JP2004220871A - Material of lithium cell anode and its manufacturing method - Google Patents

Material of lithium cell anode and its manufacturing method Download PDF

Info

Publication number
JP2004220871A
JP2004220871A JP2003005145A JP2003005145A JP2004220871A JP 2004220871 A JP2004220871 A JP 2004220871A JP 2003005145 A JP2003005145 A JP 2003005145A JP 2003005145 A JP2003005145 A JP 2003005145A JP 2004220871 A JP2004220871 A JP 2004220871A
Authority
JP
Japan
Prior art keywords
layer
alloy
plating
negative electrode
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003005145A
Other languages
Japanese (ja)
Other versions
JP4136674B2 (en
Inventor
Toshihisa Hara
利久 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003005145A priority Critical patent/JP4136674B2/en
Publication of JP2004220871A publication Critical patent/JP2004220871A/en
Application granted granted Critical
Publication of JP4136674B2 publication Critical patent/JP4136674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material of lithium cell anode with high energy density, excellent cycle characteristics and stable cell characteristics. <P>SOLUTION: A surface plated layer made of an Ni layer, a Cu-Sn alloy layer and an Sn layer is formed in that order on the surface of a parent material made of Cu or a Cu alloy, with the Cu-Sn alloy layer made of a η layer (Cu<SB>6</SB>Sn<SB>5</SB>) of a thickness of 0.5 to 100 μm. After the surface of the parent material is coated with the Ni plated layer, it is coated with the Cu plated layer and the Sn plated layer in that order once, twice or more, and then is given a heat treatment to complete the Cu-Sn alloy layer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、携帯電話等に使用されるリチウム二次電池の負極用材料に関する。さらに詳しくは、高エネルギー密度で充放電サイクル性に優れ、さらに電池特性の安定したリチウム二次電池の負極用材料に関する。
【0002】
【従来の技術】
現在、リチウム電池に用いられている負極活物質は黒鉛であり、銅箔の表面に厚さ100μm程度の黒鉛の薄膜を形成したものが負極として用いられている。リチウム二次電池は、鉛蓄電池やニッケル水素蓄電池などに比べ、エネルギー密度が高いが、さらにエネルギー密度が高く、軽量化や小型化に対応できる二次電池が望まれている。しかし、黒鉛材料では、さらなる小型化と高エネルギー密度化に限界があり、コストも高かった。
【0003】
エネルギー密度を向上させるため、負極活物質として黒鉛粒子などとともにSnやSiを混合した粉末を用いたり、インジウムやアンチモンなどの希少金属を用いることが提案されているが、コストが高くなる問題があった(特開2001−266891,特開2000−21404,特開平10−21913号公報)。また、特開2002−151056には、SnとInの合金膜を形成した銅箔を負極とすることが提案されているが、Inをめっきするのは難しかった。さらに鉛やビスマス、カドミウムなどを負極活物質として用いる提案もあるが、これらは環境規制物質であり、使用が規制されるという問題がある。
【0004】
【発明が解決しようとする課題】
一方、黒鉛より理論的にエネルギー密度を高くできる錫が、次世代リチウム電池の負極活物質として従来より研究されている。しかし、錫は満充電時に体積が約3倍に膨張し、体積変化により集電体である銅箔が断絶されるため、充放電サイクル性が悪く、数回のサイクルで放電容量が低下するという問題があった。
これに対し、体積膨張を吸収するため、例えば銅箔に錫を間隔をあけてポーラスにめっきする技術が検討されたが、これは実用化にいたっていない。
また、錫めっきした銅箔を熱処理したものを負極に用いると、サイクル性が向上すると報告されているが、これは錫への銅の拡散を制御していないために性能が不安定であり、実用化できなかった。
【0005】
本発明は、Snをリチウム電池の負極活物質として用いる場合の上記問題点に鑑みなされたもので、高エネルギー密度で、サイクル性に優れ、電池特性が安定しているリチウム電池負極用材料を提供することを目的とする。
【0006】
【課題を解決するための手段】
Cu母材に、Sn又はSn合金からなる表面めっき層を形成した後(図11に表面めっき構造の概念図を示す)、熱処理を行うと、母材成分のCuがSn中に拡散し、最初にSnとCuの合金層であるη層(CuSn)が形成され、熱処理を続けるとε層(CuSn)が形成され(図12に表面めっき構造の概念図を示す)、最終的にはε層のみとなってしまう。η層形成時にCuは約2倍の体積のSnと相互拡散する過程で結晶内に空孔及びそれが集積したボイドができ、これが、Snがリチウムと反応するときの体積変化による歪を緩和し、電池のサイクル特性を向上させる。しかし、ε層が形成されるとボイドがε層とCu母材の界面に集まり、Cu−Sn合金層の剥離を起こす問題があり、また、ε層となったSnはリチウムとの充放電に寄与しないため、電気特性が低下する。
本発明は、このような知見に基づき、表面めっき層におけるε層の形成を抑制し、η層を含むCu−Sn合金層を安定化させることにより、リチウム電池負極としての性能を向上させたものである。
【0007】
その1つは、Cu母材にNi層をめっきしてCu母材からのCuの拡散を抑制し、η層を含むCu−Sn合金層を安定化させたものである。
すなわち、このリチウム電池負極用材料は、Cu又はCu合金からなる母材表面に、Ni層及びCu−Sn合金層からなる表面めっき層がこの順に形成され、前記Cu−Sn合金層はη層(CuSn)を含み、その厚さが0.5〜100μmであることを特徴とする。あるいは前記母材表面に、Ni層、Cu−Sn合金層及びSn層からなる表面めっき層がこの順に形成され、前記Cu−Sn層はη層を含み、Cu−Sn合金層及びSn層の合計厚さが0.5〜100μmであることを特徴とする。上記Cu−Sn合金層のCu含有量は5〜70at%で、全てη層からなるのが望ましい。また、Cu−Sn合金層又は/及びSn層は、Si、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含むことができる。
【0008】
上記リチウム電池負極用材料は、Cu又はCu合金からなる母材表面にNiめっき層を形成した後、Cu層とSn層のめっきをこの順に1回又は2回以上繰り返し形成し、熱処理を行うことで製造できる。Ni層が母材から拡散するCu量を制限するので、熱処理後η相が形成されるように計算された量のCuとSnをNi層上にめっきすることにより安定したη層が形成される。具体的には、Cu層とSn層の合計中、Cu含有量を5〜70at%に制御することにより、ε層の形成を防止する。図1に熱処理前の表面めっき層の構造、図2に熱処理後の表面めっき層の構造の概念図を示す。最上層に形成されたSn層が十分厚ければ、熱処理後にSn層が残留する。
Cu−Sn合金層又はCu−Sn合金層及びSn層の厚さは、例えば、Ni層上に約0.1〜0.5μmのCu層と0.2〜1.5μmのSn層を交互に1〜100回繰り返し多層にめっきした後、熱処理することにより調整することができる。
【0009】
上記リチウム電池負極用材料では、熱処理条件と使用条件によって、下地NiがCu−Sn層に拡散する。また、Cuめっき層及び/又はSnめっき層に第3元素、具体的にはSi、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのいずれか1種以上を、2元合金又は多元合金めっきの形で、又は添加剤を含むめっき浴を用いることで添加することができる。あるいは、Cuめっき層とSnめっき層のほかに上記元素からなるめっき層又は上記元素を含むめっき層を形成し、又は上記元素を蒸着し、熱処理によりCu−Sn層に(熱処理後Sn層が残留する場合はSn層にも)取り込むことができる。例えば第3元素がNiであれば、Cu又はCu合金母材上にNi、Cu、Sn又はそれらの合金をこの順に1回又は2回以上めっきし、第3元素がZnであれば、Cu又はCu合金母材上にNiめっき層を形成した後、Zn、Cu、Sn又はそれらの合金をこの順に1回又は2回以上めっきし、熱処理を行い、それぞれNi層上にCu−Sn−Ni合金層、Cu−Sn−Zn合金層を得る。なお、Cu層とSn層の間に挟まれるNi層の厚さは、めっき密着性を確保するため0.2μm以上とするのが望ましい。
第3元素の含有量は0.001〜20at%の範囲である。これらの元素は、炭素よりもエネルギー容量が高いか(特にSi、Zn、Al)又は合金のマトリックス(η層)中のSnの分布状態を安定化させ(特にNi、Cr、Co、S、P、B)、いずれもリチウム電池負極用材料の特性を向上させる。
図3〜図6に第3元素を含む場合の表面めっき層の構造(熱処理後)の概念図を示す。
【0010】
なお、前記製造方法では、Cu層とSn層を別々にめっきで形成した後、熱処理することによりη層を含むCu−Sn合金層を形成したが、Cu−Sn合金めっきを行い、これを熱処理してη層を含むCu−Sn合金層を形成する方法によっても、目的を達成することができる。鉛フリーはんだめっきとして知られているSn−Cu合金めっきは、Cuを3.5at%程度含有するものが一般的であるが、めっき条件によりCu濃度を高くめっきすることができ、その場合、めっき層構造はSnリッチ層とCuリッチ層が交互に重なった構造となる。Cu濃度を5〜70at%に制御したCu−Sn合金めっき層を形成し、これを熱処理することにより、ε層を形成させず、η層を含むCu−Sn合金層を形成することができ、η層形成時に空孔及びボイドが形成される。
また、Cu−Snだけでなく、先に示した元素、Si、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、C、O、Mgの1種以上を、前記と同様の方法により添加することができる。
図7に第3元素を含む場合の表面めっき層の構造(熱処理前)の概念図を示す。
【0011】
もう1つは、特定の添加元素を含むCu母材を使用して、ε層の形成を抑制し、η層を含むCu−Sn合金層を安定化させたものである。
すなわち、このリチウム電池負極材料は、Si、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mgのうち少なくとも1種類の添加元素を含むCu合金からなる母材表面に、当該添加元素を含むCu−Sn合金層からなる表面めっき層が形成され、前記Cu−Sn合金層はη層を含み、その厚さが0.5〜100μmであることを特徴とする。あるいは、前記母材表面に、前記添加元素を含むCu−Sn合金層及びSn層からなる表面めっき層がこの順に形成され、前記Cu−Sn合金層はη層を含み、Cu−Sn合金層及びSn層の合計厚さが0.5〜100μmであることを特徴とする。上記Cu−Sn合金層のCu含有量は5〜70at%で、全てη層からなるのが望ましい。
また、Cu−Sn合金層は、母材に含まれる前記添加元素を含め、Si、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含むことができ、Sn層も前記元素のうち少なくとも1種類を含むことができる。
【0012】
上記リチウム電池負極用材料は、Si、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mgのうち少なくとも1種類を含むCu合金からなる母材表面にSnめっき層を形成し、熱処理を行うことで製造できる。熱処理によりη層を含むCu−Sn合金層が形成されるが、この形成時にCuとともにη層中にCu合金中の添加元素が拡散し、Cu−Sn−α(αは母材中の前記添加元素)の三元又は多元合金層を形成する。図8及び図9に熱処理後の表面めっき層の構造の概念図を示す。
上記添加元素はSn層とη層及びη層と母材の界面に濃縮層を形成し、Cu−Sn−αの三元又は多元合金が成長することによって、ε層の形成が抑制されη層が安定化する。前記添加元素は、炭素よりもエネルギー容量が高いか、合金のマトリックス(η層)を安定化させる効果があり、いずれもリチウム電池負極用材料の特性を向上させる。
さらに、上記リチウム電池負極用材料を製造する場合に、Snめっき層に第3元素、具体的にはSi、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのいずれか1種以上を、2元合金又は多元合金めっきの形で、あるいは添加剤を含むめっき浴を用いることで添加することができる。
【0013】
【発明の実施の形態】
Ni層、Cu層、Sn層の形成は電気めっき、無電解めっき、その他のめっき手段を利用できる。
次亜リン酸等を還元剤とする無電解めっきでは、還元剤成分のP(リン)やB(ボロン)などがめっき皮膜中に取り込まれる。また、無電解めっきでは還元剤がめっき皮膜中に取り込まれ、加熱処理後に空孔やボイドを増加する傾向がある。表面めっき層に形成された空孔やボイドは充放電のサイクル性を向上させる。
【0014】
電気めっき製造方法としては、Niめっきはワット浴やスルファミン酸浴を用い、めっき温度40〜55℃、電流密度3〜30A/dmで行う。Niめっき厚みは0.1〜5μmである、加工性を考えると0.2〜1μmが望ましい。めっき条件によりNi粒径を粗く変化させ、表面積を大きくすることができる。
Cuめっきには一般にはシアン浴が使われているが、錫めっき液へのシアン混入による液劣化や廃水処理の問題があるため、硫酸銅浴を使用し、電流密度2.5〜15A/dmで行う。めっき条件によってCuめっき粒形を制御することができ、例えばめっき温度が40℃を超えるとCuめっき粒が大きくなる。また、Niめっき上にCuめっきを行う場合、電流密度2.5A/dm未満及び10A/dm超の場合にもCuめっき粒が大きくなる。めっき粒が大きくなることで表面積が大きくなり、その方が、熱処理後のCu−Sn合金層及びSn層がリチウム電池負極に適したものとなる。また、Cuめっき浴に光沢剤を入れると熱処理後にボイドが増加する。
電気Snめっきは、めっき温度25℃以下、めっき電流密度2〜20A/dmで施した後に熱処理を行う。めっき液中に光沢剤を添加すると、光沢剤中のSやC成分がめっき皮膜中へ取り込まれ、サイクル性の向上に寄与する。
【0015】
充放電サイクル性が良くなる原因のひとつとして、Cu−Sn合金層又はSn層内にできる空孔が挙げられる。めっき液中の添加剤と加熱後の空孔及びボイドの発生を断面観察によって調査した結果、めっき浴中に光沢剤等の添加剤を含む方が空孔及びボイドの発生が多いことが見出された。めっき浴中に添加剤を入れることにより、添加剤の成分であるCやSなどの第3元素がめっき皮膜中に取り込まれ、めっき欠陥が増加し、これが熱処理後の空孔及びボイドの増加につながるものと考えられる。なお、添加剤としては、CやSなど電池性能、サイクル性を向上させる元素を含むものが望ましい。
【0016】
リチウムと反応するCu−Sn合金層及びSn層の厚みは薄いほど生産性が良く、低コストであるが、薄いと電池容量が小さくなるため、0.5μm以上が必要である。一方、高容量のためにはCu−Sn合金層及びSn層厚みは10μm以上が望ましく、多層構造や合金めっきを行えば100μm形成することも可能である。厚いほど電池容量は大きくなるが、厚くするほど製造コストは高くなるためCu−Sn合金層及びSn層の合計厚さは100μmを上限とする。
【0017】
Cu又はCu合金母材は、圧延銅板条や電解銅箔を用いることができる。Si、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、O、C、Mg等の添加元素を含む母材は圧延銅板条である。添加元素を含むCu合金圧延板は純銅板にくらべ軟化しにくいため、充放電時の発熱による板の破断やめっき層の剥離が起こりにくいという利点を持つ。
圧延銅板条の厚みは例えば80〜300μmのものが利用できる。もちろん、10〜210μm厚みの電解銅箔を用いてもよい。電解銅箔は表面を粗面化したものでもよい。
【0018】
銅板条の表面粗さについて、圧延銅板条の表面粗さは一般的にRmax=0.8μm、Ra=0.1μm程度であるが、電解銅箔と同様に、表面積を多くとるために粗くしたい場合は研磨仕上げやエッチング仕上げにより所望の粗さ(RZ=1μm以上)に仕上げることができる。さらに、NiめっきやCuめっきを粗く仕上げることにより表面粗さを制御し、Snめっきをまったく金属光沢の無い粗い表面状態にすることもできる。
【0019】
本発明では、めっき後の熱処理により、Cu層とSn層、又はCu母材中のCuとSn層を合金化させ、Cu−Sn合金層を形成するが、CuとSnの相互拡散は25℃の室温でも進行し、また電池の発熱によっても合金化するため、熱処理により完全に合金化させておく必要はない。例えばCu層とSn層の多層構造を形成してこれを合金化させる場合、部分的にCuとSnの多層構造が残った表面めっき層でも、電池負極材料として使用できる。
【0020】
本発明の製造方法において、生産性良く熱処理するには200℃以上の高温での短時間加熱が望ましい。熱処理温度が230℃以上ではSnが溶融するため拡散がすばやく進行する。600℃以上になると、Cu母材が軟化し、歪が発生する。よって、高温で熱処理する場合は230℃〜600℃とする。熱処理を行うことにより、表面のSn結晶粒子が大きくなり、Cu−Sn合金層が形成され、ウイスカが発生しにくくなる。高温で熱処理する場合の加熱時間については、3秒以下では、材料の熱伝達が不均一であり、熱処理後の外観ムラが発生する。60秒以上では、表層のSn層の酸化が進行するため、加熱時間は3〜60秒とする。還元雰囲気や不活性雰囲気中で加熱することが望ましい。
【0021】
また、熱処理は200℃以下の温度で時間をかけてCu−Sn系合金層を成長させることもできる。200℃以下の加熱では錫の溶融による結晶粒変化がないため、熱処理後も金属光沢の無い表面状態を保持することができる。
さらに、Cu層とSn層を繰り返し積層して熱処理する場合、CuめっきとSnめっきの1サイクルごと又は複数サイクル毎に熱処理を行う(めっき工程の中間で熱処理を行う)こともでき、まためっき工程終了後に熱処理を複数回に分けて行うこともできる。電池組み立て後に電池性能に影響を与えない120℃以下の温度での熱を加えても構わない。
【0022】
なお、熱処理によるSnへのCuの拡散は均一ではなく、Snの結晶粒界への拡散は結晶粒内への拡散より早いため、Cu−Sn合金層は波状に成長する。また、波状状態は下地めっき粒によって変化する。そのため、加熱後に一部は完全にη層(CuSn)となり、一部にSn層やCu層が残った状態も観察されるが、一部合金化していなくても電池特性としては良好である。図10にその表面めっき構造(熱処理後)の概念図を示す。
【0023】
【実施例】
<供試材の作成条件>
Cu又はCu合金母材として表1のNo.1〜14に示す種々の組成の板材(厚さ100μm)を用い、No.1〜3,6〜9については、母材上にNiめっきを施し、続いてCuめっき及びSnめっきを順次1又は2回以上繰り返し施し、No.4はNiめっきの上にZnめっきを形成した後、CuめっきとSnめっきを1回ずつ施し、No.5はNiめっき、Cuめっき及びSnめっきを2回繰り返し施した(いずれも各めっき層の厚みは熱処理後のCu−Sn合金層がすべてη層になるように計算した)。No.10〜14については、Snめっきのみを施した。Niめっき、Cuめっき及びSnめっきの各めっき浴を表2〜表4に示す。ただし、光沢剤はNo.3,6のみで添加した。
続いて、No.1〜13の板材に熱処理を施し、Cu合金母材の上に表面めっき層(Ni層、Cu−Sn合金層、Sn層)をもつリチウム電池負極用材料(供試材)が得られた。
表1に各供試材(No.1〜14)の母材組成、熱処理後の表面めっき層構成及び各層厚、熱処理条件をあわせて示す。
【0024】
【表1】

Figure 2004220871
【0025】
【表2】
Figure 2004220871
【0026】
【表3】
Figure 2004220871
【0027】
【表4】
Figure 2004220871
【0028】
なお、各供試材の各めっき層厚さは下記要領で測定した。また、各供試材について、エネルギー密度、充放電サイクル性、電池安定性試験を行った。その結果を表1にあわせて示す。
[Sn及びNi層厚さ測定]
Sn及びNi層厚さは、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT156A)を用いて測定した。
[Cu−Sn合金層厚さ測定]
Cu−Sn合金層厚さは、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT156A)を用いてSn量を測定し、Snを含む合金層のめっき厚みとした。また、めっきをミクロトーム法にて加工し、表面層の断面をSEM観察し、層厚さを調査した。
【0029】
[放電容量及び充放電サイクル数]
放電容量は、供試材を負極とし、Li箔を正極とし、電解液を1M LiClO /EC+PCとしたセルで、充放電範囲0〜1Vで測定した。充放電サイクル数は、定電圧定電流で充放電を繰り返し、初期の放電容量が維持できる回数とした。
[電池安定性]
160℃×120hr高温放置した材料を用い、エネルギー密度を測定した。電池安定性評価基準は、加熱前の80%以上のエネルギー密度を持つレベルを○とし、エネルギー密度がそれ以下に低下したレベルを×と評価した。
【0030】
表1に示すように、めっき層構成にNi層を持つNo.1〜9は、いずれも放電容量が高く、充放電サイクル性が良好であり、電池安定性が高かった。また、No.10、11はNi層をもたないが、母材が特定の添加元素を含み、該添加元素によりε層の成長が抑制されたため、高い放電容量を得ることができた。Ni層をもつと同時にCu−Sn合金層中にリチウムと錫の反応を助ける成分を含むNo.3〜6は、サイクル性が特に良好であった。
一方、No.12〜14はNi層がなく、母材に特定の添加元素も含まれていないので、充放電サイクル時や高温使用環境でε層が成長し、電池性能が低下した。
【0031】
なお、Cu層とSn層を熱処理することによりCu−Sn合金層を形成する代わりに、Cu−Sn合金めっきを行うことによっても同様の効果を得ることができる。その際のめっき浴を表5に示す。
【0032】
【表5】
Figure 2004220871
【0033】
【発明の効果】
本発明によれば、高エネルギー密度で、サイクル性に優れ、低コストのリチウム電池負極用材料を提供することができる。また、高温で使用される場合(エンジンルーム等)においても優れた電池安定性が保持できる。
【図面の簡単な説明】
【図1】表面めっき層の加熱前の断面の概念図である。
【図2】その加熱後の断面の概念図である。
【図3】第3元素を含む表面めっき層の断面の概念図である。
【図4】第3元素を含む表面めっき層の断面の概念図である。
【図5】第3元素を含む表面めっき層の断面の概念図である。
【図6】第3元素を含む表面めっき層の断面の概念図である。
【図7】第3元素を含む表面めっき層の断面の概念図である。
【図8】第3元素を含む表面めっき層の断面の概念図である。
【図9】多元素を含む表面めっき層の断面の概念図である。
【図10】熱処理後も部分的にCu層やSn層が残っている表面めっき層の断面の概念図である。
【図11】従来技術による表面めっき層の断面の概念図である。
【図12】従来技術による表面めっき層の断面の概念図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a material for a negative electrode of a lithium secondary battery used for an automobile, a mobile phone, and the like. More specifically, the present invention relates to a negative electrode material for a lithium secondary battery having high energy density, excellent charge / discharge cycleability, and stable battery characteristics.
[0002]
[Prior art]
At present, the negative electrode active material used in lithium batteries is graphite, and a copper foil having a graphite thin film with a thickness of about 100 μm formed on the surface is used as the negative electrode. A lithium secondary battery has a higher energy density than a lead storage battery, a nickel-metal hydride storage battery, or the like, but a secondary battery that has a higher energy density and can be reduced in weight and size is desired. However, graphite materials have limitations in further miniaturization and high energy density, and have high costs.
[0003]
In order to improve the energy density, it has been proposed to use a powder in which Sn or Si is mixed together with graphite particles or the like as a negative electrode active material, or to use a rare metal such as indium or antimony. (JP-A-2001-268991, JP-A-2000-21404, and JP-A-10-21913). Japanese Patent Application Laid-Open No. 2002-151056 proposes that a copper foil on which an alloy film of Sn and In is formed be used as a negative electrode, but it is difficult to plate In. Further, there are proposals to use lead, bismuth, cadmium, and the like as a negative electrode active material, but these are environmentally regulated substances, and there is a problem that their use is regulated.
[0004]
[Problems to be solved by the invention]
On the other hand, tin, which can theoretically have a higher energy density than graphite, has been studied as a negative electrode active material for next-generation lithium batteries. However, the volume of tin expands about three times when fully charged, and the change in volume breaks the copper foil, which is a current collector, so that the charge / discharge cycleability is poor and the discharge capacity is reduced in several cycles. There was a problem.
On the other hand, in order to absorb the volume expansion, for example, a technique of plating tin on a copper foil at intervals has been studied, but this has not been put to practical use.
In addition, it is reported that the use of a heat-treated tin-plated copper foil for the negative electrode improves cycleability.However, this is because the performance of the copper is not controlled because the diffusion of copper into tin is unstable. It could not be put to practical use.
[0005]
The present invention has been made in view of the above problems when Sn is used as a negative electrode active material of a lithium battery, and provides a lithium battery negative electrode material having a high energy density, excellent cycleability, and stable battery characteristics. The purpose is to do.
[0006]
[Means for Solving the Problems]
After forming a surface plating layer made of Sn or an Sn alloy on a Cu base material (a conceptual diagram of the surface plating structure is shown in FIG. 11), when a heat treatment is performed, Cu of the base material component diffuses into Sn, An η layer (Cu 6 Sn 5 ), which is an alloy layer of Sn and Cu, is formed, and an ε layer (Cu 3 Sn) is formed by continuing the heat treatment (FIG. 12 shows a conceptual diagram of the surface plating structure). Ultimately, only the ε layer is formed. In the process of interdiffusion of Sn with approximately twice the volume of Sn during the formation of the η layer, voids and voids in which the vacancies accumulate are formed in the crystal, which alleviate the strain due to the volume change when Sn reacts with lithium. And improve the cycle characteristics of the battery. However, when the ε layer is formed, voids collect at the interface between the ε layer and the Cu base material, causing a problem that the Cu—Sn alloy layer is peeled off. Since it does not contribute, the electrical characteristics are degraded.
The present invention has improved the performance as a lithium battery negative electrode by suppressing the formation of the ε layer in the surface plating layer and stabilizing the Cu-Sn alloy layer including the η layer based on such findings. It is.
[0007]
One is that a Cu layer is plated with a Ni layer to suppress the diffusion of Cu from the Cu matrix and stabilize the Cu—Sn alloy layer including the η layer.
That is, in this lithium battery negative electrode material, a surface plating layer composed of a Ni layer and a Cu—Sn alloy layer is formed in this order on the surface of a base material composed of Cu or a Cu alloy, and the Cu—Sn alloy layer is an η layer ( Cu 6 Sn 5 ), and has a thickness of 0.5 to 100 μm. Alternatively, a surface plating layer composed of a Ni layer, a Cu-Sn alloy layer and a Sn layer is formed in this order on the surface of the base material, the Cu-Sn layer includes an η layer, and a total of the Cu-Sn alloy layer and the Sn layer. The thickness is 0.5 to 100 μm. It is desirable that the Cu-Sn alloy layer has a Cu content of 5 to 70 at%, and that all of the Cu-Sn alloy layer be an η layer. The Cu—Sn alloy layer and / or Sn layer is at least one of Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, and H. Can be included.
[0008]
The above-mentioned lithium battery negative electrode material is obtained by forming a Ni plating layer on the surface of a base material made of Cu or a Cu alloy, and then repeating the plating of the Cu layer and the Sn layer one or more times in this order, and performing heat treatment. It can be manufactured by Since the Ni layer limits the amount of Cu diffused from the base material, a stable η layer is formed by plating the calculated amount of Cu and Sn on the Ni layer so that the η phase is formed after the heat treatment. . Specifically, by controlling the Cu content in the total of the Cu layer and the Sn layer to 5 to 70 at%, the formation of the ε layer is prevented. FIG. 1 shows a conceptual diagram of the structure of the surface plating layer before the heat treatment, and FIG. 2 shows a conceptual diagram of the structure of the surface plating layer after the heat treatment. If the Sn layer formed on the uppermost layer is sufficiently thick, the Sn layer remains after the heat treatment.
The thickness of the Cu-Sn alloy layer or the Cu-Sn alloy layer and the Sn layer is, for example, about 0.1 to 0.5 µm Cu layer and 0.2 to 1.5 µm Sn layer alternately on the Ni layer. It can be adjusted by performing heat treatment after repeatedly plating the multilayer for 1 to 100 times.
[0009]
In the lithium battery negative electrode material, the base Ni diffuses into the Cu—Sn layer depending on the heat treatment conditions and the use conditions. Further, the Cu plating layer and / or the Sn plating layer has a third element, specifically, Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, One or more of O and H can be added in the form of a binary alloy or multi-element alloy plating, or by using a plating bath containing an additive. Alternatively, in addition to the Cu plating layer and the Sn plating layer, a plating layer made of the above element or a plating layer containing the above element is formed, or the above element is vapor-deposited, and heat treatment is performed on the Cu-Sn layer (the Sn layer remains after the heat treatment). If so, it can be taken into the Sn layer as well. For example, if the third element is Ni, Ni, Cu, Sn or an alloy thereof is plated once or twice or more in this order on Cu or a Cu alloy base material, and if the third element is Zn, Cu or After forming a Ni plating layer on a Cu alloy base material, Zn, Cu, Sn or an alloy thereof is plated once or twice or more in this order, and heat treatment is performed, and a Cu—Sn—Ni alloy is formed on the Ni layer, respectively. To obtain a Cu—Sn—Zn alloy layer. Note that the thickness of the Ni layer sandwiched between the Cu layer and the Sn layer is desirably 0.2 μm or more in order to ensure plating adhesion.
The content of the third element is in the range of 0.001 to 20 at%. These elements have a higher energy capacity than carbon (particularly Si, Zn, Al) or stabilize the distribution of Sn in the matrix (η layer) of the alloy (particularly Ni, Cr, Co, S, P). And B) both improve the characteristics of the material for a negative electrode of a lithium battery.
FIGS. 3 to 6 show conceptual diagrams of the structure (after heat treatment) of the surface plating layer when the third element is included.
[0010]
In the above manufacturing method, the Cu layer and the Sn layer were separately formed by plating, and then heat treatment was performed to form the Cu—Sn alloy layer including the η layer. However, Cu—Sn alloy plating was performed, and this was heat-treated. The object can also be achieved by a method of forming a Cu—Sn alloy layer including an η layer. Sn-Cu alloy plating, which is known as lead-free solder plating, generally contains about 3.5 at% of Cu, but can be plated at a high Cu concentration depending on plating conditions. The layer structure is a structure in which Sn-rich layers and Cu-rich layers alternately overlap. By forming a Cu-Sn alloy plating layer in which the Cu concentration is controlled at 5 to 70 at% and heat-treating the same, a Cu-Sn alloy layer including an η layer can be formed without forming an ε layer, Voids and voids are formed when the η layer is formed.
Not only Cu-Sn but also one or more of the above-mentioned elements, Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, C, O, and Mg Can be added in the same manner as described above.
FIG. 7 shows a conceptual diagram of the structure (before heat treatment) of the surface plating layer when the third element is included.
[0011]
The other is to suppress the formation of an ε layer and stabilize a Cu—Sn alloy layer including an η layer by using a Cu base material containing a specific additive element.
That is, this lithium battery negative electrode material is made of a Cu alloy containing at least one additional element among Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, and Mg. A surface plating layer made of a Cu-Sn alloy layer containing the additive element is formed on the base material surface, and the Cu-Sn alloy layer includes an η layer and has a thickness of 0.5 to 100 µm. And Alternatively, on the surface of the base material, a Cu—Sn alloy layer containing the additive element and a surface plating layer composed of an Sn layer are formed in this order, the Cu—Sn alloy layer includes an η layer, and a Cu—Sn alloy layer and The total thickness of the Sn layer is 0.5 to 100 μm. It is desirable that the Cu-Sn alloy layer has a Cu content of 5 to 70 at%, and that all of the Cu-Sn alloy layer be an η layer.
Further, the Cu—Sn alloy layer includes Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, including the additional element contained in the base material. At least one of H may be included, and the Sn layer may include at least one of the above elements.
[0012]
The lithium battery negative electrode material is formed on a surface of a base material made of a Cu alloy containing at least one of Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B and Mg. It can be manufactured by forming an Sn plating layer and performing heat treatment. A Cu-Sn alloy layer including an η layer is formed by the heat treatment. At the time of this formation, the additive element in the Cu alloy diffuses into the η layer together with Cu, and Cu-Sn-α (α is Element) to form a ternary or multi-element alloy layer. 8 and 9 are conceptual diagrams of the structure of the surface plating layer after the heat treatment.
The above-mentioned additive element forms a concentrated layer at the interface between the Sn layer and the η layer and the interface between the η layer and the base material. By growing a ternary or multi-element alloy of Cu—Sn—α, the formation of the ε layer is suppressed, and Is stabilized. The additional elements have an energy capacity higher than that of carbon or an effect of stabilizing the matrix (η layer) of the alloy, and all of them improve the characteristics of the material for a negative electrode of a lithium battery.
Further, when producing the material for a negative electrode of a lithium battery, a third element, specifically, Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, One or more of Mg, C, O, and H can be added in the form of a binary alloy or multi-element alloy plating, or by using a plating bath containing an additive.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
For the formation of the Ni layer, Cu layer and Sn layer, electroplating, electroless plating and other plating means can be used.
In electroless plating using hypophosphorous acid or the like as a reducing agent, a reducing agent component such as P (phosphorus) or B (boron) is incorporated into the plating film. Further, in the electroless plating, a reducing agent is taken into the plating film, and the pores and voids tend to increase after the heat treatment. The holes and voids formed in the surface plating layer improve the charge / discharge cycleability.
[0014]
As an electroplating method, Ni plating is performed using a Watt bath or a sulfamic acid bath at a plating temperature of 40 to 55 ° C. and a current density of 3 to 30 A / dm 2 . The Ni plating thickness is 0.1 to 5 μm, and preferably 0.2 to 1 μm in consideration of workability. The Ni particle size can be roughly changed depending on the plating conditions to increase the surface area.
Although a cyan bath is generally used for Cu plating, there is a problem of liquid deterioration and wastewater treatment due to mixing of cyan into a tin plating solution. Therefore, a copper sulfate bath is used and a current density of 2.5 to 15 A / dm. Perform in 2 . The Cu plating grain shape can be controlled by the plating conditions. For example, if the plating temperature exceeds 40 ° C., the Cu plating grains become large. Further, when Cu plating is performed on Ni plating, the Cu plating grains are large even when the current density is less than 2.5 A / dm 2 and more than 10 A / dm 2 . The surface area is increased by increasing the size of the plated particles, and the Cu—Sn alloy layer and the Sn layer after the heat treatment are more suitable for the negative electrode of the lithium battery. When a brightener is added to the Cu plating bath, voids increase after heat treatment.
The electric Sn plating is performed at a plating temperature of 25 ° C. or lower and a plating current density of 2 to 20 A / dm 2 , followed by heat treatment. When a brightener is added to the plating solution, the S and C components in the brightener are taken into the plating film, which contributes to an improvement in cycleability.
[0015]
One of the causes for improving the charge / discharge cycle property is a hole formed in the Cu—Sn alloy layer or the Sn layer. As a result of investigating the additives in the plating solution and the generation of voids and voids after heating by cross-sectional observation, it was found that the inclusion of additives such as brighteners in the plating bath generated more voids and voids. Was done. By putting the additive into the plating bath, the third element such as C or S, which is a component of the additive, is taken into the plating film and plating defects increase, which increases the number of pores and voids after the heat treatment. It is considered to be connected. It is desirable that the additive contains an element such as C or S that improves battery performance and cycleability.
[0016]
The thinner the Cu—Sn alloy layer and the Sn layer that react with lithium, the better the productivity and the lower the cost. However, the thinner the battery capacity, the smaller the thickness. On the other hand, for high capacity, the thickness of the Cu—Sn alloy layer and the Sn layer is desirably 10 μm or more, and a multilayer structure or alloy plating can be formed to 100 μm. The battery capacity increases as the thickness increases, but the manufacturing cost increases as the thickness increases. Therefore, the upper limit of the total thickness of the Cu—Sn alloy layer and the Sn layer is 100 μm.
[0017]
As the Cu or Cu alloy base material, a rolled copper strip or an electrolytic copper foil can be used. The base material containing additional elements such as Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, O, C, and Mg is a rolled copper strip. Since a rolled Cu alloy sheet containing an additive element is harder to soften than a pure copper sheet, there is an advantage that breakage of the sheet and peeling of the plating layer due to heat generated during charging and discharging hardly occur.
The thickness of the rolled copper strip can be, for example, 80 to 300 μm. Of course, an electrolytic copper foil having a thickness of 10 to 210 μm may be used. The electrolytic copper foil may have a roughened surface.
[0018]
Regarding the surface roughness of the copper strip, the surface roughness of the rolled copper strip is generally about Rmax = 0.8 μm and Ra = 0.1 μm, but, like the electrolytic copper foil, it is desired to increase the surface area. In this case, a desired roughness (RZ = 1 μm or more) can be obtained by polishing or etching. Further, the surface roughness can be controlled by roughly finishing the Ni plating or the Cu plating, and the Sn plating can be brought into a rough surface state without any metallic luster.
[0019]
In the present invention, the Cu layer and the Sn layer, or the Cu and Sn layers in the Cu base material are alloyed by heat treatment after plating to form a Cu—Sn alloy layer, but the mutual diffusion of Cu and Sn is 25 ° C. It proceeds at room temperature and alloys due to the heat generated by the battery, so that it is not necessary to completely alloy by heat treatment. For example, when a multilayer structure of a Cu layer and a Sn layer is formed and alloyed, a surface plating layer partially having a multilayer structure of Cu and Sn can also be used as a battery negative electrode material.
[0020]
In the manufacturing method of the present invention, short-time heating at a high temperature of 200 ° C. or more is desirable for heat treatment with high productivity. If the heat treatment temperature is 230 ° C. or higher, the diffusion of Sn proceeds quickly because Sn is melted. When the temperature is 600 ° C. or higher, the Cu base material is softened, and distortion occurs. Therefore, when heat treatment is performed at a high temperature, the temperature is set to 230 ° C to 600 ° C. By performing the heat treatment, Sn crystal grains on the surface become large, a Cu—Sn alloy layer is formed, and whiskers are not easily generated. If the heating time in the case of performing the heat treatment at a high temperature is 3 seconds or less, the heat transfer of the material is not uniform, and the appearance unevenness after the heat treatment occurs. If the time is 60 seconds or longer, the oxidation of the surface Sn layer proceeds, so the heating time is 3 to 60 seconds. It is desirable to heat in a reducing atmosphere or an inert atmosphere.
[0021]
In addition, the heat treatment can be performed at a temperature of 200 ° C. or less for a long time to grow the Cu—Sn based alloy layer. Since heating at 200 ° C. or less does not cause a change in crystal grains due to melting of tin, a surface state having no metallic luster can be maintained even after the heat treatment.
Further, when the Cu layer and the Sn layer are repeatedly laminated and subjected to the heat treatment, the heat treatment can be performed for each cycle of the Cu plating and the Sn plating or for each of a plurality of cycles (the heat treatment is performed in the middle of the plating process). After the completion, the heat treatment may be performed a plurality of times. After the battery is assembled, heat at a temperature of 120 ° C. or less that does not affect the battery performance may be applied.
[0022]
Note that the diffusion of Cu into Sn due to the heat treatment is not uniform, and the diffusion of Sn into the crystal grain boundaries is faster than the diffusion into the crystal grains. Therefore, the Cu—Sn alloy layer grows in a wave shape. In addition, the wavy state changes depending on the grains of the base plating. Therefore, after heating, part of the layer completely becomes an η layer (Cu 6 Sn 5 ), and a state in which an Sn layer or a Cu layer remains partially is observed. However, even if the alloy is not partially alloyed, good battery characteristics are obtained. It is. FIG. 10 shows a conceptual diagram of the surface plating structure (after the heat treatment).
[0023]
【Example】
<Conditions for preparing test materials>
As the Cu or Cu alloy base material, Nos. 1 to 14 having various compositions (thickness: 100 μm) were used. With respect to Nos. 1 to 3 and 6 to 9, Ni plating was applied to the base material, and then Cu plating and Sn plating were sequentially repeated one or more times. For No. 4, after forming Zn plating on Ni plating, Cu plating and Sn plating were performed once each. In No. 5, Ni plating, Cu plating, and Sn plating were repeatedly performed twice (in each case, the thickness of each plating layer was calculated so that the Cu—Sn alloy layer after the heat treatment became an η layer). No. About 10-14, only Sn plating was given. Tables 2 to 4 show the respective plating baths of Ni plating, Cu plating and Sn plating. However, the brightener was No. Only 3, 6 was added.
Then, No. Heat treatment was performed on the plate materials 1 to 13 to obtain a lithium battery negative electrode material (test material) having a surface plating layer (Ni layer, Cu-Sn alloy layer, Sn layer) on the Cu alloy base material.
Table 1 also shows the base material composition of each test material (Nos. 1 to 14), the configuration of the surface plating layer after heat treatment, the thickness of each layer, and the heat treatment conditions.
[0024]
[Table 1]
Figure 2004220871
[0025]
[Table 2]
Figure 2004220871
[0026]
[Table 3]
Figure 2004220871
[0027]
[Table 4]
Figure 2004220871
[0028]
The thickness of each plating layer of each test material was measured in the following manner. In addition, energy density, charge / discharge cycleability, and battery stability test were performed on each test material. The results are shown in Table 1.
[Sn and Ni layer thickness measurement]
The thicknesses of the Sn and Ni layers were measured using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; Model SFT156A).
[Cu-Sn alloy layer thickness measurement]
The thickness of the Cu-Sn alloy layer was determined by measuring the amount of Sn using a fluorescent X-ray film thickness meter (Seiko Denshi Kogyo Co., Ltd .; Model SFT156A) and defining the plating thickness of the alloy layer containing Sn. Further, the plating was processed by a microtome method, the cross section of the surface layer was observed by SEM, and the layer thickness was examined.
[0029]
[Discharge capacity and number of charge / discharge cycles]
The discharge capacity was measured in a charge / discharge range of 0 to 1 V in a cell in which a test material was used as a negative electrode, a Li foil was used as a positive electrode, and an electrolyte was 1 M LiClO 4 / EC + PC. The number of charge / discharge cycles was defined as the number of times charge / discharge was repeated at a constant voltage and constant current and the initial discharge capacity could be maintained.
[Battery stability]
The energy density was measured using a material left at a high temperature of 160 ° C. for 120 hours. Regarding the battery stability evaluation criteria, a level having an energy density of 80% or more before heating was evaluated as 、, and a level at which the energy density was reduced below that was evaluated as ×.
[0030]
As shown in Table 1, No. 1 having a Ni layer in the plating layer configuration. All of Nos. 1 to 9 had high discharge capacity, good charge / discharge cyclability, and high battery stability. No. Although Nos. 10 and 11 have no Ni layer, the base material contained a specific additive element, and the growth of the ε layer was suppressed by the additive element, so that a high discharge capacity could be obtained. No. 1 having a component that assists the reaction between lithium and tin in the Cu—Sn alloy layer while having a Ni layer. In Nos. 3 to 6, the cyclability was particularly good.
On the other hand, No. In Nos. 12 to 14, the Ni layer was not included, and the base material did not contain a specific additive element. Therefore, the ε layer grew during a charge / discharge cycle or in a high-temperature use environment, and the battery performance deteriorated.
[0031]
A similar effect can be obtained by performing Cu-Sn alloy plating instead of forming a Cu-Sn alloy layer by heat-treating the Cu layer and the Sn layer. Table 5 shows the plating bath at that time.
[0032]
[Table 5]
Figure 2004220871
[0033]
【The invention's effect】
According to the present invention, it is possible to provide a low-cost lithium battery negative electrode material having high energy density, excellent cycleability, and low cost. Also, excellent battery stability can be maintained even when used at a high temperature (such as an engine room).
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a cross section of a surface plating layer before heating.
FIG. 2 is a conceptual diagram of a cross section after the heating.
FIG. 3 is a conceptual diagram of a cross section of a surface plating layer containing a third element.
FIG. 4 is a conceptual diagram of a cross section of a surface plating layer containing a third element.
FIG. 5 is a conceptual diagram of a cross section of a surface plating layer containing a third element.
FIG. 6 is a conceptual diagram of a cross section of a surface plating layer containing a third element.
FIG. 7 is a conceptual diagram of a cross section of a surface plating layer containing a third element.
FIG. 8 is a conceptual diagram of a cross section of a surface plating layer containing a third element.
FIG. 9 is a conceptual diagram of a cross section of a surface plating layer containing multiple elements.
FIG. 10 is a conceptual diagram of a cross section of a surface plating layer in which a Cu layer or a Sn layer remains partially even after heat treatment.
FIG. 11 is a conceptual diagram of a cross section of a surface plating layer according to a conventional technique.
FIG. 12 is a conceptual diagram of a cross section of a surface plating layer according to a conventional technique.

Claims (16)

Cu又はCu合金からなる母材表面に、Ni層及びCu−Sn合金層からなる表面めっき層がこの順に形成され、前記Cu−Sn合金層はη層(CuSn)を含み、その厚さが0.5〜100μmであることを特徴とするリチウム電池負極用材料。A surface plating layer composed of a Ni layer and a Cu-Sn alloy layer is formed in this order on a surface of a base material composed of Cu or Cu alloy, and the Cu-Sn alloy layer includes an η layer (Cu 6 Sn 5 ), and has a thickness of Material for a lithium battery negative electrode, having a thickness of 0.5 to 100 μm. Cu又はCu合金からなる母材表面に、Ni層、Cu−Sn合金層及びSn層からなる表面めっき層がこの順に形成され、前記Cu−Sn合金層はη層(CuSn)を含み、前記Cu−Sn合金層及びSn層の合計厚さが0.5〜100μmであることを特徴とするリチウム電池負極用材料。On the surface of the base material made of Cu or Cu alloy, a surface plating layer made of a Ni layer, a Cu—Sn alloy layer and a Sn layer is formed in this order, and the Cu—Sn alloy layer includes an η layer (Cu 6 Sn 5 ). And a total thickness of the Cu—Sn alloy layer and the Sn layer is 0.5 to 100 μm. 前記Cu−Sn合金層が、Si、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含むことを特徴とする請求項1に記載されたリチウム電池負極用材料。The Cu-Sn alloy layer includes at least one of Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, and H. The material for a negative electrode of a lithium battery according to claim 1. 前記Cu−Sn合金層又は/及びSn層が、Si、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含むことを特徴とする請求項2に記載されたリチウム電池負極用材料。The Cu-Sn alloy layer and / or the Sn layer contains at least one of Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, and H. 3. The material for a negative electrode of a lithium battery according to claim 2, comprising: Si、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mgのうち少なくとも1種類の添加元素を含むCu合金からなる母材表面に、当該添加元素を含むCu−Sn合金層からなる表面めっき層が形成され、前記Cu−Sn合金層がη層(CuSn)を含み、その厚さが0.5〜100μmであることを特徴とするリチウム電池負極用材料。Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg A surface plating layer made of a Cu—Sn alloy layer including the η layer (Cu 6 Sn 5 ) and a thickness of 0.5 to 100 μm. Material for battery negative electrode. Si、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mgのうち少なくとも1種類の添加元素を含むCu合金からなる母材表面に、当該添加元素を含むCu−Sn合金層及びSn層からなる表面めっき層がこの順に形成され、前記Cu−Sn合金層がη層(CuSn)を含み、前記Cu−Sn合金層とSn層の合計厚さが0.5〜100μmであることを特徴とするリチウム電池負極用材料。Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg A Cu—Sn alloy layer and a surface plating layer composed of a Sn layer are formed in this order, the Cu—Sn alloy layer includes an η layer (Cu 6 Sn 5 ), and the total thickness of the Cu—Sn alloy layer and the Sn layer Material for a lithium battery negative electrode, having a thickness of 0.5 to 100 μm. 前記Cu−Sn合金層が、Si、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含むことを特徴とする請求項5に記載されたリチウム電池負極用材料。The Cu-Sn alloy layer includes at least one of Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, and H. The material for a negative electrode of a lithium battery according to claim 5. 前記Cu−Sn合金層又は/及びSn層が、Si、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含むことを特徴とする請求項6に記載されたリチウム電池負極用材料。The Cu-Sn alloy layer and / or the Sn layer contains at least one of Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, and H. The material for a negative electrode of a lithium battery according to claim 6, comprising: Cu−Sn合金層中のCu含有量が5〜70at%であることを特徴とする請求項1〜8のいずれかに記載されたリチウム電池負極用材料。The material for a negative electrode of a lithium battery according to any one of claims 1 to 8, wherein the Cu content in the Cu-Sn alloy layer is 5 to 70 at%. Cu又はCu合金からなる母材表面にNiめっき層を形成した後、Cuめっき層とSnめっき層をこの順に1回又は2回以上繰り返し形成し、熱処理を行ってη層(CuSn)を含むCu−Sn合金層を形成することを特徴とするリチウム電池負極用材料の製造方法。After forming a Ni plating layer on the surface of a base material made of Cu or a Cu alloy, a Cu plating layer and a Sn plating layer are repeatedly formed one or more times in this order, and heat treatment is performed to perform an η layer (Cu 6 Sn 5 ). A method for producing a negative electrode material for a lithium battery, comprising forming a Cu-Sn alloy layer containing: 前記Cuめっき層がSi、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含み、又は/及び前記Snめっき層がSi、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含むことを特徴とする請求項10に記載されたリチウム電池負極用材料の製造方法。The Cu plating layer contains at least one of Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, H, and / or The Sn plating layer includes at least one of Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, and H. The method for producing a material for a negative electrode of a lithium battery described in 1. Si、Zn、Sn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mgのうち少なくとも1種類を含むCu合金からなる母材表面にSnめっき層を形成し、熱処理を行ってη層(CuSn)を含むCu−Sn合金層を形成することを特徴とするリチウム電池負極用材料の製造方法。Forming a Sn plating layer on the surface of a base material made of a Cu alloy containing at least one of Si, Zn, Sn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B and Mg, To form a Cu—Sn alloy layer including an η layer (Cu 6 Sn 5 ). 前記Snめっき層がSi、Zn、Al、Ni、Fe、Cr、Ti、Zr、Co、S、P、B、Mg、C、O、Hのうち少なくとも1種類を含むことを特徴とする請求項12に記載されたリチウム電池負極用材料の製造方法。The Sn plating layer includes at least one of Si, Zn, Al, Ni, Fe, Cr, Ti, Zr, Co, S, P, B, Mg, C, O, and H. 13. The method for producing a negative electrode material for a lithium battery according to 12 above. 前記Cu−Sn合金層中のCu含有量が5〜70at%であることを特徴とする請求項10〜13のいずれかに記載されたリチウム電池負極用材料の製造方法。The method for producing a negative electrode material for a lithium battery according to any one of claims 10 to 13, wherein the Cu content in the Cu-Sn alloy layer is 5 to 70 at%. Cu又はCu合金からなる母材表面にNi又はNi合金めっき層、Cu又はCu合金めっき層、Sn又はSn合金めっき層をこの順に2回以上繰り返し形成し、熱処理を行ってNi層の上にη層を含むCu−Sn−Ni合金層を形成することを特徴とするリチウム電池負極用材料の製造方法。A Ni or Ni alloy plating layer, a Cu or Cu alloy plating layer, a Sn or a Sn alloy plating layer are repeatedly formed on the surface of a base material made of Cu or Cu alloy twice or more in this order, and heat treatment is performed to obtain η A method for producing a negative electrode material for a lithium battery, comprising forming a Cu-Sn-Ni alloy layer including a layer. Cu又はCu合金からなる母材表面にNi又はNi合金めっき層を形成した後、Zn又はZn合金めっき層、Cu又はCu合金めっき層、Sn又はSn合金めっき層をこの順に1回又は2回以上繰り返し形成し、熱処理を行ってNi層の上にη層を含むCu−Sn−Zn合金層を形成することを特徴とするリチウム電池負極用材料の製造方法。After forming a Ni or Ni alloy plating layer on the surface of a base material made of Cu or Cu alloy, the Zn or Zn alloy plating layer, the Cu or Cu alloy plating layer, and the Sn or Sn alloy plating layer are repeated once or twice in this order. A method for producing a negative electrode material for a lithium battery, comprising forming a Cu—Sn—Zn alloy layer including an η layer on a Ni layer by repeatedly forming and performing heat treatment.
JP2003005145A 2003-01-10 2003-01-10 Lithium battery negative electrode material and method for producing the same Expired - Fee Related JP4136674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005145A JP4136674B2 (en) 2003-01-10 2003-01-10 Lithium battery negative electrode material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005145A JP4136674B2 (en) 2003-01-10 2003-01-10 Lithium battery negative electrode material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004220871A true JP2004220871A (en) 2004-08-05
JP4136674B2 JP4136674B2 (en) 2008-08-20

Family

ID=32895879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005145A Expired - Fee Related JP4136674B2 (en) 2003-01-10 2003-01-10 Lithium battery negative electrode material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4136674B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111898A (en) * 2004-10-12 2006-04-27 Fujitsu Ltd Electronic component and its production method
JP2006216518A (en) * 2005-01-04 2006-08-17 Nikko Kinzoku Kk Negative electrode material for lithium secondary battery
JP2007250357A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2008001947A (en) * 2006-06-22 2008-01-10 Yuken Industry Co Ltd Tin alloy plating film in which generation of whisker is suppressed and method for forming the same
WO2010055863A1 (en) * 2008-11-11 2010-05-20 株式会社エヌエステクノ Negative electrode structure for lithium ion secondary battery, and method for producing same
JP2010202895A (en) * 2009-02-27 2010-09-16 C Uyemura & Co Ltd Method for film deposition of tin-plated film
JP2011171246A (en) * 2010-02-22 2011-09-01 Ns Techno:Kk Negative electrode structure of lithium ion secondary battery
WO2012101693A1 (en) * 2011-01-28 2012-08-02 パナソニック株式会社 Negative electrode collector for lithium ion batteries, and lithium ion battery
EP2557617A1 (en) * 2011-08-09 2013-02-13 Nitto Denko Corporation Lithium secondary battery and anode therefor
JP2013231223A (en) * 2012-05-01 2013-11-14 Dowa Metaltech Kk Plated material and method for producing the same
JP2017008365A (en) * 2015-06-22 2017-01-12 古河電気工業株式会社 Plated material excellent in heat resistance and production method therefor
JP2017082319A (en) * 2015-10-28 2017-05-18 国立大学法人信州大学 Production method of cupper-cnt three-dimensional nanostructure
CN107614759A (en) * 2015-05-07 2018-01-19 同和金属技术有限公司 Sn plates material and its manufacture method
JP2019122967A (en) * 2018-01-12 2019-07-25 メテック株式会社 Method for manufacturing copper tin alloy
JP2020123554A (en) * 2019-01-31 2020-08-13 株式会社日本スペリア社 Negative electrode material for lithium ion secondary battery and manufacturing method thereof
JP2020145002A (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil and negative electrode current collector of lithium ion battery including the same, and method for manufacturing the same
CN112323050A (en) * 2020-10-14 2021-02-05 福建南平南孚电池有限公司 Chemical galvanizing process for copper needle for mercury-free alkaline battery
WO2021028759A1 (en) * 2019-08-09 2021-02-18 株式会社半導体エネルギー研究所 Negative electrode, secondary battery and solid-state secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111898A (en) * 2004-10-12 2006-04-27 Fujitsu Ltd Electronic component and its production method
JP4525285B2 (en) * 2004-10-12 2010-08-18 富士通株式会社 Electronic component and manufacturing method thereof
JP2006216518A (en) * 2005-01-04 2006-08-17 Nikko Kinzoku Kk Negative electrode material for lithium secondary battery
JP4653510B2 (en) * 2005-01-04 2011-03-16 Jx日鉱日石金属株式会社 Anode material for lithium secondary battery
JP2007250357A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery using it
JP2008001947A (en) * 2006-06-22 2008-01-10 Yuken Industry Co Ltd Tin alloy plating film in which generation of whisker is suppressed and method for forming the same
WO2010055863A1 (en) * 2008-11-11 2010-05-20 株式会社エヌエステクノ Negative electrode structure for lithium ion secondary battery, and method for producing same
JP2010202895A (en) * 2009-02-27 2010-09-16 C Uyemura & Co Ltd Method for film deposition of tin-plated film
JP2011171246A (en) * 2010-02-22 2011-09-01 Ns Techno:Kk Negative electrode structure of lithium ion secondary battery
WO2012101693A1 (en) * 2011-01-28 2012-08-02 パナソニック株式会社 Negative electrode collector for lithium ion batteries, and lithium ion battery
EP2557617A1 (en) * 2011-08-09 2013-02-13 Nitto Denko Corporation Lithium secondary battery and anode therefor
JP2013037934A (en) * 2011-08-09 2013-02-21 Nitto Denko Corp Lithium secondary battery and negative electrode thereof
JP2013231223A (en) * 2012-05-01 2013-11-14 Dowa Metaltech Kk Plated material and method for producing the same
CN107614759A (en) * 2015-05-07 2018-01-19 同和金属技术有限公司 Sn plates material and its manufacture method
EP3293291A4 (en) * 2015-05-07 2018-11-21 Dowa Metaltech Co., Ltd Sn plating material and method for producing same
US10676835B2 (en) 2015-05-07 2020-06-09 Dowa Metaltech Co., Ltd. Tin-plated product and method for producing same
JP2017008365A (en) * 2015-06-22 2017-01-12 古河電気工業株式会社 Plated material excellent in heat resistance and production method therefor
JP2017082319A (en) * 2015-10-28 2017-05-18 国立大学法人信州大学 Production method of cupper-cnt three-dimensional nanostructure
JP2019122967A (en) * 2018-01-12 2019-07-25 メテック株式会社 Method for manufacturing copper tin alloy
JP7116946B2 (en) 2018-01-12 2022-08-12 メテック株式会社 Method for producing copper-tin alloy
JP2020123554A (en) * 2019-01-31 2020-08-13 株式会社日本スペリア社 Negative electrode material for lithium ion secondary battery and manufacturing method thereof
JP7377427B2 (en) 2019-01-31 2023-11-10 株式会社日本スペリア社 Negative electrode material for lithium ion secondary battery and its manufacturing method
JP2020145002A (en) * 2019-03-04 2020-09-10 ナミックス株式会社 Copper foil and negative electrode current collector of lithium ion battery including the same, and method for manufacturing the same
WO2021028759A1 (en) * 2019-08-09 2021-02-18 株式会社半導体エネルギー研究所 Negative electrode, secondary battery and solid-state secondary battery
CN112323050A (en) * 2020-10-14 2021-02-05 福建南平南孚电池有限公司 Chemical galvanizing process for copper needle for mercury-free alkaline battery

Also Published As

Publication number Publication date
JP4136674B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4136674B2 (en) Lithium battery negative electrode material and method for producing the same
JP2877957B2 (en) Surface treated steel sheet for battery case and battery case
JP2001256968A (en) Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5654911B2 (en) Rolled copper foil for lithium ion secondary battery current collector
JP4229567B2 (en) Secondary battery
US20060063071A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
Czerwiński et al. New high-energy lead-acid battery with reticulated vitreous carbon as a carrier and current collector
US20060121345A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
CN103857818B (en) Steel foil and manufacture method thereof
JP4054868B2 (en) Negative electrode for lithium battery and method for producing the negative electrode for lithium battery
JP4653510B2 (en) Anode material for lithium secondary battery
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4438541B2 (en) Composite foil for negative electrode current collector of non-aqueous electrolyte secondary battery and manufacturing method thereof, and negative electrode current collector, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the composite foil
JP2006269361A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP5102945B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
JP5643732B2 (en) Negative electrode current collector copper foil for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode current collector copper foil for lithium ion secondary battery
JP2003157833A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP2004178970A (en) Negative electrode material for lithium secondary cell
EP1693910A1 (en) Secondary battery-use electrode and production method therefor and secondary battery
US20060147801A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method
JP2003257417A (en) Negative electrode for lithium ion secondary battery
JP7376396B2 (en) All-solid-state battery manufacturing method
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4136674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees