JP2005251429A - METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY - Google Patents

METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY Download PDF

Info

Publication number
JP2005251429A
JP2005251429A JP2004056588A JP2004056588A JP2005251429A JP 2005251429 A JP2005251429 A JP 2005251429A JP 2004056588 A JP2004056588 A JP 2004056588A JP 2004056588 A JP2004056588 A JP 2004056588A JP 2005251429 A JP2005251429 A JP 2005251429A
Authority
JP
Japan
Prior art keywords
foil
alloy
metal foil
carrier
alloy carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004056588A
Other languages
Japanese (ja)
Inventor
Shinichi Musha
信一 武者
Shinichi Obata
真一 小畠
Kiyotaka Yasuda
清隆 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004056588A priority Critical patent/JP2005251429A/en
Publication of JP2005251429A publication Critical patent/JP2005251429A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • ing And Chemical Polishing (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal foil with Al alloy carrier opening having many opening parts forming a three dimensional reticulated structure having uniformly distributed fine cavities, a simple manufacturing method of the same with small number of processes, and an electrode for a secondary battery separated from the metal foil with Al alloy carrier opening and including the metal foil with the opening. <P>SOLUTION: On the metal foil with Al alloy carrier opening can be obtained, a uniform protrusion parts are formed on a contact face of the carrier and the metal foil by etching Al. The metal foil is formed on the carrier by gradual growth and stretch of metal particles with the electric charge concentration part of the protrusion part as an electrodeposition center of the metal particle, as a result, the metal foil with Al alloy carrier opening can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は多数の孔部を備える孔開き金属箔及びその製造方法に関する。また本発明はかかる多数の孔部を備える孔開き金属箔を含む二次電池用電極及び二次電池に関する。   The present invention relates to a perforated metal foil having a large number of holes and a method for producing the same. Moreover, this invention relates to the electrode for secondary batteries containing a perforated metal foil provided with such many holes, and a secondary battery.

近年、携帯用PCやビデオカメラ等のポータブル電子機器用電源もしくは電気自動車用電源として高容量の二次電池の需要が高まっており、特に高出力の電力を取り出せる二次電池としてLiイオン電池の研究開発及び商品化が急速に進みつつある。   In recent years, the demand for high-capacity secondary batteries as power sources for portable electronic devices such as portable PCs and video cameras, or power sources for electric vehicles has increased. Development and commercialization are progressing rapidly.

さて、このLiイオン二次電池用の集電体として使用可能であって、箔の厚み方向に通じる連通孔が三次元網目構造により形成された多孔質金属箔よりなる集電体が提案されている(特許文献1、2、3及び4参照)。   Now, there has been proposed a current collector made of a porous metal foil that can be used as a current collector for this Li-ion secondary battery and has a three-dimensional network structure in which the communicating holes in the thickness direction of the foil are formed. (See Patent Documents 1, 2, 3, and 4).

特に、特許文献3又は4に提案された多孔質金属箔よりなる集電体の発明によれば、以下の利点をもたらす。第1に三次元網目構造を形成する多孔質金属箔の開孔率や開孔径の制御が可能である。第2に当該多孔質金属箔に電解液の流通経路が十分に確保されることで非水電解液二次電池の容量を高めることができる。第3に活物質がLiを吸蔵又は脱蔵することに起因して電極から脱落することが効果的に防止されサイクル特性を向上させることができる。   In particular, according to the invention of the current collector made of the porous metal foil proposed in Patent Document 3 or 4, the following advantages are brought about. First, it is possible to control the aperture ratio and the aperture diameter of the porous metal foil that forms the three-dimensional network structure. Secondly, the capacity of the non-aqueous electrolyte secondary battery can be increased by sufficiently ensuring the flow path of the electrolyte in the porous metal foil. Third, it is possible to effectively prevent the active material from falling out of the electrode due to insertion or extraction of Li and improve cycle characteristics.

以下、図10及び図11を参照して、従来例の代表例として特許文献4に提案された多孔質金属箔よりなる集電体、特に非水電解液二次電池用負極について、その製造方法を簡単に説明する。
図10において、(a)まずキャリア箔1を準備し、(b)キャリア箔1の一面に薄い剥離層2を形成する。(c)その上にLi化合物の形成能の低い金属材料の電気めっきを施して一方の集電用表面層3aを形成し、(d)該集電用表面層3aの上に活物質の粒子を含む導電性スラリーを塗布して活物質層4を形成し、(e)該活物質の上にLi化合物の形成能の低い金属材料の電気めっきを施して他方の集電用表面層3bを形成し、その後、(f)前記キャリア箔1を剥離層2と共に前記一方の集電用表面層3aと剥離層2の界面において負極10を剥離分離する。なお、図10の説明図は模式図であるため、各集電用表面層3a及び3bが活物質層4と明確に区別され、あたかも負極10が3層構造であるかのように示されているが、実際には図11に示されているように、各表面層3a及び3bの構成材料が活物質4内に浸透して両表面層3a及び3b同士が連通した状態になっている。このようにして得られた本実施形態の負極10は、公知の正極、セパレータ、非水系電解液と共に用いられて非水電解液二次電池を構成する。
Hereinafter, with reference to FIG. 10 and FIG. 11, a method for producing a current collector made of a porous metal foil proposed in Patent Document 4 as a representative example of the conventional example, particularly a negative electrode for a non-aqueous electrolyte secondary battery Is briefly explained.
10, (a) First, carrier foil 1 is prepared, and (b) a thin release layer 2 is formed on one surface of carrier foil 1. (C) A metal material having a low Li compound forming ability is electroplated thereon to form one current collecting surface layer 3a, and (d) active material particles are formed on the current collecting surface layer 3a. The active material layer 4 is formed by applying a conductive slurry containing, and (e) electroplating a metal material having a low Li compound forming ability on the active material to form the other current collecting surface layer 3b. Then, (f) the carrier foil 1 is peeled and separated from the negative electrode 10 at the interface between the one current collecting surface layer 3 a and the peeling layer 2 together with the peeling layer 2. 10 is a schematic diagram, the current collecting surface layers 3a and 3b are clearly distinguished from the active material layer 4, and are shown as if the negative electrode 10 has a three-layer structure. Actually, however, as shown in FIG. 11, the constituent materials of the surface layers 3a and 3b penetrate into the active material 4, and the surface layers 3a and 3b are in communication with each other. The negative electrode 10 of the present embodiment thus obtained is used together with a known positive electrode, separator, and non-aqueous electrolyte to constitute a non-aqueous electrolyte secondary battery.

さて、キャリア箔1の一面に薄い剥離層2を形成するようにされているが、この剥離層2は、窒素化合物、硫黄化合物、窒素含有化合物や硫黄含有化合物と金属微粒子との混合物により、若しくはクロメート処理やNiめっき処理により形成されている。そして、この剥離層2の上に電気めっきを施すことで、表面層3aの中に不均一に分布した微細空隙7(図11参照)が形成されている。さらに、その上に導電性スラリーを塗布して活物質層4を形成しているが、この塗布面は凹凸のあるマット面のため表面粗度が高くなっている。ところで、このスラリーには、活物質の粒子、導電性炭素材料の粒子、結着剤、及び希釈溶媒などを含んでいるため、図11の参照番号4で示される活物質層4のように層の内部にこれらの含有物が不均一に含まれている。よって、さらにスラリーの塗膜が乾燥して活物質層4の形成後この活物質層4上にさらに電気めっきを施した場合表面層3bが形成され、この表面層3bを構成する材料が活物質層4の厚み方向全域に亘って浸透し、両表面層3aと3bとが連通する。さらに、表面層3b中にも多数の不均一に分布した微細空隙7が形成されている。
特開平8−236120号公報 国際公開WO00/15875号公報 特願2003−360938号 特願2003−403528号
Now, a thin release layer 2 is formed on one surface of the carrier foil 1, and this release layer 2 is formed of a nitrogen compound, a sulfur compound, a nitrogen-containing compound, a mixture of a sulfur-containing compound and metal fine particles, or It is formed by chromate treatment or Ni plating treatment. Then, by performing electroplating on the release layer 2, fine voids 7 (see FIG. 11) that are unevenly distributed in the surface layer 3a are formed. Further, the active material layer 4 is formed by applying a conductive slurry thereon, but the surface to be applied has a high surface roughness due to the uneven mat surface. By the way, since this slurry contains active material particles, conductive carbon material particles, a binder, a diluting solvent, and the like, a layer like the active material layer 4 indicated by reference numeral 4 in FIG. These inclusions are contained non-uniformly in the interior of the container. Therefore, when the coating film of the slurry is further dried to form the active material layer 4 and further electroplating is performed on the active material layer 4, the surface layer 3b is formed, and the material constituting the surface layer 3b is the active material. It permeates over the entire thickness direction of the layer 4, and the surface layers 3a and 3b communicate with each other. Furthermore, a large number of non-uniformly distributed fine voids 7 are also formed in the surface layer 3b.
JP-A-8-236120 International Publication WO00 / 15875 Japanese Patent Application No. 2003-360938 Japanese Patent Application No. 2003-403528

ところで、上記微細空隙7の存在によって、充電時にLiを吸蔵し負極10の体積が膨張する場合に、その体積膨張に起因する負極10の内部に発生する応力が緩和されるが、上述したように、微細空隙7は負極10の内部において不均一に形成されている。そのために当該応力が負極10の内部に不均一に発生し、その結果負極10の性能の安定性さらにはその寿命にも悪影響を与える場合がある。さらに、図10を参照して上述したように、特許文献4に提案された製造方法は工程数が多い。   By the way, when the volume of the negative electrode 10 expands due to occlusion of Li during charging due to the presence of the fine gap 7, the stress generated in the negative electrode 10 due to the volume expansion is relieved. The fine voids 7 are formed unevenly inside the negative electrode 10. For this reason, the stress is generated unevenly inside the negative electrode 10, and as a result, the stability of the performance of the negative electrode 10 and its life may be adversely affected. Furthermore, as described above with reference to FIG. 10, the manufacturing method proposed in Patent Document 4 has a large number of steps.

従って、本発明の目的は、工程数のより少ない簡易な製造方法により、複数の均一に分布した微細空隙を持つ三次元網目構造を形成する多数の孔部を備えるAl合金キャリア付孔開き金属箔及びその製造方法並びにAl合金キャリア付孔開き金属箔から分離された金属箔を含む二次電池用集電体を提供することにある。   Accordingly, an object of the present invention is to provide a perforated metal foil with an Al alloy carrier having a plurality of holes forming a three-dimensional network structure having a plurality of uniformly distributed fine voids by a simple manufacturing method with fewer steps. Another object of the present invention is to provide a current collector for a secondary battery including a metal foil separated from a perforated metal foil with an Al alloy carrier and a method for producing the same.

かかる実情において、本発明者等は鋭意検討を行った結果、複数の均一に分布した微細空隙を持つ三次元網目構造を形成する多数の孔部を備える孔開き金属箔たる集電体を作成するにあたり以下の方法を知見した。   In such a situation, the present inventors made extensive studies, and as a result, created a current collector as a perforated metal foil having a large number of holes forming a three-dimensional network structure having a plurality of uniformly distributed fine voids. The following methods were discovered.

まず、Al並びにFe、Si等の分散析出物を含むAl合金よりなるキャリア箔の表面をアルカリ脱脂し、この脱脂処理と同時に該表面のAlをエッチングすることにより、上記分散析出物をキャリア箔表面に均一に突出した状態にさせる。そして、電気めっきを該キャリア箔表面に施すと該分散析出部を電析の核として金属粒子の成長が始まり、さらに成長した金属粒子が互いを電析の核として連なっていくことで孔開き金属箔がキャリア箔上に形成されAl合金キャリア付孔開き金属箔が形成される。また、この金属箔を前記キャリア箔から剥離することにより、複数の均一に分布した微細空隙を持つ三次元網目構造を持つ多数の孔部を備える孔開き金属箔を得る。この孔開き金属箔は二次電池用集電体、特に非水電解液二次電池用集電体として好適に使用される。   First, the surface of the carrier foil made of an Al alloy containing dispersed precipitates such as Al and Fe and Si is alkali degreased, and simultaneously with the degreasing treatment, the surface of the carrier foil is etched by etching Al on the surface. To make it protrude evenly. Then, when electroplating is applied to the surface of the carrier foil, the growth of metal particles starts with the dispersed precipitation portion as the core of electrodeposition, and the grown metal particles are connected to each other as the core of electrodeposition, so that the perforated metal A foil is formed on the carrier foil to form a perforated metal foil with an Al alloy carrier. Further, by peeling the metal foil from the carrier foil, a perforated metal foil having a plurality of holes having a three-dimensional network structure having a plurality of uniformly distributed fine voids is obtained. This perforated metal foil is suitably used as a current collector for a secondary battery, particularly as a current collector for a non-aqueous electrolyte secondary battery.

以下、課題を解決するための手段について具体的に述べる。なお、本件発明において、脱脂・エッチング後のキャリア箔及びそこに電析された金属箔の「厚さ」若しくは「膜厚」は、得られた金属箔のある一定面積の重量から膜厚を求める、いわゆる重量法により換算した平均厚さ若しくは平均膜厚をいうものとする。キャリア箔及び金属箔も凹凸が表面に存在するため、局部的に膜厚を測定するとある部分は1μmその他の部分は5μmであるため、これらの箔の「厚さ」若しくは「膜厚」を測定するのに最も好適な測定方法である。   The means for solving the problem will be specifically described below. In the present invention, the “thickness” or “film thickness” of the degreased / etched carrier foil and the metal foil electrodeposited thereon is determined from the weight of a certain area of the obtained metal foil. The average thickness or the average film thickness converted by the so-called gravimetric method. Since the carrier foil and metal foil also have irregularities on the surface, when measuring the film thickness locally, some parts are 1 μm and other parts are 5 μm, so measure the “thickness” or “film thickness” of these foils This is the most suitable measurement method.

<Al合金キャリア付孔開き金属箔>
本発明(1)は、Al合金箔の表面に孔開き金属箔層を備えるAl合金キャリア付孔開き金属箔であって、当該孔開き金属箔層はAl合金キャリアの表面に金属を電析することにより形成されるものであり、かつ、当該金属箔層は前記一方の面から他方の面へ通じる多数の孔部を備える孔開き金属箔層であることを特徴とするAl合金キャリア付孔開き金属箔である。
<Perforated metal foil with Al alloy carrier>
The present invention (1) is a perforated metal foil with an Al alloy carrier provided with a perforated metal foil layer on the surface of the Al alloy foil, and the perforated metal foil layer electrodeposits metal on the surface of the Al alloy carrier. And the metal foil layer is a perforated metal foil layer having a large number of holes extending from the one surface to the other surface. Metal foil.

上記Al合金箔の好適な材質はJIS規格 1N30のAl合金(Al>99.30%、Fe+Si<0.7%)によるものである(なお、Fe+Siの濃度の下限値はFe+Si>0.01%、好ましくはFe+Si>0.1%である。)。このAl合金は合金中にAlを主成分としFeとSiがAl中に分散析出部として均一に分散している。ただし、本発明の課題を解決するためにAl合金に含まれるAl以外の異種元素はFeやSiに限定されない。   A suitable material for the Al alloy foil is a JIS standard 1N30 Al alloy (Al> 99.30%, Fe + Si <0.7%) (note that the lower limit of the Fe + Si concentration is Fe + Si> 0.01%). Preferably Fe + Si> 0.1%). This Al alloy has Al as a main component in the alloy, and Fe and Si are uniformly dispersed in Al as a dispersion precipitation portion. However, in order to solve the problem of the present invention, the different elements other than Al contained in the Al alloy are not limited to Fe and Si.

このAl合金箔は、好適には長尺状で巻き取り可能であり、巻き取られた状態から引き延ばされたときに表面がフラットである。また「箔」には板状部材の概念をも含む。したがって、本件発明でAl合金箔はAl合金板と言い換えることができるものとする。なお、巻き取り状のものは特に量産スケールに適し、板状のものは特にバッチスケールの製造(例えば試作段階)に適する。   This Al alloy foil is preferably long and can be wound up, and has a flat surface when stretched from the wound state. “Foil” includes the concept of a plate-like member. Therefore, in the present invention, the Al alloy foil can be rephrased as an Al alloy plate. In addition, the wound type is particularly suitable for a mass production scale, and the plate type is particularly suitable for production of a batch scale (for example, a trial production stage).

また当該Al合金箔は、エッチングで減少する厚さの分を考慮しつつ、二次電池に集電体たる金属箔をアセンブリするまでのキャリアとして必要十分な強度が要求されるためある一定の厚さが必要である。よって10μm〜100μmの厚さが好ましい。10μm未満ではキャリアとしての金属箔を支持するための強度を満たさず、上記製造工程や二次電池へのアセンブリ前若しくはアセンブリ中に折曲やしわ等の発生を起こすおそれがあるので好ましくない。一方、Al合金箔の100μmより厚くなるほど金属箔をAl合金箔から徐々に分離しにくくなり、さらには材料コストがかかり好ましくない。   In addition, the Al alloy foil is required to have a certain thickness because it requires a sufficient and sufficient strength as a carrier for assembling a metal foil as a current collector to a secondary battery while taking into account the thickness reduced by etching. Is necessary. Therefore, a thickness of 10 μm to 100 μm is preferable. If the thickness is less than 10 μm, the strength for supporting the metal foil as a carrier is not satisfied, and there is a risk that bending or wrinkling may occur before or during assembly to the manufacturing process or the secondary battery. On the other hand, the thicker the Al alloy foil is, the more difficult it is to gradually separate the metal foil from the Al alloy foil.

また本製造工程に入る直前までは、例えば保護フィルムをAl合金箔表面に貼ってその表面に傷がつかないように保護しておくことが好ましい。当初より損傷が表面にある場合には、工程(a)(脱脂・エッチング工程)のエッチング以降の工程(図1及び図2参照)で損傷の履歴を引きずり、ひいては金属箔の電析が不均一となるおそれがあるからである。   In addition, it is preferable to protect the surface of the Al alloy foil so that the surface is not damaged until the manufacturing process is started. If there is damage on the surface from the beginning, the history of damage is traced in the subsequent steps (see FIGS. 1 and 2) of the step (a) (degreasing / etching step), and thus the metal foil is not uniformly deposited. This is because there is a risk of becoming.

さらには、Cu箔又はNi箔が二次電池へのアセンブリ直前までAl合金キャリアにより常に支持されるのでアセンブリ直前まで損傷することがない。またAl合金キャリアが一定の強度を有するのでマニュアルでのアセンブリがし易く、かつ、二次電池製造工程中のアセンブリの自動化も容易に実行可能である。特に、Cu箔又はNi箔が極めて薄く強度が弱いためAl合金キャリアにより常に支持されることは高品質なCu箔又はNi箔を効率良く、かつ、歩留り良く製造するのに様々な利点をもたらす。   Furthermore, since Cu foil or Ni foil is always supported by the Al alloy carrier until immediately before the assembly to the secondary battery, it is not damaged until immediately before the assembly. Further, since the Al alloy carrier has a certain strength, it is easy to perform manual assembly, and automation of the assembly during the secondary battery manufacturing process can be easily performed. In particular, since Cu foil or Ni foil is extremely thin and weak in strength, it is always supported by an Al alloy carrier, which brings various advantages for producing high-quality Cu foil or Ni foil efficiently and with high yield.

また、上記金属箔層はAl合金キャリアの表面に金属を電析することにより形成されるものであり、かつ、当該金属箔層は前記一方の面から他方の面へ通じる多数の孔部を備える孔開き金属箔層であるため、金属層内の孔密度を高めることができる。さらにLi電解液を活物質に接触させるのに好適な孔を持つ多数の孔路が存在するので、Li電解液を効率良く活物質側に接触させることができる。   The metal foil layer is formed by electrodepositing a metal on the surface of the Al alloy carrier, and the metal foil layer has a large number of holes extending from the one surface to the other surface. Since it is a perforated metal foil layer, the hole density in the metal layer can be increased. Furthermore, since there are a large number of pores having holes suitable for bringing the Li electrolyte into contact with the active material, the Li electrolyte can be brought into contact with the active material side efficiently.

本発明(2)は、本発明(1)のAl合金キャリア付孔開き金属箔であって、
該Al合金キャリアの前記金属箔層との接触面は当該平面内で均一に分散して存在する突出部を有することを特徴とするAl合金キャリア付孔開き金属箔である。なお、本願において「均一に分散」とは単位面積当たりに一定の数の突出部が分散していることをいうものとする。具体的には10個/mm〜10個/mm、すなわち単位面積を1mmとして10個〜10個の突出部が当該金属箔に存在している。
The present invention (2) is a perforated metal foil with an Al alloy carrier of the present invention (1),
The contact surface of the Al alloy carrier with the metal foil layer has protrusions that are uniformly dispersed in the plane and is a perforated metal foil with an Al alloy carrier. In the present application, “uniformly dispersed” means that a certain number of protrusions are dispersed per unit area. Specifically, 10 3 pieces / mm 2 to 10 5 pieces / mm 2 , that is, 10 3 pieces to 10 5 pieces of protrusions exist on the metal foil with a unit area of 1 mm 2 .

本発明(3)は、本発明(2)のAl合金キャリア付孔開き金属箔であって、前記突出部はAl合金箔を脱脂すると同時にAl合金中のAl部をエッチングすることにより形成したものであることを特徴とするAl合金キャリア付孔開き金属箔である。   The present invention (3) is a perforated metal foil with an Al alloy carrier according to the present invention (2), wherein the protruding portion is formed by degreasing the Al alloy foil and simultaneously etching the Al portion in the Al alloy. It is a perforated metal foil with an Al alloy carrier characterized by being.

本発明(4)は、本発明(2)又は本発明(3)のAl合金キャリア付孔開き金属箔であって、前記突出部のAl合金キャリア側の突出部はAl合金箔に含まれるAl以外の、分散析出している元素であることを特徴とするAl合金キャリア付孔開き金属箔である。   The present invention (4) is a perforated metal foil with an Al alloy carrier according to the present invention (2) or the present invention (3), wherein the protrusion on the Al alloy carrier side of the protrusion is an Al alloy foil. A perforated metal foil with an Al alloy carrier, characterized in that it is an element that is dispersed and precipitated.

上記本発明(2)〜本発明(4)のいずれかの発明によれば、図3を参照して説明すると、Al合金箔10のエッチング(図3(a))により(点線部がエッチングされた部分を示す。)Fe、Si等の分散析出部がAl合金箔表面に現れ(図3(b))、Fe、Si等の分散析出部へ金属粒子15が優先析出し(図3(c))、その後さらにその優先的に分散した金属粒子が成長し、かつ、さらにその成長した金属粒子と金属粒子が粒界を介して連なりつつ金属膜が拡張していく(図3(d))。この際金属粒子間に孔が生じ、マクロ的にはそれが徐々に埋まっていくがミクロ的には金属粒子間に微孔が存在し、この微孔の存在により当該金属箔が一方の面から他方の面へ通じる多数の孔部を備える孔開き金属箔を提供する。   According to any one of the present inventions (2) to (4) described above with reference to FIG. 3, (the dotted line portion is etched by etching of the Al alloy foil 10 (FIG. 3A)). A dispersion precipitate portion such as Fe and Si appears on the surface of the Al alloy foil (FIG. 3B), and the metal particles 15 preferentially precipitate on the dispersion precipitate portion such as Fe and Si (FIG. 3C). )), And then the preferentially dispersed metal particles grow, and further, the metal film expands while the grown metal particles and the metal particles are connected via the grain boundary (FIG. 3 (d)). . At this time, pores are formed between the metal particles, and in the macro, they are gradually filled, but microscopically there are micropores between the metal particles, and the presence of these micropores causes the metal foil to be removed from one side. A perforated metal foil is provided having a number of holes leading to the other surface.

本発明(5)は、本発明(1)〜本発明(4)のいずれかのAl合金キャリア付孔開き金属箔であって、前記孔開き金属箔の厚さが1μm〜10μmであることを特徴とするAl合金キャリア付孔開き金属箔である。   The present invention (5) is a perforated metal foil with an Al alloy carrier according to any one of the present invention (1) to the present invention (4), wherein the thickness of the perforated metal foil is 1 μm to 10 μm. This is a perforated metal foil with an Al alloy carrier.

本発明(5)によれば、Al合金キャリア付孔開き金属箔に均一に孔開き部分を形成し、二次電池の集電体として十分な厚さが極めて薄い金属箔を提供することができる。なお、この金属箔の厚さは1μm〜10μmであり、好ましくは2μm〜5μmである。   According to the present invention (5), a perforated portion can be uniformly formed in a perforated metal foil with an Al alloy carrier, and a metal foil that is extremely thin as a current collector for a secondary battery can be provided. . In addition, the thickness of this metal foil is 1 micrometer-10 micrometers, Preferably it is 2 micrometers-5 micrometers.

本発明(6)は、本発明(1)〜本発明(5)いずれかのAl合金キャリア付孔開き金属箔であって、前記キャリア箔の厚さが10μm〜100μmであることを特徴とするAl合金キャリア付孔開き金属箔である。   The present invention (6) is a perforated metal foil with an Al alloy carrier according to any one of the present invention (1) to the present invention (5), wherein the thickness of the carrier foil is 10 μm to 100 μm. This is a perforated metal foil with an Al alloy carrier.

本発明(6)によれば、Al合金をエッチングするのに十分なエッチングしろがAl合金キャリアに確保できること、金属箔に損傷を与えることなく金属箔をキャリア上で搬送・運搬し易くすること、及び金属箔を二次電池本体に対してアセンブリし易くすることができるAl合金キャリア付孔開き金属箔を提供することができる。   According to the present invention (6), it is possible to secure sufficient etching margin in the Al alloy carrier to etch the Al alloy, facilitating transportation and transportation of the metal foil on the carrier without damaging the metal foil, In addition, it is possible to provide a perforated metal foil with an Al alloy carrier that can easily assemble the metal foil to the secondary battery body.

本発明(7)は、本発明(1)〜本発明(6)いずれかのAl合金キャリア付孔開き金属箔の金属箔がCu箔又はNi箔であることを特徴とするAl合金キャリア付孔開き金属箔である。   The present invention (7) is a hole with an Al alloy carrier, characterized in that the metal foil of the perforated metal foil with an Al alloy carrier according to any one of the present invention (1) to the present invention (6) is a Cu foil or a Ni foil. Open metal foil.

本発明(7)によれば、導電率が高く、コスト的にも有利な金属材料であるCu又はNiの金属箔を含む集電体を提供することができる。特にNi箔の場合にあっては、めっき処理後の防錆処理が不必要であり製造工程数を低減できる。   According to the present invention (7), it is possible to provide a current collector including a metal foil of Cu or Ni, which is a metal material having high conductivity and advantageous in terms of cost. Particularly in the case of Ni foil, the antirust treatment after the plating treatment is unnecessary, and the number of manufacturing steps can be reduced.

<集電体>
本発明(8)は、二次電池用電極の集電体であって、該集電体が本発明(1)〜本発明(7)のいずれかに記載のAl合金キャリア付孔開き金属箔である集電体。
<Current collector>
The present invention (8) is a current collector for an electrode for a secondary battery, and the current collector is a perforated metal foil with an Al alloy carrier according to any one of the present invention (1) to the present invention (7). Current collector.

本発明(8)によれば、剥離層を備えるための特別な工程も必要とすることなくAl合金キャリアと孔開き金属箔との界面にAlの不動態酸化膜が存在するので、その酸化膜を境界面として孔開き金属箔が容易にAl合金キャリアから剥離することができ、その剥離した孔開き金属箔を集電体として提供することができる。   According to the present invention (8), since there is an Al passive oxide film at the interface between the Al alloy carrier and the perforated metal foil without requiring a special step for providing a release layer, the oxide film As a boundary surface, the perforated metal foil can be easily peeled from the Al alloy carrier, and the peeled perforated metal foil can be provided as a current collector.

<二次電池用電極>
本発明(9)は、本発明(8)の集電体を備えた二次電池用電極である。
<Electrode for secondary battery>
The present invention (9) is an electrode for a secondary battery provided with the current collector of the present invention (8).

本発明(10)は、 本発明(9)の二次電池用電極であって、本発明(8)の集電体上にSn又はSn合金の活物質めっき層を備えた二次電池用電極。 This invention (10) is the electrode for secondary batteries of this invention (9), Comprising: The electrode for secondary batteries provided with the active material plating layer of Sn or Sn alloy on the electrical power collector of this invention (8) .

<二次電池>
本発明(11)は、本発明(9)から本発明(10)のいずれかの二次電池用電極を備えた二次電池である。
<Secondary battery>
This invention (11) is a secondary battery provided with the electrode for secondary batteries in any one of this invention (9) to this invention (10).

本発明(9)〜本発明(11)によれば、上述した本発明の上記金属箔層を有するものであって、当該金属箔層がAl合金キャリアの表面に金属を電析することにより形成されるものであり、かつ、当該金属箔層は前記一方の面から他方の面へ通じる多数の孔部を備える孔開き金属箔層であるため、電極の集電体として用いた場合、前記一方の面から他方の面へ通じる多数の孔部にLi電解液が浸透し活物質と接触することにより、Liの吸蔵又は脱蔵が容易に可能となる。   According to the present invention (9) to the present invention (11), the metal foil layer according to the present invention is formed by electrodepositing a metal on the surface of an Al alloy carrier. And the metal foil layer is a perforated metal foil layer having a large number of holes leading from the one surface to the other surface. When the Li electrolyte solution permeates through a large number of holes extending from one surface to the other surface and comes into contact with the active material, it is possible to easily store or desorb Li.

<Al合金キャリア付孔開き金属箔の製造方法>
本発明(13)は、以下の工程a〜工程cを含むAl合金箔の表面に金属箔層を備えるAl合金キャリア付孔開き金属箔の製造方法であって、当該金属箔層はAl合金キャリアの表面に金属を電析することにより形成されるものであり、前記一方の面から他方の面へ通じる多数の孔部を備える孔開き金属箔層を製造することを特徴とするAl合金キャリア付孔開き金属箔製造方法である。
工程a.Al合金箔の表面を脱脂しつつ、該キャリア箔のAl部をエッチングする脱脂・エッチング工程、
工程b.前記エッチングされたAl合金箔を水洗する水洗工程、及び
工程c.前記水洗後のAl合金箔の表面へ金属を電析する電気めっき工程。
<Method for producing perforated metal foil with Al alloy carrier>
The present invention (13) is a method for producing a perforated metal foil with an Al alloy carrier comprising a metal foil layer on the surface of an Al alloy foil including the following steps a to c, wherein the metal foil layer is an Al alloy carrier. A metal foil layer is formed by electrodepositing a metal on the surface of the metal, and a perforated metal foil layer having a large number of holes extending from the one surface to the other surface is manufactured. It is a perforated metal foil manufacturing method.
Step a. A degreasing / etching step for etching the Al part of the carrier foil while degreasing the surface of the Al alloy foil,
Step b. A water washing step of washing the etched Al alloy foil, and a step c. An electroplating step of depositing metal on the surface of the Al alloy foil after the water washing;

本発明(13)によれば、脱脂と同時にエッチングされAl合金キャリア上で一方の面から他方の面へ通じる多数の孔部を備える孔開き金属箔層を製造することができる。またエッチング後にはFe、Si等のエッチングされない部分が突出部としてAl合金キャリア表面上に均一に現れ、その突出部の電荷集中部に金属が電析し、その後順次その金属粒子が連なっていくため、孔開き金属箔層を形成することができる。なお工程bでは純水で水洗を行うことが好ましい。   According to the present invention (13), it is possible to manufacture a perforated metal foil layer having a large number of holes that are etched simultaneously with degreasing and communicate from one surface to the other surface on the Al alloy carrier. In addition, after etching, unetched portions such as Fe and Si appear uniformly on the surface of the Al alloy carrier as protrusions, and metal deposits on the charge concentration portions of the protrusions, and then the metal particles are successively connected. A perforated metal foil layer can be formed. In step b, it is preferable to wash with pure water.

<Al合金キャリア付孔開きCu箔の製造方法>
本発明(14)は、以下の工程a〜工程cを含むAl合金箔の表面にCu箔層を備えるAl合金キャリア付孔開き金属箔の製造方法であって、当該Cu箔層はAl合金キャリアの表面にCuを電析することにより形成されるものであり、前記一方の面から他方の面へ通じる多数の孔部を備える孔開きCu箔層を製造することを特徴とするAl合金キャリア付孔開きCu箔製造方法である。
工程a.Al合金が一定の大きさ(例えば、試作スケールで10cm×12cm、量産スケールで20cm×400m等)のキャリア箔について、NaOHが15g/L〜45g/L、ロッシェル塩が25g/L〜65g/L、及びNaCOが25g/L〜65g/Lであるアルカリ脱脂液を用いて、液温20℃〜60℃おいて浸漬時間10秒間〜300秒間で、1μm/min〜1.5μm/minのエッチング速度で脱脂及びエッチング処理を行う脱脂・エッチング工程、
工程b.前記Alを溶解したキャリア箔を水洗する水洗工程、
工程c.CuSO濃度が150g/L〜350g/L、HSO濃度が50g/L〜250g/L、浴温が20℃〜60℃、及び電流密度が2A/dm〜50A/dmのめっき製造条件下、10秒間〜300秒間で前記キャリア箔のいずれかの面にCuを電析する電気めっき工程、
工程d.前記Cuを電析させAl合金キャリア箔を水洗する水洗工程、及び
工程e.ベンゾトリアゾール(BTA)溶液0.1g/L〜5g/Lに上記CuめっきされたAl合金キャリア付孔開き金属箔を浸漬し、Al合金キャリア付孔開き金属箔に防錆処理を施す防錆工程。
<Method for producing perforated Cu foil with Al alloy carrier>
The present invention (14) is a method for producing a perforated metal foil with an Al alloy carrier comprising a Cu foil layer on the surface of an Al alloy foil including the following steps a to c, wherein the Cu foil layer is an Al alloy carrier. With an Al alloy carrier, characterized by producing a perforated Cu foil layer having a large number of holes extending from the one surface to the other surface. It is a perforated Cu foil manufacturing method.
Step a. For carrier foils with a certain size of Al alloy (for example, 10 cm × 12 cm for prototype scale, 20 cm × 400 m for mass production scale, etc.), NaOH is 15 g / L to 45 g / L, and Rochelle salt is 25 g / L to 65 g / L. And an alkaline degreasing solution having Na 2 CO 3 of 25 g / L to 65 g / L, and a soaking time of 10 seconds to 300 seconds at a liquid temperature of 20 ° C. to 60 ° C., 1 μm / min to 1.5 μm / min. Degreasing and etching process to perform degreasing and etching process at an etching rate of
Step b. A water washing step of washing the carrier foil in which the Al is dissolved,
Step c. Plating with CuSO 4 concentration of 150 g / L to 350 g / L, H 2 SO 4 concentration of 50 g / L to 250 g / L, bath temperature of 20 ° C. to 60 ° C., and current density of 2 A / dm 2 to 50 A / dm 2 An electroplating step in which Cu is electrodeposited on any surface of the carrier foil for 10 seconds to 300 seconds under manufacturing conditions;
Step d. A water washing step of electrodepositing Cu to wash the Al alloy carrier foil; and a step e. Rust prevention step of immersing the above-mentioned perforated metal foil with Al alloy carrier plated with Cu in 0.1 g / L to 5 g / L of benzotriazole (BTA) solution, and subjecting the perforated metal foil with Al alloy carrier to rust prevention treatment .

本発明(14)によれば、本発明(13)と同様な膜構造を持つCu箔であって、防錆処理が施された孔開きCu箔が提供され、めっき処理後のCu箔の腐食が防止される。   According to the present invention (14), a Cu foil having a film structure similar to that of the present invention (13) is provided, and a perforated Cu foil subjected to a rust prevention treatment is provided, and the corrosion of the Cu foil after the plating treatment is provided. Is prevented.

<Al合金キャリア付孔開きNi箔の製造方法>
本発明(15)は、以下の工程a〜工程cを含むAl合金箔の表面にNi箔層を備えるAl合金キャリア付孔開き金属箔の製造方法であって、当該Ni箔層はAl合金キャリアの表面にNiを電析することにより形成されるものであり、前記一方の面から他方の面へ通じる多数の孔部を備える孔開きNi箔層を製造することを特徴とするAl合金キャリア付孔開き金属箔製造方法である。
工程a.Al合金キャリア箔について、NaOHが15g/L〜45g/L、ロッシェル塩が25g/L〜65g/L、及びNaCOが25g/L〜65g/Lであるアルカリ脱脂液を用いて、液温20℃〜60℃おいて浸漬時間10秒間〜300秒間で、1μ/min〜1.5μ/minのエッチング速度で脱脂及びエッチング処理を行う脱脂・エッチング工程、
工程b.前記Alを溶解したキャリア箔を水洗する水洗工程、
工程c.NiSO・6HO濃度が150g/L〜300g/L、NiCl濃度が50g/L〜250g/L、及びHBO濃度が30g/L〜40g/L、浴温が30℃〜70℃、及び電流密度が1A/dm〜40A/dmのめっき製造条件下、前記キャリア箔のいずれかの面にNiを電析する電気めっき工程。
<Method for producing perforated Ni foil with Al alloy carrier>
The present invention (15) is a method for producing a perforated metal foil with an Al alloy carrier comprising a Ni foil layer on the surface of an Al alloy foil comprising the following steps a to c, wherein the Ni foil layer is an Al alloy carrier. With an Al alloy carrier, characterized by producing a perforated Ni foil layer having a large number of holes extending from one surface to the other surface. It is a perforated metal foil manufacturing method.
Step a. For the Al alloy carrier foil, an alkaline degreasing solution in which NaOH is 15 g / L to 45 g / L, Rochelle salt is 25 g / L to 65 g / L, and Na 2 CO 3 is 25 g / L to 65 g / L is used. A degreasing and etching process in which degreasing and etching are performed at an etching rate of 1 μ / min to 1.5 μ / min at a temperature of 20 ° C. to 60 ° C. for an immersion time of 10 seconds to 300 seconds;
Step b. A water washing step of washing the carrier foil in which the Al is dissolved,
Step c. NiSO 4 · 6H 2 O concentration is 150 g / L to 300 g / L, NiCl 2 concentration is 50 g / L to 250 g / L, and H 3 BO 3 concentration is 30 g / L to 40 g / L, and the bath temperature is 30 ° C. to 70 ° C. An electroplating step in which Ni is electrodeposited on any surface of the carrier foil under the plating manufacturing conditions of ° C. and a current density of 1 A / dm 2 to 40 A / dm 2 .

本発明(15)によれば、本発明(13)と同様な膜構造を持つ孔開きNi箔が提供される。また、本発明(15)によれば、Cu箔工程のような防錆処理工程を必要としない。   According to the present invention (15), a perforated Ni foil having a film structure similar to that of the present invention (13) is provided. Moreover, according to this invention (15), a rust prevention process process like a Cu foil process is not required.

本発明(16)は、本発明(13)〜本発明(15)のいずれかのAl合金キャリア付孔開き金属箔製造方法であって、該Al合金キャリアの前記金属箔層との接触面は、当該平面内で均一に分散して存在する突出部の突起部、隅部、及び縁部に対して、前記金属箔層を形成するための金属粒子が均一に電析し始めることを特徴とするAl合金キャリア付孔開き金属箔である。   The present invention (16) is a method for producing a perforated metal foil with an Al alloy carrier according to any one of the present invention (13) to the present invention (15), wherein the contact surface of the Al alloy carrier with the metal foil layer is The metal particles for forming the metal foil layer begin to deposit uniformly on the protrusions, corners, and edges of the protrusions that are uniformly dispersed in the plane. This is a perforated metal foil with an Al alloy carrier.

本発明(17)は、本発明(13)〜本発明(16)いずれかのAl合金キャリア付孔開き金属箔製造方法であって、前記均一に電析した金属粒子を電析の核として、その核の上に前記金属箔層の金属粒子が均一に順次電析していくことにより厚さ方向に孔開き金属箔層を形成することを特徴とするAl合金キャリア付孔開き金属箔である。   The present invention (17) is a method for producing a perforated metal foil with an Al alloy carrier according to any one of the present invention (13) to the present invention (16), wherein the uniformly deposited metal particles are used as the core of electrodeposition. A perforated metal foil with an Al alloy carrier, wherein a perforated metal foil layer is formed in the thickness direction by uniformly and sequentially depositing metal particles of the metal foil layer on the core. .

本発明(16)及び本発明(17)によれば、本発明(13)と同様なAl合金キャリア付孔開き金属箔を提供することができる。   According to the present invention (16) and the present invention (17), a perforated metal foil with an Al alloy carrier similar to the present invention (13) can be provided.

本発明に係る多数の孔部を備えるAl合金キャリア付孔開き金属箔及びその製造方法は、均一に分布した複数の微細空隙を持つ三次元網目構造を持つ多数の孔部を備えるAl合金キャリア付孔開き金属箔を提供する。さらに、金属箔に損傷を与えることなく金属箔を搬送・運搬し易くすること、及び金属箔を二次電池本体に対してアセンブリし易くすることができるAl合金キャリア付孔開き金属箔を提供する。さらにまた、従来の製造方法に比して製造工程数を大幅に削減できる多数の孔部を備えるAl合金キャリア付孔開き金属箔の製造方法を提供する。   A perforated metal foil with an Al alloy carrier having a large number of holes according to the present invention and a method for manufacturing the same are provided with an Al alloy carrier having a large number of holes having a three-dimensional network structure having a plurality of uniformly distributed fine voids. A perforated metal foil is provided. Furthermore, there is provided a perforated metal foil with an Al alloy carrier that makes it easy to transport and carry the metal foil without damaging the metal foil, and makes it easy to assemble the metal foil to the secondary battery body. . Furthermore, the present invention provides a method for manufacturing a perforated metal foil with an Al alloy carrier, which has a large number of holes that can greatly reduce the number of manufacturing steps as compared with conventional manufacturing methods.

本発明に係る多数の孔部を備えるAl合金キャリア付孔開き金属箔を作成するため最良の実施形態を図1〜図9を参照しつつ以下説明する。   The best mode for producing a perforated metal foil with an Al alloy carrier having a large number of holes according to the present invention will be described below with reference to FIGS.

図1及び図2は、Al合金キャリア付孔開き金属箔の製造方法を説明するためのフローチャートである(当該金属箔を製造するにあたり、図1がCuめっきの場合であり、図2がNiめっきの場合のフローチャートである。)。Cuめっきの場合の製造方法は、Al合金キャリアとなるAl合金箔を準備し、工程(a)(脱脂・エッチング工程)、工程(b)(水洗工程)、工程(c)(Cuめっき)、工程(d)(水洗工程)、工程(e)(防錆処理工程)、及び工程(f)(乾燥工程)を含む方法である。なお工程(a)は、アルカリ脱脂を行うものであるが、Alが両性金属であるためAlのエッチングも同時に行う脱脂・エッチング工程でもある。   1 and 2 are flowcharts for explaining a method for producing a perforated metal foil with an Al alloy carrier (in producing the metal foil, FIG. 1 is a case of Cu plating, and FIG. 2 is a Ni plating). This is a flowchart in the case of. The manufacturing method in the case of Cu plating prepares Al alloy foil used as an Al alloy carrier, a process (a) (degreasing and etching process), a process (b) (water washing process), a process (c) (Cu plating), It is a method including a step (d) (water washing step), a step (e) (rust prevention treatment step), and a step (f) (drying step). In addition, although process (a) performs alkali degreasing, since Al is an amphoteric metal, it is also a degreasing and etching process which also etches Al simultaneously.

なお、図2 (Niめっきの場合)に示されるように、Niのような腐食しにくい金属を電気めっきの電析金属として使用する場合は、図1で示された工程(e)(防錆処理工程)は省略される。 In addition, as shown in FIG. 2 (in the case of Ni plating), when using a metal that does not easily corrode such as Ni as an electrodeposition metal for electroplating, the step (e) shown in FIG. 1 (rust prevention) The processing step) is omitted.

以下、さらにAl合金キャリア付孔開き金属箔の製造方法を図1を主とし、適宜図2から図8を参照して、工程毎説明する。(なお図1と図2で重複する工程については図2を用いた説明は省略する。)   Hereinafter, a method for producing a perforated metal foil with an Al alloy carrier will be described step by step with reference to FIGS. (Note that the description of the steps that overlap in FIGS. 1 and 2 is omitted with reference to FIG. 2.)

工程(a)において、Al合金箔の脱脂・エッチング処理を行う。脱脂液の条件は以下の通りである。
浴組成:
NaOH;15g/L〜45g/L
ロッシェル塩;25g/L〜65g/L
NaCO;25g/L〜65g/L
液温:20℃〜60℃、好適には30℃〜50℃
処理時間:10秒〜300秒
脱脂・エッチング速度:1μm/min〜1.5μm/min
In step (a), degreasing and etching of the Al alloy foil is performed. The conditions of the degreasing liquid are as follows.
Bath composition:
NaOH; 15 g / L to 45 g / L
Rochelle salt; 25 g / L to 65 g / L
Na 2 CO 3 ; 25 g / L to 65 g / L
Liquid temperature: 20 ° C to 60 ° C, preferably 30 ° C to 50 ° C
Processing time: 10 seconds to 300 seconds Degreasing / etching speed: 1 μm / min to 1.5 μm / min

ここで図4及び図5を参照して脱脂・エッチング工程を以下説明する。図4は、脱脂・エッチング処理時間とAl合金箔の表面状態の関係を表すSEM写真像である。上段は500倍、下段は10000倍の倍率のSEM写真像である。さらに左から順に脱脂・エッチング処理時間が、0、30、60、及び180秒のSEM写真像である。図4から、脱脂・エッチング処理によりAl部がエッチングされるため突出部が出現し、脱脂・エッチング処理時間が経つにつれAl部のエッチング量が増えるためAl合金箔の表面に突出部が段々多くなることが分かる。   Here, the degreasing / etching step will be described with reference to FIGS. FIG. 4 is an SEM photographic image showing the relationship between the degreasing / etching time and the surface state of the Al alloy foil. The upper row is an SEM photographic image at a magnification of 500 times and the lower row at a magnification of 10,000 times. Furthermore, it is a SEM photograph image of degreasing and etching processing time 0, 30, 60, and 180 seconds in order from the left. As shown in FIG. 4, protrusions appear because the Al part is etched by the degreasing / etching process, and as the degreasing / etching process time increases, the etching amount of the Al part increases, and the protrusions gradually increase on the surface of the Al alloy foil. I understand that.

図5(a)は、脱脂・エッチング処理3分後のAl合金箔の表面状態を示すEPMAによる観察像及び元素分布状態を示している。図5(a)から上記突出部がFe及びSi等の元素で構成されていることが分かる。   FIG. 5A shows an observation image by EPMA and an element distribution state showing the surface state of the Al alloy foil after 3 minutes of degreasing / etching treatment. From FIG. 5A, it can be seen that the projecting portion is composed of elements such as Fe and Si.

図5(b)は、脱脂・エッチング処理後のAl合金箔の表面へのCu電析を僅かに行った後のEPMA観察像及び元素分布状態を示しているものであって、当該脱脂・エッチング処理によるエッチングがその後のCuの電析に及ぼす効果を観察するためのものである。より具体的には、図5(b)は、Cuの膜厚が0.1μmに達したとき、すなわちCu電析の初期時のAl合金箔の表面状態を示す。この図5(b)の左端のCOMPO観察像と右端のCu観察像とを比較することによりCuが上記突出部を基点として電析していることが分かる。   FIG. 5B shows an EPMA observation image and an element distribution state after slightly performing Cu electrodeposition on the surface of the Al alloy foil after the degreasing / etching process. This is to observe the effect of etching by treatment on the subsequent electrodeposition of Cu. More specifically, FIG. 5B shows the surface state of the Al alloy foil when the Cu film thickness reaches 0.1 μm, that is, at the initial stage of Cu electrodeposition. By comparing the leftmost COMPO observation image and the rightmost Cu observation image in FIG. 5B, it can be seen that Cu is electrodeposited with the protruding portion as a base point.

この脱脂・エッチング工程aでは、Alが脱脂液中で過飽和になるまで以下の式(1)の反応によりAlがエッチングされ溶解すると、式(2)を経て式(3)の反応によりAl・3HOが生成されてしまう(参考文献「アルミニウム表面技術便覧」軽金属出版株式会社発行)。このAlがAl合金箔表面に残留することでAl合金箔表面のエッチング処理を妨害し、さらにこのAlが脱脂・エッチング槽の脱脂液を汚染するのでAlが生成されることは好ましくない。よってAlのNaOHによるエッチングが過飽和となりAlが生成されないように脱脂液の条件の浴管理に留意する必要がある。
2Al+2NaOH+2HO→2NaAlO+3H ・・・(1)
2NaAlO+4HO→2NaOH+2Al(OH)・・・(2)
2Al(OH)→Al・3HO ・・・(3)
In this degreasing / etching step a, when Al is etched and dissolved by the reaction of the following formula (1) until Al becomes supersaturated in the degreasing solution, Al 2 O is obtained by the reaction of formula (3) via formula (2). 3 · 3H 2 O will be generated (ref. "aluminum surface technology Handbook" Light Metal Shuppan Co., Ltd.). The Al 2 O 3 remains on the surface of the Al alloy foil, thereby obstructing the etching process on the surface of the Al alloy foil. Further, the Al 2 O 3 contaminates the degreasing liquid in the degreasing / etching tank, so that Al 2 O 3 is generated. It is not preferable to be done. Therefore, it is necessary to pay attention to the bath management under the condition of the degreasing solution so that the etching of Al with NaOH becomes supersaturated and Al 2 O 3 is not generated.
2Al + 2NaOH + 2H 2 O → 2NaAlO 2 + 3H 2 (1)
2NaAlO 2 + 4H 2 O → 2NaOH + 2Al (OH) 3 (2)
2Al (OH) 3 → Al 2 O 3 .3H 2 O (3)

再び図1に戻り当該製造方法の工程(b)から説明する。   Returning to FIG. 1 again, step (b) of the manufacturing method will be described.

次に、工程(b)において、工程(a)でAl合金箔の脱脂・エッチング処理が終了した後、室温において流水で60秒間、水洗(好適には純水を用いる。)を行う。このとき洗浄槽中でバブリングもしくは超音波洗浄をしてもよい。また上記脱脂液を工程(c)のめっき液槽内になるべく持ち込まないようにカスケード状に複数の槽を設置し(例えば3槽を直列にカスケード状にする)粗洗浄から仕上洗浄をするようにしてもよい。エッチング反応生成物をなるべく完全に除去することが次工程(c)の電気めっき時の電析を良好に行うため、さらにはめっき浴の寿命をできるだけ長くするのに望ましいからである。   Next, in the step (b), after the degreasing / etching process of the Al alloy foil is completed in the step (a), water washing (preferably using pure water) is performed with running water at room temperature for 60 seconds. At this time, bubbling or ultrasonic cleaning may be performed in the cleaning tank. In addition, a plurality of tanks are installed in cascade so as not to bring the degreasing solution into the plating solution tank of step (c) as much as possible (for example, three tanks are cascaded in series) to perform the final cleaning from the rough cleaning. May be. This is because it is desirable to completely remove the etching reaction product as much as possible in order to perform electrodeposition at the time of electroplating in the next step (c), and to further extend the life of the plating bath as much as possible.

次に、工程(c)において、工程(b)で脱脂・エッチングされたAl合金箔を下記の組成を有するCu浴(図1の場合)又はNi浴(図2の場合)に浸漬させ、該Al合金箔表面上へCu又はNiの電析を行う。   Next, in step (c), the Al alloy foil degreased and etched in step (b) is immersed in a Cu bath (in the case of FIG. 1) or Ni bath (in the case of FIG. 2) having the following composition, Electrodeposition of Cu or Ni is performed on the surface of the Al alloy foil.

上記めっき時の浴組成は以下の通りである。
1)Cuめっき浴(CuSO浴)
CuSO・5HO;150g/L〜350g/L
SO;50g/L〜250g/L
2)Niめっき浴(ワット浴)
NiSO・6HO;150g/L〜300g/L
NiCl・6HO; 50g/L〜250g/L
BO;30g/L〜40g/L
The bath composition at the time of the plating is as follows.
1) Cu plating bath (CuSO 4 bath)
CuSO 4 · 5H 2 O; 150g / L~350g / L
H 2 SO 4 ; 50 g / L to 250 g / L
2) Ni plating bath (watt bath)
NiSO 4 · 6H 2 O; 150g / L~300g / L
NiCl 2 · 6H 2 O; 50 g / L to 250 g / L
H 3 BO 3 ; 30 g / L to 40 g / L

なお、めっき浴の種類は上記のものに限られない。例えば、Cuめっきについてはピロリン酸Cu浴が、一方、Niめっきについてはスルファミン酸Ni浴が代替可能である。Cuの電析を行う際は、電流密度は2A/dm〜50A/dmであり、さらに好適には10A/dm〜30A/dmである。陽極には不溶性電極(DSE)を用いる。電源には直流電源を使用する。 The type of plating bath is not limited to the above. For example, a Cu pyrophosphate bath can be used for Cu plating, while a Ni sulfamate bath can be used for Ni plating. When performing electrodeposition of Cu, the current density is 2 A / dm 2 to 50 A / dm 2 , and more preferably 10 A / dm 2 to 30 A / dm 2 . An insoluble electrode (DSE) is used for the anode. A DC power source is used as the power source.

これらの条件下、Cu又はNiを膜厚1μm〜10μmとなるまでAl合金表面上に電析し、Al合金キャリア付孔開き金属箔を得る。   Under these conditions, Cu or Ni is electrodeposited on the surface of the Al alloy until the film thickness becomes 1 μm to 10 μm to obtain a perforated metal foil with an Al alloy carrier.

ここで、図6の光透過写真を参照して、孔開き金属箔層がCu箔である場合、当該孔の形成状態が、下地であるAlキャリアの水洗時間及びCu箔の膜厚よってどのように変化し、好適なCu箔が形成されるかを説明する。 Here, referring to the light transmission photograph of FIG. 6, when the perforated metal foil layer is a Cu foil, how the hole is formed depends on the washing time of the underlying Al carrier and the film thickness of the Cu foil. It will be described whether a suitable Cu foil is formed.

図6(a)によれば、脱脂・エッチング後のAlキャリアの水洗時間を15秒から60秒に延ばしたことで、Cuの電析の不均一性が改善されることが分かる。   According to FIG. 6A, it is understood that the non-uniformity of Cu electrodeposition is improved by extending the water washing time of the Al carrier after degreasing and etching from 15 seconds to 60 seconds.

さらに、図6(b)の光透過写真を考察すると、Cu箔の膜厚が7μmまでは光の透過が観察される。しかし、Cu箔の膜厚が9μmに達すると光の透過が観察されない。膜厚9μmで直線的にCu箔の一方の面からもう一方の面に貫通する孔が消滅し、光が透過できる状態のメッシュ形状では無くなったことが分かる。これにより、膜厚が9μm以上のCu箔では、孔が蛇行し、若しくは枝分かれするような形態で、Liが吸蔵又は脱蔵するものと考えられる。   Further, considering the light transmission photograph of FIG. 6B, light transmission is observed up to a film thickness of Cu foil of 7 μm. However, when the film thickness of the Cu foil reaches 9 μm, no light transmission is observed. It can be seen that the hole penetrating from one surface of the Cu foil to the other surface disappears linearly at a film thickness of 9 μm and is no longer in a mesh shape in which light can be transmitted. Thereby, in Cu foil with a film thickness of 9 micrometers or more, it is thought that Li occludes or occludes in the form that a hole meanders or branches.

さらに、図7を参照して、以上のAl合金キャリア付孔開きCu箔又はNi箔の生成過程を説明すると、準備されたAl合金箔の脱脂・エッチング処理によりAl合金箔表面に現れるFe、Si等の分散析出部へ金属粒子(Cu又はNi)が優先析出し(図7(a))、その後さらにその優先的に分散した金属粒子が成長し(図7(b)及び図7(c))、かつ、さらに新たにその成長した金属粒子へ金属粒子が連なり成長していく(図7(d)〜図7(f))。この際金属粒子間に孔が生じ、それが徐々に埋まっていくがミクロ的には金属粒子間に微孔が存在し(図7(g)及び図7(h))、この微孔の存在により当該金属箔が一方の面から他方の面へ通じる多数の孔部を備える孔開き金属箔を得る。   Furthermore, with reference to FIG. 7, the process of generating the above-described perforated Cu foil or Ni foil with an Al alloy carrier will be described. Fe, Si appearing on the surface of the Al alloy foil by the degreasing / etching treatment of the prepared Al alloy foil. The metal particles (Cu or Ni) are preferentially deposited on the dispersed precipitation portion such as (FIG. 7A), and then the preferentially dispersed metal particles are further grown (FIGS. 7B and 7C). In addition, metal particles continue to grow on the newly grown metal particles (FIGS. 7D to 7F). At this time, pores are formed between the metal particles and gradually fill, but microscopically there are micropores between the metal particles (Fig. 7 (g) and Fig. 7 (h)). Thus, a perforated metal foil provided with a large number of holes through which the metal foil leads from one surface to the other surface is obtained.

再び図1に戻り説明をする。   Returning again to FIG.

次に、工程(d)で上記Al合金キャリア付孔開きCu箔について30秒間水洗を行い(好適には純水を用いる。)、工程eで1g/Lのベンゾトリアゾール溶液に10秒間浸漬し防錆処理を施す。そして工程(f)で防錆処理されたAl合金キャリア付孔開きCu箔を大気中で乾燥させる。 Next, in the step (d), the perforated Cu foil with the Al alloy carrier is washed with water for 30 seconds (preferably using pure water), and in step e, it is immersed in a 1 g / L benzotriazole solution for 10 seconds to prevent it. Apply rust treatment. And the perforated Cu foil with an Al alloy carrier subjected to the rust prevention treatment in the step (f) is dried in the air.

Ni箔を金属箔として製造するときは、防錆処理工程以外の工程については図1の製造フローと同様である、図2に示された製造工程フローを用いるが、Ni表面は不動態膜を大気中で容易に形成し腐食がCuのように進行しないからである。Ni電析時の電流密度は1A/dm〜40A/dmであり、さらに好適には5A/dm〜20A/dmである。浴温は30℃〜70℃であり、さらに好適には40℃〜60℃である。陽極はNi電極を用いる。電源は直流電源を使用する。得られるNi箔の膜厚は1μm〜10μmである。以上の条件でNiめっきを行い(工程(c))、30秒間純水洗浄を行う(工程(d))。そして、大気中で乾燥させる(工程(f))。 When the Ni foil is manufactured as a metal foil, the manufacturing process flow shown in FIG. 2 is used for the processes other than the rust prevention process, but the Ni surface has a passive film. This is because it is easily formed in the atmosphere and corrosion does not proceed like Cu. The current density during Ni electrodeposition is 1 A / dm 2 to 40 A / dm 2 , and more preferably 5 A / dm 2 to 20 A / dm 2 . The bath temperature is 30 ° C to 70 ° C, more preferably 40 ° C to 60 ° C. A Ni electrode is used for the anode. The power supply uses a DC power supply. The film thickness of the obtained Ni foil is 1 μm to 10 μm. Ni plating is performed under the above conditions (step (c)), and pure water cleaning is performed for 30 seconds (step (d)). And it is made to dry in air | atmosphere (process (f)).

以上、本発明に係る実施形態によれば、得られたAl合金キャリア付孔開きCu箔又はAl合金キャリア付孔開きNi箔からCu箔又はNi箔を剥離することにより、1μm〜10μmの極薄のCu箔又は極薄のNi箔が得られる。ここで、本発明のように薄い金属箔を電極集電体として用いた場合、従来から使用されているような10μm超の厚さの厚箔集電体が有していた電極支持体としての役割は十分には持ち合わせない。むしろ集電機能を有する電極表面層ともいえる。この点において従来の厚箔集電体とは区別されることに留意されるべきである。   As mentioned above, according to embodiment which concerns on this invention, by peeling Cu foil or Ni foil from the obtained perforated Cu foil with an Al alloy carrier or perforated Ni foil with an Al alloy carrier, ultrathinness of 1 μm to 10 μm is obtained. Cu foil or ultrathin Ni foil is obtained. Here, when a thin metal foil is used as an electrode current collector as in the present invention, the electrode support used by a thick foil current collector having a thickness of more than 10 μm as conventionally used is used. I don't have enough roles. Rather, it can also be said to be an electrode surface layer having a current collecting function. It should be noted that in this respect it is distinguished from conventional thick foil current collectors.

なお、Al合金キャリア付孔開きCu箔又はAl合金キャリア付孔開きNi箔からCu箔又はNi箔を剥離する際は、従来技術によれば剥離層を人為的にキャリアとCu箔又はNi箔との間に介在させるようにしているが(特許文献4の図10及び図11参照の剥離層2を参照)、本発明ではキャリアがAl合金箔製なので、工程a(脱脂・エッチング工程)〜工程c(電気めっき工程)の直前までの間で容易にAl表面が不動態化して酸化皮膜を形成し、この酸化皮膜が剥離層として機能する。よって本発明による製造方法では剥離層を作製する工程が不要であり、従来技術の製造方法による工程数に比して工程数を減らすことができる。   In addition, when peeling Cu foil or Ni foil from perforated Cu foil with Al alloy carrier or perforated Ni foil with Al alloy carrier, according to the prior art, the peeling layer is artificially separated from the carrier and Cu foil or Ni foil. (See the peeling layer 2 in FIG. 10 and FIG. 11 of Patent Document 4), but in the present invention, since the carrier is made of an Al alloy foil, the step a (degreasing / etching step) to the step The Al surface is easily passivated immediately before c (electroplating step) to form an oxide film, and this oxide film functions as a release layer. Therefore, the manufacturing method according to the present invention does not require a step of producing a release layer, and the number of steps can be reduced as compared with the number of steps by the manufacturing method of the prior art.

さらに、本発明に係る実施形態によれば、二次電池へのアセンブリ直前までCu箔又はNi箔がAl合金キャリアにより常に支持されるので、極薄のCu箔又は極薄のNi箔がアセンブリ直前まで損傷することがない。またAl合金キャリアが一定の強度を有するのでマニュアルでのアセンブリがし易く、かつ、二次電池用電極製造工程中のアセンブリの自動化も容易に実行可能である。特に、上記Cu箔又はNi箔が上述したように極めて薄く強度が弱いので、Al合金キャリアにより支持されていることは様々な利点をもたらす。   Furthermore, according to the embodiment of the present invention, the Cu foil or Ni foil is always supported by the Al alloy carrier until just before the assembly to the secondary battery, so that the ultra thin Cu foil or the ultra thin Ni foil is just before the assembly. Will not be damaged until. Further, since the Al alloy carrier has a certain strength, it is easy to assemble manually, and the assembly can be easily automated during the secondary battery electrode manufacturing process. In particular, since the Cu foil or Ni foil is extremely thin and weak as described above, being supported by the Al alloy carrier brings various advantages.

<Al合金キャリア付孔開きCu箔の製造>
この実施例1ではAl合金キャリア付孔開き金属箔の金属としてCuを用いた。以下、実施例1について述べる。
まず、厚さ40μmのAl合金箔(JIS規格 1N30(前記参照))を準備した。
a)脱脂・エッチング工程:
キャリアとなるAl合金箔について、下記の液組成を持つ脱脂液中において、液温40℃で150秒間、脱脂・エッチング処理を行った。
液組成
NaOH;30g/L
ロッシェル塩;46g/L
NaCO;46g/L
<Manufacture of perforated Cu foil with Al alloy carrier>
In Example 1, Cu was used as the metal of the perforated metal foil with an Al alloy carrier. Example 1 will be described below.
First, an Al alloy foil (JIS standard 1N30 (see above)) having a thickness of 40 μm was prepared.
a) Degreasing and etching process:
About Al alloy foil used as a carrier, degreasing and etching were performed in a degreasing solution having the following liquid composition at a liquid temperature of 40 ° C. for 150 seconds.
Liquid composition NaOH; 30 g / L
Rochelle salt; 46 g / L
Na 2 CO 3 ; 46 g / L

b)水洗工程:
その後、上記脱脂・エッチング処理されたAl合金箔について室温で60秒間の純水洗浄処理を行った。
b) Water washing process:
Thereafter, the degreased and etched Al alloy foil was subjected to pure water cleaning treatment at room temperature for 60 seconds.

c)電気めっき工程:
次に、以下のめっき条件でCuめっき浴中において上記純水洗浄されたAl合金箔上へCuをめっき厚さが5μmとなるように電析させた。なお、陽極電極は不溶性電極(DSE)を使用し、電源は直流電源を使用した。
浴組成
CuSO・5HO;216g/L
SO;192g/L
電流密度;20A/dm
浴温;40℃
c) Electroplating process:
Next, Cu was electrodeposited on the Al alloy foil washed with pure water in a Cu plating bath under the following plating conditions so that the plating thickness was 5 μm. Note that an insoluble electrode (DSE) was used as the anode electrode, and a DC power source was used as the power source.
Bath composition CuSO 4 · 5H 2 O; 216g / L
H 2 SO 4 ; 192 g / L
Current density: 20 A / dm 2
Bath temperature: 40 ° C

d)水洗工程:
その後、上記Cuめっきが施されたAl合金箔(Al合金キャリア付孔開き金属箔)について室温で30秒間の純水洗浄処理を行った。
e)防錆処理工程:
上記1g/Lの濃度のベンゾトリアゾール溶液に10秒間浸漬しAl合金キャリア付孔開き金属箔に防錆処理を施した。
f)乾燥工程:
防錆処理をしたAl合金キャリア付孔開きCu箔を大気中で乾燥させた。
d) Water washing process:
Then, the pure water washing process for 30 second was performed at room temperature about Al alloy foil (Al alloy carrier-attached perforated metal foil) with which the said Cu plating was given.
e) Rust prevention treatment process:
It was immersed in the benzotriazole solution having the concentration of 1 g / L for 10 seconds, and the perforated metal foil with an Al alloy carrier was subjected to a rust prevention treatment.
f) Drying process:
The perforated Cu foil with an Al alloy carrier subjected to rust prevention treatment was dried in the air.

図8は、以上の工程a〜工程fで得られたAl合金キャリア付孔開きCu箔の(a)光透過写真像及び(b)SEM写真像である。図8(a)から光が均一に透過されており、また図8(b)からCu箔を構成するCu粒子が均一に分布していることが分かる。したがって、Cu箔層に一方の面から他方の面へ通じる孔部が隣接するCu粒子間に存在することが判明した。   FIG. 8 shows (a) a light transmission photographic image and (b) an SEM photographic image of a perforated Cu foil with an Al alloy carrier obtained in the above steps a to f. It can be seen from FIG. 8A that light is uniformly transmitted and from FIG. 8B, Cu particles constituting the Cu foil are uniformly distributed. Accordingly, it has been found that a hole extending from one surface to the other surface exists between adjacent Cu particles in the Cu foil layer.

<二次電池用負極の製造>
平均粒径(D50=1.5μm)のSiが80wt%−Niが20wt%の組成を有する合金粉を活物質として用いて、活物質:Ni粉:アセチレンブラック:PVdF=60:34:1:5の混合比となるようにスラリーを調製し、膜厚が15μmになるようにスラリーをAl合金キャリア付孔開きCu箔のCu箔面側に塗布し、塗膜をCu箔面上に形成した(なお、D50はレーザー回折散乱式粒度分布測定法による50%重量累積粒径である。以下同様。)。
<Manufacture of negative electrode for secondary battery>
Using an alloy powder having an average particle size (D 50 = 1.5 μm) having a composition of Si 80 wt% -Ni 20 wt% as an active material, active material: Ni powder: acetylene black: PVdF = 60: 34: 1 : The slurry was prepared so as to have a mixing ratio of 5, and the slurry was applied to the Cu foil surface side of the perforated Cu foil with Al alloy carrier so that the film thickness was 15 μm, and the coating film was formed on the Cu foil surface the (Incidentally, D 50 is 50% by weight cumulative particle size measured by a laser diffraction scattering particle size distribution measuring method. forth.).

さらに、上述した条件と同一の条件で、上記塗膜上にCuめっき5μmを施し、Al合金キャリアを剥離して負極を作製した(このCuめっきを施した面の側を「被覆めっき側」と、この「被覆めっき側」の面の裏面側を「キャリア剥離側」という。)。この際、当該被覆めっき側の面に活物質層に通じる孔が開くようにめっき条件を調整するのが好ましい。   Further, under the same conditions as described above, 5 μm of Cu plating was applied on the coating film, and an Al alloy carrier was peeled off to produce a negative electrode (the side on which the Cu plating was applied was referred to as “coating plating side”. The back side of the “coating plating side” is referred to as the “carrier peeling side”). At this time, it is preferable to adjust the plating conditions so that a hole leading to the active material layer is opened on the surface on the coating plating side.

<二次電池用正極の製造>
正極は、正極活物質並びに必要に応じて導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗布し、その後乾燥させ、ロール圧延し、プレス加工を行い、さらに裁断及びパンチングすることにより得られる。
<Manufacture of positive electrode for secondary battery>
The positive electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in a suitable solvent to produce a positive electrode mixture, applying it to a current collector, then drying, roll rolling, pressing It is obtained by processing, and further cutting and punching.

<非水電解液の製造>
非水電解液は、Liイオン二次電池の場合にあっては支持電解質であるLi塩を有機溶媒に溶解した溶解液により作製される。Li塩としては、例えば、LiClO、LiAlCL、LiPF、LiAsF、LiSbF、LiSCN、LiCl、LiBr、LiI、LiCFSO、又はLiCSO等が適用可能である。ここでは具体的には、非水電解液としてLiPF/エチレンカーボネートとジエチルカーボネートの混合液(1:1容量比)を用いた。
<Manufacture of non-aqueous electrolyte>
In the case of a Li ion secondary battery, the nonaqueous electrolytic solution is prepared by a solution obtained by dissolving a Li salt as a supporting electrolyte in an organic solvent. The Li salts, for example, LiClO 4, LiAlCL 4, LiPF 6, LiAsF 6, LiSbF 6, LiSCN, LiCl, LiBr, LiI, LiCF 3 SO 3, or LiC 4 F 9 SO 3 and the like are applicable. Specifically, a mixed solution (1: 1 volume ratio) of LiPF 6 / ethylene carbonate and diethyl carbonate was used as the nonaqueous electrolytic solution.

図9は、上記負極を備えたLiイオン二次電池の充放電特性を示すグラフであって、図9(a)は充放電特性をキャリア剥離側の充放電特性を示し、図9(b)は被覆めっき側の充放電特性を示す。図9(a)(b)の両グラフを考察するとほぼ同様な曲線が得られている。この結果からキャリア剥離側と被覆めっき側の両方にLi電解液が通過する孔開き部である通路が形成され、かつ、電池として十分な容量が得られたことが判った。   FIG. 9 is a graph showing the charge / discharge characteristics of the Li ion secondary battery provided with the negative electrode. FIG. 9 (a) shows the charge / discharge characteristics on the carrier peeling side, and FIG. 9 (b). Indicates charge / discharge characteristics on the coating plating side. Considering both graphs of FIGS. 9A and 9B, almost similar curves are obtained. From this result, it was found that a passage which is a perforated portion through which the Li electrolyte passes was formed on both the carrier peeling side and the coating plating side, and a sufficient capacity as a battery was obtained.

<Al合金キャリア付孔開きNi箔の製造>
この実施例2ではAl合金キャリア付孔開き金属箔の金属としてNiを用いた。以下、実施例2について述べる。
まず、Al合金箔(JIS規格 1N30(前記参照))40μmを準備した。
a)脱脂・エッチング工程:
キャリアとなるAl合金箔について、下記の液組成を持つ脱脂液中において、液温40℃で150秒間の脱脂・エッチング処理を行った。
液組成
NaOH;30g/L
ロッシェル塩;46g/L
NaCO;46g/L
<Manufacture of perforated Ni foil with Al alloy carrier>
In Example 2, Ni was used as the metal of the perforated metal foil with an Al alloy carrier. Example 2 will be described below.
First, an Al alloy foil (JIS standard 1N30 (see above)) 40 μm was prepared.
a) Degreasing and etching process:
About the Al alloy foil used as a carrier, degreasing and etching were performed for 150 seconds at a liquid temperature of 40 ° C. in a degreasing liquid having the following liquid composition.
Liquid composition NaOH; 30 g / L
Rochelle salt; 46 g / L
Na 2 CO 3 ; 46 g / L

b)水洗工程:
その後、上記脱脂・エッチング処理されたAl合金箔について室温で60秒間の純水洗浄処理を行った。
b) Water washing process:
Thereafter, the degreased and etched Al alloy foil was subjected to pure water cleaning treatment at room temperature for 60 seconds.

c)電気めっき工程:
次に、以下のめっき条件でNiめっき浴中で上記純水洗浄されたAl合金箔上へNiをめっき厚さが5μmとなるように電析させた。なお、陽極電極はNi電極を使用し、電源は直流電源を使用した。
浴組成
NiSO・6HO;250g/L
NiCl・6HO;45g/L
BO;30g/L
電流密度;10A/dm
浴温;50℃
c) Electroplating process:
Next, Ni was electrodeposited on the Al alloy foil washed with pure water in a Ni plating bath under the following plating conditions so that the plating thickness was 5 μm. The anode electrode was a Ni electrode and the power source was a DC power source.
Bath composition NiSO 4 · 6H 2 O; 250g / L
NiCl 2 · 6H 2 O; 45 g / L
H 3 BO 3 ; 30 g / L
Current density: 10 A / dm 2
Bath temperature: 50 ° C

d)水洗工程:
その後、上記NiめっきされたAl合金箔(Al合金キャリア付孔開き金属箔)について室温で30秒間の純水洗浄処理を行った。
e)乾燥工程:
上記Al合金キャリア付孔開き金属箔を大気中で乾燥させた。
d) Water washing process:
Thereafter, the Ni-plated Al alloy foil (perforated metal foil with Al alloy carrier) was subjected to a pure water cleaning treatment at room temperature for 30 seconds.
e) Drying process:
The perforated metal foil with an Al alloy carrier was dried in the air.

<二次電池用負極の製造>
平均粒径(D50=1.5μm)のSiが80wt%−Niが20wt%の組成を有する合金粉を活物質として用いて、活物質:Ni粉:アセチレンブラック:PVdF=60:34:1:5の混合比となるようにスラリーを調製し、膜厚が15μmになるようにスラリーをAl合金キャリア付孔開きNi箔のNi箔側に塗布し塗膜を形成した(なおD50はレーザー回折散乱式粒度分布測定法による50%重量累積粒径である。)。
<Manufacture of negative electrode for secondary battery>
Using an alloy powder having an average particle size (D 50 = 1.5 μm) having a composition of Si 80 wt% -Ni 20 wt% as an active material, active material: Ni powder: acetylene black: PVdF = 60: 34: 1 : a slurry was prepared so that the mixing ratio of 5, the film thickness was formed slurry was applied onto a Ni foil side of the perforated Ni foil with Al alloy carrier coating to be 15 [mu] m (Note D 50 is a laser 50% weight cumulative particle size by diffraction scattering particle size distribution measurement method).

さらに、上述した条件と同一条件で、上記塗膜上にNiめっき5μmを施し、Al合金キャリアを剥離して負極を作製した(このNiめっきを施した面の側を「被覆めっき側」と、この「被覆めっき側」の面の裏面側を「キャリア剥離側」という。)。この際、当該被覆めっき側の面に活物質層に通じる孔が開くようにめっき条件を調整するのが好ましい。   Furthermore, under the same conditions as described above, Ni plating 5 μm was applied on the coating film, and the Al alloy carrier was peeled off to produce a negative electrode (the side on which the Ni plating was applied is referred to as “coating plating side”, The back side of this “coating plating side” is referred to as the “carrier peeling side”). At this time, it is preferable to adjust the plating conditions so that a hole leading to the active material layer is opened on the surface on the coating plating side.

<二次電池用正極の製造>
一方、正極は、正極活物質並びに必要に応じて導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗布し、その後乾燥させ、ロール圧延し、プレス加工を行い、さらに裁断及びパンチングすることにより得られる。
<Manufacture of positive electrode for secondary battery>
On the other hand, the positive electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to produce a positive electrode mixture, applying this to a current collector, then drying and rolling. It is obtained by performing press working, and further cutting and punching.

<非水電解液の製造>
非水電解液は、Liイオン二次電池の場合にあっては、支持電解質であるLi塩を有機溶媒に溶解した溶解液により作製される。Li塩としては、上記Al合金キャリア付孔開きCu箔の製造の項目で列挙したものが同様に適用可能である。ここでは具体的には、非水電解液としてLiPF/エチレンカーボネートとジエチルカーボネートの混合液(1:1容量比)を用いた。
<Manufacture of non-aqueous electrolyte>
In the case of a Li ion secondary battery, the non-aqueous electrolyte is prepared by a solution obtained by dissolving a Li salt that is a supporting electrolyte in an organic solvent. As the Li salt, those enumerated in the item of production of the above-mentioned perforated Cu foil with an Al alloy carrier can be similarly applied. Specifically, a mixed solution (1: 1 volume ratio) of LiPF 6 / ethylene carbonate and diethyl carbonate was used as the nonaqueous electrolytic solution.

このように作成された負極を備えたLiイオン二次電池の充放電特性からも図9と同様な良好な結果が得られた。当該結果からもキャリア剥離側と被覆めっき側の両方にLi電解液が通過する通路が形成され、かつ、非水電解液二次電池として十分な容量が得られた。   The same good results as in FIG. 9 were obtained from the charge / discharge characteristics of the Li ion secondary battery provided with the negative electrode thus prepared. From this result, a passage through which the Li electrolyte passed was formed on both the carrier peeling side and the coating plating side, and a sufficient capacity as a non-aqueous electrolyte secondary battery was obtained.

<活物質層の形成方法についての変形例>
活物質層の形成方法は上述したような活物質粒子のペースト塗布に限定されない。例えば、Snなどの導電性金属を活物質として使用する場合は電気めっきにより活物質層を形成することができる。Snの場合、めっき浴としては通常の文献に記載された組成のものすなわち、当業者により周知のものが使用可能である。一般的には、硫酸錫浴、ピロリン酸浴、若しくは、ほう弗化浴などが使用可能である。このうち、硫酸すず浴の浴組成及び電解条件の一例について下に示す。
浴組成
SnSO;50g/L
SO;100g/L
クレゾールスルホン酸;80g/L
電流密度;5A/dm
浴温;25℃
<Modified example of forming method of active material layer>
The formation method of the active material layer is not limited to the paste application of the active material particles as described above. For example, when a conductive metal such as Sn is used as the active material, the active material layer can be formed by electroplating. In the case of Sn, a plating bath having a composition described in ordinary literature, that is, a well-known one by those skilled in the art can be used. In general, a tin sulfate bath, a pyrophosphoric acid bath, a borofluoride bath, or the like can be used. Among these, an example of the bath composition and electrolysis conditions of the tin sulfate bath is shown below.
Bath composition SnSO 4 ; 50 g / L
H 2 SO 4 ; 100 g / L
Cresol sulfonic acid; 80 g / L
Current density: 5 A / dm 2
Bath temperature: 25 ° C

なお、Sn合金も用いることができ、この場合、Sn合金中にLiと合金化しない金属を含ませることにより、合金皮膜の充放電反応の際の膨張及び収縮を制限することができ、その結果として充放電サイクルを高めることができる。Sn合金の場合、めっき浴としては通常の文献にある組成のもの、すなわち当業者に周知のものが使用可能であり、一般的には、シアン浴、ピロリン酸浴、若しくは、ほう弗化浴などが使用可能である。このうち、シアン化浴の浴組成及び電解条件の一例について下に示す。
浴組成
CuCN;35g/L
NaSnO・3H0;60g/L
NaCN;25g/L
電流密度;5A/dm
浴温;65℃
An Sn alloy can also be used. In this case, by including a metal that does not alloy with Li in the Sn alloy, the expansion and contraction during the charge / discharge reaction of the alloy film can be limited, and as a result. As a result, the charge / discharge cycle can be increased. In the case of an Sn alloy, a plating bath having a composition described in ordinary literatures, that is, a well-known one can be used. Generally, a cyan bath, a pyrophosphoric acid bath, a borofluoride bath, etc. Can be used. Among these, an example of the bath composition and electrolysis conditions of the cyanide bath is shown below.
Bath composition CuCN; 35 g / L
Na 2 SnO 3 · 3H 2 0 ; 60g / L
NaCN; 25 g / L
Current density: 5 A / dm 2
Bath temperature: 65 ° C

また、合金皮膜中にPやBを導入することにより、結晶格子を歪ませ、Liの吸蔵又は脱蔵をより容易にすることが可能である。   Further, by introducing P or B into the alloy film, it is possible to distort the crystal lattice and make it easier to occlude or desorb Li.

活物質層を形成した後、CuやNiなどの、Liと合金化しにくい導電性金属を電気めっきすることにより被覆めっき側の面を形成して活物質の脱落を防止することができる。   After forming the active material layer, electroplating a conductive metal such as Cu or Ni that is difficult to alloy with Li can form a surface on the side of the coating plating to prevent the active material from falling off.

この場合、Al合金箔上に孔開き金属箔を形成することから活物質層の形成から表面被覆層の形成までの一連の処理がインラインのめっき処理工程にて行うことができ好ましい。   In this case, a series of processes from the formation of the perforated metal foil on the Al alloy foil to the formation of the active material layer to the formation of the surface coating layer can be preferably performed in an in-line plating process.

本発明は、Liイオン二次電池等の非水電解液二次電池の集電体として使用可能なAl合金キャリア付孔開き金属箔として適用できる。また本発明の金属箔上に活物質を設けた負極は二次電池用負極として好適である。 The present invention can be applied as a perforated metal foil with an Al alloy carrier that can be used as a current collector of a non-aqueous electrolyte secondary battery such as a Li ion secondary battery. Moreover, the negative electrode which provided the active material on the metal foil of this invention is suitable as a negative electrode for secondary batteries.

Al合金キャリア付孔開きCu箔の製造工程のフローチャートである。It is a flowchart of the manufacturing process of perforated Cu foil with an Al alloy carrier. Al合金キャリア付孔開きNi箔の製造工程のフローチャートである。It is a flowchart of the manufacturing process of perforated Ni foil with an Al alloy carrier. Al合金キャリア付孔開き金属箔の形成過程を示す概念図である。It is a conceptual diagram which shows the formation process of perforated metal foil with an Al alloy carrier. Al合金箔の表面の脱脂・エッチング時間による経時変化を表すSEM写真像であって、脱脂・エッチング時間よる表面の違いを説明するための図である。It is a SEM photographic image showing the time-dependent change by degreasing and etching time of the surface of Al alloy foil, and is a figure for explaining the difference in the surface by degreasing and etching time. (a)Al合金箔の表面を3分間エッチングした後の表面に出現した元素を示すEPMAによる観察像及び元素分布状態と、(b)当該表面に0.1μmのCu粒子を電析させた表面状態を、各元素毎に対応して示すEPMAによる観察像及び元素分布状態である。(A) Observation image and element distribution state by EPMA showing elements appearing on the surface after etching the surface of the Al alloy foil for 3 minutes, (b) Surface obtained by electrodepositing 0.1 μm Cu particles on the surface It is an observation image and element distribution state by EPMA showing the state corresponding to each element. (a)Al合金箔の表面について脱脂・エッチング処理後の水洗時間を変化させた場合の膜厚5μmのCu箔の光透過の違いを説明するための光透過写真である。(b)Al合金箔の表面について脱脂・エッチング処理時間180秒、その後の水洗時間60秒とした場合のCuの膜厚を変化させたときの光透過の違いを説明するための光透過写真である。(A) It is a light transmission photograph for demonstrating the light transmission difference of Cu foil with a film thickness of 5 micrometers at the time of changing the water washing time after a degreasing and an etching process about the surface of Al alloy foil. (B) A light transmission photograph for explaining the difference in light transmission when the film thickness of Cu is changed when the surface of the Al alloy foil is degreased and etched for 180 seconds and the subsequent water washing time is 60 seconds. is there. 本発明に係るAl合金キャリア付孔開きCu箔について、Al合金箔表面上にCuが析出していきCu皮膜を形成する過程を説明する図である((a)〜(h))。It is a figure explaining the process in which Cu precipitates on the Al alloy foil surface and forms a Cu film | membrane about the perforated Cu foil with an Al alloy carrier which concerns on this invention ((a)-(h)). 本発明に係るAl合金キャリア付孔開きCu箔について、Al合金箔表面上に形成した5μmの孔開きCu箔の光透過写真(a)と、SEM写真(b)を示す図である。It is a figure which shows the light transmission photograph (a) and SEM photograph (b) of a 5-micrometer perforated Cu foil formed on the Al alloy foil surface about the perforated Cu foil with an Al alloy carrier which concerns on this invention. 本発明に係るAl合金キャリア付孔開きCu箔を用いて作製した負極の充放電特性を示すグラフである((a)Al合金キャリア剥離側の特性;(b)被覆めっき側の特性)It is a graph which shows the charge / discharge characteristic of the negative electrode produced using the perforated Cu foil with an Al alloy carrier according to the present invention ((a) characteristics on the Al alloy carrier peeling side; (b) characteristics on the coating plating side) 従来の二次電池用電極の製造工程の概念図である。It is a conceptual diagram of the manufacturing process of the conventional electrode for secondary batteries. 従来のキャリア箔上に具備された二次電池用電極の概念図である。It is a conceptual diagram of the electrode for secondary batteries comprised on the conventional carrier foil.

Claims (16)

Al合金箔の表面に孔開き金属箔層を備えるAl合金キャリア付孔開き金属箔であって、
当該孔開き金属箔層はAl合金キャリアの表面に金属を電析することにより形成されるものであり、かつ、当該孔開き金属箔層は前記一方の面から他方の面へ通じる多数の孔部を備えるものであることを特徴とするAl合金キャリア付孔開き金属箔。
A perforated metal foil with an Al alloy carrier comprising a perforated metal foil layer on the surface of the Al alloy foil,
The perforated metal foil layer is formed by electrodepositing a metal on the surface of an Al alloy carrier, and the perforated metal foil layer has a large number of holes that lead from the one surface to the other surface. A perforated metal foil with an Al alloy carrier, comprising:
請求項1に記載のAl合金キャリア付孔開き金属箔であって、
該Al合金キャリアの前記金属箔層との接触面は当該平面内で均一に分散して存在する突出部を有することを特徴とするAl合金キャリア付孔開き金属箔。
A perforated metal foil with an Al alloy carrier according to claim 1,
The contact surface of the Al alloy carrier with the metal foil layer has protrusions that are uniformly dispersed in the plane and has a perforated metal foil with an Al alloy carrier.
請求項2に記載のAl合金キャリア付孔開き金属箔であって、
前記突出部はAl合金箔を脱脂すると同時にAl合金中のAl部をエッチングすることにより形成したものであることを特徴とするAl合金キャリア付孔開き金属箔。
A perforated metal foil with an Al alloy carrier according to claim 2,
The projecting portion is formed by degreasing the Al alloy foil and simultaneously etching the Al portion in the Al alloy.
請求項2又は請求項3に記載のAl合金キャリア付孔開き金属箔であって、
前記突出部のAl合金キャリア側の突出部はAl合金箔に含まれるAl以外の、分散析出している元素であることを特徴とするAl合金キャリア付孔開き金属箔。
A perforated metal foil with an Al alloy carrier according to claim 2 or claim 3,
The projecting portion on the Al alloy carrier side of the projecting portion is a dispersed and precipitated element other than Al contained in the Al alloy foil.
請求項1〜請求項4のいずれかに記載のAl合金キャリア付孔開き金属箔であって、
前記孔開き金属箔の厚さが1μm〜10μmであることを特徴とするAl合金キャリア付孔開き金属箔。
A perforated metal foil with an Al alloy carrier according to any one of claims 1 to 4,
A perforated metal foil with an Al alloy carrier, wherein the perforated metal foil has a thickness of 1 μm to 10 μm.
請求項1〜請求項5のいずれかに記載のAl合金キャリア付孔開き金属箔であって、
前記キャリア箔の厚さが10μm〜100μmであることを特徴とするAl合金キャリア付孔開き金属箔。
A perforated metal foil with an Al alloy carrier according to any one of claims 1 to 5,
A perforated metal foil with an Al alloy carrier, wherein the carrier foil has a thickness of 10 μm to 100 μm.
請求項1〜請求項6のいずれかに記載のAl合金キャリア付孔開き金属箔の金属箔がCu箔又はNi箔であることを特徴とするAl合金キャリア付孔開き金属箔。 A perforated metal foil with an Al alloy carrier, characterized in that the metal foil of the perforated metal foil with an Al alloy carrier according to any one of claims 1 to 6 is a Cu foil or a Ni foil. 二次電池用電極の集電体であって、該集電体が請求項1〜請求項7のいずれかに記載のAl合金キャリア付孔開き金属箔である集電体。 A current collector for a secondary battery electrode, wherein the current collector is a perforated metal foil with an Al alloy carrier according to any one of claims 1 to 7. 請求項8に記載の集電体を備えた二次電池用電極。 The electrode for secondary batteries provided with the electrical power collector of Claim 8. 請求項9に記載の二次電池用電極であって、請求項8に記載の集電体上にSn又はSn合金の活物質めっき層を備えた二次電池用電極。 The secondary battery electrode according to claim 9, wherein the current collector according to claim 8 is provided with an Sn or Sn alloy active material plating layer. 請求項9〜請求項10のいずれかに記載の二次電池用電極を備えた二次電池。 The secondary battery provided with the electrode for secondary batteries in any one of Claims 9-10. 以下の工程a〜工程cを含むAl合金箔の表面に金属箔層を備えるAl合金キャリア付孔開き金属箔の製造方法であって、
当該金属箔層はAl合金キャリアの表面に金属を電析することにより形成されるものであり、前記一方の面から他方の面へ通じる多数の孔部を備える孔開き金属箔層を製造することを特徴とするAl合金キャリア付孔開き金属箔製造方法。
工程a.Al合金よりなるキャリア箔の表面を脱脂しつつ、該キャリア箔のAl部をエッチングする脱脂・エッチング工程、
工程b.前記エッチングされたキャリア箔を水洗する水洗工程、及び
工程c.前記水洗後のキャリア箔の表面へ金属を電析する電気めっき工程。
A method for producing a perforated metal foil with an Al alloy carrier comprising a metal foil layer on the surface of an Al alloy foil including the following steps a to c,
The metal foil layer is formed by electrodepositing a metal on the surface of an Al alloy carrier, and manufacturing a perforated metal foil layer having a large number of holes extending from the one surface to the other surface. A method for producing a perforated metal foil with an Al alloy carrier, characterized in that:
Step a. A degreasing / etching step for etching the Al portion of the carrier foil while degreasing the surface of the carrier foil made of an Al alloy
Step b. A water washing step of washing the etched carrier foil, and a step c. An electroplating step of depositing metal on the surface of the carrier foil after washing with water;
以下の工程a〜工程eを含むAl合金箔の表面にCu箔層を備えるAl合金キャリア付孔開きCu箔の製造方法であって、
当該Cu箔層はAl合金キャリアの表面にCuを電析することにより形成されるものであり、前記一方の面から他方の面へ通じる多数の孔部を備える孔開きCu箔層を製造することを特徴とするAl合金キャリア付孔開きCu箔製造方法。
工程a.NaOHが15g/L〜45g/L、ロッシェル塩が25g/L〜65g/L、及びNaCOが25g/L〜65g/Lであるアルカリ脱脂液を用いて、液温20℃〜60℃おいて浸漬時間10秒間〜300秒間、Al合金が厚さ10μm〜100μmよりなるAl合金キャリア箔に対して脱脂及びエッチング処理を行う脱脂・エッチング工程、
工程b.前記脱脂及びエッチング処理を施したAl合金キャリア箔を水洗する水洗工程、
工程c.CuSO・5HO濃度が150g/L〜350g/L、HSO濃度が50g/L〜250g/L、浴温が20℃〜60℃、及び電流密度が2A/dm〜50A/dmの条件下、10秒間〜300秒間、前記脱脂及びエッチング処理を施したAl合金キャリア箔の表面にCuを電析する電気めっき工程、
工程d.前記Cuめっきが施されたAl合金キャリア箔を水洗する水洗工程、及び
工程e.前記洗浄されたCuめっきが施されたAl合金キャリア箔を、0.1g/L〜5g/Lの濃度のベンゾトリアゾール溶液に浸漬させることで防錆処理を行う防錆工程。
A method for producing a perforated Cu foil with an Al alloy carrier comprising a Cu foil layer on the surface of an Al alloy foil including the following steps a to e,
The Cu foil layer is formed by electrodepositing Cu on the surface of an Al alloy carrier, and manufacturing a perforated Cu foil layer having a large number of holes extending from the one surface to the other surface. A method for producing a perforated Cu foil with an Al alloy carrier.
Step a. Using an alkaline degreasing solution in which NaOH is 15 g / L to 45 g / L, Rochelle salt is 25 g / L to 65 g / L, and Na 2 CO 3 is 25 g / L to 65 g / L, the liquid temperature is 20 ° C. to 60 ° C. A degreasing / etching step for performing degreasing and etching treatment on an Al alloy carrier foil having a thickness of 10 μm to 100 μm, with an immersion time of 10 seconds to 300 seconds,
Step b. A water washing step of washing the Al alloy carrier foil subjected to the degreasing and etching processes,
Step c. CuSO 4 .5H 2 O concentration is 150 g / L to 350 g / L, H 2 SO 4 concentration is 50 g / L to 250 g / L, bath temperature is 20 ° C. to 60 ° C., and current density is 2 A / dm 2 to 50 A /. an electroplating step of electrodepositing Cu on the surface of the Al alloy carrier foil subjected to the degreasing and etching treatment for 10 seconds to 300 seconds under the condition of dm 2 ;
Step d. A water washing step of washing the Cu-plated Al alloy carrier foil, and a step e. A rust-preventing step for carrying out a rust-preventing treatment by immersing the cleaned Cu-plated Al alloy carrier foil in a benzotriazole solution having a concentration of 0.1 g / L to 5 g / L.
以下の工程a〜工程cを含むAl合金箔の表面にNi箔層を備えるAl合金キャリア付孔開きNi箔の製造方法であって、
当該Ni箔層はAl合金キャリアの表面にNiを電析することにより形成されるものであり、前記一方の面から他方の面へ通じる多数の孔部を備える孔開きNi箔層を製造することを特徴とするAl合金キャリア付孔開きNi箔製造方法。
工程a.Al合金が厚さ10μm〜100μmよりなるキャリア箔について、NaOHが15g/L〜45g/L、ロッシェル塩が25g/L〜65g/L、及びNaCOが25g/L〜65g/Lであるアルカリ脱脂液中で、液温20℃〜60℃おいて浸漬時間10秒間〜300秒間、脱脂及びエッチング処理を行う脱脂・エッチング工程、
工程b.前記脱脂及びエッチング処理を施したAl合金キャリア箔を水洗する水洗工程、
工程c.NiSO・6HO濃度が150g/L〜300g/L、NiCl・6HO濃度が50g/L〜250g/L、及びHBO濃度が30g/L〜40g/L、浴温が30℃〜70℃、及び電流密度が1A/dm〜40A/dmのめっき製造条件下、前記キャリア箔の表面にNiを電析する電気めっき工程。
A method for producing a perforated Ni foil with an Al alloy carrier comprising a Ni foil layer on the surface of an Al alloy foil including the following steps a to c,
The Ni foil layer is formed by electrodepositing Ni on the surface of an Al alloy carrier, and a perforated Ni foil layer having a large number of holes extending from the one surface to the other surface is manufactured. A method for producing a perforated Ni foil with an Al alloy carrier, characterized in that:
Step a. For a carrier foil having an Al alloy thickness of 10 μm to 100 μm, NaOH is 15 g / L to 45 g / L, Rochelle salt is 25 g / L to 65 g / L, and Na 2 CO 3 is 25 g / L to 65 g / L. A degreasing / etching step of performing degreasing and etching treatment in an alkaline degreasing solution at a liquid temperature of 20 ° C. to 60 ° C. for an immersion time of 10 seconds to 300 seconds;
Step b. A water washing step of washing the Al alloy carrier foil subjected to the degreasing and etching processes,
Step c. NiSO 4 · 6H 2 O concentration is 150 g / L to 300 g / L, NiCl 2 · 6H 2 O concentration is 50 g / L to 250 g / L, and H 3 BO 3 concentration is 30 g / L to 40 g / L, and the bath temperature is An electroplating step of depositing Ni on the surface of the carrier foil under plating production conditions of 30 ° C. to 70 ° C. and a current density of 1 A / dm 2 to 40 A / dm 2 .
請求項12〜請求項14のいずれかに記載のAl合金キャリア付孔開き金属箔製造方法であって、
該Al合金キャリアの前記金属箔層との接触面上で、当該平面内で均一に分散して存在する突出部の突起部、隅部、及び縁部等の電荷集中部に対して、前記金属箔層を形成するための金属粒子が均一に電析し始めることを特徴とするAl合金キャリア付孔開き金属箔。
A method for producing a perforated metal foil with an Al alloy carrier according to any one of claims 12 to 14,
On the contact surface of the Al alloy carrier with the metal foil layer, the metal against the charge concentration portions such as the protrusions, corners, and edges of the protrusions that are uniformly dispersed in the plane. A perforated metal foil with an Al alloy carrier, wherein metal particles for forming a foil layer begin to be uniformly electrodeposited.
請求項12〜請求項15のいずれかに記載のAl合金キャリア付孔開き金属箔製造方法であって、
前記均一に電析した金属粒子を電析の核として、その核の上に前記金属箔層の金属粒子が均一に順次電析かつ成長し連なっていくことにより孔開き金属箔層を形成することを特徴とするAl合金キャリア付孔開き金属箔。
A method for producing a perforated metal foil with an Al alloy carrier according to any one of claims 12 to 15,
Using the uniformly deposited metal particles as the core of electrodeposition, the metal particles of the metal foil layer are uniformly deposited and grown on the core successively to form a perforated metal foil layer. A perforated metal foil with an Al alloy carrier.
JP2004056588A 2004-03-01 2004-03-01 METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY Pending JP2005251429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056588A JP2005251429A (en) 2004-03-01 2004-03-01 METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056588A JP2005251429A (en) 2004-03-01 2004-03-01 METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY

Publications (1)

Publication Number Publication Date
JP2005251429A true JP2005251429A (en) 2005-09-15

Family

ID=35031715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056588A Pending JP2005251429A (en) 2004-03-01 2004-03-01 METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY

Country Status (1)

Country Link
JP (1) JP2005251429A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067957A1 (en) 2009-12-04 2011-06-09 三井金属鉱業株式会社 Porous metal foil and method for manufacturing the same
WO2011122239A1 (en) * 2010-03-31 2011-10-06 東洋アルミニウム株式会社 Metal foil for negative electrode collector
WO2012101693A1 (en) * 2011-01-28 2012-08-02 パナソニック株式会社 Negative electrode collector for lithium ion batteries, and lithium ion battery
WO2013134655A1 (en) * 2012-03-09 2013-09-12 Sion Power Corporation Porous support structures, electrodes containing same, and associated methods
JP2013541139A (en) * 2010-09-10 2013-11-07 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ Electrical conductors for electrochemical cells
JP2014080636A (en) * 2012-10-12 2014-05-08 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, method of producing surface-treated copper foil, anode collector and anode material for nonaqueous secondary battery
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US8980438B2 (en) 2011-04-08 2015-03-17 Mitsui Mining & Smelting Co., Ltd. Porous metal foil and production method therefor
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
US9512527B2 (en) 2011-01-13 2016-12-06 Mitsui Mining & Smelting Co., Ltd. Reinforced porous metal foil and process for production thereof
US9548497B2 (en) 2011-06-10 2017-01-17 Eaglepicher Technologies, Llc Layered composite current collector with plurality of openings, methods of manufacture thereof, and articles including the same
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US9595719B2 (en) 2011-04-08 2017-03-14 Mitsui Mining & Smelting Co., Ltd. Composite metal foil and production method therefor
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015875A1 (en) * 1998-09-14 2000-03-23 Mitsui Mining & Smelting Co., Ltd. Porous copper foil, use thereof and method for preparation thereof
JP2001256968A (en) * 2000-03-13 2001-09-21 Mitsui Mining & Smelting Co Ltd Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2002151056A (en) * 2000-11-14 2002-05-24 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015875A1 (en) * 1998-09-14 2000-03-23 Mitsui Mining & Smelting Co., Ltd. Porous copper foil, use thereof and method for preparation thereof
JP2001256968A (en) * 2000-03-13 2001-09-21 Mitsui Mining & Smelting Co Ltd Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2002151056A (en) * 2000-11-14 2002-05-24 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9419274B2 (en) 2009-08-28 2016-08-16 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US8497026B2 (en) 2009-12-04 2013-07-30 Mitsui Mining & Smelting Co., Ltd. Porous metal foil and production method therefor
WO2011067957A1 (en) 2009-12-04 2011-06-09 三井金属鉱業株式会社 Porous metal foil and method for manufacturing the same
WO2011122239A1 (en) * 2010-03-31 2011-10-06 東洋アルミニウム株式会社 Metal foil for negative electrode collector
JP2013541139A (en) * 2010-09-10 2013-11-07 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ Electrical conductors for electrochemical cells
US9512527B2 (en) 2011-01-13 2016-12-06 Mitsui Mining & Smelting Co., Ltd. Reinforced porous metal foil and process for production thereof
WO2012101693A1 (en) * 2011-01-28 2012-08-02 パナソニック株式会社 Negative electrode collector for lithium ion batteries, and lithium ion battery
US8980438B2 (en) 2011-04-08 2015-03-17 Mitsui Mining & Smelting Co., Ltd. Porous metal foil and production method therefor
US9595719B2 (en) 2011-04-08 2017-03-14 Mitsui Mining & Smelting Co., Ltd. Composite metal foil and production method therefor
US9548497B2 (en) 2011-06-10 2017-01-17 Eaglepicher Technologies, Llc Layered composite current collector with plurality of openings, methods of manufacture thereof, and articles including the same
US11456459B2 (en) 2011-06-17 2022-09-27 Sion Power Corporation Plating technique for electrode
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
WO2013134655A1 (en) * 2012-03-09 2013-09-12 Sion Power Corporation Porous support structures, electrodes containing same, and associated methods
US9214678B2 (en) 2012-03-09 2015-12-15 Sion Power Corporation Porous support structures, electrodes containing same, and associated methods
JP2014080636A (en) * 2012-10-12 2014-05-08 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, method of producing surface-treated copper foil, anode collector and anode material for nonaqueous secondary battery
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles

Similar Documents

Publication Publication Date Title
JP2005251429A (en) METAL FOIL WITH Al ALLOY CARRIER OPENING AND MANUFACTURING METHOD OF THE SAME, ELECTRODE FOR SECONDARY BATTERY SEPARATED FROM THE METAL FOIL WITH Al ALLOY CARRIER OPENING AND INCLUDING THE METAL FOIL WITH THE OPENING, AND SECONDARY BATTERY
EP1038994A1 (en) Porous copper foil, use thereof and method for preparation thereof
KR100791746B1 (en) Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
RU2359366C1 (en) Negative electrode for accumulator battery with non-aqueous electrolyte
US20060147802A1 (en) Anode for nonaqueous secondary battery, process of producing the anode, and nonaqueous secondary battery
US20060115735A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
RU2336603C2 (en) Secondary storage battery electrode, method of its production and secondary storage battery
KR101708291B1 (en) Batteries with nanostructured electrodes and associated methods
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
JP3764470B1 (en) Anode for non-aqueous electrolyte secondary battery
EP2534720B1 (en) Lithium-ion batteries with nanostructured electrodes and associated methods of making
TWI599278B (en) Copper foil having carrier foil, manufacturing method for producing the copper foil having carrier foil, and copper clad laminate for laser opening processing using the copper foil having carrier foil
US6153077A (en) Process for preparing porous electrolytic metal foil
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
KR100953804B1 (en) Secondary battery-use electrode and production method therefor and secondary battery
JP4746328B2 (en) Anode for non-aqueous electrolyte secondary battery
JP4763995B2 (en) Nonaqueous electrolyte secondary battery electrode
JP2005129264A (en) Porous metallic foil and its manufacturing method
CN108642533B (en) Sn-Cu electroplating solution, tin-based alloy electrode for lithium ion battery, preparation method of tin-based alloy electrode and lithium ion battery
JP2006228512A (en) Anode for nonaqueous electrolyte secondary battery
RU2303318C2 (en) Negative plate for nonaqueous secondary battery, negative plate manufacturing process, and nonaqueous secondary battery
JP4516359B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2006134891A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2005340028A (en) Activator particle for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101216