WO2012100612A1 - 苦丁茶冬青叶的提取方法、总皂苷及其用途 - Google Patents

苦丁茶冬青叶的提取方法、总皂苷及其用途 Download PDF

Info

Publication number
WO2012100612A1
WO2012100612A1 PCT/CN2011/084377 CN2011084377W WO2012100612A1 WO 2012100612 A1 WO2012100612 A1 WO 2012100612A1 CN 2011084377 W CN2011084377 W CN 2011084377W WO 2012100612 A1 WO2012100612 A1 WO 2012100612A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
kudingcha
holly
leaves
aqueous solution
Prior art date
Application number
PCT/CN2011/084377
Other languages
English (en)
French (fr)
Inventor
屠鹏飞
张彤梅
郑姣
姜勇
邹海艳
唐莉
马治中
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to EP11856799.9A priority Critical patent/EP2668954B1/en
Priority to JP2013550742A priority patent/JP5955337B2/ja
Priority to US13/981,054 priority patent/US9109003B2/en
Publication of WO2012100612A1 publication Critical patent/WO2012100612A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • C07H15/256Polyterpene radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/33Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones
    • A61K2236/333Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones using mixed solvents, e.g. 70% EtOH

Definitions

  • the invention relates to a method for extracting holly leaves of Kudingcha and the total saponins of Kudingcha holly leaves and the use thereof.
  • the present invention relates to a method for extracting a total saponin fraction of holly leaf of Kudingcha, and the total saponin extracted by the method can be used for lowering cholesterol, lowering blood lipids, and resisting atherosclerosis. Background technique
  • Hyperlipidemia includes high cholesterol and high triglycerides, the former is far more harmful than the latter.
  • drug-induced lipid-lowering therapy is the most effective treatment for hyperlipidemia.
  • the effective drugs for lowering cholesterol are mainly statins. These drugs are mainly used to combat arteriosclerosis caused by hypercholesterolemia, and the mechanism of action is to inhibit liver cholesterol synthesis.
  • statins have obvious toxic effects on liver and muscle, and at the same time leads to increased transaminase.
  • Rheumatoidosis and acute renal failure occur in a small number of patients. Although several generations of drug structure have been modified, the side effects have not been solved. .
  • Kudingcha is a traditional folk drink. It has been used as a health tea for weight loss, blood fat reduction, blood pressure lowering, detoxification and detoxification for nearly a thousand years. There are many varieties of Kuding tea on the market, according to the survey.
  • the leaves of 22 plants can be used as Kudingcha, but the specific kind of Kudingcha has better effects on lowering blood fat and lowering blood pressure, which is not known, resulting in consumers spending a lot of money, but the effect of lowering blood fat is very Micro, even no effect.
  • the inventors of the present invention have systematically studied and found that only the leaves of Ilex kudingcha C. LTseng derived from the genus Ilex have a very significant hypolipidemic and anti-atherosclerotic effect.
  • the active ingredient is a saponin component, and the aglycon of the saponin component contained in the plant is also significantly different from other sources of Kudingcha.
  • the inventors found that the saponins of holly leaves of Kudingcha have obvious effects of lowering cholesterol and anti-atherosclerosis, and their action intensity is comparable to that of statins, but its mechanism and mechanism Statins are completely different.
  • the saponins also have the effects of lowering triglycerides, anti-oxidation, kidney protection, and improving blood rheology.
  • Studies on the mechanism of action indicate that the mechanism of hypolipidemic effect of Kudingcha Holly Saponin is It inhibits the activity of intestinal and hepatic acyl-CoA cholesterol acyltransferase (ACAT), thereby inhibiting cholesterol intestinal absorption.
  • ACAT hepatic acyl-CoA cholesterol acyltransferase
  • the content of isochlorogenic acid in the extract of Kudingcha holly leaves extracted according to the conventional Chinese herbal medicine extraction method is much higher than that of Kudingcha saponin. The inventors found that isochlorogenic acid has the effect of increasing blood lipids.
  • the present invention provides the following technical solutions:
  • a method for extracting holly leaf of Kudingcha may comprise the following steps: (1) refluxing the holly leaf of Kudingcha with 50 ⁇ 70% aqueous solution of ethanol; (2) filtering the extract and removing the ethanol therein (3) The solution obtained in the step (2) is adsorbed on the macroporous resin column, followed by water, 10 ⁇ 30% alkaline ethanol aqueous solution having a pH of 9-11, 10 ⁇ 30% ethanol aqueous solution and 50-70%. The resin column is eluted with an aqueous ethanol solution; (4) The solution obtained by eluting with 50-70% aqueous ethanol solution is collected, concentrated, and dried.
  • the concentration of ethanol in the step (1) may preferably be 55-65%, and most preferably 60%; the ethanol concentration of the 50-70% ethanol aqueous solution in the step (3) may be preferably It is 55 to 65%, and most preferably 60%.
  • the concentration of the aqueous ethanol solution means the volume percentage concentration of ethanol in an aqueous ethanol solution.
  • the operation method of the reflux extraction of the step (1) is known to those skilled in the art, and the amount of the aqueous ethanol solution in the operation can be determined according to the amount of the raw material, for example, an aqueous solution of ethanol and a raw material.
  • the weight ratio may be 2 ⁇ 20:1, preferably 5-15:1; the number of extractions may be 1 ⁇ 8 times, preferably 2 ⁇ 4 times; the time of each reflux extraction may be 0.5 ⁇ 5 hours, preferably For 0.5 to 2 hours, the time of each reflux extraction may be the same or different, and the concentration of ethanol used for each reflux may be the same or different, and the amount of ethanol used for each reflux may be the same or different.
  • it can be refluxed for 1 hour using 60 times ethanol of 10 times the weight of the raw material. After the liquid was filtered, the mixture was refluxed with 60% ethanol of 8 times the weight of the raw material for 1 hour, and the extract was filtered, and then refluxed with 60% ethanol of 8 times the weight of the raw material for 1 hour, and then the filtrate separated by three reflux extractions was combined.
  • the extraction method according to the present invention wherein the method of removing ethanol in the step (2) and the method of concentrating in the step (4) are known to those skilled in the art, and for example, may be distillation under reduced pressure.
  • the method of drying in the step (4) is preferably vacuum drying.
  • the process of the present invention may further comprise recovering the ethanol separated in step (2) and/or the ethanol separated in step (4) and again using the reflux extraction of step (1).
  • the macroporous resin column used in the step (3) is a resin column commonly used in the art, and in the present invention, a styrene type macroporous adsorption resin such as D101 is preferable.
  • the macroporous resin column may have a diameter to height ratio of 1:3 to 10, preferably 1:4 to 7, most preferably 1:6; and the weight ratio of the resin to the Kudingcha holly leaves may be 5 to 15:1. Preferably, it is 6-10:1, and most preferably 7:1.
  • the elution process of the step (3) may be: first rinsing with 4 to 10 column volumes of water until the sugar-free reaction; Rinse with 5-10 times column volume of 10 ⁇ 30% alkaline ethanol solution with pH value of 9 ⁇ 11; then rinse with 2 ⁇ 5 times volume of 10 ⁇ 30% ethanol solution; finally use 3 ⁇ 6 times column volume 50 ⁇
  • the resin column was eluted with a 70% aqueous ethanol solution.
  • the step (3) is: adsorbing the HPD400A macroporous resin column on the solution obtained in the step (2) (the resin column diameter ratio is 1:4, resin and medicinal materials)
  • the resin column was washed, and then the resin column was rinsed to neutral with 3 column volumes of 25% neutral ethanol.
  • the resin column was eluted with 4 column volumes of 60% ethanol, and the 60% ethanol eluate was collected and evaporated. That is, the total saponin fraction of the holly leaf of Kudingcha is obtained.
  • the pH of the aqueous alkaline ethanol solution in the step (3) may be most preferably 10.
  • the method may further comprise the step (5) of combining a solution of 10 to 30% alkaline ethanol having a pH of 9 to 11 and a solution eluted with 10 to 30% aqueous ethanol solution. Adjust the pH value 2 ⁇ 3, concentrate and dry to obtain total isochlorogenic acid.
  • the content of the part can reach more than 80%, which can reduce blood lipids and anti-atherosclerosis, and has a protective effect on the liver and kidney.
  • the saponin of the holly leaf of the Kudingcha tea can be used alone or in combination with a statin to improve the efficacy and improve the side effects of the statin. Alcohol, a method of lowering blood lipids and anti-atherosclerosis.
  • the total saponin of Kudingcha holly leaves provided by the invention has obvious effects of lowering cholesterol and anti-atherosclerosis, and its action intensity is comparable to that of statins, but the mechanism is completely different from that of statins.
  • the extract has effects such as lowering triglycerides, anti-oxidation, kidney protection, and improving blood rheology.
  • Studies on the mechanism of action indicate that the mechanism of hypolipidemic effect of saponin of Kudingcha is to inhibit the activity of acyl-CoA cholesterol acyltransferase (ACAT) in the intestine and liver, thereby inhibiting the intestinal absorption of cholesterol.
  • ACAT acyl-CoA cholesterol acyltransferase
  • Figure 1 is a high performance liquid chromatogram of sample A1 prepared in Example 1;
  • Figure 2 is a high performance liquid chromatogram of sample C1 prepared in Comparative Example 1;
  • Figure 3 is a high performance liquid chromatogram of sample C2 prepared in Comparative Example 2;
  • Figure 4 is a high performance liquid chromatogram of sample C3 prepared in Comparative Example 3;
  • Figure 5 shows the effect of total saponins of Kudingcha on the plasma total cholesterol level of ApoE-/- mice
  • Figure 6 shows the effect of total saponins of Kudingcha on the plasma MDA levels of ApoE-/- mice
  • Figure 8 shows the effect of total saponins of Kudingcha on the total cholesterol in feces
  • Figure 9 shows the effect of total saponins of Kudingcha on the expression of ACAT2 mRNA in Caco-2 cells. The best way to implement the invention
  • This embodiment is for explaining the extraction method of the Kudingcha holly leaves provided by the present invention.
  • Adsorption The obtained solution was adsorbed on a HPD400A macroporous resin column, and the resin column was filled in a volume of 5 Kg, and the aspect ratio was 1:4, and the sample was repeatedly applied for 3 times, and the adsorption was static for 30 minutes;
  • This embodiment is for explaining the extraction method of the Kudingcha holly leaves provided by the present invention.
  • the extracted filtrate is distilled under reduced pressure to an alcohol-free taste, and the ethanol is recovered, and the relative density of the concentrated liquid is 1.06 to 1.08 (room temperature);
  • Adsorption The obtained solution is adsorbed on the AB-8 macroporous resin column, the filling amount of the resin column is 3.5 Kg, and the aspect ratio is 1:8;
  • This comparative example is used to illustrate the extraction method of Kudingcha holly leaves washed only with water during the washing process. Extraction, ethanol removal and adsorption processes were carried out in the same manner as in Example 1;
  • This comparative example is used to illustrate the extraction method of Kudingcha holly leaves washed only with water and ethanol during the washing process.
  • This comparative example is used to illustrate the extraction method of Kudingcha holly leaves washed only with water and ethanol during the washing process.
  • FIG. 1 is a chromatogram of sample A1 prepared in Example 1
  • FIG. 2 is a chromatogram of sample C1 prepared in Comparative Example 1
  • FIG. 3 is a chromatogram of sample C2 prepared in Comparative Example 2
  • FIG. 4 is a comparative example. 3 Chromatogram of sample C3 prepared.
  • the peaks Kc, Ka, and Kd represent the three main components of Kudingcha holly saponin [KD-C), Kudingcha Saponin A (KDC-A), and The peak of saponin D (KDC-D)]
  • peaks Ia, lb and Ic represent three isochlorogenic acid components (isochlorogenic acid B, isochlorogenic acid A and isochlorogenic acid C) The peak of the spectrum.
  • Table 2 lists the HPLC results of the samples CI1, A2 and A2 prepared in Examples 1 and 2 and the samples CI, C2 and C3 prepared in Comparative Examples 1, 2 and 3.
  • Table 3 lists the results of the determination of the total saponin content of the samples Cl, C2 and C3 prepared in the samples A1 and A2 prepared in Examples 1 and 2 and the samples 1, 2 and 3.
  • ApoE-/- mice were randomly divided into 4 groups according to their body weight.
  • Negative control group Normal diet for 7 weeks, and normal saline was administered by daily gavage.
  • High-fat control group (HG) 0.2% high-cholesterol diet was fed for 7 weeks, and normal saline was administered by daily gavage.
  • Atorvastatin treatment group After a week of feeding high cholesterol diet, atorvastatin (50 mg/kg/d) was given intragastrically, while continuing to give high cholesterol diet, once a day, course of treatment. For 6 weeks.
  • Figure 5 shows the effect of total saponins of Kudingcha on the plasma total cholesterol (TC) level of ApoE-/- mice.
  • ApoE-/- mice were fed a high-cholesterol diet for a week, and plasma total cholesterol increased from 300-400 mg/dL to about 800 mg/dL, and the administration of hyperglycemia began.
  • the results showed that all drug-administered groups reduced plasma TC levels in mice compared to the high-fat control group.
  • the plasma TC level of Kudingcha total saponins and atorvastatin group decreased by 30% ⁇ 35% after one week of administration, and the pharmacological effects were basically the same, with no significant difference. The effect lasted for six weeks and remained stable. 2.
  • Figure 6 shows the effect of total saponins of Kudingcha on the plasma MDA level of ApoE-/- mice.
  • the plasma MDA level in the high-fat control group increased about high fat at the sixth week of administration. 5 times before eating.
  • the atorvastatin group and the saponin group significantly inhibited the increase in plasma MDA levels from the second week of administration, and continued until the end of administration.
  • MDA levels in the atorvastatin group began to rise, reaching 16.5 nmol/L at the sixth week of administration, about 1.5 times higher than before administration; and the saponin group started from the administration to the experiment. At the end, there was almost no increase in plasma MDA levels.
  • Figure 7 shows the results of the effect of total saponins of Kudingcha on the atherosclerotic area of aortic outflow tract in ApoE-/- mice.
  • the high-fat control group (HG) was compared with the negative control group (CG), p ⁇ 0.05.
  • the model was successful, and there were significant differences between the total saponins (SG) and atorvastatin (AG) and the HG group (P.01), indicating that both groups can significantly inhibit the aortic outflow tract.
  • the total saponin of Kudingcha has no effect on the expression of other screening genes.
  • the results of this study demonstrate that the mechanism of hypolipidemic effect of Kudingcha saponins may inhibit the intestinal and liver acyl-CoA cholesterol acyltransferase (ACAT) activity, thereby inhibiting the intestinal absorption of cholesterol.
  • ACAT liver acyl-CoA cholesterol acyltransferase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

苦丁茶冬青叶的提取方法、 总皂苷及其用途 技术领域
本发明涉及一种苦丁茶冬青叶的提取方法和由该方法提取的苦丁茶 冬青叶总皂苷及其用途。 具体地, 本发明涉及一种提取苦丁茶冬青叶的总 皂苷部位的方法, 用该方法提取的总皂苷可用于降低胆固醇、 降低血脂、 抗粥样动脉硬化。 背景技术
高血脂包括高胆固醇和高甘油三酯, 前者的危害性远远高于后者。 对于 高血脂而言, 药物性降脂疗法是治疗高脂血症的最有效措施。 目前, 降低甘 油三酯的有效药物已经很多, 但降低胆固醇的有效药物还主要为他汀类。 该 类药物主要是对抗高胆固醇血症所致的动脉硬化,其作用机理为抑制肝脏胆 固醇合成。 但是长期服用他汀类药物对肝脏和肌肉有明显的毒性作用, 同时 导致转氨酶增高, 少数服用者出现横纹肌溶解症和急性肾衰竭, 尽管经过了 几代药物结构的修饰, 仍未解决其毒副作用问题。
苦丁茶为传统的民间饮品, 作为减肥、 降血脂、 降血压、 清热解毒等功 用的保健茶已有近千年的饮用历史。 市场上的苦丁茶品种繁多, 据调查已有
22种植物的叶可作为苦丁茶使用, 但具体那一种苦丁茶具有较好的降血脂、 降血压等功效则不得而知, 导致消费者花费了大量的金钱, 但降血脂效果甚 微, 甚至没有效果。 发明内容
近年来, 本发明的发明人经过系统的比较研究, 发现只有来源于冬青属 植物的苦丁茶冬青 ( Ilex kudingcha C.LTseng ) 的叶具有非常明显的降血脂、 抗动脉粥样硬化作用, 其有效成分为皂苷类成分, 同时, 该植物所含的皂苷 类成分的苷元也与其它来源的苦丁茶明显不同。通过对活性成分和药理作用 进行系统的研究,发明人发现苦丁茶冬青叶的皂苷类成分具有明显的降低胆 固醇、 抗动脉粥样硬化作用, 其作用强度与他汀类药物相当, 但其机理与他 汀类药物完全不同。 此外, 该类皂苷还有降低甘油三酯、 抗氧化、 肾保护、 改善血液流变学等作用。 作用机理研究表明, 苦丁茶冬青皂苷降血脂机理为 抑制肠道及肝脏酰基辅酶 A胆固醇酰基转移酶(ACAT ) 的活性, 从而抑制 胆固醇肠道吸收。 但是, 按照常规中药材提取方法提取得到的苦丁茶冬青叶 提取物中异绿原酸的含量大大高于苦丁茶皂苷的含量。 而经发明人研究发 现, 异绿原酸具有升高血脂的作用。
因此, 本发明的一个目的在于, 提供一种苦丁茶冬青叶的提取方法, 该 提取方法能够将苦丁茶冬青叶总皂苷部位与总异绿原酸部位分离, 并分别得 到苦丁茶冬青叶皂苷部位含量较高的提取物和总异绿原酸部位含量较高的 提取物; 本发明的另一个目的在于, 提供由本发明的方法提取的苦丁茶冬青 叶总皂苷, 其总皂苷部位含量可以达到 80%以上, 能够降低血脂和抗粥样动 脉硬化, 同时对肝脏和肾脏具有保护作用; 本发明的再一个目的在于, 提供 上述苦丁茶冬青叶总皂苷部位在制备用于降低胆固醇、 降低血脂、 抗粥样动 脉硬化的药物中的应用。
针对上述发明目的, 本发明提供以下技术方案:
一种苦丁茶冬青叶的提取方法, 该方法可以包括如下步骤: ( 1 ) 用 50~70%的乙醇水溶液回流提取苦丁茶冬青叶; ( 2 )将提取液滤过并除去其 中的乙醇; (3 ) 将步骤 (2 )得到的溶液上大孔树脂柱进行吸附, 然后依 次用水、 pH值 9~11 的 10~30%碱性乙醇水溶液、 10~30%乙醇水溶液和 50~70%乙醇水溶液洗脱该树脂柱; (4 )收集用 50~70%乙醇水溶液洗脱得 到的溶液, 浓缩、 干燥即得。
根据本发明提供的提取方法, 其中, 所述步骤 ( 1 ) 中乙醇的浓度可 以优选为 55~65%, 最优选为 60%; 步骤(3 ) 中 50~70%乙醇水溶液的乙 醇浓度可以优选为 55~65%, 最优选为 60%。 在本文中, 所述乙醇水溶液 的浓度是指乙醇在乙醇水溶液中的体积百分比浓度。
根据本发明提供的提取方法, 其中, 所述步骤 ( 1 ) 的回流提取的操 作方法为本领域技术人员所公知, 该操作中乙醇水溶液的用量可以根据原 料的量来确定, 例如乙醇水溶液与原料的重量比可以为 2~20: 1 , 优选为 5-15: 1 ; 提取的次数可以为 1~8次, 优选为 2~4次; 每次回流提取的时间 可以为 0.5~5小时, 优选为 0.5~2小时, 各次回流提取的时间可以相同也 可以不同, 各次回流所使用的乙醇的浓度可以相同也可以不同, 并且各次 回流所使用的乙醇的量可以相同也可以不同。 例如, 在本发明的一种优选 的实施方式中, 可以先使用原料重量 10倍的 60%乙醇回流 1小时, 将提 取液滤过后再使用原料重量 8倍的 60%乙醇回流 1小时, 将提取液滤过后 再使用原料重量 8倍的 60%乙醇回流 1小时, 然后将三次回流提取分离出 的滤液合并。
根据本发明提供的提取方法, 其中, 所述步骤 (2 ) 中除去乙醇的方 法和步骤 (4 ) 中浓缩的方法为本领域技术人员所公知, 例如, 均可以为 减压蒸馏。 步骤 (4 ) 中干燥的方法优选为真空干燥。 为了节约乙醇的用 量, 本发明的方法还可以包括将步骤(2 )分离出的乙醇和 /或步骤(4 )分 离出的乙醇回收, 并再次用于步骤(1 ) 的回流提取。
根据本发明提供的提取方法, 其中, 所述步骤 (3 ) 中使用的大孔树 脂柱是本领域常用的树脂柱, 就本发明而言, 优选为苯乙烯型的大孔吸附 树脂, 如 D101、 HPD100、 HPD400A、 AB-8和 NKA等型号的大孔树脂柱。 所述大孔树脂柱的径高比可以为 1 : 3~10, 优选为 1 : 4~7, 最优选为 1 : 6; 树脂与苦丁茶冬青叶的重量比可以为 5~15: 1 , 优选为 6~10: 1 , 最优选为 7: 1。
优选情况下, 为了得到效价更高的苦丁茶冬青叶总皂苷部位, 所述步 骤(3 ) 的洗脱过程可以为: 先用 4~10倍柱体积水淋洗至无糖反应; 再用 5-10倍柱体积 pH值 9~11的 10~30%碱性乙醇水溶液淋洗; 然后用 2~5倍 体积 10~30%乙醇水溶液淋洗;最后用 3~6倍柱体积 50~70%乙醇水溶液洗 脱该树脂柱。 例如, 在本发明的一种优选的实施方式中, 步骤 (3 ) 为: 将步骤( 2 )得到的溶液上 HPD400A大孔树脂柱进行吸附(树脂柱径高比 为 1 : 4 , 树脂与药材的重量比为 7: 1 ), 反复上样 3次, 静止吸附 30分钟, 吸附后先用水淋洗树脂柱至无糖, 再用 8 倍柱体积 25%的碱性乙醇 ( pH=10 )淋洗树脂柱, 然后用 3倍柱体积 25%的中性乙醇淋洗树脂柱至 中性, 最后用 4倍柱体积 60%的乙醇洗脱该树脂柱, 将 60%乙醇洗脱液收 集蒸干即得到苦丁茶冬青叶总皂苷部位。
根据本发明提供的提取方法, 其中, 所述步骤 (3 ) 中的碱性乙醇水 溶液的 pH值可以最优选为 10。
根据本发明提供的提取方法, 其中, 该方法还可以包括步骤 (5 ) 将 用 pH值 9~11的 10~30%碱性乙醇水溶液和用 10~30%乙醇水溶液洗脱得 到的溶液合并、 调节 pH值 2~3、 浓缩、 干燥, 得到总异绿原酸。 部位含量可以达到 80%以上, 能够降低血脂和抗粥样动脉硬化, 同时对肝脏 和肾脏具有保护作用。 降低胆固醇、 降低血脂和抗粥样动脉硬化的药物中的应用。 该苦丁茶冬青叶 总皂苷既可以单独使用, 也可以与他汀类药物联合使用, 以提高药效并改 善他汀类药物的毒副作用。 醇、 降低血脂和抗粥样动脉硬化的方法。
本发明提供的苦丁茶冬青叶总皂苷具有明显的降低胆固醇、抗动脉粥样 硬化作用,其作用强度与他汀类药物相当,但其机理与他汀类药物完全不同。 此外, 该提取物还有降低甘油三酯、 抗氧化、 肾保护、 改善血液流变学等作 用。 作用机理研究表明, 苦丁茶冬青皂苷降血脂机理为抑制肠道及肝脏酰基 辅酶 A胆固醇酰基转移酶(ACAT ) 的活性, 从而抑制胆固醇肠道吸收。 附图说明
以下, 结合附图来详细说明本发明的实施方案, 其中:
图 1为实施例 1制得的样品 A1的高效液相色谱图;
图 2为对比例 1制得的样品 C1的高效液相色谱图;
图 3为对比例 2制得的样品 C2的高效液相色谱图;
图 4为对比例 3制得的样品 C3的高效液相色谱图;
图 5显示苦丁茶冬青总皂苷对 ApoE-/-小鼠血浆总胆固醇水平的影响; 图 6显示苦丁茶冬青总皂苷对 ApoE-/-小鼠血浆 MDA水平的影响; 图 7显示苦丁茶冬青总皂苷对动脉粥样硬化的影响;
图 8显示苦丁茶冬青总皂苷对粪便中总胆固醇含量的影响;
图 9显示苦丁茶冬青总皂苷对 Caco-2细胞表达 ACAT2 mRNA的影响。 实施发明的最佳方式
下面结合具体实施例, 进一步阐述本发明。 但这些实施例仅限于说明本 发明而不用于限制本发明的范围。 需要说明的是, 实施例中出现的各种百分 比浓度的乙醇, 均是指相应体积百分比浓度的乙醇水溶液。 实施例 1
本实施例用于说明本发明提供的苦丁茶冬青叶的提取方法。
提取: 称取苦丁茶冬青叶药材 0.5 Kg, 分别用 5 L和 4 L 60%的乙醇 回流提取并过滤两次, 回流时间分别为 0.5小时和 1小时, 将滤液合并; 除乙醇: 将提取得到的滤液减压蒸馏至无醇味, 并将乙醇回收, 浓缩 液的相对密度为 1.06~1.08 (室温);
吸附: 将得到的溶液上 HPD400A大孔树脂柱吸附, 树脂柱的填充量 为 5 Kg, 径高比为 1 : 4, 反复上样 3次, 静止吸附 30分钟;
洗杂: 先用 4倍柱体积的去离子水淋洗树脂柱至无糖; 再用 8倍柱体 积的 20%碱性乙醇 (NaOH, pH=10 )淋洗; 然后用 3倍柱体积的 20%乙 醇淋洗至中性;
洗脱: 用 6倍柱体积 60%乙醇将树脂上吸附的提取物洗脱;
浓缩、 干燥: 将洗脱液减压蒸馏回收乙醇, 然后进行真空干燥, 并将 干燥后得到的固体粉碎过 100目筛, 得到 65.35克苦丁茶冬青叶提取物, 记作 A1 , 出膏率为 13.07%。 实施例 2
本实施例用于说明本发明提供的苦丁茶冬青叶的提取方法。
提取: 称取苦丁茶冬青叶药材 0.5 Kg, 先后用 4 L体积百分比为 65% 的乙醇、 3 L 60%的乙醇及 3 L 50%的乙醇回流提取并过滤三次, 回流时间 分别为 2小时、 1小时和 0.5小时, 将滤液合并;
除乙醇: 将提取得到的滤液减压蒸馏至无醇味, 并将乙醇回收, 浓缩 液的相对密度为 1.06~1.08 (室温);
吸附: 将得到的溶液上 AB-8大孔树脂柱吸附, 树脂柱的填充量为 3.5 Kg, 径高比为 1 : 8;
洗杂: 先用 8倍柱体积的去离子水淋洗树脂柱至无糖; 再用 10倍柱 体积的 30%碱性乙醇(NaOH, pH=10.5 )淋洗; 然后用 4倍柱体积的 30% 乙醇淋洗至中性;
洗脱: 用 3倍柱体积 65%乙醇将树脂上吸附的提取物洗脱;
浓缩、 干燥: 将洗脱液减压蒸馏, 然后进行真空干燥, 并将干燥后得 到的固体粉碎 100目筛, 得到 50.31克苦丁茶冬青叶提取物, 记作 A2 , 出 膏率为 10.06%。 对比例 1
本对比例用于说明洗杂过程仅用水淋洗的苦丁茶冬青叶的提取方法。 按照与实施例 1相同的方法进行提取、 除乙醇和吸附过程;
洗杂: 用 4倍柱体积的去离子水淋洗树脂柱至无糖;
洗脱: 用 4倍柱体积 60%乙醇将树脂上吸附的提取物洗脱;
浓缩、 干燥: 将洗脱液减压蒸馏, 然后进行真空干燥, 并将干燥后得 到的固体粉碎过 100 目筛, 得到 150克苦丁茶冬青叶提取物, 记作 C1 , 出膏率为 30.00%。 对比例 2
本对比例用于说明洗杂过程仅用水和乙醇淋洗的苦丁茶冬青叶的提取 方法。
按照与实施例 1相同的方法进行提取、 除乙醇和吸附过程;
洗杂: 用 4倍柱体积的去离子水淋洗树脂柱至无糖; 再用 5倍柱体积 的 10%乙醇淋洗;
洗脱: 用 4倍柱体积 60%乙醇将树脂上吸附的提取物洗脱;
浓缩、 干燥: 将洗脱液减压蒸馏, 然后进行真空干燥, 并将干燥后得 到的固体粉碎过 100目筛, 得到 110.23克苦丁茶冬青叶提取物, 记作 C2 , 出膏率为 22.05%。 对比例 3
本对比例用于说明洗杂过程仅用水和乙醇淋洗的苦丁茶冬青叶的提取 方法。
按照与实施例 1相同的方法进行提取、 除乙醇和吸附过程;
洗杂: 用 4倍柱体积的去离子水淋洗树脂柱至无糖; 再用 11倍柱体 积的 20%乙醇淋洗;
洗脱: 用 4倍柱体积 60%乙醇将树脂上吸附的提取物洗脱;
浓缩、 干燥: 将洗脱液减压蒸馏, 然后进行真空干燥, 并将干燥后得 到的固体粉碎过 100目筛, 得到 102.8克苦丁茶冬青叶提取物, 记作 C3 , 出膏率为 20.56%。 成分测定
一、 高效液相色谱检测 (HPLC )
色谱柱: Kromasil C18 ( 4.6x250 mm, 5 μηι ), 流速: 0.8 ml/min; 检 测波长: 226 nm; 柱温: 30 °C ; 流动相: 乙腈 -0.1%磷酸溶液, 梯度洗脱, 洗脱条件如表 1所示:
表 1 梯度洗脱表
Figure imgf000008_0001
图 1为实施例 1制得的样品 A1的色谱图, 图 2为对比例 1制得的样 品 C1的色谱图, 图 3为对比例 2制得的样品 C2的色谱图, 图 4为对比例 3制得的样品 C3的色谱图。 在图 1-4中, 谱峰 Kc、 Ka和 Kd分别表示三 种主要的苦丁茶冬青叶皂苷成分 [苦丁茶皂苷 C(KDC-C)、 苦丁茶皂苷 A(KDC-A)和苦丁茶皂苷 D(KDC-D ) ]的语峰; 谱峰 Ia、 lb和 Ic分别表示 三种异绿原酸成分(异绿原酸 B、 异绿原酸 A和异绿原酸 C ) 的谱峰。
表 2列出了实施例 1、 2制得的样品 A1和 A2 以及对比例 1、 2和 3 制得的样品 CI、 C2和 C3的 HPLC检测结果。
HPLC法测定各提取物中皂苷及异绿原酸含量结果
Figure imgf000008_0002
通过图 1-4中的结果和表 2中的数据对比可以看出, 采用水或低浓度 乙醇不能去除异绿原酸类成分, 而采用碱性的低浓度醇洗则能够达到去除 异绿原酸类成分, 从而获得高纯度的苦丁茶总皂苷提取物。
二、 紫外吸收测定总皂苷
分别精密称取所得提取物(3批)约 10 mg, 曱醇定容至 25 ml。 精密 量取 0.8 ml置于 10 ml的具塞玻璃管中, 80°C水浴蒸干, 得到 3批样品。 以苦丁茶皂苷 A为对照品( 0.535 mg/ml ), 分别量取 0.1 ml、 0.2 ml、 0.4 ml 置于 10 ml的具塞玻璃管中, 80°C水浴蒸干。
称量 0.1 g香草醛置于 10 ml具塞玻璃管, 加入 2 ml冰醋酸, 溶解后 加入 8 ml高氯酸, 摇匀, 得到金黄色显色剂。
分别向上述蒸干的样品及对照品的玻璃管中加入 1 ml上述显色剂,在 60°C下水浴加热 15 min后, 立即冷却, 加入 5 ml冰醋酸, 摇匀后, 在 538 nm下测量紫外吸收值。
表 3列出了实施例 1、 2制得的样品 A1和 A2以及对比例 1、 2和 3 制得的样品 Cl、 C2和 C3的总皂苷含量测定结果。
表 3 UV法测定各提取物中总皂苷含量结果
Figure imgf000009_0001
通过表 3 中的数据对比可以看出, A1和 A2的总皂苷的含量明显高于 C1、C2和 C3中的含量,说明通过去除其它杂质能够明显提高总皂苷的含量。 但是同时也发现 UV法测定含量还是存在着不准确的地方, 如 C2、 C3虽然 测出来皂苷的含量较高, 但是通过 HPLC检测, 发现其仍存在大量异绿原酸 类成分, 这是因为使用冰醋酸-香草醛显色法, 很多类似糖苷类化合物都会 显色, 缺乏单一性, 所以使测定结果不够准确。 药效试验
进行如下试验检测实施例 1制得的苦丁茶冬青叶提取物的疗效。
ApoE-/-小鼠, 按体重随机分为 4组。
( 1 )阴性对照组(CG ): 正常饮食 7周, 同时每日灌胃给予生理盐水。
( 2 ) 高脂对照组 (HG ): 单纯喂食 0.2%高胆固醇饲料 7周, 同时每 日灌胃给予生理盐水。
( 3 ) 阿托伐他汀治疗组 (AG ): 喂食高胆固醇饲料一周后开始灌胃 给予阿托伐他汀 (50 mg/kg/d ) 治疗, 同时继续给予高胆固醇饮食, 每天 灌胃一次, 疗程为 6周。
( 4 )苦丁茶冬青总皂苷剂量组(SG ): 疗程同上, 苦丁茶冬青总皂苷 给药剂量为 300 mg/kg/d 一、 苦丁茶冬青总皂苷对血浆总胆固醇 (TC ) 水平的影响
图 5显示了苦丁茶冬青总皂苷对 ApoE-/-小鼠血浆总胆固醇 (TC ) 水 平的影响。 ApoE-/-小鼠经过一周高胆固醇饲料喂食, 血浆总胆固醇从 300-400 mg/dL升高到约 800 mg/dL, 形成极高胆固醇血症后开始灌胃给 药。 结果显示, 与高脂对照组相比, 所有给药组都能降低小鼠的血浆 TC 水平。 苦丁茶冬青总皂苷和阿托伐他汀组在给药一周后血浆 TC水平降低 30% ~ 35%, 二者药效基本相同, 无显著性差异。 药效持续六周并保持稳 定。 二、 苦丁茶冬青总皂苷对血浆丙二醛(MDA ) 的影响
图 6显示了苦丁茶冬青总皂苷对 ApoE-/-小鼠血浆 MDA水平的影响, 随 高脂饮食时间的延长,给药第六周时高脂对照组血浆 MDA水平升高约为高 脂饮食前的 5倍。 和高脂对照小鼠相比, 阿托伐他汀组和皂苷组从给药第 二周起, 能明显抑制血浆 MDA水平的升高, 并都持续到给药结束。 从给药 第四周起, 阿托伐他汀组 MDA水平开始上升, 在给药第六周时达到 16.5 nmol/L, 比给药前升高约 1.5倍; 而皂苷组从给药开始到实验结束, 血浆 MDA水平几乎没有升高。上述结果显示, 阿托伐他汀和苦丁茶冬青皂苷均 能抑制血浆脂质氧化, 皂苷组与阿托伐他汀组相比, 给药五周后能更有效 地抑制血浆 MDA水平的升高并具有显著性差异。 三、 苦丁茶冬青总皂苷对动脉粥样硬化的影响
图 7显示了苦丁茶冬青总皂苷对 ApoE-/-小鼠主动脉流出道动脉粥样 面积影响的实验结果, 高脂对照组( HG )与阴性控制组( CG )相比 p<0.05 , 说明造模成功, 而苦丁茶冬青总皂苷(SG )和阿托伐他汀(AG )组与 HG 组均存在极显著差异(PO.01 ) ,说明这两组都能显著抑制主动脉流出道动 脉粥样硬化斑块的形成, 抑制率达到约 40%。
四、 苦丁茶冬青总皂苷对粪便中总胆固醇含量的影响
为了研究苦丁茶冬青总皂苷降血浆胆固醇的可能机制, 对 ApoE-/-小 鼠粪便中总胆固醇的含量进行了测定, 以检测药物对小鼠胆固醇吸收的影 响, 结果如图 8所示, 与阴性控制组 (CG )相比 #p<0.05 , 与高脂对照组 ( CG )相比 *p<0.05。 结果表明, 小鼠经高胆固醇食物诱导后, 胆固醇的 排泄量增加了 75%, 与对照组小鼠差异显著。 皂苷组小鼠粪便胆固醇含量 比高脂组增加约 40%, 且差异显著。 五、苦丁茶冬青总皂苷对 Caco-2细胞表达肝脏酰基辅酶 A胆固醇酰基 转移酶 2 ( ACAT2 ) mRNA的影响
在之前的研究中发现, 苦丁茶冬青总皂苷能增加胆固醇的排泄量, 减 少小肠内 TC含量。 因此对相关基因的 mRNA表达水平进行了检测。 结果 发现, ACAT2的 mRNA水平受到了苦丁茶冬青总皂苷的影响,其中 ACAT2 的结果见图 9。 图中 TS表示苦丁茶总皂苷, Ator表示阿托伐他汀, 与阴 性控制组 (CG )相比 #p<0.05。 从结果可以看出, 10 g/mL和 100 g/mL 的总皂苷能抑制表达 ACAT2 mRNA的 50%,与阴性对照组相比差异显著。 而苦丁茶冬青总皂苷对其它筛选基因表达没有影响。 本研究结果证明: 苦 丁茶冬青皂苷降血脂机理可能为抑制肠道及肝脏酰基辅酶 A 胆固醇酰基 转移酶(ACAT ) 的活性, 从而抑制胆固醇肠道的吸收。 通过以上药效检测结果可以看出, 本发明提供的苦丁茶冬青叶提取物 具有明显的降低胆固醇、 降低血脂、 抗动脉粥样硬化作用, 其作用强度与他 汀类药物相当。

Claims

权 利 要 求
1. 一种苦丁茶冬青叶的提取方法, 其特征在于, 该方法包括如下步 骤: (1 ) 用 50~70%的乙醇水溶液回流提取苦丁茶冬青叶; (2 )将提取液 滤过并除去其中的乙醇; (3 ) 将步骤(2 )得到的溶液上大孔树脂柱进行 吸附, 然后依次用水、 pH值 9~11的 10~30%碱性乙醇水溶液、 10~30%乙 醇水溶液和 50~70%乙醇水溶液洗脱该树脂柱; (4 )收集用 50~70%乙醇水 溶液洗脱得到的溶液, 浓缩、 干燥即得。
2. 根据权利要求 1所述的方法, 其中, 所述步骤(1 ) 中乙醇的浓度 为 55~65%, 最优选为 60%; 步骤(3 ) 中 50~70%乙醇水溶液的乙醇浓度 为 55~65%, 最优选为 60%。
3. 根据权利要求 1或 2所述的方法, 其中, 所述步骤( 1 )中提取 1-8 次, 优选为 2~4次; 每次 0.5~5小时, 优选为 0.5~2小时。
4. 根据权利要求 1至 3中任一项所述的方法, 其中, 所述步骤(2 ) 中除去乙醇的方法为减压蒸馏, 所述步骤(4 ) 中浓缩的方法为减压蒸馏; 干燥的方法为真空干燥。
5. 根据权利要求 1至 4中任一项所述的方法, 其中, 所述步骤(3 ) 中的大孔树脂柱的径高比为 1 : 3~10, 优选为 1 : 4~7, 最优选为 1 : 6; 树脂 与苦丁茶冬青叶的重量比为 5~15: 1 , 优选为 6~10: 1。
6. 根据权利要求 1至 5中任一项所述的方法, 其中, 所述步骤(3 ) 中的碱性乙醇水溶液的 pH值为 10。
7. 根据权利要求 1至 6中任一项所述的方法, 其中, 该方法还包括步 骤(5 )将用 pH值 9~11的 10~30%碱性乙醇水溶液和用 10~30%乙醇水溶 液洗脱得到的溶液合并、 调节 pH值 2~3、 浓缩、 干燥, 得到总异绿原酸。
8. 根据权利要求 1至 6中任一项所述的方法,其中该方法还包括将步 骤(2 )分离出的乙醇和 /或步骤(4 )分离出的乙醇回收, 并再次用于步骤
( 1 ) 的回流提取。
9. 权利要求 1至 8中任一项的方法提取得到的苦丁茶冬青叶总皂苷。
10. 权利要求 1至 8中任一项所述方法提取得到的苦丁茶冬青叶总皂 苷在制备用于降低胆固醇、 降低血脂和抗粥样动脉硬化的药物中的应用。
11. 一种应用权利要求 9所述的苦丁茶冬青叶总皂苷降低胆固醇、降低 血脂和抗粥样动脉硬化的方法。
PCT/CN2011/084377 2011-01-24 2011-12-21 苦丁茶冬青叶的提取方法、总皂苷及其用途 WO2012100612A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11856799.9A EP2668954B1 (en) 2011-01-24 2011-12-21 Extraction method, total saponin and use of ilex kudingcha c.j.tseng leaves
JP2013550742A JP5955337B2 (ja) 2011-01-24 2011-12-21 苦丁茶冬青の葉の抽出方法、総サポニンおよびその使用
US13/981,054 US9109003B2 (en) 2011-01-24 2011-12-21 Extraction method for Ilex kudingcha C. J. Tseng leaves, total saponins and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110026026.XA CN102600214B (zh) 2011-01-24 2011-01-24 苦丁茶冬青叶的提取方法、总皂苷及其用途
CN201110026026.X 2011-01-24

Publications (1)

Publication Number Publication Date
WO2012100612A1 true WO2012100612A1 (zh) 2012-08-02

Family

ID=46518233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084377 WO2012100612A1 (zh) 2011-01-24 2011-12-21 苦丁茶冬青叶的提取方法、总皂苷及其用途

Country Status (6)

Country Link
US (1) US9109003B2 (zh)
EP (1) EP2668954B1 (zh)
JP (1) JP5955337B2 (zh)
CN (1) CN102600214B (zh)
HK (1) HK1173952A1 (zh)
WO (1) WO2012100612A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827001B (zh) * 2011-06-16 2016-03-02 东莞市岭奥生物科技有限公司 一种苦丁茶冬青提取物
JP6224894B2 (ja) * 2012-12-20 2017-11-01 花王株式会社 クロロゲン酸類の安定化方法
CN103598367A (zh) * 2013-11-12 2014-02-26 福建省亚热带植物研究所 一种苦丁茶冲剂的制备方法
CN104435025A (zh) * 2014-12-29 2015-03-25 广西梧州制药(集团)股份有限公司 苦丁茶在制备治疗阿尔兹海默病药物方面的新用途
CN106420852B (zh) * 2015-08-04 2020-01-03 上海凯屹医药科技有限公司 一种雾化苦丁茶和用途
JP7134976B2 (ja) * 2017-08-09 2022-09-12 三栄源エフ・エフ・アイ株式会社 苦丁茶加工物
CN111366549A (zh) * 2020-03-24 2020-07-03 广西壮族自治区人民医院 红心猕猴桃总皂苷含量的测定方法
CN113801758A (zh) * 2021-09-22 2021-12-17 劲牌有限公司 一种降低保健酒生产过程总皂苷损耗和延缓货架期总皂苷衰减的方法
CN114264763A (zh) * 2021-12-22 2022-04-01 金绿源(中国)生物科技有限公司 一种细梗香草的取样方法
CN115671065B (zh) * 2022-10-27 2023-11-14 重庆市中药研究院 一种保肝养胃的药用片剂及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1521175A (zh) * 2003-02-14 2004-08-18 浙江养生堂天然药物研究所有限公司 新的苦丁萘提取物及其用途
CN1981803A (zh) * 2005-12-13 2007-06-20 黄伟民 一种防治心血管疾病的中药组合物及其制备方法
CN101284031A (zh) * 2008-06-03 2008-10-15 上海雷允上科技发展有限公司 毛冬青提取物、其制备及应用
CN101361766A (zh) * 2007-08-10 2009-02-11 贺震旦 苦丁茶总苷的应用及其制备方法
CN101766664A (zh) * 2010-03-04 2010-07-07 广州中医药大学 一种岗梅总皂苷的提取方法及其质量检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001103929A (ja) * 1999-10-05 2001-04-17 Tama Seikagaku Kk 苦丁茶葉由来の抽出物及びその製法
CN1300096C (zh) * 2005-03-22 2007-02-14 中国药科大学 从忍冬属植物叶中提取酚酸化合物的方法
PL1905444T3 (pl) * 2005-07-14 2015-03-31 Shanghai Hongyitang Biopharmaceutical Tech Co Ltd Sposób wytwarzania kompozycji leczniczej zawierającej drugorzędowe glikozydy żeń-szenia
JP5093873B2 (ja) * 2006-06-28 2012-12-12 長谷川香料株式会社 精製クロロゲン酸の製造法
CN101775061A (zh) * 2009-09-15 2010-07-14 沈阳药科大学 一组苦丁茶皂苷类化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1521175A (zh) * 2003-02-14 2004-08-18 浙江养生堂天然药物研究所有限公司 新的苦丁萘提取物及其用途
CN1981803A (zh) * 2005-12-13 2007-06-20 黄伟民 一种防治心血管疾病的中药组合物及其制备方法
CN101361766A (zh) * 2007-08-10 2009-02-11 贺震旦 苦丁茶总苷的应用及其制备方法
CN101284031A (zh) * 2008-06-03 2008-10-15 上海雷允上科技发展有限公司 毛冬青提取物、其制备及应用
CN101766664A (zh) * 2010-03-04 2010-07-07 广州中医药大学 一种岗梅总皂苷的提取方法及其质量检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2668954A4 *
ZHENG J. ET AL: "Total saponins from Kuding tea (Ilex kudingcha C.J.Tseng) protect against kidney injury induced by hypercholesterolemia in apolipoprotein E knockout mice", CHINESE JOURNAL OF NEW DRUGS, vol. 18, no. 5, 31 December 2009 (2009-12-31), pages 429 - 433, XP008169801 *

Also Published As

Publication number Publication date
CN102600214A (zh) 2012-07-25
JP2014504607A (ja) 2014-02-24
HK1173952A1 (zh) 2013-05-31
EP2668954A4 (en) 2014-08-06
EP2668954B1 (en) 2016-03-02
CN102600214B (zh) 2014-10-08
US20130303469A1 (en) 2013-11-14
JP5955337B2 (ja) 2016-07-20
EP2668954A1 (en) 2013-12-04
US9109003B2 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
WO2012100612A1 (zh) 苦丁茶冬青叶的提取方法、总皂苷及其用途
AU2004200624B2 (en) Medicinal preparation containing phenylethanoid glycosides extracted from herbaceous plant, cistanche tubulosa (schenk.) wight, process of making the same, and uses of the same
CN101863871B (zh) 蔷薇红景天总苷及其医药用途和制备方法
CN106038713A (zh) 睡莲花总黄酮提取物及其制备方法和应用
CN108096307B (zh) 野马追乙醇提取物在制备抗乙肝病毒药物中的应用
CN104257768A (zh) 各种成分比例稳定均一的大黄总蒽醌及其组合物用于治疗胰腺炎
CN107129478B (zh) 一种半萜内酯类化合物及其制备方法和应用
JP2006206556A (ja) 脳記憶機能低下症状回復剤及びその調製方法
CN105287709A (zh) 一种具有降尿酸作用的山核桃叶提取物总黄酮及其制备方法及用途
CN105646638B (zh) 长梗冬青苷的制备方法
CN102108072B (zh) 从当归提取物中制备洋川芎内酯i的方法
CN1687092A (zh) 苍耳子总苷提取物及其制备方法
CN102670698B (zh) 千斤拔提取物在制备防治糖尿病药物中的应用
CN102584915B (zh) 一种芳香酸类化合物及其用途
CN105362259B (zh) 一种具有降尿酸作用的山核桃叶提取物球松素及其制备方法和用途
Kumar et al. Green and proficient process for industrial-scale preparation of Gymnema sylvestre standardized-extract enriched with Gymnemic acids through polymer-matrix-adsorption to reduce hyperglycemia
CN104803851A (zh) 一种薄荷中可抗呼吸道合胞病毒的有效成分及制备方法
CN104324090A (zh) 一种大黄总蒽醌胶囊组合物
CN116350672B (zh) 一种火把花根中主要活性成分提取方法及在制备膜性肾病药物中的应用
CN101967094B (zh) 一组菊苣中的苯乙酰奎尼酸及其酯类化合物
CN104861020B (zh) 一个苯丙素苷类化合物、其提取方法及其应用
CN109674830A (zh) 灵芝中对酒精性肝损伤有保护作用成分的分离及应用
CN101838202B (zh) 阿魏总萜酯及其医药用途和制备方法
CN116354912A (zh) 一种化合物及其在作为或制备abcg2激动剂中的应用
CN105596935A (zh) 一种干预或改善糖尿病肾病的蒙药复方制剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13981054

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013550742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011856799

Country of ref document: EP