JP2010140703A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2010140703A
JP2010140703A JP2008314277A JP2008314277A JP2010140703A JP 2010140703 A JP2010140703 A JP 2010140703A JP 2008314277 A JP2008314277 A JP 2008314277A JP 2008314277 A JP2008314277 A JP 2008314277A JP 2010140703 A JP2010140703 A JP 2010140703A
Authority
JP
Japan
Prior art keywords
negative electrode
thin film
positive electrode
metal thin
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008314277A
Other languages
Japanese (ja)
Inventor
Takeshi Kanno
毅 寒野
Hideaki Awata
英章 粟田
Osamu Mizuno
修 水野
Mitsuho Ueda
光保 上田
Rikizo Ikuta
力三 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008314277A priority Critical patent/JP2010140703A/en
Publication of JP2010140703A publication Critical patent/JP2010140703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery capable of alleviating local dendrite growth of metal Li in its anode, whatever material is used for an anode active material. <P>SOLUTION: The lithium secondary battery is provided with an anode, a cathode, and nonaqueous electrolyte located between the anode and the cathode, with a metal thin film formed on a face of the anode at an opposite side of the nonaqueous electrolyte. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質電池に関し、より具体的には、金属薄膜を備えるリチウム二次電池に関する。   The present invention relates to a nonaqueous electrolyte battery, and more specifically to a lithium secondary battery including a metal thin film.

リチウム二次電池においては、充電時に正極から固体電解質を経由したリチウムイオンが金属リチウムとなって負極に析出し、放電時に金属リチウムがイオンとなって負極から固体電解質を経由して、正極に堆積される。大きな電流で充電する際、負極における金属リチウムの析出反応が負極の内面側(固体電解質側または電気化学反応が生じる側)で均一に起こりにくく、電流が集中する箇所に金属リチウムのデンドライトが成長するという問題がある。デンドライトは樹枝状であり、成長すると固体電解質を貫通し、正極にまで届いて短絡を生じる。   In lithium secondary batteries, lithium ions from the positive electrode via the solid electrolyte are deposited as metal lithium and deposited on the negative electrode during charging, and metal lithium is ionized during discharge and deposited on the positive electrode from the negative electrode via the solid electrolyte. Is done. When charging with a large current, the lithium metal deposition reaction on the negative electrode is less likely to occur uniformly on the inner surface side of the negative electrode (the solid electrolyte side or the side where the electrochemical reaction occurs), and metal lithium dendrites grow where the current is concentrated. There is a problem. Dendrites are dendritic and, when grown, penetrate the solid electrolyte and reach the positive electrode, causing a short circuit.

これを防止するために、負極に、リチウムイオンを出し入れできるイオンサイトを持つ物質(すなわち黒鉛、遷移金属硫化物等)を用いたリチウム二次電池の提案がなされている(特許文献1)。これにより、金属リチウムのデンドライト成長は低減される。
特開平6−338345号公報
In order to prevent this, a lithium secondary battery using a substance having an ion site capable of taking in and out lithium ions (that is, graphite, transition metal sulfide, etc.) in the negative electrode has been proposed (Patent Document 1). This reduces dendritic growth of metallic lithium.
JP-A-6-338345

(1)しかし、上記のようなリチウムイオンサイトを持つ物質は限られているし、そのような物質、たとえば黒鉛等を負極に用いた場合には、電池容量密度が小さくなるという欠点もある。したがって、負極を構成する材料の選択に頼らず、金属リチウムのデンドライト成長が低減される必要があるという問題がある。   (1) However, materials having lithium ion sites as described above are limited, and when such a material, for example, graphite or the like is used for the negative electrode, there is a disadvantage that the battery capacity density is reduced. Therefore, there is a problem that the dendrite growth of metallic lithium needs to be reduced without depending on the selection of the material constituting the negative electrode.

(2)また、本発明が対象とする金属リチウムのデンドライト成長の原因は、負極と負極集電体との接触の圧力等に起因する電気抵抗分布のばらつきにあることを、本願発明者らが発見した。すなわち、図2に示すように、負極103と負極集電体112とは押圧により密着しているが、押圧が十分でない場合、負極103と負極集電体112との間の接触圧に、ばらつきを生じる。
具体的には、接触圧が大きい箇所では電気抵抗が小さく、大きな電流が流れるのに対して、接触圧が小さい箇所では電気抵抗が大きく、電流が流れにくい。そして、接触圧が小さい箇所で、充電時に優先的に金属リチウムの析出が生じやすくなるのである。
(2) Further, the inventors of the present application indicate that the cause of dendritic growth of metallic lithium targeted by the present invention is a variation in electrical resistance distribution caused by the pressure of contact between the negative electrode and the negative electrode current collector. discovered. That is, as shown in FIG. 2, the negative electrode 103 and the negative electrode current collector 112 are in close contact with each other by pressing, but when the pressing is not sufficient, the contact pressure between the negative electrode 103 and the negative electrode current collector 112 varies. Produce.
Specifically, the electrical resistance is small and a large current flows at a location where the contact pressure is large, whereas the electrical resistance is large and the current does not easily flow at a location where the contact pressure is small. And in the place where a contact pressure is small, precipitation of metallic lithium preferentially arises at the time of charge.

このような事実を原因とする金属リチウムのデンドライト成長を抑制するためには、負極と負極集電体との押圧を一様に強くする手段が考えられる。押圧を一様におこなえば、ばらつきを低減しやすいからである。しかし、(i)比較的もろい材料からなる場合が多い固体電解質、(ii)機械的強度の弱いリチウム複合酸化物の焼結体からなる正極、又は(iii)蒸着法、スパッタリング法若しくはパルスレーザーデポジション法等の気相法により形成されるような機械的強度の弱い薄膜型正極を備えるようなリチウム二次電池では、強い押圧力をかけることが困難である。その結果、このようなリチウム二次電池では、特に、負極と負極集電体との間の接触圧にばらつきを生じたままとなるという問題が、本願発明者らにより明らかにされた。   In order to suppress dendrite growth of metallic lithium caused by such a fact, a means for uniformly increasing the pressure between the negative electrode and the negative electrode current collector can be considered. This is because if the pressing is performed uniformly, the variation can be easily reduced. However, (i) a solid electrolyte, which is often made of a relatively fragile material, (ii) a positive electrode made of a sintered compact of lithium composite oxide having a low mechanical strength, or (iii) a vapor deposition method, a sputtering method or a pulsed laser device. It is difficult to apply a strong pressing force to a lithium secondary battery including a thin-film positive electrode having a low mechanical strength that is formed by a vapor phase method such as a position method. As a result, the inventors of the present invention have clarified the problem that the contact pressure between the negative electrode and the negative electrode current collector remains uneven in such a lithium secondary battery.

本発明は、非水電解質電池の負極における局所的な金属Liのデンドライト成長を低減することを目的とする。また、非水電解質電池に押圧をせずに、金属リチウムのデンドライト成長を低減することを目的とする。 An object of this invention is to reduce the local dendritic growth of the metal Li in the negative electrode of a nonaqueous electrolyte battery. It is another object of the present invention to reduce dendritic growth of metallic lithium without pressing the nonaqueous electrolyte battery.

(1)本発明の非水電解質電池は、負極と、正極と、前記負極および前記正極の間に位置する非水電解質とを備え、負極の非水電解質側と反対側の面に金属薄膜が形成されていることを特徴とする。   (1) The nonaqueous electrolyte battery of the present invention comprises a negative electrode, a positive electrode, and a nonaqueous electrolyte positioned between the negative electrode and the positive electrode, and a metal thin film is provided on the surface of the negative electrode opposite to the nonaqueous electrolyte side. It is formed.

上記の本発明は、リチウム二次電池の負極の内側面における電流集中の大きな原因の一つに、当該負極と負極集電体との界面、すなわち負極の外側面における電気抵抗の不均一分布があるという発見に基づいている。上記の構造を採用すれば、金属薄膜によって負極の外面が電子伝導層となり、負極の内面側における電気抵抗分布のばらつきが緩和されるし、また、負極を構成する負極活物質と金属薄膜との間には確実な接触が常に保たれる。したがって、電気抵抗分布の不均一性が低減され、金属リチウムのデンドライト成長が低減する。 In the present invention described above, one of the major causes of current concentration on the inner surface of the negative electrode of the lithium secondary battery is the non-uniform distribution of electrical resistance at the interface between the negative electrode and the negative electrode current collector, that is, the outer surface of the negative electrode. Based on the discovery that there is. If the above structure is adopted, the outer surface of the negative electrode becomes an electron conductive layer by the metal thin film, the variation in the electrical resistance distribution on the inner surface side of the negative electrode is alleviated, and the negative electrode active material constituting the negative electrode and the metal thin film There is always a reliable contact between them. Therefore, the non-uniformity of the electrical resistance distribution is reduced and dendritic growth of metallic lithium is reduced.

さらに、従来技術が開示するようなリチウム二次電池であれば、電気抵抗の分布にばらつきを生じないようにすることを目的として、負極集電体と負極とがより密着するように強い力で押圧することがおこなわれていたが、本発明の構成であれば、強い力で押圧する必要がなくなる。その結果、機械的強度の点で弱い薄型のリチウム二次電池であっても、そのような押圧が不要となる。   Furthermore, in the case of a lithium secondary battery as disclosed in the prior art, a strong force is used so that the negative electrode current collector and the negative electrode are more closely attached in order to prevent variation in the distribution of electric resistance. Although pressing has been performed, the configuration of the present invention eliminates the need for pressing with a strong force. As a result, such pressing is not required even for thin lithium secondary batteries that are weak in mechanical strength.

本発明を、図3を用いてさらに具体的に説明する。本発明では、図3に示すように、負極3に金属薄膜5が蒸着等により形成される。金属薄膜5における電気伝導の媒体(キャリア)は電子eである。電子は、リチウムイオンに比べて、移動速度が速く、金属薄膜の面内方向の速度成分をもって速やかに移動するので、自動的に電流密度のばらつき等を解消しやすい。そのため、たとえ金属薄膜と負極集電体12との間に接触圧のばらつきを生じても、金属薄膜5/負極3の界面では、電流集中は生じない。 The present invention will be described more specifically with reference to FIG. In the present invention, as shown in FIG. 3, a metal thin film 5 is formed on the negative electrode 3 by vapor deposition or the like. The electrically conductive medium (carrier) in the metal thin film 5 is an electron e . Electrons move faster than lithium ions and move quickly with a velocity component in the in-plane direction of the metal thin film, so it is easy to automatically eliminate variations in current density. Therefore, even if the contact pressure varies between the metal thin film and the negative electrode current collector 12, current concentration does not occur at the interface between the metal thin film 5 and the negative electrode 3.

なお、上記のリチウム二次電池の負極活物質は、特定の材料である必要はない。このため、たとえば負極活物質に金属リチウムを用いることができ、十分高い電池容量密度を確保することができる。   Note that the negative electrode active material of the lithium secondary battery does not need to be a specific material. For this reason, for example, metallic lithium can be used for the negative electrode active material, and a sufficiently high battery capacity density can be secured.

(2)本発明における金属薄膜は、蒸着法、スパッタリング法又はパルスレーザーデポジション法により形成することができる。
このような方法は、一般に、気相法と呼ばれる。これらの方法によれば、負極活物質に金属薄膜を緻密に備えさせることができる。したがって、負極活物質と金属薄膜との間の電気抵抗を極めて小さくすることができる。
(2) The metal thin film in the present invention can be formed by vapor deposition, sputtering, or pulsed laser deposition.
Such a method is generally called a gas phase method. According to these methods, the metal thin film can be densely provided on the negative electrode active material. Therefore, the electrical resistance between the negative electrode active material and the metal thin film can be extremely reduced.

(3)本発明においては、金属薄膜の厚みを、0.1μm以上5μm以下とすることが好ましい。
金属薄膜の厚みが0.1μm未満の場合、金属薄膜内における電子の薄膜面内方向に沿う移動距離が不足して、電気抵抗の不均一分布が均等化される程度が不十分になる。また、金属薄膜が5μmを超えると、蒸着等の成膜時間が長時間になり、製造時間を長引かせる。
(3) In the present invention, the thickness of the metal thin film is preferably 0.1 μm or more and 5 μm or less.
When the thickness of the metal thin film is less than 0.1 μm, the movement distance of the electrons in the metal thin film along the in-plane direction of the thin film is insufficient, and the degree of equalization of the uneven distribution of electrical resistance becomes insufficient. On the other hand, if the metal thin film exceeds 5 μm, the film formation time such as vapor deposition becomes long and the manufacturing time is prolonged.

(4)本発明の非水電解質電池は、更に、負極集電体を備え、その負極集電体が金属薄膜上に配されていることを特徴とする。
このような構成によれば、負極と負極集電体との間における電気抵抗の分布が小さい。したがって、非水電解質電池を充電するときに、電流分布が小さくなるので、金属リチウムのデンドライト成長が低減される。
(4) The nonaqueous electrolyte battery of the present invention further includes a negative electrode current collector, and the negative electrode current collector is disposed on a metal thin film.
According to such a configuration, the distribution of electrical resistance between the negative electrode and the negative electrode current collector is small. Therefore, when the non-aqueous electrolyte battery is charged, the current distribution is reduced, so that dendritic growth of metallic lithium is reduced.

(5)本発明の非水電解質電池においては、非水電解質を固体電解質で構成することができる。
非水電解質を固体電解質で構成されている場合には、機械的強度は弱い。したがって、このような固体電解質を備えた非水電解質電池においては、負極集電体と負極との間の集電を確保するために、強い力で押圧することをおこなえない。しかし、本発明の金属薄膜が備えられている場合には、集電を確保するための押圧がほとんど必要ないので、非水電解質を固体電解質とする非水電解質電池にあっては、本発明の効果が特に顕著に得られる。
(5) In the nonaqueous electrolyte battery of the present invention, the nonaqueous electrolyte can be composed of a solid electrolyte.
When the nonaqueous electrolyte is composed of a solid electrolyte, the mechanical strength is weak. Therefore, in a nonaqueous electrolyte battery provided with such a solid electrolyte, it is not possible to press with a strong force in order to secure current collection between the negative electrode current collector and the negative electrode. However, in the case where the metal thin film of the present invention is provided, there is almost no need for pressing to secure current collection. Therefore, in a non-aqueous electrolyte battery using a non-aqueous electrolyte as a solid electrolyte, The effect is particularly remarkable.

(6)本発明の非水電解質電池においては、正極をリチウム複合酸化物の焼結体で構成することができる。あるいは、本発明の非水電解質電池においては、正極を、蒸着法、スパッタリング法、パルスレーザーデポジション法により形成される薄膜型正極で構成することができる。   (6) In the nonaqueous electrolyte battery of the present invention, the positive electrode can be composed of a sintered body of a lithium composite oxide. Alternatively, in the nonaqueous electrolyte battery of the present invention, the positive electrode can be constituted by a thin film type positive electrode formed by a vapor deposition method, a sputtering method, or a pulse laser deposition method.

正極がリチウム複合酸化物の焼結体、又は上記のような薄膜型正極で構成されている場合には、正極の機械的強度がきわめて弱い。したがって、このような正極を備えた非水電解質電池においては、負極集電体と負極との間の集電を確保するために、強い力で押圧することをおこないにくい。しかし、本発明の金属薄膜が備えられている場合には、集電を確保するための押圧がほとんど必要ないので、このような非水電解質電池においては本発明の効果が特に顕著に得られる。   When the positive electrode is composed of a lithium composite oxide sintered body or a thin film positive electrode as described above, the mechanical strength of the positive electrode is extremely weak. Therefore, in a nonaqueous electrolyte battery equipped with such a positive electrode, it is difficult to press with a strong force in order to secure current collection between the negative electrode current collector and the negative electrode. However, in the case where the metal thin film of the present invention is provided, almost no pressing is required to secure current collection, and thus the effect of the present invention can be obtained particularly remarkably in such a nonaqueous electrolyte battery.

本発明によれば、負極と負極集電体との間の集電性が良好であるので、非水電解質電池を押圧する必要がなくなる。また、本発明の非水電解質電池においては、負極における金属リチウムの局所的なデンドライト成長を低減させることができる。   According to the present invention, since the current collecting property between the negative electrode and the negative electrode current collector is good, it is not necessary to press the nonaqueous electrolyte battery. In the nonaqueous electrolyte battery of the present invention, local dendrite growth of metallic lithium in the negative electrode can be reduced.

(1)図1は、本発明の実施の形態における全固体型のリチウム二次電池の構造を示す。正極集電体11の上に正極活物質1が位置する。正極活物質1の上に固体電解質2が位置する。固体電解質2の上に負極活物質3が位置する。そして、負極活物質3の上に金属薄膜5が形成される。その金属薄膜5上に負極集電体12が配置される。 (1) FIG. 1 shows the structure of an all solid-state lithium secondary battery in an embodiment of the present invention. The positive electrode active material 1 is positioned on the positive electrode current collector 11. A solid electrolyte 2 is positioned on the positive electrode active material 1. A negative electrode active material 3 is located on the solid electrolyte 2. Then, a metal thin film 5 is formed on the negative electrode active material 3. A negative electrode current collector 12 is disposed on the metal thin film 5.

つぎに、図1に示すリチウム二次電池10の部分ごとに説明する。   Next, each part of the lithium secondary battery 10 shown in FIG. 1 will be described.

[正極集電体]
銅、アルミニウム、ニッケル、およびこれらの金属の合金、SUS(ステンレススティール)等の箔体、または板状体を用いることができる。厚みは、3μm〜40μm程度とするのがよいが、この範囲外の厚みであってもよい。
[Positive electrode current collector]
Copper, aluminum, nickel, alloys of these metals, foils such as SUS (stainless steel), or plate-like bodies can be used. The thickness is preferably about 3 μm to 40 μm, but may be a thickness outside this range.

[正極活物質]
LiCoO2、LiMn24、LiNiO2などのリチウム複合酸化物の薄膜を用いることができる。形成方法は、蒸着法、スパッタリング法、PLD(pulsed laser deposition)等の薄膜形成プロセスを用いることができる。また、薄膜ではなく、スクリーン印刷法等を用いて形成した焼結体にすることもできる。薄膜の場合および焼結体の場合ともに、厚みは、0.5μm〜100μmとするのがよい。
[Positive electrode active material]
A thin film of a lithium composite oxide such as LiCoO 2 , LiMn 2 O 4 , or LiNiO 2 can be used. As a forming method, a thin film forming process such as vapor deposition, sputtering, or PLD (pulsed laser deposition) can be used. Moreover, it can also be set as the sintered compact formed using the screen printing method etc. instead of a thin film. In both the case of the thin film and the case of the sintered body, the thickness is preferably 0.5 μm to 100 μm.

[固体電解質]
LiS−P、LiLaTiO、LiLaZrOなどを用いることができる。また、一部重複するが、Li−P−S−Oのアモルファス膜、または多結晶膜でもよいし、またはLi−P−O−Nのアモルファス膜、または多結晶膜でもよい。形成方法は、蒸着法、スパッタ法、PLD等の薄膜形成プロセスを用いることができる。上記の固体電解質の厚みは、1μm〜20μm程度とするのがよい。
[Solid electrolyte]
Li 2 S—P 2 S 5 , LiLaTiO, LiLaZrO, or the like can be used. In addition, although partially overlapping, an Li—P—S—O amorphous film or a polycrystalline film may be used, or an Li—P—O—N amorphous film or a polycrystalline film may be used. As a forming method, a thin film forming process such as vapor deposition, sputtering, or PLD can be used. The thickness of the solid electrolyte is preferably about 1 μm to 20 μm.

[負極活物質]
Li金属、Li合金、Si、Sn、In、Agの薄膜を用いることができる。厚みは0.5μm〜75μmとするのがよい。形成方法は、蒸着法、スパッタ法、PLD等の薄膜形成プロセスを用いることができる。
[Negative electrode active material]
A thin film of Li metal, Li alloy, Si, Sn, In, or Ag can be used. The thickness is preferably 0.5 μm to 75 μm. As a forming method, a thin film forming process such as vapor deposition, sputtering, or PLD can be used.

[金属薄膜]
金属薄膜5の材質は、銅、アルミニウム、ニッケル等の金属、またはこれら金属の合金を用いるのがよい。厚みは0.1μm〜5μmの範囲とするのがよい。
金属薄膜5の形成方法は、蒸着法、スパッタリング法、PLD等の薄膜形成プロセス(気相法)を用いることができる。
[Metal thin film]
The material of the metal thin film 5 is preferably a metal such as copper, aluminum, nickel, or an alloy of these metals. The thickness is preferably in the range of 0.1 μm to 5 μm.
As a method for forming the metal thin film 5, a thin film formation process (vapor phase method) such as an evaporation method, a sputtering method, or a PLD can be used.

[負極集電体]
負極集電体を用いる場合、銅、アルミニウム、ニッケル、およびこれらの金属の合金、SUS(ステンレススティール)等の箔体、または板状体を用いることができる。厚みは、3μm〜40μm程度とするのがよいが、この範囲外の厚みであってもよい。
負極集電体を用いずに、負極活物質に集電体を兼ねさせる場合、導電性接着剤等により接続端子を負極活物質に接続する。
[Negative electrode current collector]
When the negative electrode current collector is used, copper, aluminum, nickel, an alloy of these metals, a foil body such as SUS (stainless steel), or a plate body can be used. The thickness is preferably about 3 μm to 40 μm, but may be a thickness outside this range.
When the negative electrode active material is also used as the current collector without using the negative electrode current collector, the connection terminal is connected to the negative electrode active material by a conductive adhesive or the like.

(2)次に、リチウム二次電池の製造方法について説明する。 (2) Next, a method for manufacturing a lithium secondary battery will be described.

[正極を薄膜で形成する場合]
正極1を薄膜で形成する場合には、図4に示すフローチャートに従って製造する。まず、正極集電体11上に正極1の薄膜を形成する。薄膜の形成方法は、上述のように、真空蒸着法、PLD法、スパッタ法等によって行う。膜厚は、0.5μm〜30μm程度とするのがよい。
次いで、固体電解質2/負極活物質3を順に形成する。そして負極3の上に金属薄膜5を形成する。このあと負極集電体を別体として用いる場合には、負極集電体を配置する。負極3/金属薄膜5に負極集電体を兼ねさせる場合は、導電性接着剤等を用いて集電端子を金属薄膜5に接続する。
[When forming the positive electrode as a thin film]
When forming the positive electrode 1 with a thin film, it manufactures according to the flowchart shown in FIG. First, a thin film of the positive electrode 1 is formed on the positive electrode current collector 11. As described above, the thin film is formed by vacuum deposition, PLD, sputtering, or the like. The film thickness is preferably about 0.5 to 30 μm.
Subsequently, solid electrolyte 2 / negative electrode active material 3 is formed in order. Then, a metal thin film 5 is formed on the negative electrode 3. Thereafter, when the negative electrode current collector is used as a separate body, the negative electrode current collector is disposed. When the negative electrode 3 / metal thin film 5 is also used as a negative electrode current collector, the current collecting terminal is connected to the metal thin film 5 using a conductive adhesive or the like.

単一のリチウム二次電池の場合には、このまま、パッケージしてパッケージ内を真空引きして減圧する。しかし、通常は複数の電池を積層した積層電池とすることが多い。積層電池とする場合には、図5に示すように、(正極1/固体電解質2/負極3/金属薄膜5)の単一積層構造を、正極集電体11の一方の面だけでなく、両面に形成する。このため、正極集電体11の一方の面に、単一積層構造を形成したあと、正極集電体1を天地逆にひっくり返して、他方の面に、単一積層構造の(正極1/固体電解質2/負極3/金属薄膜5)を形成する。この結果、正極集電体11を中心にして鏡面対称に、単一積層構造が形成される。すなわち、正極集電体11を中心にして上下に1つずつ合計2個の単一電池が形成される。この鏡面対称電池を積層して組み立て、負極集電体および正極集電体の各々から集電すれば、電池すべてを並列接続した積層電池を得ることができる。この結果、大容量または大電流の電源を、小さい体積で得ることができる。   In the case of a single lithium secondary battery, it is packaged as it is, and the inside of the package is evacuated and decompressed. However, usually, it is often a laminated battery in which a plurality of batteries are laminated. In the case of a laminated battery, as shown in FIG. 5, a single laminated structure of (positive electrode 1 / solid electrolyte 2 / negative electrode 3 / metal thin film 5) is not limited to one surface of the positive electrode current collector 11, Form on both sides. For this reason, after forming a single laminated structure on one surface of the positive electrode current collector 11, the positive electrode current collector 1 is turned upside down, and the other surface has a single laminated structure (positive electrode 1 / Solid electrolyte 2 / negative electrode 3 / metal thin film 5) are formed. As a result, a single laminated structure is formed with mirror symmetry about the positive electrode current collector 11. That is, a total of two single batteries are formed one above the other around the positive electrode current collector 11. By stacking and assembling the mirror-symmetric batteries and collecting current from each of the negative electrode current collector and the positive electrode current collector, a stacked battery in which all the batteries are connected in parallel can be obtained. As a result, a large capacity or large current power source can be obtained in a small volume.

上記の単一電池または組み立て積層電池は、最終的には、パッケージしてパッケージ内を真空引きして減圧する。この減圧によるパッケージの押圧が、上記負極集電体を金属薄膜5に押し付ける圧力となる。   The single battery or the assembled laminated battery is finally packaged, and the inside of the package is evacuated to reduce the pressure. This pressing of the package by the reduced pressure becomes a pressure for pressing the negative electrode current collector against the metal thin film 5.

[正極を焼結体で形成する場合]
正極1に焼結体を用いて、単一電池を形成する場合、正極集電体11上にスクリーン印刷法等を用いて焼結素材を塗装して、焼結する。このあと、固体電解質2の薄膜/負極3の薄膜/金属薄膜5、を順次形成してゆくが、これらの薄膜形成プロセスは、図4に示すプロセスと同じである。
[When forming the positive electrode with a sintered body]
When a single battery is formed using a sintered body for the positive electrode 1, a sintered material is coated on the positive electrode current collector 11 using a screen printing method or the like and sintered. Thereafter, the thin film of the solid electrolyte 2 / the thin film of the negative electrode 3 / the metal thin film 5 are sequentially formed. These thin film forming processes are the same as those shown in FIG.

正極1に焼結体を用いて積層電池を形成する場合、上記のように、正極集電体11の表面側に積層体を形成したのち、天地逆にして同じプロセスを繰り返す製造方法を用いることができる。   When forming a laminated battery using a sintered body for the positive electrode 1, as described above, after forming the laminated body on the surface side of the positive electrode current collector 11, use a manufacturing method that repeats the same process upside down. Can do.

また、正極1に焼結体を用いて積層電池を形成する場合、導電性ペースト25をはさむようにして、導電性ペースト25の上下に正極1を配置して、焼結することができる(図6参照)。このあとは、図7に示すように、一方の面側の正極1上に、(固体電解質2の薄膜/負極3の薄膜/金属薄膜5)を、薄膜形成プロセスによって、順次、形成してゆき、次いで、天地逆にして、他方の面側の正極1上に、同じ薄膜形成プロセスを施す。これによって、2つの電池が導電性ペースト25を中心にして鏡面対称の位置に形成される。この鏡面対称電池は、上記のように、積層され、集電されて、大容量の電源を形成するのに用いられる。そのとき、正極集電は、正極1/導電性ペースト25/正極1の端面から行うことができる。   Further, when a laminated battery is formed using a sintered body for the positive electrode 1, the positive electrode 1 can be placed above and below the conductive paste 25 so as to sandwich the conductive paste 25 and sintered (FIG. 6). reference). After that, as shown in FIG. 7, (the thin film of the solid electrolyte 2 / the thin film of the negative electrode 3 / the metal thin film 5) is sequentially formed on the positive electrode 1 on one surface side by the thin film formation process. Then, the same thin film forming process is performed on the positive electrode 1 on the other surface side upside down. As a result, two batteries are formed at mirror-symmetric positions with the conductive paste 25 as the center. As described above, this mirror-symmetric battery is stacked and collected to form a large-capacity power source. At that time, the positive electrode current collection can be performed from the end face of the positive electrode 1 / conductive paste 25 / positive electrode 1.

(3)次に、変形例について説明する。 (3) Next, a modified example will be described.

[変形例1]
図8は、図1に示す全固体型のリチウム二次電池の変形例1を示す図である。図8においては、正極1と固体電解質2との間に中間層16を挿入している点に特徴を有する。中間層16は、LiNbOなどのLiを含む酸化物材料で形成される。中間層16は、緩衝層とも呼ばれる。中間層16を正極1と固体電解質2との間に挿入するのは、正極1と固体電解質2との界面の電気抵抗を低減するためである。
[Modification 1]
FIG. 8 is a diagram illustrating a first modification of the all solid-state lithium secondary battery illustrated in FIG. 1. FIG. 8 is characterized in that an intermediate layer 16 is inserted between the positive electrode 1 and the solid electrolyte 2. The intermediate layer 16 is formed of an oxide material containing Li, such as LiNbO 3 . The intermediate layer 16 is also called a buffer layer. The reason why the intermediate layer 16 is inserted between the positive electrode 1 and the solid electrolyte 2 is to reduce the electrical resistance at the interface between the positive electrode 1 and the solid electrolyte 2.

中間層16の材料には、平坦な表面を有するものが用いられるので、蒸着法等による負極3および金属薄膜5の表面も、平坦なものが得られやすい。このため、別体の負極集電体12を用いる場合、金属薄膜5と、均一な接触面圧で接触することができる。   Since the material of the intermediate layer 16 has a flat surface, it is easy to obtain a flat surface of the negative electrode 3 and the metal thin film 5 by vapor deposition or the like. For this reason, when the separate negative electrode current collector 12 is used, the metal thin film 5 can be contacted with a uniform contact surface pressure.

上述のように、金属薄膜5と、別体の負極集電体12との接触圧にばらつきを生じても、直ちに金属リチウムの局所的なデンドライト成長が生じるわけではない。金属薄膜5の電子伝導性によって、負極活物質および固体電解質における電流集中は低減される。しかしが、電池の性能を十分に発揮させるために、金属薄膜5と負極集電体12との、全面にわたるばらつきのない均等な接触が好ましい。   As described above, even if the contact pressure between the metal thin film 5 and the separate negative electrode current collector 12 varies, local dendrite growth of metallic lithium does not immediately occur. Due to the electronic conductivity of the metal thin film 5, current concentration in the negative electrode active material and the solid electrolyte is reduced. However, uniform contact between the metal thin film 5 and the negative electrode current collector 12 with no variation over the entire surface is preferable in order to sufficiently exhibit battery performance.

[変形例2]
図9は、図1に示す全固体型のリチウム二次電池の変形例2を示す図である。図9においては、金属薄膜5に集電端子22を導電性ペースト25によって接続し、別体の負極集電体を用いていない点に特徴を有する。導電性ペースト25による集電端子22の接続は、(負極3/金属薄膜5)の積層部の端面に行ってもよい。これによって、積層高さを減ずることができ、電池容量密度を向上させることができる。
[Modification 2]
FIG. 9 is a diagram illustrating a second modification of the all solid-state lithium secondary battery illustrated in FIG. 1. FIG. 9 is characterized in that a current collecting terminal 22 is connected to the metal thin film 5 by a conductive paste 25 and a separate negative electrode current collector is not used. You may connect the current collection terminal 22 by the electrically conductive paste 25 to the end surface of the laminated part of (the negative electrode 3 / metal thin film 5). Thereby, the stacking height can be reduced, and the battery capacity density can be improved.

次に、実施例によって本発明のリチウム二次電池について説明する。本発明例A1及び比較例B1のリチウム二次電池素子を製造した。製造方法は、上記で説明した方法による。   Next, the lithium secondary battery of the present invention will be described with reference to examples. Lithium secondary battery elements of Invention Example A1 and Comparative Example B1 were produced. The manufacturing method is based on the method described above.

[本発明例A1]
本発明例A1の構造は、図8に示すとおりである。
正極集電体の銅箔(厚み15μm)/正極活物質のLiCoO(厚み10μm)/中間層のLiNbO(厚み0.02μm)/固体電解質のLiS−P(厚み3μm)/負極活物質のLi金属(厚み5μm)/金属薄膜の銅薄膜(厚み2μm)/負極集電体のステンレススティール(厚み20μm)
[Invention Sample A1]
The structure of Example A1 of the present invention is as shown in FIG.
Positive electrode current collector copper foil (thickness 15 μm) / positive electrode active material LiCoO 2 (thickness 10 μm) / intermediate layer LiNbO 3 (thickness 0.02 μm) / solid electrolyte Li 2 S—P 2 S 5 (thickness 3 μm) / Li metal of negative electrode active material (thickness 5 μm) / Cu thin film of metal thin film (thickness 2 μm) / Stainless steel of negative electrode current collector (thickness 20 μm)

[比較例B1]
比較例B1の構造は、本発明例A1のリチウム二次電池素子から金属薄膜のみを除いた構造である。
(正極集電体の銅箔(厚み15μm)/正極活物質のLiCoO(厚み10μm)/中間層のLiNbO(厚み0.02μm)/固体電解質のLiS−P(厚み3μm)/負極活物質のLi金属(厚み5μm)/負極集電体のステンレススティール(厚み20μm)
[Comparative Example B1]
The structure of Comparative Example B1 is a structure obtained by removing only the metal thin film from the lithium secondary battery element of Invention Example A1.
(Copper foil (thickness 15 μm) of positive electrode current collector / LiCoO 2 (thickness 10 μm) of positive electrode active material / LiNbO 3 (thickness 0.02 μm) of intermediate layer / Li 2 S—P 2 S 5 (thickness 3 μm) ) / Li metal of negative electrode active material (thickness 5 μm) / stainless steel of negative electrode current collector (thickness 20 μm)

[評価1]
本発明例A1および比較例B1のリチウム二次電池素子に対して、アルミラミネートフィルムのパッケージに収納して真空引きによる減圧を行う前に、リチウム二次電池の抵抗を測定した。
その結果、比較例B1の抵抗に比べて、本発明例A1の抵抗は小さかった。
比較例B1では、負極と負極集電体との間の抵抗に分布が生じて、総じて抵抗が大きくなっているのに対し、本発明例A1は金属薄膜を備えるので、負極と負極集電体との間の電気抵抗のばらつきが抑えられ、集電性が向上し、抵抗が低減しているものと思われる。
[Evaluation 1]
Before the lithium secondary battery elements of Invention Example A1 and Comparative Example B1 were housed in an aluminum laminate film package and decompressed by evacuation, the resistance of the lithium secondary battery was measured.
As a result, the resistance of Invention Example A1 was smaller than that of Comparative Example B1.
In Comparative Example B1, the resistance between the negative electrode and the negative electrode current collector is distributed, and the resistance is generally increased. On the other hand, the present invention example A1 includes a metal thin film, and thus the negative electrode and the negative electrode current collector. It seems that the variation in electrical resistance between the two is suppressed, the current collecting property is improved, and the resistance is reduced.

[評価2]
続いて、本発明例A1及び比較例B1のリチウム二次電池素子をアルミラミネートフィルムのパッケージに収納して真空引きによる減圧を行い、リチウム二次電池を完成させた。
その結果、比較例B1の抵抗は、本発明例A1のそれとほぼ同等の値に近づいた。比較例B1において押圧によって得られる内部抵抗を低減する効果が、本発明例A2においては、押圧をすること無く得られていることが分かる。
[Evaluation 2]
Subsequently, the lithium secondary battery elements of Invention Example A1 and Comparative Example B1 were housed in an aluminum laminate film package, and the pressure was reduced by evacuation to complete the lithium secondary battery.
As a result, the resistance of Comparative Example B1 approached a value almost equivalent to that of Invention Example A1. It can be seen that the effect of reducing the internal resistance obtained by pressing in Comparative Example B1 is obtained without pressing in Invention Example A2.

[評価3]
最後に、本発明例A1及び比較例B1のリチウム二次電池について、充電及び放電が行われた。
その結果、比較例B1のリチウム二次電池の電圧が低下した。負極から金属リチウムのデンドライトが成長して、正極に到達したためと思われる。一方、本発明例A1のリチウム二次電池においては、充放電を繰り返しても、電圧低下は認められなかった。デンドライト成長にともなう内部短絡を生じていないと思われる。
[Evaluation 3]
Finally, the lithium secondary batteries of Invention Example A1 and Comparative Example B1 were charged and discharged.
As a result, the voltage of the lithium secondary battery of Comparative Example B1 decreased. It seems that dendrites of metallic lithium grew from the negative electrode and reached the positive electrode. On the other hand, in the lithium secondary battery of Invention Example A1, no voltage drop was observed even when charging and discharging were repeated. No internal short circuit due to dendrite growth appears to have occurred.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明のリチウム二次電池によれば、金属リチウムの局所的なデンドライトの成長を低減することができる。本発明は、携帯機器又は電気自動車に搭載される非水電解質二次電池に利用することができる   According to the lithium secondary battery of the present invention, local dendrite growth of metallic lithium can be reduced. INDUSTRIAL APPLICABILITY The present invention can be used for a nonaqueous electrolyte secondary battery mounted on a portable device or an electric vehicle.

本発明の実施の形態1におけるリチウム二次電池を示す図である。It is a figure which shows the lithium secondary battery in Embodiment 1 of this invention. 従来のリチウム二次電池における問題を説明するための図である。It is a figure for demonstrating the problem in the conventional lithium secondary battery. 本発明のリチウム二次電池に含まれる金属薄膜の作用を説明するための図である。It is a figure for demonstrating the effect | action of the metal thin film contained in the lithium secondary battery of this invention. 本発明の実施の形態におけるリチウム二次電池の製造方法の一つを例示したフローチャートである。3 is a flowchart illustrating one method for manufacturing a lithium secondary battery in an embodiment of the present invention. 鏡面対称に位置する2つの電池素子をもつ積層電池を示す図である。It is a figure which shows the laminated battery which has two battery elements located in mirror symmetry. 正極を焼結体で形成するときの本発明のリチウム二次電池の一形態を例示する図である。It is a figure which illustrates one form of the lithium secondary battery of this invention when forming a positive electrode with a sintered compact. 本発明のリチウム二次電池の正極を焼結によって製造するときの製造方法の一つを例示するフローチャートである。It is a flowchart which illustrates one of the manufacturing methods when manufacturing the positive electrode of the lithium secondary battery of this invention by sintering. 本発明のリチウム二次電池であって、図1の変形例1を示す図である。It is a lithium secondary battery of this invention, Comprising: It is a figure which shows the modification 1 of FIG. 本発明のリチウム二次電池であって、図1の変形例2を示す図である。It is a lithium secondary battery of this invention, Comprising: It is a figure which shows the modification 2 of FIG.

符号の説明Explanation of symbols

1 正極
2、102 固体電解質
3、103 負極
5 金属薄膜
10 非水電解質電池(リチウム二次電池)
11 正極集電体
12、112 負極集電体
16 中間層
22 集電端子
25 導電性ペースト
DESCRIPTION OF SYMBOLS 1 Positive electrode 2,102 Solid electrolyte 3,103 Negative electrode 5 Metal thin film 10 Nonaqueous electrolyte battery (lithium secondary battery)
DESCRIPTION OF SYMBOLS 11 Positive electrode collector 12, 112 Negative electrode collector 16 Intermediate | middle layer 22 Current collection terminal 25 Conductive paste

Claims (5)

負極と、正極と、前記負極および前記正極の間に位置する非水電解質とを備えた非水電解質電池であって、
前記負極の前記非水電解質側と反対側の面に金属薄膜が形成されていることを特徴とする非水電解質電池。
A nonaqueous electrolyte battery comprising a negative electrode, a positive electrode, and a nonaqueous electrolyte located between the negative electrode and the positive electrode,
A non-aqueous electrolyte battery, wherein a metal thin film is formed on a surface of the negative electrode opposite to the non-aqueous electrolyte side.
請求項1に記載された非水電解質電池であって、
前記金属薄膜が、蒸着法、スパッタリング法又はパルスレーザーデポジション法により形成されたことを特徴とする非水電解質電池。
The nonaqueous electrolyte battery according to claim 1,
A non-aqueous electrolyte battery, wherein the metal thin film is formed by a vapor deposition method, a sputtering method, or a pulse laser deposition method.
前記金属薄膜の厚みは、0.1μm以上5μm以下であることを特徴とする請求項1又は2に記載された非水電解質電池。   The thickness of the said metal thin film is 0.1 micrometer or more and 5 micrometers or less, The nonaqueous electrolyte battery described in Claim 1 or 2 characterized by the above-mentioned. 請求項1、2又は3に記載された非水電解質電池であって、
前記非水電解質電池は、更に、負極集電体を備え、
前記負極集電体が前記金属薄膜上に配されていることを特徴とする非水電解質電池。
The nonaqueous electrolyte battery according to claim 1, 2 or 3,
The non-aqueous electrolyte battery further includes a negative electrode current collector,
The non-aqueous electrolyte battery, wherein the negative electrode current collector is disposed on the metal thin film.
請求項1、2、3又は4に記載された非水電解質電池であって、
前記非水電解質が固体電解質であることを特徴とする非水電解質電池。
The non-aqueous electrolyte battery according to claim 1, 2, 3 or 4,
A non-aqueous electrolyte battery, wherein the non-aqueous electrolyte is a solid electrolyte.
JP2008314277A 2008-12-10 2008-12-10 Nonaqueous electrolyte battery Pending JP2010140703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008314277A JP2010140703A (en) 2008-12-10 2008-12-10 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008314277A JP2010140703A (en) 2008-12-10 2008-12-10 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2010140703A true JP2010140703A (en) 2010-06-24

Family

ID=42350661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008314277A Pending JP2010140703A (en) 2008-12-10 2008-12-10 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2010140703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099442A1 (en) 2011-12-26 2013-07-04 ソニー株式会社 Solid electrolyte, process for producing solid electrolyte, and electrochemical device
CN105514497A (en) * 2015-01-21 2016-04-20 万向A一二三系统有限公司 High-efficiency lithium ion battery and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099442A1 (en) 2011-12-26 2013-07-04 ソニー株式会社 Solid electrolyte, process for producing solid electrolyte, and electrochemical device
US9649593B2 (en) 2011-12-26 2017-05-16 Sony Corporation Epitaxial thin film solid crystal electrolyte including lithium
CN105514497A (en) * 2015-01-21 2016-04-20 万向A一二三系统有限公司 High-efficiency lithium ion battery and manufacturing method thereof
CN105514497B (en) * 2015-01-21 2017-11-21 万向一二三股份公司 A kind of high efficiency lithium ion battery and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4367311B2 (en) battery
JP4701579B2 (en) Negative electrode for secondary battery
JP4986077B2 (en) Current collector foil for secondary battery and method for producing the same
JP5304796B2 (en) Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, battery-mounted device, and method for producing positive electrode plate for lithium ion secondary battery
JP5605662B2 (en) Secondary battery
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
WO2011148824A1 (en) Nonaqueous electrolyte battery and method for producing same
US11489238B2 (en) Stacked battery
JP2013012416A (en) Nonaqueous electrolyte battery and nonaqueous electrolyte battery manufacturing method
JP2020009619A (en) All-solid battery, and method for manufacturing the same
JPWO2011089722A1 (en) Positive electrode and manufacturing method thereof
JP5058381B1 (en) Current collector and electrode, and power storage device using the same
JP2013165250A (en) Collector and electrode, and power storage element using the same
JP7034703B2 (en) Lithium ion secondary battery
JP3707617B2 (en) Negative electrode and battery using the same
JP4329357B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
JP7034704B2 (en) Manufacturing method of lithium ion secondary battery
JP2004335192A (en) Method of manufacturing positive electrode and method of manufacturing battery
JP2010140703A (en) Nonaqueous electrolyte battery
KR101113350B1 (en) Negative electrode and the battery using it
US20220352496A1 (en) Method and apparatus for fabricating an electrode for a battery
JP2009176511A (en) Charge/discharge method of lithium ion secondary battery
JP5104333B2 (en) Method for improving durability of lithium ion secondary battery
JP5865841B2 (en) Anode material for lithium secondary battery