WO2012101693A1 - Negative electrode collector for lithium ion batteries, and lithium ion battery - Google Patents

Negative electrode collector for lithium ion batteries, and lithium ion battery Download PDF

Info

Publication number
WO2012101693A1
WO2012101693A1 PCT/JP2011/005768 JP2011005768W WO2012101693A1 WO 2012101693 A1 WO2012101693 A1 WO 2012101693A1 JP 2011005768 W JP2011005768 W JP 2011005768W WO 2012101693 A1 WO2012101693 A1 WO 2012101693A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
material layer
ion battery
battery
Prior art date
Application number
PCT/JP2011/005768
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 遠藤
藤川 万郷
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012101693A1 publication Critical patent/WO2012101693A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery having improved safety against an internal short circuit, and a negative electrode current collector used in the battery.
  • the lithium ion battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • a separator having a shutdown function for blocking the ionic current by blocking pores due to heat generated when an internal short circuit occurs in the battery is used.
  • the short-circuit current stops flowing due to the shutdown function, and the heat generation stops.
  • the separator is melted before the shutdown functions, thereby causing a melt-down that opens a large hole in the separator.
  • the positive electrode and the negative electrode are short-circuited due to meltdown, further overheating is caused. In some cases, the battery ignites or smokes, which is very dangerous.
  • Patent Document 1 Since heat-resistant resins such as aramid do not melt even at high temperatures, it is considered that using the technique of Patent Document 1 has a high ability to maintain insulation between positive and negative electrodes even in an overheated environment.
  • porous film made of a heat-resistant resin itself exhibits high heat resistance in the prior art disclosed in Patent Document 1, if the film breaks during short-circuiting, it is easily dragged by the melting or shrinking of the underlying separator, and this causes the short-circuit location to expand. May cause further overheating.
  • the method of suppressing the electric current at the time of a short circuit is proposed by forming the resistor layer (it consists of a mixture of carbon powder and a polyimide resin) which has high resistance on the collector surface (refer patent document 2). .
  • the resistor layer it consists of a mixture of carbon powder and a polyimide resin
  • the resistance value of the short-circuited portion is low, it is considered that if the technique of Patent Document 2 is used, the resistance value increases even if an internal short-circuit occurs, and thus overheating is suppressed. .
  • Patent Document 3 and Patent Document 4 in order to reduce the weight of the current collector without reducing the strength of the current collector, the conductivity of the metal is deposited by vapor deposition on both surfaces of a resin film such as PET or PP.
  • a resin film such as PET or PP.
  • a method of using a sheet on which a thin film is formed as a current collector has been proposed. According to this current collector, the resin film of the current collector at the short-circuit portion is melted by heat due to the heat generated at the time of the short circuit, and the current is interrupted by the heat-melted resin film.
  • a resin is used as the base material of the current collector, a metal is used as the base material. Since the resin has flexibility as compared with the case of using, the resin is deformed during rolling to relieve the stress, and as a result, it is difficult to increase the density of the active material.
  • the present invention has been made in view of such problems, has excellent load characteristics, is filled with a negative electrode active material at a high density, and even when an internal short circuit occurs, the battery temperature is excessive.
  • An object of the present invention is to provide a highly safe lithium ion battery capable of suppressing the increase.
  • the negative electrode current collector for a lithium ion battery according to the first aspect of the present invention comprises a base material layer made of a metal or an alloy having a melting point of 120 ° C. or higher and 800 ° C. or lower, and contact or non-contact with both surfaces of the base material layer. And a metal layer containing Cu or Ni.
  • a lithium ion battery includes a negative electrode plate having a negative electrode active material layer formed on the surface of the negative electrode current collector, and a positive electrode active material layer formed on the surface of the positive electrode current collector.
  • the positive electrode plate has an electrode group wound or laminated via a separator, and the electrode group is housed in a metal outer can, and one of the metal outer can and the two electrode plates Are electrically connected.
  • a metal layer having Cu or Ni is formed on both surfaces of a base material layer made of metal or alloy in contact or non-contact, so that the load characteristics of the lithium ion battery are excellent and the negative electrode of the negative electrode plate
  • the active material can be filled with high density.
  • the base material layer is made of a metal or alloy having a melting point of 120 ° C. or higher and 800 ° C. or lower, even when an internal short circuit occurs, it melts due to heat generation and interrupts the current. Can be suppressed.
  • FIG. 1 is a cross-sectional view of a negative electrode current collector 800 for a lithium ion battery according to this embodiment.
  • the negative electrode current collector 800 for a lithium ion battery includes a base layer 100 and a metal layer 110, and the metal layer 110 is formed on both surfaces of the base layer 100.
  • a negative electrode active material layer 120 is formed on the surface of the metal layer 110.
  • the base material layer 100 is made of a metal or alloy having a melting point of 120 to 800 ° C. Since the base material layer 100 is formed of a metal or alloy having a melting point in the above range, even when an internal short circuit of the battery occurs, the current can be interrupted by melting by heat generation. That is, when the melting point of the metal or alloy forming the base material layer 100 is less than 120 ° C., there is a risk of breakage at a location where current is concentrated, such as a lead weld, when a large current such as high output charge / discharge flows.
  • the melting point of the metal or alloy is 120 to 800 ° C. Preferably, it is 200 to 700 ° C.
  • the base material layer 100 is not particularly limited, but for example, Al, 72Ag-28Cu (BAg-8), Sn, 58Bi-42Sn, etc. can be used from the above-mentioned conditions, and preferably Al.
  • the electric conductivity of the base material layer 100 is preferably 10 6 S / m or more. This is because if the electrical conductivity is less than 10 6 S / m, the electrical conductivity may decrease.
  • the thickness of the base material layer 100 is not particularly limited, but is preferably 1 to 100 ⁇ m, and more preferably 5 to 20 ⁇ m. When the thickness is less than 5 ⁇ m, it becomes difficult to process into a foil shape, and at the same time, the strength tends to be insufficient and the productivity may be lowered. When the thickness is 20 ⁇ m or more, the current interruption effect at the time of short circuit may be reduced, and the current occupying ratio in the battery becomes high, so that the energy density tends to decrease.
  • the metal layer 110 is not particularly limited as long as it does not alloy with Li, react with the electrolytic solution, or dissolve in the anode in the potential region used as the negative electrode, but is made of, for example, Cu or Ni. It can also be formed of a Cu alloy such as Au, a Ni alloy such as Ni—Fe, or an alloy containing Cu and Ni such as Cu—Ni.
  • the thickness of the metal layer 110 is not particularly limited, but is preferably 0.1 to 2 ⁇ m. When the thickness is smaller than 0.1 ⁇ m, it becomes difficult to uniformly cover the surface of the base material layer 100, and the surface of the base material layer 100 is partially exposed. Side reactions such as Li alloying may occur. When the thickness is larger than 2 ⁇ m, the ratio of the metal layer 110 in the negative electrode current collector becomes high, and the current blocking effect at the time of short circuit may be reduced.
  • the method for laminating the metal layer 110 on the base material layer 100 is not particularly limited, and for example, electroplating, electroless plating, vapor deposition, or the like can be suitably used.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the lithium ion battery 900.
  • the lithium ion battery 900 for example, a cylindrical lithium ion secondary battery as shown in FIG. 2 can be adopted.
  • This lithium ion secondary battery is provided with a safety valve mechanism that releases gas to the outside of the battery when the pressure in the battery increases due to the occurrence of an abnormality such as an internal short circuit.
  • an electrode group 104 in which a positive electrode 101 and a negative electrode 102 are wound through a separator 103 is housed in a battery case 107 together with a non-aqueous electrolyte. Insulating plates 109 and 119 are arranged above and below the electrode group 104, the positive electrode 101 is joined to the filter 112 via the positive electrode lead 105, and the negative electrode 102 is also connected to the negative electrode terminal via the negative electrode lead 106. Is joined to the bottom.
  • the positive electrode 101 includes a positive electrode current collector and a positive electrode active material layer carried thereon.
  • the positive electrode active material layer can contain a binder, a conductive agent, and the like in addition to the positive electrode active material.
  • the positive electrode 101 is prepared, for example, by mixing a positive electrode mixture composed of a positive electrode active material and an optional component with a liquid component to prepare a positive electrode mixture slurry, applying the obtained slurry to a positive electrode current collector, and drying the mixture. .
  • the negative electrode 102 for example, a negative electrode mixture composed of a negative electrode active material and an optional component is mixed with a liquid component to prepare a negative electrode mixture slurry, and the obtained slurry is applied to the negative electrode current collector 800 and dried.
  • the negative electrode active material is an element that can be alloyed with lithium, a silicon compound, a tin compound, or the like
  • the negative electrode active material layer may be formed by a vapor phase method. Examples of the vapor phase method include chemical vapor deposition (CVD), vacuum deposition, and sputtering.
  • a lithium composite metal oxide can be used as the positive electrode active material of the lithium ion battery 900.
  • M Na, Mg, Sc, Y , Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B.
  • x 0 to 1.2
  • y 0 to 0.9
  • z 2.0 to 2.3.
  • x value which shows the molar ratio of lithium is a value immediately after active material preparation, and increases / decreases by charging / discharging.
  • lithium-containing compounds may be substituted with a different element.
  • Surface treatment may be performed with a metal oxide, lithium oxide, a conductive agent, or the like, or the surface may be subjected to a hydrophobic treatment.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the positive electrode active material layer may be a stack of two or more layers having different compositions.
  • the negative electrode active material of the lithium ion battery of the present invention for example, metals, metal fibers, carbon materials, oxides, nitrides, tin compounds, silicon compounds, various alloy materials, and the like can be used.
  • the carbon material include carbon materials such as various natural graphites, cokes, graphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon.
  • the oxide for example, lithium titanate having a spinel crystal structure is used. Lithium titanate having a typical spinel crystal structure is represented by the formula: Li 4 Ti 5 O 12 . However, the general formula: Li x Ti 5-y M y O 12 + lithium titanate represented by z may be used as well.
  • M is composed of vanadium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, boron, magnesium, calcium, strontium, barium, zirconium, niobium, molybdenum, tungsten, bismuth, sodium, gallium, and rare earth elements.
  • x is a value of lithium titanate immediately after synthesis or in a completely discharged state, 3 ⁇ x ⁇ 5, 0.005 ⁇ y ⁇ 1.5, ⁇ 1 ⁇ z ⁇ 1.
  • a simple substance such as silicon (Si) or tin (Sn), or a silicon compound or tin compound such as an alloy, a compound, or a solid solution is preferable from the viewpoint of a large capacity density.
  • SiO x 0.05 ⁇ x ⁇ 1.95
  • any one of these may be B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb
  • An alloy, a compound, a solid solution, or the like in which a part of Si is substituted with at least one element selected from the group consisting of Ta, V, W, Zn, C, N, and Sn can be used.
  • Ni 2 Sn 4 , Mg 2 Sn, SnO x (0 ⁇ x ⁇ 2), SnO 2 , SnSiO 3 or the like can be applied.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, you may laminate
  • the binder for the positive electrode 101 or the negative electrode 102 for example, PVDF, PTFE, polyethylene, polypropylene, and aramid resin can be used.
  • the conductive agent included in the electrode include natural graphite and artificial graphite graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and other carbon blacks, carbon fibers and metal fibers.
  • Conductive fibers such as carbon powder, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, organic conductive materials such as phenylene derivatives, etc. Is used.
  • the blending ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 97% by weight of the positive electrode active material, 1 to 20% by weight of the conductive agent, and 1 to 10% by weight of the binder.
  • the blending ratio of the negative electrode active material and the binder is preferably in the range of 93 to 99% by weight of the negative electrode active material and 1 to 10% by weight of the binder, respectively. Further, when the negative electrode active material layer is formed by a vapor phase method, the binder may not be included.
  • the positive electrode current collector a long porous conductive substrate or a nonporous conductive substrate is used.
  • the material used for the conductive substrate for example, stainless steel, Al, Ti or the like is used. It is more preferable to use Al from the viewpoint of imparting a current interruption effect at the time of a short circuit to the positive electrode current collector and reducing the weight.
  • the thickness of the positive electrode current collector is not particularly limited, but is preferably 1 to 100 ⁇ m, and more preferably 5 to 20 ⁇ m. By setting the thickness of the positive electrode current collector in the above range, it is possible to reduce the weight while maintaining the strength of the electrode plate.
  • the separator 103 interposed between the positive electrode 101 and the negative electrode 102 a microporous thin film, a woven fabric, a non-woven fabric or the like having a high ion permeability and having a predetermined mechanical strength and an insulating property is used.
  • a material of the separator 103 for example, polyolefin such as polypropylene and polyethylene is preferable from the viewpoint of safety of the lithium ion battery because it is excellent in durability and has a shutdown function.
  • the thickness of the separator 103 is generally 10 to 300 ⁇ m, but is preferably 40 ⁇ m or less. Further, the range of 15 to 30 ⁇ m is more preferable, and the more preferable range of the separator thickness is 20 to 25 ⁇ m.
  • the microporous film may be a single layer film made of one kind of material, or a composite film or multilayer film made of one kind or two or more kinds of materials.
  • the porosity of the separator 103 is preferably in the range of 30 to 70%.
  • the porosity indicates the volume ratio of the pores to the separator volume.
  • a more preferable range of the porosity of the separator 103 is 35 to 60%.
  • non-aqueous electrolyte a liquid, gel or solid (polymer solid electrolyte) substance can be used.
  • a liquid non-aqueous electrolyte (non-aqueous electrolyte) can be obtained by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent.
  • the gel-like non-aqueous electrolyte includes a non-aqueous electrolyte and a polymer material that holds the non-aqueous electrolyte.
  • this polymer material for example, PVDF, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, polyvinylidene fluoride hexafluoropropylene and the like are preferably used.
  • non-aqueous solvent for dissolving the electrolyte
  • a known non-aqueous solvent can be used.
  • the kind of this non-aqueous solvent is not specifically limited, For example, cyclic carbonate ester, chain
  • the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , and LiB 10 Cl 10 are used.
  • LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , and LiB 10 Cl 10 are used.
  • One electrolyte may be used alone, or two or more electrolytes may be used in combination.
  • the non-aqueous electrolyte may contain a material that can be decomposed on the negative electrode as an additive to form a film having high lithium ion conductivity and increase charge / discharge efficiency.
  • the additive having such a function include vinylene carbonate (VC), 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, and the like. These may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable.
  • part of the hydrogen atoms may be substituted with fluorine atoms.
  • the amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 to 2 mol / L.
  • the non-aqueous electrolyte may contain a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery.
  • the benzene derivative those having a phenyl group and a cyclic compound group adjacent to the phenyl group are preferable.
  • the cyclic compound group a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group and the like are preferable.
  • Specific examples of the benzene derivative include cyclohexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. However, the content of the benzene derivative is preferably 10% by volume or less of the entire non-aqueous solvent.
  • the filter 112 is connected to the inner cap 113, and the protrusion of the inner cap 113 is joined to the metal valve plate 114. Further, the valve plate 114 is connected to a terminal plate 108 that also serves as a positive electrode terminal. The terminal plate 108, the valve plate 114, the inner cap 113, and the filter 112 are integrated to seal the opening of the battery case 107 via the gasket 111.
  • valve body 114 When an abnormality such as an internal short circuit occurs in the unit cell 100 and the pressure in the unit cell 100 increases, the valve body 114 swells toward the terminal plate 108, and the inner cap 113 and the valve body 114 are disconnected. The current path is interrupted. When the pressure in the unit cell 100 further increases, the valve body 114 is broken. As a result, the gas generated in the unit cell 100 is discharged to the outside through the through hole 112a of the filter 112, the through hole 113a of the inner cap 113, the tear of the valve body 114, and the opening 108a of the terminal plate 108. Is done.
  • FIG. 3 is a diagram for explaining a state before a foreign object is stuck in the negative electrode 102 produced by applying a slurry-like negative electrode mixture to a negative electrode current collector 800 for a lithium ion battery and drying it.
  • the metal layer 110 is formed on both surfaces of the base material layer 100, and the negative electrode active material layer 120 is formed on the surface of the metal layer 110.
  • the negative electrode active material layer 120 schematically describes negative electrode active material particles.
  • the thickness of the negative electrode active material layer 120 is not particularly limited, but is, for example, 100 ⁇ m or less, and preferably 10 to 100 ⁇ m.
  • the average particle diameter of the negative electrode active material particles in the negative electrode active material layer 120 is not particularly limited, but is, for example, 50 ⁇ m or less, preferably 30 ⁇ m or less, and more preferably 10 ⁇ m or less. Further, this is not the case when the negative electrode active material layer is formed by a vapor phase method.
  • FIG. 4 is a diagram for explaining a state in which the foreign material 200 is stuck in the negative electrode 102 described above.
  • a large foreign object 200 such as a nail is pierced through the negative electrode 102
  • an internal short circuit occurs between the negative electrode 102 and a positive electrode (not shown), and the short-circuited portion generates heat. To do.
  • FIG. 5 is a diagram illustrating a state where the short circuit portion of the negative electrode 102 generates heat and the base material layer 100 is melted.
  • the heat generation causes the base material layer 100 to melt, and a void 130 is generated in the base material layer 100. Since the gap 130 is generated, the internal short circuit current can be cut off, and an excessive increase in the battery temperature at the time of the short circuit can be suppressed.
  • gap part 130 among the metal layers 110 may lose
  • the negative electrode current collector 800 for a lithium ion battery is configured as a three-layer structure including the base material layer 100 and the metal layer 110 formed in contact with both surfaces thereof.
  • the scope of the present invention is not limited to such an embodiment.
  • a negative electrode current collector 800 for a lithium ion battery includes a base material layer 100 made of a metal or an alloy having a melting point of 120 to 800 ° C., and a metal layer 110 made of Cu or Ni formed in contact with both surfaces of the base material layer 100. And a conductive resin layer formed in contact with both surfaces of the metal layer 110 is also possible.
  • the conductive resin layer is formed of, for example, a conductive polymer, and polypyrrole, polyaniline, polyacetylene, polythiophene, polyparaphenylene, polyphenylene vinylene, or the like can be used as the conductive polymer.
  • the softening point of the conductive polymer is preferably 100 to 400 ° C., more preferably 200 to 300 ° C.
  • the thickness of the conductive resin layer is not particularly limited, but is preferably 0.1 to 2 ⁇ m.
  • the negative electrode current collector 800 for a lithium ion battery includes a base material layer 100 made of a metal or an alloy having a melting point of 120 to 800 ° C., a conductive resin layer formed in contact with both surfaces of the base material layer 100, A structure provided with a metal layer 110 made of Cu or Ni formed in contact with both surfaces of the conductive resin layer is also possible.
  • the base material layer 100 and the conductive resin layer are melted in the short-circuit portion at the time of short-circuit, so that the internal short-circuit current can be interrupted. And since the current collection of a negative electrode is performed from the base material layer 100, the metal layer 110, and a conductive resin layer, a load characteristic is good. Furthermore, since the base material layer 100 and the metal layer 110 make it difficult to relieve stress during rolling, a decrease in the density of the negative electrode active material hardly occurs.
  • the present invention is not limited to the above-described three layers and five layers as long as the substrate layer and the metal layer are provided, and the present invention may be applied to a four-layer or six-layer structure. Included in the range.
  • Example 1 Production of Negative Electrode 102 A metal layer 110 made of Cu having a thickness of 1 ⁇ m was formed on both surfaces by using an aluminum foil having a thickness of 10 ⁇ m as a base material layer 100 to produce a negative electrode current collector 800 for a lithium ion battery.
  • NMP N-methyl-pyrrolidone
  • This positive electrode mixture slurry was applied and dried on both sides of a 15 ⁇ m thick aluminum current collector, and rolled three times at a linear pressure of 1000 kg / cm. The thickness after rolling was 175 ⁇ m. This was cut into dimensions of 56 mm in width and 600 mm in length to produce the positive electrode 101. One end of the aluminum lead was connected to the portion of the positive electrode 101 where the positive electrode current collector was exposed.
  • a nonaqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent containing EC and EMC at a volume ratio of 1: 3.
  • a terminal plate 108 that supports the positive terminal was attached to the opening of the battery case 107, and the end of the opening was caulked toward the terminal plate 108 to seal the battery case 107.
  • a cylindrical lithium ion battery having a design capacity of 2000 mAh was produced. This is referred to as the battery of Example 1.
  • Example 2 For the battery of Example 1, except that the negative electrode current collector 800 for a lithium ion battery was formed by forming a metal layer 110 made of Cu having a thickness of 3 ⁇ m on both surfaces of an aluminum substrate layer 100 having a thickness of 6 ⁇ m. A lithium ion battery was produced in the same manner as in Example 1. The negative electrode thickness after rolling was 159 ⁇ m, and the negative electrode active material density was 1.57 g / cm 3 . This is referred to as the battery of Example 2.
  • Comparative Example 1 A lithium ion battery was fabricated in the same manner as in Example 1 except that a 10 ⁇ m thick copper foil was used for the negative electrode current collector for the lithium ion battery.
  • the negative electrode thickness after rolling was 157 ⁇ m, and the negative electrode active material density was 1.57 g / cm 3 . This is referred to as the battery of Comparative Example 1.
  • Example 2 The battery of Example 1 is the same as Example 1 except that a negative electrode current collector for a lithium ion battery is formed by forming a metal layer made of Cu having a thickness of 1 ⁇ m on both surfaces of a PET resin substrate having a thickness of 10 ⁇ m. Similarly, a lithium ion battery was produced.
  • a thickness of about 0.1 ⁇ m was formed by vapor deposition, and then the thickness was set to 1 ⁇ m by electroplating.
  • the negative electrode thickness after rolling was 176 ⁇ m, and the negative electrode active material density was 1.40 g / cm 3 . This is referred to as the battery of Comparative Example 2.
  • Comparative Example 3 For the battery of Comparative Example 2, Comparative Example 2 was used except that a negative electrode current collector for a lithium ion battery was formed by forming a metal layer made of Cu of 3 ⁇ m thickness on both sides of a PET resin substrate of 6 ⁇ m thickness. Similarly, a lithium ion battery was produced. The negative electrode thickness after rolling was 175 ⁇ m, and the negative electrode active material density was 1.41 g / cm 3 . This is referred to as the battery of Comparative Example 3.
  • Comparative Example 1 In the battery of Comparative Example 1 using a negative electrode current collector for a lithium ion battery made of only Cu, the battery surface temperature rose significantly due to overheating accompanying the expansion of the short-circuited portion. Further, Comparative Example 2 and Comparative Example 3 using a base material layer made of PET instead of the Al base material layer had a large decrease in load characteristics, although the battery surface temperature was lower than that of Comparative Example 1 due to the current blocking effect. . This is presumably because current collection at a large current becomes insufficient because current collection at the negative electrode depends only on Cu of the thin metal layer. Moreover, the negative electrode active material density in the same rolling conditions was also low. This is presumably because the base material layer made of PET resin has relaxed the stress during rolling.
  • Example 2 the battery surface temperature after the nail penetration test of Example 2 where the metal layer is thick is somewhat high, and the thickness of the metal layer is more preferably 2 ⁇ m or less.
  • the present invention can provide a lithium ion battery having excellent safety while preventing deterioration of the load characteristics of the battery, it is useful as a technique that can be developed not only for small power sources such as portable electronic devices but also for large power sources such as EVs. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a highly safe lithium ion battery which can be suppressed in excessive increase in battery temperature without deteriorating collector characteristics and negative electrode active material density even in cases wherein a short circuit has occurred by a foreign substance stuck therein. A negative electrode collector for lithium ion secondary batteries of the present invention has a three-layer structure that is obtained by forming metal layers (110), each of which is formed of Cu or Ni, on both surfaces of a base layer (100) that is formed of a metal or alloy that has a melting point of 120-800˚C (inclusive). The base layer (100) has an electrical conductivity of 106 S/m or more, and for example, the base layer (100) is formed of Al. The thickness of the base layer (100) is, for example, 1-100 μm.

Description

リチウムイオン電池用負極集電体及びリチウムイオン電池Negative electrode current collector for lithium ion battery and lithium ion battery
 本発明は、内部短絡に対する安全性を向上させたリチウムイオン電池、及び、その電池に用いられる負極集電体に関する。 The present invention relates to a lithium ion battery having improved safety against an internal short circuit, and a negative electrode current collector used in the battery.
 近年、携帯電話やノートパソコン等の電子機器の小型化、軽量化に伴い、これらの機器の電源である二次電池に対する高容量化が要求されている。このような要求から、高エネルギー密度化が可能なリチウムイオン電池が広く普及している。リチウムイオン電池は、正極、負極、正極と負極との間に介在するセパレータ及び非水電解質を具備する。 In recent years, with the reduction in size and weight of electronic devices such as mobile phones and notebook computers, it is required to increase the capacity of secondary batteries as power sources for these devices. From such a demand, lithium ion batteries capable of increasing the energy density are widely used. The lithium ion battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
 一般的に電池の内部で比較的抵抗値が低い短絡が発生した場合、短絡点に大電流が集中して流れるため、電池の発熱が加速して過熱に至ることがある。エネルギー密度の高いリチウムイオン電池ではこのような現象を回避するために、製造上の観点のほかに、電池構成上の観点からも様々な安全対策がなされている。 Generally, when a short circuit having a relatively low resistance value occurs inside the battery, a large current flows at the short circuit point, so that the heat generation of the battery may be accelerated and lead to overheating. In order to avoid such a phenomenon in a lithium ion battery having a high energy density, various safety measures are taken from the viewpoint of the battery configuration in addition to the viewpoint of manufacturing.
 一般的には、電池が内部短絡を起こしたときの発熱により、細孔が閉塞してイオン電流の遮断を行うシャットダウン機能が付与されたセパレータが用いられている。シャットダウン機能により短絡電流が流れなくなり発熱が停止するというものであるが、短絡部の発熱が大きい場合、シャットダウンが機能する前にセパレータを溶融させてセパレータに大きな穴を開けるメルトダウンを引き起こす。メルトダウンにより正極と負極とが短絡すると、更なる過熱を引き起こし、場合によっては電池が発火又は発煙し非常に危険である。 Generally, a separator having a shutdown function for blocking the ionic current by blocking pores due to heat generated when an internal short circuit occurs in the battery is used. The short-circuit current stops flowing due to the shutdown function, and the heat generation stops. However, when the heat generation in the short-circuited portion is large, the separator is melted before the shutdown functions, thereby causing a melt-down that opens a large hole in the separator. When the positive electrode and the negative electrode are short-circuited due to meltdown, further overheating is caused. In some cases, the battery ignites or smokes, which is very dangerous.
 そこでセパレータ上に、アラミド等の耐熱性樹脂からなる多孔膜を形成することが提案されている(特許文献1参照)。アラミド等の耐熱性樹脂は高温下でも溶融しないので、特許文献1の技術を用いれば、過熱環境下でも正負極間の絶縁を保つ能力が高いと考えられる。 Therefore, it has been proposed to form a porous film made of a heat-resistant resin such as aramid on the separator (see Patent Document 1). Since heat-resistant resins such as aramid do not melt even at high temperatures, it is considered that using the technique of Patent Document 1 has a high ability to maintain insulation between positive and negative electrodes even in an overheated environment.
 しかし、この特許文献1の従来技術では耐熱性樹脂からなる多孔膜自身は高い耐熱性を示すものの、短絡時に破膜すると下地のセパレータの溶融又は収縮に引きずられやすく、この影響で短絡箇所が拡大して更なる過熱を招く場合がある。 However, although the porous film made of a heat-resistant resin itself exhibits high heat resistance in the prior art disclosed in Patent Document 1, if the film breaks during short-circuiting, it is easily dragged by the melting or shrinking of the underlying separator, and this causes the short-circuit location to expand. May cause further overheating.
 そこで、集電体表面に高い抵抗を有する抵抗体層(炭素粉末とポリイミド樹脂との混合物からなる)を形成することにより短絡時の電流を抑制する方法が提案されている(特許文献2参照)。上述したように短絡箇所の抵抗値が低い場合に過熱が加速するので、特許文献2の技術を用いれば、内部短絡が発生しても抵抗値が大きくなるため、過熱が抑制されると考えられる。 Then, the method of suppressing the electric current at the time of a short circuit is proposed by forming the resistor layer (it consists of a mixture of carbon powder and a polyimide resin) which has high resistance on the collector surface (refer patent document 2). . As described above, since overheating accelerates when the resistance value of the short-circuited portion is low, it is considered that if the technique of Patent Document 2 is used, the resistance value increases even if an internal short-circuit occurs, and thus overheating is suppressed. .
 しかし、この特許文献2の技術では、抵抗体層により内部短絡部の抵抗値が上がるため安全性は高まるものの、釘のような径の大きな異物による短絡に対し充分な安全性を確保するのに必要な抵抗体層を形成すると、活物質粒子と集電体との界面の電子抵抗が高くなりすぎ、電池の負荷特性が低下する。 However, in the technique of Patent Document 2, the resistance value of the internal short-circuit portion is increased by the resistor layer, so that safety is improved. However, in order to ensure sufficient safety against short-circuit due to a foreign object having a large diameter such as a nail. When the necessary resistor layer is formed, the electronic resistance at the interface between the active material particles and the current collector becomes too high, and the load characteristics of the battery deteriorate.
 特許文献3及び特許文献4には、集電体の強度を低下させることなく、集電体の重量を低下させることを目的として、PET、PP等の樹脂膜の両面に蒸着により金属の導電性薄膜を形成したシートを集電体に用いる方法が提案されている。この集電体によれば、短絡時の発熱により短絡部の集電体の樹脂膜が熱溶融し、熱溶融した樹脂膜により電流が遮断されるため過熱が抑制されると考えられる。 In Patent Document 3 and Patent Document 4, in order to reduce the weight of the current collector without reducing the strength of the current collector, the conductivity of the metal is deposited by vapor deposition on both surfaces of a resin film such as PET or PP. A method of using a sheet on which a thin film is formed as a current collector has been proposed. According to this current collector, the resin film of the current collector at the short-circuit portion is melted by heat due to the heat generated at the time of the short circuit, and the current is interrupted by the heat-melted resin film.
特開平9-208736号公報Japanese Patent Laid-Open No. 9-208736 特開平10-199574号公報JP-A-10-199574 特開平9-213338号公報JP-A-9-213338 特開平9-283149号公報JP-A-9-283149
 しかし、特許文献3及び特許文献4の技術では、負極の集電を樹脂膜の両面に形成された導電性薄膜に依存するため、大電流時の集電が不充分となり、電池の負荷特性が低下する。また、樹脂膜の両面に金属の導電性薄膜を形成するので、所定の負荷特性を得るために有る程度の厚さを有する導電性薄膜を形成する必要がある一方、導電性薄膜は蒸着等により形成されるので、充分な電気伝導性が得られる厚みを形成するのに時間を要することになり、生産性が著しく低下する。更に、通常は電池のエネルギー密度を高めるために、集電体上に活物質を含む合材層を塗工後に圧延を行うが、集電体の基材に樹脂を用いると、基材に金属を用いる場合と比較して樹脂は柔軟性を有するため、圧延時に樹脂が変形して応力を緩和し、その結果活物質を高密度化することが難しい。 However, in the techniques of Patent Document 3 and Patent Document 4, current collection for the negative electrode depends on conductive thin films formed on both surfaces of the resin film, so that current collection at a large current becomes insufficient, and the load characteristics of the battery are low. descend. In addition, since a metal conductive thin film is formed on both sides of the resin film, it is necessary to form a conductive thin film having a certain thickness in order to obtain a predetermined load characteristic. Since it is formed, it takes time to form a thickness with which sufficient electrical conductivity can be obtained, and the productivity is significantly reduced. Furthermore, in order to increase the energy density of the battery, usually, rolling is performed after applying a composite material layer containing an active material on the current collector. However, if a resin is used as the base material of the current collector, a metal is used as the base material. Since the resin has flexibility as compared with the case of using, the resin is deformed during rolling to relieve the stress, and as a result, it is difficult to increase the density of the active material.
 本発明はかかる問題点に鑑みてなされたものであって、優れた負荷特性を有し、負極活物質が高密度に充填されており、しかも内部短絡が起こった場合でも、電池温度の過度な上昇を抑制しうる、安全性の極めて高いリチウムイオン電池を提供することを目的とする。 The present invention has been made in view of such problems, has excellent load characteristics, is filled with a negative electrode active material at a high density, and even when an internal short circuit occurs, the battery temperature is excessive. An object of the present invention is to provide a highly safe lithium ion battery capable of suppressing the increase.
 本発明の第1の観点に係るリチウムイオン電池用負極集電体は、融点120℃以上800℃以下である金属又は合金からなる基材層と、前記基材層の両面に接触又は非接触にて形成されるCu又はNiを有する金属層と、を備えることを特徴とする。 The negative electrode current collector for a lithium ion battery according to the first aspect of the present invention comprises a base material layer made of a metal or an alloy having a melting point of 120 ° C. or higher and 800 ° C. or lower, and contact or non-contact with both surfaces of the base material layer. And a metal layer containing Cu or Ni.
 本発明の第2の観点に係るリチウムイオン電池は、上記の負極集電体の表面に負極活物質層が形成された負極板と、正極集電体の表面に正極活物質層が形成された正極板とが、セパレータを介して巻回又は積層された電極群を有し、この電極群が金属外装缶内に収納されると共に、この金属外装缶と上記両極板のうち一方の極板とが電気的に接続されたことを特徴とする。 A lithium ion battery according to a second aspect of the present invention includes a negative electrode plate having a negative electrode active material layer formed on the surface of the negative electrode current collector, and a positive electrode active material layer formed on the surface of the positive electrode current collector. The positive electrode plate has an electrode group wound or laminated via a separator, and the electrode group is housed in a metal outer can, and one of the metal outer can and the two electrode plates Are electrically connected.
 本発明によれば、金属又は合金からなる基材層の両面に接触又は非接触にてCu又はNiを有する金属層を形成するため、リチウムイオン電池の負荷特性が優れていると共に負極板の負極活物質を高密度に充填することができる。しかも基材層を融点120℃以上800℃以下である金属又は合金にて構成しているため、内部短絡が起こった場合でも発熱により溶融して電流を遮断するので、電池温度の過度な上昇を抑制することができる。 According to the present invention, a metal layer having Cu or Ni is formed on both surfaces of a base material layer made of metal or alloy in contact or non-contact, so that the load characteristics of the lithium ion battery are excellent and the negative electrode of the negative electrode plate The active material can be filled with high density. In addition, since the base material layer is made of a metal or alloy having a melting point of 120 ° C. or higher and 800 ° C. or lower, even when an internal short circuit occurs, it melts due to heat generation and interrupts the current. Can be suppressed.
本実施形態に係るリチウムイオン電池用負極集電体の断面図である。It is sectional drawing of the negative electrode collector for lithium ion batteries which concerns on this embodiment. リチウムイオン電池の構成を模式的に示した断面図である。It is sectional drawing which showed the structure of the lithium ion battery typically. 負極集電体にスラリー状の負極合剤を塗布して乾燥させて作製した負極につき、異物が刺さる前の状態を説明する図である。It is a figure explaining the state before a foreign material pierces about the negative electrode produced by apply | coating and drying a slurry-like negative electrode mixture to a negative electrode collector. 負極につき、異物が刺さった状態を説明する図である。It is a figure explaining the state which the foreign material pierced about the negative electrode. 負極の短絡部分が発熱して基材層が溶融した状態を説明する図である。It is a figure explaining the state which the short circuit part of the negative electrode heat | fever-generated and the base material layer was fuse | melted.
 以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は本発明の原理の理解を容易にするためのものであり、本発明の範囲は、下記の実施形態に限られるものではなく、当業者が以下の実施形態の構成を適宜置換した他の実施形態も、本発明の範囲に含まれる。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. However, the embodiments are for facilitating understanding of the principle of the present invention, and the scope of the present invention is as follows. The present invention is not limited to the embodiments, and other embodiments in which those skilled in the art appropriately replace the configurations of the following embodiments are also included in the scope of the present invention.
 図1は、本実施形態に係るリチウムイオン電池用負極集電体800の断面図である。図1に示されるように、リチウムイオン電池用負極集電体800は、基材層100と金属層110とを有して構成されており、基材層100の両面には金属層110が形成されている。金属層110の表面には負極活物質層120が形成されている。 FIG. 1 is a cross-sectional view of a negative electrode current collector 800 for a lithium ion battery according to this embodiment. As shown in FIG. 1, the negative electrode current collector 800 for a lithium ion battery includes a base layer 100 and a metal layer 110, and the metal layer 110 is formed on both surfaces of the base layer 100. Has been. A negative electrode active material layer 120 is formed on the surface of the metal layer 110.
 基材層100は、融点120~800℃である金属又は合金からなる。上記範囲の融点の金属又は合金にて基材層100を形成するから、電池の内部短絡が起こった場合でも発熱により溶融することで電流を遮断することができる。即ち、基材層100を形成する金属又は合金の融点が120℃未満であると、高出力の充放電等大電流が流れる際にリード溶接部等電流が集中する箇所で破断する虞がある。また、前記金属又は合金の融点が800℃よりも大きいと、内部短絡が起こった場合の発熱による溶融が起こりにくく、短絡時の電流遮断効果が薄れる可能性がある。従って、基材層100に用いる金属又は合金の融点は、120~800℃である。好ましくは、200~700℃である。 The base material layer 100 is made of a metal or alloy having a melting point of 120 to 800 ° C. Since the base material layer 100 is formed of a metal or alloy having a melting point in the above range, even when an internal short circuit of the battery occurs, the current can be interrupted by melting by heat generation. That is, when the melting point of the metal or alloy forming the base material layer 100 is less than 120 ° C., there is a risk of breakage at a location where current is concentrated, such as a lead weld, when a large current such as high output charge / discharge flows. Further, if the melting point of the metal or alloy is higher than 800 ° C., melting due to heat generation when an internal short circuit occurs is unlikely to occur, and the current interruption effect at the time of the short circuit may be diminished. Therefore, the melting point of the metal or alloy used for the base material layer 100 is 120 to 800 ° C. Preferably, it is 200 to 700 ° C.
 基材層100は、特に限定されるものではないが、例えば前述した条件からAl、72Ag-28Cu(BAg-8)、Sn、及び58Bi-42Sn等を用いることができ、好ましくはAlである。 The base material layer 100 is not particularly limited, but for example, Al, 72Ag-28Cu (BAg-8), Sn, 58Bi-42Sn, etc. can be used from the above-mentioned conditions, and preferably Al.
 基材層100の電気伝導率は10S/m以上であることが好ましい。電気伝導率が10S/m未満だと電気伝導性が低下する場合があるからである。 The electric conductivity of the base material layer 100 is preferably 10 6 S / m or more. This is because if the electrical conductivity is less than 10 6 S / m, the electrical conductivity may decrease.
 基材層100の厚みは特に限定されないが、1~100μmが好ましく、5~20μmがより好ましい。厚みが5μm未満だと箔状に加工するのが難しくなると同時に、強度が不足しやすく生産性が低下する虞がある。厚みが20μm以上だと短絡時の電流遮断効果が薄れる場合があり、また、電池内における集電体の占める割合が高くなるためエネルギー密度が低下しやすい。 The thickness of the base material layer 100 is not particularly limited, but is preferably 1 to 100 μm, and more preferably 5 to 20 μm. When the thickness is less than 5 μm, it becomes difficult to process into a foil shape, and at the same time, the strength tends to be insufficient and the productivity may be lowered. When the thickness is 20 μm or more, the current interruption effect at the time of short circuit may be reduced, and the current occupying ratio in the battery becomes high, so that the energy density tends to decrease.
 金属層110は、負極として使用される電位域においてLiと合金化したり電解液と反応したりアノード溶解したりするものでなければ特に限定されないが、例えばCu又はNiからなり、他にもCu-Au等のCu合金、Ni-Fe等のNi合金、Cu-Ni等のCu及びNiを含む合金にて形成されることも可能である。 The metal layer 110 is not particularly limited as long as it does not alloy with Li, react with the electrolytic solution, or dissolve in the anode in the potential region used as the negative electrode, but is made of, for example, Cu or Ni. It can also be formed of a Cu alloy such as Au, a Ni alloy such as Ni—Fe, or an alloy containing Cu and Ni such as Cu—Ni.
 金属層110の厚みは特に限定されないが、0.1~2μmが好ましい。厚みが0.1μmよりも小さいと基材層100の表面を均一に被覆しにくくなり、基材層100の表面が部分的に露出することになり、充電時に基材層100へのLi析出やLi合金化等の副反応が起きる虞がある。厚みが2μmより大きいと、負極集電体中における金属層110の割合が高くなり、短絡時の電流遮断効果が薄れる可能性がある。 The thickness of the metal layer 110 is not particularly limited, but is preferably 0.1 to 2 μm. When the thickness is smaller than 0.1 μm, it becomes difficult to uniformly cover the surface of the base material layer 100, and the surface of the base material layer 100 is partially exposed. Side reactions such as Li alloying may occur. When the thickness is larger than 2 μm, the ratio of the metal layer 110 in the negative electrode current collector becomes high, and the current blocking effect at the time of short circuit may be reduced.
 金属層110の基材層100への積層方法は、特に限定されないが、例えば、電気めっき、無電解めっき、蒸着等を好適に用いることができる。 The method for laminating the metal layer 110 on the base material layer 100 is not particularly limited, and for example, electroplating, electroless plating, vapor deposition, or the like can be suitably used.
 次に上記のリチウムイオン電池用負極集電体800を使用するリチウムイオン電池900について説明をする。 Next, a lithium ion battery 900 using the above negative electrode current collector 800 for lithium ion battery will be described.
 図2は、リチウムイオン電池900の構成を模式的に示した断面図である。リチウムイオン電池900は、図2に示すような、例えば円筒形のリチウムイオン二次電池を採用することができる。このリチウムイオン二次電池は、内部短絡等の異常発生により電池内の圧力が上昇したとき、ガスを電池外に放出する安全弁機構を備えている。 FIG. 2 is a cross-sectional view schematically showing the configuration of the lithium ion battery 900. As the lithium ion battery 900, for example, a cylindrical lithium ion secondary battery as shown in FIG. 2 can be adopted. This lithium ion secondary battery is provided with a safety valve mechanism that releases gas to the outside of the battery when the pressure in the battery increases due to the occurrence of an abnormality such as an internal short circuit.
 リチウムイオン電池900においては、正極101と負極102とがセパレータ103を介して捲回された電極群104が、非水電解液とともに、電池ケース107に収容されている。電極群104の上下には、絶縁板109、119が配され、正極101は、正極リード105を介してフィルタ112に接合され、負極102は、負極リード106を介して負極端子を兼ねる電池ケース107の底部に接合されている。 In the lithium ion battery 900, an electrode group 104 in which a positive electrode 101 and a negative electrode 102 are wound through a separator 103 is housed in a battery case 107 together with a non-aqueous electrolyte. Insulating plates 109 and 119 are arranged above and below the electrode group 104, the positive electrode 101 is joined to the filter 112 via the positive electrode lead 105, and the negative electrode 102 is also connected to the negative electrode terminal via the negative electrode lead 106. Is joined to the bottom.
 正極101は、正極集電体及びそれに担持された正極活物質層からなる。正極活物質層は、正極活物質の他に、結着剤、導電剤等を含むことができる。正極101は、例えば、正極活物質と任意成分からなる正極合剤を液状成分と混合して正極合剤スラリーを調製し、得られたスラリーを正極集電体に塗布し、乾燥させて作製する。 The positive electrode 101 includes a positive electrode current collector and a positive electrode active material layer carried thereon. The positive electrode active material layer can contain a binder, a conductive agent, and the like in addition to the positive electrode active material. The positive electrode 101 is prepared, for example, by mixing a positive electrode mixture composed of a positive electrode active material and an optional component with a liquid component to prepare a positive electrode mixture slurry, applying the obtained slurry to a positive electrode current collector, and drying the mixture. .
 負極102も、同様に、例えば負極活物質と任意成分からなる負極合剤を液状成分と混合して負極合剤スラリーを調製し、得られたスラリーを負極集電体800に塗布し、乾燥させて作製する。また、負極活物質が、リチウムと合金化可能な元素、珪素化合物、錫化合物などである場合は、気相法により負極活物質層を形成してもよい。気相法には、化学気相成長法(CVD)、真空蒸着法、スパッタリング法などがある。 Similarly, for the negative electrode 102, for example, a negative electrode mixture composed of a negative electrode active material and an optional component is mixed with a liquid component to prepare a negative electrode mixture slurry, and the obtained slurry is applied to the negative electrode current collector 800 and dried. To make. When the negative electrode active material is an element that can be alloyed with lithium, a silicon compound, a tin compound, or the like, the negative electrode active material layer may be formed by a vapor phase method. Examples of the vapor phase method include chemical vapor deposition (CVD), vacuum deposition, and sputtering.
 リチウムイオン電池900の正極活物質としては、リチウム複合金属酸化物を用いることができる。例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、及びLiCo1-y等(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも一種)が挙げられる。ここで、x=0~1.2、y=0~0.9、z=2.0~2.3である。なお、リチウムのモル比を示すx値は、活物質作製直後の値であり、充放電により増減する。更にこれら含リチウム化合物の一部を異種元素で置換してもよい。金属酸化物、リチウム酸化物、導電剤等で表面処理してもよく、表面を疎水化処理してもよい。正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、正極活物質層は組成の異なる層を2層以上積層してもよい。 As the positive electrode active material of the lithium ion battery 900, a lithium composite metal oxide can be used. For example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1-y O z (M = Na, Mg, Sc, Y , Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B). Here, x = 0 to 1.2, y = 0 to 0.9, and z = 2.0 to 2.3. In addition, x value which shows the molar ratio of lithium is a value immediately after active material preparation, and increases / decreases by charging / discharging. Further, a part of these lithium-containing compounds may be substituted with a different element. Surface treatment may be performed with a metal oxide, lithium oxide, a conductive agent, or the like, or the surface may be subjected to a hydrophobic treatment. A positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type. The positive electrode active material layer may be a stack of two or more layers having different compositions.
 本発明のリチウムイオン電池の負極活物質としては、例えば、金属、金属繊維、炭素材料、酸化物、窒化物、錫化合物、珪素化合物、各種合金材料等を用いることができる。炭素材料としては、例えば各種天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛、非晶質炭素等の炭素材料が用いられる。酸化物としては、例えばスピネル型結晶構造を有するチタン酸リチウムが用いられる。典型的なスピネル型結晶構造を有するチタン酸リチウムは、式:LiTi12で表される。ただし、一般式:LiTi5-y12+zで表されるチタン酸リチウムも同様に用いることができる。ここで、Mは、バナジウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、ホウ素、マグネシウム、カルシウム、ストロンチウム、バリウム、ジルコニウム、ニオブ、モリブデン、タングステン、ビスマス、ナトリウム、ガリウムおよび希土類元素よりなる群から選択された少なくとも1種であり、xは合成直後または完全放電状態におけるチタン酸リチウムの値であって、3≦x≦5であり、0.005≦y≦1.5であり、-1≦z≦1である。また、珪素(Si)や錫(Sn)等の単体、又は合金、化合物、固溶体等の珪素化合物や錫化合物が容量密度の大きい点から好ましい。例えば珪素化合物としては、SiO(0.05<x<1.95)、又はこれらのいずれかにB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N、Snからなる群から選択される少なくとも1つ以上の元素でSiの一部を置換した合金や化合物、又は固溶体等を用いることができる。錫化合物としてはNiSn、MgSn、SnO(0<x<2)、SnO、SnSiO等が適用できる。負極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、負極活物質層は組成の異なる層を2層以上積層してもよい。 As the negative electrode active material of the lithium ion battery of the present invention, for example, metals, metal fibers, carbon materials, oxides, nitrides, tin compounds, silicon compounds, various alloy materials, and the like can be used. Examples of the carbon material include carbon materials such as various natural graphites, cokes, graphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon. As the oxide, for example, lithium titanate having a spinel crystal structure is used. Lithium titanate having a typical spinel crystal structure is represented by the formula: Li 4 Ti 5 O 12 . However, the general formula: Li x Ti 5-y M y O 12 + lithium titanate represented by z may be used as well. Here, M is composed of vanadium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, boron, magnesium, calcium, strontium, barium, zirconium, niobium, molybdenum, tungsten, bismuth, sodium, gallium, and rare earth elements. At least one selected from the group, x is a value of lithium titanate immediately after synthesis or in a completely discharged state, 3 ≦ x ≦ 5, 0.005 ≦ y ≦ 1.5, − 1 ≦ z ≦ 1. In addition, a simple substance such as silicon (Si) or tin (Sn), or a silicon compound or tin compound such as an alloy, a compound, or a solid solution is preferable from the viewpoint of a large capacity density. For example, as a silicon compound, SiO x (0.05 <x <1.95), or any one of these may be B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, An alloy, a compound, a solid solution, or the like in which a part of Si is substituted with at least one element selected from the group consisting of Ta, V, W, Zn, C, N, and Sn can be used. As the tin compound, Ni 2 Sn 4 , Mg 2 Sn, SnO x (0 <x <2), SnO 2 , SnSiO 3 or the like can be applied. A negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, you may laminate | stack two or more layers from which a negative electrode active material layer differs in a composition.
 正極101又は負極102の結着剤には、例えばPVDF、PTFE、ポリエチレン、ポリプロピレン及びアラミド樹脂等が使用可能である。また電極に含ませる導電剤には、例えば、天然黒鉛や人造黒鉛のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維や金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム等の金属粉末類、酸化亜鉛やチタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、フェニレン誘導体等の有機導電性材料等が用いられる。 As the binder for the positive electrode 101 or the negative electrode 102, for example, PVDF, PTFE, polyethylene, polypropylene, and aramid resin can be used. Examples of the conductive agent included in the electrode include natural graphite and artificial graphite graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and other carbon blacks, carbon fibers and metal fibers. Conductive fibers such as carbon powder, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, organic conductive materials such as phenylene derivatives, etc. Is used.
 正極活物質、導電剤及び結着剤の配合割合は、各々、正極活物質80~97重量%、導電剤1~20重量%、結着剤1~10重量%の範囲とすることが望ましい。 The blending ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 97% by weight of the positive electrode active material, 1 to 20% by weight of the conductive agent, and 1 to 10% by weight of the binder.
 また負極活物質及び結着剤の配合割合は、各々、負極活物質93~99重量%、結着剤1~10重量%の範囲とすることが望ましい。また、気相法により負極活物質層を形成する場合には結着剤を含まなくてよい。 Also, the blending ratio of the negative electrode active material and the binder is preferably in the range of 93 to 99% by weight of the negative electrode active material and 1 to 10% by weight of the binder, respectively. Further, when the negative electrode active material layer is formed by a vapor phase method, the binder may not be included.
 正極集電体には、長尺の多孔性構造の導電性基板か、あるいは無孔の導電性基板が使用される。導電性基板に用いられる材料としては、例えばステンレス鋼、Al、Ti等が用いられる。正極集電体にも短絡時の電流遮断効果を付与すること及び軽量化の観点からAlを用いることがより好ましい。正極集電体の厚さは、特に限定されないが、1~100μmが好ましく、5~20μmがより好ましい。正極集電体の厚さを上記範囲とすることにより、極板の強度を保持しつつ軽量化することができる。 As the positive electrode current collector, a long porous conductive substrate or a nonporous conductive substrate is used. As the material used for the conductive substrate, for example, stainless steel, Al, Ti or the like is used. It is more preferable to use Al from the viewpoint of imparting a current interruption effect at the time of a short circuit to the positive electrode current collector and reducing the weight. The thickness of the positive electrode current collector is not particularly limited, but is preferably 1 to 100 μm, and more preferably 5 to 20 μm. By setting the thickness of the positive electrode current collector in the above range, it is possible to reduce the weight while maintaining the strength of the electrode plate.
 正極101と負極102との間に介在するセパレータ103としては、大きなイオン透過度を持ち、所定の機械的強度と、絶縁性とを兼ね備えた微多孔薄膜、織布、不織布等が用いられる。セパレータ103の材質としては、例えば、ポリプロピレン、ポリエチレン等のポリオレフィンが耐久性に優れ、かつシャットダウン機能を有しているため、リチウムイオン電池の安全性の観点から好ましい。セパレータ103の厚さは、一般的に10~300μmであるが、40μm以下とすることが望ましい。また、15~30μmの範囲とするのがより好ましく、更に好ましいセパレータ厚さの範囲は20~25μmである。更に微多孔フィルムは、1種の材料からなる単層膜であってもよく、1種又は2種以上の材料からなる複合膜又は多層膜であってもよい。また、セパレータ103の空孔率は、30~70%の範囲であることが好ましい。ここで空孔率とは、セパレータ体積に占める孔部の体積比を示す。セパレータ103の空孔率のより好ましい範囲は、35~60%である。 As the separator 103 interposed between the positive electrode 101 and the negative electrode 102, a microporous thin film, a woven fabric, a non-woven fabric or the like having a high ion permeability and having a predetermined mechanical strength and an insulating property is used. As a material of the separator 103, for example, polyolefin such as polypropylene and polyethylene is preferable from the viewpoint of safety of the lithium ion battery because it is excellent in durability and has a shutdown function. The thickness of the separator 103 is generally 10 to 300 μm, but is preferably 40 μm or less. Further, the range of 15 to 30 μm is more preferable, and the more preferable range of the separator thickness is 20 to 25 μm. Furthermore, the microporous film may be a single layer film made of one kind of material, or a composite film or multilayer film made of one kind or two or more kinds of materials. The porosity of the separator 103 is preferably in the range of 30 to 70%. Here, the porosity indicates the volume ratio of the pores to the separator volume. A more preferable range of the porosity of the separator 103 is 35 to 60%.
 非水電解質としては、液状、ゲル状又は固体(高分子固体電解質)状の物質を使用することができる。 As the non-aqueous electrolyte, a liquid, gel or solid (polymer solid electrolyte) substance can be used.
 液状非水電解質(非水電解液)は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより得られる。また、ゲル状非水電解質は、非水電解質と、この非水電解質が保持される高分子材料とを含むものである。この高分子材料としては、例えば、PVDF、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート、ポリビニリデンフルオライドヘキサフルオロプロピレン等が好適に使用される。 A liquid non-aqueous electrolyte (non-aqueous electrolyte) can be obtained by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent. The gel-like non-aqueous electrolyte includes a non-aqueous electrolyte and a polymer material that holds the non-aqueous electrolyte. As this polymer material, for example, PVDF, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, polyvinylidene fluoride hexafluoropropylene and the like are preferably used.
 電解質を溶解する非水溶媒としては、公知の非水溶媒を使用することが可能である。この非水溶媒の種類は特に限定されないが、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル等が用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the non-aqueous solvent for dissolving the electrolyte, a known non-aqueous solvent can be used. Although the kind of this non-aqueous solvent is not specifically limited, For example, cyclic carbonate ester, chain | strand-shaped carbonate ester, cyclic carboxylic acid ester etc. are used. Examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like. Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). A non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 非水溶媒に溶解させる電解質には、例えばLiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、及びLiB10Cl10等を用いることができる。電解質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 For the electrolyte dissolved in the non-aqueous solvent, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , and LiB 10 Cl 10 are used. Can do. One electrolyte may be used alone, or two or more electrolytes may be used in combination.
 また非水電解液には、添加剤として負極上で分解してリチウムイオン伝導性の高い被膜を形成し、充放電効率を高くすることができる材料を含んでいてもよい。このような機能を持つ添加剤としては、例えば、ビニレンカーボネート(VC)、4-メチルビニレンカーボネート、及び4,5-ジメチルビニレンカーボネート等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、ビニレンカーボネート、ビニルエチレンカーボネート、及びジビニルエチレンカーボネートよりなる群から選ばれる少なくとも1種が好ましい。なお、上記化合物は、その水素原子の一部がフッ素原子で置換されていてもよい。電解質の非水溶媒に対する溶解量は、0.5~2mol/Lの範囲内とすることが望ましい。 In addition, the non-aqueous electrolyte may contain a material that can be decomposed on the negative electrode as an additive to form a film having high lithium ion conductivity and increase charge / discharge efficiency. Examples of the additive having such a function include vinylene carbonate (VC), 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, and the like. These may be used alone or in combination of two or more. Among these, at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable. In the above compound, part of the hydrogen atoms may be substituted with fluorine atoms. The amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 to 2 mol / L.
 更に、非水電解液には、過充電時に分解して電極上に被膜を形成し、電池を不活性化する公知のベンゼン誘導体を含有させてもよい。前記ベンゼン誘導体としては、フェニル基及び前記フェニル基に隣接する環状化合物基を有するものが好ましい。前記環状化合物基としては、フェニル基、環状エーテル基、環状エステル基、シクロアルキル基、フェノキシ基等が好ましい。ベンゼン誘導体の具体例としては、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ただし、ベンゼン誘導体の含有量は、非水溶媒全体の10体積%以下であることが好ましい。 Furthermore, the non-aqueous electrolyte may contain a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery. As the benzene derivative, those having a phenyl group and a cyclic compound group adjacent to the phenyl group are preferable. As the cyclic compound group, a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group and the like are preferable. Specific examples of the benzene derivative include cyclohexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. However, the content of the benzene derivative is preferably 10% by volume or less of the entire non-aqueous solvent.
 フィルタ112は、インナーキャップ113に接続され、インナーキャップ113の突起部は、金属製の弁板114に接合されている。更に、弁板114は、正極端子を兼ねる端子板108に接続されている。そして、端子板108、弁板114、インナーキャップ113、及びフィルタ112が一体となって、ガスケット111を介して、電池ケース107の開口部を封口している。 The filter 112 is connected to the inner cap 113, and the protrusion of the inner cap 113 is joined to the metal valve plate 114. Further, the valve plate 114 is connected to a terminal plate 108 that also serves as a positive electrode terminal. The terminal plate 108, the valve plate 114, the inner cap 113, and the filter 112 are integrated to seal the opening of the battery case 107 via the gasket 111.
 素電池100に内部短絡等の異常が発生して、素電池100内の圧力が上昇すると、弁体114が端子板108に向かって膨れ、インナーキャップ113と弁体114との接合が外れると、電流経路が遮断される。更に素電池100内の圧力が上昇すると、弁体114が破断する。これによって、素電池100内に発生したガスは、フィルタ112の貫通孔112a、インナーキャップ113の貫通孔113a、弁体114の裂け目、そして、端子板108の開放部108aを介して、外部へ排出される。 When an abnormality such as an internal short circuit occurs in the unit cell 100 and the pressure in the unit cell 100 increases, the valve body 114 swells toward the terminal plate 108, and the inner cap 113 and the valve body 114 are disconnected. The current path is interrupted. When the pressure in the unit cell 100 further increases, the valve body 114 is broken. As a result, the gas generated in the unit cell 100 is discharged to the outside through the through hole 112a of the filter 112, the through hole 113a of the inner cap 113, the tear of the valve body 114, and the opening 108a of the terminal plate 108. Is done.
 次に上記のリチウムイオン電池900に使用されるリチウムイオン電池用負極集電体800の作用について説明をする。 Next, the operation of the negative electrode current collector 800 for a lithium ion battery used in the above lithium ion battery 900 will be described.
 図3は、リチウムイオン電池用負極集電体800にスラリー状の負極合剤を塗布して乾燥させて作製した負極102につき、異物が刺さる前の状態を説明する図である。図3に示すように、基材層100の両面に金属層110が形成され、金属層110の表面には負極活物質層120が形成されている。負極活物質層120は負極活物質粒子を模式的に記載している。 FIG. 3 is a diagram for explaining a state before a foreign object is stuck in the negative electrode 102 produced by applying a slurry-like negative electrode mixture to a negative electrode current collector 800 for a lithium ion battery and drying it. As shown in FIG. 3, the metal layer 110 is formed on both surfaces of the base material layer 100, and the negative electrode active material layer 120 is formed on the surface of the metal layer 110. The negative electrode active material layer 120 schematically describes negative electrode active material particles.
 負極活物質層120の厚みは、特に限定されるものではないが例えば100μm以下であり、好ましくは10~100μmである。 The thickness of the negative electrode active material layer 120 is not particularly limited, but is, for example, 100 μm or less, and preferably 10 to 100 μm.
 負極活物質層120中の負極活物質粒子の平均粒径は、特に限定されるものではないが、例えば50μm以下であり、好ましくは30μm以下、更に好ましくは10μm以下である。また、気相法により負極活物質層を形成する場合にはこの限りではない。 The average particle diameter of the negative electrode active material particles in the negative electrode active material layer 120 is not particularly limited, but is, for example, 50 μm or less, preferably 30 μm or less, and more preferably 10 μm or less. Further, this is not the case when the negative electrode active material layer is formed by a vapor phase method.
 図4は、上記の負極102につき、異物200が刺さった状態を説明する図である。図4に示すように、例えば釘のような大きな異物200が、負極102を貫通するように刺さった場合、負極102と図示されていない正極との間に内部短絡が生じてその短絡部分が発熱する。 FIG. 4 is a diagram for explaining a state in which the foreign material 200 is stuck in the negative electrode 102 described above. As shown in FIG. 4, when a large foreign object 200 such as a nail is pierced through the negative electrode 102, an internal short circuit occurs between the negative electrode 102 and a positive electrode (not shown), and the short-circuited portion generates heat. To do.
 図5は、負極102の短絡部分が発熱して基材層100が溶融した状態を説明する図である。図5に示すように、負極102の短絡部分が発熱すると、その発熱により基材層100が溶融して、基材層100に空隙部130が生じる。この空隙部130が発生するから内部短絡電流を遮断することができ、短絡時の電池温度の過度な上昇を抑制することができる。 FIG. 5 is a diagram illustrating a state where the short circuit portion of the negative electrode 102 generates heat and the base material layer 100 is melted. As shown in FIG. 5, when the short-circuit portion of the negative electrode 102 generates heat, the heat generation causes the base material layer 100 to melt, and a void 130 is generated in the base material layer 100. Since the gap 130 is generated, the internal short circuit current can be cut off, and an excessive increase in the battery temperature at the time of the short circuit can be suppressed.
 なお、金属層110のうち、溶融せずに空隙部130に接している部分117は、図示していないが短絡部分の発熱により消失することがあり、係る場合はより内部短絡電流を遮断することができ、電池温度の過度な上昇を抑制できる。 In addition, although the part 117 which is not melt | dissolving and contacts the space | gap part 130 among the metal layers 110 may lose | disappear by the heat_generation | fever of a short circuit part, it interrupts | blocks an internal short circuit current more in that case. And an excessive increase in battery temperature can be suppressed.
 (その他の実施形態)
 上述の実施形態では、リチウムイオン電池用負極集電体800は、基材層100とその両面に接して形成される金属層110とを備える3層構造として構成された。しかし本発明の範囲はこのような実施形態に限定されるものではない。
(Other embodiments)
In the above-described embodiment, the negative electrode current collector 800 for a lithium ion battery is configured as a three-layer structure including the base material layer 100 and the metal layer 110 formed in contact with both surfaces thereof. However, the scope of the present invention is not limited to such an embodiment.
 リチウムイオン電池用負極集電体800は、融点120~800℃である金属又は合金からなる基材層100と、その基材層100の両面に接して形成されるCu又はNiからなる金属層110と、その金属層110の両面に接して形成される導電性樹脂層と、を備える構造も可能である。導電性樹脂層は、例えば導電性高分子にて形成されており、導電性高分子は例えばポリピロール、ポリアニリン、ポリアセチレン、ポリチオフェン、ポリパラフェニレン、及びポリフェニレンビニレン等を使用できる。 A negative electrode current collector 800 for a lithium ion battery includes a base material layer 100 made of a metal or an alloy having a melting point of 120 to 800 ° C., and a metal layer 110 made of Cu or Ni formed in contact with both surfaces of the base material layer 100. And a conductive resin layer formed in contact with both surfaces of the metal layer 110 is also possible. The conductive resin layer is formed of, for example, a conductive polymer, and polypyrrole, polyaniline, polyacetylene, polythiophene, polyparaphenylene, polyphenylene vinylene, or the like can be used as the conductive polymer.
 導電性高分子の軟化点は、100~400℃であることが好ましく、200~300℃であることがより好ましい。また、導電性樹脂層の厚みは特に限定されないが、0.1~2μmが好ましい。 The softening point of the conductive polymer is preferably 100 to 400 ° C., more preferably 200 to 300 ° C. The thickness of the conductive resin layer is not particularly limited, but is preferably 0.1 to 2 μm.
 また、リチウムイオン電池用負極集電体800は、融点120~800℃である金属又は合金からなる基材層100と、その基材層100の両面に接して形成される導電性樹脂層と、その導電性樹脂層の両面に接して形成されるCu又はNiからなる金属層110と、備える構造も可能である。 The negative electrode current collector 800 for a lithium ion battery includes a base material layer 100 made of a metal or an alloy having a melting point of 120 to 800 ° C., a conductive resin layer formed in contact with both surfaces of the base material layer 100, A structure provided with a metal layer 110 made of Cu or Ni formed in contact with both surfaces of the conductive resin layer is also possible.
 上述したこれらの構造のリチウムイオン電池用負極集電体800でも、短絡時には短絡部分において基材層100及び導電性樹脂層が溶融するので、内部短絡電流を遮断することができる。そして負極の集電が基材層100、金属層110及び導電性樹脂層から行われるので負荷特性が良い。更に基材層100及び金属層110が圧延時の応力を緩和しにくくさせるので、負極活物質密度の低下も発生しにくい。 Even in the negative electrode current collector 800 for a lithium ion battery having these structures described above, the base material layer 100 and the conductive resin layer are melted in the short-circuit portion at the time of short-circuit, so that the internal short-circuit current can be interrupted. And since the current collection of a negative electrode is performed from the base material layer 100, the metal layer 110, and a conductive resin layer, a load characteristic is good. Furthermore, since the base material layer 100 and the metal layer 110 make it difficult to relieve stress during rolling, a decrease in the density of the negative electrode active material hardly occurs.
 なお、本発明は、上記基材層及び上記金属層を備えるものであれば、上述した3層及び5層に限定されるものではなく、4層及び6以上の層構造であっても本発明の範囲に含まれる。 The present invention is not limited to the above-described three layers and five layers as long as the substrate layer and the metal layer are provided, and the present invention may be applied to a four-layer or six-layer structure. Included in the range.
 次に、以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定されるわけではない。 Next, the present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the following examples.
 (実施例1)
 (1)負極102の作製
 厚さ10μmのアルミニウム箔を基材層100として両面に厚み1μmのCuからなる金属層110を電気めっきにより形成し、リチウムイオン電池用負極集電体800を作成した。
Example 1
(1) Production of Negative Electrode 102 A metal layer 110 made of Cu having a thickness of 1 μm was formed on both surfaces by using an aluminum foil having a thickness of 10 μm as a base material layer 100 to produce a negative electrode current collector 800 for a lithium ion battery.
 また、人造黒鉛3kg、スチレン-ブタジエンゴム粒子の40質量%水性分散液(商品名:BM-400B、日本ゼオン(株)製)75g、カルボキシメチルセルロース30g及び適量の水を双腕式練合機で攪拌し、負極合剤スラリーを調製した。この負極合剤スラリーをリチウムイオン電池用負極集電体800の両面に塗布乾燥し、線圧110Kg/cmで3回圧延を行った。圧延後の厚みは160μm、負極活物質層120の活物質密度は1.55g/cmだった。これを幅57.5mm、長さ650mmの寸法に裁断し、負極102を作成した。負極102のリチウムイオン電池用負極集電体が露出する部分にニッケルリードの一端を接続した。 In addition, 3 kg of artificial graphite, 40 g% aqueous dispersion of styrene-butadiene rubber particles (trade name: BM-400B, manufactured by Nippon Zeon Co., Ltd.), 30 g of carboxymethylcellulose and an appropriate amount of water were used in a double-arm kneader. The mixture was stirred to prepare a negative electrode mixture slurry. This negative electrode mixture slurry was applied and dried on both surfaces of a negative electrode current collector 800 for a lithium ion battery, and rolled three times at a linear pressure of 110 kg / cm. The thickness after rolling was 160 μm, and the active material density of the negative electrode active material layer 120 was 1.55 g / cm 3 . This was cut into a dimension of 57.5 mm in width and 650 mm in length to produce a negative electrode 102. One end of a nickel lead was connected to the portion of the negative electrode 102 where the negative electrode current collector for a lithium ion battery was exposed.
 (2)正極101の作製
 厚さ15μmのアルミニウム集電体両面にポリプロピレン水分散液を塗布乾燥して、絶縁性樹脂を形成した。塗工重量は約0.1mg/cmであった。コバルト酸リチウム3kg、PVDFの12重量%含むN-メチル-ピロリドン(以下、NMP)溶液(商品名:PVDF#1320、(株)クレハ製)1kg、アセチレンブラック90g及び適量のNMPを双腕式練合機で攪拌し、正極合剤スラリーを調製した。この正極合剤スラリーを、厚み15μmのアルミニウム集電体両面に塗布乾燥し、線圧1000Kg/cmで3回圧延を行った。圧延後の厚みは175μmだった。これを幅56mm、長さ600mmの寸法に裁断し、正極101を作製した。正極101の正極集電体が露出する部分にアルミニウムリードの一端を接続した。
(2) Production of Positive Electrode 101 A polypropylene aqueous dispersion was applied and dried on both surfaces of a 15 μm thick aluminum current collector to form an insulating resin. The coating weight was about 0.1 mg / cm. N-methyl-pyrrolidone (hereinafter referred to as NMP) solution (trade name: PVDF # 1320, manufactured by Kureha Co., Ltd.) 1 kg containing lithium carbonate 3 kg, PVDF 12% by weight, 90 g of acetylene black and an appropriate amount of NMP The mixture was stirred with a combination machine to prepare a positive electrode mixture slurry. This positive electrode mixture slurry was applied and dried on both sides of a 15 μm thick aluminum current collector, and rolled three times at a linear pressure of 1000 kg / cm. The thickness after rolling was 175 μm. This was cut into dimensions of 56 mm in width and 600 mm in length to produce the positive electrode 101. One end of the aluminum lead was connected to the portion of the positive electrode 101 where the positive electrode current collector was exposed.
 (3)電解液の調製
 ECとEMCとを、体積比1:3で含む混合溶媒に、LiPFを1mol/Lの濃度で溶解し、非水電解質を調整した。
(3) Preparation of Electrolyte Solution A nonaqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent containing EC and EMC at a volume ratio of 1: 3.
 (4)電池の組立
 上述した正負極を、厚み20μmのポリエチレン樹脂の単層からなるセパレータ103を介して捲回し、電極群104を構成した。この極板群の長手方向両端に上部の絶縁板109及び下部の絶縁板119を装着した後、有底円筒型の電池ケース107(直径18mm、高さ65mm、内径17.85mm)に挿入した。アルミニウムリード及びニッケルリードの他端を、各々、正極端子の下部及び電池ケース107の内底面に接続した。その後、上述した非水電解質5.5gを電池ケース107内に注液した。電池ケース107の開口に、正極端子を支持する端子板108を装着し、開口端部を端子板108に向けてかしめつけ、電池ケース107を封口した。こうして、設計容量2000mAhの円筒型リチウムイオン電池を作製した。これを実施例1の電池とする。
(4) Battery assembly The above-described positive and negative electrodes were wound through a separator 103 made of a single layer of polyethylene resin having a thickness of 20 μm to constitute an electrode group 104. The upper insulating plate 109 and the lower insulating plate 119 were attached to both ends in the longitudinal direction of the electrode plate group, and then inserted into a bottomed cylindrical battery case 107 (diameter 18 mm, height 65 mm, inner diameter 17.85 mm). The other ends of the aluminum lead and the nickel lead were connected to the lower part of the positive electrode terminal and the inner bottom surface of the battery case 107, respectively. Thereafter, 5.5 g of the non-aqueous electrolyte described above was injected into the battery case 107. A terminal plate 108 that supports the positive terminal was attached to the opening of the battery case 107, and the end of the opening was caulked toward the terminal plate 108 to seal the battery case 107. Thus, a cylindrical lithium ion battery having a design capacity of 2000 mAh was produced. This is referred to as the battery of Example 1.
 (実施例2)
 実施例1の電池に対して、リチウムイオン電池用負極集電体800に厚さ6μmのアルミニウム基材層100の両面に厚み3μmのCuからなる金属層110を形成したものを用いた以外は、実施例1と同様にリチウムイオン電池を作製した。圧延後の負極厚みは159μm、負極活物質密度は1.57g/cmだった。これを実施例2の電池とする。
(Example 2)
For the battery of Example 1, except that the negative electrode current collector 800 for a lithium ion battery was formed by forming a metal layer 110 made of Cu having a thickness of 3 μm on both surfaces of an aluminum substrate layer 100 having a thickness of 6 μm. A lithium ion battery was produced in the same manner as in Example 1. The negative electrode thickness after rolling was 159 μm, and the negative electrode active material density was 1.57 g / cm 3 . This is referred to as the battery of Example 2.
 (比較例1)
 実施例1の電池に対して、リチウムイオン電池用負極集電体に厚み10μmの銅箔を用いた以外は、実施例1と同様にリチウムイオン電池を作製した。圧延後の負極厚みは157μm、負極活物質密度は1.57g/cmだった。これを比較例1の電池とする。
(Comparative Example 1)
A lithium ion battery was fabricated in the same manner as in Example 1 except that a 10 μm thick copper foil was used for the negative electrode current collector for the lithium ion battery. The negative electrode thickness after rolling was 157 μm, and the negative electrode active material density was 1.57 g / cm 3 . This is referred to as the battery of Comparative Example 1.
 (比較例2)
 実施例1の電池に対して、リチウムイオン電池用負極集電体に厚み10μmのPET樹脂基材の両面に厚み1μmのCuからなる金属層を形成したものを用いた以外は、実施例1と同様にリチウムイオン電池を作製した。PET樹脂基材にCuを形成する際には約0.1μm厚み分を蒸着により形成した後、電気めっきにより厚み1μmとした。圧延後の負極厚みは176μm、負極活物質密度は1.40g/cmだった。これを比較例2の電池とする。
(Comparative Example 2)
The battery of Example 1 is the same as Example 1 except that a negative electrode current collector for a lithium ion battery is formed by forming a metal layer made of Cu having a thickness of 1 μm on both surfaces of a PET resin substrate having a thickness of 10 μm. Similarly, a lithium ion battery was produced. When forming Cu on the PET resin substrate, a thickness of about 0.1 μm was formed by vapor deposition, and then the thickness was set to 1 μm by electroplating. The negative electrode thickness after rolling was 176 μm, and the negative electrode active material density was 1.40 g / cm 3 . This is referred to as the battery of Comparative Example 2.
 (比較例3)
 比較例2の電池に対して、リチウムイオン電池用負極集電体に厚み6μmのPET樹脂基材の両面に厚み3μmのCuからなる金属層を形成したものを用いた以外は、比較例2と同様にリチウムイオン電池を作製した。圧延後の負極厚みは175μm、負極活物質密度は1.41g/cmだった。これを比較例3の電池とする。
(Comparative Example 3)
For the battery of Comparative Example 2, Comparative Example 2 was used except that a negative electrode current collector for a lithium ion battery was formed by forming a metal layer made of Cu of 3 μm thickness on both sides of a PET resin substrate of 6 μm thickness. Similarly, a lithium ion battery was produced. The negative electrode thickness after rolling was 175 μm, and the negative electrode active material density was 1.41 g / cm 3 . This is referred to as the battery of Comparative Example 3.
 実施例1~2及び比較例1~3で得られたリチウムイオン電池を用いて、次に示す釘刺し試験、充放電試験を行い、安全性及び負荷特性について評価した。 Using the lithium ion batteries obtained in Examples 1 and 2 and Comparative Examples 1 to 3, the following nail penetration test and charge / discharge test were performed to evaluate safety and load characteristics.
 [釘刺し試験]
 各電池に対して、以下の条件で充電を行った。そして、20℃環境下で、充電状態の電池の側面から、直径2.7mmの鉄釘を5mm/秒の速度で2mmの深さまで突き刺し、内部短絡を発生させた。その際の電池の30秒後の到達温度を、釘刺し位置から離れた電池の側面に配置した熱電対で測定した。結果を表1に示す。
[Nail penetration test]
Each battery was charged under the following conditions. Then, in a 20 ° C. environment, an iron nail having a diameter of 2.7 mm was pierced from the side surface of the charged battery to a depth of 2 mm at a speed of 5 mm / second to generate an internal short circuit. The temperature reached after 30 seconds of the battery at that time was measured with a thermocouple placed on the side surface of the battery away from the nail penetration position. The results are shown in Table 1.
 充電条件:
  定電流充電;電流値1400mA/充電終止電圧4.3V
  定電圧充電;電圧値4.3V/充電終止電流100mA
 [充放電試験]
 各電池に対して、20℃環境下で、以下の条件で充放電を行い、0.2C放電時及び3C放電時における放電容量を各々求めた。0.2C放電時の放電容量に対する、3C放電時の放電容量の百分率(%)を求め、初期負荷特性とした。結果を表1に示す。
Charging conditions:
Constant current charging; current value 1400mA / end-of-charge voltage 4.3V
Constant voltage charging; voltage value 4.3V / charging end current 100mA
[Charge / discharge test]
Each battery was charged and discharged under the following conditions in a 20 ° C. environment, and the discharge capacities during 0.2 C discharge and 3 C discharge were determined. The percentage (%) of the discharge capacity at the time of 3C discharge with respect to the discharge capacity at the time of 0.2C discharge was determined and used as the initial load characteristics. The results are shown in Table 1.
 充放電条件:
  定電流充電;電流値1400mA/充電終止電圧4.2V
  定電圧充電;電圧値4.2V/充電終止電流100mA
  定電流放電;電流値400mA(0.2C)/放電終止電圧3.0V
  定電流充電;電流値1400mA/充電終止電圧4.2V
  定電圧充電;電圧値4.2V/充電終止電流100mA
  定電流放電;電流値6000mA(3C)/放電終止電圧3.0V
Charging / discharging conditions:
Constant current charging; current value 1400mA / end-of-charge voltage 4.2V
Constant voltage charge; voltage value 4.2V / charge end current 100mA
Constant current discharge; current value 400 mA (0.2 C) / discharge end voltage 3.0 V
Constant current charging; current value 1400mA / end-of-charge voltage 4.2V
Constant voltage charge; voltage value 4.2V / charge end current 100mA
Constant current discharge; current value 6000 mA (3 C) / discharge end voltage 3.0 V
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 Cuのみからなるリチウムイオン電池用負極集電体を用いた比較例1の電池は、短絡箇所の拡大に伴う過熱により電池表面温度の上昇が著しかった。また、Al基材層の代わりにPETからなる基材層を用いた比較例2及び比較例3は、比較例1に比べ電流遮断効果により電池表面温度は低いものの、負荷特性の低下も大きかった。これは負極の集電を厚みの薄い金属層のCuのみに依存するため、大電流時の集電が不充分となるためと考えられる。また、同じ圧延条件における負極活物質密度も低かった。これはPET樹脂からなる基材層が圧延時の応力を緩和してしまったためであると考えられる。 In the battery of Comparative Example 1 using a negative electrode current collector for a lithium ion battery made of only Cu, the battery surface temperature rose significantly due to overheating accompanying the expansion of the short-circuited portion. Further, Comparative Example 2 and Comparative Example 3 using a base material layer made of PET instead of the Al base material layer had a large decrease in load characteristics, although the battery surface temperature was lower than that of Comparative Example 1 due to the current blocking effect. . This is presumably because current collection at a large current becomes insufficient because current collection at the negative electrode depends only on Cu of the thin metal layer. Moreover, the negative electrode active material density in the same rolling conditions was also low. This is presumably because the base material layer made of PET resin has relaxed the stress during rolling.
 一方、実施例1及び実施例2の電池は、比較例1と比べると電池表面温度は大きく低下し、基材層のAlによる電流遮断効果が出ていることが明らかである。更に、圧延時の活物質密度も高い上、負荷特性の低下がほとんどみられなかった。これは、本実施例では基材層にPET樹脂を用いている比較例2及び比較例3と異なり、圧延時の基材層の変形が少なく応力緩和が少ないこと、基材層も電子伝導性が高く集電に寄与することによると考えられる。 On the other hand, in the batteries of Example 1 and Example 2, the battery surface temperature is greatly reduced as compared with Comparative Example 1, and it is clear that the current blocking effect due to Al of the base material layer is exhibited. Furthermore, the active material density during rolling was high, and the load characteristics were hardly deteriorated. This is different from Comparative Example 2 and Comparative Example 3 in which PET resin is used for the base layer in this example, and the base layer is less deformed and less stress-relieved during rolling, and the base layer is also electronically conductive. Is considered to be due to the high contribution to current collection.
 ただし、実施例1と実施例2の比較によると金属層が厚い実施例2の釘刺し試験後電池表面温度がやや高く、金属層の厚みは2μm以下がより好ましい。 However, according to a comparison between Example 1 and Example 2, the battery surface temperature after the nail penetration test of Example 2 where the metal layer is thick is somewhat high, and the thickness of the metal layer is more preferably 2 μm or less.
 本発明により電池の負荷特性の低下を防ぎつつ優れた安全性を有するリチウムイオン電池を提供できるため、携帯電子機器等の小型電源だけでなく、EV等の大型電源へも展開できる技術として有用である。 Since the present invention can provide a lithium ion battery having excellent safety while preventing deterioration of the load characteristics of the battery, it is useful as a technique that can be developed not only for small power sources such as portable electronic devices but also for large power sources such as EVs. is there.
 100:基材層
 101:正極
 102:負極
 103:セパレータ
 104:電極群
 105:正極リード
 106:負極リード
 107:電池ケース
 108:端子板
 109:絶縁板
 110:金属層
 111:ガスケット
 112:フィルタ
 113:インナーキャップ
 114:弁体
 119:絶縁板
 120:負極活物質層
 800:リチウムイオン電池用負極集電体
 900:リチウムイオン電池
DESCRIPTION OF SYMBOLS 100: Base material layer 101: Positive electrode 102: Negative electrode 103: Separator 104: Electrode group 105: Positive electrode lead 106: Negative electrode lead 107: Battery case 108: Terminal board 109: Insulating plate 110: Metal layer 111: Gasket 112: Filter 113: Inner cap 114: Valve body 119: Insulating plate 120: Negative electrode active material layer 800: Negative electrode current collector for lithium ion battery 900: Lithium ion battery

Claims (4)

  1.  融点120℃以上800℃以下である金属又は合金からなる基材層と、
     前記基材層の両面に接触又は非接触にて形成されるCu又はNiを有する金属層と、を備えることを特徴とするリチウムイオン電池用負極集電体。
    A base material layer made of a metal or alloy having a melting point of 120 ° C. or higher and 800 ° C. or lower;
    A negative electrode current collector for a lithium ion battery, comprising: a metal layer having Cu or Ni formed on both surfaces of the base material layer in contact or non-contact.
  2.  前記基材層の電気伝導率が10S/m以上である請求項1記載のリチウムイオン電池用負極集電体。 The negative electrode current collector for a lithium ion battery according to claim 1, wherein the base material layer has an electric conductivity of 10 6 S / m or more.
  3.  前記基材層がAlからなる請求項1又は2記載のリチウムイオン電池用負極集電体。 The negative electrode current collector for a lithium ion battery according to claim 1 or 2, wherein the base material layer is made of Al.
  4.  請求項1乃至3の何れか1項に記載のリチウムイオン電池用負極集電体の表面に負極活物質層が形成された負極板と、正極集電体の表面に正極活物質層が形成された正極板とが、セパレータを介して巻回又は積層された電極群を有し、この電極群が金属外装缶内に収納されると共に、この金属外装缶と上記両極板のうち一方の極板とが電気的に接続されたことを特徴とするリチウムイオン電池。 The negative electrode plate in which the negative electrode active material layer was formed in the surface of the negative electrode collector for lithium ion batteries of any one of Claim 1 thru | or 3, and the positive electrode active material layer in the surface of a positive electrode collector. The positive electrode plate has an electrode group wound or laminated via a separator, and this electrode group is housed in a metal outer can, and one of the metal outer can and the two electrode plates And a lithium ion battery characterized by being electrically connected to each other.
PCT/JP2011/005768 2011-01-28 2011-10-14 Negative electrode collector for lithium ion batteries, and lithium ion battery WO2012101693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-017013 2011-01-28
JP2011017013 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012101693A1 true WO2012101693A1 (en) 2012-08-02

Family

ID=46580307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005768 WO2012101693A1 (en) 2011-01-28 2011-10-14 Negative electrode collector for lithium ion batteries, and lithium ion battery

Country Status (1)

Country Link
WO (1) WO2012101693A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707965A (en) * 2020-05-26 2020-09-25 欣旺达电动汽车电池有限公司 Lithium ion battery short circuit test method
CN112290079A (en) * 2020-10-19 2021-01-29 江苏智泰新能源科技有限公司 Quick-charging lithium ion battery
EP3951935A4 (en) * 2020-03-20 2022-07-06 Contemporary Amperex Technology Co., Limited Negative electrode tab, secondary battery, and device comprising secondary battery
DE102022200908A1 (en) 2022-01-27 2023-07-27 Technische Universität Clausthal, Körperschaft des öffentlichen Rechts Lithium Ion Battery Cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021889A (en) * 1996-06-27 1998-01-23 Toyota Central Res & Dev Lab Inc Container of lithium ion secondary battery and electrode collector
JP2004220871A (en) * 2003-01-10 2004-08-05 Kobe Steel Ltd Material of lithium cell anode and its manufacturing method
JP2005251429A (en) * 2004-03-01 2005-09-15 Mitsui Mining & Smelting Co Ltd METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY
JP2007042413A (en) * 2005-08-03 2007-02-15 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2009283275A (en) * 2008-05-22 2009-12-03 Toyota Motor Corp Current collecting foil for secondary battery, and method for manufacturing thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021889A (en) * 1996-06-27 1998-01-23 Toyota Central Res & Dev Lab Inc Container of lithium ion secondary battery and electrode collector
JP2004220871A (en) * 2003-01-10 2004-08-05 Kobe Steel Ltd Material of lithium cell anode and its manufacturing method
JP2005251429A (en) * 2004-03-01 2005-09-15 Mitsui Mining & Smelting Co Ltd METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY
JP2007042413A (en) * 2005-08-03 2007-02-15 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2009283275A (en) * 2008-05-22 2009-12-03 Toyota Motor Corp Current collecting foil for secondary battery, and method for manufacturing thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3951935A4 (en) * 2020-03-20 2022-07-06 Contemporary Amperex Technology Co., Limited Negative electrode tab, secondary battery, and device comprising secondary battery
US11923537B2 (en) 2020-03-20 2024-03-05 Contemporary Amperex Technology Co., Limited Negative electrode plate, secondary battery, and apparatus contianing the secondary battery
CN111707965A (en) * 2020-05-26 2020-09-25 欣旺达电动汽车电池有限公司 Lithium ion battery short circuit test method
CN111707965B (en) * 2020-05-26 2022-08-09 欣旺达电动汽车电池有限公司 Lithium ion battery short circuit test method
CN112290079A (en) * 2020-10-19 2021-01-29 江苏智泰新能源科技有限公司 Quick-charging lithium ion battery
DE102022200908A1 (en) 2022-01-27 2023-07-27 Technische Universität Clausthal, Körperschaft des öffentlichen Rechts Lithium Ion Battery Cell

Similar Documents

Publication Publication Date Title
JP5264099B2 (en) Nonaqueous electrolyte secondary battery
JP5177361B2 (en) Negative electrode for secondary battery and secondary battery
US20080241684A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
US20080254355A1 (en) Nonaqueous electrolyte secondary battery
JP5358905B2 (en) Negative electrode for secondary battery, secondary battery, and production method thereof
JP2014199714A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5103945B2 (en) Nonaqueous electrolyte secondary battery
JP2008300302A (en) Nonaqueous secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
JP5331333B2 (en) Nonaqueous electrolyte secondary battery
JP6016038B2 (en) Nonaqueous electrolyte secondary battery
JP2008311164A (en) Nonaqueous electrolyte secondary battery and manufacturing method of electrode for nonaqueous electrolyte secondary battery
KR20090040216A (en) Cathode active material, cathode, and non-aqueous electrolyte secondary battery
KR20140085337A (en) Lithium secondary battery
JP2011210450A (en) Cell electrode plate and cell
JP2009004289A (en) Nonaqueous electrolyte secondary battery
JP5325227B2 (en) Non-aqueous electrolyte secondary battery electrode plate, method for producing the same, and non-aqueous electrolyte secondary battery
JP2014225326A (en) Nonaqueous electrolyte secondary battery
US9048490B2 (en) Lithium ion secondary battery
JP2008147117A (en) Electrolyte and battery
JP2011060481A (en) Nonaqueous electrolyte secondary battery
WO2012101693A1 (en) Negative electrode collector for lithium ion batteries, and lithium ion battery
JP2009054469A (en) Nonaqueous secondary battery
WO2013038702A1 (en) Nonaqueous electrolyte secondary cell
JP2003100278A (en) Nonaqueous electrolyte secondary battery
JP4300172B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP