WO2012099253A1 - Coating composition for touch panels, coating film, and touch panel - Google Patents

Coating composition for touch panels, coating film, and touch panel Download PDF

Info

Publication number
WO2012099253A1
WO2012099253A1 PCT/JP2012/051251 JP2012051251W WO2012099253A1 WO 2012099253 A1 WO2012099253 A1 WO 2012099253A1 JP 2012051251 W JP2012051251 W JP 2012051251W WO 2012099253 A1 WO2012099253 A1 WO 2012099253A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
film
metal
touch panel
coating composition
Prior art date
Application number
PCT/JP2012/051251
Other languages
French (fr)
Japanese (ja)
Inventor
和輝 江口
慶太 村梶
賢一 元山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020137021707A priority Critical patent/KR101829495B1/en
Priority to JP2012553789A priority patent/JP6048148B2/en
Priority to CN201280013782.1A priority patent/CN103443750B/en
Publication of WO2012099253A1 publication Critical patent/WO2012099253A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a coating composition for a touch panel, a coating film formed from the coating composition, and a touch panel having the coating film.
  • inorganic coatings have been formed for various purposes on the surface of substrates such as glass, ceramics, metals, and plastics.
  • substrates such as glass, ceramics, metals, and plastics.
  • an inorganic coating By forming an inorganic coating on the surface of the substrate, it is possible to impart electrical properties, optical properties, chemical properties, mechanical properties, and the like to the substrate. Therefore, these inorganic coatings have been put into practical use as conductive films, insulating films, selective transmission or absorption films of light rays, alkali elution prevention films, chemical resistant films, hard coat films, and the like.
  • Examples of the method for forming such an inorganic coating include a vapor phase method such as CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), sputtering, or a liquid phase method using an alkoxide compound.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • sputtering or a liquid phase method using an alkoxide compound.
  • the vapor phase method requires an expensive and large-scale apparatus such as a vacuum vapor deposition apparatus. There is also a problem that the size and shape of the base material on which the film can be formed are limited.
  • a so-called sol-gel method is known as a liquid phase method using an alkoxide compound or the like. This method has advantages such as application to a large area and support for patterning. For this reason, the inorganic film by a liquid phase method is actively used as a coating film in an electronic device (for example, refer to Patent Document 1). In particular, recently, application to a touch panel has been studied.
  • the touch panel detects the contact position of the operation area touched by a finger or pen. Using this function, the touch panel is used as an input device.
  • the contact position detection method includes a resistance film method and a capacitance method.
  • the resistive film method uses two opposing substrates, whereas the capacitive method allows a single substrate to be used. For this reason, according to the electrostatic capacity method, a thin touch panel can be configured and is suitable for a portable device or the like, so that development has been actively promoted in recent years.
  • Patent Document 2 discloses a capacitive touch panel.
  • a first transparent electrode for detecting coordinates in the X direction and a second transparent electrode for detecting coordinates in the Y direction are arranged on one surface of the transparent substrate, and intersect each other.
  • An interlayer insulating film is interposed in the portion so as not to conduct.
  • the touch panel is incorporated in a display device such as a liquid crystal display device and is used as a display device with a touch panel function capable of detecting a touch position. Since a person who operates the touch panel visually recognizes the display device through the touch panel, a member having excellent light transmission characteristics is used for the transparent electrode. For example, inorganic materials such as ITO (Indium Tin Oxide) are used. As the interlayer insulating film, patterning is possible, and an insulating acrylic material or the like is used.
  • the touch panel as described above is required to have strength and high reliability because a finger or a pen tip may be actually touched and pressed in the operation area. Therefore, studies have been made to provide a protective film on the first and second electrodes that overlap with each other via an interlayer insulating film.
  • the protective film an acrylic material that can be patterned is used.
  • the acrylic material is an organic material, the hardness as a protective film is not sufficient.
  • ITO etc. are used for a transparent electrode, the adhesiveness with respect to ITO is weak, and becomes a cause of reducing the reliability of a touch panel.
  • a coating film containing an inorganic material as a component instead of an acrylic film has been studied as a protective film.
  • the hardness is generally high, and high reliability can be expected as a coating film for a touch panel.
  • it is required that a coating film using an inorganic material as a component can be formed using a printing technique and has high adhesion to an interlayer insulating film made of an organic material such as an acrylic material. ing.
  • a difference in reflectance occurs between a region where a transparent electrode such as ITO is formed and a region where a transparent electrode is not formed. As a result, there is a problem that the pattern of the transparent electrode is visually recognized and display properties are lowered.
  • an acrylic film has been used as a protective film material on the transparent electrode.
  • the coat film preferably makes the transparent electrode pattern inconspicuous.
  • an object of the present invention is to provide a coating film with a controlled refractive index that can be applied to a touch panel to achieve high reliability, and a coating composition that can form such a coating film.
  • Another object of the present invention is to provide a touch panel having a coating film on an electrode, the refractive index of which is controlled and high reliability can be realized.
  • a coating composition for a touch panel comprising: M 1 (OR 1 ) n (I) (Wherein M 1 is a group consisting of silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg) and zinc (Zn).
  • R 1 represents an alkyl group having 1 to 5 carbon atoms or an acetoxy group, and n represents a valence 2 to 5 of M 1 ).
  • R 2 l M 2 (OR 3 ) ml (II) (Wherein M 1 is a group consisting of silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg) and zinc (Zn).
  • Represents at least one metal selected from R 2 may be substituted with a hydrogen atom or a fluorine atom, and may be a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an acryloxy group, an isocyanate group; Represents a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with an amino group or a ureido group and which may have a hetero atom, and R 3 represents an alkyl group having 1 to 5 carbon atoms.
  • M represents the valence 2 to 5 of M 2
  • l is 1 or 2 when the valence of m is 3, and 1 to 3 when the valence of m is 4, and the valence of m 1 to 4 if the number is 5 .
  • M 3 (X) k (III) (Wherein M 3 represents aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum (Ta), yttrium (Y) and cerium ( Ce) represents at least one metal selected from the group consisting of: X is a residue of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, succinic acid, sfamic acid, sulfonic acid, acetoacetic acid or acetylacetonate, or their basicity Represents a salt, and k represents the valence of M 3.
  • 2nd metal alkoxide is a coating composition for touchscreen
  • the anti-precipitation agent is at least one substance selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. Or the coating composition for touchscreens of 2.
  • the touch panel coating composition according to any one of 1 to 3 above, wherein + M 3 ) ⁇ 0.7. 5). 5. The touch panel coating composition as described in any one of 1 to 4 above, wherein the first metal alkoxide is a mixture of silicon alkoxide or a partial condensate thereof and titanium alkoxide. 6).
  • the metal salt is a metal nitrate, metal sulfate, metal acetate, metal chloride, metal succinate, metal sphamate, metal sulfonate, metal acetoacetate, metal acetylacetonate or a basic salt thereof
  • the coating composition for a touch panel as described in any one of 1 to 5 above. 7).
  • the coating film as described in 8 above which has a refractive index of 1.52 to 1.70 and a film thickness of 40 nm to 170 nm.
  • a touch panel in which a transparent electrode pattern is formed in the operation area of the substrate, 10.
  • the transparent electrode pattern includes a first transparent electrode pattern for detecting positions in at least two different directions, and a second transparent electrode pattern, At least a part of the first transparent electrode pattern and the second transparent electrode pattern overlap in the operation region of the substrate, and the first transparent electrode pattern and the second transparent electrode in the overlapping part
  • a film made of organic material is placed between the pattern and 10.
  • the coating film according to 10 above wherein the coating film is configured to cover at least a part of the film made of the organic material together with at least a part of the first transparent electrode pattern or the second transparent electrode pattern.
  • the touch panel described. 12 There are a plurality of overlapping portions of the first transparent electrode pattern and the second transparent electrode pattern in the operation region of the substrate, and each of the overlapping portions has an area larger than the area of the overlapping portion. 12.
  • a coating composition for a touch panel that can be applied to a touch panel to form a coating film with a controlled refractive index that can realize high reliability.
  • a coating film having a high refractive index and a high strength and suitable as a coating film for a touch panel is provided.
  • a conspicuous electrode pattern is suppressed, and a highly reliable touch panel is provided.
  • FIG. 2 is a cross-sectional view taken along the line A1-A1 'of FIG. (A)-(d) is process sectional drawing which shows the manufacturing method of the touchscreen of this invention. It is sectional drawing which shows schematic structure of another example of the touchscreen of this invention. It is a top view which shows typically the structure of another example of the touchscreen of this invention.
  • FIG. 6 is a cross-sectional view taken along line B1-B1 ′ of FIG.
  • the coating composition of the present invention includes a first metal alkoxide represented by the above general formula (I), a second metal alkoxide represented by the above general formula (II), and a metal represented by the above general formula (III). Contains a salt, an organic solvent, moisture, and a precipitation inhibitor. A coating suitable for a touch panel can be obtained by depositing this coating composition.
  • the coating film obtained from the coating composition of the present invention is mainly composed of an inorganic metal oxide, and has a higher hardness and higher strength than a coating film made of an organic material such as an acrylic material. Have. Therefore, it is suitable as a protective film for an electrode of a touch panel. Further, the refractive index is controlled within the optimum range so as to reduce the so-called “electrode pattern appearance” phenomenon in which the transparent electrode pattern is visually recognized on the touch panel. As a result, it is possible to prevent deterioration in display properties of a display device to which a touch panel using this coat film is applied.
  • the coating film obtained by the present invention is configured, for example, by including two types of transparent electrode patterns for detecting the positions in two different directions in the transparent electrode pattern arranged in the operation region of the touch panel substrate.
  • an interlayer insulating film made of an organic material such as acrylic is disposed between the two transparent electrode patterns so as not to be electrically connected.
  • the coat film is also formed on the interlayer insulating film.
  • due to the difference in thermal stretchability between the coat film and the interlayer insulating film there is a problem that the coat film cracks and the reliability of the touch panel is lowered.
  • the structure and composition of the components contained are preferably selected so that cracks do not occur in the coating film of the touch panel. More specifically, in the coating composition of the present invention, the metal alkoxide that is the main component can be selected in a structure and composition that are suitable for forming a coating film.
  • the coating composition of the present invention contains a first metal alkoxide having a structure represented by the following general formula (I) and a second metal alkoxide having a structure represented by the following general formula (II).
  • M 1 , R 1 and n are as defined above.
  • M 1 is preferably silicon (Si), titanium (Ti), zirconium (Zr), or aluminum (Al), and particularly preferably silicon (Si) or titanium (Ti).
  • N is preferably 3 or 4.
  • M 2 , R 2 , R 3 and m are as defined above.
  • M 2 is preferably silicon (Si), titanium (Ti), zirconium (Zr), or aluminum (Al), and particularly preferably silicon (Si) or titanium (Ti).
  • R ′ represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, or an acetoxy group.
  • examples of the silicon alkoxide include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and tetraacetoxysilane.
  • R ′′ represents an alkyl group having 1 to 5 carbon atoms.
  • titanium alkoxide As the metal alkoxide represented by the formula (I), specifically, as titanium alkoxide, a titanium tetraalkoxide compound such as titanium tetraethoxide, titanium tetrapropoxide, titanium tetrabutoxide, or a moiety such as titanium tetra-n-butoxide tetramer A condensate or the like is used.
  • a titanium tetraalkoxide compound such as titanium tetraethoxide, titanium tetrapropoxide, titanium tetrabutoxide, or a moiety such as titanium tetra-n-butoxide tetramer A condensate or the like is used.
  • metal alkoxide represented by the formula (I) include zirconium tetraalkoxide compounds such as zirconium tetraethoxide, zirconium tetrapropoxide, zirconium tetrabutoxide; aluminum tributoxide, aluminum triisopropoxide, aluminum triethoxide And aluminum trialkoxide compounds such as tantalum pentapropoxide and tantalum pentaalkoxide compounds such as tantalum pentataboxide.
  • zirconium tetraalkoxide compounds such as zirconium tetraethoxide, zirconium tetrapropoxide, zirconium tetrabutoxide
  • aluminum tributoxide aluminum triisopropoxide
  • aluminum trialkoxide compounds such as tantalum pentapropoxide and tantalum pentaalkoxide compounds such as tantalum pentataboxide.
  • the content of the first metal alkoxide is preferably 20 mol% to 85 mol%, preferably 30 mol% to 70 mol%, based on the total amount of one metal alkoxide and second metal alkoxide contained in the coating composition. Mole% is more preferable.
  • the second metal alkoxide represented by the above formula (II) is used in the coating composition of the present invention together with the first metal alkoxide.
  • the coating composition when the coating film is formed on a film made of an organic material such as an acrylic material by including the second metal alkoxide, there is a difference in thermal stretchability between the coating film and the organic film. Alleviated.
  • a coat film may be formed on the organic film, it is possible to prevent cracks from occurring in the coat film.
  • a crack occurs in the coat film on the interlayer insulating film. Can be prevented.
  • the content of the second metal alkoxide is preferably 80 to 15 mol%, preferably 70 to 30 mol, based on the total amount of one metal alkoxide and the second metal alkoxide contained in the coating composition. % Is more preferable.
  • the carbon number of R 2 is 3 or less
  • the content of the metal alkoxide represented by the formula (II) is 30% or more
  • the carbon number of R 2 is 4 or more, or a mercapto group is contained in R 2
  • the content of the second metal alkoxide is more preferably 15% or more, and more preferably 75 mol% or less.
  • the total content of the first metal alkoxide and the second metal alkoxide contained in the coating composition is preferably 0.5% by weight to 20% by weight, more preferably 1% by weight to 15% by weight.
  • this ratio is large, the storage stability of the coating composition is deteriorated and it is difficult to control the film thickness of the coating film.
  • the thickness is small, the thickness of the resulting coating film becomes thin, and many coatings are required to obtain a predetermined film thickness.
  • the metal salt contained in the coating composition of the present invention is represented by the following general formula (III).
  • M 3 , X and k are as defined above.
  • M 3 is preferably aluminum (Al), indium (In), cerium (Ce), or zirconium (Zr).
  • X is preferably a residue of hydrochloric acid, nitric acid, acetic acid, succinic acid, sulfonic acid, acetoacetic acid or acetylacetonate, or a basic salt thereof.
  • each acid in X is, for example, nitric acid is also called a nitrate radical and sulfuric acid is also called a sulfate radical, and the amount thereof is included so as to be equivalent to the valence of M 3 .
  • a basic salt means the case where OH group is contained in the residue of said each acid.
  • metal salts represented by the formula (III) nitrates, chloride salts, oxalates or basic salts thereof are particularly preferable. Of these, aluminum, indium, or cerium nitrate is more preferred from the viewpoint of availability and storage stability of the coating composition.
  • the coating composition of the present invention contains an organic solvent.
  • the organic solvent is for adjusting the viscosity of the coating composition and improving the coating property when forming a coating film from the coating composition to obtain a coating film.
  • Content of the organic solvent in the coating composition Is preferably 80% by weight to 99.5% by weight and more preferably 85% by weight to 99% by weight with respect to the total metal alkoxide contained in the coating composition.
  • the content of the organic solvent is small, the thickness of the resulting coating film is reduced, and many coatings are required to obtain a predetermined film thickness.
  • the amount is large, the storage stability of the coating composition is deteriorated and it is difficult to control the thickness of the coating film.
  • organic solvent used in the coating composition examples include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2-propanol.
  • Esters such as ethyl acetate; glycols such as ethylene glycol; or ester derivatives thereof; ethers such as diethyl ether; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; aromatic hydrocarbons such as benzene and toluene; Is mentioned. These are used alone or in combination.
  • the alkylene glycol or monoether thereof contained in the organic solvent is, for example, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, or their monomethyl, monoethyl , Monopropyl, monobutyl or monophenyl ether.
  • the molar ratio of the glycols or monoethers contained in the organic solvent used in the coating composition is less than 1 with respect to the titanium alkoxide, the stability of the titanium alkoxide is less effective, and the storage stability of the coating composition is reduced. Sexuality gets worse. on the other hand. It is not a problem to use a large amount of glycols or monoethers thereof.
  • all of the organic solvents used in the coating composition can be the above-described glycols or monoethers thereof.
  • the coating composition does not contain a titanium alkoxide, it is not necessary to specifically contain the above-mentioned glycol and / or its monoether.
  • the coating composition preferably contains a precipitation inhibitor.
  • the anti-deposition agent prevents the metal salt from precipitating in the coating film when a coating film is formed from the coating composition.
  • the precipitation inhibitor include N-methyl-pyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. Of these, N-methyl-pyrrolidone, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol or derivatives thereof are more preferable. At least one kind of precipitation inhibitor can be used.
  • the content of the precipitation inhibitor in the coating composition is preferably used at a ratio (weight ratio) satisfying the following, when the metal of the metal salt is converted into a metal oxide. (Precipitation inhibitor / metal oxide) ⁇ 1 When the ratio is less than 1, the effect of preventing precipitation of the metal salt at the time of forming the coating film is reduced. On the other hand, the use of a large amount of precipitation inhibitor does not affect the coating composition at all, but is preferably 200 or less.
  • metal alkoxide particularly silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide may be added during hydrolysis / condensation reaction in the presence of a metal salt. It may be added after completion of the condensation reaction.
  • the content of the metal salt contained in the coating composition is the sum of the metal atoms (M 1 and M 2 ) constituting the first and second metal alkoxides and the metal atom (M 3 ) of the metal salt.
  • the content ratio is preferably a ratio (molar ratio) that satisfies the following. 0.01 ⁇ M 3 / (M 1 + M 2 + M 3 ) ⁇ 0.7 If this ratio is less than 0.01, the mechanical strength of the resulting coating is not sufficient, which is not preferable. On the other hand, when it exceeds 0.7, the adhesion of the coating film to a substrate such as a glass substrate or a transparent electrode is lowered. Furthermore, when baked at a low temperature of 450 ° C. or lower, the chemical resistance of the resulting coating film tends to be lowered. In particular, this ratio is more preferably 0.01 to 0.6.
  • inorganic fine particles fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and a colloid solution of these inorganic fine particles is particularly preferable.
  • This colloidal solution may be a dispersion of inorganic fine particle powder in a dispersion medium or a commercially available colloidal solution.
  • the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions.
  • the inorganic fine particles preferably have an average particle size of 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m. When the average particle diameter of the inorganic fine particles exceeds 0.2 ⁇ m, the transparency of the cured film formed using the prepared coating liquid may be lowered.
  • the dispersion medium for the inorganic fine particles include water and organic solvents.
  • the pH or pKa is preferably adjusted to 1 to 10, more preferably 2 to 7, from the viewpoint of the stability of the coating solution for film formation.
  • Organic solvents used for the dispersion medium of the colloidal solution include methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, 2-methyl-2,4-pentanediol, diethylene glycol, dipropylene glycol, ethylene Alcohols such as glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; ethyl acetate and butyl acetate And esters such as ⁇ -butyrolactone; ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in admixture of two or more as
  • the solid content concentration in the coating composition of the present invention is preferably in the range of 0.5 wt% to 20 wt% when the above metal alkoxide and metal salt are converted as metal oxides.
  • the solid content exceeds 20% by weight, the storage stability of the coating composition is deteriorated and it is difficult to control the thickness of the coating film.
  • the solid content is less than 0.5% by weight, the resulting coating film is thin, and many coatings are required to obtain a predetermined film thickness.
  • the solid content concentration is more preferably 1% by weight to 15% by weight.
  • the coating composition of the present invention contains water in order to obtain a condensate by hydrolyzing the first and second metal alkoxides in the presence of the metal salt.
  • the amount of water is preferably 2 to 24 moles relative to the total moles of the first and second metal alkoxides.
  • the ratio of (amount of water (mole) / (total number of moles of metal alkoxide) is 2 or less, hydrolysis of the metal alkoxide becomes insufficient, resulting in a decrease in film formability or a coat obtained. It is not preferable because the strength of the film is decreased, and when the ratio is more than 24, polycondensation continues to proceed, so that storage stability is decreased. More preferably, it is ⁇ 20.
  • the metal salt contained in the coating composition is a hydrate salt
  • the moisture content is involved in the hydrolysis reaction, so the amount of water contained in the coating composition includes the moisture content of the metal salt. It is necessary to consider.
  • the coexisting metal salt is a hydrated salt of an aluminum salt
  • the coating composition of the present invention can form a coating film suitable for a touch panel.
  • This coat film is a coat film containing an inorganic metal oxide as a main component, and has higher strength than a film made of an organic material such as an acrylic material. And in the touch panel mentioned later, it applies as a protective film of an electrode. Since the coat film has an appropriate thermal expansion / contraction characteristic, even if it is formed on the organic film constituting the touch panel, generation of cracks is suppressed to a minimum.
  • the refractive index is controlled in an optimal range so that a decrease in display performance of the display device due to the visual recognition of the transparent electrode pattern is reduced.
  • the control of the refractive index of the coating film can be realized by controlling the composition of the coating composition. That is, the coating film in the present invention is produced by hydrolyzing and condensing the metal alkoxide contained in the coating composition described above. By selecting the composition of the metal alkoxide, the coating film to be formed is refracted. It is possible to adjust the rate within a predetermined range. For example, when silicon alkoxide and titanium alkoxide are selected as the metal alkoxide, by adjusting the mixing ratio thereof, within a predetermined range described below, specifically within a range of about 1.45 to 2.1, It is possible to adjust the refractive index of the resulting coating film.
  • a metal is formed so as to realize the refractive index.
  • the composition molar ratio of alkoxide for example, silicon alkoxide and titanium alkoxide.
  • the refractive index of a coating film from a coating composition obtained by hydrolyzing only silicon alkoxide is a value of about 1.45.
  • the refractive index of the coating film from the coating composition obtained by hydrolyzing only a titanium alkoxide is a value of about 2.1.
  • the refractive index of the coating film when it is desired to set the refractive index of the coating film to a specific value between about 1.45 and 2.1, coating is performed using silicon alkoxide and titanium alkoxide at a predetermined ratio so as to realize the refractive index value. It is possible to produce a composition.
  • the refractive index of the resulting coating film can be adjusted by using other metal alkoxides.
  • the refractive index of the coating film in the present invention can be adjusted by selecting film forming conditions in addition to the composition conditions. In this way, it is possible to realize a high hardness of the coating film and a desired refractive index value.
  • the coating film of the coating composition is preferably dried and then baked as described above. Drying is preferably performed at room temperature to 150 ° C, more preferably at 40 to 120 ° C.
  • the drying time is preferably about 30 seconds to 10 minutes, more preferably about 1 to 8 minutes.
  • a drying method it is preferable to use a hot plate, a hot air circulating oven, or the like.
  • the firing is preferably performed at 100 ° C. to 300 ° C., more preferably 150 ° C. to 250 ° C. in consideration of the heat resistance of the other components of the touch panel.
  • the firing time is preferably 5 minutes or more, and more preferably 15 minutes or more.
  • a baking method it is preferable to use a hot plate, a thermal circulation oven, an infrared oven, or the like.
  • the refractive index of the coating film obtained varies depending on the baking temperature. In this case, the higher the baking temperature, the higher the refractive index of the coating film. Therefore, the refractive index of the resulting coating film can be adjusted by selecting an appropriate baking temperature.
  • the refractive index of the resulting coating film varies when the coating film is irradiated with ultraviolet rays (UV) before firing.
  • UV ultraviolet rays
  • the refractive index of the coat film can be increased as the amount of ultraviolet irradiation is increased. Therefore, it is possible to select the presence or absence of ultraviolet irradiation in order to achieve a desired refractive index.
  • the refractive index of the resulting coating film fluctuates due to ultraviolet (UV) irradiation to the coating before firing, and ultraviolet rays
  • UV ultraviolet
  • the higher the irradiation amount the higher the refractive index of the coat film.
  • a desired refractive index can be realized by selecting conditions such as composition, ultraviolet irradiation is not necessary.
  • the refractive index of the coating film can be adjusted by selecting the irradiation amount.
  • a high-pressure mercury lamp can be used. In 365nm terms when using a high-pressure mercury lamp, total light irradiation 1000 mJ / cm 2 or more dose are preferred and the dose of 3000mJ / cm 2 ⁇ 10000mJ / cm 2 is more preferable.
  • an ultraviolet light source in addition to a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, an excimer lamp, or the like can be used.
  • an ultraviolet irradiation process can also be performed between a drying process and a baking process.
  • the coating composition contains a titanium alkoxide component in particular, the coating composition has the property of gradually increasing the viscosity under storage at room temperature. Although there is no concern that this will cause a serious problem in practice, careful control over temperature and the like is preferable when the thickness of the coating film is precisely controlled. Such an increase in viscosity becomes more significant as the composition ratio of titanium alkoxide in the coating composition increases. This is presumably because titanium alkoxide has a higher hydrolysis rate than silicon alkoxide and the like, and the condensation reaction is fast.
  • the coating composition contains a titanium alkoxide component
  • the following two production methods (1) and (2) are preferable in order to reduce the viscosity change.
  • (1) When hydrolyzing titanium alkoxide in the presence of a metal salt, after sufficiently mixing glycols and titanium alkoxide in advance, if necessary, it is mixed with silicon alkoxide and hydrolyzed in the presence of an organic solvent. . By doing so, a coating composition having a small viscosity change can be obtained.
  • the production method of (1) is effective because when titanium alkoxide is mixed with glycols, heat is generated, so transesterification occurs between the alkoxy group of titanium alkoxide and glycols, resulting in hydrolysis / condensation reaction. This is thought to be because of stabilization.
  • a silicon alkoxide is preliminarily hydrolyzed in the presence of a metal salt and then mixed with a titanium alkoxide solution mixed with glycols to perform a condensation reaction to obtain a coating composition.
  • a coating composition having a small viscosity change can be obtained.
  • the reason why the production method (2) is effective is considered to be as follows. That is, the hydrolysis reaction of silicon alkoxide is performed at a high rate, but the subsequent condensation reaction is slower than titanium alkoxide. Therefore, when titanium alkoxide is added quickly after finishing the hydrolysis reaction, the silanol group of the hydrolyzed silicon alkoxide and the titanium alkoxide react uniformly. Thereby, it is thought that the hydrolyzed silicon alkoxide stabilizes the condensation reactivity of titanium alkoxide.
  • a method for mixing silicon alkoxide hydrolyzed in advance and titanium alkoxide has already been attempted.
  • the organic solvent used for the reaction does not contain glycols, a coating composition having excellent storage stability cannot be obtained.
  • the method shown in 2) is also useful when a coating composition is obtained from another metal alkoxide having a high hydrolysis rate and silicon alkoxide.
  • the coating composition of the present invention is formed by applying a commonly applied coating method to form a coating film, and then a coating film.
  • a coating method for example, a dip coating method, a spin coating method, a spray coating method, a brush coating method, a roll transfer method, a screen printing method, an ink jet method, or a flexographic printing method is used.
  • the inkjet method and flexographic printing method suitable for pattern printing are particularly preferred.
  • the coating film of the present invention is formed using the above-described coating composition of the present invention. And it applies to the touch panel of this invention mentioned later as an electrode protective film of a touch panel.
  • the coat film of the present invention is a coat film containing a metal oxide that is an inorganic substance as a component, and has higher hardness and higher strength than a coat film made of an organic material such as an acrylic material. That is, it excels in mechanical strength and protects the transparent electrode from multiple pressings with a finger or the like.
  • the coating film of the present invention is particularly effective. It is. That is, even if the coating film of the present invention is formed on a film made of an organic material, the component composition is selected so that cracks do not occur due to the difference in thermal stretchability with the organic film.
  • the coating film of the present invention is also suitable as a protective film for a touch panel electrode to be described later. That is, according to this coat film, it is possible to suppress a phenomenon in which the transparent electrode pattern is visually recognized (electrode pattern appearance phenomenon). Therefore, according to the touch panel formed using this coat film, it is possible to reduce the deterioration in display properties of the display device.
  • the reason why the transparent electrode pattern is visually recognized on the touch panel is that the refractive index of the transparent electrode pattern in the operation region of the substrate is different from the refractive index of the substrate.
  • the transparent electrode pattern of the touch panel is usually made of ITO (Indium Tin Oxide) which is an inorganic metal oxide.
  • the refractive index of ITO is about 1.8 to 2.1. Since the refractive index of this is about 1.4 to 1.5, it is greatly different from the refractive index of ITO, which is different between the region where the transparent electrode pattern is formed and the region where it is not formed. In other words, the difference in the light reflection characteristic is caused between the area where the transparent electrode pattern is formed and the area where the transparent electrode pattern is not formed, thereby making the electrode pattern stand out in the screen display. .
  • the inventor has such that the refractive index and the film thickness are within a desired range on the transparent electrode pattern arranged on the substrate. It has been found that providing a controlled layer is effective. Specifically, it was found that by controlling the refractive index and the film thickness of the protective layer of the transparent electrode pattern within the optimum range, it is possible to suppress the unintended viewing of the transparent electrode pattern on the touch panel.
  • the coating film of the present invention has a refractive index in the range of 1.50 to 1.70, preferably in the range of 1.52 to 1.70, particularly when the phenomenon of the transparent electrode pattern being visually recognized is to be suppressed. It is controlled to become.
  • the refractive index control method can be realized by controlling the component composition of the coating composition and also by controlling the film forming method.
  • a coating method is applied to the coating composition of the present invention by applying a commonly applied coating method such as flexographic printing to form a coating film on the electrode of the touch panel, and then forming the coating film. Is mentioned.
  • FIG. 1 is a plan view schematically showing the structure of the touch panel.
  • FIG. 2 is a sectional view taken along line A1-A1 ′ of FIG.
  • the touch panel 1 is configured using a transparent substrate 2, and a transparent electrode pattern is formed in the operation area of the substrate 2. Specifically, in the operation region of the substrate 2, the first transparent electrode 3 extending in the Y direction and the second transparent electrode 4 extending in the X direction are included. The first transparent electrode 3 and the second transparent electrode 4 are formed from the same layer provided on the same surface of the substrate 2.
  • the substrate 2 is made of a transparent material such as glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, polyethylene naphthalate resin, or triacetyl cellulose resin. In particular, it is preferable to select a material having heat resistance and chemical resistance suitable for forming the coat film 5.
  • the thickness of the substrate 2 is, for example, about 0.1 mm to 2 mm when glass is used, and is about 10 ⁇ m to 2000 ⁇ m, for example, when a resin film is used.
  • each of the first transparent electrode 3 and the second transparent electrode 4 includes a plurality of pad portions 21 as components.
  • the pad portions 21 are arranged so as to be separated from each other in a planar manner, and the gap between the pad portions 21 is reduced. That is, the pad portions 21 forming a row in the X-axis direction and the pad portions 21 forming a row in the Y-axis direction are arranged in the entire operation region so that the region where they intersect each other is as small as possible.
  • the pad part 21 can be made into polygonal shapes, such as a rhombus, a rectangle, and a hexagon, for example, These are arrange
  • the first transparent electrode 3 and the second transparent electrode 4 configured by connecting a plurality of pad portions 21 are formed at positions corresponding to the operation area of the touch panel 1.
  • the first transparent electrode 3 is provided separately in a plurality of regions along the X direction, and detects coordinates in the X direction.
  • the second transparent electrode 4 is provided separately in a plurality of regions along the Y direction, and detects coordinates in the Y direction. With such a structure, the accuracy of touch position detection can be increased.
  • the first transparent electrode 3 and the second transparent electrode 4 are formed using a transparent electrode material having at least a high transmittance for visible light and having conductivity.
  • a transparent electrode material having conductivity include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and ZnO (zinc oxide).
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • ZnO zinc oxide
  • the thickness is preferably 10 nm to 200 nm so as to ensure sufficient conductivity.
  • the first transparent electrode 3 and the second transparent electrode 4 are formed as follows. First, a transparent conductive film is formed by a method selected from sputtering, vacuum deposition, ion plating, spraying, dipping, CVD, or the like in consideration of the material of the substrate 2 as a base. Next, the transparent conductive film is patterned using a photolithography technique. Alternatively, a desired pattern may be formed by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent.
  • the film thickness can be accurately controlled. Therefore, it is preferable to select a method capable of forming a desired film thickness and forming a low-resistance film excellent in transparency.
  • the first transparent electrode 3 and the second transparent electrode 4 are formed on the same surface of the substrate 2 and form the same layer. For this reason, the 1st transparent electrode 3 and the 2nd transparent electrode 4 cross
  • FIG. 1 and FIG. 2 are formed on the same surface of the substrate 2 and form the same layer.
  • one of the first transparent electrode 3 and the second transparent electrode 4 is divided so as not to contact the other. That is, as shown in FIG. 2, the second transparent electrode 4 is connected at any of the plurality of intersecting portions 18, but the first transparent electrode 3 is divided. And in order to connect the parting part of the 1st transparent electrode 3, the bridge
  • a light transmissive interlayer insulating film 19 is formed on the second transparent electrode 4 at the intersection 18.
  • An organic material such as a photosensitive acrylic resin is used to form the interlayer insulating film 19.
  • a photosensitive acrylic resin it is set as the structure where the acrylic film was formed only on the 2nd transparent electrode 4 in the cross
  • An inorganic material such as SiO 2 can also be used.
  • SiO 2 a similar structure can be formed by, for example, a sputtering method using a mask. In consideration of patterning properties, it is preferable to use an acrylic film for the interlayer insulating film 19.
  • a bridging electrode 20 is provided in the upper layer of the interlayer insulating film 19, a bridging electrode 20 is provided.
  • the bridging electrode 20 is for electrically connecting the first transparent electrodes 3 separated by the intersecting portion 18, and is preferably formed of a light transmissive material. By providing the bridging electrode 20, the first transparent electrode 3 can be electrically connected in the Y direction.
  • the first transparent electrode 3 and the second transparent electrode 4 have a shape in which a plurality of rhombus pad portions 21 are arranged vertically or horizontally.
  • the connection portion located at the intersecting portion 18 has a shape narrower than the rhomboid pad portion 21 of the second transparent electrode 4.
  • the bridging electrode 20 is also formed in a strip shape having a narrower width than the diamond-shaped pad portion 21.
  • the above-described coat film 5 of the present invention is formed as a protective film on the first transparent electrode 3 and the second transparent electrode 4. ing. And the formation area and non-formation area
  • the coat film 5 has high hardness and excellent adhesion to the first transparent electrode 3 and the second transparent electrode 4 made of an inorganic material.
  • the above-described coating composition of the present invention is used. Specifically, the coating composition obtained by hydrolyzing and condensing the metal alkoxides represented by the above formulas (I) and (II) in an organic solvent in the presence of an aluminum salt, and further adding a precipitation inhibitor. Things are used.
  • the refractive index and the film thickness of the coating film 5 can be selected so that the transparent electrode patterns of the first transparent electrode 3 and the second transparent electrode 4 are not visible.
  • the refractive index of the coat film 5 is preferably in the range of 1.50 or more and 1.70 or less, and the film thickness is preferably in the range of 40 nm to 170 nm.
  • the film thickness is more preferably in the range of 60 nm to 150 nm.
  • the film thickness is more preferably in the range of 40 nm to 170 nm.
  • the coat film 5 is formed from a coating composition containing silicon alkoxide and titanium alkoxide, and has a refractive index of 1.52 and a film thickness of 100 nm.
  • the touch panel 1 has an adhesive layer using an acrylic photocurable resin or the like on the surface on which the first transparent electrode 3 and the like are formed and the uppermost layer on the viewing side of the display panel 10.
  • the adhesive layer 9 is provided on the coat film 5.
  • the display device described above includes the touch panel 1 and the display panel 10, and can include a backlight as necessary. Although details are omitted in FIG. 2, the display panel 10 can have the same configuration as a known display device.
  • the display panel 10 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates.
  • a polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer.
  • a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal.
  • the liquid crystal layer is sealed with each transparent substrate and a sealing material.
  • terminals are provided at end portions of the first transparent electrode 3 and the second transparent electrode 4, and a plurality of lead wires 11 are provided from the terminals. Is pulled out.
  • the lead wiring 11 can be an opaque metal wiring using an alloy containing these metals such as Mo—Nb (molybdenum-niobium) alloy in addition to silver, aluminum, chromium, copper, or molybdenum.
  • the lead-out wiring 11 is connected to a control circuit (not shown) that detects voltage application and a touch position to the first transparent electrode 3 and the second transparent electrode 4.
  • a voltage is sequentially applied to the plurality of first transparent electrodes 3 and the second transparent electrodes 4 to give an electric charge.
  • a capacitor is formed by capacitive coupling between the fingertip and the first transparent electrode 3 and the second transparent electrode 4. Therefore, it is possible to detect which part of the finger touched by capturing the change in the charge at the contact position of the fingertip.
  • the touch panel 1 can also selectively apply a voltage to either the first transparent electrode 3 or the second transparent electrode 4 under the control of a control circuit (not shown).
  • a control circuit not shown
  • an electric field is formed on the transparent electrode to which a voltage is applied, and when a finger or the like touches in this state, the contact position is grounded via the capacitance of the human body.
  • a change in resistance value occurs between the terminal (not shown) of the first transparent electrode 3 or the second transparent electrode 4 as a target and the contact position. Since this resistance value is proportional to the distance between the contact position and the terminal of the first transparent electrode 3 or the second transparent electrode 4 as a target, the contact position and the first transparent electrode 3 or the first transparent electrode 3 as a target.
  • the coordinates of the contact position can be obtained by the control circuit detecting the current value flowing between the two transparent electrodes 4.
  • the conspicuous transparent electrode pattern is suppressed in the operation region due to the effect of the coating film 5 provided on the first and second transparent electrodes 3 and 4.
  • 3A to 3D are process cross-sectional views illustrating a method for manufacturing a touch panel according to a first example of the present invention.
  • a transparent substrate 2 such as a glass substrate is prepared.
  • the substrate 2 is cut into a desired shape and washed as necessary.
  • a transparent conductive film is formed on one surface of the substrate 2.
  • An intermediate layer such as SiOx, SiNx, or SiON may be formed between the substrate 2 and the transparent conductive film.
  • the transparent conductive film is, for example, ITO, and is formed to a thickness of 10 to 200 nm using a sputtering method, a vacuum deposition method, or the like.
  • the transparent conductive film is etched in a state where an etching mask made of a photosensitive resin or the like is formed on the upper layer side of the transparent conductive film, and the first transparent electrode 3 and the second transparent electrode 4 are formed by patterning. By removing the etching mask, a transparent conductive film substrate 14 having a transparent electrode pattern as shown in FIG. 3A is obtained.
  • the second transparent electrode 4 is connected through the connection portion, but the first transparent electrode 3 is divided.
  • a photosensitive resin is applied to the side on which the first transparent electrode 3 and the second transparent electrode 4 are provided, and then exposed and developed, whereby an interlayer insulation is formed at the connection portion of the second transparent electrode 4.
  • a film 19 is formed (FIG. 3B).
  • a transparent resin is used.
  • an acrylic resin can be used.
  • the interlayer insulating film 19 is formed using SiO 2 , the same structure can be obtained by sputtering using a mask. However, when patterning property is taken into consideration, it is preferable to use an acrylic resin.
  • the transparent conductive film is etched with an etching mask made of a photosensitive resin formed on the surface of the transparent conductive film. Thereafter, the etching mask is removed, and a bridging electrode 20 is formed on the interlayer insulating film 19 so as to connect the divided portions of the first transparent electrode 3. Thereby, the structure shown in FIG. 3C is obtained.
  • An example of the transparent conductive film formed on the interlayer insulating film 19 is an ITO film. In that case, the bridging electrode 20 is formed of ITO.
  • the above-described lead-out wiring 11 is formed using silver ink or the like in a later process. However, when the transparent conductive film is etched in the above step, the transparent conductive film is left along the outer peripheral edges of the first transparent electrode 3 and the second transparent electrode 4 to form the lead-out wiring 11. Is possible.
  • a coating composition for forming a metal oxide layer is applied on the first transparent electrode 3, the second transparent electrode 4, and the bridging electrode 20 by flexographic printing.
  • the coating composition is obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor.
  • the substrate 2 on which the coating film of the coating composition has been formed is dried on, for example, a hot plate at 40 to 150 ° C. (eg, 60 ° C.).
  • the metal oxide layer 5 is formed on the first transparent electrode 3, the second transparent electrode 4, and the bridging electrode 20 by heating in, for example, an oven at 100 to 300 ° C.
  • the coating film 5 of the present invention thus obtained has high hardness and high strength with inorganic metal oxide as the main component. In addition, no cracks are generated even on the interlayer insulating film 19 which is an organic film.
  • a lead-out wiring 11 is formed with silver ink or the like from terminals (not shown) at the ends of the first transparent electrode 3 and the second transparent electrode 4 to form the touch panel 1.
  • the touch panel 1 is connected to a control circuit (not shown) of the touch panel via the lead wiring 11.
  • the completed touch panel 1 is attached to the front surface of the display panel 10 through an adhesive layer 9 such as an acrylic transparent adhesive.
  • an adhesive layer 9 such as an acrylic transparent adhesive.
  • alignment is performed by providing alignment marks at the corners of the substrate 2 and the display panel 10 as necessary.
  • the coating film 5 is provided, so that high reliability is realized. And it can suppress that the transparent electrode pattern of the 1st transparent electrode 3 and the 2nd transparent electrode 4 is conspicuous in the operation area
  • FIG. 4 is a cross-sectional view showing a schematic configuration of another example of the touch panel of the present invention.
  • the touch panel 101 includes a transparent substrate 102.
  • a transparent electrode pattern is formed in the operation region of the substrate 102. That is, the first transparent electrode 103 and the second transparent electrode 104 for detecting positions in two different directions are provided on the upper layer of the substrate 102.
  • the first transparent electrode 103 and the second transparent electrode 104 are formed using a transparent electrode material that has high transmittance for at least visible light and has conductivity.
  • a transparent electrode material having conductivity for example, ITO or ZnO can be used.
  • the thickness is preferably 10 to 200 nm so as to ensure sufficient conductivity.
  • the first transparent electrode 103 and the second transparent electrode 104 are formed by a transparent substrate 102 as an underlayer or an overcoat to be described later by sputtering, vacuum deposition, ion plating, spraying, dipping or CVD. An optimum method is selected in consideration of the layer 107.
  • a transparent electrode formed in a planar shape is patterned by an etching method using photolithography technology, or a coating material in which a conductive filler made of the above material is dispersed in an organic solvent, and directly by a printing method.
  • a method of forming a desired pattern In the transparent electrode forming step, it is preferable that the film thickness can be accurately controlled. Therefore, it is preferable to select a method capable of forming a desired film thickness and forming a low-resistance film excellent in transparency.
  • the first transparent electrode 103 is disposed on the substrate 102.
  • a coating film 105 of the present invention is formed on the first transparent electrode 103.
  • the above-described coating composition of the present invention is used for the formation of the coating film 105.
  • the coat film 105 covers the formation region and the non-formation region of the first transparent electrode 103 corresponding to the operation region of the touch panel 101.
  • the overcoat layer 107 is provided on the coat film 105.
  • the overcoat layer 107 is a film made of an organic material formed from a highly transparent acrylic resin.
  • the second transparent electrode 104 is disposed on the overcoat layer 107.
  • the coating film 106 of the present invention is formed.
  • the above-described coating composition of the present invention is used.
  • the coat film 106 covers the transparent electrode forming region and the non-forming region corresponding to the operation region of the touch panel 101.
  • the coat films 105 and 106 have high hardness and excellent adhesion to the first transparent electrode 103 and the second transparent electrode 104.
  • the coat film 106 of the present invention contains an inorganic metal oxide as a main component, but does not cause cracks on the overcoat layer 107. That is, even if the coat film 106 is formed so as to cover the overcoat layer 107 which is a film made of an organic material together with the second transparent electrode 104, no crack is generated inside.
  • the refractive index and film thickness of the coating films 105 and 106 can be selected so that the transparent electrode patterns of the first transparent electrode 103 and the second transparent electrode 104 are not visible.
  • the refractive indexes of the coat films 105 and 106 are preferably in the range of 1.50 to 1.70 and the film thickness is preferably in the range of 40 nm to 170 nm.
  • the film thickness is more preferably in the range of 60 nm to 150 nm.
  • the refractive indexes of the coating films 105 and 106 are in the range of 1.60 or more and 1.70 or less, the film thickness is more preferably in the range of 40 nm to 170 nm.
  • the first transparent electrode 103 and the second transparent electrode 104 are each made of ITO having a film thickness of 28 nm.
  • the coating films 105 and 106 are each formed from the coating composition of the present invention containing silicon alkoxide and titanium alkoxide, and have a refractive index of 1.52 and a film thickness of 100 nm.
  • an adhesive layer 108 made of an acrylic transparent adhesive is provided on the coat film 106.
  • the display panel 110 is attached to the touch panel 101 via the adhesive layer 108.
  • the touch panel 101 having the above configuration, when a finger that is a conductor touches any part of the operation region, capacitive coupling between the fingertip and the first transparent electrode 103 and the second transparent electrode 104 is performed. To form a capacitor. Therefore, it is possible to detect which part of the finger touched by capturing the change in charge at the contact position of the fingertip.
  • the touch panel 101 high reliability is realized by the effect of the coating films 105 and 106 provided on the first transparent electrode 103 and the second transparent electrode 104. It is also possible to suppress the conspicuous transparent electrode pattern in the operation area.
  • FIG. 5 and 6 are diagrams showing the structure of still another example of the touch panel of the present invention.
  • FIG. 5 is a plan view schematically showing the structure of still another example of the touch panel of the present invention.
  • FIG. 6 is a sectional view taken along line B1-B1 'of FIG.
  • the touch panel 201 is configured using a transparent substrate 202, and a transparent electrode pattern is formed in the operation area of the substrate 202. That is, the first transparent electrode 203 for detecting the coordinate in the X direction formed on one surface of the substrate 202 and the second transparent electrode for detecting the coordinate in the Y direction formed on the other surface of the substrate 202. 204.
  • one surface of the substrate 202 is upward and the other surface of the substrate 202 is downward. In this case, the other surface of the substrate 202 is a surface to be attached to the display panel 210.
  • the substrate 202 is a dielectric substrate.
  • a transparent material such as glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, polyethylene naphthalate resin, or triacetyl cellulose resin is used.
  • the thickness of the substrate 202 can be about 0.1 mm to 2 mm for glass, and 10 ⁇ m to 2000 ⁇ m for a resin film.
  • the first transparent electrode 203 and the second transparent electrode 204 are each formed of an elongated rectangular electrode.
  • the first transparent electrode 203 extends in the Y direction, and the second transparent electrode 204 extends in the X direction.
  • the first transparent electrode 203 is arranged in a stripe shape at regular intervals.
  • the first transparent electrode 203 and the second transparent electrode 204 are disposed so as to be orthogonal to each other, and have a lattice shape as a whole.
  • the first transparent electrode 203 and the second transparent electrode 204 are formed using a transparent electrode material that has high transmittance for at least visible light and has conductivity.
  • a transparent electrode material having conductivity for example, ITO or ZnO can be used.
  • the thickness is preferably 10 to 200 nm so as to ensure sufficient conductivity.
  • the first transparent electrode 203 and the second transparent electrode 204 are optimal in consideration of the transparent substrate 202 as a base from sputtering, vacuum deposition, ion plating, spraying, dipping or CVD. It is formed by selecting a proper method.
  • a transparent electrode formed in a planar shape is patterned by an etching method using photolithography, or directly by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent.
  • a method of forming the pattern In the transparent electrode forming step, it is important to be able to control the film thickness with high accuracy. Therefore, it is preferable to select a method capable of forming a desired film thickness and forming a low-resistance film excellent in transparency.
  • a coat film 205 is formed on the first transparent electrode 203.
  • the coat film 205 covers the transparent electrode forming region and the non-forming region corresponding to the operation region of the touch panel 201.
  • a coat film 206 is also formed on the second transparent electrode 204 (below in the drawing).
  • the coat film 206 covers the transparent electrode forming region and the non-forming region corresponding to the operation region of the touch panel 201.
  • the coating films 205 and 206 are high in hardness and excellent in adhesion with the first transparent electrode 203 and the second transparent electrode 204.
  • the above-described coating composition of the present invention obtained by hydrolyzing and condensing metal alkoxide in an organic solvent in the presence of an aluminum salt and further adding a precipitation inhibitor is used. It is done.
  • the refractive indexes and film thicknesses of the coating films 205 and 206 can be selected so that the transparent electrode patterns of the first transparent electrode 203 and the second transparent electrode 204 are not visible.
  • the refractive indexes of the coat films 205 and 206 are each preferably in the range of more than 1.50 and not more than 1.70, and the film thicknesses are preferably in the range of 40 nm to 170 nm, respectively.
  • the film thickness is more preferably in the range of 60 nm to 150 nm.
  • the refractive indexes of the coating films 205 and 206 are in the range of 1.60 or more and 1.70 or less, the film thickness is more preferably in the range of 40 nm to 170 nm.
  • the first transparent electrode 203 and the second transparent electrode 204 are each made of ITO having a film thickness of 28 nm.
  • the coat films 205 and 206 are each formed from a coating composition prepared using silicon alkoxide and titanium alkoxide, and have a refractive index of 1.52 and a film thickness of 100 nm.
  • an adhesive layer 208 made of an acrylic transparent adhesive is provided on one surface of the substrate 202.
  • a cover film 207 made of a transparent resin is bonded on the adhesive layer 208.
  • the cover film 207 is omitted.
  • the cover film 207 functions as a protective film for the first transparent electrode 203 and the coat film 205. Instead of the cover film 207, a transparent resin may be coated. In this case, the adhesive layer 208 can be omitted.
  • the display panel 110 is attached to the other surface of the substrate 202 via an adhesive layer 209 made of an acrylic transparent adhesive.
  • the display panel 210 can have the same configuration as a known display device.
  • the display panel 210 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates.
  • a polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer.
  • a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal.
  • the liquid crystal layer is sealed with each transparent substrate and a sealing material.
  • terminals are provided at the ends of the first transparent electrode 3 and the second transparent electrode 4, and a plurality of lead wires (not shown) are drawn from the terminals.
  • the lead-out wiring can be an opaque metal wiring using silver, aluminum, chromium, copper or an alloy containing these.
  • the lead-out wiring is connected to a control circuit (not shown) that detects the touch position and voltage application to the first transparent electrode 203 and the second transparent electrode 204.
  • the touch panel 201 having the above configuration, when a finger that is a conductor touches any part of the operation region, capacitive coupling between the fingertip and the first transparent electrode 203 and the second transparent electrode 204 is achieved. To form a capacitor. Therefore, it is possible to detect which part of the finger touched by capturing the change in charge at the contact position of the fingertip.
  • the effect of the coating films 205 and 206 provided on the first transparent electrode 203 and the second transparent electrode 204 is suppressed from conspicuous in the operation region.
  • the coating film of the present invention is provided on an organic film made of an acrylic resin, such as an interlayer insulating film or an overcoat layer. It is not.
  • the coating film of the present invention effectively functions as a protective film for high-strength electrodes even for such touch panel examples. And it prevents that a transparent electrode pattern stands out.
  • the touch panel of the present invention has been described above, but the present invention is not limited to the above embodiment.
  • the coating film of the present invention can be applied as a protective film on the transparent electrodes. And high reliability is realized. In addition, the conspicuousness of the transparent electrode can be suppressed. At that time, even if the coating film of the present invention is formed on various organic films provided in the touch panel, cracks and the like are not generated inside.
  • TEOS Tetraethoxysilane C18: Octadecyltriethoxysilane MPS: ⁇ -mercaptopropyltrimethoxysilane GPS: ⁇ -glycidoxypropyltrimethoxysilane UPS: ⁇ -ureidopropyltriethoxysilane APS: ⁇ -aminopropyltriethoxysilane ACPS : ⁇ -acryloxypropyltrimethoxysilane MPMS: ⁇ -methacryloxypropyltrimethoxysilane MTES: methyltriethoxysilane TIPT: tetraisopropoxytitanium AN: aluminum nitrate nonahydrate EG: ethylene glycol HG: 2-methyl-2 , 4-Pentanediol (also known as hexylene glycol) BCS: 2-butoxyethanol (also known as
  • the coating composition K13 does not contain the metal alkoxide having the structure represented by the general formula (II).
  • the coating composition K14 contains only a small amount of the metal alkoxide having the structure represented by the general formula (II). .
  • the stability was evaluated using the coating compositions K1 to K12 and K15 as Examples 1 to 12 and Comparative Example 1, respectively.
  • the stability is evaluated by using the synthesized coating compositions (K1 to K12, K15), pressure-filtering with a membrane filter having a pore size of 0.5 micrometers, and then allowing to stand at room temperature for 1 week. Subsequently, when a film was formed on the silicon substrate (100) by spin coating, the case where no foreign matter was observed on the coating film on the silicon substrate was evaluated as “Good”, and the case where foreign matter was observed was evaluated as “X”. The evaluation results are shown in Table 1.
  • ⁇ Method I for Coating Film I> Using the coating composition according to the synthesis example described above, pressure filtration is performed with a membrane filter having a pore size of 0.5 ⁇ m, and a coating film is formed on the substrate by spin coating. The substrate is heated for 3 minutes on a hot plate set to 60 ° C. and dried. Next, UV irradiation is performed for 2 minutes at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphics). . The amount of ultraviolet irradiation is 6000 mJ / cm 2 . After the ultraviolet irradiation, it is transferred into a hot air circulation oven set at 250 ° C. and baked for 30 minutes. Thus, a coat film is formed on the substrate.
  • ⁇ Method II of Coating Film Formation> Using the coating composition according to the synthesis example described above, pressure filtration is performed with a membrane filter having a pore size of 0.5 ⁇ m, and a coating film is formed on the substrate by spin coating. The substrate is heated for 3 minutes on a hot plate set to 60 ° C. and dried. Next, it is transferred into a hot air circulation oven set at 250 ° C. and baked for 30 minutes. Thus, a coat film is formed on the substrate.
  • Example 20 the coating films (KL9 to KL12) formed on the appropriate substrate by the above-described film forming method II were used as the coating films of Examples 21 to 10 of the present invention.
  • Example 24 is taken.
  • a coating film (KM2) formed by the above film forming method II on a suitable substrate using the coating composition K13 according to the synthesis example described above is referred to as a comparative example 2 of the coating film.
  • a silicon substrate (100) was used as the substrate.
  • the coating films of Examples 13 to 20 formed by the film forming method I on this silicon substrate, the coating films of Examples 21 to 24 formed by the film forming method II, The coating films of Comparative Example 2 and Comparative Example 3 formed by the film method II were formed, and the refractive index was evaluated.
  • the evaluation method was performed by measuring the refractive index at a wavelength of 633 nm using an ellipsometer (DVA-FLVW, manufactured by Mizoji Optical Co., Ltd.).
  • the evaluation results of each coat film are shown in Table 2 below together with the coating composition used for forming each coat film.
  • ⁇ Crack evaluation> An acrylic film having a thickness of 2 ⁇ m was formed on the glass substrate.
  • the acrylic film was formed as follows. First, the acrylic material composition was filtered under pressure with a membrane filter having a pore size of 0.5 ⁇ m, and a coating film was formed on the entire surface of the glass substrate by a spin coating method. Next, this substrate was heated and dried for 2 minutes on a hot plate, then transferred to a hot-air circulating oven and baked for 30 minutes. As a result, an acrylic film was formed on the glass substrate.
  • a coat film having a thickness of 100 nm is formed on the acrylic film by the film formation method I or the film formation method II. Then, the coating films of Examples 13 to 20 formed by the film forming method I on the glass substrate on which the acrylic film was formed, and the coating films of Examples 21 to 24 formed by the film forming method II. Then, the coating film of Comparative Example 2 formed by the film forming method II was formed, and the coating film was evaluated for cracks.
  • Transparent conductive film substrate A transparent conductive film substrate on which a patterned transparent conductive film is formed on a substrate is prepared. A glass substrate is used as the substrate, and ITO is used as the transparent conductive film. As this transparent conductive film substrate, the transparent conductive film substrate 14 used in the touch panel 1 of the present invention described above can be used. Here, the film thickness of ITO was 28 nm.
  • a substrate in which the coating film KL8 of Example 20 was formed to a thickness of 100 nm on the transparent conductive film substrate having a thickness of ITO of 28 nm was produced.
  • An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded.
  • ultraviolet irradiation device U011-3A type manufactured by Eye Graphics Co., Ltd.
  • a high pressure mercury lamp input power supply 1000 W
  • ultraviolet irradiation is performed for 80 seconds at a light intensity of 50 mW / cm 2 (wavelength 365 nm conversion). did.
  • the optical adhesive was hardened and the touch panel of Example 25 was produced as a touch panel for characteristic evaluation.
  • a touch panel of Example 26 was manufactured by the same manufacturing method as described above except that the coat film KL10 of Example 22 was used instead of KL8 of Example 20. Further, a touch panel of Example 27 was manufactured by the same manufacturing method as described above except that the coat film KL11 of Example 23 was used instead of KL8 of Example 20. Further, a touch panel of Example 28 was produced by the same production method as above except that the coat film KL12 of Example 24 was used instead of KL8 of Example 20.
  • a coating film was formed by the film forming method I using the coating composition K12, and the rest was the same as in the case of Example 25, and the touch panel of Example 29 was used.
  • the refractive index measured with the evaluation method similar to the above about the coating film formed into a film by the film-forming method I using the coating composition K12 was 1.70.
  • the comparative evaluation it replaced with KL8 of Example 20 as a coating film, and produced the touchscreen of the comparative example 3 with the preparation method similar to the above except having used the coating film KM2 of the comparative example 2.
  • FIG. Moreover, the touchscreen of the comparative example 4 was produced by the production method similar to the above except that the transparent conductive film substrate described above was used and no coating film was formed. Therefore, the evaluation touch panel of Comparative Example 4 has no coating film formed on the transparent electrode.
  • each touch panel was placed on a black cloth and visually observed with the light illuminated from above. And in the touch panel of the comparative example 4, after confirming that a transparent electrode pattern is visible, another touch panel is observed. As a result of these observations, a transparent electrode pattern that could not be seen was evaluated as ⁇ . And although the transparent electrode pattern can be seen, the degree of improvement compared to the touch panel of Comparative Example 4 that does not have a coating film is evaluated as “Good”, and the one that is not improved compared to the touch panel of Comparative Example 4 is ⁇ It was evaluated. Table 3 summarizes the results of the electrode pattern appearance evaluation for the evaluation touch panels of Examples 25 to 29 and Comparative Examples 3 and 4.
  • the stability of the coating composition was improved by including a metal nitrate and a precipitation inhibitor. From Table 2, by controlling the structure and composition of the metal alkoxide contained in the coating composition appropriately, the coating film formed therefrom is a stable film that does not crack even on an organic thin film made of an acrylic resin or the like. Was found to be formed.
  • each of the coating films of the present example has a hardness of 5H or more, which is significantly higher than that of a general organic acrylic material less than 3H.
  • the coating composition of the present invention can provide a high-strength coating film with a controlled refractive index, and the electrode pattern does not stand out on a touch panel using the coating film. Therefore, it is useful as a touch panel for a display device that requires excellent appearance and high reliability.

Abstract

Provided are: a coating composition which is capable of forming a coating film that has high reliability and controlled refractive index; a coating film which is formed from the composition; and a touch panel which has the coating film on an electrode. A coating composition for touch panels, which is characterized by containing: a first metal alkoxide that is represented by general formula (I); a second metal alkoxide that is represented by general formula (II); a metal salt that is represented by general formula (III); an organic solvent; water; and a precipitation inhibitor. M1(OR1)n (I) R2 lM2(OR3)m-l (II) M3(X)k (III)

Description

タッチパネル用コーティング組成物、コート膜およびタッチパネルCoating composition for touch panel, coating film and touch panel
 本発明は、タッチパネル用コーティング組成物、そのコーティング組成物から形成されたコート膜、およびそのコート膜を有するタッチパネルに関する。 The present invention relates to a coating composition for a touch panel, a coating film formed from the coating composition, and a touch panel having the coating film.
 従来から、ガラス、セラミック、金属、プラスチック等の基材表面に、種々の目的で無機被膜を形成することが行なわれている。基材表面に無機被膜を形成させることで、基材に電気的特性、光学的特性、化学的特性、機械的特性などを付与することが可能となる。したがって、これらの無機被膜は、導電膜、絶縁膜、光線の選択透過または吸収膜、アルカリ溶出防止膜、耐薬品膜、ハードコート膜などとして実用化されている。 Conventionally, inorganic coatings have been formed for various purposes on the surface of substrates such as glass, ceramics, metals, and plastics. By forming an inorganic coating on the surface of the substrate, it is possible to impart electrical properties, optical properties, chemical properties, mechanical properties, and the like to the substrate. Therefore, these inorganic coatings have been put into practical use as conductive films, insulating films, selective transmission or absorption films of light rays, alkali elution prevention films, chemical resistant films, hard coat films, and the like.
 このような無機被膜を形成させる方法としては、CVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)、スパッタリングなどの気相法、またはアルコキシド化合物などを用いた液相法が挙げられる。 Examples of the method for forming such an inorganic coating include a vapor phase method such as CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), sputtering, or a liquid phase method using an alkoxide compound.
 一般に、気相法は、真空蒸着装置のような高価で大規模な装置が必要となる。また、成膜可能な基材の大きさや形状が制限されるという問題もある。一方、アルコキシド化合物などを用いた液相法としては、いわゆるゾル-ゲル法が知られている。この方法は、大面積への塗布や、パターニングへの対応が可能であるなどの利点を有する。このため、液相法による無機被膜は、電子デバイスにおけるコート膜として盛んに用いられるようになっている(例えば、特許文献1参照。)。特に、最近では、タッチパネルへの適用が検討されている。 Generally, the vapor phase method requires an expensive and large-scale apparatus such as a vacuum vapor deposition apparatus. There is also a problem that the size and shape of the base material on which the film can be formed are limited. On the other hand, as a liquid phase method using an alkoxide compound or the like, a so-called sol-gel method is known. This method has advantages such as application to a large area and support for patterning. For this reason, the inorganic film by a liquid phase method is actively used as a coating film in an electronic device (for example, refer to Patent Document 1). In particular, recently, application to a touch panel has been studied.
 近年、スマートフォンの普及とともに、携帯電話の表示画面が大型化している。このため、ディスプレイの表示を利用した入力操作が可能なタッチパネルの開発が盛んに行われている。タッチパネルによれば、押下げ式のスイッチなどの入力手段が不要となるので、表示画面の大型化が図れる。 In recent years, with the spread of smartphones, the display screen of mobile phones has become larger. For this reason, development of the touch panel which can perform input operation using the display of a display is performed actively. According to the touch panel, an input unit such as a push-down switch is not necessary, and the display screen can be enlarged.
 タッチパネルは、指やペンなどが触れた操作領域の接触位置を検出する。この機能を利用して、タッチパネルは入力装置として用いられる。接触位置の検出方式には、抵抗膜方式や静電容量方式などがある。抵抗膜方式は、対向する2枚の基板を用いるのに対して、静電容量方式では、使用する基板を1枚にすることができる。このため、静電容量方式によれば、薄型のタッチパネルを構成することができ、携帯機器などに好適であることから、近年盛んに開発が進められている。 The touch panel detects the contact position of the operation area touched by a finger or pen. Using this function, the touch panel is used as an input device. The contact position detection method includes a resistance film method and a capacitance method. The resistive film method uses two opposing substrates, whereas the capacitive method allows a single substrate to be used. For this reason, according to the electrostatic capacity method, a thin touch panel can be configured and is suitable for a portable device or the like, so that development has been actively promoted in recent years.
 特許文献2には、静電容量方式のタッチパネルが開示されている。このタッチパネルでは、透明基板の一方の面に、X方向の座標を検出するための第1の透明電極と、Y方向の座標を検出するための第2の透明電極とを配置し、それぞれの交差部分に層間絶縁膜を介在させて導通しないようにしている。 Patent Document 2 discloses a capacitive touch panel. In this touch panel, a first transparent electrode for detecting coordinates in the X direction and a second transparent electrode for detecting coordinates in the Y direction are arranged on one surface of the transparent substrate, and intersect each other. An interlayer insulating film is interposed in the portion so as not to conduct.
 タッチパネルは、液晶表示装置などの表示装置に組み込まれ、タッチ位置を検出可能なタッチパネル機能付き表示装置として使用される。タッチパネルを操作する者は、タッチパネルを通して表示装置を視認するため、透明電極には、光の透過特性に優れた部材が使用される。例えば、ITO(Indium Tin Oxide)などの無機材料が使用されている。また、層間絶縁膜としては、パターニングが可能で、絶縁性のアクリル材料などが用いられている。 The touch panel is incorporated in a display device such as a liquid crystal display device and is used as a display device with a touch panel function capable of detecting a touch position. Since a person who operates the touch panel visually recognizes the display device through the touch panel, a member having excellent light transmission characteristics is used for the transparent electrode. For example, inorganic materials such as ITO (Indium Tin Oxide) are used. As the interlayer insulating film, patterning is possible, and an insulating acrylic material or the like is used.
日本特許第2881847号公報Japanese Patent No. 2881847 日本特開2010-28115号公報Japanese Unexamined Patent Publication No. 2010-28115
 上記したようなタッチパネルは、操作領域に指やペン先が実際に接触して押されることなどもあるため、強度と高い信頼性が求められる。そのため、層間絶縁膜を介して重畳する第1および第2の電極の上に保護膜を設ける検討がなされている。 The touch panel as described above is required to have strength and high reliability because a finger or a pen tip may be actually touched and pressed in the operation area. Therefore, studies have been made to provide a protective film on the first and second electrodes that overlap with each other via an interlayer insulating film.
 保護膜としては、パターニング可能なアクリル材料が用いられている。しかしながら、アクリル材料は、有機材料であるため、保護膜としての硬度が十分ではない。また、透明電極にITOなどを用いた場合には、ITOに対する密着性が弱く、タッチパネルの信頼性を低下させる一因となる。さらに、アクリル材料は、フレキソ印刷などの印刷技術を利用した膜形成が困難である。そのため、膜形成にあたって、工程が複雑なフォトリソグラフィ技術の利用が必要となる。 As the protective film, an acrylic material that can be patterned is used. However, since the acrylic material is an organic material, the hardness as a protective film is not sufficient. Moreover, when ITO etc. are used for a transparent electrode, the adhesiveness with respect to ITO is weak, and becomes a cause of reducing the reliability of a touch panel. Furthermore, it is difficult to form a film using an acrylic material using a printing technique such as flexographic printing. For this reason, it is necessary to use a photolithography technique with complicated processes in forming the film.
 こうしたことから、保護膜として、アクリル膜の代わりに無機材料を成分とするコート膜の検討がなされている。無機材料を成分とする膜の場合、一般に硬度が高く、タッチパネルのコート膜として高い信頼性が期待できる。このため、無機材料を成分とするコート膜に対し、印刷技術を利用した膜形成が可能であることと、上記したアクリル材料などの有機材料の層間絶縁膜と高い密着性を示すことが求められている。 For these reasons, a coating film containing an inorganic material as a component instead of an acrylic film has been studied as a protective film. In the case of a film containing an inorganic material as a component, the hardness is generally high, and high reliability can be expected as a coating film for a touch panel. For this reason, it is required that a coating film using an inorganic material as a component can be formed using a printing technique and has high adhesion to an interlayer insulating film made of an organic material such as an acrylic material. ing.
 また、静電容量方式のタッチパネルにおいては、ITOなどの透明電極が形成された領域と、透明電極の形成されていない領域とで、反射率に違いが生じる。これによって、透明電極のパターンが視認され、表示性を低下させるという問題があった。 Also, in a capacitive touch panel, a difference in reflectance occurs between a region where a transparent electrode such as ITO is formed and a region where a transparent electrode is not formed. As a result, there is a problem that the pattern of the transparent electrode is visually recognized and display properties are lowered.
 上述のように、従来のタッチパネルでは、透明電極上の保護膜材料としてアクリル膜が用いられてきた。しかし、この場合、アクリル膜の屈折率特性については何ら考慮されていない。そのため、アクリル膜に透明電極パターンを目立たなくする効果は期待できない。したがって、アクリル膜に代えて無機材料を成分とするコート膜を用いる場合、このコート膜は、透明電極パターンを目立たなくするものであることが好ましい。具体的には、屈折率が考慮されたコート膜を用いることが好ましい。 As described above, in the conventional touch panel, an acrylic film has been used as a protective film material on the transparent electrode. However, in this case, no consideration is given to the refractive index characteristics of the acrylic film. Therefore, the effect of making the transparent electrode pattern inconspicuous in the acrylic film cannot be expected. Therefore, when a coat film containing an inorganic material as a component is used instead of the acrylic film, the coat film preferably makes the transparent electrode pattern inconspicuous. Specifically, it is preferable to use a coating film in which the refractive index is considered.
 本発明は、こうした点に鑑みてなされたものである。すなわち、本発明の目的は、タッチパネルに適用されて、高い信頼性を実現できる、屈折率の制御されたコート膜、およびそうしたコート膜を形成できるコーティング組成物を提供することにある。 The present invention has been made in view of these points. That is, an object of the present invention is to provide a coating film with a controlled refractive index that can be applied to a touch panel to achieve high reliability, and a coating composition that can form such a coating film.
 また、本発明の別の目的は、屈折率が制御され、高い信頼性を実現できるコート膜を電極上に有するタッチパネルを提供することにある。 Another object of the present invention is to provide a touch panel having a coating film on an electrode, the refractive index of which is controlled and high reliability can be realized.
 本発明は、上記の目的を達成するためのものであり、下記を要旨とする。
 1.下記一般式(I)で示される第1の金属アルコキシドと、下記一般式(II)で示される第2の金属アルコキシドと、下記一般式(III)で示される金属塩と、有機溶媒と、水と、析出防止剤と、を含有することを特徴とするタッチパネル用コーティング組成物。
(OR         (I)
(式中、Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)および亜鉛(Zn)よりなる群から選択された少なくとも1の金属を表し、Rは、炭素数1~5のアルキル基またはアセトキシ基を表し、nは、Mの価数2~5を表す。)
(ORm-l      (II)
(式中、Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)および亜鉛(Zn)よりなる群から選択された少なくとも1の金属を表す。Rは、水素原子またはフッ素原子で置換されてもよく、且つ、ハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、アクリロキシ基、イオシアネート基、アミノ基またはウレイド基で置換されていてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20の炭化水素基を表す。Rは、炭素数1~5のアルキル基を表す。mは、Mの価数2~5を表し、lは、mの価数が3の場合1または2であり、mの価数が4の場合1~3であり、mの価数が5の場合1~4である。)
(X)           (III)
(式中、Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)およびセリウム(Ce)よりなる群から選択された少なくとも1の金属を表し、Xは、塩酸、硝酸、硫酸、酢酸、蓚酸、スファミン酸、スルホン酸、アセト酢酸若しくはアセチルアセトナートの残基、またはこれらの塩基性塩を表し、kは、Mの価数を表す。)
2.第2の金属アルコキシドの含有量は、第1の金属アルコキシドと第2の金属アルコキシドとを合わせた全金属アルコキシドに対して、15モル%以上である、上記1に記載のタッチパネル用コーティング組成物。
The present invention is for achieving the above-mentioned object, and the gist thereof is as follows.
1. A first metal alkoxide represented by the following general formula (I), a second metal alkoxide represented by the following general formula (II), a metal salt represented by the following general formula (III), an organic solvent, water And a deposition inhibitor. A coating composition for a touch panel, comprising:
M 1 (OR 1 ) n (I)
(Wherein M 1 is a group consisting of silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg) and zinc (Zn). And R 1 represents an alkyl group having 1 to 5 carbon atoms or an acetoxy group, and n represents a valence 2 to 5 of M 1 ).
R 2 l M 2 (OR 3 ) ml (II)
(Wherein M 1 is a group consisting of silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg) and zinc (Zn). Represents at least one metal selected from R 2 may be substituted with a hydrogen atom or a fluorine atom, and may be a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an acryloxy group, an isocyanate group; Represents a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with an amino group or a ureido group and which may have a hetero atom, and R 3 represents an alkyl group having 1 to 5 carbon atoms. M represents the valence 2 to 5 of M 2 , l is 1 or 2 when the valence of m is 3, and 1 to 3 when the valence of m is 4, and the valence of m 1 to 4 if the number is 5 .)
M 3 (X) k (III)
(Wherein M 3 represents aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum (Ta), yttrium (Y) and cerium ( Ce) represents at least one metal selected from the group consisting of: X is a residue of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, succinic acid, sfamic acid, sulfonic acid, acetoacetic acid or acetylacetonate, or their basicity Represents a salt, and k represents the valence of M 3. )
2. Content of 2nd metal alkoxide is a coating composition for touchscreens of said 1 which is 15 mol% or more with respect to all the metal alkoxides which match | combined 1st metal alkoxide and 2nd metal alkoxide.
3.析出防止剤は、N-メチル-ピロリドン、エチレングリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジエチレングリコール、プロピレングリコール、ヘキシレングリコールおよびこれらの誘導体よりなる群から選択された少なくとも1種以上の物質である、上記1または2に記載のタッチパネル用コーティング組成物。 3. The anti-precipitation agent is at least one substance selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. Or the coating composition for touchscreens of 2.
4.金属塩の金属原子(M)と、第1の金属アルコキシドおよび第2の金属アルコキシドの金属原子(MおよびM)とのモル比が、 0.01≦M/(M+M+M)≦0.7である、上記1~3のいずれかに記載のタッチパネル用コーティング組成物。
5.第1の金属アルコキシドは、シリコンアルコキシドまたはその部分縮合物と、チタンアルコキシドとの混合物である、上記1~4のいずれかに記載のタッチパネル用コーティング組成物。
6.金属塩は、金属硝酸塩、金属硫酸塩、金属酢酸塩、金属塩化物、金属蓚酸塩、金属スファミン酸塩、金属スルホン酸塩、金属アセト酢酸塩、金属アセチルアセトナートまたはこれらの塩基性塩である、上記1~5のいずれかに記載のタッチパネル用コーティング組成物。
7.第1の金属アルコキシドは、シリコンアルコキシドまたはその部分縮合物と、チタンアルコキシドとの混合物であり、有機溶媒は、アルキレングリコール類またはそのモノエーテル誘導体を含む、上記1~6のいずれかに記載のタッチパネル用コーティング組成物。
8.上記1~~7のいずれかに記載のタッチパネル用のコーティング組成物を用いて成膜されることを特徴とするコート膜。
9.屈折率が1.52~1.70であり、膜厚が40nm~170nmであることを特徴とする上記8に記載のコート膜。
10.基板の操作領域に透明電極のパターンが形成されたタッチパネルであって、
 上記8または9に記載のコート膜を前記透明電極のパターンの少なくとも一部の上に配したことを特徴とするタッチパネル。
11.前記透明電極パターンは、少なくとも2つの異なる方向の位置を検出するための第1の透明電極パターンと、第2の透明電極パターンとを有して構成され、
 前記第1の透明電極パターンと前記第2の透明電極パターンの少なくとも一部は、前記基板の操作領域で重畳するとともに、この重畳する部分の前記第1の透明電極パターンと前記第2の透明電極パターンとの間には有機材料からなる膜が配置されており、
 前記コート膜は、前記第1の透明電極パターンまたは前記第2の透明電極パターンの少なくとも一部とともに前記有機材料からなる膜の少なくとも一部を被覆するよう構成されたことを特徴とする上記10に記載のタッチパネル。
12.前記第1の透明電極パターンと前記第2の透明電極パターンとが重畳する部分は、前記基板の操作領域に複数あり、これら複数の重畳する部分のそれぞれにおいて、前記重畳する部分の面積より大きい面積の前記有機材料からなる膜が配置されていることを特徴とする上記11に記載のタッチパネル。
4). The molar ratio of the metal atom (M 3 ) of the metal salt to the metal atoms (M 1 and M 2 ) of the first metal alkoxide and the second metal alkoxide is 0.01 ≦ M 3 / (M 1 + M 2 4. The touch panel coating composition according to any one of 1 to 3 above, wherein + M 3 ) ≦ 0.7.
5). 5. The touch panel coating composition as described in any one of 1 to 4 above, wherein the first metal alkoxide is a mixture of silicon alkoxide or a partial condensate thereof and titanium alkoxide.
6). The metal salt is a metal nitrate, metal sulfate, metal acetate, metal chloride, metal succinate, metal sphamate, metal sulfonate, metal acetoacetate, metal acetylacetonate or a basic salt thereof The coating composition for a touch panel as described in any one of 1 to 5 above.
7). The touch panel according to any one of 1 to 6, wherein the first metal alkoxide is a mixture of silicon alkoxide or a partial condensate thereof and titanium alkoxide, and the organic solvent includes alkylene glycols or monoether derivatives thereof. Coating composition.
8). 8. A coating film formed by using the touch panel coating composition according to any one of 1 to 7 above.
9. 9. The coating film as described in 8 above, which has a refractive index of 1.52 to 1.70 and a film thickness of 40 nm to 170 nm.
10. A touch panel in which a transparent electrode pattern is formed in the operation area of the substrate,
10. A touch panel, wherein the coating film according to 8 or 9 is disposed on at least a part of the pattern of the transparent electrode.
11. The transparent electrode pattern includes a first transparent electrode pattern for detecting positions in at least two different directions, and a second transparent electrode pattern,
At least a part of the first transparent electrode pattern and the second transparent electrode pattern overlap in the operation region of the substrate, and the first transparent electrode pattern and the second transparent electrode in the overlapping part A film made of organic material is placed between the pattern and
10. The coating film according to 10 above, wherein the coating film is configured to cover at least a part of the film made of the organic material together with at least a part of the first transparent electrode pattern or the second transparent electrode pattern. The touch panel described.
12 There are a plurality of overlapping portions of the first transparent electrode pattern and the second transparent electrode pattern in the operation region of the substrate, and each of the overlapping portions has an area larger than the area of the overlapping portion. 12. The touch panel as described in 11 above, wherein a film made of the organic material is arranged.
 本発明によれば、タッチパネルに適用されて、高い信頼性を実現できる、屈折率の制御されたコート膜を形成できる、タッチパネル用のコーティング組成物が提供される。 According to the present invention, there is provided a coating composition for a touch panel that can be applied to a touch panel to form a coating film with a controlled refractive index that can realize high reliability.
 また、本発明によれば、屈折率が制御され、高い強度を有し、タッチパネルのコート膜として好適なコート膜が提供される。 Further, according to the present invention, a coating film having a high refractive index and a high strength and suitable as a coating film for a touch panel is provided.
 本発明によれば、電極のパターンが目立つことが抑制され、高い信頼性を有するタッチパネルが提供される。 According to the present invention, a conspicuous electrode pattern is suppressed, and a highly reliable touch panel is provided.
本発明のタッチパネルの構造を模式的に示す平面図である。It is a top view which shows typically the structure of the touchscreen of this invention. 図1のA1-A1’線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line A1-A1 'of FIG. (a)~(d)は、本発明のタッチパネルの製造方法を示す工程断面図である。(A)-(d) is process sectional drawing which shows the manufacturing method of the touchscreen of this invention. 本発明のタッチパネルの別の例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of another example of the touchscreen of this invention. 本発明のタッチパネルのさらに別の例の構造を模式的に示す平面図である。It is a top view which shows typically the structure of another example of the touchscreen of this invention. 図5のB1-B1’線に沿う断面図である。FIG. 6 is a cross-sectional view taken along line B1-B1 ′ of FIG.
<コーティング組成物>
 本発明のコーティング組成物は、上記一般式(I)で示される第1の金属アルコキシドと、上記一般式(II)で示される第2の金属アルコキシドと、上記一般式(III)で示される金属塩と、有機溶媒と、水分と、析出防止剤と、を含有する。このコーティング組成物を成膜することによりタッチパネルに好適なコートが得られる。
<Coating composition>
The coating composition of the present invention includes a first metal alkoxide represented by the above general formula (I), a second metal alkoxide represented by the above general formula (II), and a metal represented by the above general formula (III). Contains a salt, an organic solvent, moisture, and a precipitation inhibitor. A coating suitable for a touch panel can be obtained by depositing this coating composition.
 本発明のコーティング組成物から得られるコート膜は、無機物である金属酸化物を主な成分とするものであり、アクリル材料などの有機材料からなるコート膜に比べて、硬度が高く、高い強度を有する。したがって、タッチパネルの電極用保護膜として好適である。また、タッチパネルにおいて透明電極パターンが視認される、いわゆる「電極パターン見え」現象を低減できるよう、屈折率が最適範囲に制御されている。その結果、このコート膜を用いたタッチパネルが適用される表示装置の表示性低下を防止することができる。 The coating film obtained from the coating composition of the present invention is mainly composed of an inorganic metal oxide, and has a higher hardness and higher strength than a coating film made of an organic material such as an acrylic material. Have. Therefore, it is suitable as a protective film for an electrode of a touch panel. Further, the refractive index is controlled within the optimum range so as to reduce the so-called “electrode pattern appearance” phenomenon in which the transparent electrode pattern is visually recognized on the touch panel. As a result, it is possible to prevent deterioration in display properties of a display device to which a touch panel using this coat film is applied.
 本発明で得られるコート膜は、例えば、タッチパネルの基板の操作領域に配置される透明電極パターンが、2つの異なる方向の位置を検出するための2種類の透明電極パターンを有して構成されることがある。このとき、2種類の透明電極パターンが電気的に接続しないよう、それらの間にアクリルなどの有機材料からなる層間絶縁膜が配置される。こうした構成のタッチパネルの場合、コート膜は層間絶縁膜の上にも形成される。ここで、コート膜と層間絶縁膜の熱伸縮性の違いによって、コート膜にクラックが入り、タッチパネルの信頼性が低下するという問題があった。 The coating film obtained by the present invention is configured, for example, by including two types of transparent electrode patterns for detecting the positions in two different directions in the transparent electrode pattern arranged in the operation region of the touch panel substrate. Sometimes. At this time, an interlayer insulating film made of an organic material such as acrylic is disposed between the two transparent electrode patterns so as not to be electrically connected. In the case of the touch panel having such a configuration, the coat film is also formed on the interlayer insulating film. Here, due to the difference in thermal stretchability between the coat film and the interlayer insulating film, there is a problem that the coat film cracks and the reliability of the touch panel is lowered.
 本発明のコーティング組成物では、タッチパネルのコート膜にクラックが発生しないよう、含有する成分の構造と組成について好ましく選択される。より詳しくは、本発明のコーティング組成物では、主成分である金属アルコキシドについて、コート膜の形成に好適となるような構造と組成の選択できる。 In the coating composition of the present invention, the structure and composition of the components contained are preferably selected so that cracks do not occur in the coating film of the touch panel. More specifically, in the coating composition of the present invention, the metal alkoxide that is the main component can be selected in a structure and composition that are suitable for forming a coating film.
 本発明のコーティング組成物は、下記一般式(I)で示される構造の第1の金属アルコキシドと、下記一般式(II)で示される構造の第2の金属アルコキシドとを含有する。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、M、R、nは、上記に定義したとおりである。なかでも、Mは、珪素(Si)、チタン(Ti)、ジルコニウム(Zr)、またはアルミニウム(Al)が好ましく、特には、珪素(Si)、またはチタン(Ti)が好ましい。また、nは3または4が好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(II)中、M、R、R、mは、上記に定義したとおりである。なかでも、Mは、珪素(Si)、チタン(Ti)、ジルコニウム(Zr)、またはアルミニウム(Al)が好ましく、特には、珪素(Si)、またはチタン(Ti)が好ましい。
The coating composition of the present invention contains a first metal alkoxide having a structure represented by the following general formula (I) and a second metal alkoxide having a structure represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000001
In formula (I), M 1 , R 1 and n are as defined above. Among these, M 1 is preferably silicon (Si), titanium (Ti), zirconium (Zr), or aluminum (Al), and particularly preferably silicon (Si) or titanium (Ti). N is preferably 3 or 4.
Figure JPOXMLDOC01-appb-C000002
In formula (II), M 2 , R 2 , R 3 and m are as defined above. Among these, M 2 is preferably silicon (Si), titanium (Ti), zirconium (Zr), or aluminum (Al), and particularly preferably silicon (Si) or titanium (Ti).
 式(I)で示される金属アルコキシドとして、シリコンアルコキシドまたはその部分縮合物を用いる場合、一般式(IV)で示される化合物の1種若しくは2種以上の混合物または部分縮合物(好ましくは5量体以下)が用いられる。
Figure JPOXMLDOC01-appb-C000003
 式(IV)中、R’は、炭素数1~5、好ましくは、1~3のアルキル基、またはアセトキシ基を表す。
When a silicon alkoxide or a partial condensate thereof is used as the metal alkoxide represented by the formula (I), one or a mixture or a partial condensate (preferably a pentamer) of the compound represented by the general formula (IV) The following is used:
Figure JPOXMLDOC01-appb-C000003
In the formula (IV), R ′ represents an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms, or an acetoxy group.
 より具体的には、シリコンアルコキシドとして、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラアセトキシシランなどのテトラアルコキシシラン類などが用いられる。 More specifically, examples of the silicon alkoxide include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and tetraacetoxysilane.
 また、式(I)で示される金属アルコキシドとして、チタンアルコキシドまたは部分縮合物を用いる場合、一般式(V)で示される化合物の1種または2種以上の混合物または部分縮合物(好ましくは5量体以下)が用いられる。
Figure JPOXMLDOC01-appb-C000004
 式(V)中、R”は、炭素数1~5のアルキル基を表す。
 式(I)で示される金属アルコキシドとして、具体的には、チタンアルコキシドとして、チタニウムテトラエトキシド、チタニウムテトラプロポキシド、チタニウムテトラブトキシドなどのチタニウムテトラアルコキシド化合物またはチタニウムテトラ-n-ブトキシドテトラマーなどの部分縮合物などが用いられる。
When a titanium alkoxide or a partial condensate is used as the metal alkoxide represented by the formula (I), one or a mixture of two or more compounds or a partial condensate of the compound represented by the general formula (V) (preferably 5 amounts) Body or less) is used.
Figure JPOXMLDOC01-appb-C000004
In formula (V), R ″ represents an alkyl group having 1 to 5 carbon atoms.
As the metal alkoxide represented by the formula (I), specifically, as titanium alkoxide, a titanium tetraalkoxide compound such as titanium tetraethoxide, titanium tetrapropoxide, titanium tetrabutoxide, or a moiety such as titanium tetra-n-butoxide tetramer A condensate or the like is used.
 式(I)で示される金属アルコキシドの他の例としては、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、ジルコニウムテトラブトキシドなどのジルコニウムテトラアルコキシド化合物;アルミニウムトリブトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリエトキシドなどのアルミニウムトリアルコキシド化合物;タンタリウムペンタプロポキシド、タンタリウムペンタブトキシドなどのタンタリウムペンタアルコキシド化合物などを挙げることができる。 Other examples of the metal alkoxide represented by the formula (I) include zirconium tetraalkoxide compounds such as zirconium tetraethoxide, zirconium tetrapropoxide, zirconium tetrabutoxide; aluminum tributoxide, aluminum triisopropoxide, aluminum triethoxide And aluminum trialkoxide compounds such as tantalum pentapropoxide and tantalum pentaalkoxide compounds such as tantalum pentataboxide.
 第1の金属アルコキシドの含有量は、コーティング組成物に含まれる1の金属アルコキシドと第2の金属アルコキシドの合計量に対し、20モル%~85モル%であることが好ましく、30モル%~70モル%がより好ましい。 The content of the first metal alkoxide is preferably 20 mol% to 85 mol%, preferably 30 mol% to 70 mol%, based on the total amount of one metal alkoxide and second metal alkoxide contained in the coating composition. Mole% is more preferable.
 上記式(II)で示される第2の金属アルコキシドは、上記第1の金属アルコキシドとともに、本発明のコーティング組成物に用いられる。コーティング組成物では、第2の金属アルコキシドを含むことにより、コート膜がアクリル材などの有機材料からなる膜上に形成される場合に、コート膜と有機膜との間の熱伸縮性の違いが緩和される。その結果、有機膜上に、コート膜が形成されることがあっても、コート膜にクラックが発生することが防止される。例えば、タッチパネルにおいて、上述した層間絶縁膜などにアクリル材料からなる有機膜が用いられ、その上にコート膜が形成されることがあっても、層間絶縁膜上のコート膜にクラックが発生することを防止できる。 The second metal alkoxide represented by the above formula (II) is used in the coating composition of the present invention together with the first metal alkoxide. In the coating composition, when the coating film is formed on a film made of an organic material such as an acrylic material by including the second metal alkoxide, there is a difference in thermal stretchability between the coating film and the organic film. Alleviated. As a result, even if a coat film may be formed on the organic film, it is possible to prevent cracks from occurring in the coat film. For example, in a touch panel, even when an organic film made of an acrylic material is used for the above-described interlayer insulating film and a coat film is formed on the organic film, a crack occurs in the coat film on the interlayer insulating film. Can be prevented.
 第2の金属アルコキシドの含有量の含有量は、コーティング組成物に含まれる1の金属アルコキシドと第2の金属アルコキシドにの合計量に対し、80モル%~15モル%好ましく、70%~30モル%がより好ましい。Rの炭素数が3以下の場合、式(II)で示される金属アルコキシドの含有量を30%以上とし、Rの炭素数が4以上の場合、または、R中にメルカプト基が含まれる場合、第2の金属アルコキシドの含有量が15%以上であることがより好ましく、また、75モル%以下がより好ましい。
 第2の金属アルコキシドの含有量が15モル%未満である場合、上記した有機膜上で得られるコート膜にクラックが生じる場合がある。また、80モル%以上である場合、クラックは生じないものの、均一な塗布膜が得られないといった現象が起こる場合がある。このような含有量とすることにより、上記したコート膜でのクラック発生を抑制することができる。
The content of the second metal alkoxide is preferably 80 to 15 mol%, preferably 70 to 30 mol, based on the total amount of one metal alkoxide and the second metal alkoxide contained in the coating composition. % Is more preferable. When the carbon number of R 2 is 3 or less, the content of the metal alkoxide represented by the formula (II) is 30% or more, and when the carbon number of R 2 is 4 or more, or a mercapto group is contained in R 2 In this case, the content of the second metal alkoxide is more preferably 15% or more, and more preferably 75 mol% or less.
When the content of the second metal alkoxide is less than 15 mol%, a crack may occur in the coating film obtained on the above-described organic film. On the other hand, if it is 80 mol% or more, cracks may not occur, but a phenomenon that a uniform coating film cannot be obtained may occur. By setting it as such content, crack generation | occurrence | production in an above-described coat film can be suppressed.
 コーティング組成物に含まれる第1の金属アルコキシドと第2の金属アルコキシドの合計の含有量は、好ましくは0.5重量%~20重量%であり、より好ましくは1重量%~15重量%ある。この比率が大きい場合には、コーティング組成物の貯蔵安定性が悪くなるうえ、コート膜の膜厚制御が困難になる。一方、小さい場合には、得られるコート膜の厚みが薄くなり、所定の膜厚を得るために多数回の塗布が必要となる。 The total content of the first metal alkoxide and the second metal alkoxide contained in the coating composition is preferably 0.5% by weight to 20% by weight, more preferably 1% by weight to 15% by weight. When this ratio is large, the storage stability of the coating composition is deteriorated and it is difficult to control the film thickness of the coating film. On the other hand, when the thickness is small, the thickness of the resulting coating film becomes thin, and many coatings are required to obtain a predetermined film thickness.
 式(II)に示される好ましい金属アルコキシドとしては、例えば、Mが珪素である場合、以下の化合物を挙げることができる。
 例えば、メチルトリメトキシシラン、メチルトリプロポキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、メチルトリペントキシシラン、メチルトリアミロキシシラン、メチルトリフェノキシシラン、メチルトリベンジルオキシシラン、メチルトリフェネチルオキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、αーグリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリフェノキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、γ-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、δ-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、グリシドキシメチルメチルジメトキシシラン、グリシドキシメチルメチルジエトキシシラン、α-グリシドキシエチルメチルジメトキシシラン、α-グリシドキシエチルメチルジエトキシシラン、β-グリシドキシエチルメチルジメトキシシラン、β-グリシドキシエチルエチルジメトキシシラン、α-グリシドキシプロピルメチルジメトキシシラン、α-グリシドキシプロピルメチルジエトキシシラン、β-グリシドキシプロピルメチルジメトキシシラン、β-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルビニルジメトキシシラン、γ-グリシドキシプロピルビニルジエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルトリアセトキシシラン、3,3,3-トリフロロプロピルトリメトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、β-シアノエチルトリエトキシシラン、クロロメチルトリメトキシシラン、クロロメチルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)γ-アミノプロピルメチルジエトキシシラン、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ-メタクリルオキシプロピルメチルジメトキシシラン、γ-メタクリルオキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトメチルジエトキシシラン、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン、(R)-N-1-フェニルエチル-N’-トリエトキシシリルプロピルウレア、(R)-N-1-フェニルエチル-N’-トリメトキシシリルプロピルウレア、アリルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、ブロモプロピルトリエトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、p-スチリルトリプロポキシシランなどを挙げることができる。これらは、単独で、または、2種以上組み合わせて使用することができる。
As a preferable metal alkoxide represented by the formula (II), for example, when M 2 is silicon, the following compounds may be mentioned.
For example, methyltrimethoxysilane, methyltripropoxysilane, methyltriacetoxysilane, methyltributoxysilane, methyltripentoxysilane, methyltriamyloxysilane, methyltriphenoxysilane, methyltribenzyloxysilane, methyltriphenethyloxysilane Glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-glycidoxyethyltrimethoxysilane, β-glycidyl Sidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidoxypropyltrie Toxisilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltributoxysilane, γ-glycidoxypropyltriphenoxy Silane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyltrimethoxysilane, γ-glycidoxybutyltriethoxy Silane, δ-glycidoxybutyltrimethoxysilane, δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, β- (3,4-epoxy Cyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltripropoxysilane, β- (3,4-epoxycyclohexyl) ethyltributoxy Silane, β- (3,4-epoxycyclohexyl) ethyltriphenoxysilane, γ- (3,4-epoxycyclohexyl) propyltrimethoxysilane, γ- (3,4-epoxycyclohexyl) propyltriethoxysilane, δ- ( 3,4-epoxycyclohexyl) butyltrimethoxysilane, δ- (3,4-epoxycyclohexyl) butyltriethoxysilane, glycidoxymethylmethyldimethoxysilane, glycidoxymethylmethyldiethoxysilane, α-glycidoxyethyl Methyl Dimethoxysilane, α-glycidoxyethylmethyldiethoxysilane, β-glycidoxyethylmethyldimethoxysilane, β-glycidoxyethylethyldimethoxysilane, α-glycidoxypropylmethyldimethoxysilane, α-glycidoxypropyl Methyldiethoxysilane, β-glycidoxypropylmethyldimethoxysilane, β-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycid Xylpropylmethyldipropoxysilane, γ-glycidoxypropylmethyldibutoxysilane, γ-glycidoxypropylmethyldiphenoxysilane, γ-glycidoxypropylethyldimethoxysilane, γ-glycidoxypropylethyldiet Xysilane, γ-glycidoxypropyl vinyldimethoxysilane, γ-glycidoxypropylvinyldiethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, phenyltri Methoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltriacetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, β-cyanoethyltriethoxysilane, chloromethyl Limethoxysilane, chloromethyltriethoxysilane, N- (β-aminoethyl) γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) γ-aminopropyltriethoxysilane, N- (β-aminoethyl) γ-aminopropylmethyldiethoxysilane, dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldi Ethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane Run, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptomethyldiethoxysilane, methylvinyldimethoxysilane, methylvinyldiethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltri Propoxysilane, (R) -N-1-phenylethyl-N′-triethoxysilylpropylurea, (R) -N-1-phenylethyl-N′-trimethoxysilylpropylurea, allyltriethoxysilane, 3- Methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, tri Fluoropropyltrimethoxysilane, bromopropyltriethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, p-styryltrimethoxysilane, p-styryltri Examples thereof include ethoxysilane and p-styryltripropoxysilane. These can be used alone or in combination of two or more.
 本発明のコーティング組成物に含有される金属塩としては、下記一般式(III)で示される。
Figure JPOXMLDOC01-appb-C000005
 式(III)中、M、X、kは、上記に定義したとおりである。なかでも、Mは、アルミニウム(Al)、インジウム(In)、セリウム(Ce)またはジルコニウム(Zr)が好ましい。また、Xは、塩酸、硝酸、酢酸、蓚酸、スルホン酸、アセト酢酸若しくはアセチルアセトナートの残基、またはそれらの塩基性塩が好ましい。上記Xにおける各酸の残基は、例えば、硝酸は硝酸根、硫酸は硫酸根とも呼ばれ、その量は、Mの価数と等価になるように含まれる。また、塩基性塩とは、上記各酸の残基中にOH基を含む場合を意味する。
 式(III)で示される金属塩のうち、特に、硝酸塩、塩化物塩、蓚酸塩またはその塩基性塩が好ましい。この内、入手の容易性と、コーティング組成物の貯蔵安定性の点から、アルミニウム、インジウム、またはセリウムの硝酸塩がより好ましい。
The metal salt contained in the coating composition of the present invention is represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000005
In formula (III), M 3 , X and k are as defined above. Among these, M 3 is preferably aluminum (Al), indium (In), cerium (Ce), or zirconium (Zr). X is preferably a residue of hydrochloric acid, nitric acid, acetic acid, succinic acid, sulfonic acid, acetoacetic acid or acetylacetonate, or a basic salt thereof. The residue of each acid in X is, for example, nitric acid is also called a nitrate radical and sulfuric acid is also called a sulfate radical, and the amount thereof is included so as to be equivalent to the valence of M 3 . Moreover, a basic salt means the case where OH group is contained in the residue of said each acid.
Of the metal salts represented by the formula (III), nitrates, chloride salts, oxalates or basic salts thereof are particularly preferable. Of these, aluminum, indium, or cerium nitrate is more preferred from the viewpoint of availability and storage stability of the coating composition.
 本発明のコーティング組成物には、有機溶媒が含有される。該有機溶媒は、コーティング組成物からその塗膜を形成しコート膜を得る場合、コーティング組成物の粘度を調整し、塗布性を改善するためのもので、コーティング組成物中の有機溶媒の含有量は、コーティング組成物に含まれる全金属アルコキシドに対し、80重量%~99.5重量%であることが好ましく、85重量%~99重量%がより好ましい。有機溶媒の含有量が少ない場合には、得られるコート膜の厚みが薄くなり、所定の膜厚を得るために多数回の塗布が必要となる。一方、多い場合には、コーティング組成物の貯蔵安定性が悪くなるうえ、コート膜の膜厚の制御が困難になる。 The coating composition of the present invention contains an organic solvent. The organic solvent is for adjusting the viscosity of the coating composition and improving the coating property when forming a coating film from the coating composition to obtain a coating film. Content of the organic solvent in the coating composition Is preferably 80% by weight to 99.5% by weight and more preferably 85% by weight to 99% by weight with respect to the total metal alkoxide contained in the coating composition. When the content of the organic solvent is small, the thickness of the resulting coating film is reduced, and many coatings are required to obtain a predetermined film thickness. On the other hand, when the amount is large, the storage stability of the coating composition is deteriorated and it is difficult to control the thickness of the coating film.
 コーティング組成物に用いられる有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノールなどのアルコール類;酢酸エチルエステルなどのエステル類;エチレングリコールなどのグリコール類、またはそれらのエステル誘導体;ジエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;ベンゼン、トルエンなどの芳香族炭化水素類などが挙げられる。これらは、単独または組み合わせて用いられる。 Examples of the organic solvent used in the coating composition include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, and 2-methyl-2-propanol. Esters such as ethyl acetate; glycols such as ethylene glycol; or ester derivatives thereof; ethers such as diethyl ether; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; aromatic hydrocarbons such as benzene and toluene; Is mentioned. These are used alone or in combination.
 コーティング組成物中に、チタンアルコシド成分を含む場合、有機溶媒中に含まれるアルキレングリコール類またはそのモノエーテルとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコール、またはそれらのモノメチル、モノエチル、モノプロピル、モノブチル若しくはモノフェニルエーテルなどが挙げられる。 When the coating composition contains a titanium alkoxide component, the alkylene glycol or monoether thereof contained in the organic solvent is, for example, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, or their monomethyl, monoethyl , Monopropyl, monobutyl or monophenyl ether.
 コーティング組成物に用いられる有機溶媒に含まれるグリコール類またはそのモノエーテルは、チタンアルコキシドに対してモル比が1未満であると、チタンアルコキシドの安定性に効果が少なく、コーティング用組成物の貯蔵安定性が悪くなる。一方。グリコール類またはそのモノエーテルを多量に用いることは何ら問題でない。例えば、コーティング組成物に用いられる有機溶媒の全てが、上述のグリコール類またはそのモノエーテルであっても差支えない。しかし、コーティング組成物がチタンアルコキシドを含まない場合には、上述したグリコールおよび/またはそのモノエーテルを特に含む必要はない。 When the molar ratio of the glycols or monoethers contained in the organic solvent used in the coating composition is less than 1 with respect to the titanium alkoxide, the stability of the titanium alkoxide is less effective, and the storage stability of the coating composition is reduced. Sexuality gets worse. on the other hand. It is not a problem to use a large amount of glycols or monoethers thereof. For example, all of the organic solvents used in the coating composition can be the above-described glycols or monoethers thereof. However, when the coating composition does not contain a titanium alkoxide, it is not necessary to specifically contain the above-mentioned glycol and / or its monoether.
 コーティング組成物は、析出防止剤を含有するのが好ましい。析出防止剤は、コーティング組成物から塗布被膜を形成する際に、塗膜中に金属塩が析出するのを防止する。析出防止剤としては、N-メチル-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコール、ジエチレングリコール、プロピレングリコール若しくはヘキシレングリコール、またはそれらの誘導体などが挙げられる。なかでも、N-メチル-ピロリドン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ヘキシレングリコールまたはそれらの誘導体がより好ましい。析出防止剤は、少なくとも1種以上使用できる。 The coating composition preferably contains a precipitation inhibitor. The anti-deposition agent prevents the metal salt from precipitating in the coating film when a coating film is formed from the coating composition. Examples of the precipitation inhibitor include N-methyl-pyrrolidone, dimethylformamide, dimethylacetamide, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, and derivatives thereof. Of these, N-methyl-pyrrolidone, ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol or derivatives thereof are more preferable. At least one kind of precipitation inhibitor can be used.
 コーティング組成物中における析出防止剤の含有量は、上記金属塩の金属を金属酸化物に換算して、下記を満足する比率(重量比)で用いられるのが好ましい。
     (析出防止剤/金属酸化物)≧1
 上記比率が1未満であると、塗布被膜を形成時における金属塩の析出防止効果が小さくなる。一方、析出防止剤を多量に用いることは、コーティング組成物に何ら影響を与えないが、200以下であるのが好ましい。
The content of the precipitation inhibitor in the coating composition is preferably used at a ratio (weight ratio) satisfying the following, when the metal of the metal salt is converted into a metal oxide.
(Precipitation inhibitor / metal oxide) ≧ 1
When the ratio is less than 1, the effect of preventing precipitation of the metal salt at the time of forming the coating film is reduced. On the other hand, the use of a large amount of precipitation inhibitor does not affect the coating composition at all, but is preferably 200 or less.
 析出防止剤には、金属アルコキシド、特に、シリコンアルコキシド、チタンアルコキシド、または、シリコンアルコキシドとチタンアルコキシドが、金属塩の存在下で加水分解・縮合反応する際に添加されていてもよく、加水分解・縮合反応の終了後に添加されていてもよい。 In the precipitation inhibitor, metal alkoxide, particularly silicon alkoxide, titanium alkoxide, or silicon alkoxide and titanium alkoxide may be added during hydrolysis / condensation reaction in the presence of a metal salt. It may be added after completion of the condensation reaction.
 一方、コーティング組成物に含まれる金属塩の含有量は、上記第1及び第2の金属アルコキシドを構成する金属原子(MおよびM)と上記金属塩の金属原子(M)の合計の含有比率が、下記を満足する比率(モル比)であるのが好ましい。
     0.01≦M/(M+M+M)≦0.7
 この比率が0.01より小さいと、得られる被膜の機械的強度が十分でないため好ましくない。一方、0.7を越えると、ガラス基板や透明電極などの基材に対するコート膜の密着性が低下する。さらに、450℃以下の低温で焼成した場合、得られるコート膜の耐薬品性が低下する傾向にもある。なかでも、この比率は、0.01~0.6であるのがより好ましい。
On the other hand, the content of the metal salt contained in the coating composition is the sum of the metal atoms (M 1 and M 2 ) constituting the first and second metal alkoxides and the metal atom (M 3 ) of the metal salt. The content ratio is preferably a ratio (molar ratio) that satisfies the following.
0.01 ≦ M 3 / (M 1 + M 2 + M 3 ) ≦ 0.7
If this ratio is less than 0.01, the mechanical strength of the resulting coating is not sufficient, which is not preferable. On the other hand, when it exceeds 0.7, the adhesion of the coating film to a substrate such as a glass substrate or a transparent electrode is lowered. Furthermore, when baked at a low temperature of 450 ° C. or lower, the chemical resistance of the resulting coating film tends to be lowered. In particular, this ratio is more preferably 0.01 to 0.6.
 本発明のコーティング組成物においては、本発明の効果を損なわない限りにおいて、上記した成分以外のその他の成分、例えば、無機微粒子、メタロキサンオリゴマー、メタロキサンポリマー、レベリング剤、界面活性剤等の成分が含まれていてもよい。
 無機微粒子としては、シリカ微粒子、アルミナ微粒子、チタニア微粒子、フッ化マグネシウム微粒子等の微粒子が好ましく、これらの無機微粒子のコロイド溶液が特に好ましい。このコロイド溶液は、無機微粒子粉を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。
In the coating composition of the present invention, other components than the above-described components, for example, inorganic fine particles, metalloxane oligomers, metalloxane polymers, leveling agents, surfactants and the like, as long as the effects of the present invention are not impaired. May be included.
As the inorganic fine particles, fine particles such as silica fine particles, alumina fine particles, titania fine particles, and magnesium fluoride fine particles are preferable, and a colloid solution of these inorganic fine particles is particularly preferable. This colloidal solution may be a dispersion of inorganic fine particle powder in a dispersion medium or a commercially available colloidal solution.
 本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表面形状やその他の機能を付与することが可能となる。無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、更に好ましくは0.001~0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液を用いて形成される硬化被膜の透明性が低下する場合がある。
 無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液としては、被膜形成用塗布液の安定性の観点から、pH又はpKaが1~10に調整されていることが好ましく、より好ましくは2~7である。
In the present invention, the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions. The inorganic fine particles preferably have an average particle size of 0.001 to 0.2 μm, more preferably 0.001 to 0.1 μm. When the average particle diameter of the inorganic fine particles exceeds 0.2 μm, the transparency of the cured film formed using the prepared coating liquid may be lowered.
Examples of the dispersion medium for the inorganic fine particles include water and organic solvents. As the colloidal solution, the pH or pKa is preferably adjusted to 1 to 10, more preferably 2 to 7, from the viewpoint of the stability of the coating solution for film formation.
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、2-メチル-2,4-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類及びケトン類が好ましい。これら有機溶剤は、単独でまたは2種以上を混合して分散媒として使用することができる。 Organic solvents used for the dispersion medium of the colloidal solution include methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, butanediol, pentanediol, 2-methyl-2,4-pentanediol, diethylene glycol, dipropylene glycol, ethylene Alcohols such as glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; ethyl acetate and butyl acetate And esters such as γ-butyrolactone; ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
 本発明のコーティング組成物中の固形分濃度は、上記の金属アルコキシドと金属塩を金属酸化物として換算した場合、0.5重量%~20重量%の範囲であることが好ましい。固形分が20重量%を越えると、コーティング組成物の貯蔵安定性が悪くなるうえ、コート膜の膜厚制御が困難になる。一方、固形分が0.5重量%より少ない場合では、得られるコート膜の厚みが薄くなり、所定の膜厚を得るために多数回の塗布が必要となる。なかでも、固形分濃度は、1重量%~15重量%であるのがより好ましい。 The solid content concentration in the coating composition of the present invention is preferably in the range of 0.5 wt% to 20 wt% when the above metal alkoxide and metal salt are converted as metal oxides. When the solid content exceeds 20% by weight, the storage stability of the coating composition is deteriorated and it is difficult to control the thickness of the coating film. On the other hand, when the solid content is less than 0.5% by weight, the resulting coating film is thin, and many coatings are required to obtain a predetermined film thickness. In particular, the solid content concentration is more preferably 1% by weight to 15% by weight.
 本発明のコーティング組成物には、上記の第1及び第2の金属アルコキシドを上記金属塩の存在下で加水分解し、縮合物を得るために水が含有される。かかる水の量は、上記の第1及び第2の金属アルコキシドの総モルに対して、2~24モルにするのが好ましい。この(水の量(モル)/(金属アルコキシドの総モル数)の比率が2以下の場合には、金属アルコキシドの加水分解が不十分となって、成膜性を低下させたり、得られるコート膜の強度を低下させたりするので好ましくない。また、上記比率が24より多い場合は、重縮合が進行し続けるため、貯蔵安定性を低下させるので好ましくない。なかでも、このモル比は、2~20であるのがより好ましい。 The coating composition of the present invention contains water in order to obtain a condensate by hydrolyzing the first and second metal alkoxides in the presence of the metal salt. The amount of water is preferably 2 to 24 moles relative to the total moles of the first and second metal alkoxides. When the ratio of (amount of water (mole) / (total number of moles of metal alkoxide) is 2 or less, hydrolysis of the metal alkoxide becomes insufficient, resulting in a decrease in film formability or a coat obtained. It is not preferable because the strength of the film is decreased, and when the ratio is more than 24, polycondensation continues to proceed, so that storage stability is decreased. More preferably, it is ˜20.
 なお、コーティング組成物に含有される金属塩が含水塩の場合には、その含水分が加水分解反応に関与するため、コーティング組成物に含有させる水の量には、この金属塩の含水分を考慮する必要がある。例えば、共存する金属塩がアルミニウム塩の含水塩の場合には、その含水分が反応に関与するため、加水分解に用いる水の量に対してアルミニウム塩の含水分を考慮する必要がある。 In addition, when the metal salt contained in the coating composition is a hydrate salt, the moisture content is involved in the hydrolysis reaction, so the amount of water contained in the coating composition includes the moisture content of the metal salt. It is necessary to consider. For example, when the coexisting metal salt is a hydrated salt of an aluminum salt, it is necessary to consider the moisture content of the aluminum salt with respect to the amount of water used for hydrolysis because the moisture content is involved in the reaction.
 本発明のコーティング組成物は、タッチパネルに好適なコート膜を形成することができる。このコート膜は、無機物である金属酸化物を主な成分とするコート膜であり、アクリル材料などの有機材料の膜に比べて高い強度を有する。そして、後述するタッチパネルにおいて、電極の保護膜として適用される。コート膜は、適度な熱伸縮特性を備えているので、タッチパネルを構成する有機膜上に形成されてもクラックの発生が最小限に抑制される。また、透明電極パターンが視認されることによる表示装置の表示性の低下が低減されるよう、屈折率が最適な範囲に制御されている。 The coating composition of the present invention can form a coating film suitable for a touch panel. This coat film is a coat film containing an inorganic metal oxide as a main component, and has higher strength than a film made of an organic material such as an acrylic material. And in the touch panel mentioned later, it applies as a protective film of an electrode. Since the coat film has an appropriate thermal expansion / contraction characteristic, even if it is formed on the organic film constituting the touch panel, generation of cracks is suppressed to a minimum. In addition, the refractive index is controlled in an optimal range so that a decrease in display performance of the display device due to the visual recognition of the transparent electrode pattern is reduced.
 コート膜の屈折率の制御については、コーティング組成物の組成を制御することで実現することができる。すなわち、本発明におけるコート膜は、上記のコーティング組成物に含有される金属アルコキシドを加水分解・縮合させて製造されるものであり、金属アルコキシドの組成を選択することにより、形成するコート膜の屈折率を所定の範囲内で調整することが可能である。例えば、金属アルコキシドとして、シリコンアルコキシドとチタンアルコキシドを選択した場合、その混合比率を調整することにより、後述する所定の範囲内で、具体的には1.45~2.1程度の範囲内で、得られるコート膜の屈折率を調整することが可能である。 The control of the refractive index of the coating film can be realized by controlling the composition of the coating composition. That is, the coating film in the present invention is produced by hydrolyzing and condensing the metal alkoxide contained in the coating composition described above. By selecting the composition of the metal alkoxide, the coating film to be formed is refracted. It is possible to adjust the rate within a predetermined range. For example, when silicon alkoxide and titanium alkoxide are selected as the metal alkoxide, by adjusting the mixing ratio thereof, within a predetermined range described below, specifically within a range of about 1.45 to 2.1, It is possible to adjust the refractive index of the resulting coating film.
 すなわち、コーティング組成物を塗布して成膜し、好ましくは乾燥した後、焼成した後に形成されるコート膜において、要求される屈折率が決められている場合、その屈折率を実現するよう、金属アルコキシド、例えば、シリコンアルコキシドとチタンアルコキシドの組成モル比を決めることが可能である。例えば、シリコンアルコキシドのみを加水分解することによって得られるコーティング組成物からのコート膜の屈折率は、1.45程度の値である。そして、チタンアルコキシドのみを加水分解して得られるコーティング組成物からのコート膜の屈折率は、2.1程度の値である。したがって、コート膜の屈折率を1.45~2.1程度までの間で特定の値に設定したい場合、その屈折率値を実現するよう、シリコンアルコキシドとチタンアルコキシドを所定の割合で用いてコーティング組成物を製造することが可能である。 That is, when a required refractive index is determined in a coating film formed by applying a coating composition and forming a film, preferably after drying and baking, a metal is formed so as to realize the refractive index. It is possible to determine the composition molar ratio of alkoxide, for example, silicon alkoxide and titanium alkoxide. For example, the refractive index of a coating film from a coating composition obtained by hydrolyzing only silicon alkoxide is a value of about 1.45. And the refractive index of the coating film from the coating composition obtained by hydrolyzing only a titanium alkoxide is a value of about 2.1. Therefore, when it is desired to set the refractive index of the coating film to a specific value between about 1.45 and 2.1, coating is performed using silicon alkoxide and titanium alkoxide at a predetermined ratio so as to realize the refractive index value. It is possible to produce a composition.
 また、他の金属アルコキシドを用いることによっても、得られるコート膜の屈折率の調整は可能である。さらに、本発明におけるコート膜の屈折率については、組成条件以外に、成膜条件を選択することで調整することも可能である。こうすることで、コート膜の高い硬度を実現するとともに、所望の屈折率値を実現することが可能である。 Also, the refractive index of the resulting coating film can be adjusted by using other metal alkoxides. Furthermore, the refractive index of the coating film in the present invention can be adjusted by selecting film forming conditions in addition to the composition conditions. In this way, it is possible to realize a high hardness of the coating film and a desired refractive index value.
 本発明のコーティング組成物からコート膜を得る場合、上記のように、コーティング組成物の塗膜を、好ましくは乾燥し、次いで、焼成される。乾燥は、室温~150℃で行うことが好ましく、40~120℃で行うことがより好ましい。また、乾燥時間は30秒~10分程度が好ましく、1~8分程度がより好ましい。乾燥方法としては、ホットプレートや熱風循環式オーブンなどを用いることが好ましい。
 焼成は、タッチパネルの他の構成部材の耐熱性を考慮して、100℃~300℃ので行うのが好ましく、150℃~250℃で行うのがより好ましい。また、焼成時間は5分以上が好ましく、15分以上がより好ましい。焼成方法としては、ホットプレート、熱循環式オーブン、赤外線オーブンなどを用いるのが好ましい。
 コーティング組成物の塗膜を焼成してコート膜を製造する場合、焼成温度により得られるコート膜の屈折率は変動する。この場合、焼成温度を高くするほど、コート膜の屈折率を高くできる。したがって、焼成温度を適度な値に選択することで、得られるコート膜の屈折率の調整が可能である。
When obtaining a coated film from the coating composition of the present invention, the coating film of the coating composition is preferably dried and then baked as described above. Drying is preferably performed at room temperature to 150 ° C, more preferably at 40 to 120 ° C. The drying time is preferably about 30 seconds to 10 minutes, more preferably about 1 to 8 minutes. As a drying method, it is preferable to use a hot plate, a hot air circulating oven, or the like.
The firing is preferably performed at 100 ° C. to 300 ° C., more preferably 150 ° C. to 250 ° C. in consideration of the heat resistance of the other components of the touch panel. The firing time is preferably 5 minutes or more, and more preferably 15 minutes or more. As a baking method, it is preferable to use a hot plate, a thermal circulation oven, an infrared oven, or the like.
When a coating film is produced by baking a coating film of the coating composition, the refractive index of the coating film obtained varies depending on the baking temperature. In this case, the higher the baking temperature, the higher the refractive index of the coating film. Therefore, the refractive index of the resulting coating film can be adjusted by selecting an appropriate baking temperature.
 また、コーティング組成物からコート膜を得る場合、焼成前に塗膜に紫外線(UV)を照射すると、得られるコート膜の屈折率が変動する。具体的には、紫外線照射量を多くするほど、コート膜の屈折率を高くすることができる。したがって、所望の屈折率を実現するため紫外線照射の有無を選択することが可能である。特に、コーティング組成物に含有され金属アルコキシドが、チタンアルコキシド、ジルコニウムアルコキシドまたはタンタルアルコキシドを含む場合、焼成前の塗膜への紫外線(UV)照射により、得られるコート膜の屈折率が変動し、紫外線照射量を多くするほど、コート膜の屈折率を高くすることができる。尚、コート膜において、組成等の条件選択により所望の屈折率が実現できる場合は、紫外線照射は行わなくてもよい。 In addition, when a coating film is obtained from the coating composition, the refractive index of the resulting coating film varies when the coating film is irradiated with ultraviolet rays (UV) before firing. Specifically, the refractive index of the coat film can be increased as the amount of ultraviolet irradiation is increased. Therefore, it is possible to select the presence or absence of ultraviolet irradiation in order to achieve a desired refractive index. In particular, when the metal alkoxide contained in the coating composition contains titanium alkoxide, zirconium alkoxide, or tantalum alkoxide, the refractive index of the resulting coating film fluctuates due to ultraviolet (UV) irradiation to the coating before firing, and ultraviolet rays The higher the irradiation amount, the higher the refractive index of the coat film. In the coating film, when a desired refractive index can be realized by selecting conditions such as composition, ultraviolet irradiation is not necessary.
 紫外線照射を行う場合は、その照射量を選択することで、コート膜の屈折率を調整することが可能である。コート膜において、所望の屈折率を得るために紫外線照射が必要な場合は、例えば、高圧水銀ランプを使用することができる。高圧水銀ランプを使用した場合365nm換算で、全光照射1000mJ/cm以上の照射量が好ましく、3000mJ/cm~10000mJ/cmの照射量がより好ましい。紫外線の光源としては、高圧水銀ランプのほかに、低圧水銀ランプ、メタルハライドランプ、キセノンランプ、エキシマランプなどを用いることができる。高圧水銀ランプを使用した場合以外の光源を用いる場合は、上記高圧水銀ランプを使用した場合と同量の積算光量が照射されればよい。紫外線照射を行う場合、乾燥工程と焼成工程の間に紫外線照射工程を行うこともできる。 When ultraviolet irradiation is performed, the refractive index of the coating film can be adjusted by selecting the irradiation amount. When the coating film needs to be irradiated with ultraviolet rays in order to obtain a desired refractive index, for example, a high-pressure mercury lamp can be used. In 365nm terms when using a high-pressure mercury lamp, total light irradiation 1000 mJ / cm 2 or more dose are preferred and the dose of 3000mJ / cm 2 ~ 10000mJ / cm 2 is more preferable. As an ultraviolet light source, in addition to a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, an excimer lamp, or the like can be used. In the case of using a light source other than the case of using a high-pressure mercury lamp, it is only necessary to irradiate the same amount of integrated light as in the case of using the high-pressure mercury lamp. When performing ultraviolet irradiation, an ultraviolet irradiation process can also be performed between a drying process and a baking process.
 コーティング組成物に、特にチタンアルコキシド成分を含む場合、室温保存下で徐々に粘度が上昇するという性質を有する。これによる実用上大きな問題となる懸念は無いものの、コート膜の厚みを精密に制御する場合には、温度などに対する慎重な管理が好ましい。尚、こうした粘度の上昇は、コーティング組成物中のチタンアルコキシドの組成比率が多くなるにしたがって顕著となる。これは、チタンアルコキシドがシリコンアルコキシドなどに対して加水分解速度が大きく、縮合反応が速いためと考えられる。 When the coating composition contains a titanium alkoxide component in particular, the coating composition has the property of gradually increasing the viscosity under storage at room temperature. Although there is no concern that this will cause a serious problem in practice, careful control over temperature and the like is preferable when the thickness of the coating film is precisely controlled. Such an increase in viscosity becomes more significant as the composition ratio of titanium alkoxide in the coating composition increases. This is presumably because titanium alkoxide has a higher hydrolysis rate than silicon alkoxide and the like, and the condensation reaction is fast.
 コーティング組成物が、チタンアルコキシド成分を含む場合において、粘度変化を少なくするためには、次の2つの製法(1)と製法(2)が好ましい。
 (1)チタンアルコキシドを金属塩の存在下、加水分解する際に、予めグリコール類とチタンアルコキシドを充分混合した後、必要に応じて、シリコンアルコキシドと混合し、有機溶媒の存在下で加水分解する。こうすることにより、粘度変化の小さいコーティング組成物が得られる。この(1)の製法が有効なのは、チタンアルコキシドをグリコール類と混合した際に発熱があることから、チタンアルコキシドのアルコキシ基と、グリコール類との間でエステル交換反応が起こり、加水分解・縮合反応に対して安定化されるためと考えられる。
In the case where the coating composition contains a titanium alkoxide component, the following two production methods (1) and (2) are preferable in order to reduce the viscosity change.
(1) When hydrolyzing titanium alkoxide in the presence of a metal salt, after sufficiently mixing glycols and titanium alkoxide in advance, if necessary, it is mixed with silicon alkoxide and hydrolyzed in the presence of an organic solvent. . By doing so, a coating composition having a small viscosity change can be obtained. The production method of (1) is effective because when titanium alkoxide is mixed with glycols, heat is generated, so transesterification occurs between the alkoxy group of titanium alkoxide and glycols, resulting in hydrolysis / condensation reaction. This is thought to be because of stabilization.
 (2)予めシリコンアルコキシドを金属塩の存在下で加水分解反応させた後、グリコール類と混合したチタンアルコキシド溶液に混合して縮合反応を行い、コーティング組成物を得る。こうすることにより、粘度変化の小さいコーティング組成物が得られる。
 この(2)の製法が有効なのは、次の理由によると考えられる。すなわち、シリコンアルコキシドの加水分解反応は速い速度で行われるが、その後の縮合反応はチタンアルコキシドに比較して遅い。そのため、加水分解反応を終えた後、速やかにチタンアルコキシドを加えると、加水分解反応したシリコンアルコキシドのシラノール基と、チタンアルコキシドとが均一に反応する。これにより、チタンアルコキシドの縮合反応性を、加水分解されたシリコンアルコキシドが安定化させると考えられる。
(2) A silicon alkoxide is preliminarily hydrolyzed in the presence of a metal salt and then mixed with a titanium alkoxide solution mixed with glycols to perform a condensation reaction to obtain a coating composition. By doing so, a coating composition having a small viscosity change can be obtained.
The reason why the production method (2) is effective is considered to be as follows. That is, the hydrolysis reaction of silicon alkoxide is performed at a high rate, but the subsequent condensation reaction is slower than titanium alkoxide. Therefore, when titanium alkoxide is added quickly after finishing the hydrolysis reaction, the silanol group of the hydrolyzed silicon alkoxide and the titanium alkoxide react uniformly. Thereby, it is thought that the hydrolyzed silicon alkoxide stabilizes the condensation reactivity of titanium alkoxide.
 予め加水分解されたシリコンアルコキシドと、チタンアルコキシドとを混合する方法は、既に試みられている。しかし、反応に用いられる有機溶媒にグリコール類が含まれていない場合には、貯蔵安定性に優れたコーティング組成物が得られない。また、2)に示した方法は、大きな加水分解速度を有する他の金属アルコキシドとシリコンアルコキシドとからコーティング組成物を得る場合にも有用である。 A method for mixing silicon alkoxide hydrolyzed in advance and titanium alkoxide has already been attempted. However, when the organic solvent used for the reaction does not contain glycols, a coating composition having excellent storage stability cannot be obtained. The method shown in 2) is also useful when a coating composition is obtained from another metal alkoxide having a high hydrolysis rate and silicon alkoxide.
 本発明のコーティング組成物は、一般に行われている塗布法を適用して、塗膜を成膜し、その後、コート膜とされる。塗布法としては、例えば、ディップコート法、スピンコート法、スプレーコート法、刷毛塗り法、ロール転写法、スクリーン印刷法、インクジェット法またはフレキソ印刷法などが用いられる。この内、パターン印刷に好適なインクジェット法とフレキソ印刷法が特に好ましい。 The coating composition of the present invention is formed by applying a commonly applied coating method to form a coating film, and then a coating film. As the coating method, for example, a dip coating method, a spin coating method, a spray coating method, a brush coating method, a roll transfer method, a screen printing method, an ink jet method, or a flexographic printing method is used. Of these, the inkjet method and flexographic printing method suitable for pattern printing are particularly preferred.
<コート膜>
 本発明のコート膜は、上述した本発明のコーティング組成物を用いて形成される。そして、タッチパネルの電極保護膜として、後述する本発明のタッチパネルに適用される。
 本発明のコート膜は、無機物である金属酸化物を成分として含むコート膜であり、アクリル材料などの有機材料からなるコート膜に比べて硬度が高く、高い強度を有する。すなわち、機械的強度に優れ、指などによる多数回の押圧から透明電極を保護する。
<Coating film>
The coating film of the present invention is formed using the above-described coating composition of the present invention. And it applies to the touch panel of this invention mentioned later as an electrode protective film of a touch panel.
The coat film of the present invention is a coat film containing a metal oxide that is an inorganic substance as a component, and has higher hardness and higher strength than a coat film made of an organic material such as an acrylic material. That is, it excels in mechanical strength and protects the transparent electrode from multiple pressings with a finger or the like.
 タッチパネルが有機材料からなる膜を用いて構成される場合、例えば、タッチパネルの電極間に配置される層間絶縁膜がアクリルなどの有機材料から構成される場合には、本発明のコート膜が特に有効である。すなわち、有機材料からなる膜上に本発明のコート膜が形成されても、有機膜との熱伸縮性に違いによってクラックを生じないよう、成分組成の選択がなされている。 When the touch panel is formed using a film made of an organic material, for example, when the interlayer insulating film disposed between the electrodes of the touch panel is formed of an organic material such as acrylic, the coating film of the present invention is particularly effective. It is. That is, even if the coating film of the present invention is formed on a film made of an organic material, the component composition is selected so that cracks do not occur due to the difference in thermal stretchability with the organic film.
 また、本発明のコート膜は、後述するタッチパネルの電極の保護膜としても好適である。すなわち、このコート膜によれば、透明電極パターンが視認される現象(電極パターン見え現象)を抑制することができる。したがって、このコート膜を用いて形成されたタッチパネルによれば、表示装置の表示性の低下を低減することが可能である。 Further, the coating film of the present invention is also suitable as a protective film for a touch panel electrode to be described later. That is, according to this coat film, it is possible to suppress a phenomenon in which the transparent electrode pattern is visually recognized (electrode pattern appearance phenomenon). Therefore, according to the touch panel formed using this coat film, it is possible to reduce the deterioration in display properties of the display device.
 タッチパネルで透明電極パターンが視認される原因は、基板の操作領域にある透明電極パターンの屈折率と基板の屈折率とが異なることにある。タッチパネルの透明電極パターンは、通常、無機の金属酸化物であるITO(酸化インジウムスズ(Indium Tin Oxide)からなる。ITOの屈折率は、1.8~2.1程度である。一方、ガラス基板の屈折率は1.4~1.5前後であるので、ITOの屈折率と大きく異なる。かかる屈折率の違いは、透明電極パターンが形成された領域と、形成されていない領域との間に、光反射特性の違いを生じさせる。すなわち、干渉を伴う界面反射特性が、透明電極パターンの形成された領域と、形成されない領域とで異なることにより、画面表示において電極パターンを目立たせる結果となる。 The reason why the transparent electrode pattern is visually recognized on the touch panel is that the refractive index of the transparent electrode pattern in the operation region of the substrate is different from the refractive index of the substrate. The transparent electrode pattern of the touch panel is usually made of ITO (Indium Tin Oxide) which is an inorganic metal oxide.The refractive index of ITO is about 1.8 to 2.1. Since the refractive index of this is about 1.4 to 1.5, it is greatly different from the refractive index of ITO, which is different between the region where the transparent electrode pattern is formed and the region where it is not formed. In other words, the difference in the light reflection characteristic is caused between the area where the transparent electrode pattern is formed and the area where the transparent electrode pattern is not formed, thereby making the electrode pattern stand out in the screen display. .
 そこで、本発明者は、透明電極パターンを目立たなくするため鋭意検討を重ねた結果、基板上に配置された透明電極パターンの上に、屈折率と膜厚とが所望の範囲内となるように制御された層を設けることが有効であることを見出した。具体的には、透明電極パターンの保護層の屈折率と膜厚とを最適範囲に制御することで、タッチパネルにおける意図しない透明電極パターンの視認を抑えられることが分かった。 Therefore, as a result of intensive studies to make the transparent electrode pattern inconspicuous, the inventor has such that the refractive index and the film thickness are within a desired range on the transparent electrode pattern arranged on the substrate. It has been found that providing a controlled layer is effective. Specifically, it was found that by controlling the refractive index and the film thickness of the protective layer of the transparent electrode pattern within the optimum range, it is possible to suppress the unintended viewing of the transparent electrode pattern on the touch panel.
 本発明のコート膜では、特に、透明電極パターンが視認される現象を抑えようとする場合、屈折率が1.50~1.70の範囲内、好ましくは1.52~1.70の範囲内となるよう制御される。屈折率の制御法については、上述のように、コーティング組成物の成分組成を制御する他、成膜方法の制御によっても実現される。
 コート膜の形成方法としては、本発明のコーティング組成物に、フレキソ印刷など一般に行われている塗布法を適用して、タッチパネルの電極上に塗膜を成膜し、その後、コート膜とする方法が挙げられる。
The coating film of the present invention has a refractive index in the range of 1.50 to 1.70, preferably in the range of 1.52 to 1.70, particularly when the phenomenon of the transparent electrode pattern being visually recognized is to be suppressed. It is controlled to become. As described above, the refractive index control method can be realized by controlling the component composition of the coating composition and also by controlling the film forming method.
As a method for forming the coating film, a coating method is applied to the coating composition of the present invention by applying a commonly applied coating method such as flexographic printing to form a coating film on the electrode of the touch panel, and then forming the coating film. Is mentioned.
<タッチパネル>
 次に、本発明のコート膜を有するタッチパネルについて説明する。
 図1および図2は、本発明のタッチパネルの構成を説明する図である。図1は、タッチパネルの構造を模式的に示す平面図である。図2は、図1のA1-A1’線に沿う断面図である。
<Touch panel>
Next, a touch panel having the coating film of the present invention will be described.
1 and 2 are diagrams for explaining the configuration of the touch panel of the present invention. FIG. 1 is a plan view schematically showing the structure of the touch panel. FIG. 2 is a sectional view taken along line A1-A1 ′ of FIG.
 図1に示すように、タッチパネル1は、透明な基板2を用いて構成され、基板2の操作領域に透明電極のパターンが形成されている。具体的には、基板2の操作領域において、Y方向に伸びる第1の透明電極3と、X方向に伸びる第2の透明電極4とを有する。第1の透明電極3と第2の透明電極4は、基板2の同一面に設けられた同一層から形成される。 As shown in FIG. 1, the touch panel 1 is configured using a transparent substrate 2, and a transparent electrode pattern is formed in the operation area of the substrate 2. Specifically, in the operation region of the substrate 2, the first transparent electrode 3 extending in the Y direction and the second transparent electrode 4 extending in the X direction are included. The first transparent electrode 3 and the second transparent electrode 4 are formed from the same layer provided on the same surface of the substrate 2.
 基板2は、ガラス、アクリル樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニリデン樹脂、ポリメチルメタクリレート樹脂、ポリエチレンナフタレート樹脂、トリアセチルセルロース樹脂などの透明材料を用いて構成される。特に、コート膜5の形成に好適な耐熱性と耐薬品性能を備えた材料を選択することが好ましい。基板2の厚みは、ガラスを用いた場合には、例えば0.1mm~2mm程度であり、樹脂フィルムを用いた場合には、例えば10μm~2000μm程度である。 The substrate 2 is made of a transparent material such as glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, polyethylene naphthalate resin, or triacetyl cellulose resin. In particular, it is preferable to select a material having heat resistance and chemical resistance suitable for forming the coat film 5. The thickness of the substrate 2 is, for example, about 0.1 mm to 2 mm when glass is used, and is about 10 μm to 2000 μm, for example, when a resin film is used.
 図1において、第1の透明電極3と第2の透明電極4は、それぞれ複数のパッド部21を構成要素としている。各パッド部21は、それぞれが平面的に隔離され、且つ、各パッド部21間の隙間が少なくなるように配置される。すなわち、X軸方向に列をなすパッド部21と、Y軸方向に列をなすパッド部21とは、これらが互いに交差する領域が可能な限り小さくなるようにして、操作領域の全体に配置される。パッド部21は、例えば、菱形、矩形および六角形などの多角形形状とすることができ、これらは、例えば、互い違いまたは直列状に配置される。また、分離(離間)した電極の本数も図1の例に限られるものではなく、操作領域の大きさと要求される検出位置の精度に応じて決定される。 In FIG. 1, each of the first transparent electrode 3 and the second transparent electrode 4 includes a plurality of pad portions 21 as components. The pad portions 21 are arranged so as to be separated from each other in a planar manner, and the gap between the pad portions 21 is reduced. That is, the pad portions 21 forming a row in the X-axis direction and the pad portions 21 forming a row in the Y-axis direction are arranged in the entire operation region so that the region where they intersect each other is as small as possible. The The pad part 21 can be made into polygonal shapes, such as a rhombus, a rectangle, and a hexagon, for example, These are arrange | positioned alternately or in series, for example. Further, the number of separated (separated) electrodes is not limited to the example in FIG. 1, and is determined according to the size of the operation area and the required detection position accuracy.
 複数のパッド部21を連ねて構成される第1の透明電極3と第2の透明電極4は、タッチパネル1の操作領域に相当する位置に形成されている。第1の透明電極3は、X方向に沿った複数の領域に分離して設けられており、X方向の座標を検出する。第2の透明電極4は、Y方向に沿った複数の領域に分離して設けられており、Y方向の座標を検出する。このような構造とすることで、タッチ位置検出の精度を高めることができる。 The first transparent electrode 3 and the second transparent electrode 4 configured by connecting a plurality of pad portions 21 are formed at positions corresponding to the operation area of the touch panel 1. The first transparent electrode 3 is provided separately in a plurality of regions along the X direction, and detects coordinates in the X direction. The second transparent electrode 4 is provided separately in a plurality of regions along the Y direction, and detects coordinates in the Y direction. With such a structure, the accuracy of touch position detection can be increased.
 第1の透明電極3および第2の透明電極4には、少なくとも可視光に対する透過率が高く、導電性を有する透明電極材料を用いて形成される。このような導電性を有する透明電極材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)またはZnO(酸化亜鉛)などが挙げられる。ITOを用いる場合には、十分な導電性を確保できるよう、厚さを10nm~200nmとすることが好ましい。 The first transparent electrode 3 and the second transparent electrode 4 are formed using a transparent electrode material having at least a high transmittance for visible light and having conductivity. Examples of such a transparent electrode material having conductivity include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and ZnO (zinc oxide). When ITO is used, the thickness is preferably 10 nm to 200 nm so as to ensure sufficient conductivity.
 第1の透明電極3と第2の透明電極4は、例えば、次のようにして形成される。
 まず、スパッタリング法、真空蒸着法、イオンプレーティング法、スプレー法、ディップ法またはCVD法などの中から、下地となる基板2の材質を考慮して選択した方法によって透明導電膜を成膜する。次に、上記透明導電膜を、フォトリソグラフィ技術を用いてパターニングする。または、有機溶剤に上記材料からなる導電性フィラーなどを分散させた塗料を用い、印刷法によって所望のパターンを形成してもよい。
For example, the first transparent electrode 3 and the second transparent electrode 4 are formed as follows.
First, a transparent conductive film is formed by a method selected from sputtering, vacuum deposition, ion plating, spraying, dipping, CVD, or the like in consideration of the material of the substrate 2 as a base. Next, the transparent conductive film is patterned using a photolithography technique. Alternatively, a desired pattern may be formed by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent.
 透明電極の形成工程では、膜厚を精度よく制御できることが好ましい。したがって、形成にあたっては、所望の膜厚を実現し、透明性に優れた低抵抗の膜を形成できる方法を選択することが好ましい。 In the transparent electrode forming step, it is preferable that the film thickness can be accurately controlled. Therefore, it is preferable to select a method capable of forming a desired film thickness and forming a low-resistance film excellent in transparency.
 図1および図2に示すように、第1の透明電極3と第2の透明電極4とは、基板2の同一面上に形成されており、同一層をなしている。このため、第1の透明電極3と第2の透明電極4とは、複数の箇所で交差しており、交差部18を形成している。 As shown in FIG. 1 and FIG. 2, the first transparent electrode 3 and the second transparent electrode 4 are formed on the same surface of the substrate 2 and form the same layer. For this reason, the 1st transparent electrode 3 and the 2nd transparent electrode 4 cross | intersect in several places, and form the cross | intersection part 18. FIG.
 本発明では、交差部18において、第1の透明電極3と第2の透明電極4の一方が他方と接触しないよう分断されている。すなわち、図2に示すように、複数の交差部18のいずれにおいても、第2の透明電極4は繋がっているが、第1の透明電極3は分断されている。そして、第1の透明電極3の分断箇所を接続させるために、架橋電極20が設けられている。架橋電極20と第2の透明電極4の間には、絶縁性物質からなる層間絶縁膜19が設けられている。以下、図1および図2を参照して、さらに詳述する。 In the present invention, at the intersection 18, one of the first transparent electrode 3 and the second transparent electrode 4 is divided so as not to contact the other. That is, as shown in FIG. 2, the second transparent electrode 4 is connected at any of the plurality of intersecting portions 18, but the first transparent electrode 3 is divided. And in order to connect the parting part of the 1st transparent electrode 3, the bridge | crosslinking electrode 20 is provided. An interlayer insulating film 19 made of an insulating material is provided between the bridging electrode 20 and the second transparent electrode 4. Hereinafter, further details will be described with reference to FIGS. 1 and 2.
 図2に示すように、交差部18における第2の透明電極4の上には、光透過性の層間絶縁膜19が形成されている。層間絶縁膜19の形成には、感光性アクリル樹脂などの有機材料を用いる。感光性アクリル樹脂を用いる場合は、フォトリソグラフィ法を利用して、交差部18における第2の透明電極4の上にのみアクリル膜が形成された構造とする。尚、SiOなどの無機材料を用いることもできる。SiOを用いる場合、例えば、マスクを用いたスパッタリング法によって、同様の構造を形成することができる。パターニング性を考慮する場合、層間絶縁膜19にはアクリル膜を使用することが好ましい。 As shown in FIG. 2, a light transmissive interlayer insulating film 19 is formed on the second transparent electrode 4 at the intersection 18. An organic material such as a photosensitive acrylic resin is used to form the interlayer insulating film 19. When using a photosensitive acrylic resin, it is set as the structure where the acrylic film was formed only on the 2nd transparent electrode 4 in the cross | intersection part 18 using the photolithographic method. An inorganic material such as SiO 2 can also be used. When SiO 2 is used, a similar structure can be formed by, for example, a sputtering method using a mask. In consideration of patterning properties, it is preferable to use an acrylic film for the interlayer insulating film 19.
 層間絶縁膜19の上層には、架橋電極20が設けられている。架橋電極20は、交差部18で分断されている第1の透明電極3同士を電気的に接続するものであり、光透過性の材料によって形成されることが好ましい。架橋電極20を設けることで、第1の透明電極3をY方向に電気的に接続することができる。 In the upper layer of the interlayer insulating film 19, a bridging electrode 20 is provided. The bridging electrode 20 is for electrically connecting the first transparent electrodes 3 separated by the intersecting portion 18, and is preferably formed of a light transmissive material. By providing the bridging electrode 20, the first transparent electrode 3 can be electrically connected in the Y direction.
 図1に示すように、第1の透明電極3と第2の透明電極4は、菱形のパッド部21を縦または横に複数並べた形状をしている。第2の透明電極4において、交差部18に位置する接続部分は、第2の透明電極4の菱形のパッド部21より幅の狭い形状になっている。また、架橋電極20も、菱形のパッド部21より幅の狭い形状で短冊状に形成されている。 As shown in FIG. 1, the first transparent electrode 3 and the second transparent electrode 4 have a shape in which a plurality of rhombus pad portions 21 are arranged vertically or horizontally. In the second transparent electrode 4, the connection portion located at the intersecting portion 18 has a shape narrower than the rhomboid pad portion 21 of the second transparent electrode 4. The bridging electrode 20 is also formed in a strip shape having a narrower width than the diamond-shaped pad portion 21.
 図1および図2に示すように、本発明のタッチパネル1においては、第1の透明電極3と第2の透明電極4の上に、保護膜として、上述した本発明のコート膜5が形成されている。そして、タッチパネル1の操作領域に相当する部分における透明電極の形成領域と非形成領域とを被覆している。コート膜5は、高硬度であり、無機材料からなる第1の透明電極3および第2の透明電極4との密着性に優れる。 As shown in FIGS. 1 and 2, in the touch panel 1 of the present invention, the above-described coat film 5 of the present invention is formed as a protective film on the first transparent electrode 3 and the second transparent electrode 4. ing. And the formation area and non-formation area | region of the transparent electrode in the part corresponded to the operation area | region of the touch panel 1 are coat | covered. The coat film 5 has high hardness and excellent adhesion to the first transparent electrode 3 and the second transparent electrode 4 made of an inorganic material.
 本発明のコート膜5の形成には、上述した本発明のコーティング組成物が用いられる。具体的には、上述した式(I)と式(II)に示した金属アルコキシドをアルミニウム塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるコーティング組成物が用いられる。 For the formation of the coating film 5 of the present invention, the above-described coating composition of the present invention is used. Specifically, the coating composition obtained by hydrolyzing and condensing the metal alkoxides represented by the above formulas (I) and (II) in an organic solvent in the presence of an aluminum salt, and further adding a precipitation inhibitor. Things are used.
 タッチパネル1においては、第1の透明電極3と第2の透明電極4の各透明電極パターンが見立たないよう、コート膜5の屈折率と膜厚とを選択することができる。具体的には、コート膜5の屈折率は、1.50より大きくて1.70以下の範囲内であることが好ましく、膜厚は、40nm~170nmの範囲内であることが好ましい。コート膜5の屈折率が、1.50より大きくて1.60より小さい場合、膜厚は、60nm~150nmの範囲内であることがより好ましい。また、コート膜5の屈折率が、1.60以上で1.70以下の範囲内である場合、膜厚は、40nm~170nmの範囲内であることがより好ましい。 In the touch panel 1, the refractive index and the film thickness of the coating film 5 can be selected so that the transparent electrode patterns of the first transparent electrode 3 and the second transparent electrode 4 are not visible. Specifically, the refractive index of the coat film 5 is preferably in the range of 1.50 or more and 1.70 or less, and the film thickness is preferably in the range of 40 nm to 170 nm. When the refractive index of the coat film 5 is larger than 1.50 and smaller than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive index of the coat film 5 is in the range of 1.60 or more and 1.70 or less, the film thickness is more preferably in the range of 40 nm to 170 nm.
 タッチパネル1においては、例えば、コート膜5は、シリコンアルコキシドとチタンアルコキシドとを含むコーティング組成物から形成されたものであり、屈折率は1.52、膜厚は100nmである。 In the touch panel 1, for example, the coat film 5 is formed from a coating composition containing silicon alkoxide and titanium alkoxide, and has a refractive index of 1.52 and a film thickness of 100 nm.
 図2に示すように、タッチパネル1は、第1の透明電極3などが形成された面と、ディスプレイパネル10の視認側の最上位層とを、アクリル系光硬化性樹脂などを用いた接着層9を介して重ね合わせることで、1つの表示装置とすることができる。ここで、接着層9は、コート膜5の上に設けられる。 As shown in FIG. 2, the touch panel 1 has an adhesive layer using an acrylic photocurable resin or the like on the surface on which the first transparent electrode 3 and the like are formed and the uppermost layer on the viewing side of the display panel 10. By superimposing via 9, it can be set as one display apparatus. Here, the adhesive layer 9 is provided on the coat film 5.
 上記の表示装置は、タッチパネル1と、ディスプレイパネル10とを有し、必要に応じて、バックライトを有することができる。図2では、詳細を省略しているが、ディスプレイパネル10は、公知の表示装置と同様の構成とすることができる。例えば、液晶表示装置の場合、ディスプレイパネル10は、2枚の透明基板の間に液晶層が挟持された構造とすることができる。各透明基板の液晶層に接する側とは反対の側には、それぞれ偏光板を設けることができる。また、各透明基板には、液晶の状態を制御するためにセグメント電極やコモン電極を形成することができる。そして、液晶層は、各透明基板とシール材とによって封止される。 The display device described above includes the touch panel 1 and the display panel 10, and can include a backlight as necessary. Although details are omitted in FIG. 2, the display panel 10 can have the same configuration as a known display device. For example, in the case of a liquid crystal display device, the display panel 10 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer. In addition, a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal. The liquid crystal layer is sealed with each transparent substrate and a sealing material.
 図1に示すように、タッチパネル1において、第1の透明電極3と第2の透明電極4の端部には、それぞれ端子(図示されない)が設けられており、その端子から複数の引き出し配線11が引き出される。引き出し配線11は、銀、アルミニウム、クロム、銅またはモリブデンの他、Mo-Nb(モリブデン-ニオブ)合金などのこれら金属を含む合金などを使用した不透明な金属配線とすることができる。引き出し配線11は、第1の透明電極3と第2の透明電極4への電圧印加や、タッチ位置を検出する制御回路(図示されない)に接続される。 As shown in FIG. 1, in the touch panel 1, terminals (not shown) are provided at end portions of the first transparent electrode 3 and the second transparent electrode 4, and a plurality of lead wires 11 are provided from the terminals. Is pulled out. The lead wiring 11 can be an opaque metal wiring using an alloy containing these metals such as Mo—Nb (molybdenum-niobium) alloy in addition to silver, aluminum, chromium, copper, or molybdenum. The lead-out wiring 11 is connected to a control circuit (not shown) that detects voltage application and a touch position to the first transparent electrode 3 and the second transparent electrode 4.
 以上の構成を有するタッチパネル1では、複数の第1の透明電極3および第2の透明電極4に順次電圧を印加して電荷を与える。操作領域のいずれかの箇所に導電体である指が触れると、指先と、第1の透明電極3および第2の透明電極4との間の静電容量結合によってコンデンサが形成される。したがって、指先の接触位置における電荷の変化を捉えることで、いずれの箇所に指が触れたのかを検出することができる。 In the touch panel 1 having the above configuration, a voltage is sequentially applied to the plurality of first transparent electrodes 3 and the second transparent electrodes 4 to give an electric charge. When a finger as a conductor touches any part of the operation region, a capacitor is formed by capacitive coupling between the fingertip and the first transparent electrode 3 and the second transparent electrode 4. Therefore, it is possible to detect which part of the finger touched by capturing the change in the charge at the contact position of the fingertip.
 また、タッチパネル1は、制御回路(図示されない)の制御により、第1の透明電極3と第2の透明電極4のいずれか一方に選択的に電圧を印加することもできる。この場合、電圧が印加された透明電極上には電界が形成され、この状態で指などが触れると、接触位置は人の体の静電容量を介して接地されることになる。その結果、対象となる第1の透明電極3または第2の透明電極4の端子(図示されない)と、接触位置との間に、抵抗値の変化が生じる。この抵抗値は、接触位置と、対象となる第1の透明電極3または第2の透明電極4の端子との距離に比例するため、接触位置と、対象となる第1の透明電極3または第2の透明電極4の端子との間に流れる電流値を制御回路が検出することで、接触位置の座標を求めることができる。 The touch panel 1 can also selectively apply a voltage to either the first transparent electrode 3 or the second transparent electrode 4 under the control of a control circuit (not shown). In this case, an electric field is formed on the transparent electrode to which a voltage is applied, and when a finger or the like touches in this state, the contact position is grounded via the capacitance of the human body. As a result, a change in resistance value occurs between the terminal (not shown) of the first transparent electrode 3 or the second transparent electrode 4 as a target and the contact position. Since this resistance value is proportional to the distance between the contact position and the terminal of the first transparent electrode 3 or the second transparent electrode 4 as a target, the contact position and the first transparent electrode 3 or the first transparent electrode 3 as a target. The coordinates of the contact position can be obtained by the control circuit detecting the current value flowing between the two transparent electrodes 4.
 本発明のタッチパネル1では、第1および第2の透明電極3、4上に設けられたコート膜5の効果により、操作領域において透明電極パターンが目立つことが抑制されている。 In the touch panel 1 of the present invention, the conspicuous transparent electrode pattern is suppressed in the operation region due to the effect of the coating film 5 provided on the first and second transparent electrodes 3 and 4.
 次に、本発明のタッチパネル1の製造方法について説明する。
 図3(a)~(d)は、本発明の第1の例であるタッチパネルの製造方法を示す工程断面図である。
Next, the manufacturing method of the touch panel 1 of this invention is demonstrated.
3A to 3D are process cross-sectional views illustrating a method for manufacturing a touch panel according to a first example of the present invention.
 まず、ガラス基板などの透明な基板2を準備する。基板2は、必要に応じて所望の形状にカットし、洗浄する。次いで、基板2の一面に透明導電膜を形成する。なお、基板2と透明導電膜の間にSiOx、SiNx、SiONなどの中間層が形成される場合もある。透明導電膜は、例えばITOであり、スパッタ法や真空蒸着法などを用いて10~200nmの厚さで成膜する。次いで、透明導電膜の上層側に感光性樹脂などからなるエッチングマスクを形成した状態で、透明導電膜をエッチングし、第1の透明電極3および第2の透明電極4をパターニング形成する。エッチングマスクを除することにより、図3(a)に示すような、透明電極パターンの形成された透明導電膜基板14が得られる。 First, a transparent substrate 2 such as a glass substrate is prepared. The substrate 2 is cut into a desired shape and washed as necessary. Next, a transparent conductive film is formed on one surface of the substrate 2. An intermediate layer such as SiOx, SiNx, or SiON may be formed between the substrate 2 and the transparent conductive film. The transparent conductive film is, for example, ITO, and is formed to a thickness of 10 to 200 nm using a sputtering method, a vacuum deposition method, or the like. Next, the transparent conductive film is etched in a state where an etching mask made of a photosensitive resin or the like is formed on the upper layer side of the transparent conductive film, and the first transparent electrode 3 and the second transparent electrode 4 are formed by patterning. By removing the etching mask, a transparent conductive film substrate 14 having a transparent electrode pattern as shown in FIG. 3A is obtained.
 ここで、透明導電膜基板14の交差部18において、第2の透明電極4は接続部分を介して繋がっているが、第1の透明電極3は分断されている。 Here, at the intersecting portion 18 of the transparent conductive film substrate 14, the second transparent electrode 4 is connected through the connection portion, but the first transparent electrode 3 is divided.
 次に、第1の透明電極3および第2の透明電極4が設けられている側に、感光性の樹脂を塗布した後に露光現像することによって、第2の透明電極4の接続部分に層間絶縁膜19を形成する(図3(b))。層間絶縁膜19を形成するための感光性樹脂としては、透明性を有するものが用いられる。例えば、アクリル樹脂などが使用可能である。尚、SiOを用いて層間絶縁膜19を形成する場合には、マスクを用いたスパッタリング法によって、同様の構造とすることができる。但し、パターニング性を考慮した場合、アクリル樹脂の使用が好ましい。 Next, a photosensitive resin is applied to the side on which the first transparent electrode 3 and the second transparent electrode 4 are provided, and then exposed and developed, whereby an interlayer insulation is formed at the connection portion of the second transparent electrode 4. A film 19 is formed (FIG. 3B). As the photosensitive resin for forming the interlayer insulating film 19, a transparent resin is used. For example, an acrylic resin can be used. When the interlayer insulating film 19 is formed using SiO 2 , the same structure can be obtained by sputtering using a mask. However, when patterning property is taken into consideration, it is preferable to use an acrylic resin.
 次に、層間絶縁膜19の上に透明導電膜を形成した後、この透明導電膜の表面に感光性樹脂からなるエッチングマスクを形成した状態で、透明導電膜をエッチングする。その後、エッチングマスクを除去し、第1の透明電極3の分断部分を繋ぐよう、層間絶縁膜19の上層に架橋電極20を形成する。これにより、図3(c)に示す構造が得られる。層間絶縁膜19の上に形成される透明導電膜としては、例えば、ITO膜が挙げられる。その場合、架橋電極20はITOにより形成される。 Next, after forming a transparent conductive film on the interlayer insulating film 19, the transparent conductive film is etched with an etching mask made of a photosensitive resin formed on the surface of the transparent conductive film. Thereafter, the etching mask is removed, and a bridging electrode 20 is formed on the interlayer insulating film 19 so as to connect the divided portions of the first transparent electrode 3. Thereby, the structure shown in FIG. 3C is obtained. An example of the transparent conductive film formed on the interlayer insulating film 19 is an ITO film. In that case, the bridging electrode 20 is formed of ITO.
 尚、前述した引き出し配線11については、後の工程で銀インクなどを使用して形成される。しかし、上記工程で透明導電膜をエッチングする際に、第1の透明電極3および第2の透明電極4の外周縁の各々に沿うように透明導電膜を残し、引き出し配線11を形成することも可能である。 Note that the above-described lead-out wiring 11 is formed using silver ink or the like in a later process. However, when the transparent conductive film is etched in the above step, the transparent conductive film is left along the outer peripheral edges of the first transparent electrode 3 and the second transparent electrode 4 to form the lead-out wiring 11. Is possible.
 次に、第1の透明電極3、第2の透明電極4および架橋電極20の上に、金属酸化物層形成用のコーティング組成物をフレキソ印刷により塗布する。ここで、コーティング組成物は、金属アルコキシドを金属塩(例えば、アルミニウム塩)の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られるものである。次いで、コーティング組成物の塗膜が形成された基板2を40~150℃(例えば、60℃)の、例えばホットプレート上で乾燥する。その後、100~300℃(例えば、250℃)の、例えばオーブン内で加熱して、第1の透明電極3、第2の透明電極4および架橋電極20の上に金属酸化物層5を形成する。これにより、図3(d)に示すタッチパネル基板30が得られる。尚、基板2上の塗膜を、例えばホットプレート上で乾燥した後、この塗膜に紫外線を照射してから、オーブン内で加熱してもよい。 Next, a coating composition for forming a metal oxide layer is applied on the first transparent electrode 3, the second transparent electrode 4, and the bridging electrode 20 by flexographic printing. Here, the coating composition is obtained by hydrolyzing and condensing a metal alkoxide in an organic solvent in the presence of a metal salt (for example, an aluminum salt) and further adding a precipitation inhibitor. Next, the substrate 2 on which the coating film of the coating composition has been formed is dried on, for example, a hot plate at 40 to 150 ° C. (eg, 60 ° C.). Thereafter, the metal oxide layer 5 is formed on the first transparent electrode 3, the second transparent electrode 4, and the bridging electrode 20 by heating in, for example, an oven at 100 to 300 ° C. (for example, 250 ° C.). . Thereby, the touch panel board | substrate 30 shown in FIG.3 (d) is obtained. In addition, after drying the coating film on the board | substrate 2, for example on a hotplate, after irradiating this coating film with an ultraviolet-ray, you may heat in oven.
 こうして得られた本発明のコート膜5は、無機の金属酸化物を主な成分として硬度が高く、高い強度を有する。加えて、有機膜である層間絶縁膜19上であっても内部にクラックを発生させることは無い。 The coating film 5 of the present invention thus obtained has high hardness and high strength with inorganic metal oxide as the main component. In addition, no cracks are generated even on the interlayer insulating film 19 which is an organic film.
 次いで、第1の透明電極3と第2の透明電極4の端部の端子(図示されない)から銀インクなどで引き出し配線11を形成してタッチパネル1とする。タッチパネル1は、引き出し配線11を介して、タッチパネルの制御回路(図示されない)に接続される。 Next, a lead-out wiring 11 is formed with silver ink or the like from terminals (not shown) at the ends of the first transparent electrode 3 and the second transparent electrode 4 to form the touch panel 1. The touch panel 1 is connected to a control circuit (not shown) of the touch panel via the lead wiring 11.
 完成したタッチパネル1は、アクリル系透明接着剤などの接着層9を介して、ディスプレイパネル10の前面に取り付けられる。このとき、必要に応じて、基板2やディスプレイパネル10の角にアライメントマークを設けて位置合わせを行う。 The completed touch panel 1 is attached to the front surface of the display panel 10 through an adhesive layer 9 such as an acrylic transparent adhesive. At this time, alignment is performed by providing alignment marks at the corners of the substrate 2 and the display panel 10 as necessary.
 ディスプレイパネル10に取り付けられたタッチパネル1では、コート膜5が設けられていることにより、高信頼性が実現される。そして、第1の透明電極3および第2の透明電極4の透明電極パターンが、タッチパネル1の操作領域で目立つことを抑制することができる。 In the touch panel 1 attached to the display panel 10, the coating film 5 is provided, so that high reliability is realized. And it can suppress that the transparent electrode pattern of the 1st transparent electrode 3 and the 2nd transparent electrode 4 is conspicuous in the operation area | region of the touch panel 1. FIG.
 図4は、本発明のタッチパネルの別の例の概略構成を示す断面図である。図4に示すように、タッチパネル101は、透明な基板102を有する。基板102の操作領域に透明電極のパターンが形成されている。すなわち、基板102の上層には2つの異なる方向の位置をそれぞれ検出するための第1の透明電極103と第2の透明電極104とが設けられている。 FIG. 4 is a cross-sectional view showing a schematic configuration of another example of the touch panel of the present invention. As illustrated in FIG. 4, the touch panel 101 includes a transparent substrate 102. A transparent electrode pattern is formed in the operation region of the substrate 102. That is, the first transparent electrode 103 and the second transparent electrode 104 for detecting positions in two different directions are provided on the upper layer of the substrate 102.
 第1の透明電極103および第2の透明電極104は、少なくとも可視光に対する透過率が高く、導電性を有する透明電極材料を用いて形成される。このような導電性を有する透明電極材料としては、例えば、ITOまたはZnOなどを用いることができる。ITOを用いる場合には、十分な導電性を確保できるよう、厚さを10~200nmとすることが好ましい。 The first transparent electrode 103 and the second transparent electrode 104 are formed using a transparent electrode material that has high transmittance for at least visible light and has conductivity. As such a transparent electrode material having conductivity, for example, ITO or ZnO can be used. When ITO is used, the thickness is preferably 10 to 200 nm so as to ensure sufficient conductivity.
 第1の透明電極103と第2の透明電極104は、スパッタリング法、真空蒸着法、イオンプレーティング法、スプレー法、ディップ法またはCVD法などから、下地となる透明な基板102や後述するオーバーコート層107を考慮して最適な方法を選択して形成される。 The first transparent electrode 103 and the second transparent electrode 104 are formed by a transparent substrate 102 as an underlayer or an overcoat to be described later by sputtering, vacuum deposition, ion plating, spraying, dipping or CVD. An optimum method is selected in consideration of the layer 107.
 例えば、面状に形成した透明電極を、フォトリソグラフィ技術を利用してエッチング法でパターニングする方法、あるいは、有機溶剤に上記材料からなる導電性フィラーなどを分散した塗料を用い、印刷法により直接、所望のパターンに形成する方法などがある。透明電極の形成工程では、膜厚を精度良く制御できることが好ましい。したがって、形成にあたっては、所望の膜厚を実現し、透明性に優れた低抵抗の膜を形成できる方法を選択することが好ましい。 For example, a transparent electrode formed in a planar shape is patterned by an etching method using photolithography technology, or a coating material in which a conductive filler made of the above material is dispersed in an organic solvent, and directly by a printing method. There is a method of forming a desired pattern. In the transparent electrode forming step, it is preferable that the film thickness can be accurately controlled. Therefore, it is preferable to select a method capable of forming a desired film thickness and forming a low-resistance film excellent in transparency.
 図4に示すように、第1の透明電極103は基板102の上に配置される。そして、第1の透明電極103の上には、本発明のコート膜105が形成されている。コート膜105の形成には、上述した本発明のコーティング組成物が用いられる。そして、コート膜105は、タッチパネル101の操作領域に相当する部分の第1の透明電極103の形成領域と非形成の領域を被覆している。 As shown in FIG. 4, the first transparent electrode 103 is disposed on the substrate 102. A coating film 105 of the present invention is formed on the first transparent electrode 103. For the formation of the coating film 105, the above-described coating composition of the present invention is used. The coat film 105 covers the formation region and the non-formation region of the first transparent electrode 103 corresponding to the operation region of the touch panel 101.
 コート膜105の上には、オーバーコート層107が設けられている。オーバーコート層107は、透明性の高いアクリル樹脂から形成された、有機材料からなる膜である。 An overcoat layer 107 is provided on the coat film 105. The overcoat layer 107 is a film made of an organic material formed from a highly transparent acrylic resin.
 図4に示すように、第2の透明電極104はオーバーコート層107の上に配置される。第2の透明電極104の上には本発明のコート膜106が形成されている。コート膜106の形成には、上述した本発明のコーティング組成物が用いられる。そして、コート膜106は、タッチパネル101の操作領域に相当する部分の透明電極の形成領域と非形成の領域を被覆している。コート膜105、106は、硬度が高く、第1の透明電極103および第2の透明電極104との密着性に優れる。そして、本発明のコート膜106は、無機の金属酸化物を主な成分とするが、オーバーコート層107上でクラックを発生させることは無い。すなわち、コート膜106は、第2の透明電極104とともに有機材料からなる膜であるオーバーコート層107を被覆するよう形成されても、内部にクラックを発生させることが無い。 As shown in FIG. 4, the second transparent electrode 104 is disposed on the overcoat layer 107. On the second transparent electrode 104, the coating film 106 of the present invention is formed. For the formation of the coating film 106, the above-described coating composition of the present invention is used. The coat film 106 covers the transparent electrode forming region and the non-forming region corresponding to the operation region of the touch panel 101. The coat films 105 and 106 have high hardness and excellent adhesion to the first transparent electrode 103 and the second transparent electrode 104. The coat film 106 of the present invention contains an inorganic metal oxide as a main component, but does not cause cracks on the overcoat layer 107. That is, even if the coat film 106 is formed so as to cover the overcoat layer 107 which is a film made of an organic material together with the second transparent electrode 104, no crack is generated inside.
 タッチパネル101においては、第1の透明電極103と第2の透明電極104の各透明電極パターンが見立たないように、コート膜105、106の屈折率と膜厚とを選択することができる。具体的には、コート膜105、106の屈折率は1.50より大きく1.70以下の範囲内であることが好ましく、膜厚は40nm~170nmの範囲内であることが好ましい。そして、コート膜105、106の屈折率が1.50より大きく1.60より小さい場合、膜厚は60nm~150nmの範囲内であることがより好ましい。また、コート膜105、106の屈折率が1.60以上で1.70以下の範囲内である場合、膜厚は40nm~170nmの範囲内であることがより好ましい。 In the touch panel 101, the refractive index and film thickness of the coating films 105 and 106 can be selected so that the transparent electrode patterns of the first transparent electrode 103 and the second transparent electrode 104 are not visible. Specifically, the refractive indexes of the coat films 105 and 106 are preferably in the range of 1.50 to 1.70 and the film thickness is preferably in the range of 40 nm to 170 nm. When the refractive indexes of the coat films 105 and 106 are larger than 1.50 and smaller than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive indexes of the coating films 105 and 106 are in the range of 1.60 or more and 1.70 or less, the film thickness is more preferably in the range of 40 nm to 170 nm.
 タッチパネル101においては、例えば、第1の透明電極103および第2の透明電極104は、それぞれ膜厚28nmのITOからなる。この場合、コート膜105、106は、それぞれ、シリコンアルコキシドとチタンアルコキシドとを含む本発明のコーティング組成物から形成されたものであり、屈折率は1.52、膜厚は100nmである。 In the touch panel 101, for example, the first transparent electrode 103 and the second transparent electrode 104 are each made of ITO having a film thickness of 28 nm. In this case, the coating films 105 and 106 are each formed from the coating composition of the present invention containing silicon alkoxide and titanium alkoxide, and have a refractive index of 1.52 and a film thickness of 100 nm.
 図4に示すように、コート膜106の上には、アクリル系の透明接着剤からなる接着層108が設けられている。タッチパネル101は、この接着層108を介して、ディスプレイパネル110が取り付けられている。 As shown in FIG. 4, an adhesive layer 108 made of an acrylic transparent adhesive is provided on the coat film 106. The display panel 110 is attached to the touch panel 101 via the adhesive layer 108.
 以上の構成を有するタッチパネル101では、操作領域のいずれかの箇所に導電体である指が触れると、指先と、第1の透明電極103および第2の透明電極104との間の静電容量結合によってコンデンサが形成される。したがって、指先の接触位置における電荷の変化を捉えることで、いずれの箇所に指が触れたかを検出することができる。 In the touch panel 101 having the above configuration, when a finger that is a conductor touches any part of the operation region, capacitive coupling between the fingertip and the first transparent electrode 103 and the second transparent electrode 104 is performed. To form a capacitor. Therefore, it is possible to detect which part of the finger touched by capturing the change in charge at the contact position of the fingertip.
 タッチパネル101では、第1の透明電極103と第2の透明電極104の上に設けられたコート膜105、106の効果により、高信頼性が実現される。そして、操作領域において透明電極パターンが目立つことを抑制することも可能である。 In the touch panel 101, high reliability is realized by the effect of the coating films 105 and 106 provided on the first transparent electrode 103 and the second transparent electrode 104. It is also possible to suppress the conspicuous transparent electrode pattern in the operation area.
 図5および図6は、本発明のタッチパネルのさらに別の例の構造を示す図である。図5は本発明のタッチパネルのさらに別の例の構造を模式的に示す平面図である。図6は図5のB1-B1’線に沿う断面図である。 5 and 6 are diagrams showing the structure of still another example of the touch panel of the present invention. FIG. 5 is a plan view schematically showing the structure of still another example of the touch panel of the present invention. FIG. 6 is a sectional view taken along line B1-B1 'of FIG.
 図5に示すように、タッチパネル201は、透明な基板202を用いて構成され、基板202の操作領域に透明電極パターンが形成されている。すなわち、基板202の一面に形成されたX方向の座標を検出するための第1の透明電極203と、基板202の他面に形成されたY方向の座標を検出するための第2の透明電極204とを有する。尚、以下の説明においては、基板202の一方の面が上方、基板202の他方の面が下方になる。そして、この場合、基板202の他方の面がディスプレイパネル210に装着される側の面となる。 As shown in FIG. 5, the touch panel 201 is configured using a transparent substrate 202, and a transparent electrode pattern is formed in the operation area of the substrate 202. That is, the first transparent electrode 203 for detecting the coordinate in the X direction formed on one surface of the substrate 202 and the second transparent electrode for detecting the coordinate in the Y direction formed on the other surface of the substrate 202. 204. In the following description, one surface of the substrate 202 is upward and the other surface of the substrate 202 is downward. In this case, the other surface of the substrate 202 is a surface to be attached to the display panel 210.
 基板202は誘電体基板である。基板202の材料としては、ガラス、アクリル樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニリデン樹脂、ポリメチルメタクリレート樹脂、ポリエチレンナフタレート樹脂、トリアセチルセルロース樹脂などの透明材料が使用される。特に、本発明のコート膜205、206の形成に好適な耐熱性と耐薬品性能を備えた材料を選択することが好ましい。基板202の厚みは、ガラスであれば約0.1mm~2mmとすることができ、樹脂フィルムであれば10μm~2000μmとすることができる。 The substrate 202 is a dielectric substrate. As the material of the substrate 202, a transparent material such as glass, acrylic resin, polyester resin, polyethylene terephthalate resin, polycarbonate resin, polyvinylidene chloride resin, polymethyl methacrylate resin, polyethylene naphthalate resin, or triacetyl cellulose resin is used. In particular, it is preferable to select a material having heat resistance and chemical resistance suitable for forming the coating films 205 and 206 of the present invention. The thickness of the substrate 202 can be about 0.1 mm to 2 mm for glass, and 10 μm to 2000 μm for a resin film.
 図5に示すように、第1の透明電極203と第2の透明電極204は、それぞれ細長い長方形の電極からなる。第1の透明電極203はY方向に伸び、第2の透明電極204はX方向に伸び、それぞれストライプ状に一定間隔で配設されている。また、第1の透明電極203と第2の透明電極204は、互いに直交するように配設されており、全体として格子状となっている。 As shown in FIG. 5, the first transparent electrode 203 and the second transparent electrode 204 are each formed of an elongated rectangular electrode. The first transparent electrode 203 extends in the Y direction, and the second transparent electrode 204 extends in the X direction. The first transparent electrode 203 is arranged in a stripe shape at regular intervals. The first transparent electrode 203 and the second transparent electrode 204 are disposed so as to be orthogonal to each other, and have a lattice shape as a whole.
 第1の透明電極203および第2の透明電極204は、少なくとも可視光に対する透過率が高く、導電性を有する透明電極材料を用いて形成される。このような導電性を有する透明電極材料としては、例えば、ITOまたはZnOなどを用いることができる。ITOを用いる場合には、十分な導電性を確保できるよう、厚さを10~200nmとすることが好ましい。 The first transparent electrode 203 and the second transparent electrode 204 are formed using a transparent electrode material that has high transmittance for at least visible light and has conductivity. As such a transparent electrode material having conductivity, for example, ITO or ZnO can be used. When ITO is used, the thickness is preferably 10 to 200 nm so as to ensure sufficient conductivity.
 第1の透明電極203と第2の透明電極204は、スパッタリング法、真空蒸着法、イオンプレーティング法、スプレー法、ディップ法またはCVD法などから、下地となる透明な基板202を考慮して最適な方法を選択して形成される。 The first transparent electrode 203 and the second transparent electrode 204 are optimal in consideration of the transparent substrate 202 as a base from sputtering, vacuum deposition, ion plating, spraying, dipping or CVD. It is formed by selecting a proper method.
 例えば、面状に形成した透明電極をフォトリソグラフィ技術を利用してエッチング法でパターニングする方法、あるいは、有機溶剤に上記材料からなる導電性フィラーなどを分散した塗料を用い、印刷法により直接、所望のパターンに形成する方法などがある。透明電極の形成工程では、膜厚を精度良く制御できることが重要となる。したがって、形成にあたっては、所望の膜厚を実現し、透明性に優れた低抵抗の膜を形成できる方法を選択することが好ましい。 For example, a transparent electrode formed in a planar shape is patterned by an etching method using photolithography, or directly by a printing method using a paint in which a conductive filler made of the above material is dispersed in an organic solvent. There is a method of forming the pattern. In the transparent electrode forming step, it is important to be able to control the film thickness with high accuracy. Therefore, it is preferable to select a method capable of forming a desired film thickness and forming a low-resistance film excellent in transparency.
 図5および図6に示すように、第1の透明電極203の上には、コート膜205が形成されている。コート膜205は、タッチパネル201の操作領域に相当する部分の透明電極の形成領域と非形成の領域を被覆している。また、図6に示すように、第2の透明電極204上(図では下側になる)にもコート膜206が形成されている。コート膜206は、タッチパネル201の操作領域に相当する部分の透明電極の形成領域と非形成の領域を被覆している。コート膜205、206は、硬度が高く、第1の透明電極203および第2の透明電極204との密着性に優れる。 As shown in FIGS. 5 and 6, a coat film 205 is formed on the first transparent electrode 203. The coat film 205 covers the transparent electrode forming region and the non-forming region corresponding to the operation region of the touch panel 201. Further, as shown in FIG. 6, a coat film 206 is also formed on the second transparent electrode 204 (below in the drawing). The coat film 206 covers the transparent electrode forming region and the non-forming region corresponding to the operation region of the touch panel 201. The coating films 205 and 206 are high in hardness and excellent in adhesion with the first transparent electrode 203 and the second transparent electrode 204.
 コート膜205、206の形成には、金属アルコキシドをアルミニウム塩の存在下に有機溶媒中で加水分解・縮合し、さらに析出防止剤を添加して得られる、上述の本発明のコーティング組成物が用いられる。 For the formation of the coating films 205 and 206, the above-described coating composition of the present invention obtained by hydrolyzing and condensing metal alkoxide in an organic solvent in the presence of an aluminum salt and further adding a precipitation inhibitor is used. It is done.
 タッチパネル201においては、第1の透明電極203と第2の透明電極204の各透明電極パターンが見立たないように、コート膜205、206の屈折率と膜厚が選択することができる。具体的には、コート膜205、206の屈折率はそれぞれ1.50より大きく1.70以下の範囲内であることが好ましく、膜厚はそれぞれ40nm~170nmの範囲内であることが好ましい。そして、コート膜205、206の屈折率が1.50より大きく1.60より小さい場合、膜厚は60nm~150nmの範囲内であることがより好ましい。また、コート膜205、206の屈折率が1.60以上で1.70以下の範囲内である場合、膜厚は40nm~170nmの範囲内であることがより好ましい。 In the touch panel 201, the refractive indexes and film thicknesses of the coating films 205 and 206 can be selected so that the transparent electrode patterns of the first transparent electrode 203 and the second transparent electrode 204 are not visible. Specifically, the refractive indexes of the coat films 205 and 206 are each preferably in the range of more than 1.50 and not more than 1.70, and the film thicknesses are preferably in the range of 40 nm to 170 nm, respectively. When the refractive indexes of the coat films 205 and 206 are larger than 1.50 and smaller than 1.60, the film thickness is more preferably in the range of 60 nm to 150 nm. Further, when the refractive indexes of the coating films 205 and 206 are in the range of 1.60 or more and 1.70 or less, the film thickness is more preferably in the range of 40 nm to 170 nm.
 タッチパネル201においては、例えば、第1の透明電極203および第2の透明電極204は、それぞれ膜厚28nmのITOからなる。この場合、コート膜205、206は、それぞれ、シリコンアルコキシドとチタンアルコキシドとを用いて調製されたコーティング組成物から形成されたものであり、屈折率は1.52、膜厚は100nmである。 In the touch panel 201, for example, the first transparent electrode 203 and the second transparent electrode 204 are each made of ITO having a film thickness of 28 nm. In this case, the coat films 205 and 206 are each formed from a coating composition prepared using silicon alkoxide and titanium alkoxide, and have a refractive index of 1.52 and a film thickness of 100 nm.
 図6に示すように、基板202の一方の面には、アクリル系の透明接着剤からなる接着層208が設けられている。また、接着層208の上には、透明な樹脂から構成されたカバーフィルム207が接着されている。尚、図5では、カバーフィルム207を省略している。 As shown in FIG. 6, an adhesive layer 208 made of an acrylic transparent adhesive is provided on one surface of the substrate 202. A cover film 207 made of a transparent resin is bonded on the adhesive layer 208. In FIG. 5, the cover film 207 is omitted.
 カバーフィルム207は、第1の透明電極203およびコート膜205の保護膜として機能する。尚、カバーフィルム207の代わりに、透明樹脂をコーティングしても良い。この場合は、接着層208を不要とすることができる。
 基板202の他方の面には、アクリル系の透明接着剤からなる接着層209を介して、ディスプレイパネル110が取り付けられている。
The cover film 207 functions as a protective film for the first transparent electrode 203 and the coat film 205. Instead of the cover film 207, a transparent resin may be coated. In this case, the adhesive layer 208 can be omitted.
The display panel 110 is attached to the other surface of the substrate 202 via an adhesive layer 209 made of an acrylic transparent adhesive.
 図6では詳細を省略しているが、ディスプレイパネル210は、公知の表示装置と同様の構成とすることができる。例えば、液晶表示装置の場合、ディスプレイパネル210は、2枚の透明基板の間に液晶層が挟持された構造とすることができる。各透明基板の液晶層に接する側とは反対の側には、それぞれ偏光板を設けることができる。また、各透明基板には、液晶の状態を制御するためにセグメント電極やコモン電極を形成することができる。そして、液晶層は、各透明基板とシール材とによって封止される。 Although details are omitted in FIG. 6, the display panel 210 can have the same configuration as a known display device. For example, in the case of a liquid crystal display device, the display panel 210 can have a structure in which a liquid crystal layer is sandwiched between two transparent substrates. A polarizing plate can be provided on the side of each transparent substrate opposite to the side in contact with the liquid crystal layer. In addition, a segment electrode or a common electrode can be formed on each transparent substrate in order to control the state of the liquid crystal. The liquid crystal layer is sealed with each transparent substrate and a sealing material.
 タッチパネル201においては、第1の透明電極3と第2の透明電極4の端部には、それぞれ端子(図示されない)が設けられており、その端子から複数の引き出し配線(図示されない)が引き出される。引き出し配線は、銀、アルミニウム、クロム、銅またはこれらを含む合金などを使用した不透明な金属配線とすることができる。引き出し配線は、第1の透明電極203と第2の透明電極204への電圧印加や、タッチ位置を検出する制御回路(図示されない)に接続される。 In the touch panel 201, terminals (not shown) are provided at the ends of the first transparent electrode 3 and the second transparent electrode 4, and a plurality of lead wires (not shown) are drawn from the terminals. . The lead-out wiring can be an opaque metal wiring using silver, aluminum, chromium, copper or an alloy containing these. The lead-out wiring is connected to a control circuit (not shown) that detects the touch position and voltage application to the first transparent electrode 203 and the second transparent electrode 204.
 以上の構成を有するタッチパネル201では、操作領域のいずれかの箇所に導電体である指が触れると、指先と、第1の透明電極203および第2の透明電極204との間の静電容量結合によってコンデンサが形成される。したがって、指先の接触位置における電荷の変化を捉えることで、いずれの箇所に指が触れたかを検出することができる。 In the touch panel 201 having the above configuration, when a finger that is a conductor touches any part of the operation region, capacitive coupling between the fingertip and the first transparent electrode 203 and the second transparent electrode 204 is achieved. To form a capacitor. Therefore, it is possible to detect which part of the finger touched by capturing the change in charge at the contact position of the fingertip.
 タッチパネル201では、第1の透明電極203と第2の透明電極204の上に設けられたコート膜205、206の効果により、操作領域において透明電極パターンが目立つことが抑制されている。 In the touch panel 201, the effect of the coating films 205 and 206 provided on the first transparent electrode 203 and the second transparent electrode 204 is suppressed from conspicuous in the operation region.
 以上のように、本実施形態のタッチパネルのさらに別の例では、上記した例と異なり、層間絶縁膜やオーバーコート層など、アクリル樹脂などからなる有機膜の上に本発明のコート膜を設ける構造とはなっていない。本発明のコート膜はこうしたタッチパネルの例に対しても、高強度の電極の保護膜として有効に機能する。そして、透明電極パターンが目立つことを防止する。 As described above, in another example of the touch panel of the present embodiment, unlike the above example, a structure in which the coating film of the present invention is provided on an organic film made of an acrylic resin, such as an interlayer insulating film or an overcoat layer. It is not. The coating film of the present invention effectively functions as a protective film for high-strength electrodes even for such touch panel examples. And it prevents that a transparent electrode pattern stands out.
 以上、本発明のタッチパネルについて説明したが、本発明は上記実施の形態に限定されるものではない。ITOなどの透明電極を用いる多様なタイプのタッチパネルに対し、その透明電極上に保護膜として、本発明のコート膜を適用することが可能である。そして、高信頼性を実現する。併せて、透明電極が目立つことを抑制することもできる。そのとき、本発明のコート膜は、タッチパネル内に設けられた各種の有機膜上に形成されても、内部にクラックなど発生させることが無い。 The touch panel of the present invention has been described above, but the present invention is not limited to the above embodiment. For various types of touch panels using transparent electrodes such as ITO, the coating film of the present invention can be applied as a protective film on the transparent electrodes. And high reliability is realized. In addition, the conspicuousness of the transparent electrode can be suppressed. At that time, even if the coating film of the present invention is formed on various organic films provided in the touch panel, cracks and the like are not generated inside.
 以下、実施例にしたがって本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[実施例で用いる略記号]
 以下の実施例などで用いる略記号の意味は、次の通りである。
TEOS:テトラエトキシシラン
C18:オクタデシルトリエトキシシラン
MPS:γ-メルカプトプロピルトリメトキシシラン
GPS:γ-グリシドキシプロピルトリメトキシシラン
UPS:γ-ウレイドプロピルトリエトキシシラン
APS:γ-アミノプロピルトリエトキシシラン
ACPS:γ-アクリロキシプロピルトリメトキシシラン
MPMS:γ-メタクリロキシプロピルトリメトキシシラン
MTES:メチルトリエトキシシラン
TIPT:テトライソプロポキシチタン
AN:硝酸アルミニウム九水和物
EG:エチレングリコール
HG:2-メチル-2,4-ペンタンジオール(別称:へキシレングリコール)
BCS:2-ブトキシエタノール(別称:ブチルセロソルブ)
IPA:2-プロパノール
[Abbreviations used in Examples]
The meanings of the abbreviations used in the following examples are as follows.
TEOS: Tetraethoxysilane C18: Octadecyltriethoxysilane MPS: γ-mercaptopropyltrimethoxysilane GPS: γ-glycidoxypropyltrimethoxysilane UPS: γ-ureidopropyltriethoxysilane APS: γ-aminopropyltriethoxysilane ACPS : Γ-acryloxypropyltrimethoxysilane MPMS: γ-methacryloxypropyltrimethoxysilane MTES: methyltriethoxysilane TIPT: tetraisopropoxytitanium AN: aluminum nitrate nonahydrate EG: ethylene glycol HG: 2-methyl-2 , 4-Pentanediol (also known as hexylene glycol)
BCS: 2-butoxyethanol (also known as butyl cellosolve)
IPA: 2-propanol
<合成例1>(コーティング組成物K1の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.6g、HG 38.8g、BCS 36.8g、TEOS 21.7g、GPS 10.6gを入れ、室温条件下で30分攪拌して、A1液を得た。
<Synthesis Example 1> (Synthesis of Coating Composition K1)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.6g, HG 38.8g, BCS 36.8g, TEOS 21.7g, GPS 10.6g was put there, and it stirred for 30 minutes under room temperature conditions, and obtained A1 liquid.
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 4.7gを入れ、そこにHG 58.2gを加え、室温条件下で30分間撹拌して、A2液を得た。
 次いで、上述のA1液とA2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K1を得た。
In a 300 mL volumetric flask, 4.7 g of TIPT was put as titanium alkoxide, 58.2 g of HG was added thereto, and the mixture was stirred for 30 minutes at room temperature to obtain A2 liquid.
Subsequently, the above-mentioned A1 liquid and A2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K1.
<合成例2>(コーティング組成物K2の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.7g、HG 39.2g、BCS 37.3g、TEOS 21.7g、MPS 8.8gを入れ、室温条件下で30分攪拌して、B1液を得た。
<Synthesis Example 2> (Synthesis of Coating Composition K2)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.7g, HG 39.2g, BCS 37.3g, TEOS 21.7g, MPS 8.8g was put there, and it stirred for 30 minutes under room temperature conditions, and obtained B1 liquid.
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 4.7gを入れ、そこにHG 58.9gを加え、室温条件下で30分間撹拌して、B2液を得た。
 次いで、上述のB1液とB2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K2を得た。
In a 300 mL volumetric flask, 4.7 g of TIPT was added as titanium alkoxide, 58.9 g of HG was added thereto, and the mixture was stirred for 30 minutes at room temperature to obtain B2 liquid.
Subsequently, the above-mentioned B1 liquid and B2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K2.
<合成例3>(コーティング組成物K3の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.6g、HG 38.8g、BCS 36.9g、TEOS 21.7g、ACPS 10.5gを入れ、室温条件下で30分攪拌して、C1液を得た。
<Synthesis Example 3> (Synthesis of Coating Composition K3)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.6g, HG 38.8g, BCS 36.9g, TEOS 21.7g, ACPS 10.5g was put there, and it stirred under room temperature conditions for 30 minutes, and obtained C1 liquid.
 300mL容量のフラスコ中に、チタンアルコキシドとしてTIPT 4.7gを入れ、そこにHG 58.2gを加え、室温条件下で30分間撹拌して、C2液を得た。
 次いで、上述のC1液とC2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K3を得た。
In a 300 mL volumetric flask, 4.7 g of TIPT as titanium alkoxide was added, 58.2 g of HG was added thereto, and the mixture was stirred at room temperature for 30 minutes to obtain C2 solution.
Subsequently, the above-mentioned C1 liquid and C2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K3.
<合成例4>(コーティング組成物K4の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.5g、HG 38.6g、BCS 36.7g、TEOS 21.7g、MPMS 11.1gを入れ、室温条件下で30分攪拌して、D1液を得た。
<Synthesis Example 4> (Synthesis of Coating Composition K4)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.5g, HG 38.6g, BCS 36.7g, TEOS 21.7g, MPMS 11.1g was put there, and it stirred under room temperature conditions for 30 minutes, and obtained D1 liquid.
 300mLフラスコ中にTIPT 4.7g、HG 57.9gを入れ、室温条件下で30分攪拌して、D2液を得た。
 次いで、上述のD1液とD2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K4を得た。
In a 300 mL flask, 4.7 g of TIPT and 57.9 g of HG were added and stirred for 30 minutes at room temperature to obtain a D2 solution.
Subsequently, the above-mentioned D1 liquid and D2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K4.
<合成例5>(コーティング組成物K5の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.9g、HG 39.7g、BCS 37.7g、TEOS 15.5g、MTES 13.3gを入れ、室温条件下で30分攪拌して、E1液を得た。
<Synthesis Example 5> (Synthesis of Coating Composition K5)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.9g, HG 39.7g, BCS 37.7g, TEOS 15.5g, MTES 13.3g was put there, and it stirred for 30 minutes under room temperature conditions, and obtained E1 liquid.
 300mLフラスコ中にTIPT 4.7g、HG 59.5gを入れ、室温条件下で30分攪拌して、E2液を得た。
 次いで、上述のE1液とE2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K5を得た。
In a 300 mL flask, 4.7 g of TIPT and 59.5 g of HG were added and stirred for 30 minutes at room temperature to obtain a liquid E2.
Subsequently, the above-mentioned E1 liquid and E2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K5.
<合成例6>(コーティング組成物K6の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.4g、HG 38.3g、BCS 36.4g、TEOS 21.7g、MPMS 9.3g、C18 3.1gを入れ、室温条件下で30分攪拌して、F1液を得た。
<Synthesis Example 6> (Synthesis of Coating Composition K6)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.4g, HG 38.3g, BCS 36.4g, TEOS 21.7g, MPMS 9.3g, C18 3.1g was put there, and it stirred for 30 minutes at room temperature conditions, and obtained F1 liquid .
 300mLフラスコ中にTIPT 4.7g、HG 57.4gを入れ、室温条件下で30分攪拌して、F2液を得た。
 次いで、上述のF1液とF2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K6を得た。
In a 300 mL flask, 4.7 g of TIPT and 57.4 g of HG were added and stirred for 30 minutes at room temperature to obtain an F2 solution.
Subsequently, the above-mentioned F1 liquid and F2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K6.
<合成例7>(コーティング組成物K7の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.5g、HG 38.6g、BCS 36.7g、TEOS 15.5g、APS 1.7g、ACPS 6.7g、GPS 8.8gを入れ、室温条件下で30分攪拌して、G1液を得た。
<Synthesis Example 7> (Synthesis of Coating Composition K7)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.5g, HG 38.6g, BCS 36.7g, TEOS 15.5g, APS 1.7g, ACPS 6.7g, GPS 8.8g was put there, and it stirred for 30 minutes under room temperature conditions. G1 liquid was obtained.
 300mLフラスコ中にTIPT 4.7g、HG 57.9gを入れ、室温条件下で30分攪拌して、G2液を得た。
 次いで、上述のG1液とG2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K7を得た。
In a 300 mL flask, 4.7 g of TIPT and 57.9 g of HG were added and stirred for 30 minutes at room temperature to obtain a G2 solution.
Subsequently, the above-mentioned G1 liquid and G2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K7.
<合成例8>(コーティング組成物K8の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.5g、HG 38.5g、BCS 36.6g、TEOS 15.5g、MPS 1.5g、ACPS 10.5g、UPS 5.9gを入れ、室温条件下で30分攪拌して、H1液を得た。
<Synthesis Example 8> (Synthesis of Coating Composition K8)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.5g, HG 38.5g, BCS 36.6g, TEOS 15.5g, MPS 1.5g, ACPS 10.5g, UPS 5.9g was put there, and it stirred for 30 minutes under room temperature conditions, An H1 solution was obtained.
 300mLフラスコ中にTIPT 4.7g、HG 57.7gを入れ、室温条件下で30分攪拌して、H2液を得た。
 次いで、上述のH1液とH2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K8を得た。
In a 300 mL flask, 4.7 g of TIPT and 57.7 g of HG were added and stirred for 30 minutes at room temperature to obtain an H2 solution.
Subsequently, the above-mentioned H1 liquid and H2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K8.
<合成例9>(コーティング組成物K9の合成)
 200mLフラスコ中にAN 13.1g、水3.1gを加えて攪拌し、ANを溶解した。そこに、EG 13.3g、HG 95.2g、BCS 36.2g、TEOS 16.3g、MPMS 22.8gを入れ、室温条件下で30分攪拌した。これにより、コーティング組成物K9を得た。
<Synthesis Example 9> (Synthesis of Coating Composition K9)
In a 200 mL flask, 13.1 g of AN and 3.1 g of water were added and stirred to dissolve AN. EG 13.3g, HG 95.2g, BCS 36.2g, TEOS 16.3g, MPMS 22.8g was put there, and it stirred under room temperature conditions for 30 minutes. This obtained coating composition K9.
<合成例10>(コーティング組成物K10の合成)
 200mLフラスコ中にAN 12.1g、水2.8gを加えて攪拌し、ANを溶解した。そこに、EG 13.5g、HG 56.7g、BCS 36.8g、TEOS 13.7g、MPMS 10.9gを入れ、室温条件下で30分攪拌して、I1液を得た。
<Synthesis Example 10> (Synthesis of Coating Composition K10)
In a 200 mL flask, 12.1 g of AN and 2.8 g of water were added and stirred to dissolve AN. EG 13.5g, HG 56.7g, BCS 36.8g, TEOS 13.7g, MPMS 10.9g was put there, and it stirred for 30 minutes under room temperature conditions, and obtained I1 liquid.
 300mLフラスコ中にTIPT 13.4g、HG 40.1gを入れ、室温条件下で30分攪拌して、I2液を得た。
 次いで、上述のI1液とI2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K10を得た。
In a 300 mL flask, 13.4 g of TIPT and 40.1 g of HG were put, and stirred for 30 minutes at room temperature to obtain a liquid I2.
Subsequently, the above-mentioned I1 liquid and I2 liquid were mixed and stirred for 30 minutes at room temperature. This obtained coating composition K10.
<合成例11>(コーティング組成物K11の合成)
 200mLフラスコ中にAN 11.8g、水2.8gを加えて攪拌し、ANを溶解した。そこに、EG 13.6g、HG 44.8g、BCS 36.8g、TEOS 10.5g、MPMS 10.3gを入れ、室温条件下で30分攪拌して、J1液を得た。
<Synthesis Example 11> (Synthesis of Coating Composition K11)
In a 200 mL flask, 11.8 g of AN and 2.8 g of water were added and stirred to dissolve AN. EG 13.6g, HG 44.8g, BCS 36.8g, TEOS 10.5g, MPMS 10.3g was put there, and it stirred for 30 minutes under room temperature conditions, and obtained J1 liquid.
 300mLフラスコ中にTIPT 17.4g、HG 52.1gを入れ、室温条件下で30分攪拌して、J2液を得た。
 次いで、上述のJ1液とJ2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K11を得た。
In a 300 mL flask, 17.4 g of TIPT and 52.1 g of HG were put, and stirred for 30 minutes at room temperature to obtain a solution J2.
Subsequently, the above-mentioned J1 liquid and J2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K11.
<合成例12>(コーティング組成物K12の合成)
 200mLフラスコ中にAN 11.5g、水2.7gを加えて攪拌し、ANを溶解した。そこに、EG 13.6g、HG 33.5g、BCS 36.9g、TEOS 7.2g、MPMS 10.0gを入れ、室温条件下で30分攪拌して、L1液を得た。
<Synthesis Example 12> (Synthesis of Coating Composition K12)
In a 200 mL flask, 11.5 g of AN and 2.7 g of water were added and stirred to dissolve AN. EG 13.6g, HG 33.5g, BCS 36.9g, TEOS 7.2g, and MPMS 10.0g were put there, and it stirred under room temperature conditions for 30 minutes, and obtained L1 liquid.
 300mLフラスコ中にTIPT 21.2g、HG 63.6gを入れ、室温条件下で30分攪拌して、L2液を得た。
 次いで、上述のL1液とL2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K12を得た。
In a 300 mL flask, 21.2 g of TIPT and 63.6 g of HG were put, and stirred at room temperature for 30 minutes to obtain a liquid L2.
Subsequently, the above-mentioned L1 liquid and L2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K12.
<合成例13>(コーティング組成物K13の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.7g、HG 39.1g、BCS 37.1g、TEOS 31.1gを入れ、室温条件下で30分攪拌して、M1液を得た。
<Synthesis Example 13> (Synthesis of Coating Composition K13)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.7g, HG 39.1g, BCS 37.1g, and TEOS 31.1g were put there, and it stirred under room temperature conditions for 30 minutes, and obtained M1 liquid.
 300mLフラスコ中にTIPT 4.7g、HG 58.6gを入れ、室温条件下で30分攪拌して、M2液を得た。
 次いで、上述のM1液とM2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K13を得た。コーティング組成物K13には、上述した一般式(II)で示される構造の金属アルコキシドは含有されていない。
In a 300 mL flask, 4.7 g of TIPT and 58.6 g of HG were placed, and stirred at room temperature for 30 minutes to obtain a liquid M2.
Subsequently, the above-mentioned M1 liquid and M2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K13. The coating composition K13 does not contain the metal alkoxide having the structure represented by the general formula (II).
<合成例14>(コーティング組成物K14の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、EG 13.7g、HG 39.2g、BCS 37.3g、TEOS 28.0g、MTES 2.7gを入れ、室温条件下で30分攪拌して、N1液を得た。
<Synthesis Example 14> (Synthesis of Coating Composition K14)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. EG 13.7g, HG 39.2g, BCS 37.3g, TEOS 28.0g, and MTES 2.7g were put there, and it stirred under room temperature conditions for 30 minutes, and obtained N1 liquid.
 300mLフラスコ中にTIPT 4.7g、HG 58.8gを入れ、室温条件下で30分攪拌して、N2液を得た。
 次いで、上述のN1液とN2液とを混合し、室温条件下で30分間撹拌した。これにより、コーティング組成物K14を得た。
 コーティング組成物K13には、上記した合成例1~合成例12のコーティング組成物K1~K12に比べ、上述した一般式(II)で示される構造の金属アルコキシドが少量しか含有されていないことになる。
In a 300 mL flask, 4.7 g of TIPT and 58.8 g of HG were put, and stirred for 30 minutes at room temperature to obtain N2 liquid.
Subsequently, the above-mentioned N1 liquid and N2 liquid were mixed, and it stirred for 30 minutes under room temperature conditions. This obtained coating composition K14.
Compared to the coating compositions K1 to K12 of Synthesis Examples 1 to 12 described above, the coating composition K13 contains only a small amount of the metal alkoxide having the structure represented by the general formula (II). .
<合成例15>(コーティング組成物K15の合成)
 200mLフラスコ中にAN 12.7g、水3.0gを加えて攪拌し、ANを溶解した。そこに、IPA 145.6g、TEOS 15.5g、MPMS 18.5g、TIPT 4.7gを入れ、室温条件下で30分攪拌した。これにより、コーティング組成物K15を得た。
<Synthesis Example 15> (Synthesis of Coating Composition K15)
In a 200 mL flask, 12.7 g of AN and 3.0 g of water were added and stirred to dissolve AN. IPA 145.6g, TEOS 15.5g, MPMS 18.5g, and TIPT 4.7g were put there, and it stirred under room temperature conditions for 30 minutes. This obtained coating composition K15.
 <安定性の評価>
 上述した合成例によるコーティング組成物について、コーティング組成物K1~K12及びK15を、それぞれ、実施例1~実施例12及び比較例1として、安定性の評価を行った。
 安定性の評価方法は、合成したコーティング組成物(K1~K12、K15)を用い、孔径0.5マイクロメートルのメンブランフィルタで加圧濾過したのち、室温条件下にて1週間放置する。次いで、シリコン基板(100)にスピンコーティングにて成膜したとき、シリコン基板上の塗膜に異物が観察されないものを○評価とし、異物が観察されるものを×評価とした。上記の評価結果を表1に示す。
<Evaluation of stability>
With respect to the coating compositions according to the synthesis examples described above, the stability was evaluated using the coating compositions K1 to K12 and K15 as Examples 1 to 12 and Comparative Example 1, respectively.
The stability is evaluated by using the synthesized coating compositions (K1 to K12, K15), pressure-filtering with a membrane filter having a pore size of 0.5 micrometers, and then allowing to stand at room temperature for 1 week. Subsequently, when a film was formed on the silicon substrate (100) by spin coating, the case where no foreign matter was observed on the coating film on the silicon substrate was evaluated as “Good”, and the case where foreign matter was observed was evaluated as “X”. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<コート膜の成膜方法I>
 上述した合成例によるコーティング組成物を用いて、孔径0.5μmのメンブランフィルタで加圧濾過し、基板上にスピンコート法により塗膜を形成する。この基板を60℃に設定されたホットプレート上で3分間加熱し乾燥する。次いで、紫外線照射装置(アイグラフィックス社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて50mW/cm(波長365nm換算)の光強度で2分間紫外線照射する。紫外線照射量は6000mJ/cmとなる。紫外線照射の後、250℃に設定された熱風循環式オーブン内に移し、30分間焼成する。こうして、基板上にコート膜を成膜する。
<Method I for Coating Film I>
Using the coating composition according to the synthesis example described above, pressure filtration is performed with a membrane filter having a pore size of 0.5 μm, and a coating film is formed on the substrate by spin coating. The substrate is heated for 3 minutes on a hot plate set to 60 ° C. and dried. Next, UV irradiation is performed for 2 minutes at a light intensity of 50 mW / cm 2 (converted to a wavelength of 365 nm) using a high-pressure mercury lamp (input power supply 1000 W) using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphics). . The amount of ultraviolet irradiation is 6000 mJ / cm 2 . After the ultraviolet irradiation, it is transferred into a hot air circulation oven set at 250 ° C. and baked for 30 minutes. Thus, a coat film is formed on the substrate.
<コート膜の成膜方法II>
 上述した合成例によるコーティング組成物を用いて、孔径0.5μmのメンブランフィルタで加圧濾過し、基板上にスピンコート法により塗膜を形成する。この基板を60℃に設定されたホットプレート上で3分間加熱し乾燥する。次いで、250℃に設定された熱風循環式オーブン内に移し、30分間焼成する。こうして、基板上にコート膜を成膜する。
<Method II of Coating Film Formation>
Using the coating composition according to the synthesis example described above, pressure filtration is performed with a membrane filter having a pore size of 0.5 μm, and a coating film is formed on the substrate by spin coating. The substrate is heated for 3 minutes on a hot plate set to 60 ° C. and dried. Next, it is transferred into a hot air circulation oven set at 250 ° C. and baked for 30 minutes. Thus, a coat film is formed on the substrate.
 以上、本実施例のコーティング組成物を用いて本実施例のコート膜を成膜する方法について説明した。次に、本実施例のコート膜の評価について説明する。このとき、上述した合成例によるコーティング組成物K1~K8を用い、適当な基板上に、上記成膜方法Iにより成膜されたコート膜(KL1~KL8)を本発明のコート膜の実施例13~実施例20とする。そして、上述した合成例によるコーティング組成物K9~K12を用い、適当な基板上、上記成膜方法IIにより成膜されたコート膜(KL9~KL12)を本発明のコート膜の実施例21~実施例24とする。また、上述した合成例によるコーティング組成物K13を用い、適当な基板上に、上記成膜方法IIにより成膜されたコート膜(KM2)をコート膜の比較例2とする。 The method for forming the coating film of this example using the coating composition of this example has been described above. Next, the evaluation of the coating film of this example will be described. At this time, using the coating compositions K1 to K8 according to the synthesis example described above, the coating films (KL1 to KL8) formed on the appropriate substrate by the above-described film forming method I were used as the coating film examples 13 of the present invention. To Example 20. Then, using the coating compositions K9 to K12 according to the synthesis examples described above, the coating films (KL9 to KL12) formed on the appropriate substrate by the above-described film forming method II were used as the coating films of Examples 21 to 10 of the present invention. Example 24 is taken. In addition, a coating film (KM2) formed by the above film forming method II on a suitable substrate using the coating composition K13 according to the synthesis example described above is referred to as a comparative example 2 of the coating film.
<屈折率の評価>
 基板には、シリコン基板(100)を用いた。上述したように、このシリコン基板上に、成膜方法Iにより成膜された実施例13~実施例20のコート膜、成膜方法IIにより成膜された実施例21~24のコート膜、成膜方法IIにより成膜された比較例2および比較例3のコート膜を形成し、屈折率の評価を行った。評価方法は、エリプソメータ(溝尻光学工業所社製、DVA-FLVW)を使用し、波長633nmにおける屈折率を測定することにより行った。
 各コート膜の評価結果を、各コート膜形成に使用したコーティング組成物とともに、下記の表2に示す。
<Evaluation of refractive index>
A silicon substrate (100) was used as the substrate. As described above, the coating films of Examples 13 to 20 formed by the film forming method I on this silicon substrate, the coating films of Examples 21 to 24 formed by the film forming method II, The coating films of Comparative Example 2 and Comparative Example 3 formed by the film method II were formed, and the refractive index was evaluated. The evaluation method was performed by measuring the refractive index at a wavelength of 633 nm using an ellipsometer (DVA-FLVW, manufactured by Mizoji Optical Co., Ltd.).
The evaluation results of each coat film are shown in Table 2 below together with the coating composition used for forming each coat film.
<クラック評価>
 ガラス基板上に、膜厚2μmのアクリル膜を形成した。アクリル膜の形成は、次のようにして行った。まず、アクリル材料組成物を、孔径0.5μmのメンブランフィルタで加圧濾過し、ガラス基板全面にスピンコート法により塗膜を形成した。次いで、この基板をホットプレート上で2分間加熱乾燥した後、熱風循環式オーブン内に移し、30分間焼成した。これにより、ガラス基板上にアクリル膜が形成された。
<Crack evaluation>
An acrylic film having a thickness of 2 μm was formed on the glass substrate. The acrylic film was formed as follows. First, the acrylic material composition was filtered under pressure with a membrane filter having a pore size of 0.5 μm, and a coating film was formed on the entire surface of the glass substrate by a spin coating method. Next, this substrate was heated and dried for 2 minutes on a hot plate, then transferred to a hot-air circulating oven and baked for 30 minutes. As a result, an acrylic film was formed on the glass substrate.
 上記のアクリル膜の上に、成膜方法Iまたは成膜方法IIにより、膜厚100nmの厚さでコート膜を形成する。
 そして、アクリル膜の形成されたガラス基板上に、成膜方法Iにより成膜された実施例13~実施例20のコート膜、成膜方法IIにより成膜された実施例21~24のコート膜、成膜方法IIにより成膜された比較例2のコート膜を形成し、コート膜のクラック評価を行った。
A coat film having a thickness of 100 nm is formed on the acrylic film by the film formation method I or the film formation method II.
Then, the coating films of Examples 13 to 20 formed by the film forming method I on the glass substrate on which the acrylic film was formed, and the coating films of Examples 21 to 24 formed by the film forming method II. Then, the coating film of Comparative Example 2 formed by the film forming method II was formed, and the coating film was evaluated for cracks.
 クラック評価の評価基準については、基板上のコート膜において、クラックを生じないものを◎評価とし、面内は生じないがエッジのみクラックが生じるものを○評価とし、全面にクラックが生じるものを×評価とした。
 評価の結果、比較例2のコート膜に比べ、実施例13~実施例24のコート膜は、クラックの発生において改善が見られることが分かった。
Regarding the evaluation criteria for crack evaluation, in the coating film on the substrate, those that do not cause cracks are evaluated as ◎, those that do not occur in the plane but cracks only at the edges are evaluated as ○, and those that cause cracks on the entire surface are × It was evaluated.
As a result of the evaluation, it was found that the coating films of Examples 13 to 24 showed improvement in the occurrence of cracks compared to the coating film of Comparative Example 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<透明導電膜基板>
 基板上にパターニングされた透明導電膜が成膜された透明導電膜基板を準備する。基板にはガラス基板を用い、透明導電膜にはITOを用いる。この透明導電膜基板としては、上述した本発明のタッチパネル1に使用した透明導電膜基板14の使用が可能である。ここでは、ITOの膜厚は28nmとした。
<Transparent conductive film substrate>
A transparent conductive film substrate on which a patterned transparent conductive film is formed on a substrate is prepared. A glass substrate is used as the substrate, and ITO is used as the transparent conductive film. As this transparent conductive film substrate, the transparent conductive film substrate 14 used in the touch panel 1 of the present invention described above can be used. Here, the film thickness of ITO was 28 nm.
<タッチパネルの作製>
 ITOの膜厚が28nmである上記の透明導電膜基板上に、実施例20のコート膜KL8を100nmの膜厚で成膜した基板を作製した。この基板上に光学接着剤を塗布し、0.7mmの素ガラスを貼り合わせた。次いで、紫外線照射装置(アイグラフィックス社製 UB 011-3A型)を使用し、高圧水銀ランプ(入力電源1000W)を用いて、50mW/cm(波長365nm換算)の光強度で80秒間紫外線照射した。これにより、光学接着剤を硬化させて、特性評価用のタッチパネルとして実施例25のタッチパネルを作製した。
<Production of touch panel>
A substrate in which the coating film KL8 of Example 20 was formed to a thickness of 100 nm on the transparent conductive film substrate having a thickness of ITO of 28 nm was produced. An optical adhesive was applied onto the substrate, and 0.7 mm of raw glass was bonded. Next, using an ultraviolet irradiation device (UB011-3A type manufactured by Eye Graphics Co., Ltd.) and using a high pressure mercury lamp (input power supply 1000 W), ultraviolet irradiation is performed for 80 seconds at a light intensity of 50 mW / cm 2 (wavelength 365 nm conversion). did. Thereby, the optical adhesive was hardened and the touch panel of Example 25 was produced as a touch panel for characteristic evaluation.
 次に、コート膜として、実施例20のKL8に代えて、実施例22のコート膜KL10を用いた以外は上記と同様の作製方法により、実施例26のタッチパネルを作製した。また、コート膜として、実施例20のKL8に代えて、実施例23のコート膜KL11を用いた以外は上記と同様の作製方法により、実施例27のタッチパネルを作製した。また、コート膜として、実施例20のKL8に代えて、実施例24のコート膜KL12を用いた以外は上記と同様の作製方法により、実施例28のタッチパネルを作製した。 Next, a touch panel of Example 26 was manufactured by the same manufacturing method as described above except that the coat film KL10 of Example 22 was used instead of KL8 of Example 20. Further, a touch panel of Example 27 was manufactured by the same manufacturing method as described above except that the coat film KL11 of Example 23 was used instead of KL8 of Example 20. Further, a touch panel of Example 28 was produced by the same production method as above except that the coat film KL12 of Example 24 was used instead of KL8 of Example 20.
 さらに、上記透明導電膜基板上に、コーティング組成物K12を用いて、上記成膜方法Iによりコート膜を成膜し、それ以外は上記実施例25の場合と同様にして、実施例29のタッチパネルを作製した。尚、コーティング組成物K12を用いて成膜方法Iにより成膜したコート膜について、上記と同様の評価方法により測定した屈折率は、1.70であった。 Further, on the transparent conductive film substrate, a coating film was formed by the film forming method I using the coating composition K12, and the rest was the same as in the case of Example 25, and the touch panel of Example 29 was used. Was made. In addition, the refractive index measured with the evaluation method similar to the above about the coating film formed into a film by the film-forming method I using the coating composition K12 was 1.70.
 そして、比較評価用に、コート膜として、実施例20のKL8に代えて、比較例2のコート膜KM2を用いた以外は上記と同様の作製方法により、比較例3のタッチパネルを作製した。また、上述した透明導電膜基板を用い、コート膜を成膜せず、それ以外は上記と同様の作製方法により、比較例4のタッチパネルを作製した。したがって、比較例4の評価用のタッチパネルは透明電極上にコート膜が形成されていない。 And for the comparative evaluation, it replaced with KL8 of Example 20 as a coating film, and produced the touchscreen of the comparative example 3 with the preparation method similar to the above except having used the coating film KM2 of the comparative example 2. FIG. Moreover, the touchscreen of the comparative example 4 was produced by the production method similar to the above except that the transparent conductive film substrate described above was used and no coating film was formed. Therefore, the evaluation touch panel of Comparative Example 4 has no coating film formed on the transparent electrode.
<電極パターン見え評価>
 実施例25~実施例29および比較例3、4の評価用のタッチパネルを用い、ITOの電極パターンが目立つかどうかの評価をする、電極パターン見えの評価を行った。
<Evaluation of electrode pattern appearance>
Using the touch panels for evaluation in Examples 25 to 29 and Comparative Examples 3 and 4, the appearance of the electrode pattern was evaluated to evaluate whether or not the ITO electrode pattern was conspicuous.
 評価方法としては、各タッチパネルを黒い布の上に置き、上部からライトを照らした状態で、目視にて観察を行った。そして、比較例4のタッチパネルにおいて、透明電極パターンが見えることを確認した上、他のタッチパネルを観察する。それらの観察の結果、透明電極パターンが見えないものを◎評価とした。そして、透明電極パターンは見えるが、その程度が、コート膜を有しない比較例4のタッチパネルに比べ改善されているものを○評価とし、比較例4のタッチパネルに比べ改善のされていないものを×評価とした。
 実施例25~実施例29並びに比較例3、4の評価用のタッチパネルについて、電極パターン見え評価の結果をまとめ、表3に示す。
As an evaluation method, each touch panel was placed on a black cloth and visually observed with the light illuminated from above. And in the touch panel of the comparative example 4, after confirming that a transparent electrode pattern is visible, another touch panel is observed. As a result of these observations, a transparent electrode pattern that could not be seen was evaluated as ◎. And although the transparent electrode pattern can be seen, the degree of improvement compared to the touch panel of Comparative Example 4 that does not have a coating film is evaluated as “Good”, and the one that is not improved compared to the touch panel of Comparative Example 4 is × It was evaluated.
Table 3 summarizes the results of the electrode pattern appearance evaluation for the evaluation touch panels of Examples 25 to 29 and Comparative Examples 3 and 4.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上の評価の結果、表1より、コーティング組成物は金属硝酸塩および析出防止剤を含むことにより、安定性が向上することが分かった。
 表2より、コーティング組成物に含有される金属アルコキシドの構造と組成を適切に制御することにより、それから形成されるコート膜は、アクリル樹脂などからなる有機薄膜上でもクラックが生じない、安定な膜として形成されることが分かった。
As a result of the above evaluation, it was found from Table 1 that the stability of the coating composition was improved by including a metal nitrate and a precipitation inhibitor.
From Table 2, by controlling the structure and composition of the metal alkoxide contained in the coating composition appropriately, the coating film formed therefrom is a stable film that does not crack even on an organic thin film made of an acrylic resin or the like. Was found to be formed.
 表3より、適切に制御された屈折率のコート膜を電極上に形成することにより、タッチパネルでは電極パターン見えを抑制できることが分かった。
 本実施例のコート膜は、いずれも5H以上の硬度を示し、これは、一般的な有機アクリル材料が3H未満に比べて顕著に高い硬度である。
From Table 3, it was found that the appearance of the electrode pattern can be suppressed on the touch panel by forming a coat film having an appropriately controlled refractive index on the electrode.
Each of the coating films of the present example has a hardness of 5H or more, which is significantly higher than that of a general organic acrylic material less than 3H.
 本発明のコーティング組成物は、屈折率の制御された高い強度のコート膜を提供でき、そのコート膜を用いたタッチパネルでは、電極のパターンが目立つことがない。したがって、優れた見栄えと高い信頼性が求められる表示デバイス用のタッチパネルとして有用である。 The coating composition of the present invention can provide a high-strength coating film with a controlled refractive index, and the electrode pattern does not stand out on a touch panel using the coating film. Therefore, it is useful as a touch panel for a display device that requires excellent appearance and high reliability.
 なお、2011年1月20日に出願された日本特許出願2011-010164号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-010164 filed on January 20, 2011 are cited herein as disclosure of the specification of the present invention. Incorporated.
 1、101、201  タッチパネル
 2、102、202  基板
 3、103、203  第1の透明電極
 4、104、204  第2の透明電極
 5、6、105、106、205、206  コート膜
 9、108、208、209  接着層
 10、110、210  ディスプレイパネル
 11  引き出し配線
 14  透明導電膜基板
 18  交差部
 19  層間絶縁膜
 20  架橋電極
 21  パッド部
 30  タッチパネル基板
 107  オーバーコート層
 207  カバーフィルム
1, 101, 201 Touch panel 2, 102, 202 Substrate 3, 103, 203 First transparent electrode 4, 104, 204 Second transparent electrode 5, 6, 105, 106, 205, 206 Coat film 9, 108, 208 , 209 Adhesive layer 10, 110, 210 Display panel 11 Lead-out wiring 14 Transparent conductive film substrate 18 Crossing portion 19 Interlayer insulating film 20 Cross-linked electrode 21 Pad portion 30 Touch panel substrate 107 Overcoat layer 207 Cover film

Claims (12)

  1.  下記一般式(I)で示される第1の金属アルコキシドと、下記一般式(II)で示される第2の金属アルコキシドと、下記一般式(III)で示される金属塩と、有機溶媒と、水と、析出防止剤と、を含有することを特徴とするタッチパネル用コーティング組成物。
       M(OR         (I)
    (式中、Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)および亜鉛(Zn)よりなる群から選択された少なくとも1の金属を表し、Rは、炭素数1~5のアルキル基を表し、nは、Mの価数2~5を表す。)
       R (ORm-l      (II)
    (式中、Mは、珪素(Si)、チタン(Ti)、タンタル(Ta)、ジルコニウム(Zr)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)および亜鉛(Zn)よりなる群から選択された少なくとも1の金属を表す。Rは、水素原子またはフッ素原子で置換されてもよく、且つ、ハロゲン原子、ビニル基、グリシドキシ基、メルカプト基、メタクリロキシ基、アクリロキシ基、イオシアネート基、アミノ基またはウレイド基で置換されていてもよく、且つ、ヘテロ原子を有していてもよい炭素数1~20の炭化水素基を表す。Rは、炭素数1~5のアルキル基を表す。mは、Mの価数2~5を表し、lは、mの価数が3の場合1または2であり、mの価数が4の場合1~3であり、mの価数が5の場合1~4である。)
       M(X)           (III)
    (式中、Mは、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、ジルコニウム(Zr)、ビスマス(Bi)、ランタン(La)、タンタル(Ta)、イットリウム(Y)およびセリウム(Ce)よりなる群から選択された少なくとも1の金属を表し、Xは、塩酸、硝酸、硫酸、酢酸、蓚酸、スファミン酸、スルホン酸、アセト酢酸若しくはアセチルアセトナートの残基、またはこれらの塩基性塩を表し、kは、Mの価数を表す。)
    A first metal alkoxide represented by the following general formula (I), a second metal alkoxide represented by the following general formula (II), a metal salt represented by the following general formula (III), an organic solvent, water And a deposition inhibitor. A coating composition for a touch panel, comprising:
    M 1 (OR 1 ) n (I)
    (Wherein M 1 is a group consisting of silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg) and zinc (Zn). At least one metal selected from R 1 represents an alkyl group having 1 to 5 carbon atoms, and n represents a valence 2 to 5 of M 1. )
    R 2 l M 2 (OR 3 ) ml (II)
    (Wherein M 1 is a group consisting of silicon (Si), titanium (Ti), tantalum (Ta), zirconium (Zr), boron (B), aluminum (Al), magnesium (Mg) and zinc (Zn). Represents at least one metal selected from R 2 may be substituted with a hydrogen atom or a fluorine atom, and may be a halogen atom, a vinyl group, a glycidoxy group, a mercapto group, a methacryloxy group, an acryloxy group, an isocyanate group; Represents a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with an amino group or a ureido group and which may have a hetero atom, and R 3 represents an alkyl group having 1 to 5 carbon atoms. M represents the valence 2 to 5 of M 2 , l is 1 or 2 when the valence of m is 3, and 1 to 3 when the valence of m is 4, and the valence of m 1 to 4 if the number is 5 .)
    M 3 (X) k (III)
    (Wherein M 3 represents aluminum (Al), indium (In), zinc (Zn), zirconium (Zr), bismuth (Bi), lanthanum (La), tantalum (Ta), yttrium (Y) and cerium ( Ce) represents at least one metal selected from the group consisting of: X is a residue of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, succinic acid, sfamic acid, sulfonic acid, acetoacetic acid or acetylacetonate, or their basicity Represents a salt, and k represents the valence of M 3. )
  2.  第2の金属アルコキシドの含有量は、第1の金属アルコキシドと第2の金属アルコキシドとを合わせた全金属アルコキシドに対して、15モル%以上である請求項1に記載のタッチパネル用コーティング組成物。 The touch panel coating composition according to claim 1, wherein the content of the second metal alkoxide is 15 mol% or more based on the total metal alkoxide of the first metal alkoxide and the second metal alkoxide.
  3.  析出防止剤は、N-メチル-ピロリドン、エチレングリコール、ジメチルホルムアミド、ジメチルアセトアミド、ジエチレングリコール、プロピレングリコール、ヘキシレングリコールおよびこれらの誘導体よりなる群から選択された少なくとも1以上である請求項1または2に記載のタッチパネル用コーティング組成物。 The precipitation inhibitor is at least one or more selected from the group consisting of N-methyl-pyrrolidone, ethylene glycol, dimethylformamide, dimethylacetamide, diethylene glycol, propylene glycol, hexylene glycol and derivatives thereof. The coating composition for touchscreens as described.
  4.  金属塩の金属原子(M)と、第1の金属アルコキシドおよび第2の金属アルコキシドの金属原子(MおよびM)とのモル比は、
    0.01≦M/(M+M+M)≦0.7
    である請求項1~3のいずれかに記載のタッチパネル用コーティング組成物。
    The molar ratio of the metal atom (M 3 ) of the metal salt to the metal atoms (M 1 and M 2 ) of the first metal alkoxide and the second metal alkoxide is:
    0.01 ≦ M 3 / (M 1 + M 2 + M 3 ) ≦ 0.7
    The touch panel coating composition according to any one of claims 1 to 3.
  5.  第1の金属アルコキシドは、シリコンアルコキシドまたはその部分縮合物と、チタンアルコキシドとの混合物である請求項1~4のいずれかに記載のタッチパネル用コーティング組成物。 5. The touch panel coating composition according to claim 1, wherein the first metal alkoxide is a mixture of silicon alkoxide or a partial condensate thereof and titanium alkoxide.
  6.  前記金属塩は、金属硝酸塩、金属硫酸塩、金属酢酸塩、金属塩化物、金属蓚酸塩、金属スファミン酸塩、金属スルホン酸塩、金属アセト酢酸塩、金属アセチルアセトナートまたはこれらの塩基性塩である請求項1~5のいずれかに記載のタッチパネル用コーティング組成物。 The metal salt is a metal nitrate, metal sulfate, metal acetate, metal chloride, metal oxalate, metal sphamate, metal sulfonate, metal acetoacetate, metal acetylacetonate or a basic salt thereof. The touchscreen coating composition according to any one of claims 1 to 5.
  7.  前記有機溶媒は、アルキレングリコール類またはそのモノエーテル誘導体を含む請求項1~6のいずれかに記載のコーティング組成物。 The coating composition according to any one of claims 1 to 6, wherein the organic solvent contains an alkylene glycol or a monoether derivative thereof.
  8.  請求項1~7のいずれかに記載のタッチパネル用コーティング組成物を用いて成膜されたコート膜。 A coating film formed using the coating composition for a touch panel according to any one of claims 1 to 7.
  9.  屈折率が1.52~1.70であり、膜厚が40nm~170nmである請求項8に記載のコート膜。 The coating film according to claim 8, wherein the refractive index is 1.52 to 1.70 and the film thickness is 40 nm to 170 nm.
  10.  基板の操作領域に透明電極のパターンが形成されたタッチパネルであって、請求項8または9に記載のコート膜を前記透明電極のパターンの少なくとも一部の上に配したことを特徴とするタッチパネル。 A touch panel in which a transparent electrode pattern is formed in an operation region of a substrate, wherein the coating film according to claim 8 or 9 is disposed on at least a part of the transparent electrode pattern.
  11.  前記透明電極パターンは、少なくとも2つの異なる方向の位置を検出するための第1の透明電極パターンと、第2の透明電極パターンとを有して構成され、
     前記第1の透明電極パターンと前記第2の透明電極パターンの少なくとも一部は、前記基板の操作領域で重畳するとともに、この重畳する部分の前記第1の透明電極パターンと前記第2の透明電極パターンとの間には有機材料からなる膜が配置されており、
     前記コート膜は、前記第1の透明電極パターンまたは前記第2の透明電極パターンの少なくとも一部とともに前記有機材料からなる膜の少なくとも一部を被覆するよう構成された請求項10に記載のタッチパネル。
    The transparent electrode pattern includes a first transparent electrode pattern for detecting positions in at least two different directions, and a second transparent electrode pattern,
    At least a part of the first transparent electrode pattern and the second transparent electrode pattern overlap each other in the operation region of the substrate, and the first transparent electrode pattern and the second transparent electrode in the overlapping part A film made of organic material is placed between the pattern and
    The touch panel according to claim 10, wherein the coating film is configured to cover at least a part of the film made of the organic material together with at least a part of the first transparent electrode pattern or the second transparent electrode pattern.
  12.  前記第1の透明電極パターンと前記第2の透明電極パターンとが重畳する部分は、前記基板の操作領域に複数あり、これら複数の重畳する部分のそれぞれにおいて、前記重畳する部分の面積より大きい面積の前記有機材料からなる膜が配置されている請求項11に記載のタッチパネル。 There are a plurality of overlapping portions of the first transparent electrode pattern and the second transparent electrode pattern in the operation region of the substrate, and each of the overlapping portions has an area larger than the area of the overlapping portion. The touch panel according to claim 11, wherein a film made of the organic material is arranged.
PCT/JP2012/051251 2011-01-20 2012-01-20 Coating composition for touch panels, coating film, and touch panel WO2012099253A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137021707A KR101829495B1 (en) 2011-01-20 2012-01-20 Coating composition for touch panels, coating film, and touch panel
JP2012553789A JP6048148B2 (en) 2011-01-20 2012-01-20 Coating composition for touch panel, coating film and touch panel
CN201280013782.1A CN103443750B (en) 2011-01-20 2012-01-20 Coating composition for touch panels, coating film, and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011010164 2011-01-20
JP2011-010164 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012099253A1 true WO2012099253A1 (en) 2012-07-26

Family

ID=46515870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051251 WO2012099253A1 (en) 2011-01-20 2012-01-20 Coating composition for touch panels, coating film, and touch panel

Country Status (5)

Country Link
JP (1) JP6048148B2 (en)
KR (1) KR101829495B1 (en)
CN (1) CN103443750B (en)
TW (1) TWI542648B (en)
WO (1) WO2012099253A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827543A (en) * 2012-08-16 2012-12-19 复旦大学 Preparation method of resistive screen hardening liquid
WO2013187450A1 (en) * 2012-06-14 2013-12-19 日産化学工業株式会社 Coating fluid for metal oxide coating film and metal oxide coating film
WO2014054748A1 (en) * 2012-10-03 2014-04-10 日産化学工業株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
WO2014058018A1 (en) * 2012-10-11 2014-04-17 日産化学工業株式会社 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
WO2015182657A1 (en) * 2014-05-29 2015-12-03 日産化学工業株式会社 Agent for forming adhesive coating for aluminum oxide or aluminum substrate
JP2016503548A (en) * 2012-11-27 2016-02-04 ガーディアン インダストリーズ コーポレイションGuardian Industries Corp. Projected capacitive touch panel including a silver-containing transparent conductive layer
JP2016509079A (en) * 2012-12-11 2016-03-24 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Low refractive layer coating composition and transparent conductive film containing the same
US9904431B2 (en) 2012-11-27 2018-02-27 Guardian Glass, LLC Capacitance touch panel with silver-inclusive transparent conductive layer(s) and dielectric layer(s)
US9921704B2 (en) 2012-11-27 2018-03-20 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel
US9921703B2 (en) 2012-11-27 2018-03-20 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)
US10082920B2 (en) 2015-04-08 2018-09-25 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel or the like
US10133108B2 (en) 2015-04-08 2018-11-20 Guardian Glass, LLC Vending machines with large area transparent touch electrode technology, and/or associated methods
US10216347B2 (en) 2012-11-27 2019-02-26 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having adjusted resistance
US10222921B2 (en) 2012-11-27 2019-03-05 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having increased resistivity
US10248274B2 (en) 2012-11-27 2019-04-02 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel and method of making same
US10444926B2 (en) 2012-11-27 2019-10-15 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)
WO2019246254A1 (en) * 2018-06-21 2019-12-26 Inpria Corporation Stable solutions of monoalkyl tin alkoxides and their hydrolysis and condensation products
US10539864B2 (en) 2018-02-08 2020-01-21 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
US10787466B2 (en) 2018-04-11 2020-09-29 Inpria Corporation Monoalkyl tin compounds with low polyalkyl contamination, their compositions and methods
US11498934B2 (en) 2019-01-30 2022-11-15 Inpria Corporation Monoalkyl tin trialkoxides and/or monoalkyl tin triamides with particulate contamination and corresponding methods
WO2023081442A1 (en) * 2021-11-08 2023-05-11 Inpria Corporation Stability-enhanced organotin photoresist compositions
US11673903B2 (en) 2018-04-11 2023-06-13 Inpria Corporation Monoalkyl tin compounds with low polyalkyl contamination, their compositions and methods
US11966158B2 (en) 2019-01-30 2024-04-23 Inpria Corporation Monoalkyl tin trialkoxides and/or monoalkyl tin triamides with low metal contamination and/or particulate contamination, and corresponding methods

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9579765B2 (en) 2012-09-13 2017-02-28 General Electric Technology Gmbh Cleaning and grinding of sulfite sensor head
TWI500703B (en) * 2013-12-26 2015-09-21 Chi Mei Corp Photo-curing coating composition, photo-curing coating film and touch panel
CN103729103B (en) * 2014-01-26 2016-09-14 南通中尧机电制造有限公司 A kind of organic capacitive touch screen
CN103729102B (en) * 2014-01-26 2016-09-14 南通中尧机电制造有限公司 A kind of organic capacitive touch screen
CN103744570B (en) * 2014-01-26 2016-09-14 南通中尧机电制造有限公司 A kind of manufacture method of organic capacitive touch screen
KR102221910B1 (en) * 2014-10-10 2021-03-05 삼성디스플레이 주식회사 Display device and method of manufacturing the same
TWI512058B (en) * 2014-12-25 2015-12-11 Chi Mei Corp Photo-curing coating composition, photo-curing coating film and touch panel
KR102313971B1 (en) * 2015-06-08 2021-10-18 엘지이노텍 주식회사 Touch sensor
JP6773036B2 (en) * 2015-07-31 2020-10-21 日産化学株式会社 Glass substrate suitable for cover glass of mobile display devices, etc.
US20190309421A1 (en) * 2016-06-15 2019-10-10 Brisbane Materials Technology Pty Ltd Self-curing mixed-metal oxides
JP6967081B2 (en) * 2017-11-15 2021-11-17 富士フイルム株式会社 Touch sensor and touch panel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258646A (en) * 1988-12-15 1990-10-19 Nissan Chem Ind Ltd Coating composition and production thereof
JPH05188363A (en) * 1992-01-14 1993-07-30 Nissan Chem Ind Ltd Coating liquid for forming insulating film of liquid crystal display element
JPH0633000A (en) * 1992-07-17 1994-02-08 Nissan Chem Ind Ltd Coating solution for forming insulation film with high refractive index for liquid crystal display device
JPH06242432A (en) * 1993-02-18 1994-09-02 Nissan Chem Ind Ltd Coating solution for forming insulating film for liquid crystal display element
JP2001235604A (en) * 1999-12-14 2001-08-31 Nissan Chem Ind Ltd Antireflection film, method of forming antireflection film, and antireflection glass
WO2007020781A1 (en) * 2005-08-19 2007-02-22 Nissan Chemical Industries, Ltd. Method for producing coating liquid for film formation
WO2010001949A1 (en) * 2008-07-02 2010-01-07 出光興産株式会社 Coating liquid, cured film, resin multilayer body, method for producing the cured film and method for producing the resin multilayer body
JP2010028115A (en) * 2008-07-21 2010-02-04 Samsung Mobile Display Co Ltd Display panel and manufacturing method thereof
JP2010160670A (en) * 2009-01-08 2010-07-22 Seiko Epson Corp Method for manufacturing touch panel, touch panel, display and electronic apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061425A (en) * 2008-09-04 2010-03-18 Hitachi Displays Ltd Touch panel and display device using the same
WO2010150668A1 (en) * 2009-06-23 2010-12-29 ジオマテック株式会社 Capacitance type input device and production method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258646A (en) * 1988-12-15 1990-10-19 Nissan Chem Ind Ltd Coating composition and production thereof
JPH05188363A (en) * 1992-01-14 1993-07-30 Nissan Chem Ind Ltd Coating liquid for forming insulating film of liquid crystal display element
JPH0633000A (en) * 1992-07-17 1994-02-08 Nissan Chem Ind Ltd Coating solution for forming insulation film with high refractive index for liquid crystal display device
JPH06242432A (en) * 1993-02-18 1994-09-02 Nissan Chem Ind Ltd Coating solution for forming insulating film for liquid crystal display element
JP2001235604A (en) * 1999-12-14 2001-08-31 Nissan Chem Ind Ltd Antireflection film, method of forming antireflection film, and antireflection glass
WO2007020781A1 (en) * 2005-08-19 2007-02-22 Nissan Chemical Industries, Ltd. Method for producing coating liquid for film formation
WO2010001949A1 (en) * 2008-07-02 2010-01-07 出光興産株式会社 Coating liquid, cured film, resin multilayer body, method for producing the cured film and method for producing the resin multilayer body
JP2010028115A (en) * 2008-07-21 2010-02-04 Samsung Mobile Display Co Ltd Display panel and manufacturing method thereof
JP2010160670A (en) * 2009-01-08 2010-07-22 Seiko Epson Corp Method for manufacturing touch panel, touch panel, display and electronic apparatus

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013187450A1 (en) * 2012-06-14 2016-02-08 日産化学工業株式会社 Metal oxide coating liquid and metal oxide coating
WO2013187450A1 (en) * 2012-06-14 2013-12-19 日産化学工業株式会社 Coating fluid for metal oxide coating film and metal oxide coating film
CN102827543A (en) * 2012-08-16 2012-12-19 复旦大学 Preparation method of resistive screen hardening liquid
WO2014054748A1 (en) * 2012-10-03 2014-04-10 日産化学工業株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
JPWO2014054748A1 (en) * 2012-10-03 2016-08-25 日産化学工業株式会社 Coating liquid for forming finely coated inorganic oxide film and method for producing finely divided inorganic oxide film
CN104822783A (en) * 2012-10-03 2015-08-05 日产化学工业株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
WO2014058018A1 (en) * 2012-10-11 2014-04-17 日産化学工業株式会社 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
TWI637235B (en) * 2012-10-11 2018-10-01 日商日產化學工業股份有限公司 Coating liquid for forming an inorganic oxide film, inorganic oxide film, and display device
KR102170063B1 (en) * 2012-10-11 2020-10-26 닛산 가가쿠 가부시키가이샤 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
CN104854509A (en) * 2012-10-11 2015-08-19 日产化学工业株式会社 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
CN104854509B (en) * 2012-10-11 2021-04-13 日产化学工业株式会社 Coating liquid for forming inorganic oxide coating film, and display device
KR20150070215A (en) * 2012-10-11 2015-06-24 닛산 가가쿠 고교 가부시키 가이샤 Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
JPWO2014058018A1 (en) * 2012-10-11 2016-09-05 日産化学工業株式会社 Coating liquid for forming inorganic oxide film, inorganic oxide film, and display device
US9921704B2 (en) 2012-11-27 2018-03-20 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel
US11340742B2 (en) 2012-11-27 2022-05-24 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having increased resistivity
US9904431B2 (en) 2012-11-27 2018-02-27 Guardian Glass, LLC Capacitance touch panel with silver-inclusive transparent conductive layer(s) and dielectric layer(s)
US10444926B2 (en) 2012-11-27 2019-10-15 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)
US9921703B2 (en) 2012-11-27 2018-03-20 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)
US9965127B2 (en) 2012-11-27 2018-05-08 Guardian Glass, LLC Projected capacitive touch panel with a silver-inclusive transparent conducting layer(s)
US10073576B2 (en) 2012-11-27 2018-09-11 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with additional functional film(s)
US10078409B2 (en) 2012-11-27 2018-09-18 Guardian Glass, LLC Projected capacitive touch panel with silver-inclusive transparent conducting layer(s), and/or method of making the same
JP2016503548A (en) * 2012-11-27 2016-02-04 ガーディアン インダストリーズ コーポレイションGuardian Industries Corp. Projected capacitive touch panel including a silver-containing transparent conductive layer
US10444925B2 (en) 2012-11-27 2019-10-15 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having increased resistivity
US10088967B2 (en) 2012-11-27 2018-10-02 Guardian Glass, LLC Projected capacitive touch panel with a silver-inclusive transparent conducting layer(s)
US10540047B2 (en) 2012-11-27 2020-01-21 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel and method of making same
US10216347B2 (en) 2012-11-27 2019-02-26 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having adjusted resistance
US10222921B2 (en) 2012-11-27 2019-03-05 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with silver having increased resistivity
US10222923B2 (en) 2012-11-27 2019-03-05 Guardian Glass, LLC Projected capacitive touch panel with silver-inclusive transparent conducting layer(s), and/or methods of making the same
US10248276B2 (en) 2012-11-27 2019-04-02 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel with optional additional functional film(s)
US10248274B2 (en) 2012-11-27 2019-04-02 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel and method of making same
US10394405B2 (en) 2012-11-27 2019-08-27 Guardian Glass, LLC Capacitive touch panel with multi-layer transparent conductive film
JP2016509079A (en) * 2012-12-11 2016-03-24 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Low refractive layer coating composition and transparent conductive film containing the same
KR20170012412A (en) * 2014-05-29 2017-02-02 닛산 가가쿠 고교 가부시키 가이샤 Agent for forming adhesive coating for aluminum oxide or aluminum substrate
WO2015182657A1 (en) * 2014-05-29 2015-12-03 日産化学工業株式会社 Agent for forming adhesive coating for aluminum oxide or aluminum substrate
KR102462034B1 (en) * 2014-05-29 2022-11-01 닛산 가가쿠 가부시키가이샤 Agent for forming adhesive coating for aluminum oxide or aluminum substrate
JPWO2015182657A1 (en) * 2014-05-29 2017-04-20 日産化学工業株式会社 Adhesive film forming agent for aluminum oxide or aluminum substrate
US10133108B2 (en) 2015-04-08 2018-11-20 Guardian Glass, LLC Vending machines with large area transparent touch electrode technology, and/or associated methods
US10082920B2 (en) 2015-04-08 2018-09-25 Guardian Glass, LLC Transparent conductive coating for capacitive touch panel or the like
US10539864B2 (en) 2018-02-08 2020-01-21 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
US11099474B2 (en) 2018-02-08 2021-08-24 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
US11762274B2 (en) 2018-02-08 2023-09-19 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
US11673903B2 (en) 2018-04-11 2023-06-13 Inpria Corporation Monoalkyl tin compounds with low polyalkyl contamination, their compositions and methods
US11897906B2 (en) 2018-04-11 2024-02-13 Inpria Corporation Monoalkyl tin compounds with low polyalkyl contamination, their compositions and methods
US10975109B2 (en) 2018-04-11 2021-04-13 Inpria Corporation Monoalkyl tin compounds with low polyalkyl contamination, their compositions and methods
US10787466B2 (en) 2018-04-11 2020-09-29 Inpria Corporation Monoalkyl tin compounds with low polyalkyl contamination, their compositions and methods
JP7295891B2 (en) 2018-06-21 2023-06-21 インプリア・コーポレイション Stable solutions of monoalkyltin alkoxides and their hydrolysis and condensation products
WO2019246254A1 (en) * 2018-06-21 2019-12-26 Inpria Corporation Stable solutions of monoalkyl tin alkoxides and their hydrolysis and condensation products
US11300876B2 (en) 2018-06-21 2022-04-12 Inpria Corporation Stable solutions of monoalkyl tin alkoxides and their hydrolysis and condensation products
US11868046B2 (en) 2018-06-21 2024-01-09 Inpria Corporation Stable solutions of monoalkyl tin alkoxides and their hydrolysis and condensation products
JP2021528536A (en) * 2018-06-21 2021-10-21 インプリア・コーポレイションInpria Corporation Stable solutions of monoalkyltin alkoxides, as well as their hydrolysis and condensation products
US11498934B2 (en) 2019-01-30 2022-11-15 Inpria Corporation Monoalkyl tin trialkoxides and/or monoalkyl tin triamides with particulate contamination and corresponding methods
US11966158B2 (en) 2019-01-30 2024-04-23 Inpria Corporation Monoalkyl tin trialkoxides and/or monoalkyl tin triamides with low metal contamination and/or particulate contamination, and corresponding methods
WO2023081442A1 (en) * 2021-11-08 2023-05-11 Inpria Corporation Stability-enhanced organotin photoresist compositions

Also Published As

Publication number Publication date
KR101829495B1 (en) 2018-02-14
JP6048148B2 (en) 2016-12-21
TW201245345A (en) 2012-11-16
CN103443750B (en) 2017-02-15
CN103443750A (en) 2013-12-11
KR20140005250A (en) 2014-01-14
TWI542648B (en) 2016-07-21
JPWO2012099253A1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
WO2012099253A1 (en) Coating composition for touch panels, coating film, and touch panel
TWI535830B (en) Touch panel
JP6075292B2 (en) Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
JP6155537B2 (en) CONDUCTIVE PATTERN LAMINATE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE AND TOUCH SCREEN CONTAINING CONDUCTIVE PATTERN LAMINATE
JP2002071903A (en) Optical member with antireflection film
JP2000117902A (en) Sheet or film
JP6751271B2 (en) Laminated body, touch panel, and patterning method for laminated body
KR102170063B1 (en) Coating liquid for forming inorganic oxide coating film, inorganic oxide coating film, and display device
JP6152799B2 (en) Coating liquid for forming a metal oxide film for protecting molybdenum-containing metals
WO2014054748A1 (en) Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
KR20130036964A (en) Conductive film having excellent optical properties
KR102190716B1 (en) Coating fluid for metal oxide coating film and metal oxide coating film
JP2004138909A (en) Optical filter for display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137021707

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12736939

Country of ref document: EP

Kind code of ref document: A1