformation region of the load-displacement curve in which the load and the displacement are linear.
- the parallel line AF offset by 0.2% was drawn, the intersection C between the parallel line AF and the load-mutation curve was determined, and the 0.2% proof stress was calculated from the load P at the intersection C.
- Toughness Toughness was evaluated by a so-called Charpy impact test method. That is, a test piece having a V-notch notch shape shown in FIG. 3 is prepared by cutting from each test material, and the two points a1 and a2 in FIG. 3 cannot be moved in the b direction at room temperature.
- a hammer with a mass of 26 kg and a shape shown in FIG. 4 is moved in the direction of impact of the test piece shown in FIG. 3 at a speed of 4.0102 m / s with respect to point b.
- the impact was applied, the test piece was broken by the impact, the difference in the kinetic energy of the hammer before and after the break of the test piece was measured as the absorbed energy when the test piece was broken, and the Charpy impact value was calculated from the absorbed energy .
- (3) Corrosion resistance Corrosion resistance was evaluated according to a so-called salt spray test. That is, while preparing a test piece of 65 ⁇ 145 ⁇ 1.0 mm as shown in FIG.
- Aluminum alloy test materials of alloy numbers 1 to 6 which are aluminum alloy castings whose component composition satisfies the scope of the present invention, and the component composition does not meet the scope of the present invention.
- Aluminum alloy test material of alloy number 7 to 18 (comparative example), which is an aluminum alloy casting, and aluminum alloy test material of alloy number 19 (conventional example), which is an aluminum alloy cast within the range disclosed in Patent Document 3 was cast by a die casting method.
- the aluminum alloy test materials of alloy numbers 3 to 7 are examples of the present invention and comparative examples when the Cu content is changed.
- the aluminum alloy test materials of alloy numbers 8 to 9 are comparative examples in which Si is out of the scope of the present invention.
- the aluminum alloy test materials of alloy numbers 10 to 11 are comparative examples in which Fe is out of the scope of the present invention.
- the aluminum alloy test materials having alloy numbers 12 to 13 are comparative examples in which Mn is out of the scope of the present invention.
- the aluminum alloy test materials having alloy numbers 14 to 15 are comparative examples in which Mg is out of the scope of the present invention.
- Alloy No. 16-17 aluminum alloy test materials are comparative examples in which Cr is out of the scope of the present invention.
- the aluminum alloy test material of alloy number 18 is a comparative example in which Ti deviates from the scope of the present invention.
- the aluminum alloy test materials of the examples of the present invention were (a) as-cast, (b) subjected to solution treatment at 520 ° C. for 3 hours, and then water-cooled.
- the electrical resistivity is slightly lower than that of the conventional aluminum alloy test material subjected to the same treatment, but the strength, toughness and corrosion resistance. It is understood that it is excellent. That is, the aluminum alloy test material of the example of the present invention has a significantly high elongation at break and Charpy value, a high tensile strength, and a small mass change of the test material before and after the neutral salt spray test.
- An aluminum alloy casting having such characteristics can be suitably used for an electric motor casing.
- Alloy No. 1 which is a comparative example in which any of Si, Fe, Ti, Mn, Mg, or Cr is out of the scope of the present invention when the Cu content is changed and any of the present invention and comparative examples. 2 and 4 to 18 are summarized in Tables 4-5 below.
- each aluminum alloy test material of the present invention has a Charpy impact value of 0.90 or more, and a mass change before and after the salt spray is 0.97 ⁇ g.
- the electrical resistivity satisfies all of 59.0 m ⁇ m or more, but each of the aluminum alloy test materials of the comparative examples has any of these characteristics deviated from the desired value, and (b) a solution at 520 ° C. for 3 hours.
- each of the aluminum alloy test materials of the present invention has a Charpy impact value of 0.90 or more, before and after spraying with salt water.
- each of the aluminum alloy test materials of the comparative examples deviates from any desired value. That is, the aluminum alloy test material of the example of the present invention is provided while harmonizing each characteristic of strength, toughness, corrosion resistance, and electrical resistivity.
- An aluminum alloy casting having such characteristics can be suitably used for an electric motor casing.
- the electrical resistivity becomes 71.0 m ⁇ m or more, and when the solution treatment and artificial age hardening treatment are performed after casting, the electrical resistivity remains cast.
- the tensile strength can be 360 MPa or more and the mass change before and after the salt spray test can be 0.9 ⁇ g or less.
- the intermetallic compound is very finely and uniformly dispersed, and no coarse intermetallic compound is observed.
- the aluminum alloy test material of Alloy No. 19 according to the conventional example the presence of a coarse intermetallic compound can be confirmed.
- the difference in tensile strength, breaking elongation, and Charpy impact value between these test materials shown in Table 3 is considered to be based on such a difference in metal structure.
- the aluminum alloy casting of the present invention has characteristics of high electrical resistance, high toughness and high corrosion resistance, and is lightweight, so that it can be suitably used as a casing for an electric motor.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Conductive Materials (AREA)
- Manufacture Of Motors, Generators (AREA)
- Motor Or Generator Frames (AREA)
Abstract
Description
また本発明は、上記アルミニウム合金鋳物によって形成された電動機筐体をも提供する。
Al-Si系の共晶点までのSiの添加は、耐食性を損ねずに、強度及び靱性並びに鋳造性を向上させる効果があるので、本発明においては共晶点までの範囲で添加される。Al-Siの2元素の平衡状態図では、共晶組成はAl-12.6質量%Siであるが、本発明の合金には0.7~1.3質量%のMgが添加され、0.7質量%のMgが添加された場合の共晶点はAl-13.1質量%Si、1.3質量%のMgが添加された場合の共晶点はAl-13.8質量%Siであるから、本発明の合金におけるSi添加量11.0~13.0質量%は、共晶点以下である。Siの添加量が11.0質量%未満であると、強度及び靱性並びに鋳造性を向上させる効果が不十分であり、好ましくない。他方、共晶点を超えてのSiの添加は、液相線温度の上昇によって鋳造性が低下すると共に、初晶がSiとなることによって、靱性が低下することになるので、好ましくない。
Al基の鋳造合金において、0.2~1.0質量%のFeの添加は、鋳造時の鋳型への焼付防止の効果がある他、強度向上効果、電気抵抗増加の効果があるので、本発明においては、その範囲において添加される。Feの添加量が0.2質量%未満では、鋳造時の鋳型への焼付防止の効果が不十分である他、有意の強度向上効果も認められないので、好ましくない。他方、Al-Si系合金においてFeの添加量が1.0質量%を超過すると、Al-Fe-Si系の粗大金属間化合物が生成し、脆性破壊しやすくなって、靱性が低下するので、好ましくない。
Al基合金において、0.2~2.2質量%のMnの添加は、耐食性を維持しつつ、強度を向上させると共に、電気抵抗を増加させる効果がある。また0.2~1.0質量%のFeを含むAl-Si系合金への0.2~2.2質量%のMnの添加は、靱性の向上に寄与するが、2.2質量%を超えてのMnの添加は、Al-Mn-Si系の粗大金属間化合物の生成に伴っての脆化をもたらすことにより、靱性が低下するので、本発明においては、Mnの添加量を0.2~2.2質量%の範囲とする。Mnの添加量が0.2質量%未満では、有意の強度向上効果、靱性向上効果及び電気抵抗増加効果が認められないので、好ましくない。他方、前述のように、Mnの添加量が2.2質量%を超過すると、靱性が低下するので、好ましくない。
Al-Si系の合金において、0.7~1.3質量%のMgの添加は、添加に伴う強度向上効果の他、更に後に詳述する人工時効硬化のための熱処理を施すことによる、より一層の強度向上効果、及び電気抵抗増加効果があるので、本発明においては、標記範囲において添加される。Mgの添加量が0.7質量%未満では、前述の効果が不十分であるので、好ましくない。他方、Mgの添加量が1.3質量%を超過すると、前述の効果は飽和する一方、更なる添加は、鋳造時に(溶湯中で)酸化物が形成されることに伴っての鋳造性の悪化要因になると共に、コストアップの要因ともなるので、好ましくない。
Al基合金におけるCr及びTiの添加は、電気抵抗増加の効果の他、結晶粒微細化による強度及び靱性向上効果、耐食性向上効果がある。そこで、本発明では、0.5~1.3質量%の範囲でCrを、0.1~0.5質量%の範囲でTiを添加する。Crの添加量が0.5質量%未満、又はTiの添加量が0.1質量%未満であると、有意の靱性向上効果、強度向上効果、耐食性向上効果が認められず、好ましくない。他方、Crの添加量が1.3質量%を超過すると、粗大なAl-Cr系の金属間化合物の形成により、靱性が低下するため、好ましくない。また、Tiの添加量が0.5質量%を超過すると、靱性向上効果、強度向上効果、耐食性向上効果は飽和し、更なる添加はコストアップの要因となるので、好ましくない。
Cuは、従来、強度向上を目的としてAl-Si系合金に添加されてきているが、Cuの添加は、強度向上に有効である反面、靱性及び耐食性を悪化させる。そのため、本発明においては、地金、スクラップ、添加合金等の溶解原料を種々選択し、不純物としてのCuの含有量を0.2質量%以下、好ましくは0.1質量%以下、更に好ましくは0.05質量%以下、最も好ましくは0.01質量%以下とする。このようにCu含有量は少ないほど好適であるが、他方でCu含有量が少ないアルミニウム地金の使用はコストアップにつながるので、効果とコストを勘案して、溶解原料を選択する。
本発明の他の実施形態は、Si:11.0~13.0質量%、Fe:0.2~1.0質量%、Mn:0.2~2.2質量%、Mg:0.7~1.3質量%、Cr:0.5~1.3質量%、及びTi:0.1~0.5質量%を含み、残部がAl及び不可避不純物からなり、不可避不純物としてのCuの含有量が0.2質量%以下に制限された組成を有するアルミニウム合金溶湯を、鋳造することを特徴とする、アルミニウム合金鋳物の製造方法に関する。
前記特許文献1及び特許文献3に開示されているように、従来より、アルミニウム合金製の電動機筐体は、重力鋳造法、低圧鋳造法、ダイカスト鋳造法、スクイズ製法などの既知の鋳造方法によって製造されているが、これらの鋳造方法を、本発明の実施に当たっても好適に利用することができる。
(1)強度
強度は、いわゆる引張試験方法により評価した。すなわち、各試験材から切削加工により図1に示す形状の引張試験片を調製し、つかみ装置間の距離を75mm、引張速度を2.0mm/minとして、室温にて引張強度、0.2%耐力及び破断伸びを測定した。その際、0.2%耐力はオフセット法により算出した。すなわち、図2に示す荷重と変位の関係において、荷重と変位が直線的関係を示す荷重-変位曲線(load-displacement curve)の弾性変形領域に対して接線OE、及び接線OEと平行で変位を0.2%分オフセットさせた平行線AFを描き、平行線AFと荷重-変異曲線との交点Cを求め、交点Cの荷重Pより0.2%耐力を算出した。
(2)靱性
靱性は、いわゆるシャルピー衝撃試験方法により評価した。すなわち、各試験材から切削加工により、図3に示すノッチ形状がVノッチの試験片を調製し、室温にて図3のa1、a2の2点をb方向には移動できず、b以外の方向には自在に移動できるように支持したまま、質量が26kgで図4に示す形状のハンマーを、b点に対して、4.0102m/sの速度で図3に示す試験片の衝撃方向に衝撃を作用させ、その衝撃により試験片を破断し、試験片の破断前後のハンマーの運動エネルギーの差を試験片の破断の際の吸収エネルギーとして測定し、その吸収エネルギーよりシャルピー衝撃値を算出した。
(3)耐食性
耐食性は、いわゆる塩水噴霧試験に準じて評価した。すなわち、各試験材から切削加工により図5に示すような65×145×1.0mmの試験片を調製する一方で、無水酢酸1cm3と塩化第二銅2水和物0.26gを、事前に調製した5質量%塩化ナトリウム水溶液に溶解して試験液とし、図5に示す試験片の、噴霧面と記載した面に、流量1.5cm3/(80cm2・h)で、試験液を200時間噴霧する試験を実施し、試験前後の試験片の質量変化を評価した。
(4)電気抵抗率
電気抵抗率は、各試験材から図6に示すような180×150×6mmの試験片を調製し、渦電流式の導電率計(商品名、Autosigma 3000; General Electric Company(CT,USA)製)により電気伝導度を測定し、その測定値から算出した。
以下の表1に示すように、成分組成が本発明の範囲を満たすアルミニウム合金鋳物である合金番号1~6(本発明例)のアルミニウム合金試験材と、成分組成が本発明の範囲を満たさないアルミニウム合金鋳物である合金番号7~18(比較例)のアルミニウム合金試験材、成分組成が特許文献3に開示される範囲内のアルミニウム合金鋳物である合金番号19(従来例)のアルミニウム合金試験材を、ダイカスト鋳造法により鋳造した。合金番号3~7のアルミニウム合金試験材は、Cuの含有量を変化させた場合の本発明例及び比較例である。合金番号8~9のアルミニウム合金試験材は、Siが本発明の範囲から外れる比較例である。合金番号10~11のアルミニウム合金試験材は、Feが本発明の範囲から外れる比較例である。合金番号12~13のアルミニウム合金試験材は、Mnが本発明の範囲から外れる比較例である。合金番号14~15のアルミニウム合金試験材は、Mgが本発明の範囲から外れる比較例である。合金番号16~17アルミニウム合金試験材は、Crが本発明の範囲から外れる比較例である。合金番号18のアルミニウム合金試験材は、Tiが本発明の範囲から外れる比較例である。
上記の各アルミニウム合金試験材について、前述の評価方法に従って、強度、靱性、耐食性、電気抵抗率の各特性を評価した。
それらの結果のうち、まず代表的な本発明例である合金番号3と従来例である合金番号19の比較を以下の表2~3にまとめる。
また本発明に係るアルミニウム合金試験材は、鋳造したままにおいて、電気抵抗率が71.0mΩm以上となること、並びに鋳造後に溶体化処理及び人工時効硬化処理を施すと、電気抵抗率は鋳造したままのものよりも低下するが、引張強度を360MPa以上にすることができるとともに、塩水噴霧試験前後の質量変化を0.9μg以下にすることができること、が分かる。
上述の試験材のうち、(b)溶体化処理、水冷、人工時効硬化処理を施した後の本発明例に係る合金番号3のアルミニウム合金試験材と、同じく溶体化処理、水冷、人工時効硬化処理を施した後の従来例に係る合金番号19のアルミニウム合金試験材について、その金属組織を顕微鏡により観察した。
図7は、本発明例に係る合金番号3のアルミニウム合金試験材の金属組織を示し、図8は比較例に係る合金番号19のアルミニウム合金試験材の金属組織を示す。これらの顕微鏡写真から分かるように、本発明例に係る合金番号3のアルミニウム合金試験材では、金属間化合物が非常に細かく均一に分散しており、粗大な金属間化合物は認められない。これに対して、従来例に係る合金番号19のアルミニウム合金試験材では、粗大な金属間化合物の存在が確認できる。表3に示された、これら試験材間の引張強度、破断伸び、シャルピー衝撃値における差異は、このような金属組織の差異に基づくものと考えられる。
Claims (10)
- Si:11.0~13.0質量%、Fe:0.2~1.0質量%、Mn:0.2~2.2質量%、Mg:0.7~1.3質量%、Cr:0.5~1.3質量%、及びTi:0.1~0.5質量%を含み、残部がAl及び不可避不純物からなり、不可避不純物としてのCuの含有量が0.2質量%以下に制限された組成を有することを特徴とする、靱性に優れた高電気抵抗アルミニウム合金鋳物。
- 重力鋳造法、低圧鋳造法、ダイカスト鋳造法、スクイズ製法の何れかにより鋳造されてなる請求項1に記載のアルミニウム合金鋳物。
- 鋳造後に熱処理が施されていないことを特徴とする請求項2に記載のアルミニウム合金鋳物。
- 鋳造後、510~530℃、2~5時間の溶体化処理が施され、更にその後に160~200℃、4~8時間の人工時効硬化処理が施されていることを特徴とする請求項2に記載のアルミニウム合金鋳物。
- 請求項1から4の何れか一項に記載のアルミニウム合金鋳物により形成されてなる電動機筐体。
- Si:11.0~13.0質量%、Fe:0.2~1.0質量%、Mn:0.2~2.2質量%、Mg:0.7~1.3質量%、Cr:0.5~1.3質量%、及びTi:0.1~0.5質量%を含み、残部がAl及び不可避不純物からなり、不可避不純物としてのCuの含有量が0.2質量%以下に制限された組成を有するアルミニウム合金溶湯を鋳造することを特徴とする、靱性に優れた高電気抵抗アルミニウム合金鋳物の製造方法。
- 重力鋳造法、低圧鋳造法、ダイカスト鋳造法、スクイズ製法の何れかにより鋳造することを特徴とする、請求項6に記載のアルミニウム合金鋳物の製造方法。
- 鋳造後に熱処理を施さないことを特徴とする請求項7に記載のアルミニウム合金鋳物の製造方法。
- 鋳造後、510~530℃、2~5時間の溶体化処理を施した後、更に160~200℃、4~8時間の人工時効硬化処理を施すことを特徴とする請求項7に記載のアルミニウム合金鋳物の製造方法。
- アルミニウム合金鋳物が電動機の筐体である請求項6から9の何れか一項に記載の製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2013008748A MX2013008748A (es) | 2011-01-27 | 2011-01-27 | Aleacion de aluminio de alta resistencia electrica. |
JP2012554586A JP5532149B2 (ja) | 2011-01-27 | 2011-01-27 | 高電気抵抗アルミニウム合金 |
CA2825528A CA2825528A1 (en) | 2011-01-27 | 2011-01-27 | High electric resistance aluminum alloy |
CN201180065881.XA CN103328668B (zh) | 2011-01-27 | 2011-01-27 | 高电阻铝合金 |
KR1020137022499A KR20130130037A (ko) | 2011-01-27 | 2011-01-27 | 고 전기 저항 알루미늄 합금 |
EP11856829.4A EP2669396B1 (en) | 2011-01-27 | 2011-01-27 | High electric resistance aluminum alloy |
US13/982,108 US20130307383A1 (en) | 2011-01-27 | 2011-01-27 | High electric resistance aluminum alloy |
PCT/JP2011/051615 WO2012101805A1 (ja) | 2011-01-27 | 2011-01-27 | 高電気抵抗アルミニウム合金 |
TW101101409A TWI448560B (zh) | 2011-01-27 | 2012-01-13 | High resistance aluminum alloy casting and its manufacturing method and motor housing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/051615 WO2012101805A1 (ja) | 2011-01-27 | 2011-01-27 | 高電気抵抗アルミニウム合金 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012101805A1 true WO2012101805A1 (ja) | 2012-08-02 |
Family
ID=46580408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051615 WO2012101805A1 (ja) | 2011-01-27 | 2011-01-27 | 高電気抵抗アルミニウム合金 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20130307383A1 (ja) |
EP (1) | EP2669396B1 (ja) |
JP (1) | JP5532149B2 (ja) |
KR (1) | KR20130130037A (ja) |
CN (1) | CN103328668B (ja) |
CA (1) | CA2825528A1 (ja) |
MX (1) | MX2013008748A (ja) |
TW (1) | TWI448560B (ja) |
WO (1) | WO2012101805A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063320A1 (ja) * | 2014-10-23 | 2016-04-28 | 株式会社大紀アルミニウム工業所 | ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト |
JP2021136767A (ja) * | 2020-02-26 | 2021-09-13 | Kyb株式会社 | 回転電機及び回転電機の製造方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014010678A1 (ja) * | 2012-07-12 | 2016-06-23 | 昭和電工株式会社 | ハードディスクドライブ装置ケースボディ用素形材の製造方法およびケースボディ用素形材 |
CN105220025B (zh) | 2014-06-06 | 2018-03-16 | 华为技术有限公司 | 一种压铸铝合金及其制备方法和通讯产品 |
CN104561856A (zh) * | 2014-07-23 | 2015-04-29 | 霍山汇能汽车零部件制造有限公司 | 一种4032铝合金热处理工艺 |
KR101717491B1 (ko) * | 2015-07-07 | 2017-03-20 | 윈엔윈(주) | 용탕단조법을 이용한 고인성 알루미늄 합금 양궁 핸들의 제조방법 및 양궁 핸들 |
JP6112438B1 (ja) | 2016-10-31 | 2017-04-12 | 住友電気工業株式会社 | アルミニウム合金線、アルミニウム合金撚線、被覆電線、及び端子付き電線 |
CN106756144A (zh) * | 2016-11-10 | 2017-05-31 | 无锡市明盛强力风机有限公司 | 一种Al‑Si合金复合变质工艺 |
CN106544553A (zh) * | 2016-11-10 | 2017-03-29 | 无锡市明盛强力风机有限公司 | 一种增强Al‑Si合金活塞高温性能的方法 |
JP6393008B1 (ja) * | 2017-04-27 | 2018-09-19 | 株式会社コイワイ | 高強度アルミニウム合金積層成形体及びその製造方法 |
CN113088774B (zh) * | 2021-03-08 | 2022-04-26 | 上海交通大学 | 一种高电阻Al-Mg-Mn-Ti铝合金及其制备工艺 |
CN113832373B (zh) * | 2021-08-11 | 2022-12-06 | 广东华昌集团有限公司 | 一种用于建筑承载结构的铝合金及其制备方法 |
CN114400817B (zh) * | 2021-12-01 | 2024-05-28 | 荣腾实业(苏州)有限公司 | 一种新能源汽车的驱动电机外壳铝合金铸件 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02232331A (ja) * | 1989-03-03 | 1990-09-14 | Nippon Light Metal Co Ltd | 耐糸状腐食性に優れた金型鋳造用アルミニウム合金 |
JPH06271966A (ja) * | 1993-03-19 | 1994-09-27 | Honda Motor Co Ltd | 鋳造用アルミニウム合金材 |
JP2004143511A (ja) * | 2002-10-23 | 2004-05-20 | Sumitomo Electric Ind Ltd | 耐摩耗性アルミニウム合金長尺体およびその製造方法 |
JP2004277853A (ja) | 2003-03-18 | 2004-10-07 | Yaskawa Electric Corp | モータフレーム用アルミニウム合金およびその製造方法 |
JP2005139496A (ja) | 2003-11-05 | 2005-06-02 | Toyota Motor Corp | 電気抵抗率の高い鋳造用アルミニウム合金 |
JP2005198463A (ja) | 2004-01-09 | 2005-07-21 | Toyota Motor Corp | 回転電機のハウジング |
JP2006183122A (ja) * | 2004-12-28 | 2006-07-13 | Denso Corp | ダイカスト用アルミニウム合金およびアルミニウム合金鋳物の製造方法 |
JP2008291364A (ja) * | 2007-05-24 | 2008-12-04 | Aluminium Rheinfelden Gmbh | 耐熱性アルミニウム合金 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4104089A (en) * | 1976-07-08 | 1978-08-01 | Nippon Light Metal Company Limited | Die-cast aluminum alloy products |
CA2454509A1 (en) * | 2001-07-25 | 2003-02-06 | Showa Denko K.K. | Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof |
CN1233862C (zh) * | 2003-11-07 | 2005-12-28 | 薛元良 | 一种高硅铝合金材料及其生产方法 |
CN101045970A (zh) * | 2005-07-18 | 2007-10-03 | 西安工业大学 | 高强耐热铝合金 |
JP2007070716A (ja) * | 2005-09-09 | 2007-03-22 | Daiki Aluminium Industry Co Ltd | 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物 |
-
2011
- 2011-01-27 WO PCT/JP2011/051615 patent/WO2012101805A1/ja active Application Filing
- 2011-01-27 CN CN201180065881.XA patent/CN103328668B/zh active Active
- 2011-01-27 JP JP2012554586A patent/JP5532149B2/ja active Active
- 2011-01-27 EP EP11856829.4A patent/EP2669396B1/en not_active Not-in-force
- 2011-01-27 MX MX2013008748A patent/MX2013008748A/es unknown
- 2011-01-27 CA CA2825528A patent/CA2825528A1/en not_active Abandoned
- 2011-01-27 US US13/982,108 patent/US20130307383A1/en not_active Abandoned
- 2011-01-27 KR KR1020137022499A patent/KR20130130037A/ko active IP Right Grant
-
2012
- 2012-01-13 TW TW101101409A patent/TWI448560B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02232331A (ja) * | 1989-03-03 | 1990-09-14 | Nippon Light Metal Co Ltd | 耐糸状腐食性に優れた金型鋳造用アルミニウム合金 |
JPH06271966A (ja) * | 1993-03-19 | 1994-09-27 | Honda Motor Co Ltd | 鋳造用アルミニウム合金材 |
JP2004143511A (ja) * | 2002-10-23 | 2004-05-20 | Sumitomo Electric Ind Ltd | 耐摩耗性アルミニウム合金長尺体およびその製造方法 |
JP2004277853A (ja) | 2003-03-18 | 2004-10-07 | Yaskawa Electric Corp | モータフレーム用アルミニウム合金およびその製造方法 |
JP2005139496A (ja) | 2003-11-05 | 2005-06-02 | Toyota Motor Corp | 電気抵抗率の高い鋳造用アルミニウム合金 |
JP2005198463A (ja) | 2004-01-09 | 2005-07-21 | Toyota Motor Corp | 回転電機のハウジング |
JP2006183122A (ja) * | 2004-12-28 | 2006-07-13 | Denso Corp | ダイカスト用アルミニウム合金およびアルミニウム合金鋳物の製造方法 |
JP2008291364A (ja) * | 2007-05-24 | 2008-12-04 | Aluminium Rheinfelden Gmbh | 耐熱性アルミニウム合金 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2669396A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063320A1 (ja) * | 2014-10-23 | 2016-04-28 | 株式会社大紀アルミニウム工業所 | ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト |
CN107075622A (zh) * | 2014-10-23 | 2017-08-18 | 株式会社大纪铝工业所 | 压铸用铝合金及使用了该合金的铝合金压铸件 |
JP2021136767A (ja) * | 2020-02-26 | 2021-09-13 | Kyb株式会社 | 回転電機及び回転電機の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20130307383A1 (en) | 2013-11-21 |
CN103328668A (zh) | 2013-09-25 |
EP2669396A4 (en) | 2014-09-10 |
TW201235480A (en) | 2012-09-01 |
TWI448560B (zh) | 2014-08-11 |
KR20130130037A (ko) | 2013-11-29 |
JPWO2012101805A1 (ja) | 2014-06-30 |
JP5532149B2 (ja) | 2014-06-25 |
EP2669396B1 (en) | 2015-05-27 |
CN103328668B (zh) | 2015-08-19 |
MX2013008748A (es) | 2014-01-31 |
CA2825528A1 (en) | 2012-08-02 |
EP2669396A1 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5532149B2 (ja) | 高電気抵抗アルミニウム合金 | |
KR20200023073A (ko) | 다이캐스팅용 알루미늄 합금 및 그 제조방법, 다이캐스팅 방법 | |
CN105296818A (zh) | 一种铝合金及其制备方法和应用 | |
JP5591661B2 (ja) | 耐脱亜鉛腐食性に優れた金型鋳造用銅基合金 | |
JP5146169B2 (ja) | 高強度無方向性電磁鋼板およびその製造方法 | |
CN105779838B (zh) | 一种高导热压铸镁合金及其制备工艺 | |
JP2009503250A (ja) | 高い減衰能を有する銅合金の製造方法 | |
CN105220042A (zh) | 一种镁合金及其制备方法和应用 | |
JPH1112674A (ja) | 内燃機関ピストン用アルミニウム合金およびアルミニウム合金製ピストン | |
CN100478473C (zh) | 一种含稀土高温固溶强化耐热钛合金 | |
US9601978B2 (en) | Aluminum alloy rotor for an electromagnetic device | |
JP2019511632A (ja) | スズ含有銅合金、その製造方法、ならびにその使用法 | |
CN102994840A (zh) | 一种MgAlZn系耐热镁合金 | |
WO2015182454A1 (ja) | TiAl基鋳造合金及びその製造方法 | |
JP4469269B2 (ja) | 高周波磁気特性の優れた電磁鋼板とその製造方法 | |
CN102994838A (zh) | 一种MgAlSi系耐热镁合金 | |
JP4239792B2 (ja) | 電気抵抗率の高い鋳造用アルミニウム合金 | |
KR101646267B1 (ko) | 내크리프 특성이 우수한 중력주조용 내열 마그네슘 합금 | |
JP2010031301A (ja) | Ni−Cr−Al合金素材 | |
CN110607471A (zh) | Sr、Zr、Ti三元复合微合金化Al-Si-Cu系铸造铝合金及制备方法 | |
JP2002226932A (ja) | 強度及び熱伝導性に優れたヒートシンク用アルミニウム合金材及びその製造法 | |
WO2012111674A1 (ja) | 高強度銅合金鍛造材 | |
JP2002212662A (ja) | マグネシウム合金 | |
CN108220704A (zh) | 一种含镨和镱的耐腐蚀压铸铝合金的制备方法 | |
JP7126915B2 (ja) | アルミニウム合金押出材及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11856829 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012554586 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2825528 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13982108 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1301004163 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/008748 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011856829 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137022499 Country of ref document: KR Kind code of ref document: A |