JP2009283275A - Current collecting foil for secondary battery, and method for manufacturing thereof - Google Patents

Current collecting foil for secondary battery, and method for manufacturing thereof Download PDF

Info

Publication number
JP2009283275A
JP2009283275A JP2008133907A JP2008133907A JP2009283275A JP 2009283275 A JP2009283275 A JP 2009283275A JP 2008133907 A JP2008133907 A JP 2008133907A JP 2008133907 A JP2008133907 A JP 2008133907A JP 2009283275 A JP2009283275 A JP 2009283275A
Authority
JP
Japan
Prior art keywords
metal
current collector
foil
secondary battery
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008133907A
Other languages
Japanese (ja)
Other versions
JP4986077B2 (en
Inventor
Yozo Uchida
陽三 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008133907A priority Critical patent/JP4986077B2/en
Priority to PCT/IB2009/000421 priority patent/WO2009141691A2/en
Priority to CN2009801185500A priority patent/CN102037592A/en
Priority to KR1020107025939A priority patent/KR101224760B1/en
Publication of JP2009283275A publication Critical patent/JP2009283275A/en
Application granted granted Critical
Publication of JP4986077B2 publication Critical patent/JP4986077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current collecting foil for a secondary battery in which peeling-off of a carbon thin film layer is suppressed. <P>SOLUTION: The current collecting foil A as the current collector of the secondary battery is equipped with a metal foil body 1 having conductivity and the carbon thin film layer 3 film-formed on the metal foil body 1. A metal intermediate layer 2 that is brought into close contact with each of the metal film body 1 and the carbon thin film layer 3 is formed between the metal foil body 1 and the carbon thin film layer 3. Preferably, the formation of the intermediate layer 2 is carried out by metal deposition using a metal material for deposition composed of a prescribed species of metal. Here, the metal deposition is carried out under a condition wherein an internal stress of the metal intermediate layer 2 consisting of the metal species acts as a tensile stress. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン電池等の二次電池において、電極体の構成要素である電極集電体として用いられる集電箔及びその製造方法に関する。   The present invention relates to a current collector foil used as an electrode current collector that is a constituent element of an electrode body in a secondary battery such as a lithium ion battery, and a method for manufacturing the same.

近年、リチウムイオン電池、ニッケル水素電池その他の二次電池は、車両搭載用電源、或いはパソコン及び携帯端末の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池等のリチウム二次電池は、車両搭載用高出力電源として好ましく利用できるものとして期待されている。   In recent years, lithium ion batteries, nickel metal hydride batteries, and other secondary batteries have become increasingly important as power sources for vehicles or as power sources for personal computers and portable terminals. In particular, a lithium secondary battery such as a lithium ion battery that is lightweight and has a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.

リチウムイオン電池では、正極活物質からなる正極と負極活物質からなる負極との間で、リチウムイオンを授受することで充放電が行われる。この種の二次電池は、典型的には、上記リチウムイオンを吸蔵及び放出し易い材料からなる電極活物質(電極活物質層)が導電性部材からなる電極集電体表面に保持された(形成された)構成の電極体を備えている。例えば、リチウムと1種又は2種以上の金属元素を含むリチウム複合酸化物は、正極活物質の材料として好適に用いられる。グラファイトカーボン、アモルファスカーボン等の炭素系材料は負極活物質として好適に用いられる。また、正極集電体としてアルミニウムまたはアルミニウム合金を主体とするシート状または箔状の部材が、負極集電体として銅等を主体とするシート状または箔状の部材が、それぞれ好適に用いられる。   In a lithium ion battery, charging / discharging is performed by exchanging lithium ions between a positive electrode made of a positive electrode active material and a negative electrode made of a negative electrode active material. In this type of secondary battery, typically, an electrode active material (electrode active material layer) made of a material that easily absorbs and releases lithium ions is held on the surface of an electrode current collector made of a conductive member ( Formed) electrode body. For example, a lithium composite oxide containing lithium and one or more metal elements is suitably used as a material for the positive electrode active material. Carbon-based materials such as graphite carbon and amorphous carbon are preferably used as the negative electrode active material. In addition, a sheet-like or foil-like member mainly composed of aluminum or aluminum alloy is preferably used as the positive electrode current collector, and a sheet-like or foil-like member mainly composed of copper or the like as the negative electrode current collector.

かかる構成の電極体を備えたリチウム二次電池を製造するにあたり、電極集電体表面と電極活物質層との間に薄膜層を形成することで、電極集電体の表面と電極活物質との間の導電性を向上させて、電池の内部抵抗の低下を図ることがある。例えば、特許文献1には、アルミニウムからなる正極集電体と正極活物質層との間に、導電性向上を目的としてカーボン薄膜層が形成された電池が記載されている。同様の先行技術として特許文献2及び3が挙げられる。
特開平11−250900号公報 特開平10−106585号公報 特開2002−352796号公報
In manufacturing a lithium secondary battery including an electrode body having such a structure, a thin film layer is formed between the surface of the electrode current collector and the electrode active material layer, whereby the surface of the electrode current collector, the electrode active material, In some cases, the internal resistance of the battery is lowered by improving the electrical conductivity between the two. For example, Patent Document 1 describes a battery in which a carbon thin film layer is formed between a positive electrode current collector made of aluminum and a positive electrode active material layer for the purpose of improving conductivity. Patent documents 2 and 3 are mentioned as similar prior art.
Japanese Patent Laid-Open No. 11-250900 Japanese Patent Laid-Open No. 10-106585 JP 2002-352796 A

電極集電体がアルミニウムや銅等の金属箔体から構成される箔状集電体(集電箔)であるとき、この表面に導電性向上、腐食防止、等の目的でカーボン等の薄膜層を形成すると、一般的には集電体材料(金属)の熱膨張率は薄膜材料(カーボン)よりも大きいので、薄膜層形成時(成膜時)の温度から室温に戻したときに熱応力が発生する。この結果、上記薄膜層は圧縮応力を受け、集電箔にシワが発生する虞がある。   When the electrode current collector is a foil-like current collector (current collector foil) composed of a metal foil such as aluminum or copper, a thin film layer such as carbon is formed on the surface for the purpose of improving conductivity, preventing corrosion, etc. In general, the coefficient of thermal expansion of the current collector material (metal) is larger than that of the thin film material (carbon). Therefore, when the thin film layer is formed (during film formation), the thermal stress is restored to room temperature. Occurs. As a result, the thin film layer is subjected to compressive stress, and wrinkles may occur in the current collector foil.

また、例えばアルミニウム箔からなる集電箔では、この集電箔表面にカーボンの薄膜層を形成すると、アルミニウムとカーボンとの密着性が低く、カーボンの薄膜層が上記アルミニウム箔から剥離する虞がある。特許文献1では、エッチングしたアルミニウム箔表面に被膜層(カーボンの薄膜層に相当)を成膜し、両者の密着性向上を図っている。しかし、この方法では、集電箔製造時における上記密着性を高めることは可能であるが、実使用環境下では、カーボン薄膜層にピンホール等の欠陥部が生じやすいため、該欠陥部から徐々にアルミニウム酸化膜が形成されていき、結果、上記被膜層が剥離する虞がある。   Further, in a current collector foil made of, for example, an aluminum foil, if a carbon thin film layer is formed on the surface of the current collector foil, the adhesion between aluminum and carbon is low, and the carbon thin film layer may be peeled off from the aluminum foil. . In Patent Document 1, a coating layer (corresponding to a carbon thin film layer) is formed on the etched aluminum foil surface to improve the adhesion between them. However, in this method, it is possible to improve the adhesion at the time of producing the current collector foil. However, in an actual use environment, a defect portion such as a pinhole is likely to be generated in the carbon thin film layer. As a result, an aluminum oxide film is formed, and as a result, the coating layer may be peeled off.

そこで本発明は、上記カーボン薄膜層を備えた二次電池用集電箔の問題点に鑑みてなされたものであり、その主な目的は、カーボン薄膜層の剥離が抑制された二次電池用集電箔を提供することである。また、他の目的は、そのような二次電池用集電箔を好適に製造する方法を提供することである。また、他の目的は、そのような二次電池用集電箔を備えるリチウムイオン電池等の二次電池を提供することである。   Therefore, the present invention has been made in view of the problems of the secondary battery current collector foil provided with the carbon thin film layer, and its main purpose is for a secondary battery in which peeling of the carbon thin film layer is suppressed. It is to provide a current collector foil. Another object is to provide a method for suitably producing such a current collector foil for a secondary battery. Moreover, the other objective is to provide secondary batteries, such as a lithium ion battery provided with the current collection foil for such secondary batteries.

上記目的を実現するべく本発明によって二次電池の電極集電体として用いられる集電箔が提供される。この二次電池用集電箔は、導電性を有する金属箔体と該金属箔体に成膜されたカーボンの薄膜層とを備える。そして、前記金属箔体と前記カーボン薄膜層との間には、該金属箔体及びカーボン薄膜層のいずれとも密着する金属中間層が形成されている。   In order to achieve the above object, the present invention provides a current collector foil used as an electrode current collector of a secondary battery. The current collector foil for a secondary battery includes a conductive metal foil and a carbon thin film layer formed on the metal foil. And between the said metal foil body and the said carbon thin film layer, the metal intermediate | middle layer which adhere | attaches both this metal foil body and a carbon thin film layer is formed.

かかる構成の二次電池用集電箔では、金属箔体とカーボンの薄膜層との間に、金属箔体とカーボンの両方に対して密着する金属中間層が形成されている。このため、上記二次電池用集電箔では、上記金属中間層を介して上記金属箔体及びカーボン薄膜層同士の密着状態が維持されて、カーボンの薄膜層の金属箔体からの剥離が抑制され得る。これにより、本構成の二次電池用集電箔を用いることによって、長期にわたって良好な電池性能を維持する高耐久性のリチウムイオン電池その他の二次電池を提供することができる。   In the current collector foil for a secondary battery having such a configuration, a metal intermediate layer that is in close contact with both the metal foil body and the carbon is formed between the metal foil body and the carbon thin film layer. For this reason, in the current collector foil for the secondary battery, the metal foil body and the carbon thin film layer are kept in close contact with each other via the metal intermediate layer, and the peeling of the carbon thin film layer from the metal foil body is suppressed. Can be done. Thereby, by using the secondary battery current collector foil of this configuration, it is possible to provide a highly durable lithium ion battery or other secondary battery that maintains good battery performance over a long period of time.

本発明を好適に適用し得る二次電池用集電箔の形態の一つとして、リチウムイオン電池の正極集電体として用いられる集電箔が挙げられる。即ち、本発明に係る正極集電箔の好ましい一態様では、前記金属中間層は、リチウムイオン電池の充電時における正極電位の下で溶解しない金属種により構成される。また、前記金属種は、Ti(チタン)、Nb(ニオブ)、Ta(タンタル)、Zr(ジルコニウム)、Hf(ハフニウム)、及びW(タングステン)から成る群から選択される1種又は2種以上であることが特に好ましい。   One form of the secondary battery current collector foil to which the present invention can be suitably applied is a current collector foil used as a positive electrode current collector of a lithium ion battery. That is, in a preferred embodiment of the positive electrode current collector foil according to the present invention, the metal intermediate layer is composed of a metal species that does not dissolve under the positive electrode potential when the lithium ion battery is charged. The metal species is one or more selected from the group consisting of Ti (titanium), Nb (niobium), Ta (tantalum), Zr (zirconium), Hf (hafnium), and W (tungsten). It is particularly preferred that

リチウムイオン電池の正極は、充電時にアノード分極されて(酸化反応が起こるように電極に電位が正方向に印加されて)高電位となり、放電時にカソード分極されて(還元反応が起こるように電極に電位を負方向に印加されて)低電位となる。例えば、コバルト酸リチウムを正極活物質として含む正極の電極電位(正極電位)は、充放電のサイクルを通じて、金属リチウムを基準として2.5V〜4.5Vの範囲内に納まり得る。このように、リチウム基準で4Vを超すような高電位の環境下に曝されると、金属によっては腐食して電解液中に溶出する虞がある。   The positive electrode of a lithium ion battery is anodicly polarized during charging (potential applied to the electrode in the positive direction so that an oxidation reaction takes place) to become a high potential, and is cathode-polarized during discharging (to the electrode so that a reduction reaction takes place). When the potential is applied in the negative direction, the potential becomes low. For example, the electrode potential (positive electrode potential) of the positive electrode containing lithium cobaltate as the positive electrode active material can fall within a range of 2.5 V to 4.5 V with reference to metal lithium through a charge / discharge cycle. Thus, when exposed to a high potential environment exceeding 4 V on the basis of lithium, some metals may corrode and be eluted into the electrolyte.

かかる金属中間層を構成する金属種(好ましくはTi、Nb、Ta、Zr、Hf、Wから成る群から選択される1種または2種以上)は耐食性に優れている。上記金属種が電解液と接触した状態で、充電時における正極電位下に曝されても、上記金属種はイオン化されにくく溶解しない。したがって、例えば、かかる正極集電箔を用いたリチウムイオン電池の使用時において、上記正極集電箔表面に成膜されたカーボン薄膜層に欠陥部が生じていた場合、上記金属種は電解液中に溶出せず、該金属種からなる金属中間層に覆われた金属箔体は電解液との接触を免れ得る。結果、上記金属箔体が上記電解液中に溶出して(腐食して)電池性能が低下する虞がなくなり、高信頼性(或いは高耐久性)の電池を構築することができる。   The metal species constituting the metal intermediate layer (preferably one or more selected from the group consisting of Ti, Nb, Ta, Zr, Hf, and W) are excellent in corrosion resistance. Even when the metal species are in contact with the electrolyte and exposed to the positive electrode potential during charging, the metal species are not easily ionized and do not dissolve. Therefore, for example, when a lithium ion battery using such a positive electrode current collector foil is used and a defective portion is generated in the carbon thin film layer formed on the surface of the positive electrode current collector foil, the metal species is contained in the electrolyte solution. And the metal foil covered with the metal intermediate layer made of the metal species can avoid contact with the electrolytic solution. As a result, there is no possibility that the metal foil is eluted (corroded) into the electrolytic solution and the battery performance is lowered, and a highly reliable (or highly durable) battery can be constructed.

本発明を好適に適用し得る二次電池用集電箔の別の形態の一つとして、リチウムイオン電池の負極集電体として用いられる集電箔が挙げられる。本発明に係る負極集電箔の好ましい一態様では、前記金属中間層は、リチウムイオン電池の放電時における負極電位の下で溶解しない金属種、または充電時における負極電位の下でリチウムと合金化しない金属種により構成される。また、前記金属種は、Cu及び/又はNiであることが好ましい。   One of the other forms of the secondary battery current collector foil to which the present invention can be suitably applied is a current collector foil used as a negative electrode current collector of a lithium ion battery. In a preferred embodiment of the negative electrode current collector foil according to the present invention, the metal intermediate layer is alloyed with a metal species that does not dissolve under a negative electrode potential during discharge of a lithium ion battery, or with lithium under a negative electrode potential during charging. It consists of metal species that do not. The metal species is preferably Cu and / or Ni.

リチウムイオン電池の負極は、放電時にアノード分極されて高電位となり、充電時にカソード分極されて低電位となる。例えば、炭素(黒鉛)を負極活物質として含む負極の電極電位(負極電位)は、充放電のサイクルを通じて、金属リチウムを基準として0V〜3.0Vの範囲内に収まり得る。二次電池の放電時に負極電位が上昇すると、金属によっては、腐食して電解液中に溶出する虞がある。一方、充電時に負極電位が下降すると、金属によっては、還元された金属リチウムと合金化する虞がある。   The negative electrode of a lithium ion battery is anodicly polarized during discharge to become a high potential, and is negatively polarized during charging to a low potential. For example, the electrode potential (negative electrode potential) of a negative electrode containing carbon (graphite) as a negative electrode active material can be within a range of 0 V to 3.0 V with respect to metallic lithium through a charge / discharge cycle. If the negative electrode potential rises during discharge of the secondary battery, depending on the metal, there is a risk of corrosion and elution into the electrolyte. On the other hand, when the negative electrode potential decreases during charging, there is a possibility that some metals may be alloyed with reduced metallic lithium.

かかる金属中間層を構成する金属種(好ましくは、Cu及び/又はNi)は、電解液と接触した状態で放電時における負極電位下に曝されても、イオン化されにくく、電解液中に溶出しない。このため、かかる負極集電箔を用いたリチウムイオン電池の使用時において、上記負極集電箔表面に成膜されたカーボン薄膜層に欠陥部が生じていた場合、上記金属種は電解液中に溶出せず、該金属種からなる金属中間層に覆われた金属箔体は電解液との接触を免れ得る。結果、上記金属中間層及び/又は上記金属箔体が上記電解液中に溶出して電池性能が低下する虞は解消され得る。また、上記負極集電箔が電解液と接触した状態で充電時の負極電位下に曝されても、上記金属中間層の金属種は、例えば上記カーボン薄膜層の欠陥部で還元された金属リチウムと反応して合金化しない。結果、正負極間で授受されるリチウムイオンが減少して電池性能が低下する虞がなくなり、高信頼性(或いは高耐久性)の電池を構築することができる。   The metal species constituting the metal intermediate layer (preferably Cu and / or Ni) are not easily ionized even when exposed to the negative electrode potential during discharge in contact with the electrolytic solution, and do not elute into the electrolytic solution. . For this reason, when a lithium ion battery using such a negative electrode current collector foil is used and a defective portion is generated in the carbon thin film layer formed on the surface of the negative electrode current collector foil, the metal species is contained in the electrolyte. The metal foil body which does not elute and is covered with the metal intermediate layer made of the metal species can escape contact with the electrolytic solution. As a result, the possibility that the metal intermediate layer and / or the metal foil body may elute into the electrolyte solution and the battery performance is deteriorated can be eliminated. Further, even when the negative electrode current collector foil is exposed to the negative electrode potential during charging in a state where it is in contact with the electrolytic solution, the metal species of the metal intermediate layer is, for example, metallic lithium reduced at a defective portion of the carbon thin film layer. Reacts with and does not alloy. As a result, there is no possibility that the lithium ion exchanged between the positive and negative electrodes decreases and the battery performance deteriorates, and a highly reliable (or highly durable) battery can be constructed.

本発明によれば、ここに開示されるいずれかの二次電池用集電箔からなる電極体を備えた二次電池が提供される。かかる二次電池は、上記効果を奏する電極体を少なくとも一方の電極として備えていることから、カーボンの薄膜層が集電箔から剥離する、金属中間層や金属箔体が溶解する、等の虞はなく、長期にわたって良好な電池性能を維持するものとなり得る。   According to this invention, the secondary battery provided with the electrode body which consists of one of the current collector foils for secondary batteries disclosed here is provided. Since such a secondary battery includes the electrode body having the above-described effects as at least one electrode, the carbon thin film layer may be peeled off from the current collector foil, or the metal intermediate layer or the metal foil body may be dissolved. However, it can maintain good battery performance over a long period of time.

このような二次電池は、例えば自動車等の車両に搭載される電池として好適である。すなわち、本発明により、ここに開示される二次電池(複数の二次電池が接続された組電池を含む)を備える車両が提供される。特に、かかる二次電池が軽量で高エネルギー密度が得られるリチウム二次電池(典型的にはリチウムイオン電池)であって、該リチウム二次電池を動力源(典型的には、ハイブリッド車両又は電気車両の動力源)として備える車両(例えば自動車)が好適である。   Such a secondary battery is suitable as a battery mounted on a vehicle such as an automobile. That is, the present invention provides a vehicle including the secondary battery disclosed herein (including an assembled battery to which a plurality of secondary batteries are connected). In particular, such a secondary battery is a lithium secondary battery (typically a lithium ion battery) that is lightweight and has a high energy density, and is used as a power source (typically a hybrid vehicle or an electric vehicle). A vehicle (for example, an automobile) provided as a power source of the vehicle is preferable.

また、本発明は上記目的を実現するべく、二次電池の電極集電体として用いられる集電箔を製造する方法を提供する。この製造方法は、導電性を有する金属箔体を用意すること、前記金属箔体の表面に、該金属箔体及びカーボンから成る薄膜のいずれとも密着する金属から成る金属中間層を形成すること、及び前記金属中間層の表面にカーボン薄膜層を形成すること、を包含する。   Moreover, this invention provides the method of manufacturing the current collection foil used as an electrode electrical power collector of a secondary battery in order to implement | achieve the said objective. This manufacturing method includes preparing a metal foil body having conductivity, forming a metal intermediate layer made of a metal in close contact with both the metal foil body and a thin film made of carbon on the surface of the metal foil body, And forming a carbon thin film layer on the surface of the metal intermediate layer.

かかる製造方法によって得られる二次電池用集電箔は、上記金属中間層を介して金属箔体とカーボンの薄膜層とが強く密着しており、カーボンの薄膜層が金属箔体から剥離するのを抑制し得る。また、かかる二次電池用集電箔からなる電極体を備えた二次電池は、その使用時(充放電時)において、上記金属中間層を構成する金属種及び/又は金属箔体が溶解して電解液中に溶出すること、または金属リチウムと合金化することが防止されるので、良好な電池性能を維持し得る。即ち、本発明の製造方法により得られた集電箔を使用することを特徴とする、高性能、高耐久性の二次電池(リチウムイオン電池等)を製造する方法が、本発明により提供される。   In the secondary battery current collector foil obtained by such a manufacturing method, the metal foil body and the carbon thin film layer are in close contact with each other through the metal intermediate layer, and the carbon thin film layer peels off from the metal foil body. Can be suppressed. Moreover, the secondary battery provided with the electrode body made of the current collector foil for the secondary battery dissolves the metal species and / or the metal foil body constituting the metal intermediate layer when used (charge / discharge). Thus, elution into the electrolytic solution or alloying with metallic lithium is prevented, so that good battery performance can be maintained. That is, the present invention provides a method for producing a high-performance, high-durability secondary battery (lithium ion battery or the like), characterized by using the current collector foil obtained by the production method of the present invention. The

ここに開示される集電箔製造方法の好ましい一態様では、前記金属中間層の形成は、所定の金属種からなる蒸着用金属材料を使用した金属蒸着により行われ、ここで該金属蒸着は、該金属種から形成される前記金属中間層の内部応力が引張り応力となる条件で実施される。   In a preferred embodiment of the current collector foil manufacturing method disclosed herein, the metal intermediate layer is formed by metal vapor deposition using a metal material for vapor deposition made of a predetermined metal species, wherein the metal vapor deposition is It implements on the conditions from which the internal stress of the said metal intermediate layer formed from this metal seed | species becomes a tensile stress.

かかる方法によれば、金属蒸着によって金属箔体表面に所定の金属種の金属中間層が均一な厚さで形成される(成膜される)とともに、形成される該金属中間層の内部応力が引張応力となる条件下で成膜が実施されることによって、該金属中間層の表面に成膜されるカーボンの薄膜層が圧縮応力を有しても、該圧縮応力は、前記金属中間層の有する引張り応力によって緩和される。この結果、上記集電箔全体として受ける内部応力は相殺されて、上記集電箔にシワ等が発生するのを防止することができる。   According to this method, a metal intermediate layer of a predetermined metal type is formed with a uniform thickness on the surface of the metal foil body by metal deposition (film formation), and the internal stress of the formed metal intermediate layer is reduced. Even if the carbon thin film layer formed on the surface of the metal intermediate layer has a compressive stress by performing the film formation under the condition of tensile stress, the compressive stress is It is relieved by the tensile stress it has. As a result, the internal stress received as a whole of the current collector foil is offset, and wrinkles and the like can be prevented from occurring in the current collector foil.

また、好ましくは、前記金属蒸着はスパッタ蒸着により行われ、ここでスパッタガス圧は、前記形成される金属中間層の内部応力が引張り応力となるように設定される。スパッタ蒸着は、典型的には、真空チャンバー内に薄膜を構成するための所望の金属種からなる蒸着用金属材料をターゲットとして設置し、イオン化させた希ガス元素(典型的にはアルゴン)をターゲットに衝突させ、該ターゲット表面から叩き出されたターゲット原子を基材に堆積させることで成膜する方法である。かかる方法は、(i).ターゲット原子の持つエネルギーが大きい、(ii).基材への付着力(密着力)の強い膜の作製が可能である、(iii).高融点の物質でも比較的容易に成膜し得る、(iv).実行時間の調節だけで膜厚を制御可能であること、等の利点を有し、上記金属蒸着を行う手段として好ましく採用され得る。また、かかるスパッタ蒸着では、上記希ガス元素(スパッタガス)のガス圧条件を変化させるのみで上記金属中間層の内部応力を調整可能であり、上記内部応力を容易に引張り応力に調整し得る。   Preferably, the metal vapor deposition is performed by sputtering vapor deposition, and the sputtering gas pressure is set so that the internal stress of the metal intermediate layer to be formed becomes a tensile stress. In sputter deposition, typically, a deposition metal material made of a desired metal species for forming a thin film in a vacuum chamber is set as a target, and an ionized rare gas element (typically argon) is used as a target. In this method, the target atoms struck from the target surface and deposited on the substrate are deposited. This method is capable of (i). The target atom has a large energy, (ii). It is possible to produce a film with a strong adhesion (adhesion) to the substrate, (iii). Comparison with high melting point materials The film can be formed easily, and (iv) has an advantage that the film thickness can be controlled only by adjusting the execution time. Further, in such sputter deposition, the internal stress of the metal intermediate layer can be adjusted only by changing the gas pressure condition of the rare gas element (sputter gas), and the internal stress can be easily adjusted to the tensile stress.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって、本発明の実施に必要な事柄(例えば、電極活物質の製造方法、電極活物質を含むペースト状組成物の調製方法、リチウム二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification, and matters necessary for carrying out the present invention (for example, a method for producing an electrode active material, a method for preparing a paste-like composition containing an electrode active material, General techniques relating to the construction of lithium secondary batteries and other batteries, etc.) can be understood as design matters for those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここに開示される二次電池用集電箔は、導電性を有する金属箔体と、該金属箔体に成膜されたカーボンの薄膜層と、上記金属箔体と上記カーボン薄膜層との間に形成された金属中間層とを備えるものである。上記金属箔体としては、従来の二次電池における電極集電体として通常用いられる金属材料であればよく、すなわち、導電性の良好な金属材料(例えば、アルミニウム、ニッケル、銅、鉄、またはこれらを主成分とする合金等)からなるものを好ましく使用することができる。ここに開示される二次電池用集電箔は、上記金属箔体の選択によって正極及び負極のいずれの電極集電体としても用いられる。また、上記二次電池用集電箔からなる電極体は、種々の形態の二次電池(例えばリチウム二次電池)に備えられる電極として好ましく利用され得る。本発明に係る二次電池用集電箔からなる電極を用いて構築される二次電池の好ましい一態様として、捲回型の電極体を備える二次電池(例えばリチウム二次電池)が挙げられる。この態様において、アルミニウム製(アルミニウムまたはアルミニウムを主成分とする合金)等の金属箔体を正極用金属箔体、また、銅製(銅または銅を主成分とする合金)等の金属箔体を負極用金属箔体とし、各金属箔体に金属中間層及びカーボン薄膜層を設けて得られる正極集電箔又は負極集電箔を好ましく使用し得る。   The secondary battery current collector foil disclosed herein includes a conductive metal foil body, a carbon thin film layer formed on the metal foil body, and the metal foil body and the carbon thin film layer. And a metal intermediate layer formed on the substrate. The metal foil may be a metal material that is usually used as an electrode current collector in a conventional secondary battery, that is, a metal material having good conductivity (for example, aluminum, nickel, copper, iron, or these It is possible to preferably use an alloy made of an alloy containing as a main component. The secondary battery current collector foil disclosed herein can be used as either a positive electrode or a negative electrode current collector by selecting the metal foil body. Moreover, the electrode body which consists of the said collector foil for secondary batteries can be preferably utilized as an electrode with which a secondary battery (for example, lithium secondary battery) of various forms is equipped. As a preferred embodiment of the secondary battery constructed using the electrode comprising the current collector foil for the secondary battery according to the present invention, a secondary battery (for example, a lithium secondary battery) having a wound electrode body can be mentioned. . In this embodiment, a metal foil body made of aluminum (aluminum or an alloy containing aluminum as a main component) is used as a positive electrode metal foil body, and a metal foil body made of copper (copper or an alloy containing copper as a main component) is used as a negative electrode. A positive electrode current collector foil or a negative electrode current collector foil obtained by providing a metal foil body for use and providing a metal intermediate layer and a carbon thin film layer on each metal foil body can be preferably used.

以下、特に限定することを意図したものではないが、主としてアルミニウム製及び銅製の金属箔体を用いて、リチウム二次電池(典型的にはリチウムイオン電池)の正極体及び負極体用の各集電箔を製造する場合を例として本発明を詳細に説明する。なお、図1は、一実施形態に係る二次電池用集電箔Aの積層構造を示す断面図である。図2は、一実施形態に係るリチウムイオン電池100の構造を示す縦断面図である。図3は、上記リチウムイオン電池100を備えた車両(自動車)の一例を模式的に示す側面図である。   Hereinafter, although not intended to be particularly limited, each of the collections for a positive electrode body and a negative electrode body of a lithium secondary battery (typically a lithium ion battery) mainly using a metal foil body made of aluminum and copper. The present invention will be described in detail by taking the case of manufacturing an electric foil as an example. FIG. 1 is a cross-sectional view showing a laminated structure of the secondary battery current collector foil A according to an embodiment. FIG. 2 is a longitudinal sectional view showing the structure of the lithium ion battery 100 according to one embodiment. FIG. 3 is a side view schematically showing an example of a vehicle (automobile) provided with the lithium ion battery 100.

ここに開示されるリチウムイオン電池用集電箔の製造方法において、まず、導電性基材となる金属箔体として、例えば厚さ10μm〜30μm程度のアルミニウム製の金属箔体(ここではアルミニウム箔)及び銅製(ここでは銅箔)を用意する。アルミニウムの金属箔体は正極集電箔の構成要素として好ましく用いられ、銅製の金属箔体は負極集電箔の構成要素として好ましく用いられる。   In the method for producing a current collector foil for a lithium ion battery disclosed herein, first, as a metal foil body serving as a conductive base material, for example, a metal foil body made of aluminum having a thickness of about 10 μm to 30 μm (here, an aluminum foil) And copper (copper foil here) is prepared. An aluminum metal foil is preferably used as a component of the positive electrode current collector foil, and a copper metal foil is preferably used as a component of the negative electrode current collector foil.

次に、上記各金属箔体に所定の金属種からなる金属中間層を形成する。   Next, a metal intermediate layer made of a predetermined metal species is formed on each of the metal foil bodies.

アルミニウムの金属箔体の表面に形成される金属中間層として好ましい金属種は、該金属箔体との親和性及びカーボンとの親和性のいずれも良好で、該金属箔体及びカーボンのいずれとも強固に密着可能な性質を持つ金属種である。正極集電箔において、アルミニウムの金属箔体表面に形成される金属中間層として好ましい金属種としてTi、Zr、Hfのようなチタン族遷移金属が挙げられる。他の好ましい金属種としてNb、Taのようなバナジウム族遷移金属が挙げられる。或いは他の好ましい金属種としてWが挙げられる。これらの金属種は、上記性質に加えて、リチウムイオン電池の充電時における正極電位下におかれても(当該電位下で電解液に曝されても)溶解しない性質(電解液に対する耐食性)を有するので好ましい。この耐食性は、例えば、コバルト酸リチウムを正極活物質として含む正極電位(例えば充放電のサイクルにつき金属リチウムを基準として2.5V〜4.5Vの範囲)の下でも、電解液に溶解しない程度の性質をいう。   Preferred metal species for the metal intermediate layer formed on the surface of the aluminum metal foil are both good affinity with the metal foil and affinity with carbon, and are strong with both the metal foil and carbon. It is a metal species that has the property of being able to adhere to. In the positive electrode current collector foil, preferred metal species for the metal intermediate layer formed on the surface of the aluminum metal foil include titanium group transition metals such as Ti, Zr, and Hf. Other preferred metal species include vanadium group transition metals such as Nb and Ta. Or W is mentioned as another preferable metal seed | species. In addition to the above properties, these metal species have a property (corrosion resistance to the electrolyte) that does not dissolve even when placed under a positive electrode potential during charging of a lithium ion battery (even when exposed to the electrolyte under the potential). Since it has, it is preferable. This corrosion resistance is such that, for example, it does not dissolve in the electrolyte even under a positive electrode potential containing lithium cobaltate as a positive electrode active material (for example, in the range of 2.5 V to 4.5 V with respect to metal lithium per charge / discharge cycle). Refers to nature.

一方、銅の金属箔体の表面に形成される金属中間層として好ましい金属種は、Cu及び/又はNiである。これらの金属種は、上記の高い密着性に加えて、リチウムイオン電池の放電時における負極電位の下で溶解しない性質(電解液に対する耐食性)、又は充電時における負極電位の下でリチウムと合金化しない性質を有するので好ましい。即ち、これら金属種は、炭素(黒鉛)を負極活物質として含む負極電位(充放電のサイクルにつき金属リチウムを基準として0V〜3.0Vの範囲)の下でも、溶解したり合金化したりすることのない程度に化学的に安定な性質を有する。   On the other hand, a preferable metal species for the metal intermediate layer formed on the surface of the copper metal foil is Cu and / or Ni. In addition to the high adhesion described above, these metal species do not dissolve under the negative electrode potential during lithium ion battery discharge (corrosion resistance to the electrolyte), or alloy with lithium under the negative electrode potential during charging. It is preferable because it has a property that does not. That is, these metal species can be dissolved or alloyed even under a negative electrode potential (range of 0 V to 3.0 V with reference to metal lithium per charge / discharge cycle) containing carbon (graphite) as a negative electrode active material. It has a chemically stable property to the extent that it does not.

このような金属中間層を金属箔体表面に形成する方法としては、公知の金属蒸着法、例えば物理蒸着法(PVD法、例えばスパッタリング(スパッタ蒸着)法)、化学蒸着法(CVD法、例えばプラズマCVD法)等を好ましく採用することができる。特にスパッタリング法による蒸着法が好ましい。スパッタ蒸着法は、真空チャンバー内に薄膜としてつけたい所定の金属種からなる蒸着用金属材料をターゲットとして設置し、高電圧を印加して放電することでイオン化して加速された希ガス元素(スパッタガス、典型的にはアルゴン)をターゲットに衝突させることによって、又は直接イオン銃でスパッタガスイオンをターゲットに衝突させることによってターゲット原子を叩き出し、該ターゲット表面から叩き出されたターゲット原子を基材に堆積させて薄膜を形成する方法である。かかるスパッタ蒸着法の方式として、上記スパッタガスをイオン化させる方法に応じて、直流スパッタ、高周波スパッタ、マグネトロンスパッタ、イオンビームスパッタ等が挙げられる。本発明に係る二次電池用集電箔においては、上記スパッタ蒸着法のいずれの方式を用いてもよいが、例えばマグネトロンスパッタ法は、スパッタガスのガス圧を広範囲に制御できる等の利点から、好ましく採用される。なお、このような蒸着法による金属中間層の形成は、バッチ処理方式又は連続処理方式の一般的な市販の真空蒸着装置を使用することで実施される。また、このような真空蒸着装置には、アッシング処理等の付随処理が同一真空チャンバー内で実施できる機能が搭載されていることがある。この場合には、例えば、スパッタ蒸着前の金属箔体表面に対して、アルゴン等によるアッシング処理を実施することができるので好ましい。1〜5分程度のアッシング処理を行うとアルミニウムの金属箔体表面に付着している圧延油等を洗浄し得る効果が認められるからである。   As a method for forming such a metal intermediate layer on the surface of the metal foil body, a known metal vapor deposition method, for example, physical vapor deposition method (PVD method, for example, sputtering (sputter deposition) method), chemical vapor deposition method (CVD method, for example, plasma). CVD method) and the like can be preferably employed. In particular, a vapor deposition method by a sputtering method is preferable. The sputter deposition method is a rare gas element (sputtering) that is ionized and accelerated by applying a high voltage to discharge a metal material for deposition made of a predetermined metal species to be applied as a thin film in a vacuum chamber. Target atoms are knocked out by striking the target with a gas, typically argon), or by directly sputtering gas ions with the target with an ion gun, and the target atoms knocked out from the target surface This is a method of forming a thin film by depositing on the substrate. Examples of the sputtering deposition method include direct current sputtering, high-frequency sputtering, magnetron sputtering, ion beam sputtering, and the like depending on the method of ionizing the sputtering gas. In the current collector foil for the secondary battery according to the present invention, any of the above sputtering deposition methods may be used.For example, the magnetron sputtering method is advantageous in that the gas pressure of the sputtering gas can be controlled over a wide range. Preferably employed. In addition, formation of the metal intermediate | middle layer by such a vapor deposition method is implemented by using the general commercial vacuum vapor deposition apparatus of a batch processing system or a continuous processing system. In addition, such a vacuum deposition apparatus may be equipped with a function capable of performing an accompanying process such as an ashing process in the same vacuum chamber. In this case, it is preferable because, for example, an ashing process using argon or the like can be performed on the surface of the metal foil body before sputtering deposition. This is because an ashing treatment for about 1 to 5 minutes is effective in cleaning the rolling oil and the like adhering to the surface of the aluminum metal foil.

上記スパッタ蒸着法により形成された金属中間層(スパッタ薄膜層)の内部応力は、スパッタ条件、特にスパッタガス圧条件および膜厚に大きく左右される。このため、所定の膜厚で金属中間層を形成するには、スパッタガス圧条件を調節して上記内部応力を制御すればよい。ターゲットとなる金属種によって、そのスパッタガス圧の閾値は異なるが、一定の膜厚で成膜する際、典型的にはスパッタガスにアルゴンガスを用いる場合、このスパッタガス圧をある値(閾値)以上に上昇させると、形成されるスパッタ薄膜の内部応力は引張り応力となる傾向がある。この傾向は、スパッタガス圧が高ければ、ターゲット粒子(イオン)がスパッタガス粒子(イオン)と衝突する頻度(確率)の増加により大きく散乱され易く、基板に対する斜め入射成分が多くなるためだと考えられている。これと反対に、上記スパッタガス圧を低くすると、上記内部応力は圧縮応力となる傾向がある。この傾向は、スパッタガス圧が低ければ、ターゲット粒子(イオン)の平均自由行程が長くなって、基材(金属箔体)にまで到達する粒子の中に、エネルギーの高いターゲット粒子がより多く含まれるようになり、形成されるスパッタ薄膜中に上記ターゲット粒子が入り込んで緻密な膜になるためだと考えられている。   The internal stress of the metal intermediate layer (sputtered thin film layer) formed by the sputtering deposition method is greatly affected by sputtering conditions, particularly sputtering gas pressure conditions and film thickness. Therefore, in order to form the metal intermediate layer with a predetermined film thickness, the internal stress may be controlled by adjusting the sputtering gas pressure condition. The sputtering gas pressure threshold varies depending on the target metal species, but when forming a film with a constant film thickness, typically argon gas is used as the sputtering gas, this sputtering gas pressure is a certain value (threshold). When it raises above, the internal stress of the sputtered thin film formed tends to become a tensile stress. This tendency is considered to be because if the sputtering gas pressure is high, the target particles (ions) are likely to be greatly scattered due to an increase in the frequency (probability) of collision with the sputtering gas particles (ions), and the oblique incident component on the substrate increases. It has been. On the contrary, when the sputtering gas pressure is lowered, the internal stress tends to be a compressive stress. This tendency is that if the sputtering gas pressure is low, the average free path of the target particles (ions) becomes longer, and the particles that reach the base material (metal foil body) contain more target particles with higher energy. This is thought to be because the target particles enter the sputtered thin film to form a dense film.

このようなスパッタガス圧条件としては、例えばアルゴンガス(Arガス)をスパッタガスとしてアルミニウムの金属箔体上に概ね膜厚50nm〜300nm程度のTiから成る金属中間層を形成する場合、成膜速度を0.05nm/s〜1.0nm/s程度として実施すると、0.3Pa以上(特に好ましくは0.5Pa以上)のスパッタガス圧(Arガス圧)であれば、成膜温度から常温に戻したときの内部応力が引張り応力となる好ましい金属中間層が形成される。これと同じ条件でNbの金属中間層を形成する際、好ましいスパッタガス圧は、1.0Pa以上(特に好ましくは1.06Pa以上)である。同様に、Taの金属中間層を形成する際の好ましいスパッタガス圧は3.0Pa以上である。また、Zrの金属中間層では、スパッタガス圧0.80Pa以上(特に好ましくは1.0Pa以上)、Hfの金属中間層では、スパッタガス圧0.8Pa以上、Wの金属中間層では、2.0Pa以上のスパッタガス圧であることが好ましい。   As such sputtering gas pressure conditions, for example, when forming a metal intermediate layer made of Ti having a film thickness of about 50 nm to 300 nm on an aluminum metal foil body using argon gas (Ar gas) as a sputtering gas, the film formation rate If the sputtering gas pressure (Ar gas pressure) is 0.3 Pa or higher (particularly preferably 0.5 Pa or higher), the film temperature is returned to room temperature. A preferable metal intermediate layer is formed in which the internal stress is tensile stress. When the Nb metal intermediate layer is formed under the same conditions, a preferable sputtering gas pressure is 1.0 Pa or more (particularly preferably 1.06 Pa or more). Similarly, a preferable sputtering gas pressure when forming the Ta metal intermediate layer is 3.0 Pa or more. Further, the sputtering gas pressure is 0.80 Pa or more (particularly preferably 1.0 Pa or more) in the Zr metal intermediate layer, the sputtering gas pressure is 0.8 Pa or more in the Hf metal intermediate layer, and 2. in the W metal intermediate layer. A sputtering gas pressure of 0 Pa or higher is preferable.

また、銅の金属箔体上に膜厚50nm〜300nmの範囲内でCu(銅)の金属中間層をスパッタ蒸着法にて形成する際、好ましいスパッタガス圧条件は、スパッタガスをArガスとし、成膜速度を0.1nm/s〜10nm/sとすると、0.25Pa以上である。このスパッタガス圧条件であれば、常温に戻したときに引張り応力を有するような好ましい金属中間層が形成され得る。   Further, when a Cu (copper) metal intermediate layer is formed on a copper metal foil within a range of a film thickness of 50 nm to 300 nm by a sputter deposition method, a preferable sputtering gas pressure condition is that the sputtering gas is Ar gas, When the film formation rate is 0.1 nm / s to 10 nm / s, it is 0.25 Pa or more. Under this sputtering gas pressure condition, a preferable metal intermediate layer having a tensile stress when returned to room temperature can be formed.

また、同じ条件でNiの金属中間層を形成する際、0.25Pa以上のスパッタガス圧が好ましい。   Further, when the Ni metal intermediate layer is formed under the same conditions, a sputtering gas pressure of 0.25 Pa or more is preferable.

以上より、アルミニウムの金属箔体又は銅の金属箔体にスパッタ蒸着法により所定の金属種から成る金属中間層を形成する際には、所望する膜厚、及び上記金属種等に応じて、アルゴンガス等の希ガスのスパッタガス圧条件を調整し、金属中間層の内部応力を圧縮応力から引張り応力に傾くように制御する。   From the above, when a metal intermediate layer made of a predetermined metal species is formed by sputtering deposition on an aluminum metal foil or a copper metal foil, argon is used depending on the desired film thickness and the metal species. The sputtering gas pressure condition of a rare gas such as a gas is adjusted, and the internal stress of the metal intermediate layer is controlled to be inclined from the compressive stress to the tensile stress.

このように形成される金属中間層の厚さは、上記金属箔体の所定範囲を一様に覆い得る程度の厚さ以上であって、該金属中間層の上に形成される(成膜される)カーボン薄膜層の厚さに応じて、該カーボン薄膜層の圧縮応力を十分に緩和し得る程度の引張り応力を保持できる厚さであることが好ましい。例えば、カーボン薄膜層の厚さが30nm〜100nm程度の厚さであるときの好ましい金属中間層の厚さは、10nm〜100nmである。   The thickness of the metal intermediate layer formed in this way is not less than a thickness that can uniformly cover the predetermined range of the metal foil body, and is formed on the metal intermediate layer (deposited). According to the thickness of the carbon thin film layer, the thickness is preferably a thickness that can maintain a tensile stress that can sufficiently relax the compressive stress of the carbon thin film layer. For example, when the thickness of the carbon thin film layer is about 30 nm to 100 nm, the preferable thickness of the metal intermediate layer is 10 nm to 100 nm.

また、上記金属箔体の表面に上記金属中間層が形成される範囲(領域)は、カーボン薄膜層が形成される予定の領域、すなわち、後述の電極活物質を含む活物質層が上記金属箔体(集電箔表面)上に形成される(塗布される)予定の領域を、少なくとも包含するように設定されることが好ましい。例えば、上記金属箔体の片面のみ(該片面の一部または全面)に上記活物質層が形成される場合には、該金属中間層は上記片面全面にわたって形成される態様であることが好ましい。一方、上記活物質が上記金属箔体の両面(該両面の一部または全面)に形成される場合には、該金属中間層は上記両面全面にわたって形成される態様であることが好ましい。以上、このようにして所定厚さの金属中間層を備えた金属箔体が得られる。   Further, the range (region) where the metal intermediate layer is formed on the surface of the metal foil body is the region where the carbon thin film layer is to be formed, that is, the active material layer containing an electrode active material described later is the metal foil. It is preferable to set so as to at least include a region to be formed (applied) on the body (the surface of the current collector foil). For example, when the active material layer is formed only on one side of the metal foil (a part or the whole of the one side), the metal intermediate layer is preferably formed on the entire side of the one side. On the other hand, when the active material is formed on both surfaces of the metal foil (a part or the entire surface of the both surfaces), the metal intermediate layer is preferably formed over the entire surface of the both surfaces. As described above, a metal foil body having a metal intermediate layer having a predetermined thickness is obtained in this way.

次に、上記金属中間層の表面に形成されるカーボン薄膜層について説明する。このカーボン薄膜層は、実質的に有機成分を含有しないカーボン薄膜であることが好ましく、実質的にカーボンのみからなるカーボン薄膜が特に好ましい。かかるカーボン薄膜の構造は特に限定されず、例えばアモルファス、グラファイト、またはこれらが混在した構造であってもよい。   Next, the carbon thin film layer formed on the surface of the metal intermediate layer will be described. The carbon thin film layer is preferably a carbon thin film containing substantially no organic component, and a carbon thin film consisting essentially of carbon is particularly preferred. The structure of such a carbon thin film is not particularly limited, and may be, for example, amorphous, graphite, or a structure in which these are mixed.

このようなカーボン薄膜層を上記金属中間層表面に形成する方法としては、該金属中間層の形成方法と同様に、公知の蒸着法、例えばスパッタ蒸着等の物理蒸着法や、プラズマCVD等の化学蒸着法を好ましく採用することができる。ここで、カーボンをターゲットに用いて、スパッタ蒸着法により上記カーボン薄膜層を形成する際は、0.01Pa〜100Pa程度の減圧状態のスパッタガス(典型的にはアルゴン)の雰囲気下で実施されることが好ましく、特に好ましくは0.01〜1.0Paである。このように低いスパッタガス圧で蒸着されたカーボン薄膜層は緻密な膜構造を取り得る。ただし、このスパッタガス圧条件で蒸着された該カーボン薄膜層は、成膜温度(蒸着温度)から常温に戻したときの内部応力として圧縮応力を受ける。   As a method for forming such a carbon thin film layer on the surface of the metal intermediate layer, similarly to the method for forming the metal intermediate layer, a known vapor deposition method, for example, a physical vapor deposition method such as sputter vapor deposition, or a chemical such as plasma CVD. A vapor deposition method can be preferably employed. Here, when the carbon thin film layer is formed by sputtering deposition using carbon as a target, it is performed in an atmosphere of a sputtering gas (typically argon) in a reduced pressure of about 0.01 Pa to 100 Pa. It is preferably 0.01 to 1.0 Pa. The carbon thin film layer deposited at such a low sputtering gas pressure can take a dense film structure. However, the carbon thin film layer deposited under the sputtering gas pressure condition receives a compressive stress as an internal stress when the film forming temperature (deposition temperature) is returned to room temperature.

上記カーボン薄膜層の厚さは、上記金属中間層が形成された金属箔体を一様に覆い得る程度の厚さであれば良く、5nm〜2000nmの範囲内とすることができる。通常、該カーボン膜の厚さは50nm〜100nm程度とすることが好ましい。なお、上記カーボン薄膜層の厚さは、蒸着時間等の蒸着条件等を調整することにより任意に制御できる。   The thickness of the carbon thin film layer may be a thickness that can uniformly cover the metal foil body on which the metal intermediate layer is formed, and may be in the range of 5 nm to 2000 nm. Usually, the thickness of the carbon film is preferably about 50 nm to 100 nm. The thickness of the carbon thin film layer can be arbitrarily controlled by adjusting vapor deposition conditions such as vapor deposition time.

また、上記カーボン薄膜層が形成される金属中間層表面の領域は、上述のように電極活物質を含む活物質層が形成される領域を少なくとも含み、かつ上記金属箔体表面に形成された上記金属中間層の領域を超えないことが好ましい。   Further, the region on the surface of the metal intermediate layer where the carbon thin film layer is formed includes at least a region where the active material layer containing the electrode active material is formed as described above, and the region formed on the surface of the metal foil body. It is preferable not to exceed the region of the metal intermediate layer.

このような製造方法の一例として、アルミニウムの金属箔体を0.3Paの減圧条件(真空度)下、印加電圧600V、アーク電流60Aの放電条件、真空チャンバー内温度150℃で3分間のアルゴンアッシング処理を実施した。その後ターゲットをTiにし、0.67Paの真空度、スパッタガスをアルゴンガス、上記放電条件及び上記真空チャンバー内温度(成膜温度)の下で30分間スパッタ蒸着を行うことにより、上記金属箔体表面上に100nmの金属中間層を形成した。次に、ターゲットをカーボンにし、真空度0.3Pa、上記スパッタガス、上記放電条件、及び上記成膜温度の下で3分間スパッタ蒸着を行うことにより、上記金属中間層表面上に70nmのカーボン薄膜層を形成した。   As an example of such a manufacturing method, argon ashing is performed on an aluminum metal foil body under a reduced pressure condition (vacuum degree) of 0.3 Pa, an applied voltage of 600 V, an arc current of 60 A, and a vacuum chamber temperature of 150 ° C. for 3 minutes. Processing was carried out. Thereafter, the surface of the metal foil body is changed to Ti with a vacuum degree of 0.67 Pa, sputtering gas is argon gas, sputter deposition is performed for 30 minutes under the discharge conditions and the temperature in the vacuum chamber (film formation temperature). A metal intermediate layer of 100 nm was formed thereon. Next, a carbon thin film having a thickness of 70 nm is formed on the surface of the metal intermediate layer by performing sputter deposition for 3 minutes under a vacuum of 0.3 Pa, the sputter gas, the discharge conditions, and the film formation temperature. A layer was formed.

このような製造方法により製造される二次電池用集電箔Aは、図1に示されるような積層構造を有する。図1は、金属箔体1の片側表面に金属中間層2及びカーボン薄膜層3が順に積層された態様を示した図である。かかる二次電池用集電箔Aでは、金属箔体1とカーボン薄膜層3との間に形成された金属中間層2を介して、該金属箔体1とカーボン薄膜層3とが強力に密着している。このため、カーボン薄膜層3の金属箔体1からの剥離が抑制され得る。   The secondary battery current collector foil A manufactured by such a manufacturing method has a laminated structure as shown in FIG. FIG. 1 is a view showing an aspect in which a metal intermediate layer 2 and a carbon thin film layer 3 are sequentially laminated on one side surface of a metal foil body 1. In the secondary battery current collector foil A, the metal foil body 1 and the carbon thin film layer 3 are strongly adhered to each other through the metal intermediate layer 2 formed between the metal foil body 1 and the carbon thin film layer 3. is doing. For this reason, peeling from the metal foil body 1 of the carbon thin film layer 3 can be suppressed.

また、成膜温度から常温にまで冷却される際に生じるカーボン薄膜層3の内部応力は圧縮応力であるが、同過程で生じる金属中間層2の内部応力が引張り応力であるために相殺されて、上記カーボン薄膜層3の圧縮応力は緩和される。結果、該圧縮応力による金属箔体1におけるシワの発生が防止されて、シワの発生に伴う電池性能の低下が防止され得る。   Further, the internal stress of the carbon thin film layer 3 generated when the film is cooled from the film forming temperature to room temperature is a compressive stress, but the internal stress of the metal intermediate layer 2 generated in the same process is canceled out because it is a tensile stress. The compressive stress of the carbon thin film layer 3 is relaxed. As a result, generation of wrinkles in the metal foil body 1 due to the compressive stress can be prevented, and deterioration of battery performance accompanying generation of wrinkles can be prevented.

また、カーボン薄膜層3は、金属箔体1に形成された金属中間層2の領域を逸脱しない領域で、該金属中間層2の表面に形成される。また、上記金属中間層2を構成する金属種は、リチウムイオン電池の充放電反応に曝されても、電解液中に溶出したり金属リチウムと合金化する虞のない化学的に不活性なものである。このため、万一、該カーボン薄膜層3に欠陥部が生じても、その直下に存在する金属中間層2によって金属箔体1が電解液と接触することは避けられる。結果、上記金属中間層及び/又は金属箔体の溶解、又は劣化に伴う電池性能の低下が防止され得る。   The carbon thin film layer 3 is formed on the surface of the metal intermediate layer 2 in a region that does not deviate from the region of the metal intermediate layer 2 formed on the metal foil body 1. In addition, the metal species constituting the metal intermediate layer 2 is chemically inactive even if it is exposed to a charge / discharge reaction of a lithium ion battery and does not dissolve in the electrolyte or alloy with metal lithium. It is. For this reason, even if a defect occurs in the carbon thin film layer 3, it is possible to avoid the metal foil body 1 from coming into contact with the electrolytic solution by the metal intermediate layer 2 existing immediately below. As a result, it is possible to prevent a decrease in battery performance due to dissolution or deterioration of the metal intermediate layer and / or the metal foil body.

次に、図2を参照にして、リチウムイオン電池100の構築(組立て)方法について説明する。リチウムイオン電池100の構築方法は、従来の構築方法と同様でよく、特に制限はない。以下に一例を示す。   Next, a construction (assembly) method of the lithium ion battery 100 will be described with reference to FIG. The construction method of the lithium ion battery 100 may be the same as the conventional construction method, and is not particularly limited. An example is shown below.

電極体10は、アルミニウム製の金属箔体1(図1参照)を用いてなる上記二次電池用集電箔A(以下、単に「正極集電箔A」という。)表面に正極活物質層を有する正極シート11と、長尺シート状のセパレータ(図示せず)と、銅製の金属箔体1を用いてなる上記二次電池用集電箔A(以下、単に「負極集電箔A」という。)の表面に負極活物質層を有する負極シート12とから構成される。 The electrode body 10 has a positive electrode active material on the surface of the current collector foil A for secondary batteries (hereinafter simply referred to as “positive electrode current collector foil A 1 ”) using an aluminum metal foil body 1 (see FIG. 1). The above-described secondary battery current collector foil A (hereinafter simply referred to as “negative electrode current collector foil A”) using a positive electrode sheet 11 having a layer, a long sheet-like separator (not shown), and a copper metal foil 1. 2 ”)) and a negative electrode sheet 12 having a negative electrode active material layer on the surface thereof.

正極集電箔Aに正極活物質層が形成された正極シート11、及び負極集電箔Aに負極活物質層が形成された負極シート12を、シート状のセパレータを間に挟みながら積層状に重ね合わせ、これを軸芯13の周囲に捲回することによって電極体10が作製される。なお、正極シート11および負極シート12のそれぞれにおいて、捲回する方向に沿う一方の端部(すなわち、シートの幅方向の一方の端部)には活物質層が塗布されておらず各集電箔A,Aがそれぞれ露出している。これらの露出部分同士が捲回電極体10の軸方向の両端部に対向するように配置して捲回する。 Positive electrode collector foil A 1 positive electrode sheet 11 positive electrode active material layer is formed on, and the negative electrode current collector foil A 2 negative electrode sheet 12 on which the anode active material layer formed on the laminated while sandwiching between the sheet-like separator The electrode body 10 is manufactured by superimposing and winding this around the shaft core 13. In each of the positive electrode sheet 11 and the negative electrode sheet 12, the active material layer is not applied to one end portion (that is, one end portion in the width direction of the sheet) along the winding direction. The foils A 1 and A 2 are exposed. The exposed portions are wound so as to be opposed to both ends of the wound electrode body 10 in the axial direction.

正極活物質としては、従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、LiMn,LiCoO,LiNiO等のリチウム遷移金属酸化物が挙げられる。また、これらのリチウム遷移金属酸化物における遷移金属の一部が少なくとも1種以上の別の金属元素で置換されたリチウム複合酸化物でもよい。この正極活物質には、上記リチウム酸化物に加え、電子伝導性を向上させるための導電材(例えばアセチレンブラック)、結着剤或いは増粘剤としてのポリテトラフルオロエチレン、カルボキシメチルセルロース等のバインダが含まれる。これらの混合物に溶剤または水を溶媒として加え、混練してペーストを調製する。得られた正極ペーストを、正極集電箔Aのカーボン薄膜層3が形成されている表面に均一に塗布し、該塗布物を適当な乾燥手段で乾燥する。乾燥後、必要に応じて適当なプレス処理を施して、正極活物質層の厚みや密度を適宜調整してもよい。このようにして、正極活物質層を有する正極シート11を作製する。 As the positive electrode active material, one type or two or more types of materials conventionally used in lithium ion batteries can be used without any particular limitation. Preferable examples include lithium transition metal oxides such as LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 . Further, a lithium composite oxide in which a part of the transition metal in these lithium transition metal oxides is substituted with at least one other metal element may be used. In addition to the lithium oxide, the positive electrode active material includes a conductive material (for example, acetylene black) for improving electronic conductivity, a binder such as polytetrafluoroethylene and carboxymethylcellulose as a binder or thickener. included. To these mixtures, a solvent or water is added as a solvent and kneaded to prepare a paste. The resulting positive electrode paste was uniformly applied to the surface of the carbon thin film layer 3 of the positive electrode current collector foil A 1 is formed, drying the coating material in a suitable drying means. After drying, an appropriate press treatment may be performed as necessary to appropriately adjust the thickness and density of the positive electrode active material layer. In this way, the positive electrode sheet 11 having the positive electrode active material layer is produced.

一方、負極シート12については、正極シート11と同様にして、負極活物質をペースト状に調製し、得られた負極ペーストを負極集電箔Aのカーボン薄膜層3が形成されている表面に均一に塗布、乾燥することにより負極活物質層を有する負極シート12を作製する。負極活物質としては、従来からリチウムイオン電池に用いられる物質の1種または2種を特に限定なく使用することができる。例えばグラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物、リチウム遷移金属窒化物等が挙げられるが、特に好ましくは炭素系材料である。上記負極活物質には、上記の炭素系材料等の主成分に加え、スチレンブタジエンラバー、カルボキシメチルセルロース等のバインダが含まれる。これらの混合物も溶剤又は水が添加されて、上記負極ペーストに調製される。 On the other hand, the negative electrode sheet 12, in the same manner as the positive electrode sheet 11, the negative electrode active material was prepared into a paste, the negative electrode paste obtained on the surface of the carbon thin film layer 3 of the negative electrode collector foil A 2 is formed A negative electrode sheet 12 having a negative electrode active material layer is prepared by uniformly applying and drying. As the negative electrode active material, one or two materials conventionally used in lithium ion batteries can be used without particular limitation. Examples thereof include carbon-based materials such as graphite carbon and amorphous carbon, lithium transition metal oxides, lithium transition metal nitrides, and the like, and carbon-based materials are particularly preferable. The negative electrode active material includes a binder such as styrene butadiene rubber and carboxymethyl cellulose in addition to the main components such as the carbon-based material. These mixtures are also prepared in the negative electrode paste by adding a solvent or water.

正負の各電極シート11,12間に使用される好適なシート状のセパレータとしては多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。なお、電解質として固体電解質もしくはゲル状電解質を使用する場合には、セパレータが不要な場合(すなわちこの場合には電解質自体がセパレータとして機能し得る。)があり得る。   Suitable sheet-like separators used between the positive and negative electrode sheets 11 and 12 include those made of a porous polyolefin resin. When a solid electrolyte or a gel electrolyte is used as the electrolyte, a separator may not be necessary (that is, in this case, the electrolyte itself can function as a separator).

軸芯13を使用する場合には、例えば、用いる電解質に対して耐性を示す各種ポリマー材料を適宜選択して作製すればよい。   When the shaft core 13 is used, for example, various polymer materials exhibiting resistance to the electrolyte to be used may be selected as appropriate.

電極体10の軸方向の一端部における露出した正極集電箔Aと正極集電端子40とを付設(接合)する。また、上記電極体10の他端部における露出した負極集電箔Aと負極集電端子50とを付設(接合)する。接合方法としては、例えば超音波溶接法等の各種溶接法が好適に採用される。例えば、電極体10の軸方向の各端部が所定幅だけ溶接装置のホーンとアンビルによって挟まれ、超音波溶接される。 Attaching a positive electrode current collector foil A 1 and the positive electrode current collector terminal 40 exposed at one axial end of the electrode body 10 (joined). Further, the exposed negative electrode current collector foil A 2 and the negative electrode current collector terminal 50 at the other end of the electrode body 10 are attached (joined). As a joining method, for example, various welding methods such as an ultrasonic welding method are suitably employed. For example, each end of the electrode body 10 in the axial direction is sandwiched between a horn and an anvil of a welding apparatus by a predetermined width, and ultrasonic welding is performed.

正極集電端子40の構成材料として、好ましくは正極集電箔Aと同種の金属材料(好ましくはアルミニウム)である。一方、負極集電端子50の構成材料として、好ましくは負極集電箔Aと同種の金属材料(好ましくは銅)である。 As the constituent material of the positive electrode current collector terminal 40 is preferably a positive electrode current collector foil A 1 and the same kind of metal material (preferably aluminum). On the other hand, as the material of the negative electrode current collector terminal 50 is preferably a negative electrode current collector foil A 2 and the same kind of metallic material (preferably copper).

次に、各集電端子40、50が軸方向の両端に付設された電極体10を、少なくとも一方が開口した電池容器20に収容する。図2に示されるリチウムイオン電池100では、電極体10は、正極集電端子40が開口部21から突出するように軸方向が垂直方向に沿うように収容されている。   Next, the electrode body 10 in which the current collecting terminals 40 and 50 are attached to both ends in the axial direction is accommodated in the battery container 20 having at least one of the openings. In the lithium ion battery 100 shown in FIG. 2, the electrode body 10 is accommodated such that the axial direction is along the vertical direction so that the positive electrode current collecting terminal 40 protrudes from the opening 21.

次いで、上記電池容器20内にエチレンカーボネートやジエチルカーボネート等の非水溶媒にフッ素を構成元素とする各種リチウム塩(例えばLiPF)の電解質を溶解した電解液を注ぎ入れる。 Next, an electrolytic solution in which various lithium salts (for example, LiPF 6 ) containing fluorine as a constituent element are dissolved in a nonaqueous solvent such as ethylene carbonate or diethyl carbonate is poured into the battery container 20.

最後に、電池容器20の開口部21を、中心部が穿孔された蓋体30によって閉塞する。蓋体30の中央部の穿孔に上記正極集電端子40を挿通させて、ナット31で蓋体30の上面から固定する。開口部21の周縁部と蓋体30の縁部とを溶接する。   Finally, the opening 21 of the battery container 20 is closed with a lid 30 having a perforated center. The positive electrode current collector terminal 40 is inserted through the hole in the center of the lid body 30 and fixed from the upper surface of the lid body 30 with a nut 31. The peripheral edge of the opening 21 and the edge of the lid 30 are welded.

電池容器20および蓋体30の材質は問わないが、軽量で熱伝導性が良好なアルミニウム、ステンレス鋼、ニッケルメッキ鋼等の金属性材料が好ましい。また、電池容器20の形状も、直方体形状の角型(箱型)、円筒形状の円筒型等いずれでもよい。電池容器20が角型の場合には、電極体10を側面方向から押し潰し、扁平形状にして収容すればよい。なお、図2に示されるリチウムイオン電池100の電池容器20は、一方が閉じた有底の円筒体であり、正極集電端子40のみが電池容器20から突出した構成であるが、両端が開口して各開口端部から正極および負極の集電端子が突出した円筒型電池でもよい。   The material of the battery container 20 and the lid 30 is not limited, but a metal material such as aluminum, stainless steel, nickel-plated steel, etc., which is lightweight and has good thermal conductivity is preferable. Further, the shape of the battery container 20 may be any of a rectangular parallelepiped square shape (box shape), a cylindrical shape, and the like. In the case where the battery container 20 is rectangular, the electrode body 10 may be crushed from the side surface direction and stored in a flat shape. The battery container 20 of the lithium ion battery 100 shown in FIG. 2 is a closed-bottomed cylindrical body, and only the positive electrode current collecting terminal 40 protrudes from the battery container 20, but both ends are open. Then, a cylindrical battery in which the positive and negative current collecting terminals protrude from the respective opening end portions may be used.

以上のようにして、リチウムイオン電池100が構築される。   The lithium ion battery 100 is constructed as described above.

本発明に係る二次電池用集電箔Aを備えた二次電池(例えばリチウムイオン電池)は、上述のように良好な電池性能を維持できることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用され得る。したがって本発明は、図3に模式的に示されるように、かかる二次電池(複数の二次電池が接続された組電池を含む)100を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)Cを提供する。   Since a secondary battery (for example, a lithium ion battery) provided with the secondary battery current collector foil A according to the present invention can maintain good battery performance as described above, a motor (in particular, a motor mounted on a vehicle such as an automobile ( It can be suitably used as a power source for an electric motor. Therefore, as schematically shown in FIG. 3, the present invention provides a vehicle (typically an automobile, particularly a hybrid) including such a secondary battery (including an assembled battery to which a plurality of secondary batteries are connected) 100 as a power source. An automobile equipped with an electric motor such as an automobile, an electric automobile, and a fuel cell automobile) C is provided.

一実施形態に係る二次電池用集電箔Aの積層構造を示す模式的な断面図である。It is typical sectional drawing which shows the laminated structure of the collector foil A for secondary batteries which concerns on one Embodiment. 一実施形態に係るリチウム二次電池100の構造を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the structure of the lithium secondary battery 100 which concerns on one Embodiment. 本発明に係る二次電池を備えた車両(自動車)の一例を模式的に示す側面図である。It is a side view which shows typically an example of the vehicle (automobile) provided with the secondary battery which concerns on this invention.

符号の説明Explanation of symbols

A 二次電池用集電箔
正極集電箔
負極集電箔
C 車両(自動車)
1 金属箔体
2 金属中間層
3 カーボン薄膜層
10 電極体
11 正極シート
12 負極シート
20 電池容器
40 正極集電端子
50 負極集電端子
100 リチウムイオン電池(二次電池)
A Current collecting foil for secondary battery A 1 Positive current collecting foil A 2 Negative current collecting foil C Vehicle (automobile)
DESCRIPTION OF SYMBOLS 1 Metal foil body 2 Metal intermediate layer 3 Carbon thin film layer 10 Electrode body 11 Positive electrode sheet 12 Negative electrode sheet 20 Battery container 40 Positive electrode current collection terminal 50 Negative electrode current collection terminal 100 Lithium ion battery (secondary battery)

Claims (10)

二次電池の電極集電体として用いられる集電箔であって、
導電性を有する金属箔体と該金属箔体に成膜されたカーボンの薄膜層とを備え、
前記金属箔体と前記カーボン薄膜層との間には、該金属箔体及びカーボン薄膜層のいずれとも密着する金属中間層が形成されている、二次電池用集電箔。
A current collector foil used as an electrode current collector of a secondary battery,
A conductive metal foil and a carbon thin film layer formed on the metal foil;
A current collector foil for a secondary battery, wherein a metal intermediate layer is formed between the metal foil body and the carbon thin film layer so as to be in close contact with both the metal foil body and the carbon thin film layer.
前記金属中間層は、リチウムイオン電池の充電時における正極電位の下で溶解しない金属種により構成されている、リチウムイオン電池の正極集電体として用いられる請求項1に記載の二次電池用集電箔。   2. The secondary battery current collector according to claim 1, wherein the metal intermediate layer is used as a positive electrode current collector of a lithium ion battery, which is made of a metal species that does not dissolve under a positive electrode potential during charging of the lithium ion battery. Electric foil. 前記金属種は、Ti、Nb、Ta、Zr、Hf、及びWから成る群から選択される1種又は2種以上である、請求項2に記載の二次電池用集電箔。   The current collector foil for a secondary battery according to claim 2, wherein the metal species is one or more selected from the group consisting of Ti, Nb, Ta, Zr, Hf, and W. 前記金属中間層は、リチウムイオン電池の放電時における負極電位の下で溶解しない金属種、または充電時における負極電位の下でリチウムと合金化しない金属種により構成されている、リチウムイオン電池の負極集電体として用いられる請求項1に記載の二次電池用集電箔。   The metal intermediate layer is composed of a metal species that does not dissolve under a negative electrode potential during discharge of a lithium ion battery, or a metal species that does not alloy with lithium under a negative electrode potential during charging. The current collector foil for a secondary battery according to claim 1, which is used as a current collector. 前記金属種は、Cu及び/又はNiである、請求項4に記載の二次電池用集電箔。   The current collector foil for a secondary battery according to claim 4, wherein the metal species is Cu and / or Ni. 請求項1〜5のいずれかに記載の二次電池用集電箔を備える、二次電池。   A secondary battery comprising the secondary battery current collector foil according to claim 1. 請求項6に記載の二次電池を備える、車両。   A vehicle comprising the secondary battery according to claim 6. 二次電池の電極集電体として用いられる集電箔を製造する方法であって:
導電性を有する金属箔体を用意すること;
前記金属箔体の表面に、該金属箔体及びカーボンから成る薄膜のいずれとも密着する金属から成る金属中間層を形成すること;及び
前記金属中間層の表面に、カーボン薄膜層を形成すること;
を包含する、二次電池用集電箔の製造方法。
A method for producing a current collector foil used as an electrode current collector of a secondary battery, comprising:
Preparing a conductive metal foil;
Forming on the surface of the metal foil body a metal intermediate layer made of metal that is in close contact with both the metal foil body and the thin film made of carbon; and forming a carbon thin film layer on the surface of the metal intermediate layer;
A method for producing a current collector foil for a secondary battery.
前記金属中間層の形成は、所定の金属種からなる蒸着用金属材料を使用した金属蒸着により行われ、ここで該金属蒸着は、該金属種から形成される前記金属中間層の内部応力が引張り応力となる条件で実施される、請求項8に記載の製造方法。   The formation of the metal intermediate layer is performed by metal vapor deposition using a metal material for vapor deposition made of a predetermined metal species, where the internal stress of the metal intermediate layer formed from the metal species is tensile. The manufacturing method of Claim 8 implemented on the conditions used as stress. 前記金属蒸着はスパッタ蒸着により行われ、ここでスパッタガス圧は、前記形成される金属中間層の内部応力が引張り応力となるように設定される、請求項9に記載の製造方法。   The manufacturing method according to claim 9, wherein the metal deposition is performed by sputter deposition, wherein the sputtering gas pressure is set so that an internal stress of the formed metal intermediate layer becomes a tensile stress.
JP2008133907A 2008-05-22 2008-05-22 Current collector foil for secondary battery and method for producing the same Expired - Fee Related JP4986077B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008133907A JP4986077B2 (en) 2008-05-22 2008-05-22 Current collector foil for secondary battery and method for producing the same
PCT/IB2009/000421 WO2009141691A2 (en) 2008-05-22 2009-03-04 Secondary-battery current collector foil and method of manufacturing the same
CN2009801185500A CN102037592A (en) 2008-05-22 2009-03-04 Secondary-battery current collector foil and method of manufacturing the same
KR1020107025939A KR101224760B1 (en) 2008-05-22 2009-03-04 Secondary-battery current collector foil and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133907A JP4986077B2 (en) 2008-05-22 2008-05-22 Current collector foil for secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009283275A true JP2009283275A (en) 2009-12-03
JP4986077B2 JP4986077B2 (en) 2012-07-25

Family

ID=41226770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133907A Expired - Fee Related JP4986077B2 (en) 2008-05-22 2008-05-22 Current collector foil for secondary battery and method for producing the same

Country Status (4)

Country Link
JP (1) JP4986077B2 (en)
KR (1) KR101224760B1 (en)
CN (1) CN102037592A (en)
WO (1) WO2009141691A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074166A (en) * 2010-09-28 2012-04-12 Hitachi Ltd Lithium secondary battery having stress relaxation layer
WO2012101693A1 (en) * 2011-01-28 2012-08-02 パナソニック株式会社 Negative electrode collector for lithium ion batteries, and lithium ion battery
WO2012115050A1 (en) 2011-02-21 2012-08-30 日本蓄電器工業株式会社 Electrode foil, current collector, electrode, and energy storage element using same
JP5058381B1 (en) * 2012-02-09 2012-10-24 日本蓄電器工業株式会社 Current collector and electrode, and power storage device using the same
JP2013165250A (en) * 2012-06-07 2013-08-22 Japan Capacitor Industrial Co Ltd Collector and electrode, and power storage element using the same
WO2018101305A1 (en) * 2016-12-02 2018-06-07 日産化学工業株式会社 Undercoat layer for energy storage device, and undercoat foil for energy storage device electrode
JP2018517843A (en) * 2015-04-30 2018-07-05 フォン アルデンヌ ゲーエムベーハー Method and coating equipment
CN110048125A (en) * 2019-03-19 2019-07-23 长沙市秒冲电池技术与材料研究所 Power battery, negative electrode tab, cathode composite foil and preparation method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958418A (en) * 2010-03-04 2011-01-26 常德力元新材料有限责任公司 Electrode current collector material of lithium ion battery and preparation method thereof
CN103427086B (en) * 2012-05-17 2016-03-30 清华大学 Collector preparation method
CN104388902A (en) * 2014-12-03 2015-03-04 中国科学院宁波材料技术与工程研究所 Carbon-based coating having high electrical conductivity on surface of substrate and preparation method of coating
CN104701481B (en) * 2014-12-23 2018-07-24 神工光电科技有限公司 Lithium ion cell polar ear and preparation method thereof
CN105406085A (en) * 2015-11-30 2016-03-16 山东精工电子科技有限公司 Lithium battery copper foil pole piece and preparation method thereof
US10199655B2 (en) 2015-11-30 2019-02-05 Nissan North America, Inc. Electrode structure having structured conductive buffer layer
US10038195B2 (en) 2015-11-30 2018-07-31 Nissan North America, Inc. Electrode structure having structured conductive buffer layer
US10103386B2 (en) 2015-12-15 2018-10-16 Nissan North America, Inc. Electrode with modified current collector structure and method of making the same
US10319987B2 (en) 2015-12-21 2019-06-11 Nissan North America, Inc. Active material with expansion structure for use in lithium ion batteries
US9728786B2 (en) 2015-12-21 2017-08-08 Nissan North America, Inc. Electrode having active material encased in conductive net
CN107437625A (en) * 2016-05-25 2017-12-05 中国科学院物理研究所 A kind of two-sided heterogeneous collector and preparation method thereof, lithium battery
FR3093112A1 (en) * 2019-02-21 2020-08-28 Saft Metal foil for an electrochemical element electrode comprising a material based on Ti, C and H
CN110943215B (en) 2019-05-31 2020-12-04 宁德时代新能源科技股份有限公司 Lithium ion secondary battery
CN111180737B (en) * 2019-05-31 2021-08-03 宁德时代新能源科技股份有限公司 Lithium ion secondary battery, battery cell and negative pole piece
CN113036154A (en) * 2021-03-24 2021-06-25 赛屋(天津)涂层技术有限公司 Current collector and electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188951A (en) * 1996-12-24 1998-07-21 Komatsu Ltd Electrode plate and manufacture thereof
JPH11250900A (en) * 1998-02-26 1999-09-17 Sony Corp Manufacture and manufacturing device for electrode for nonaqueous electrolyte secondary battery, electrode, and electrolyte secondary battery using its electrode
JP2001316800A (en) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd Amorphous carbon coated member
JP2003109582A (en) * 2001-09-27 2003-04-11 Hitachi Metals Ltd Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509254A (en) * 1983-05-13 1985-04-09 The Dow Chemical Company Method for molybdenum-coated aluminum current collector for alkali metal/sulfur battery cells
AU7951000A (en) * 1999-10-22 2001-05-08 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US7241533B1 (en) * 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7816032B2 (en) * 2003-11-28 2010-10-19 Panasonic Corporation Energy device and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188951A (en) * 1996-12-24 1998-07-21 Komatsu Ltd Electrode plate and manufacture thereof
JPH11250900A (en) * 1998-02-26 1999-09-17 Sony Corp Manufacture and manufacturing device for electrode for nonaqueous electrolyte secondary battery, electrode, and electrolyte secondary battery using its electrode
JP2001316800A (en) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd Amorphous carbon coated member
JP2003109582A (en) * 2001-09-27 2003-04-11 Hitachi Metals Ltd Laminated strip material, laminated strip material for battery using the same, and manufacturing method of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074166A (en) * 2010-09-28 2012-04-12 Hitachi Ltd Lithium secondary battery having stress relaxation layer
KR101311076B1 (en) * 2010-09-28 2013-09-25 가부시키가이샤 히타치세이사쿠쇼 Lithium secondary battery having stress relaxation layer
WO2012101693A1 (en) * 2011-01-28 2012-08-02 パナソニック株式会社 Negative electrode collector for lithium ion batteries, and lithium ion battery
WO2012115050A1 (en) 2011-02-21 2012-08-30 日本蓄電器工業株式会社 Electrode foil, current collector, electrode, and energy storage element using same
US9418796B2 (en) 2011-02-21 2016-08-16 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
JP5058381B1 (en) * 2012-02-09 2012-10-24 日本蓄電器工業株式会社 Current collector and electrode, and power storage device using the same
JP2013165250A (en) * 2012-06-07 2013-08-22 Japan Capacitor Industrial Co Ltd Collector and electrode, and power storage element using the same
JP2018517843A (en) * 2015-04-30 2018-07-05 フォン アルデンヌ ゲーエムベーハー Method and coating equipment
JP2019153591A (en) * 2015-04-30 2019-09-12 フォン アルデンヌ アセット ゲーエムベーハー ウント コー カーゲー Method and coating arrangement
US10745797B2 (en) 2015-04-30 2020-08-18 VON ARDENNE Asset GmbH & Co. KG Method and coating arrangement
WO2018101305A1 (en) * 2016-12-02 2018-06-07 日産化学工業株式会社 Undercoat layer for energy storage device, and undercoat foil for energy storage device electrode
CN110048125A (en) * 2019-03-19 2019-07-23 长沙市秒冲电池技术与材料研究所 Power battery, negative electrode tab, cathode composite foil and preparation method thereof

Also Published As

Publication number Publication date
KR20100134128A (en) 2010-12-22
KR101224760B1 (en) 2013-01-21
WO2009141691A3 (en) 2010-01-14
CN102037592A (en) 2011-04-27
JP4986077B2 (en) 2012-07-25
WO2009141691A2 (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP4986077B2 (en) Current collector foil for secondary battery and method for producing the same
JP5207026B2 (en) Battery electrode current collector and battery electrode manufacturing method including the electrode current collector
US9379387B2 (en) Cathode current collector coated with primer and magnesium secondary battery comprising the same
US9812706B2 (en) Protected active metal electrode and device with the electrode
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
US20110200884A1 (en) Positive current collector and manufacturing method thereof
JP5304796B2 (en) Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, battery-mounted device, and method for producing positive electrode plate for lithium ion secondary battery
US8221918B2 (en) Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
JP5034651B2 (en) Non-aqueous electrolyte battery current collector, method for producing current collector for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
WO2011089722A1 (en) Cathode and method for manufacturing the same
JP5351618B2 (en) Negative electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JP2010086866A (en) Electrode sheet and method of manufacturing the same
JP2011096667A (en) Positive electrode collector and method of manufacturing the same
JP2010257574A (en) Positive electrode current collector for battery, and method for manufacturing the same
JP2013165250A (en) Collector and electrode, and power storage element using the same
JP5058381B1 (en) Current collector and electrode, and power storage device using the same
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP3707617B2 (en) Negative electrode and battery using the same
JP2005085632A (en) Battery
JP2002313326A (en) Manufacturing method of lithium secondary battery
JP5097260B2 (en) Method for producing positive electrode for lithium ion secondary battery and positive electrode current collector for lithium ion secondary battery
JP2009176511A (en) Charge/discharge method of lithium ion secondary battery
JP5238195B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010140703A (en) Nonaqueous electrolyte battery
JP2009218123A (en) Electrode for lithium battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120418

R151 Written notification of patent or utility model registration

Ref document number: 4986077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees