JP2007042413A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2007042413A JP2007042413A JP2005224994A JP2005224994A JP2007042413A JP 2007042413 A JP2007042413 A JP 2007042413A JP 2005224994 A JP2005224994 A JP 2005224994A JP 2005224994 A JP2005224994 A JP 2005224994A JP 2007042413 A JP2007042413 A JP 2007042413A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- metal
- current collector
- aluminum
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、非水電解質二次電池の正極集電体に関するものである。 The present invention relates to a positive electrode current collector of a nonaqueous electrolyte secondary battery.
近年の各種電子機器の小型化・軽量化、ポータブル化の進行に伴い、安全性が高く、長寿命である各種高性能二次電池が開発された。これらの二次電池のなかで、正極活物質にコバルト酸リチウム、負極活物質に黒鉛などの炭素材料を用いたリチウムイオン電池が、高エネルギー密度二次電池として携帯電話の電源向けに市販され、その後も急速に用途が拡大している。 With the progress of miniaturization, weight reduction, and portability of various electronic devices in recent years, various high performance secondary batteries with high safety and long life have been developed. Among these secondary batteries, a lithium ion battery using lithium cobaltate as a positive electrode active material and a carbon material such as graphite as a negative electrode active material is commercially available as a high energy density secondary battery for mobile phone power supplies, Since then, the use has expanded rapidly.
リチウムイオン電池をはじめとする非水電解質二次電池において、正極集電体には、高電圧や高電流に耐えること、薄くて機械的強度が大きいこと、十分な導電性をもつこと、充放電に伴う物理的化学的変化がないこと、などの性質が要求され、この要求を満たすものとして、特許文献1や特許文献2で開示されているように、アルミニウム箔が用いられてきた。
In non-aqueous electrolyte secondary batteries such as lithium-ion batteries, the positive electrode current collector must withstand high voltages and currents, be thin and have high mechanical strength, have sufficient conductivity, and be charged and discharged. In order to satisfy this requirement, an aluminum foil has been used as disclosed in Patent Document 1 and
また、非水系電気化学セルの正極集電体にステンレス鋼(オーステナイ・フェライト系二相ステンレス鋼)を用いる技術が特許文献3で開示されている。
Further,
さらに、非水電解質電池において、正極のパッケージ兼集電体をアルミニウムとステンレス鋼とのクラッド材とし、正極活物質はアルミニウムと接触しているため、アルミニウムは正極雰囲気と高電位が印加されても腐食せず、ステンレス鋼は機械的強度を補うという技術が特許文献4で開示され、有機電解液二次電池の正極集電体にアルミニウムとステンレス鋼とのクラッド材を用い、正極合剤をアルミニウムとステンレス鋼の両面に塗布する技術が特許文献5で開示されている。
Furthermore, in a non-aqueous electrolyte battery, since the positive electrode package and current collector is a clad material of aluminum and stainless steel, and the positive electrode active material is in contact with aluminum, aluminum can be applied with a positive electrode atmosphere and a high potential. A technique that does not corrode and stainless steel supplements mechanical strength is disclosed in
従来の非水系二次電池においては、アルミニウム製正極集電体上に正極合剤(正極活物質と導電助剤と結着剤の混合物)が塗布されていたため、アルミニウムと正極合剤とが接触した状態にあった。このような非水系二次電池が、内部短絡や過充電などの異常な状態になって電池温度が約200℃以上になった場合、電解液の分解や正極活物質であるコバルト酸リチウム(LiCoO2)やコバルト酸ニッケル(LiNiO2)などの遷移金属酸化物がアルミニウムと反応して、急激な発熱を起こし、電池が加熱されて、破裂などの状態に陥ることがあった。 In a conventional non-aqueous secondary battery, since a positive electrode mixture (a mixture of a positive electrode active material, a conductive additive, and a binder) is applied onto an aluminum positive electrode current collector, the aluminum and the positive electrode mixture are in contact with each other. I was in a state. When such a non-aqueous secondary battery is in an abnormal state such as an internal short circuit or overcharge and the battery temperature is about 200 ° C. or higher, the electrolytic solution is decomposed and the positive electrode active material lithium cobalt oxide (LiCoO 2 ) and transition metal oxides such as nickel cobaltate (LiNiO 2 ) react with aluminum, causing sudden heat generation, and the battery may be heated to fall into a state such as rupture.
非水電解質二次電池においては、このような電池温度の上昇を避ける必要があり、特に容量が10Ah以上の、大型の非水電解質二次電池においては、電池温度を上昇させない工夫が求められていた。 In a non-aqueous electrolyte secondary battery, it is necessary to avoid such an increase in battery temperature. In particular, in a large-sized non-aqueous electrolyte secondary battery having a capacity of 10 Ah or more, a device that does not increase the battery temperature is required. It was.
そこで本発明は、非水電解質二次電池において、正極集電体であるアルミニウムと正極活物質であるリチウム含有遷移金属酸化物とが反応をおこしていることを発見することによってなされたもので、正極集電体と正極活物質との接触による反応を防止し、しかも抵抗の小さい正極集電体を用いることにより、安全性に優れ、高率充放電特性に優れた非水電解質二次電池を提供することを目的とするものである。 Therefore, the present invention was made in the nonaqueous electrolyte secondary battery by discovering that the positive electrode current collector aluminum and the positive electrode active material lithium-containing transition metal oxide are reacting, A non-aqueous electrolyte secondary battery with excellent safety and high-rate charge / discharge characteristics can be obtained by using a positive current collector that has low resistance and prevents reaction due to contact between the positive electrode current collector and the positive electrode active material. It is intended to provide.
請求項1の発明は、正極活物質として遷移金属酸化物を有する正極と、負極と、非水電解質とを備えた非水電解質二次電池において、前記正極の集電体に金属M/アルミニウム/金属Mからなる三層構造シートを用い、前記金属Mはニッケル、チタン、ステンレス鋼からなる群から選ばれる少なくとも1種からなることを特徴とする。 The invention of claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode having a transition metal oxide as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte, wherein the current collector of the positive electrode is made of metal M / aluminum / A three-layer structure sheet made of metal M is used, and the metal M is made of at least one selected from the group consisting of nickel, titanium, and stainless steel.
請求項2の発明は、上記非水電解質二次電池において、前記正極集電体に用いた三層構造シートにおける、合計厚さに対する金属Mの二層合計の厚さの比が0.7以下であることを特徴とする。 In the non-aqueous electrolyte secondary battery according to a second aspect of the present invention, in the three-layer structure sheet used for the positive electrode current collector, the ratio of the total thickness of the two layers of metal M to the total thickness is 0.7 or less. It is characterized by being.
本発明の非水電解質二次電池では、正極集電体に金属M/アルミニウム/金属Mからなる三層構造シートを用い、前記金属Mはニッケル、チタン、ステンレス鋼からなる群から選ばれる少なくとも1種としているため、正極合剤層中の正極活物質は金属Mとのみ接触しており、アルミニウムとは接触していない。そのため、非水電解質二次電池が、内部短絡や過充電などの何らかの異常な状態になって、電池温度が約200℃以上の高温に上昇した場合でも、正極活物質とアルミニウムとのテルミット反応は起こらず、それ以上の急激な発熱は防止することができる。 In the nonaqueous electrolyte secondary battery of the present invention, a three-layer structure sheet made of metal M / aluminum / metal M is used for the positive electrode current collector, and the metal M is at least one selected from the group consisting of nickel, titanium, and stainless steel. Since it is used as a seed, the positive electrode active material in the positive electrode mixture layer is in contact with only the metal M, and is not in contact with aluminum. Therefore, even when the nonaqueous electrolyte secondary battery is in any abnormal state such as an internal short circuit or overcharge, and the battery temperature rises to a high temperature of about 200 ° C. or higher, the thermite reaction between the positive electrode active material and aluminum is It does not occur and further rapid heat generation can be prevented.
本発明は、非水電解質二次電池の安全性向上に優れた効果を発揮するが、「破裂」などを避けることが強く要求される、容量が10Ah以上の大型の非水電解質二次電池に特に有効である。 The present invention is effective for improving the safety of a non-aqueous electrolyte secondary battery, but a large-sized non-aqueous electrolyte secondary battery having a capacity of 10 Ah or more is strongly required to avoid “rupture” or the like. It is particularly effective.
また、正極集電体に用いた金属M/アルミニウム/金属Mからなる三層構造シートにおいて、合計厚さに対する金属Mの二層合計の厚さの比が0.7以下とすることにより、集電体の抵抗の増加を一定の範囲内とし、さらに、正極集電体の重量や機械的強度を適度な範囲とすることができる。その結果、安全性に優れ、高率充放電特性に優れた非水電解質二次電池を得ることができるものである。 Further, in the three-layer structure sheet made of metal M / aluminum / metal M used for the positive electrode current collector, the ratio of the total thickness of the two layers of metal M to the total thickness is 0.7 or less. The increase in resistance of the electric current can be within a certain range, and further, the weight and mechanical strength of the positive electrode current collector can be within an appropriate range. As a result, a nonaqueous electrolyte secondary battery excellent in safety and excellent in high rate charge / discharge characteristics can be obtained.
本発明は、正極活物質として遷移金属酸化物を有する正極と、負極と、非水電解質とを備えた非水電解質二次電池において、前記正極の集電体に金属M/アルミニウム/金属Mからなる三層構造シートを用い、前記金属Mはニッケル、チタン、ステンレス鋼からなる群から選ばれる少なくとも1種からなることを特徴とする。 The present invention provides a non-aqueous electrolyte secondary battery comprising a positive electrode having a transition metal oxide as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte, wherein the current collector of the positive electrode is made of metal M / aluminum / metal M. The metal M is made of at least one selected from the group consisting of nickel, titanium, and stainless steel.
また、本発明は、上記非水電解質二次電池において、前記正極集電体に用いた三層構造シートにおける、合計厚さに対する金属Mの二層合計の厚さの比が0.7以下であることを特徴とする。 Further, in the non-aqueous electrolyte secondary battery according to the present invention, the ratio of the total thickness of the two layers of metal M to the total thickness in the three-layer structure sheet used for the positive electrode current collector is 0.7 or less. It is characterized by being.
なお、正極集電体である金属M/アルミニウム/金属Mからなる三層構造シートにおいて、両側の金属Mの材質は、同じものでもよいし、異なるものでもよい。その例としてNi/Al/SUSやNi/Al/Tiなどが挙げられる。 In the three-layer structure sheet made of metal M / aluminum / metal M that is the positive electrode current collector, the material of the metal M on both sides may be the same or different. Examples thereof include Ni / Al / SUS and Ni / Al / Ti.
また、金属Mは、単一の材質でもよいし、異なる種類の材質からなる2種類以上の積層体でもよい。その例としてNi/SUSやNi/SUS/Niなどが挙げられる。 Further, the metal M may be a single material or two or more types of laminates made of different types of materials. Examples thereof include Ni / SUS and Ni / SUS / Ni.
アルミニウムは、非水電解液中で5V程度の高電圧においても安定であり、適度な機械的強度をもち、十分な導電性をもつことから、非水電解質二次電池の正極集電体に用いられてきた。 Aluminum is stable even at a high voltage of about 5 V in a non-aqueous electrolyte, has an appropriate mechanical strength, and has a sufficient electrical conductivity. Therefore, it is used for a positive electrode current collector of a non-aqueous electrolyte secondary battery. Has been.
しかしながら、非水電解質二次電池において、内部短絡や過充電などの何らかの異常な状態になって、大電流が流れ、局部的に電池温度が200℃以上の高温に上昇した場合、従来は、電解液溶媒が熱分解し、電池内部でガスが発生し、このガスの圧力のために電池が破裂などを引き起こすものと考えられてきた。 However, in a nonaqueous electrolyte secondary battery, when an abnormal state such as an internal short circuit or overcharge occurs, a large current flows and the battery temperature locally rises to a high temperature of 200 ° C. or higher, It has been considered that the liquid solvent is thermally decomposed to generate gas inside the battery, and the pressure of this gas causes the battery to rupture.
ところが、正極集電体にアルミニウムを用いた非水電解質二次電池の場合、内部短絡や過充電試験をおこなった場合、電池の破裂などが、電解液溶媒が熱分解から予想されるよりも激しく起こることが確認された。その原因について検討した結果、電解液溶媒の熱分解以外に、正極活物質とアルミニウム集電体との反応が生じていることが明らかになった。 However, in the case of a non-aqueous electrolyte secondary battery using aluminum as the positive electrode current collector, when an internal short circuit or overcharge test is performed, the battery ruptures, etc., are more severe than the electrolyte solvent is expected from thermal decomposition. Confirmed to happen. As a result of examining the cause, it became clear that the reaction between the positive electrode active material and the aluminum current collector occurred in addition to the thermal decomposition of the electrolyte solvent.
すなわち、なんらかの原因で電池内部の温度が200℃以上の高温になった場合、酸化物である正極活物質が熱分解し、発熱とともに酸素が発生する。この酸素が集電体のアルミニウムと反応を起こし、さらに電池の温度が上昇するものと考えられる。電池温度の上昇は、電解液の気化や分解によるガス発生を引き起こし、電池内圧が上昇し、破裂などに至る場合があった。 That is, when the temperature inside the battery becomes a high temperature of 200 ° C. or higher for some reason, the positive electrode active material that is an oxide is thermally decomposed, and oxygen is generated together with heat generation. It is considered that this oxygen reacts with the aluminum of the current collector, and the battery temperature rises. An increase in battery temperature may cause gas generation due to vaporization or decomposition of the electrolyte, leading to an increase in battery internal pressure, which may lead to explosion.
この正極活物質とアルミニウム集電体との反応は、アルミニウムと金属酸化物とが高温で発熱反応し、金属酸化物が還元され、酸化アルミニウム(Al2O3)が生成する反応をさす。この反応は、還元しにくい金属酸化物の還元や炭素を含まない鉄合金の製造に用いられている方法である。 The reaction between the positive electrode active material and the aluminum current collector refers to a reaction in which aluminum and a metal oxide undergo an exothermic reaction at a high temperature, the metal oxide is reduced, and aluminum oxide (Al 2 O 3 ) is generated. This reaction is a method used for the reduction of metal oxides that are difficult to reduce and the production of iron alloys that do not contain carbon.
非水電解質二次電池の内部で、コバルト酸リチウムなどの複合酸化物がアルミニウム集電体と接触しており、内部短絡や過充電等が原因で、この接触部分が高温になった場合、複合酸化物が熱分解し、発生した酸素とアルミニウムが反応を起こし、より激しく発熱し、電池の破裂等の危険な状態をもたらすものと考えられる。 If a complex oxide such as lithium cobaltate is in contact with the aluminum current collector inside the non-aqueous electrolyte secondary battery and this contact part becomes hot due to internal short circuit or overcharge, It is considered that the oxide is thermally decomposed, and the generated oxygen and aluminum react to generate heat more intensely, resulting in a dangerous state such as battery rupture.
したがって、正極集電体であるアルミニウムと正極活物質とを、直接接触させない工夫が必要である。しかし、正極集電体にステンレス鋼を用いた場合、ステンレス鋼はアルミニウムと比べて比重が大きく、抵抗率が大きいという問題があった。すなわち、信光ステンレス社のホームページ(http://www.ss−shinko.co.jp)によれば、ステンレス鋼(SUS304)の密度は7.93g/cm3であり、抵抗率は72μΩcmである。一方、化学便覧、基礎編I、II(改訂第4版、日本化学会編集、平成5年9月、丸善発行)によれば、アルミニウムの密度は2.698g/cm3であり、抵抗率は2.6548である。 Therefore, it is necessary to devise a method in which aluminum that is the positive electrode current collector and the positive electrode active material are not in direct contact with each other. However, when stainless steel is used for the positive electrode current collector, there is a problem that stainless steel has a higher specific gravity and higher resistivity than aluminum. That is, according to the Shinko Stainless Steel website (http://www.ss-shinko.co.jp), the density of stainless steel (SUS304) is 7.93 g / cm 3 and the resistivity is 72 μΩcm. On the other hand, according to the Chemical Handbook, Basics I and II (Revised 4th edition, edited by the Chemical Society of Japan, published in Mar. 1993), the density of aluminum is 2.698 g / cm 3 and the resistivity is 2.6548.
このように、正極集電体にステンレス鋼を用いた場合には、電池が重くなり、エネルギー密度が低下し、また、電池の内部抵抗が大きくなって、高率充放電特性が劣るという問題があった。 Thus, when stainless steel is used for the positive electrode current collector, the battery becomes heavier, the energy density is lowered, the internal resistance of the battery is increased, and the high rate charge / discharge characteristics are inferior. there were.
そこで本発明は、正極集電体に金属M/アルミニウム/金属Mからなる三層構造シートを用い、前記金属Mはニッケル、チタン、ステンレス鋼からなる群から選ばれる少なくとも1種とし、正極合剤層を金属Mの表面に塗布し、正極活物質は金属Mとのみ接触し、アルミニウムとは接触しないようにしたものである。このような構成とすることにより、電池内部が局部的に高温になった場合でも、正極活物質とアルミニウムとの反応は起こらず、それ以上の急激な発熱を防止することができる。 Therefore, the present invention uses a three-layer structure sheet made of metal M / aluminum / metal M as the positive electrode current collector, and the metal M is at least one selected from the group consisting of nickel, titanium and stainless steel, The layer is applied to the surface of the metal M, and the positive electrode active material is in contact with only the metal M and not with aluminum. With such a configuration, even when the inside of the battery is locally heated, the positive electrode active material does not react with aluminum, and further rapid heat generation can be prevented.
従来の標準的な非水電解質二次電池の正極集電体には、厚さ約20μmのアルミニウムが用いられてきた。そこで、本発明の正極集電体である金属M/アルミニウム/金属Mからなる三層構造シートの各部分の厚さについて、金属Mにニッケル、チタン、ステンレス鋼(SUS304)を用いた場合について、密度と抵抗率(常温)を用いて検討する。 Aluminum having a thickness of about 20 μm has been used for a positive electrode current collector of a conventional standard nonaqueous electrolyte secondary battery. Then, about the thickness of each part of the three-layer structure sheet | seat which consists of metal M / aluminum / metal M which is a positive electrode electrical power collector of this invention, about the case where nickel, titanium, stainless steel (SUS304) is used for metal M, Consider using density and resistivity (room temperature).
ある電池において、他の条件が同じとした場合、正極集電体の厚さが変化した場合には、電池内に収納可能な電極合剤層の厚みが変化し、その結果、電池内の活物質量も変化し、電池の容量が変化する。 In a certain battery, when the other conditions are the same, and the thickness of the positive electrode current collector changes, the thickness of the electrode mixture layer that can be stored in the battery changes. The amount of material also changes and the battery capacity changes.
したがって、ここでは正極集電体の寸法(長さ、幅、厚さ)を同一とし、金属Mとアルミニウムの厚さを変化させた場合について検討した。計算に用いた基礎データを表1にまとめた。 Therefore, the case where the dimensions (length, width, thickness) of the positive electrode current collector were the same and the thicknesses of the metal M and aluminum were changed was examined here. The basic data used for the calculation are summarized in Table 1.
正極集電体の寸法(長さ、幅、厚さ)は同一であるので、図1に示した1cm×1cmの正極集電体について計算した。図1において、1はアルミニウム、2は金属Mを示す。また、矢印で示したように、電流は集電体の長さ方向に流れるため、この方向の抵抗はアルミニウムと2層の金属Mの並列接続として計算できる。なお、ここでは、両側の金属Mの厚さが等しい場合について計算したが、両側の金属Mの厚さが異なる場合も同様の計算が可能である。 Since the dimensions (length, width, thickness) of the positive electrode current collector are the same, the calculation was performed on the 1 cm × 1 cm positive electrode current collector shown in FIG. In FIG. 1, 1 indicates aluminum, and 2 indicates a metal M. Also, as indicated by the arrows, since the current flows in the length direction of the current collector, the resistance in this direction can be calculated as a parallel connection of aluminum and two layers of metal M. Here, the calculation is made for the case where the thickness of the metal M on both sides is equal, but the same calculation is possible when the thickness of the metal M on both sides is different.
まず、記号を次のように定める。 First, the symbols are defined as follows.
r:金属Mの比抵抗(μΩcm)
q:アルミニウムの比抵抗(μΩcm)。なお、r=αqと表すことができる。
r: Specific resistance of metal M (μΩcm)
q: Specific resistance of aluminum (μΩcm). It can be expressed as r = αq.
a:正極集電体の合計厚さ(cm)
b:金属M層(1層分)の厚さ(cm)
RA:正極集電体のアルミニウム部分の抵抗(Ω)
RM:正極集電体の金属M部分1層分の抵抗(Ω)
RAとRMはつぎのように表される。
a: Total thickness of positive electrode current collector (cm)
b: Thickness (cm) of metal M layer (for one layer)
R A : resistance of the aluminum part of the positive electrode current collector (Ω)
R M : Resistance for one layer of metal M portion of the positive electrode current collector (Ω)
R A and R M are expressed as follows.
RA=q×(1/(a−2b))=r/α(a−2b)
RM=r×(1/b)=r/b
したがって、図1に示した正極集電体の矢印方向の抵抗Rは次のように計算できる。
R A = q × (1 / (a-2b)) = r / α (a-2b)
R M = r × (1 / b) = r / b
Therefore, the resistance R in the arrow direction of the positive electrode current collector shown in FIG. 1 can be calculated as follows.
1/R=α(a−2b)/r+b/r+b/r
R=r/(α(a−2b)+2b)
また、全てがアルミニウムの場合(b=0)の抵抗R0はつぎのようになる。
1 / R = α (a−2b) / r + b / r + b / r
R = r / (α (a−2b) + 2b)
Further, when all are aluminum (b = 0), the resistance R 0 is as follows.
R0=r/aα=q/a
そこで、金属Mにニッケル、チタン、ステンレス鋼(SUS304)を用いた場合の、正極集電体の合計厚さに占める金属Mの厚さの比X(=2b/a)と正極集電体の長さ方向の相対抵抗(すべてがアルミニウムの場合の抵抗に対する金属Mを二層用いた場合の抵抗の比)との関係を求めた。
R 0 = r / aα = q / a
Therefore, when the metal M is nickel, titanium, or stainless steel (SUS304), the ratio X (= 2b / a) of the thickness of the metal M to the total thickness of the positive electrode current collector and the positive electrode current collector The relationship with the relative resistance in the length direction (ratio of resistance in the case of using two layers of metal M to the resistance in the case where all is aluminum) was determined.
正極集電体の長さ方向の相対抵抗は次式から計算できる。計算結果を表2に示す。 The relative resistance in the length direction of the positive electrode current collector can be calculated from the following equation. The calculation results are shown in Table 2.
R/R0=aα/(α(a−2b)+2b)=α/(α(1−X)+X) R / R 0 = aα / (α (a-2b) + 2b) = α / (α (1-X) + X)
図2は、表2の結果をもとに、合計厚さに対する金属Mの厚さの比と、正極集電体の長さ方向の相対抵抗との関係を示す図で、図2において、記号■は金属Mがニッケルの場合の、記号▲は金属Mがチタンの場合の、記号◆は金属Mがステンレス鋼の場合の、関係を示す。 FIG. 2 is a diagram showing the relationship between the ratio of the thickness of the metal M to the total thickness and the relative resistance in the length direction of the positive electrode current collector, based on the results of Table 2. In FIG. The symbol □ indicates the relationship when the metal M is nickel, the symbol ▲ indicates the relationship when the metal M is titanium, and the symbol ♦ indicates the relationship when the metal M is stainless steel.
図2から、金属Mとして、比抵抗がアルミニウムに比べて非常に大きいチタンやステンレス鋼を用いた場合には、合計厚みに対する金属Mの厚さの比が0.7を超えると、集電体の抵抗が急激に大きくなることがわかった。 From FIG. 2, when titanium or stainless steel having a very large specific resistance as compared with aluminum is used as the metal M, the current collector has a ratio of the thickness of the metal M to the total thickness exceeding 0.7. It was found that the resistance of the sudden increase.
つぎに、金属Mにニッケル、チタン、ステンレス鋼(SUS304)を用いた場合の、正極集電体の合計厚さに占める金属Mの厚さの比X(=2b/a)と正極集電体の相対重量(すべてがアルミニウムの場合の重量に対する金属Mを二層用いた場合の重量の比)との関係を求めた。記号を次のように定め、集電体の重量は単位面積当たり(1cm2)の値を比較した。計算結果を表3に示す。 Next, when the metal M is nickel, titanium, or stainless steel (SUS304), the ratio X of the thickness of the metal M to the total thickness of the positive electrode current collector (= 2b / a) and the positive electrode current collector The relative weight (the ratio of the weight in the case of using two layers of metal M to the weight in the case of all aluminum) was determined. The symbols were determined as follows, and the weight of the current collector was compared with a value per unit area (1 cm 2 ). Table 3 shows the calculation results.
SA:アルミニウムの密度(g/cm3)
SM:金属Mの密度(g/cm3)
正極集電体の単位面積当たり(1cm2)重量(W)はつぎの式から求められる。
S A : Aluminum density (g / cm 3 )
S M : Density of metal M (g / cm 3 )
The weight (W) per unit area (1 cm 2 ) of the positive electrode current collector can be obtained from the following equation.
W=(a−2b)SA+2bSM
また、全てがアルミニウムの場合(b=0)の重量W0はつぎのようになる。
W = (a−2b) S A + 2bS M
Further, when all are aluminum (b = 0), the weight W 0 is as follows.
W0=aSA
したがって、正極集電体の相対重量はつぎのように表される。計算結果を表3に示す。
W 0 = aS A
Therefore, the relative weight of the positive electrode current collector is expressed as follows. Table 3 shows the calculation results.
W/W0=((a−2b)SA+2bSM)/aSA=((1−X)SA+X)/SA W / W 0 = ((a−2b) S A + 2bS M ) / aS A = ((1−X) S A + X) / S A
図3は、表3の結果をもとに、合計厚みに対する金属Mの厚さの比と、正極集電体の相対重量との関係を示す図で、図3において、記号■は金属Mがニッケルの場合の、記号▲は金属Mがチタンの場合の、記号◆は金属Mがステンレス鋼の場合の、関係を示す。 FIG. 3 is a graph showing the relationship between the ratio of the thickness of the metal M to the total thickness and the relative weight of the positive electrode current collector based on the results in Table 3. In FIG. In the case of nickel, the symbol ▲ indicates the relationship when the metal M is titanium, and the symbol ◆ indicates the relationship when the metal M is stainless steel.
図3から、金属Mの種類が異なる場合でも、集電体の重量は、合計厚みに対する金属Mの厚さの比に比例して増大することがわかった。 FIG. 3 shows that the weight of the current collector increases in proportion to the ratio of the thickness of the metal M to the total thickness even when the type of the metal M is different.
なお、上記の計算は、金属Mにニッケル、チタン、ステンレス鋼(SUS304)を用いた場合について行ったが、本発明においては、金属Mとしては、これらの金属や合金を2種類以上組み合わせて用いることができる。この場合、金属Mが2層になってもよい。 In addition, although said calculation was performed about the case where nickel, titanium, and stainless steel (SUS304) were used for the metal M, in this invention, these metals and alloys are used in combination of 2 or more types. be able to. In this case, the metal M may be two layers.
つぎに、次の具体的な非水電解質二次電池において、本発明の正極集電体を用いた場合の、電池の内部抵抗や重量への影響を検討した。非水電解質二次電池の例として、表4に示した構成部品の電池を用いた。 Next, in the following specific nonaqueous electrolyte secondary battery, the influence on the internal resistance and weight of the battery when the positive electrode current collector of the present invention was used was examined. As an example of the non-aqueous electrolyte secondary battery, the battery having the components shown in Table 4 was used.
この電池の、1kHzでの内部抵抗は26mΩであった。 The internal resistance of this battery at 1 kHz was 26 mΩ.
そこで、正極集電体として、厚さ20μmのアルミニウムを用いた場合と、本発明のSUS304(厚さ5μm)/アルミニウム(厚さ10μm)/SUS304(厚さ5μm)の三層積層シートを用いた場合の、電池の重量と内部抵抗とを比較した。結果は表5にまとめた。
Therefore, as the positive electrode current collector, a case where aluminum having a thickness of 20 μm was used and a three-layer laminated sheet of SUS304 (
表5から明らかなように、容量が500mAhの電池では、正極集電体として、アルミニウムの代わりにSUS304(厚さ5μm)/アルミニウム(厚さ10μm)/SUS304(厚さ5μm)の三層積層シートを用いた場合、電池の内部抵抗ほとんど変らず、重量の増加もわずかであることがわかった。
As is apparent from Table 5, in a battery having a capacity of 500 mAh, a three-layer laminated sheet of SUS304 (
このように、本願発明は、容量が500mAh程度の小型非水電解質二次電池に有効であることがわかったが、正極集電体の重量は、アルミニウム単独の場合よりも増加するため、電池に軽量化が要求されない、常時移動させることの少ない、比較的大型の非水電解質二次電池に特に有効であることがわかった。 As described above, the present invention was found to be effective for a small non-aqueous electrolyte secondary battery having a capacity of about 500 mAh. However, the weight of the positive electrode current collector is increased compared to the case of aluminum alone. It has been found that the present invention is particularly effective for a relatively large non-aqueous electrolyte secondary battery that does not require weight reduction and is not always moved.
本発明の非水電解質二次電池に用いる正極活物質としては、従来から非水電解質二次電池に用いられてきた活物質を用いることができる。例えば、一般式LixMeyAzO2(ただし、MeはNi、Co、Mnから選ばれた少なくとも1種の元素、または、2種もしくは3種の元素の混合物、AはNi、Co、Mnを除く金属元素、0<x≦1.2、0≦z≦0.5、0.9≦y+z≦1.1)で表されるリチウム複合酸化物や一般式LiaMn2−bBbO4(ただし、BはMnを除く金属元素、0<a≦1.2、0≦b≦1)で表されるスピネル型リチウムマンガン複合酸化物、オリビン材料などを単独で、または2種以上混合して用いることができる。具体的には、LiCoO2、LiNiO2、LiCo1/3Ni1/3Mn1/3O2、LiMnO2、LiMn2O4、LiCoPO4、LiVOPO4などを用いることができる。 As the positive electrode active material used in the non-aqueous electrolyte secondary battery of the present invention, an active material conventionally used in non-aqueous electrolyte secondary batteries can be used. For example, the general formula Li x Me y A z O 2 (where Me is at least one element selected from Ni, Co, and Mn, or a mixture of two or three elements, A is Ni, Co, Metal elements other than Mn, 0 <x ≦ 1.2, 0 ≦ z ≦ 0.5, 0.9 ≦ y + z ≦ 1.1) and lithium composite oxides represented by the general formula Li a Mn 2-b B b O 4 (provided that, B is a metal element other than Mn, 0 <a ≦ 1.2,0 ≦ b ≦ 1) spinel-type lithium manganese complex oxide represented by, and the like alone olivine material or two, A mixture of the above can be used. Specifically, LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMnO 2 , LiMn 2 O 4 , LiCoPO 4 , LiVOPO 4, or the like can be used.
本発明の非水電解質二次電池に用いる負極活物質としては、リチウムを吸蔵・放出することができる炭素(例えば、天然黒鉛、人造黒鉛、鱗片状黒鉛、低結晶性炭素、ソフトカーボン、ハードカーボン、活性炭)、リチウムと合金化反応するケイ素、スズなどの化合物を、混合またはメッキした混合材料などを用いることができる。 As the negative electrode active material used in the nonaqueous electrolyte secondary battery of the present invention, carbon capable of occluding and releasing lithium (for example, natural graphite, artificial graphite, flake graphite, low crystalline carbon, soft carbon, hard carbon) , Activated carbon), mixed materials obtained by mixing or plating compounds such as silicon and tin that are alloyed with lithium can be used.
本発明の非水電解質二次電池の電解液溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、エチルアセテート、メチルプロピオネート等の溶媒およびこれらの混合溶媒を使用することができる。 As the electrolyte solution solvent of the non-aqueous electrolyte secondary battery of the present invention, solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, ethyl acetate, methyl propionate, and mixtures thereof A solvent can be used.
本発明の非水電解質二次電池の電解質塩としては、LiPF6、LiPF3(C2F5)3、LiBF4、LiAsF6、LiClO4、LiSCN、LiCF3CO2、LiCF3SO3、LiN(SO2CF3)2、LiN(SO2CF2CF3)2、LiN(COCF3)2およびLiN(COCF2CF3)2、LiB(C2O4)などの塩もしくはこれらの混合物を使用することができる。
As the electrolyte salt of the non-aqueous electrolyte secondary battery of the present invention, LiPF 6, LiPF 3 (C 2 F 5) 3,
本発明の非水電解質二次電池においては、電解質中に添加剤を添加することが望ましい。例えば、ビニレンカボーネートおよびその誘導体、ビフェニルやシクロヘキシルベンゼンなどのベンゼン類、プロパンスルトンなどの硫黄類、エチレンサルファイド、トリアゾール系環状化合物、フッ素含有エステル類、テトラエチルアンモニウムフルオライドのフッ化水素錯体またはこれらの誘導体、ホスファゼンおよびその誘導体、アミド基含有化合物、イミノ基含有化合物、または窒素含有化合物からなる群から選択される少なくとも1種を含有しても使用できる。 In the nonaqueous electrolyte secondary battery of the present invention, it is desirable to add an additive to the electrolyte. For example, vinylene carbonate and derivatives thereof, benzenes such as biphenyl and cyclohexylbenzene, sulfurs such as propane sultone, ethylene sulfide, triazole-based cyclic compounds, fluorine-containing esters, hydrogen fluoride complexes of tetraethylammonium fluoride, or these Or at least one selected from the group consisting of amide group-containing compounds, imino group-containing compounds, and nitrogen-containing compounds.
本発明の非水電解質二次電池の発電要素の形状としては、正極板および負極板とも帯状電極を用いた円筒型や長円筒型の巻回型が最適であるが、平板電極を積層した形状とすることも可能である。 As the shape of the power generation element of the nonaqueous electrolyte secondary battery of the present invention, the positive electrode plate and the negative electrode plate are optimally a cylindrical type or a long cylindrical type using a strip electrode, but a shape in which flat plate electrodes are laminated. It is also possible.
本発明の非水電解質二次電池の形状としては、円筒型、長円筒型、角型などの従来から用いられているあらゆる形状を用いることができる。また、電池ケースとしては、アルミニウム合金、ニッケルメッキした鉄、ステンレス鋼などの金属ケースや、アルミニウムなどの金属と樹脂を積層したラミネート型ケースを用いることができる。 As the shape of the non-aqueous electrolyte secondary battery of the present invention, any conventionally used shape such as a cylindrical shape, a long cylindrical shape, and a rectangular shape can be used. As the battery case, a metal case such as an aluminum alloy, nickel-plated iron or stainless steel, or a laminated case in which a metal such as aluminum and a resin are laminated can be used.
[実施例1および比較例1、2]
[実施例1]
正極集電体としてSUS304(5μm)/アルミニウム(10μm)/SUS304(5μm)の三層積層シートを用いた非水電解質二次電池を作製した。
[Example 1 and Comparative Examples 1 and 2]
[Example 1]
A non-aqueous electrolyte secondary battery using a three-layer laminated sheet of SUS304 (5 μm) / aluminum (10 μm) / SUS304 (5 μm) as a positive electrode current collector was produced.
正極板は次のようにして作製した。活物質であるLiCoO2(90wt%)と、導電材のアセチレンブラック(5wt%)と、結着剤であるポリフッ化ビニリデン(PVdF)(5wt%)とを混合し、この混合物にN−メチル−2−ピロリドン(NMP)を加えて分散させ、スラリーを調製し、このスラリーを合計厚さ20μmの上記三層積層シートからなる集電体の両面にドクターブレードで均一に塗布し、乾燥させた後、ロールプレスで合剤層の片面厚さを40μmになるように圧縮成型し、集電体の両面に正極合剤層(合計厚さ100μm)を備えた正極板を作製した。正極板の大きさは長さ810mm、幅30mmとし、長さ方向の一方の端部に、幅10mmのリード取り付け部としての合剤層未塗布部を設けた。 The positive electrode plate was produced as follows. LiCoO 2 (90 wt%) as an active material, acetylene black (5 wt%) as a conductive material, and polyvinylidene fluoride (PVdF) (5 wt%) as a binder are mixed, and N-methyl- After 2-pyrrolidone (NMP) is added and dispersed to prepare a slurry, the slurry is uniformly applied to both sides of the current collector composed of the above three-layer laminated sheet having a total thickness of 20 μm with a doctor blade and dried. Then, the mixture layer was compression-molded with a roll press so that the thickness of one side of the mixture layer was 40 μm, and a positive electrode plate having a cathode mixture layer (total thickness of 100 μm) on both sides of the current collector was produced. The positive electrode plate had a length of 810 mm and a width of 30 mm, and a mixture layer uncoated portion as a lead mounting portion having a width of 10 mm was provided at one end in the length direction.
負極板は次のようにして作製した。グラファイト(92wt%)と結着剤であるPVdF(8wt%)とを混合し、この混合物にNMPを加えて分散させ、スラリーを調製し、このスラリーを厚さ10μmの銅箔からなる集電体の両面にドクターブレードで均一に塗布し、乾燥させた後、ロールプレスで合剤層の片面厚さを45μmになるように圧縮成型し、集電体の両面に負極合剤層(合計厚さ100μm)を備えた負極板を作製した。負極板の大きさは長さ760mm、幅32mmとし、長さ方向の一方の端部に、幅10mmのリード取り付け部としての合剤層未塗布部を設けた。 The negative electrode plate was produced as follows. Graphite (92 wt%) and PVdF (8 wt%) as a binder are mixed, NMP is added to the mixture and dispersed to prepare a slurry, and the slurry is made of a copper foil having a thickness of 10 μm. After applying uniformly on both sides with a doctor blade and drying, the mixture layer is compression-molded with a roll press so that the thickness of one side of the mixture layer becomes 45 μm, and the negative electrode mixture layer (total thickness on both sides of the current collector) 100 μm) was prepared. The negative electrode plate had a length of 760 mm and a width of 32 mm, and a mixture layer uncoated portion as a lead attachment portion having a width of 10 mm was provided at one end in the length direction.
次いで、以上のようにして作製した正極板と負極板とを、長さ1700mm、幅33mm、厚さ30μmの微多孔性ポリプロピレンフィルムよりなるセパレータを介して、負極、セパレータ、正極、セパレータの順に積層してから多数回巻回し、巻回型発電要素とした。 Next, the positive electrode plate and the negative electrode plate produced as described above are laminated in the order of negative electrode, separator, positive electrode, and separator through a separator made of a microporous polypropylene film having a length of 1700 mm, a width of 33 mm, and a thickness of 30 μm. After that, it was wound many times to obtain a wound power generation element.
この巻回型発電要素を角形アルミニウム製電池ケースに収納した。巻回型発電要素のアルミニウム製正極リードを正極集電体から導出して、電池蓋から絶縁された正極端子に接続し、銅製負極リードを負極集電体から導出して電池缶に接続した。そして、この電池缶の中に、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との2:4:4混合溶媒にLiPF6を1mol/lの割合で溶解した電解液を注入した。 The wound power generation element was housed in a rectangular aluminum battery case. The aluminum positive electrode lead of the wound power generation element was led out from the positive electrode current collector and connected to the positive electrode terminal insulated from the battery lid, and the copper negative electrode lead was led out from the negative electrode current collector and connected to the battery can. Then, in this battery can 2 of ethylene carbonate (EC) dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC): 4: 4 electrolyte was dissolved in a mixed solvent of LiPF 6 at a rate of 1 mol / l Injected.
次いで、電池蓋と電池ケースをレーザー溶接することにより、電池蓋を固定し、電池内の気密性を保持させて、25℃、電流500mAで放電した場合の、1サイクル目の放電容量が約500mAhの実施例1の長円筒型非水電解質二次電池(厚さ5mm、幅34mm、高さ50mm)を作製した。
Next, the battery lid and the battery case are laser welded to fix the battery lid, maintain the airtightness in the battery, and when discharged at 25 ° C. and a current of 500 mA, the discharge capacity at the first cycle is about 500 mAh. The long cylindrical nonaqueous electrolyte secondary battery (
作製した角型非水電解質二次電池の概略断面構造を図4に示す。図4において、3は長円筒型非水電解質二次電池、4は電池ケース、5は電池蓋、6は負極端子、7は絶縁部材である。電池ケース4と電池蓋5とはレーザー溶接されている。電池ケース4と電池蓋5は正極端子を兼ねており、負極端子6は絶縁部材7によって電池蓋5と絶縁されている。
FIG. 4 shows a schematic cross-sectional structure of the produced square nonaqueous electrolyte secondary battery. In FIG. 4, 3 is a long cylindrical non-aqueous electrolyte secondary battery, 4 is a battery case, 5 is a battery lid, 6 is a negative electrode terminal, and 7 is an insulating member. The
[比較例1]
正極集電体として厚さ20μmのアルミニウム箔を用いたこと以外は実施例1と同様にして、比較例1の長円筒型非水電解質二次電池を作製した。
[Comparative Example 1]
A long cylindrical nonaqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that an aluminum foil having a thickness of 20 μm was used as the positive electrode current collector.
[比較例2]
正極集電体として厚さ20μmのSUS304箔を用いたこと以外は実施例1と同様にして、比較例2の長円筒型非水電解質二次電池を作製した。
[Comparative Example 2]
A long cylindrical nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that SUS304 foil having a thickness of 20 μm was used as the positive electrode current collector.
[高率放電特性]
実施例1および比較例1、2の長円筒型非水電解質二次電池の高率放電特性を比較した。測定はすべて25℃でおこなった。まず、各電池を100mA(0.2CA)で4.2Vまで充電し、同じ電流で3.0Vまで放電した。つぎに、100mA(0.2CA)で4.2Vまで充電し、同じ電流で3.0Vまで放電して、この時の放電容量を「低率放電容量」とした。さらに、100mA(0.2CA)で4.2Vまで充電し、1000mA(2CA)で3.0Vまで放電して、この時の放電容量を「高率放電容量」とした。そして、低率放電容量に対する高率放電容量の比を「高率/低率放電容量比」とした。試験結果を表6にまとめた。
[High rate discharge characteristics]
The high rate discharge characteristics of the long cylindrical non-aqueous electrolyte secondary batteries of Example 1 and Comparative Examples 1 and 2 were compared. All measurements were performed at 25 ° C. First, each battery was charged to 4.2 V at 100 mA (0.2 CA), and discharged to 3.0 V with the same current. Next, the battery was charged to 4.2 V at 100 mA (0.2 CA) and discharged to 3.0 V with the same current, and the discharge capacity at this time was defined as “low rate discharge capacity”. Further, the battery was charged to 4.2 V at 100 mA (0.2 CA) and discharged to 3.0 V at 1000 mA (2 CA), and the discharge capacity at this time was defined as “high rate discharge capacity”. The ratio of the high rate discharge capacity to the low rate discharge capacity was defined as “high rate / low rate discharge capacity ratio”. The test results are summarized in Table 6.
表6の結果から、高率/低率放電容量比は実施例1および比較例1の電池においては94%以上であったが、比較例2の電池においては81%であり、正極集電体にSUS304を用いた比較例2の電池では高率放電容量がやや小さくなることがわかった。この原因は、比較例2の電池に用いた正極集電体(SUS304)の抵抗が、実施例1や比較例1の正極集電体の抵抗よりも大きいためであると推定される。 From the results of Table 6, the high rate / low rate discharge capacity ratio was 94% or more in the batteries of Example 1 and Comparative Example 1, but 81% in the battery of Comparative Example 2, and the positive electrode current collector Further, it was found that the high rate discharge capacity was slightly reduced in the battery of Comparative Example 2 using SUS304. This is presumably because the resistance of the positive electrode current collector (SUS304) used in the battery of Comparative Example 2 is larger than the resistance of the positive electrode current collector of Example 1 or Comparative Example 1.
[過充電試験]
実施例1および比較例1、2の長円筒型非水電解質二次電池の過充電特性を測定した。測定は、各電池10個づつを、40℃において電流1A(2CA)で12Vまで定電流で充電し、その後、12Vの定電圧で充電することによって過充電試験を行い、電池の状態を観察した。試験結果を表7にまとめた。
[Overcharge test]
The overcharge characteristics of the long cylindrical nonaqueous electrolyte secondary batteries of Example 1 and Comparative Examples 1 and 2 were measured. The measurement was carried out by charging 10 batteries each at a constant current of up to 12 V at a current of 1 A (2 CA) at 40 ° C., followed by charging at a constant voltage of 12 V, and observing the state of the batteries. . The test results are summarized in Table 7.
表7の結果から、本発明の実施例1および比較例2の電池はきわめて安全性が高く、弁が作動しても発煙・破裂することがなかった。一方、正極集電体にアルミニウムを用いた比較例1の電池では、全数で安全弁の作動が確認され、10個中6個において発火が見られた。 From the results in Table 7, the batteries of Example 1 and Comparative Example 2 of the present invention were extremely safe and did not smoke or rupture even when the valve was activated. On the other hand, in the batteries of Comparative Example 1 using aluminum for the positive electrode current collector, the operation of the safety valves was confirmed in all, and ignition was observed in 6 out of 10 batteries.
[実施例2〜7]
[実施例2]
正極集電体としてSUS304(4μm)/アルミニウム(12μm)/SUS304(4μm)三層積層シートを用いたこと以外は実施例1と同様にして、実施例2の長円筒型非水電解質二次電池を作製した。
[Examples 2 to 7]
[Example 2]
The long cylindrical nonaqueous electrolyte secondary battery of Example 2 is the same as Example 1 except that a SUS304 (4 μm) / aluminum (12 μm) / SUS304 (4 μm) three-layer laminated sheet is used as the positive electrode current collector. Was made.
[実施例3]
正極集電体としてSUS304(6μm)/アルミニウム(8μm)/SUS304(6μm)三層積層シートを用いたこと以外は実施例1と同様にして、実施例3の長円筒型非水電解質二次電池を作製した。
[Example 3]
The long cylindrical nonaqueous electrolyte secondary battery of Example 3 is the same as Example 1 except that a SUS304 (6 μm) / aluminum (8 μm) / SUS304 (6 μm) three-layer laminated sheet is used as the positive electrode current collector. Was made.
[実施例4]
正極集電体としてSUS304(7μm)/アルミニウム(6μm)/SUS304(7μm)三層積層シートを用いたこと以外は実施例1と同様にして、実施例4の長円筒型非水電解質二次電池を作製した。
[Example 4]
The long cylindrical nonaqueous electrolyte secondary battery of Example 4 is the same as Example 1 except that a SUS304 (7 μm) / aluminum (6 μm) / SUS304 (7 μm) three-layer laminated sheet is used as the positive electrode current collector. Was made.
[実施例5]
正極集電体としてSUS304(8μm)/アルミニウム(4μm)/SUS304(8μm)三層積層シートを用いたこと以外は実施例1と同様にして、実施例5の長円筒型非水電解質二次電池を作製した。
[Example 5]
The long cylindrical nonaqueous electrolyte secondary battery of Example 5 is the same as Example 1 except that a SUS304 (8 μm) / aluminum (4 μm) / SUS304 (8 μm) three-layer laminated sheet is used as the positive electrode current collector. Was made.
[実施例6]
正極集電体としてニッケル(5μm)/アルミニウム(10μm)/ニッケル(5μm)三層積層シートを用いたこと以外は実施例1と同様にして、実施例6の長円筒型非水電解質二次電池を作製した。
[Example 6]
The long cylindrical nonaqueous electrolyte secondary battery of Example 6 is the same as Example 1 except that a nickel (5 μm) / aluminum (10 μm) / nickel (5 μm) three-layer laminated sheet is used as the positive electrode current collector. Was made.
[実施例7]
正極集電体としてチタン(5μm)/アルミニウム(10μm)/チタン(5μm)三層積層シートを用いたこと以外は実施例1と同様にして、実施例7の長円筒型非水電解質二次電池を作製した。
[Example 7]
The long cylindrical nonaqueous electrolyte secondary battery of Example 7 is the same as Example 1 except that a three-layer laminated sheet of titanium (5 μm) / aluminum (10 μm) / titanium (5 μm) is used as the positive electrode current collector. Was made.
[高率放電特性]
実施例2〜7の長円筒型非水電解質二次電池の高率放電特性を比較した。測定条件は実施例1と同様とした。試験結果を表8にまとめた。
[High rate discharge characteristics]
The high rate discharge characteristics of the long cylindrical non-aqueous electrolyte secondary batteries of Examples 2 to 7 were compared. The measurement conditions were the same as in Example 1. The test results are summarized in Table 8.
表8から、高率/低率放電容量比は実施例2〜7の電池においては85%以上であった。ただし、実施例5の電池の高率/低率放電容量比は、実施例2〜4よりやや小さかった。この原因は、正極集電体の厚みに占めるSUS304の比率が、実施例2〜4の電池では70%以下であるのに対し、実施例5の電池では80%であるため、実施例5の電池の正極集電体の抵抗が、実施例2〜4の電池に用いた正極集電体の抵抗に比べてかなり大きくなったためであると推定される。 From Table 8, the high rate / low rate discharge capacity ratio was 85% or more in the batteries of Examples 2 to 7. However, the high rate / low rate discharge capacity ratio of the battery of Example 5 was slightly smaller than Examples 2-4. This is because the ratio of SUS304 to the thickness of the positive electrode current collector is 70% or less in the batteries of Examples 2 to 4 and 80% in the battery of Example 5, so This is presumably because the resistance of the positive electrode current collector of the battery was considerably larger than the resistance of the positive electrode current collector used in the batteries of Examples 2 to 4.
また、SUS304の代わりにニッケルやチタンを用いた場合、高率/低率放電容量比に大きな変化は見られなかった。 Further, when nickel or titanium was used instead of SUS304, no significant change was observed in the high rate / low rate discharge capacity ratio.
[過充電試験]
実施例2〜7の長円筒型非水電解質二次電池について、実施例1と同じ条件で過充電特性を測定した。その結果、これらのすべての電池において、発煙や発火は見られなかった。
[Overcharge test]
For the long cylindrical nonaqueous electrolyte secondary batteries of Examples 2 to 7, overcharge characteristics were measured under the same conditions as in Example 1. As a result, no smoke or ignition was observed in all these batteries.
以上の結果から、正極集電体に用いた三層構造シートにおいて、合計厚さに対する金属Mの二層合計の厚さの比が0.7以下とした場合に、高率放電特性と安全性に優れた非水電解質二次電池を得ることができる。 From the above results, in the three-layer structure sheet used for the positive electrode current collector, when the ratio of the total thickness of the two layers of metal M to the total thickness is 0.7 or less, high rate discharge characteristics and safety A non-aqueous electrolyte secondary battery excellent in the above can be obtained.
1 アルミニウム
2 金属M
3 角型非水電解質二次電池
4 電池ケース
5 電池蓋
6 負極端子
7 絶縁部材
1
3 Square type nonaqueous electrolyte
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005224994A JP2007042413A (en) | 2005-08-03 | 2005-08-03 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005224994A JP2007042413A (en) | 2005-08-03 | 2005-08-03 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007042413A true JP2007042413A (en) | 2007-02-15 |
Family
ID=37800208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005224994A Pending JP2007042413A (en) | 2005-08-03 | 2005-08-03 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007042413A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009259634A (en) * | 2008-04-17 | 2009-11-05 | Toyota Motor Corp | Electrode foil for battery, positive electrode plate, battery, vehicle, apparatus equipped with battery, method of manufacturing electrode foil for battery, and method of manufacturing positive electrode plate |
WO2012101693A1 (en) * | 2011-01-28 | 2012-08-02 | パナソニック株式会社 | Negative electrode collector for lithium ion batteries, and lithium ion battery |
CN102714300A (en) * | 2010-01-08 | 2012-10-03 | 丰田自动车株式会社 | Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery |
EP2614548A1 (en) * | 2010-09-10 | 2013-07-17 | Fraunhofer Gesellschaft zur Förderung der angewandten Wissenschaft E.V. | Electrical conductor for electrochemical cells |
US9017877B2 (en) | 2007-05-24 | 2015-04-28 | Nissan Motor Co., Ltd. | Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector |
JP2015164739A (en) * | 2014-03-03 | 2015-09-17 | 株式会社特殊金属エクセル | Method of manufacturing terminal material for lithium-ion secondary battery with three-layer clad structure |
WO2020085002A1 (en) * | 2018-10-25 | 2020-04-30 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery |
JP2020098683A (en) * | 2018-12-17 | 2020-06-25 | トヨタ自動車株式会社 | Positive electrode current collector foil |
-
2005
- 2005-08-03 JP JP2005224994A patent/JP2007042413A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9017877B2 (en) | 2007-05-24 | 2015-04-28 | Nissan Motor Co., Ltd. | Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector |
JP2009259634A (en) * | 2008-04-17 | 2009-11-05 | Toyota Motor Corp | Electrode foil for battery, positive electrode plate, battery, vehicle, apparatus equipped with battery, method of manufacturing electrode foil for battery, and method of manufacturing positive electrode plate |
CN102714300A (en) * | 2010-01-08 | 2012-10-03 | 丰田自动车株式会社 | Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery |
US9105931B2 (en) | 2010-01-08 | 2015-08-11 | Toyota Jidosha Kabushiki Kaisha | Positive electrode plate for use in lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery |
EP2614548A1 (en) * | 2010-09-10 | 2013-07-17 | Fraunhofer Gesellschaft zur Förderung der angewandten Wissenschaft E.V. | Electrical conductor for electrochemical cells |
JP2013541139A (en) * | 2010-09-10 | 2013-11-07 | フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ | Electrical conductors for electrochemical cells |
WO2012101693A1 (en) * | 2011-01-28 | 2012-08-02 | パナソニック株式会社 | Negative electrode collector for lithium ion batteries, and lithium ion battery |
JP2015164739A (en) * | 2014-03-03 | 2015-09-17 | 株式会社特殊金属エクセル | Method of manufacturing terminal material for lithium-ion secondary battery with three-layer clad structure |
WO2020085002A1 (en) * | 2018-10-25 | 2020-04-30 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery |
JPWO2020085002A1 (en) * | 2018-10-25 | 2021-09-09 | パナソニック株式会社 | Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP7461887B2 (en) | 2018-10-25 | 2024-04-04 | パナソニックホールディングス株式会社 | Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP2020098683A (en) * | 2018-12-17 | 2020-06-25 | トヨタ自動車株式会社 | Positive electrode current collector foil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6070540B2 (en) | Secondary battery and electrolyte | |
JP4245532B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5094084B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4992923B2 (en) | Nonaqueous electrolyte secondary battery | |
US20110059351A1 (en) | Lithium ion secondary battery | |
JP5872055B2 (en) | Lithium secondary battery pack, electronic device using the same, charging system and charging method | |
JP5341280B2 (en) | Lithium secondary battery pack, electronic device using the same, charging system and charging method | |
JP5053044B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5141582B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2015001411A1 (en) | Non-aqueous electrolyte secondary battery | |
JPWO2013137273A1 (en) | Nonaqueous electrolyte secondary battery and battery pack | |
JP2007042413A (en) | Nonaqueous electrolyte secondary battery | |
JP2015149267A (en) | Nonaqueous electrolyte battery and battery pack | |
JP5150095B2 (en) | Non-aqueous electrolyte battery | |
JP2006236887A (en) | Nonaqueous electrolyte secondary battery | |
JP6246461B2 (en) | Non-aqueous electrolyte battery | |
JP2001307774A (en) | Nonaqueous electrolyte secondary battery | |
JP5326923B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6903683B2 (en) | Non-aqueous electrolyte batteries and battery packs | |
JP5582573B2 (en) | Secondary battery and electrolyte for secondary battery used therefor | |
WO2012029645A1 (en) | Secondary cell and secondary cell electrolyte used therein | |
CN111788719B (en) | Electrode, nonaqueous electrolyte battery and battery pack | |
JP6585141B2 (en) | Non-aqueous electrolyte battery | |
CN116830310A (en) | Nonaqueous electrolyte battery and battery pack | |
JP2011034698A (en) | Nonaqueous electrolyte solution, and lithium secondary battery using nonaqueous electrolyte solution |