WO2007020781A1 - Method for producing coating liquid for film formation - Google Patents

Method for producing coating liquid for film formation Download PDF

Info

Publication number
WO2007020781A1
WO2007020781A1 PCT/JP2006/314923 JP2006314923W WO2007020781A1 WO 2007020781 A1 WO2007020781 A1 WO 2007020781A1 JP 2006314923 W JP2006314923 W JP 2006314923W WO 2007020781 A1 WO2007020781 A1 WO 2007020781A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating
solvent
solution
coating liquid
Prior art date
Application number
PCT/JP2006/314923
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Numajiri
Kenichi Motoyama
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to JP2007530931A priority Critical patent/JP4941302B2/en
Priority to CN2006800294371A priority patent/CN101243149B/en
Publication of WO2007020781A1 publication Critical patent/WO2007020781A1/en
Priority to KR1020087001270A priority patent/KR101266728B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Definitions

  • the present invention relates to a method for producing a coating liquid for forming a film. More specifically, it is a method for producing a coating liquid for forming a film for forming a film containing titanium atoms.
  • oxide coatings have been formed for the purpose of insulating and protecting transparent electrodes.
  • a method for forming an oxide film a vapor phase method represented by a vapor deposition method, a sputtering method, and the like, and a coating method using a coating solution for forming an oxide film are known.
  • coating methods are often used because of productivity and ease of film formation on large substrates.
  • the coating solution tetraalkoxysilane hydrolyzate and other metal alkoxides and metal chelate compounds are known.
  • a generally used alkoxide compound has a high hydrolysis rate except for silicon alkoxide. Therefore, attempts have been made to act chelating agents such as acetylylacetone for the purpose of adjusting the hydrolysis rate of the alkoxide compound.
  • chelated compounds generally have a high thermal decomposition temperature, and firing at 450 ° C or higher is desirable. (For example, see Patent Document 1.)
  • Another method is to add a mineral acid to the hydrolyzate of silicon alkoxide and titanium alkoxide in a silica-titer coating solution to obtain a transparent coating agent without using a stabilizing means such as chelation. It has been tried. In this case as well, baking at least at 300 ° C or more is required. (For example, see Patent Document 2.)
  • Patent Document 1 Japanese Patent Laid-Open No. 63-258959
  • Patent Document 2 Japanese Patent Laid-Open No. 55-25487
  • An object of the present invention is to form a film that can be sufficiently cured under low-temperature curing conditions at 150 to 250 ° C, and to form an alignment film that suppresses repellency and pinholes on the film.
  • An object of the present invention is to provide a method for producing a coating liquid for forming a film.
  • the gist of the present invention is as follows.
  • the metal alkoxide (A) is a compound represented by the formula (1) (wherein R 1 represents an alkyl group having 1 to 5 carbon atoms) and is at least one metal alkoxide selected;
  • Solvent is at least one organic solvent selected from the group force consisting of alcohol having 1 to 10 carbon atoms, ester having 2 to 5 carbon atoms, tetrahydrofuran and ether power having 2 to 5 carbon atoms; solvent (C) is And at least one organic solvent with a glycol power of 2 to 10 carbon atoms selected.
  • the metal alkoxide (A) further contains at least one alkoxysilane selected from the compound represented by the formula (2).
  • R 2 represents an alkyl group, a alkenyl group, or an aryl group
  • R 3 represents an alkyl group having 1 to 5 carbon atoms
  • n represents an integer of 0 to 2.
  • Alkoxysilane force Compound power in which n in formula (2) is 0.
  • the metal alkoxide (A) contains 0 alkoxysilane per 1 mole of alkoxytitanium.
  • a substrate for a liquid crystal display device having a coating film formed using the coating liquid for forming a coating film according to 7 above.
  • a liquid crystal display device having a film formed using the coating liquid for forming a film according to 7 above.
  • the coating liquid for forming a film obtained by the production method of the present invention is sufficiently cured under a low temperature curing condition of 150 to 250 ° C., and forms a liquid crystal alignment film on which the repellency and pinholes are suppressed. Can do. Therefore, it is useful for manufacturing liquid crystal display elements with excellent display characteristics. It is for.
  • FIG. 1 shows the results of measurement of the weight loss rate of the dry powder (Example) of the coating solution for coating film formation Z2 and the dry powder (Comparative Example) of the coating solution T1.
  • FIG. 2 shows the results of differential thermal measurements of a dry powder (Example) of coating solution Z2 for film formation and a dry powder (Comparative Example) of coating solution T1.
  • the present invention relates to a method for producing a coating liquid for forming a film, a solvent), that is, a group consisting of an alcohol having 1 to 10 carbon atoms, an ester having 2 to 5 carbon atoms, tetrahydrofuran, and an ether having 2 to 5 carbon atoms. Power The greatest feature is that it has a solvent substitution step from at least one selected organic solvent to solvent (C), that is, glycol.
  • the coating liquid for forming a film obtained by the production method of the present invention can provide a film that is sufficiently cured at a low temperature of 150 to 250 ° C.
  • the coating is used as an electrode protective film (insulating film) for a liquid crystal display element, the liquid crystal alignment film can be printed on the coating, and an alignment film with suppressed pinholes can be formed. Has an effect.
  • an alkoxytitanium coordinated with a stabilizer such as glycol or a metal alkoxide containing the same is hydrolyzed and condensed to form a condensate.
  • a stabilizer such as glycol or a metal alkoxide containing the same
  • the glycol is coordinated after the alkoxytitanium or the metal alkoxide containing it is hydrolyzed and condensed to form a condensate.
  • the coordination state between the condensate produced by the conventional reaction and the stabilizer Daricol, the condensate produced by the present invention and glycol The coordination state is presumed to be very different.
  • the coordination state between the titanium atom of the condensate and the glycol it is presumed that in the present invention, the glycol is more easily detached.
  • the glycol is relatively easy to desorb, and thus the coating film is easily cured at a low temperature.
  • the coating film when used as an electrode protective film (insulating film) for a liquid crystal display element, the fact that the glycol coordinated to the titanium atom in the coating film is small suppresses repelling and pinholes in the liquid crystal alignment film. It leads to that. That is, the present invention has a very excellent effect of improving the printability of the liquid crystal alignment film even when the coating film is used as an electrode protective film (insulating film) of a liquid crystal display element.
  • the metal alkoxide (A) is hydrolyzed and subjected to a condensation reaction in the solvent (B).
  • the metal alkoxide (A) used in Step 1 at least one kind of alkoxytitanium in which the compound power represented by the formula (1) is also selected is used.
  • R 1 is an alkyl group having 1 to 5 carbon atoms, preferably 2 to 4 carbon atoms.
  • tetraalkoxy titanium represented by the formula (1) examples include tetramethoxy titanium, tetraethoxy titanium, tetraisopropoxy titanium, tetra ⁇ -propoxy titanium, tetra ⁇ -butoxy titanium, and tetraisobutoxy titanium. Tetra t-butoxy titanium, tetrapentoxy titan and the like. Tetraethoxy titanium, tetraisopropoxy titanium, or tetra n-butoxy titanium is preferable.
  • the component (A) used in step 1 is not particularly limited as long as at least one of the titanium titaniums represented by the formula (1) is an essential component. Therefore, for example, metal alkoxides other than alkoxytitanium represented by formula (1) (hereinafter referred to as other alkoxides) are also used. It can also be used. Other alkoxides include alkoxides such as Si, Al, Sn, In, Bi, Zn, Pb, Ti, Ta, Mn, and Zr. These other alkoxides can be appropriately selected and used as necessary for compounds having one or more alkoxy groups, and a plurality of types can be used in combination.
  • alkoxysilanes silicon alkoxides (hereinafter referred to as alkoxysilanes) are easy to use because they are abundant in variety and readily available on the market.
  • the coating liquid for coating obtained by the production method of the present invention is applied to a liquid crystal display element, the refractive index of the coating obtained from the coating liquid for coating can be easily adjusted.
  • alkoxysilane used at that time not only a monomer but also a condensate of methyl silicate and ethyl silicate can be used, and one or more kinds selected from these can be used.
  • condensates of methyl silicate and ethyl silicate include ethyl silicate 40 (trade name, manufactured by Tama Chemical Co., Ltd.), ethyl silicate 48 (trade name, manufactured by Nippon Colcoat Co., Ltd.), MKC silicate (trade name) ), Toray 'silicon resin from Dow Co., Ltd., silicon resin from GE Toshiba Silicone, silicon resin from Shin-Etsu Co., Ltd., hydroxyl group-containing polydimethyl from Dow Co., Ltd. Examples thereof include siloxane and silicon oligomer manufactured by Nippon Yuka.
  • alkoxysilanes represented by the formula (2) are preferably used, and one or more selected from these medium strengths can be used.
  • R 2 represents an alkyl group, an alkyl group, or an aryl group
  • R 3 represents an alkyl group having 1 to 5 carbon atoms
  • n represents an integer of 0 to 2.
  • alkoxysilane represented by the above formula (2) are shown below, but are not limited thereto.
  • Tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane; methyltrimethoxysilane, methyltriethoxysilane, Tiltrimethoxysilane, Ethyltriethoxysilane, Propyltrimethoxysilane, Propyltriethoxysilane, Butyltrimethoxysilane, Butyltriethoxysilane, Pentilttrimethoxysilane, Pentiltlyethoxysilane, Heptyltrimethoxysilane, Heptyltriethoxysilane Octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane,
  • tetraalkoxysilane having ⁇ of 0 is easy to use because it is most readily available and inexpensive.
  • the alkoxysilane represented by the formula (2) is used as the component (ii)
  • the alkoxysilane is preferably 0.05 to 4 mol, particularly preferably 0.25 to 4 mol, relative to 1 mol of the alkoxytitanium.
  • This effect depends on the coordination state between the titanium atom in the condensate produced in Step 1 and the (C) component Daricol. For this reason, when the amount is greater than the alkoxysilane power mole, the amount of Daricol in the coordination and bonding state is relatively small, and thus the effect of the present invention is hardly obtained.
  • the refractive index of the cured film is 1.50 to 2. Easy to adjust arbitrarily within the range of 1.
  • the solvent (B) used in Step 1 is an alcohol having 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, particularly preferably an ester having 1 to 4 carbon atoms, an ester having 2 to 5 carbon atoms, tetrahydrofuran, and 2 to 5 carbon atoms. It is at least one organic solvent that can be chosen as an ethereal group power. Therefore, it is also possible to use a plurality of types in the solvent (B).
  • the solvent (B) is not particularly limited as long as it can dissolve the component (A). Specific examples are given below.
  • solvents (B) it is preferable to select a solvent that hardly azeotropes with the solvent (C) described later and has a higher vapor pressure at normal pressure than the solvent (C).
  • substitution from the solvent (B) to the solvent (C) can be performed efficiently.
  • methanol, ethanol, propanol, butanol, etc. are easy to use.
  • step 1 component (A) is hydrolyzed in a solvent (B) and subjected to a condensation reaction.
  • a catalyst is used to promote the condensation of component (A).
  • the amount of the catalyst used is preferably 0.005 to 0.5 mol with respect to 1 mol of the metal atom in the alkoxide.
  • an acid an alkali, a metal inorganic acid salt, an organic metal compound, or the like is used.
  • an acid or a metal inorganic acid salt is preferably used. Specific examples of this catalyst are as follows.
  • examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like.
  • examples of the organic acid include monocarboxylic acids such as formic acid, acetic acid and malic acid; polyvalent carboxylic acids such as oxalic acid, citrate, propionic acid and succinic acid.
  • examples of the alkali include inorganic alkalis such as ammonia, caustic soda and potassium hydroxide; monoethanolamine; diethanolamine; Thanolamine; pyridine and the like.
  • Metal inorganic acid salts used as catalysts are IIIa, IVa, Va group metal or transition metal inorganic acid salts such as nitric acid, nitric acid and sulfuric acid, basic salts thereof or hydrates thereof.
  • Ilia, IVa, and Va group metals include Al, In, Sn, Sb, Pb, and Bi.
  • transition metals include Ti, Mn, Fe, Ni, Zn, Y, Zr, Mo, Cu, W, and Ce.
  • Such a metal inorganic acid salt include aluminum chloride, aluminum nitrate, aluminum sulfate, basic aluminum chloride, indium chloride, indium nitrate, tin chloride, sodium chloride antimony, lead chloride, nitric acid.
  • organometallic compound examples include aluminum acetate, zinc acetate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, tin octylate, tin naphthenate, dibutyltin diacetylacetonate, tree i Propoxy aluminum yuum, GE i-Propoxy acetylacetoacetate aluminum, GE i-Propoxy acetylacetonate aluminum, i-Propoxy bis (ethyl acetoacetate) aluminum, i-propoxy bis ( Acetylacetonate) Aluminum, Tris (ethylacetoacetate) aluminum, Tris (acetylethylacetonate) aluminum, Monoacetylcetate'Bis (ethylacetoacetate) aluminum, Tetra-n-butoxyzirconium, Lee n- butoxy 'E chill ⁇ Seto acetate zirconium
  • the metal inorganic acid salt and the organic metal compound are not particularly limited as long as they are dissolved in the solvent), and can be appropriately selected and used as necessary. At that time, one kind or Can be used in combination.
  • a metal nitrate, a basic salt thereof, a hydrate thereof, or an organometallic compound is preferable. More preferably, it is a nitrate of Al, In, Zn, Zr, Ce, Sn, a basic salt thereof or a hydrate thereof, or an organometallic compound.
  • step 1 the above-described metal inorganic salt or organometallic compound may be used in combination with another catalyst as long as the effects of the present invention are not impaired.
  • the 'condensation reaction may be any of partial hydrolysis and Z or complete hydrolysis.
  • theoretically 0.5 moles of water of all alkoxide groups in component (A) should be added, but usually an excess of 0.5 moles of water is added.
  • 0.2 to 0.5 moles of water may be added.
  • the amount of water used in the above reaction can be appropriately selected as desired, but is 0.2 to 2.5 moles of all alkoxide groups in the component (A).
  • the metal salt is a hydrate salt, its moisture is also included in the amount of water used for the hydrolysis.
  • Step 1 the component (A) is hydrolyzed in the solvent (B) and subjected to a condensation reaction, but the order of adding the component (A) and the solvent (B) is not particularly limited.
  • a method of adding a component such as water or a catalyst to a solution in which the alkoxytitanium in the component (A) and the solvent (B) are mixed in advance is often used.
  • other alkoxides may be mixed with the solvent (B) simultaneously with the alkoxytitanium, or may be added later. In this case, the other alkoxide may be diluted with the solvent (B) in advance! /.
  • the sardine may be cooled during the hydrolysis' condensation reaction or may be cooled after the hydrolysis / condensation reaction.
  • Water and the catalyst may be mixed and added, or may be added separately. Usually, water and the catalyst are generally added as a solution diluted with the solvent (B).
  • the mixed solution of the component (A) and the solvent (B) can be heated for the purpose of promoting the hydrolysis reaction of the component (A).
  • the heating temperature and heating time can be appropriately selected as desired. For example, heating / stirring at 50 ° C. for 24 hours or heating / stirring under reflux for 8 hours can be mentioned. It is also possible to add water and a catalyst during the heating of the mixed solution of the component (A) and the solvent (B).
  • the solution obtained after such step 1 has a concentration in which all metal atoms in the solution are converted to oxides (concentration in terms of metal oxide solid content) of 20% by mass or less, in particular, The content is preferably 15% by mass or less.
  • concentration in terms of metal oxide solid content concentration in terms of metal oxide solid content
  • the content is preferably 15% by mass or less.
  • Step 2 is a step mainly including solvent substitution of the solvent (B) of the pre-substitution solution obtained in Step 1 above with the solvent (C).
  • the solvent (C) is at least one organic solvent selected from glycol power having 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, and plural kinds selected from the solvent (C) may be used in combination. Good. Specific examples of the solvent (C) are shown below, but are not limited thereto.
  • Ethylene glycol 1,2 propanediol, 1,3 propanediol, 1,2-butanediol, 1,3 butanediol, 2,3 butanediol, 1,4 butanediol, 1,5 pentanediol, 2—
  • Examples include methyl-2,4-pentanediol (hexylene glycol), 3-methyl-1,5-pentanediol, 1,6-hexanediol, and 2-ethyl-1,3-hexanediol.
  • hexylene glycol is preferred because of its good wettability to the substrate!
  • step 2 the method of replacing the pre-substitution solution with the solvent (C) is not particularly limited!
  • the conditions for solvent replacement are usually performed under reduced pressure in order to increase the efficiency of solvent replacement, but may be under normal pressure. That is, the solvent replacement can be performed preferably under the conditions of 0.1 mmHg (13.3 Pa) to 760 mmHg dOl. 3 kPa), particularly preferably 5 mmHg (666.6 Pa) to 200 mmHg (26.7 KPa). At that time, in order to further increase the solvent replacement efficiency You may heat to.
  • the heating temperature should be 100 ° C or less in consideration of cost LV, but it should be lower than the boiling point of the solvent (C)!
  • the organic solvent in the pre-substitution solution it is not necessary to completely replace the organic solvent in the pre-substitution solution with the solvent (C). More than 80% by mass of the total organic solvent in the pre-substitution solution is substituted with the solvent (C). In particular, it is preferably 85% by mass or more. By doing so, it is easy to obtain a good coating property compared to a coating solution for forming a film, which will be described later, and it becomes easy to form a coating by flexographic printing.
  • a substitution solution water is partially removed by azeotropy together with the organic solvent in the pre-substitution solution, and a solution obtained after Step 2 (hereinafter referred to as a substitution solution). The water content in the liquid is reduced, and the storage stability of the replacement solution and the coating solution for forming a film obtained by using the replacement solution is remarkably improved.
  • step 2 it is also possible to adjust the metal oxide solids equivalent concentration of the replacement solution by adjusting the amount of the solvent (C).
  • the metal oxide solid content conversion concentration is preferably 20% by mass or less, particularly preferably 15% by mass or less. A desired concentration can be selected as necessary.
  • the solution containing the condensate obtained by hydrolysis / condensation reaction of the component (A) in the solvent (B) by passing through the above-described step 1 and step 2 is converted into the solvent (C).
  • a solution obtained by substituting with, that is, a replacement solution can be obtained.
  • Step 3 is a step of preparing a coating solution for forming a film, but when the replacement solution obtained above is used as a coating solution for forming a film as it is, this step can be omitted.
  • a coating solution for film formation is prepared by adding a solvent (D) for the purpose of adjusting the oxide solid content equivalent concentration of the coating solution for coating formation and improving coating properties.
  • the metal oxide equivalent concentration of the coating liquid for forming a film is preferably 0.5 to 20% by mass, particularly preferably 1 to 15% by mass.
  • the total amount of metal atoms in the substitution solution and inorganic fine particles is the concentration in terms of oxides.
  • the degree is preferably 0.5 to 20% by mass.
  • the method for adding the solvent (D) and other components is not particularly limited as long as a homogeneous solution is obtained.
  • the solvent (D) a solvent that is compatible with the substitution solution is used, and is not particularly limited as long as it is used, and a plurality of types may be used in combination.
  • Examples of the inorganic fine particles include silica fine particles, metal oxide fine particles such as alumina, titania, and zeolite; ATO (antimony-tin oxide), ITO (indium-tin oxide), IZO (indium-zi nc Composite oxide fine particles such as oxide) are preferred.
  • a colloidal solution is particularly preferable. This colloidal solution may be a dispersion of inorganic fine particle powder in a dispersion medium, or a commercially available colloid solution.
  • the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions.
  • the inorganic fine particles preferably have an average particle size of SO.001 to 0.2 m, preferably S, and more preferably 0.001 to 0.1 m. When the average particle diameter of the inorganic fine particles exceeds 0.2 m, the transparency of the cured film formed by the prepared coating liquid may be lowered.
  • the dispersion medium of the inorganic fine particles is preferably an organic solvent in order to keep the storage stability of the coating liquid for forming a film.
  • the colloidal solution it is preferable that the pH or pKa is adjusted to 2 to 10, particularly 3 to 7, from the viewpoint of the stability of the coating solution for film formation.
  • Examples of the organic solvent used for the dispersion medium of the colloidal solution include alcohols such as methanol, ethanol, isopropanol (2-propanol), 1-butanol; ethylene glycol, propylene glycolol, hexylene glycolol, ethylene glycololmono.
  • Glycols such as propionole ether; Ketones such as acetone, methyl ethyl ketone (2-butanone), methyl isobutyl ketone (3 methyl 2 butanone), 4 methyl-2-pentanone; aromatics such as toluene and xylene Hydrocarbons; Amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; Esters such as ethyl acetate, butyl acetate and y butyrolataton; Ethers such as tetrahydrofuran and 1,4 dioxane; Solvent (B), Solvent (C), Solvent (as Among these solvents, alcohols or dallicols are preferable, and these organic solvents can be used alone or in admixture of two or more as a dispersion medium.
  • leveling agents and surfactants known ones can be used. In particular, commercial products are preferred because they are easily available!
  • the coating liquid for forming a film obtained by the present invention is prepared by a production method including [Step 1] and [Step 2], and may be prepared by a method including [Step 3] as necessary. so wear.
  • the coating liquid for forming a film obtained by the production method of the present invention can be applied to a substrate and thermally cured to obtain a desired cured film.
  • a coating method a known or well-known method can be adopted. For example, a dip method, a flow coating method, a spray method, a bar coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method, a flexographic printing method, an ink jet method and the like can be employed. Among these, a good coating film can be formed by the flexographic printing method.
  • examples of the substrate to be used include plastics; glass; glass with a transparent electrode such as ATO, FTO (fluorine-doped tin oxide), ITO, IZO; and substrates such as ceramics.
  • plastics include polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, polyolefin, polyethylene terephthalate, polyacrylonitrile, triacetylcellulose, diacetylcellulose, Examples include acetate butyrate cellulose.
  • Examples of the shape include a plate or a film.
  • the coating solution for forming a film is generally filtered using a filter or the like before coating.
  • the coating film formed on the substrate is dried at a temperature of room temperature to 120 ° C, and then preferably thermally cured at a temperature of 150 to 250 ° C. At this time, the time required for drying may be 30 seconds or more, but 10 minutes or less is sufficient.
  • the time required for thermosetting may be appropriately selected according to the desired cured film characteristics, and may be a force of 10 minutes or more. When a low curing temperature is selected, it is easy to obtain a cured film having sufficient hardness by increasing the curing time.
  • the coating liquid for forming a film of the present invention can provide a cured film having sufficient hardness even at a curing temperature exceeding 250 ° C.
  • thermosetting It is also effective to irradiate energy rays (ultraviolet rays, etc.) using a mercury lamp, a metal nitride lamp, a xenon lamp, an excimer lamp, etc. prior to thermosetting.
  • energy rays ultraviolet rays, etc.
  • the curing temperature can be further reduced, and the hardness of the coating can be reduced.
  • the refractive index can be increased.
  • the irradiation amount of the energy beam can be appropriately selected as necessary, but usually several hundred to several thousand mjZcm 2 is appropriate.
  • the coating liquid for forming a film obtained by the present invention is excellent in film forming ability in flexographic printing.
  • a film that can be sufficiently cured at a low temperature can be formed.
  • the liquid crystal aligning film which suppressed repelling and pinhole can be formed.
  • the coating liquid for forming a film obtained according to the present invention can form a film having the above-described characteristics, and thus is very useful for improving the display characteristics of a liquid crystal display element.
  • HG Hexylene glycol (also known as 2-methyl-2, 4 pentanediol)
  • PGME Propylene glycol monomethyl ether (also known as: 1-methoxy-2-propanol)
  • BCS Butyl Seguchi Solve (also known as: 1 butoxy 2-ethanol)
  • PB Propylene glycol monobutyl ether (also known as: 1 butoxy 2-propanol
  • GC measurement conditions are as follows.
  • Injection temperature 270 ° C.
  • Carrier gas Nitrogen (flow rate 30mLZmin).
  • pre-substitution solutions (P2 to P11) were prepared in the same manner as in Preparation Example 1. However, in Adjustment Example 4, no other alkoxide was used.
  • the nitric acid in Table 1 means a 60 mass% nitric acid aqueous solution.
  • the pre-substitution solution (P2 P11) was substituted with the solvent (C) in the same manner as in Example 1 to obtain a substitution solution (Q2 Q15). Then, a solvent (D) was added to the replacement solution (Q2 Q15) with the composition shown in Table 2 to prepare a coating solution for coating film formation (Z2 Z15). The amount of residual solvent (B) in this coating solution (Z2 Z15) was measured by GC.
  • TEOS20. 8g in solution was mixed with ethanol, water 5. dissolved and 28 mass 0/0 aqueous ammonia 0. 6 g as 4g and the alkali catalyst in ethanol 23. 2 g, a mixed solution with stirring at room temperature mixed did. After 30 minutes, the liquid begins to show a colloidal color, confirming the formation of particulate products It was done. After that, stirring was continued for 24 hours at room temperature.
  • a colloidal silica solution was obtained.
  • the average particle size by dynamic light scattering was 20 nm.
  • a coating solution for coating film formation was prepared by mixing 10.00 g of the coating solution for coating film formation (Z2) shown in Table 2 and 10.00 g of the particle dispersion K1.
  • the obtained coating liquid for forming a film (Z16) was evaluated for pencil hardness, refractive index, printability, and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3.
  • the obtained coating liquid (T1) was evaluated for pencil hardness, refractive index, printability and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3.
  • the obtained coating liquid (T2) was evaluated for pencil hardness, refractive index, printability and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3.
  • the obtained coating liquid (T3) was evaluated for pencil hardness, refractive index, printability, and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3.
  • the coating solution for forming a film of the example and the coating solution of the comparative example were filtered using a chromatodisc (manufactured by Kurashiki Boseki Co., Ltd., pore size 0.45 m). Then, it was dropped on a glass substrate with ITO (ITO film thickness was 0.7 mm), and after a preliminary rotation for 5 seconds at a rotation speed of 3 OOrpm using a spin coater (Mikasa, 1H-DX2), The coating film was formed by rotating at 4000 rpm for 20 seconds. Next, after drying on a hot plate at a temperature of 80 ° C. for 3 minutes, the cured film was obtained by heating on the hot plate for 15 minutes at a curing temperature of 180 ° C. The pencil hardness of the obtained cured film was measured according to the test method CFIS K5400).
  • Example 14 and Comparative Example 3 the curing temperature was 200 ° C
  • Example 4 and Comparative Example 2 the curing temperature was 250 ° C.
  • a cured film was formed in the same manner as in the above [pencil hardness] evaluation, except that the glass substrate with ITO was replaced with a silicon substrate (100).
  • the refractive index at a wavelength of 633 nm was measured with an ellipsometer (manufactured by Mizojiri Optical Industry Co., Ltd., DVA-36L type).
  • the coating solution for forming a coating film of the example and the coating solution of the comparative example were filtered using a chromatodisc (manufactured by Kurashiki Boseki Co., Ltd., pore size 0.45 m). After that, using a DR type printing machine (Nihon Photo Printing Co., Ltd., Arox Roll (360 #), letterpress (halftone dot 400L30% 70 °)), a glass substrate with ITO (ITO film thickness 0.7mm) A coating was formed on top. This coating film was dried on a hot plate at a temperature of 80 ° C. for 3 minutes and then heated on a hot plate at a curing temperature of 180 ° C. for 15 minutes to obtain a cured coating film.
  • Example 14 and Comparative Example 3 the curing temperature was 200 ° C, and in Example 4 and Comparative Example 2, the curing temperature was 250 ° C.
  • the coating solution for coating formation is filtered using a chromatodisc (Kurashita Boseki Co., Ltd., pore size 0.45 m), then dropped on a glass substrate with ITO, and a spin coater (Mikasa Co., 1H-DX2) is applied
  • the coating film was formed by pre-rotating at 300 rpm for 5 seconds and then rotating at 4000 rpm for 20 seconds. Subsequently, it was dried on a hot plate at a temperature of 80 ° C. for 3 minutes.
  • a cured film was formed in the same manner as in the above [Pencil hardness (with UV irradiation)] evaluation, except that the glass substrate with ITO was replaced with a silicon substrate (100).
  • the refractive index at a wavelength of 633 nm was measured with an ellipsometer (Mitoshiri Optical Industry Co., Ltd., DVA-36L type).
  • Example 2 For the coating solution for forming a film (Z1) obtained in Example 1, the pencil hardness (with UV irradiation), refraction was performed in the same manner as in Example 17 except that the curing temperature was changed from 150 ° C to 300 ° C. The rate (with UV irradiation) and the liquid crystal alignment film printability (with UV irradiation) were evaluated. The results are shown in Table 5.
  • Example 2 For the coating solution for forming a film (Z2) obtained in Example 2, the pencil hardness (with UV irradiation), refraction was performed in the same manner as in Example 18 except that the curing temperature was changed from 150 ° C to 300 ° C. The rate (with UV irradiation) and the liquid crystal alignment film printability (with UV irradiation) were evaluated. The results are shown in Table 5.
  • the coating liquid for forming a film (Z2) of Example 2 was weighed in a weighing bottle, dried in an oven at 120 ° C. for 1 hour, and then baked at 180 ° C. for 2 hours. The mass of the firing residue was measured, and the amount of residual organic components was calculated using the following formula. At that time, a value obtained by calculating all metal atoms contained in the coating liquid for forming a film as an oxide was defined as a metal oxide solid content. The results are shown in Table 6.
  • Solid content concentration (mass%) ⁇ (mass of firing residue) / (mass of coating liquid for film formation) ⁇ X 100
  • Metal oxide equivalent concentration (mass%) ⁇ (metal oxide solid content) / (mass of film forming coating solution) ⁇ X 100
  • Z2 For the coating liquid for forming a film (Z2) of Example 2, Z2 was dropped on a glass substrate, and after a preliminary rotation for 5 seconds at a rotation speed of 300 rpm using a spin coater (Mikasa, 1H—DX2), The film was formed by rotating at 4000 rpm for 20 seconds. Next, the formed glass substrate was dried on a hot plate at a temperature of 80 ° C. for 3 minutes. The coating film was shaved and a dry powder of Z2 was collected. The collected powder was heated from room temperature to 500 ° C at 5 ° C per minute using a thermogravimetric differential thermal analyzer (Model WS 002, manufactured by Mac Science), and the powder TG (weight loss rate) ) And DTA (differential heat). The measurement results are shown in Figs.
  • Example 20 the weight reduction rate and differential heat of the dry powder of T1 were measured in the same manner as in Example 20, except that the coating solution for forming a film (Z2) was replaced with the coating solution (T1) of Comparative Example 1. It was. The measurement results are shown in Figs.
  • the coating liquid for film formation obtained by the present invention is generally applied to an electrode protective film (insulating film) of a liquid crystal display element at a low curing temperature. It showed a pencil hardness of 5H or higher, which is considered to be sufficient when used as a film. Then, it was confirmed that a liquid crystal alignment film with suppressed repelling and pinholes was formed on this film.
  • the curing temperature can be further lowered to increase the hardness and refractive index of the coating at 150 ° C.
  • the formed liquid crystal alignment film showed no film repellent or pinhole! / Excellent film formability. Furthermore, a film was formed in which the refractive index could be arbitrarily adjusted in the range of 1.5 to 2.1.
  • the replacement solution (Q1 to Q16) and the coating solution for film formation (Z1 to Z16) in Examples 1 to 16 were stored at 25 ° C and humidity of 50% RH for 1 month. No generation of precipitates was observed, and it was confirmed that the storage stability was excellent.
  • Example 19 and Comparative Example 4 From the results of Example 19 and Comparative Example 4 (see Table 6), it was confirmed that the coating liquid for forming a film obtained according to the present invention had little organic component (carbon component) remaining in the film cured at low temperature. . From this, it is inferred that desorption and decomposition of organic components (mainly glycol) occurs under low-temperature curing conditions.
  • organic components mainly glycol
  • thermogravimetric differential thermal analysis of Example 20 and Comparative Example 5 From the results of thermogravimetric differential thermal analysis of Example 20 and Comparative Example 5 (FIGS. 1 and 2), the remaining organic components of the coating film formed using the coating liquid for film formation obtained by the present invention are more separated. 'It is inferred that it is easy to disassemble. This is thought to accelerate the curing of the coating film and to facilitate curing at low temperatures.
  • the coating liquid for forming a film obtained by the present invention is excellent in film forming ability in flexographic printing and can form a film that can be sufficiently cured at a low temperature. Furthermore, a liquid crystal alignment film with suppressed repellency and pinholes can be formed on this film.

Abstract

Disclosed is a method for producing a coating liquid which enables to form a coating film that is sufficiently cured under low-temperature curing conditions and enables to form an alignment film thereon which is suppressed in repelling or pinholes. Specifically disclosed is a method for producing a coating liquid for film formation characterized by comprising a step for obtaining a solution which contains a condensation product produced by subjecting a metal alkoxide (A) to a hydrolysis-condensation reaction in a solvent (B) [step 1], and a step for obtaining a solution by substituting the solution obtained in step 1 with a solvent (C) [step 2]. In this connection, the metal alkoxide (A) is at least one metal alkoxide selected from compounds represented by the following formula (1): Ti(OR1)4 (1) (wherein R1 represents an alkyl group having 1-5 carbon atoms); the solvent (B) is at least one organic solvent selected from the group consisting of alcohols having 1-10 carbon atoms, esters having 2-5 carbon atoms, tetrahydrofuran, and ethers having 2-5 carbon atoms; and the solvent (C) is at least one organic solvent selected from glycols having 2-10 carbon atoms.

Description

明 細 書  Specification
被膜形成用塗布液の製造方法  Method for producing coating liquid for film formation
技術分野  Technical field
[0001] 本発明は、被膜形成用塗布液の製造方法に関する。詳細には、チタン原子を含有 する被膜を形成する被膜形成用塗布液の製造方法である。  The present invention relates to a method for producing a coating liquid for forming a film. More specifically, it is a method for producing a coating liquid for forming a film for forming a film containing titanium atoms.
背景技術  Background art
[0002] 液晶表示素子の大型化に伴い、透明電極の絶縁、保護の目的で、酸化物被膜を 形成する事が行われている。酸化物被膜の形成方法は、蒸着法、スパッタリング法等 で代表される気相法と酸化物被膜形成用塗布液を用いる塗布法が知られて 、る。こ のなかで、生産性、大型基板への被膜形成の容易さから、塗布法が多く用いられて いる。塗布液としては、テトラアルコキシシランの加水分解物及びその他の金属アル コキシドゃ金属キレートイ匕物との複合物が知られて 、る。  [0002] With the enlargement of liquid crystal display elements, oxide coatings have been formed for the purpose of insulating and protecting transparent electrodes. As a method for forming an oxide film, a vapor phase method represented by a vapor deposition method, a sputtering method, and the like, and a coating method using a coating solution for forming an oxide film are known. Of these, coating methods are often used because of productivity and ease of film formation on large substrates. As the coating solution, tetraalkoxysilane hydrolyzate and other metal alkoxides and metal chelate compounds are known.
アルコキシド化合物を用いて塗布液が調製される場合、一般に使用されるアルコキ シドィ匕合物はシリコンアルコキシドを除いては加水分解速度が速い。そのため、アル コキシド化合物の加水分解速度を調整する目的で、ァセチルアセトン等のキレートイ匕 剤を作用させることが試みられている。しかし、一般にキレートイ匕されたィ匕合物は、熱 分解温度が高くなり、 450°C以上の焼成が望ましいとされている。(例えば、特許文献 1参照。 )  When a coating solution is prepared using an alkoxide compound, a generally used alkoxide compound has a high hydrolysis rate except for silicon alkoxide. Therefore, attempts have been made to act chelating agents such as acetylylacetone for the purpose of adjusting the hydrolysis rate of the alkoxide compound. However, chelated compounds generally have a high thermal decomposition temperature, and firing at 450 ° C or higher is desirable. (For example, see Patent Document 1.)
別の方法として、シリカ チタ-ァ系塗布液において、シリコンアルコキシドとチタン アルコキシドの加水分解物に鉱酸を添加することで、キレート化等の安定化手段を用 いずに透明なコーティング剤とすることが試みられている。この場合も、少なくとも 300 °C以上の焼成が必要とされている。(例えば、特許文献 2参照。 )  Another method is to add a mineral acid to the hydrolyzate of silicon alkoxide and titanium alkoxide in a silica-titer coating solution to obtain a transparent coating agent without using a stabilizing means such as chelation. It has been tried. In this case as well, baking at least at 300 ° C or more is required. (For example, see Patent Document 2.)
近年、液晶表示素子の軽薄化が進むにつれて、液晶表示素子に用いられる透明 電極膜の抵抗値変化、基板ガラスの薄型化、カラーフィルターの耐熱性等の問題か ら絶縁膜 (酸ィ匕物被膜)の形成温度を低下させることが望まれている。更に、液晶表 示素子の製造コスト削減や省エネ指向といった状況から、特に 250°C以下で硬化す る絶縁膜 (酸ィ匕物被膜)に対する要望が高まってきている。 それと同時に、液晶表示素子の高精細化は、絶縁膜に由来する液晶配向膜のはじ きや、ピンホール等が、液晶表示素子の表示特性に大きく影響することから、絶縁膜 の改善が望まれている。力!]えて、前記の改善に伴い、液晶表示素子の製造プロセス における歩留まりの向上も求められている。 In recent years, as liquid crystal display elements have become lighter and thinner, insulation films (acid-oxide coatings) have problems such as changes in the resistance value of transparent electrode films used in liquid crystal display elements, thinner substrate glass, and heat resistance of color filters. ) Is desired to be reduced. In addition, demands for insulating films (acidic oxide coatings) that cure at 250 ° C or lower are increasing due to the reduction in manufacturing costs of liquid crystal display elements and the trend toward energy saving. At the same time, the high definition of liquid crystal display elements is expected to improve the insulation film, because the liquid crystal alignment film derived from the insulation film, such as the beginning and pinholes, greatly affect the display characteristics of the liquid crystal display element. ing. Power! Along with the above improvement, there is also a demand for an improvement in yield in the manufacturing process of liquid crystal display elements.
[0003] 特許文献 1:特開昭 63 - 258959号公報 [0003] Patent Document 1: Japanese Patent Laid-Open No. 63-258959
特許文献 2:特開昭 55 - 25487号公報  Patent Document 2: Japanese Patent Laid-Open No. 55-25487
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明の目的は、 150〜250°Cと!、う低温の硬化条件で十分に硬化する被膜を形 成でき、その被膜上にはじきやピンホールを抑制した配向膜を形成することができる 被膜形成用塗布液の製造方法を提供することにある。 [0004] An object of the present invention is to form a film that can be sufficiently cured under low-temperature curing conditions at 150 to 250 ° C, and to form an alignment film that suppresses repellency and pinholes on the film. An object of the present invention is to provide a method for producing a coating liquid for forming a film.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者らは、上記の状況に鑑み鋭意研究した結果、本発明を完成するに至った 即ち、本発明の要旨は、以下のとおりである。 [0005] As a result of intensive studies in view of the above circumstances, the present inventors have completed the present invention. That is, the gist of the present invention is as follows.
1.金属アルコキシド (A)を溶媒 (B)中で加水分解 '縮合反応して生成する縮合物を 含有する溶液を得る [工程 1]と、  1. Hydrolysis of metal alkoxide (A) in solvent (B) 'to obtain a solution containing a condensate produced by a condensation reaction [Step 1]
上記 [工程 1]で得られた溶液を溶媒 (C)で置換した溶液を得る [工程 2]と、を有す ることを特徴とする被膜形成用塗布液の製造方法。  And [Step 2] for obtaining a solution obtained by replacing the solution obtained in [Step 1] with a solvent (C).
但し、金属アルコキシド (A)は、式(1)で表される化合物(式中、 R1は炭素数 1〜5 のアルキル基を表す)力 選ばれる少なくとも 1種の金属アルコキシドであり; Provided that the metal alkoxide (A) is a compound represented by the formula (1) (wherein R 1 represents an alkyl group having 1 to 5 carbon atoms) and is at least one metal alkoxide selected;
[化 1]  [Chemical 1]
TiCOR^ (1) TiCOR ^ (1)
溶媒 )は、炭素数 1〜10のアルコール、炭素数 2〜5のエステル、テトラヒドロフラ ン及び炭素数 2〜5のエーテル力 なる群力 選ばれる少なくとも 1種の有機溶媒で あり;溶媒 (C)は、炭素数 2〜 10のグリコール力も選ばれる少なくとも 1種の有機溶媒 である。 2.金属アルコキシド (A)が、更に、式(2)で表される化合物カゝら選ばれる少なくとも 1 種のアルコキシシランを含有する 1に記載の製造方法。 Solvent) is at least one organic solvent selected from the group force consisting of alcohol having 1 to 10 carbon atoms, ester having 2 to 5 carbon atoms, tetrahydrofuran and ether power having 2 to 5 carbon atoms; solvent (C) is And at least one organic solvent with a glycol power of 2 to 10 carbon atoms selected. 2. The production method according to 1, wherein the metal alkoxide (A) further contains at least one alkoxysilane selected from the compound represented by the formula (2).
[化 2]  [Chemical 2]
(R2)nSi(OR3)4.n (2) (R 2) n Si (OR 3) 4. N (2)
(式中、 R2はアルキル基、ァルケ-ル基、又はァリール基を表し、 R3は炭素数 1〜5の アルキル基を表し、 nは 0から 2の整数を表す。) (In the formula, R 2 represents an alkyl group, a alkenyl group, or an aryl group, R 3 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 2.)
3.アルコキシシラン力 式(2)の nが 0である化合物力 選ばれる少なくとも 1種の硅 素化合物である、上記 2に記載の製造方法。  3. Alkoxysilane force Compound power in which n in formula (2) is 0. The production method according to 2 above, which is at least one kind of silicon compound selected.
4.金属アルコキシド(A)が、アルコキシチタンの 1モルに対してアルコキシシランを 0 4. The metal alkoxide (A) contains 0 alkoxysilane per 1 mole of alkoxytitanium.
. 05〜4モル含有する 1乃至 3のいずれか 1項に記載の被膜形成用塗布液の製造方 法。 The method for producing a coating liquid for forming a coating film according to any one of 1 to 3, which contains 05 to 4 mol.
5.金属塩類から選ばれる 1種又は複数種の触媒を [工程 1]で使用する、上記 1乃至 4の 、ずれか 1項に記載の製造方法。  5. The production method according to any one of 1 to 4 above, wherein one or a plurality of catalysts selected from metal salts are used in [Step 1].
6. [工程 2]で得られた溶液に対し、該溶液と相溶する溶媒 (D)を添加する [工程 3] を有する、上記 1乃至 5のいずれ力 1項に記載の製造方法。  6. The production method according to any one of 1 to 5 above, which comprises [Step 3], wherein a solvent (D) compatible with the solution is added to the solution obtained in [Step 2].
7.上記 1乃至 5のいずれか 1項に記載の製造方法により得られる被膜形成用塗布液  7. Coating solution for forming a film obtained by the production method according to any one of 1 to 5 above
8.上記 7に記載の被膜形成用塗布液を用 V、て得られる被膜。 8. A film obtained by using the coating liquid for film formation described in 7 above.
9.上記 7に記載の被膜形成用塗布液を用 V、て得られる絶縁膜。  9. An insulating film obtained by using the coating liquid for forming a film described in 7 above.
10.上記 7に記載の被膜形成用塗布液を用いて形成される被膜を有する液晶表示 素子用基板。  10. A substrate for a liquid crystal display device having a coating film formed using the coating liquid for forming a coating film according to 7 above.
11.上記 7に記載の被膜形成用塗布液を用いて形成される被膜を有する液晶表示 素子。  11. A liquid crystal display device having a film formed using the coating liquid for forming a film according to 7 above.
発明の効果 The invention's effect
本発明の製造方法により得られた被膜形成用塗布液は、 150〜250°Cという低温 の硬化条件で十分に硬化し、その被膜上にはじきやピンホールを抑制した液晶配向 膜を形成することができる。そのため、表示特性に優れた液晶表示素子の製造に有 用である。 The coating liquid for forming a film obtained by the production method of the present invention is sufficiently cured under a low temperature curing condition of 150 to 250 ° C., and forms a liquid crystal alignment film on which the repellency and pinholes are suppressed. Can do. Therefore, it is useful for manufacturing liquid crystal display elements with excellent display characteristics. It is for.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]被膜形成用塗布液 Z2の乾燥粉末 (実施例)及び塗布液 T1の乾燥粉末 (比較 例)の重量減少率測定結果である。  [0007] FIG. 1 shows the results of measurement of the weight loss rate of the dry powder (Example) of the coating solution for coating film formation Z2 and the dry powder (Comparative Example) of the coating solution T1.
[図 2]被膜形成用塗布液 Z2の乾燥粉末 (実施例)及び塗布液 T1の乾燥粉末 (比較 例)の示差熱測定結果である。  FIG. 2 shows the results of differential thermal measurements of a dry powder (Example) of coating solution Z2 for film formation and a dry powder (Comparative Example) of coating solution T1.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明は被膜形成用塗布液の製造方法であり、溶媒 )、即ち、炭素数 1〜10の アルコール、炭素数 2〜5のエステル、テトラヒドロフラン及び炭素数 2〜5のエーテル 力 なる群力 選ばれる少なくとも 1種の有機溶媒から、溶媒 (C)、即ち、グリコール への溶媒置換工程を有することを最大の特徴とするものである。本発明の製造方法 により得られる被膜形成用塗布液は、 150〜250°Cという低温において充分に硬化 する被膜を提供することができる。そして、その被膜を液晶表示素子の電極保護膜( 絶縁膜)として用いる場合、この被膜上に、液晶配向膜を印刷でき、更にはじきゃピ ンホールを抑制した配向膜を形成することができるという優れた効果を奏する。  [0008] The present invention relates to a method for producing a coating liquid for forming a film, a solvent), that is, a group consisting of an alcohol having 1 to 10 carbon atoms, an ester having 2 to 5 carbon atoms, tetrahydrofuran, and an ether having 2 to 5 carbon atoms. Power The greatest feature is that it has a solvent substitution step from at least one selected organic solvent to solvent (C), that is, glycol. The coating liquid for forming a film obtained by the production method of the present invention can provide a film that is sufficiently cured at a low temperature of 150 to 250 ° C. When the coating is used as an electrode protective film (insulating film) for a liquid crystal display element, the liquid crystal alignment film can be printed on the coating, and an alignment film with suppressed pinholes can be formed. Has an effect.
[0009] 従来、アルコキシチタンを用いる加水分解 '縮合反応は、アルコール等の溶媒中で 、アルコキシチタンの加水分解速度を調整するためにァセチルアセトンゃグリコール 等の安定化剤の存在下で行われる。これは、アルコキシチタンを安定ィ匕した状態で 加水分解 '縮合反応し、縮合物を生成するものである。これに対して、本発明では、 アルコキシチタンを含有する金属アルコキシドを加水分解 '縮合反応して縮合物を生 成した後に、グリコールで溶媒置換するものである。  [0009] Conventionally, hydrolysis using alkoxytitanium 'Condensation reaction is carried out in a solvent such as alcohol in the presence of a stabilizer such as acetylacetone glycol to adjust the hydrolysis rate of alkoxytitanium. . This is a product of hydrolysis and condensation reaction in a stable state of alkoxy titanium to produce a condensate. In contrast, in the present invention, a metal alkoxide containing alkoxytitanium is hydrolyzed and condensed to form a condensate, and then solvent-substituted with glycol.
ここで、従来は、グリコール等の安定化剤が配位したアルコキシチタン又はそれを 含有する金属アルコキシドが加水分解 '縮合して縮合物を生成する。後者 (本発明) では、アルコキシチタン又はそれを含有する金属アルコキシドが加水分解 ·縮合して 縮合物を生成した後に、グリコールが配位する。  Here, conventionally, an alkoxytitanium coordinated with a stabilizer such as glycol or a metal alkoxide containing the same is hydrolyzed and condensed to form a condensate. In the latter (the present invention), the glycol is coordinated after the alkoxytitanium or the metal alkoxide containing it is hydrolyzed and condensed to form a condensate.
[0010] 本発明により得られる顕著な効果を勘案すると、従来から行われる反応で生成する 縮合物と安定化剤であるダリコールとの配位状態と、本発明により生成する縮合物と グリコールとの配位状態は、非常に異なった状態であると推察される。 特に、縮合体のチタン原子とグリコールとの配位状態において、本発明ではグリコ ールがより脱離し易い状態であると推察される。 [0010] Considering the remarkable effect obtained by the present invention, the coordination state between the condensate produced by the conventional reaction and the stabilizer Daricol, the condensate produced by the present invention and glycol The coordination state is presumed to be very different. In particular, in the coordination state between the titanium atom of the condensate and the glycol, it is presumed that in the present invention, the glycol is more easily detached.
そして、この配位状態が、塗布液及びそれから得られる塗膜においても維持されて いることで、本発明の効果を発現させるものと推察される。  And it is guessed that this coordination state is maintained also in a coating liquid and the coating film obtained from it, and expresses the effect of this invention.
換言すると、前者に対し、後者 (本発明)では、グリコールの脱離が比較的容易なた め、低温で塗膜が硬化し易いと言える。  In other words, it can be said that in the latter (the present invention) the glycol is relatively easy to desorb, and thus the coating film is easily cured at a low temperature.
更に、塗膜を液晶表示素子の電極保護膜 (絶縁膜)として用いる場合には、塗膜中 のチタン原子に配位したグリコールが少ないということが、液晶配向膜のはじきやピン ホールを抑制するということに繋がる。つまり、本発明は、塗膜を液晶表示素子の電 極保護膜 (絶縁膜)として用いる場合にも、液晶配向膜の印刷性を良好にするという 非常に優れた効果を奏するのである。  Furthermore, when the coating film is used as an electrode protective film (insulating film) for a liquid crystal display element, the fact that the glycol coordinated to the titanium atom in the coating film is small suppresses repelling and pinholes in the liquid crystal alignment film. It leads to that. That is, the present invention has a very excellent effect of improving the printability of the liquid crystal alignment film even when the coating film is used as an electrode protective film (insulating film) of a liquid crystal display element.
[0011] 以下に本発明について具体的に述べる。  [0011] The present invention will be specifically described below.
[工程 1]について:  About [Process 1]:
この工程 1では、金属アルコキシド (A)を溶媒 (B)中で加水分解 '縮合反応を行う。 この工程 1で用いる金属アルコキシド (A)は、式(1)で表される化合物力も選ばれる 少なくとも 1種のアルコキシチタンが使用される。  In this step 1, the metal alkoxide (A) is hydrolyzed and subjected to a condensation reaction in the solvent (B). As the metal alkoxide (A) used in Step 1, at least one kind of alkoxytitanium in which the compound power represented by the formula (1) is also selected is used.
[0012] [化 3] [0012] [Chemical 3]
Τί(0^)4 (1) 式中、 R1は炭素数 1〜5、好ましくは 2〜4のアルキル基である。 Τί (0 ^) 4 (1) In the formula, R 1 is an alkyl group having 1 to 5 carbon atoms, preferably 2 to 4 carbon atoms.
[0013] 式(1)で表されるテトラアルコキシチタンの具体例としては、テトラメトキシチタン、テ トラエトキシチタン、テトライソプロポキシチタン、テトラ η—プロポキシチタン、テトラ η- ブトキシチタン、テトライソブトキシチタン、テトラ t—ブトキシチタン、テトラペントキシチ タン等が挙げられる。好ましくは、テトラエトキシチタン、テトライソプロポキシチタン、 又はテトラ n—ブトキシチタンである。 Specific examples of the tetraalkoxy titanium represented by the formula (1) include tetramethoxy titanium, tetraethoxy titanium, tetraisopropoxy titanium, tetra η-propoxy titanium, tetra η-butoxy titanium, and tetraisobutoxy titanium. Tetra t-butoxy titanium, tetrapentoxy titan and the like. Tetraethoxy titanium, tetraisopropoxy titanium, or tetra n-butoxy titanium is preferable.
[0014] 工程 1に用いる (A)成分は、式(1)で表されるアルコキシチタンのうちの少なくとも 1 種を必須成分とする限りにおいて特に限定されない。従って、例えば、式(1)で表さ れるアルコキシチタン以外の金属アルコキシド(以下、他のアルコキシドと称す。)を併 用することもできる。この他のアルコキシドとしては、 Si、 Al、 Sn、 In、 Bi、 Zn、 Pb、 Ti 、 Ta、 Mn、 Zr等のアルコキシドが挙げられる。これらの他のアルコキシドは、必要に 応じてアルコキシ基を 1つ以上有する化合物の中力 適宜選択して用いることができ 、複数種を併用することもできる。 [0014] The component (A) used in step 1 is not particularly limited as long as at least one of the titanium titaniums represented by the formula (1) is an essential component. Therefore, for example, metal alkoxides other than alkoxytitanium represented by formula (1) (hereinafter referred to as other alkoxides) are also used. It can also be used. Other alkoxides include alkoxides such as Si, Al, Sn, In, Bi, Zn, Pb, Ti, Ta, Mn, and Zr. These other alkoxides can be appropriately selected and used as necessary for compounds having one or more alkoxy groups, and a plurality of types can be used in combination.
この中で、シリコンアルコキシド (以下、アルコキシシランと称す。)は、種類も豊富で 市場での入手が容易なので用いやすい。特に、本発明の製造方法によって得られる 被膜用塗布液を液晶表示素子に適用する場合、被膜用塗布液から得られる被膜の 屈折率調整がし易 、ため好ま U、。  Among these, silicon alkoxides (hereinafter referred to as alkoxysilanes) are easy to use because they are abundant in variety and readily available on the market. In particular, when the coating liquid for coating obtained by the production method of the present invention is applied to a liquid crystal display element, the refractive index of the coating obtained from the coating liquid for coating can be easily adjusted.
[0015] その際に用いるアルコキシシランは、単量体だけではなぐメチルシリケート及びェ チルシリケートの縮合体も用いることができ、これらの中から選ばれる 1種又は複数種 を用いることができる。 [0015] As the alkoxysilane used at that time, not only a monomer but also a condensate of methyl silicate and ethyl silicate can be used, and one or more kinds selected from these can be used.
メチルシリケ一ト及びェチルシリケートの縮合体の具体例としては、ェチルシリケート 40 (商品名、多摩化学工業社製)、ェチルシリケート 48 (商品名、日本コルコート社 製)、 MKCシリケート (商品名、三菱ィ匕学社製)、東レ 'ダウコーユング社製のシリコン レジン、 GE東芝シリコーン社製のシリコンレジン、信越ィ匕学工業社製のシリコンレジ ン、ダウコーユング 'アジア社製のヒドロキシル基含有ポリジメチルシロキサン、 日本ュ ユカ社製のシリコンオリゴマー等が挙げられる。  Specific examples of condensates of methyl silicate and ethyl silicate include ethyl silicate 40 (trade name, manufactured by Tama Chemical Co., Ltd.), ethyl silicate 48 (trade name, manufactured by Nippon Colcoat Co., Ltd.), MKC silicate (trade name) ), Toray 'silicon resin from Dow Co., Ltd., silicon resin from GE Toshiba Silicone, silicon resin from Shin-Etsu Co., Ltd., hydroxyl group-containing polydimethyl from Dow Co., Ltd. Examples thereof include siloxane and silicon oligomer manufactured by Nippon Yuka.
本発明においては、特に、式(2)で表されるアルコキシシランが好適に用いられ、こ れらの中力 選ばれる 1種又は複数種を用いることができる。  In the present invention, in particular, alkoxysilanes represented by the formula (2) are preferably used, and one or more selected from these medium strengths can be used.
[化 4]  [Chemical 4]
(R2)nSi(OR3)4.n (2) 式中、 R2はアルキル基、ァルケ-ル基、ァリール基を表し、 R3は炭素数 1〜5のァ ルキル基を表し、 nは 0から 2の整数を表す。 (R 2 ) n Si (OR 3 ) 4. n (2) In the formula, R 2 represents an alkyl group, an alkyl group, or an aryl group, R 3 represents an alkyl group having 1 to 5 carbon atoms, n represents an integer of 0 to 2.
以下に、上記式(2)で表されるアルコキシシランの具体例を示すがこれに限定され るものではない。  Specific examples of the alkoxysilane represented by the above formula (2) are shown below, but are not limited thereto.
[0016] テトラメトキシシラン、テトラエトキシシラン、テトラプロボキシシラン、テトラブトキシシ ラン等のテトラアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、ェ チルトリメトキシシラン、ェチルトリエトキシシラン、プロピルトリメトキシシラン、プロピル トリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメト キシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエト キシシラン、ォクチルトリメトキシシラン、ォクチルトリエトキシシラン、ドデシルトリメトキ シシラン、ドデシルトリエトキシシラン、へキサデシルトリメトキシシラン、へキサデシルト リエトキシシラン、ォクタデシルトリメトキシシラン、ォクタデシルトリエトキシシラン、フエ ニルトリメトキシシラン、フエニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリ エトキシシラン、 γ—ァミノプロピルトリメトキシシラン、 γ—ァミノプロピルトリエトキシシ ラン、 Ύ—グリシドキシプロピルトリメトキシシラン、 γ—グリシドキシプロピルトリェトキ シシラン、 γ—メルカプトプロピルトリメトキシシラン、 γ—メルカプトプロピルトリェトキ シシラン、 γ—メタクリロキシプロピルトリメトキシシラン、 γ—メタクリロキシプロピルトリ エトキシシラン、 γ—ウレイドプロピルトリメトキシシラン、 γ—ウレイドプロピルトリェトキ シシラン、トリフルォロプロピルトリメトキシシラン、トリフルォロプロピルトリエトキシシラ ン、トリデカフルォロォクチルトリメトキシシラン、トリデカフルォロォクチルトリエトキシシ ラン、ヘプタデカフルォロデシルトリメトキシシラン、ヘプタデカフルォロデシルトリエト キシシラン等のトリアノレコキシシラン;ジメチノレジメトキシシラン、ジメチノレジェトキシシ ラン等のジアルコキシシランが挙げられる。 [0016] Tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane; methyltrimethoxysilane, methyltriethoxysilane, Tiltrimethoxysilane, Ethyltriethoxysilane, Propyltrimethoxysilane, Propyltriethoxysilane, Butyltrimethoxysilane, Butyltriethoxysilane, Pentilttrimethoxysilane, Pentiltlyethoxysilane, Heptyltrimethoxysilane, Heptyltriethoxysilane Octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltriethoxysilane, Phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-a Minopropyltriethoxysilane, Ύ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxy Silane, γ-methacryloxypropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyl Trianolecoxysilanes such as trimethoxysilane, tridecafluorooctyltriethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane; Chino register silane include dialkoxysilane such as dimethylcarbamoyl Honoré jet Kishishi run.
上記のアルコキシシランの中でも、 ηが 0であるテトラアルコキシシランは最も入手し 易ぐ安価であるため用い易い。  Among the above alkoxysilanes, tetraalkoxysilane having η of 0 is easy to use because it is most readily available and inexpensive.
(Α)成分として、式(2)で表されるアルコキシシランを用いる場合、アルコキシチタン の 1モルに対してアルコキシシランを好ましくは 0. 05〜4モル、特に好ましくは 0. 25 〜4モルとすることで、 150〜250°Cの低温で充分に硬化し、液晶配向材の印刷性 が良好な塗膜を形成できると ヽぅ効果が得られ易 ヽ。  When the alkoxysilane represented by the formula (2) is used as the component (ii), the alkoxysilane is preferably 0.05 to 4 mol, particularly preferably 0.25 to 4 mol, relative to 1 mol of the alkoxytitanium. As a result, it is easy to obtain the effect if it can be sufficiently cured at a low temperature of 150 to 250 ° C. and a coating film with good printability of the liquid crystal alignment material can be formed.
この効果は、工程 1で生成する縮合体中のチタン原子と、(C)成分であるダリコール との配位状態に依存している。そのため、アルコキシシラン力 モルより多い場合には 、前記の配位及び結合状態にあるダリコールの量が相対的に少なくなるので、本発 明の効果が得られにくくなる。  This effect depends on the coordination state between the titanium atom in the condensate produced in Step 1 and the (C) component Daricol. For this reason, when the amount is greater than the alkoxysilane power mole, the amount of Daricol in the coordination and bonding state is relatively small, and thus the effect of the present invention is hardly obtained.
また、上記した量のアルコキシシランを用いることで、硬化被膜の屈折率を 1. 50〜 2. 1の範囲で任意に調整し易くなる。 In addition, by using the above-mentioned amount of alkoxysilane, the refractive index of the cured film is 1.50 to 2. Easy to adjust arbitrarily within the range of 1.
[0018] 工程 1に用いる溶媒 (B)は、炭素数 1〜10、好ましくは 1〜8、特に好ましくは 1〜4 のアルコール、炭素数 2〜5のエステル、テトラヒドロフラン及び炭素数 2〜5のエーテ ルカもなる群力も選ばれる少なくとも 1種の有機溶媒である。従って、溶媒 (B)の中の 複数種を併用することも可能である。  [0018] The solvent (B) used in Step 1 is an alcohol having 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, particularly preferably an ester having 1 to 4 carbon atoms, an ester having 2 to 5 carbon atoms, tetrahydrofuran, and 2 to 5 carbon atoms. It is at least one organic solvent that can be chosen as an ethereal group power. Therefore, it is also possible to use a plurality of types in the solvent (B).
そしてこの溶媒 (B)は、(A)成分を溶解するものであれば特に限定されない。その 具体例を以下に挙げる。  The solvent (B) is not particularly limited as long as it can dissolve the component (A). Specific examples are given below.
[0019] 例えば、メタノール、エタノール、 1 プロパノール(n—プロパノール)、 2 プロパノ ール(イソプロパノール)、 1ーブタノール、 2—ブタノール、 2—メチルー 1 プロパノ ール、へキサノール、ォクタノール、ジアセトンアルコール、 1ーメトキシー 2—エタノー ル、 1—エトキシ— 2—エタノール、 1—メトキシ— 2—プロパノール等のアルコール; 酢酸ェチル、乳酸ェチル、酢酸ブチル等のエステル;テトラヒドロフラン、ジェチルェ 一テル、 1, 4 ジォキサン等のエーテル等が挙げられる。  [0019] For example, methanol, ethanol, 1 propanol (n-propanol), 2 propanol (isopropanol), 1-butanol, 2-butanol, 2-methyl-1 propanol, hexanol, octanol, diacetone alcohol, 1 Alcohols such as methoxy-2-ethanol, 1-ethoxy-2-ethanol, 1-methoxy-2-propanol; esters such as ethyl acetate, lactic acid ethyl and butyl acetate; ethers such as tetrahydrofuran, jetyl ether and 1,4 dioxane Etc.
[0020] これらの溶媒 (B)の中では、後述する溶媒 (C)と共沸しにくぐ且つ溶媒 (C)よりも 常圧における蒸気圧の高!、溶媒を選択することが好ま 、。そのような溶媒 (B)を選 択することによって溶媒 (B)から溶媒 (C)への置換を効率良く行うことができる。 また、経済的な面からは、メタノール、エタノール、プロパノール、ブタノール等が用 い易い。  Among these solvents (B), it is preferable to select a solvent that hardly azeotropes with the solvent (C) described later and has a higher vapor pressure at normal pressure than the solvent (C). By selecting such a solvent (B), substitution from the solvent (B) to the solvent (C) can be performed efficiently. From the economical aspect, methanol, ethanol, propanol, butanol, etc. are easy to use.
[0021] 工程 1においては、(A)成分を溶媒 (B)中で加水分解 '縮合反応を行うが、好ましく は、(A)成分の縮合を促進するために触媒を用いる。触媒の使用量は、アルコキシド 中の金属原子 1モルに対し、 0. 005〜0. 5モルであるのが好ましい。  In step 1, component (A) is hydrolyzed in a solvent (B) and subjected to a condensation reaction. Preferably, a catalyst is used to promote the condensation of component (A). The amount of the catalyst used is preferably 0.005 to 0.5 mol with respect to 1 mol of the metal atom in the alkoxide.
触媒としては、酸、アルカリ、金属無機酸塩、有機金属化合物等が用いられる。一 般には、酸又は金属無機酸塩が好ましく用いられる。この触媒の具体例を以下に挙 げる力 これに限定されない。  As the catalyst, an acid, an alkali, a metal inorganic acid salt, an organic metal compound, or the like is used. In general, an acid or a metal inorganic acid salt is preferably used. Specific examples of this catalyst are as follows.
酸のうち無機酸としては、塩酸、硝酸、硫酸、リン酸等が挙げられる。有機酸として は、蟻酸、酢酸、リンゴ酸等のモノカルボン酸類;蓚酸、クェン酸、プロピオン酸、コハ ク酸等の多価カルボン酸類等が挙げられる。アルカリとしては、アンモニア、苛性ソー ダ、水酸化カリウム等の無機アルカリ;モノエタノールァミン;ジエタノールァミン;トリエ タノールァミン;ピリジン等が挙げられる。 Among the acids, examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like. Examples of the organic acid include monocarboxylic acids such as formic acid, acetic acid and malic acid; polyvalent carboxylic acids such as oxalic acid, citrate, propionic acid and succinic acid. Examples of the alkali include inorganic alkalis such as ammonia, caustic soda and potassium hydroxide; monoethanolamine; diethanolamine; Thanolamine; pyridine and the like.
[0022] 触媒として用いる金属無機酸塩は、 IIIa、 IVa、 Va族の金属若しくは遷移金属の塩 酸、硝酸、硫酸等の無機酸塩、それらの塩基性塩若しくはそれらの水和物である。  [0022] Metal inorganic acid salts used as catalysts are IIIa, IVa, Va group metal or transition metal inorganic acid salts such as nitric acid, nitric acid and sulfuric acid, basic salts thereof or hydrates thereof.
Ilia, IVa、 Va族の金属としては、 Al、 In、 Sn、 Sb、 Pb、 Bi等が挙げられる。遷移金 属としては、 Ti、 Mn、 Fe、 Ni、 Zn、 Y、 Zr、 Mo、 Cu、 W、 Ce等が挙げられる。  Examples of Ilia, IVa, and Va group metals include Al, In, Sn, Sb, Pb, and Bi. Examples of transition metals include Ti, Mn, Fe, Ni, Zn, Y, Zr, Mo, Cu, W, and Ce.
[0023] このような金属無機酸塩の具体例として、塩ィ匕アルミニウム、硝酸アルミニウム、硫 酸アルミニウム、塩基性塩化アルミニウム、塩化インジウム、硝酸インジウム、塩化スズ 、塩ィ匕アンチモン、塩化鉛、硝酸鉛、硫酸鉛、塩化ビスマス、硝酸ビスマス、塩化鉄、 硝酸鉄、硫酸鉄、塩化ニッケル、硝酸ニッケル、塩化亜鉛、硝酸亜鉛、硫酸亜鉛、塩 ィ匕イットリウム、硝酸イットリウム、塩ィ匕ジルコニウム、硝酸ジルコニウム、硫酸ジルコ二 ゥム、塩基性塩化ジルコニウム、塩基性硝酸ジルコニウム、塩化モリブデン、塩化銅、 硝酸銅、硫酸銅、塩化タングステン、硝酸タングステン、塩ィ匕セリウム、硝酸セリウム等 やそれらの水和物等が挙げられる。  [0023] Specific examples of such a metal inorganic acid salt include aluminum chloride, aluminum nitrate, aluminum sulfate, basic aluminum chloride, indium chloride, indium nitrate, tin chloride, sodium chloride antimony, lead chloride, nitric acid. Lead, lead sulfate, bismuth chloride, bismuth nitrate, iron chloride, iron nitrate, iron sulfate, nickel chloride, nickel nitrate, zinc chloride, zinc nitrate, zinc sulfate, salt yttrium, yttrium nitrate, salt 匕 zirconium, zirconium nitrate , Zirconium sulfate, basic zirconium chloride, basic zirconium nitrate, molybdenum chloride, copper chloride, copper nitrate, copper sulfate, tungsten chloride, tungsten nitrate, cerium chloride, cerium nitrate, and their hydrates, etc. Is mentioned.
[0024] また、有機金属化合物の具体例としては、酢酸アルミニウム、酢酸亜鉛、ジブチル スズジラウレート、ジブチルスズマレエート、ジブチルスズジアセテート、ォクチル酸ス ズ、ナフテン酸スズ、ジブチルスズジァセチルァセトナート、トリー i プロポキシアルミ ユウム、ジー i—プロボキシ'ェチルァセトアセテートアルミニウム、ジー i—プロボキシ' ァセチルァセトナートアルミニウム、 i—プロポキシ ·ビス(ェチルァセトアセテート)アル ミニゥム、 i—プロポキシ 'ビス(ァセチルァセトナート)アルミニウム、トリス(ェチルァセ トアセテート)アルミニウム、トリス(ァセチルァセトナート)アルミニウム、モノァセチルァ セトナート 'ビス(ェチルァセトアセテート)アルミニウム、テトラー n—ブトキシジルコ- ゥム、トリー n—ブトキシ'ェチルァセトアセテートジルコニウム、ジ—n—ブトキシ 'ビス (ェチノレアセトアセテート)ジノレコニゥム、 n—ブトキシ 'トリス(ェチノレアセトアセテート) ジルコニウム、テトラキス(n—プロピルァセトアセテート)ジルコニウム、テトラキス(ァセ チノレアセトアセテート)ジルコニウム、テトラキス(ェチノレアセトアセテート)ジルコニウム 等やこれらの化合物の部分加水分解物が挙げられる。 [0024] Specific examples of the organometallic compound include aluminum acetate, zinc acetate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, tin octylate, tin naphthenate, dibutyltin diacetylacetonate, tree i Propoxy aluminum yuum, GE i-Propoxy acetylacetoacetate aluminum, GE i-Propoxy acetylacetonate aluminum, i-Propoxy bis (ethyl acetoacetate) aluminum, i-propoxy bis ( Acetylacetonate) Aluminum, Tris (ethylacetoacetate) aluminum, Tris (acetylethylacetonate) aluminum, Monoacetylcetate'Bis (ethylacetoacetate) aluminum, Tetra-n-butoxyzirconium, Lee n- butoxy 'E chill § Seto acetate zirconium, di -n- butoxy' bis (E Chino Les acetoacetate) Jinorekoniumu, n - butoxy 'tris (E Chino Les acetoacetate) zirconium, tetrakis (n - propyl § Seth acetate ) Zirconium, tetrakis (acetinoreacetoacetate) zirconium, tetrakis (ethinoreacetoacetate) zirconium and the like, and partial hydrolysates of these compounds.
[0025] 上記の金属無機酸塩及び有機金属化合物は、溶媒 )に溶解する限りにおいて は特に限定されず、必要に応じて適宜選択して用いることができる。その際、 1種又 は複数種を併用することもできる。 [0025] The metal inorganic acid salt and the organic metal compound are not particularly limited as long as they are dissolved in the solvent), and can be appropriately selected and used as necessary. At that time, one kind or Can be used in combination.
電子材料分野に用いる場合は、金属硝酸塩、その塩基性塩若しくはその水和物又 は有機金属化合物が好ましい。より好ましくは、 Al、 In、 Zn、 Zr、 Ce、 Snの硝酸塩、 その塩基性塩若しくはその水和物又は有機金属化合物である。  When used in the field of electronic materials, a metal nitrate, a basic salt thereof, a hydrate thereof, or an organometallic compound is preferable. More preferably, it is a nitrate of Al, In, Zn, Zr, Ce, Sn, a basic salt thereof or a hydrate thereof, or an organometallic compound.
また、工程 1においては、本発明の効果を損なわない限りにおいて、上記した金属 無機塩や有機金属化合物を他の触媒と併用してもよい。  In step 1, the above-described metal inorganic salt or organometallic compound may be used in combination with another catalyst as long as the effects of the present invention are not impaired.
[0026] 工程 1における加水分解 '縮合反応は、部分加水分解及び Z又は完全加水分解 のいずれであってもよい。完^ 3口水分解の場合は、理論上、(A)成分中の全アルコ キシド基の 0. 5倍モルの水を加えればよいが、通常は 0. 5倍モルより過剰量の水を 加える。部分加水分解の場合には、 0. 2〜0. 5倍モルの水をカ卩えればよい。 [0026] Hydrolysis in Step 1 The 'condensation reaction may be any of partial hydrolysis and Z or complete hydrolysis. In the case of complete three-necked water splitting, theoretically 0.5 moles of water of all alkoxide groups in component (A) should be added, but usually an excess of 0.5 moles of water is added. . In the case of partial hydrolysis, 0.2 to 0.5 moles of water may be added.
本発明においては、上記反応に用いる水の量は、所望により適宜選択することがで きるが、(A)成分中の全アルコキシド基の 0. 2〜2. 5倍モルである。金属塩が含水 塩である場合には、その水分も上記加水分解に用いられる水の量に算入される。  In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but is 0.2 to 2.5 moles of all alkoxide groups in the component (A). In the case where the metal salt is a hydrate salt, its moisture is also included in the amount of water used for the hydrolysis.
[0027] 工程 1は、(A)成分を溶媒 (B)中で加水分解 '縮合反応を行うが、(A)成分及び溶 媒 (B)の添加順序は特に限定されない。一般には、(A)成分中のアルコキシチタンと 溶媒 (B)をあらかじめ混合した溶液に、水や触媒等の成分を添加する方法がよく用 いられる。その他アルコキシドを併用する場合は、アルコキシチタンと同時に溶媒 (B) と混合してもよいし、後から添加してもよい。その際、その他アルコキシドは、あらかじ め溶媒 (B)で希釈したものであってもよ!/、。 In Step 1, the component (A) is hydrolyzed in the solvent (B) and subjected to a condensation reaction, but the order of adding the component (A) and the solvent (B) is not particularly limited. In general, a method of adding a component such as water or a catalyst to a solution in which the alkoxytitanium in the component (A) and the solvent (B) are mixed in advance is often used. When other alkoxides are used in combination, they may be mixed with the solvent (B) simultaneously with the alkoxytitanium, or may be added later. In this case, the other alkoxide may be diluted with the solvent (B) in advance! /.
また、アルコキシチタンの加水分解を抑制する目的で予め冷却して加水分解 '縮合 反応を行ってもよい。さら〖こは、加水分解 '縮合反応中に冷却してもよいし、加水分解 •縮合反応後冷却してもよい。  Further, for the purpose of suppressing hydrolysis of alkoxytitanium, it may be preliminarily cooled and subjected to hydrolysis and condensation reaction. The sardine may be cooled during the hydrolysis' condensation reaction or may be cooled after the hydrolysis / condensation reaction.
水及び触媒は、混合して添加してもよいし、別々に添加してもよい。通常、水及び 触媒は溶媒 (B)で希釈した溶液として添加することが一般的である。  Water and the catalyst may be mixed and added, or may be added separately. Usually, water and the catalyst are generally added as a solution diluted with the solvent (B).
そして、(A)成分の加水分解 '縮合反応を促進する目的で、(A)成分と溶媒 (B)の 混合溶液を加熱することもできる。加熱温度及び加熱時間は所望により適宜選択で きる。例えば、 50°Cで 24時間加熱 ·撹拌したり、還流下で 8時間加熱 ·撹拌する等の 方法が挙げられる。 また、(A)成分と溶媒 (B)の混合溶液の加熱途中に、水及び触媒を添加することも 可能である。 Then, the mixed solution of the component (A) and the solvent (B) can be heated for the purpose of promoting the hydrolysis reaction of the component (A). The heating temperature and heating time can be appropriately selected as desired. For example, heating / stirring at 50 ° C. for 24 hours or heating / stirring under reflux for 8 hours can be mentioned. It is also possible to add water and a catalyst during the heating of the mixed solution of the component (A) and the solvent (B).
[0028] このような工程 1の後に得られる溶液は、この溶液中の全金属原子を酸化物に換算 した濃度 (金属酸ィ匕物固形分換算濃度)を、 20質量%以下、特には、 15質量%以下 とすることが好ましい。この濃度範囲において任意の濃度を選択することにより、ゲル の生成を抑え、均質な溶液を得ることができる。 これまで述べたように、工程 1を経る ことで、(A)成分を溶媒 (B)中で加水分解 '縮合反応した縮合物を含有する溶液 (以 下、置換前溶液と称す。)を得ることができる。  [0028] The solution obtained after such step 1 has a concentration in which all metal atoms in the solution are converted to oxides (concentration in terms of metal oxide solid content) of 20% by mass or less, in particular, The content is preferably 15% by mass or less. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained. As described above, by passing through step 1, a solution containing a condensate obtained by hydrolysis and condensation reaction of component (A) in solvent (B) (hereinafter referred to as a solution before substitution) is obtained. be able to.
[0029] [工程 2]について: [0029] About [Step 2]:
工程 2は、上記工程 1で得られた置換前溶液の溶媒 (B)を溶媒 (C)に溶媒置換す ることを主とする工程である。  Step 2 is a step mainly including solvent substitution of the solvent (B) of the pre-substitution solution obtained in Step 1 above with the solvent (C).
ここで、溶媒 (C)は炭素数が 2〜10、好ましくは 2〜6のグリコール力 選ばれる少 なくとも 1種の有機溶媒であり、溶媒 (C)から選ばれる複数種を併用してもよい。 以下に溶媒 (C)の具体例を挙げるがこれに限定されるものではない。  Here, the solvent (C) is at least one organic solvent selected from glycol power having 2 to 10 carbon atoms, preferably 2 to 6 carbon atoms, and plural kinds selected from the solvent (C) may be used in combination. Good. Specific examples of the solvent (C) are shown below, but are not limited thereto.
エチレングリコーノレ、 1, 2 プロパンジオール、 1, 3 プロパンジオール、 1, 2- ブタンジオール、 1, 3 ブタンジオール、 2, 3 ブタンジオール、 1, 4 ブタンジォ ール、 1, 5 ペンタンジオール、 2—メチルー 2, 4 ペンタンジオール(へキシレング リコール)、 3—メチルー 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 2 ェ チルー 1, 3 へキサンジオール等が挙げられる。  Ethylene glycol, 1,2 propanediol, 1,3 propanediol, 1,2-butanediol, 1,3 butanediol, 2,3 butanediol, 1,4 butanediol, 1,5 pentanediol, 2— Examples include methyl-2,4-pentanediol (hexylene glycol), 3-methyl-1,5-pentanediol, 1,6-hexanediol, and 2-ethyl-1,3-hexanediol.
この中でも、へキシレングリコールは基板への濡れ性が良好であるため好まし!/、。  Of these, hexylene glycol is preferred because of its good wettability to the substrate!
[0030] 工程 2にお 、て、置換前溶液を溶媒 (C)で置換する方法は特に限定されな!、。 [0030] In step 2, the method of replacing the pre-substitution solution with the solvent (C) is not particularly limited!
簡便な方法としては、置換前溶液に溶媒 (C)を混合した溶液から溶媒 (B)を主とす る溶媒を留去する方法が挙げられる。また、置換前溶液力 溶媒 (B)を主とする溶媒 を留去しながら溶媒 (C)を加える方法等も挙げられる。  As a simple method, there may be mentioned a method of distilling off the solvent mainly comprising the solvent (B) from a solution obtained by mixing the solvent (C) with the pre-substitution solution. Further, there may be mentioned a method of adding the solvent (C) while distilling off the solvent mainly composed of the solution power solvent (B) before substitution.
溶媒置換する際の条件は、溶媒の置換効率を高めるために、通常、減圧下で行わ れるが、常圧下であってもよい。すなわち、好ましくは 0. lmmHg (13. 3Pa)〜760 mmHg dOl. 3kPa)、特に好ましくは 5mmHg (666. 6Pa)〜200mmHg (26. 7K Pa)の条件で溶媒置換することができる。その際、更に溶媒の置換効率を高めるため に加熱してもよい。加熱温度は、コストを考慮して 100°C以下の温度にすることが好ま LV、が、溶媒 (C)の沸点よりも低 ヽ温度であればよ!、。 The conditions for solvent replacement are usually performed under reduced pressure in order to increase the efficiency of solvent replacement, but may be under normal pressure. That is, the solvent replacement can be performed preferably under the conditions of 0.1 mmHg (13.3 Pa) to 760 mmHg dOl. 3 kPa), particularly preferably 5 mmHg (666.6 Pa) to 200 mmHg (26.7 KPa). At that time, in order to further increase the solvent replacement efficiency You may heat to. The heating temperature should be 100 ° C or less in consideration of cost LV, but it should be lower than the boiling point of the solvent (C)!
[0031] 本発明においては、置換前溶液中の有機溶媒を溶媒 (C)で完全に置換する必要 はなぐ置換前溶液中の全有機溶媒の 80質量%以上が溶媒 (C)に置換しているの が好ましぐ特には、 85質量%以上が好ましい。このようにすることで、後述する被膜 形成用塗布液にぉ ヽて良好な塗布性が得られ易ぐまたフレキソ印刷での塗布形成 が容易となる。そして、定かではないが、工程 2の溶媒置換の際に、置換前溶液の有 機溶媒と共に水が共沸して一部除去され、工程 2の後に得られる溶液 (以下、置換溶 液と称す。 )中の水分量が減少し、置換溶液及びそれを用いて得られる被膜形成用 塗布液の貯蔵安定性が著しく向上する。 In the present invention, it is not necessary to completely replace the organic solvent in the pre-substitution solution with the solvent (C). More than 80% by mass of the total organic solvent in the pre-substitution solution is substituted with the solvent (C). In particular, it is preferably 85% by mass or more. By doing so, it is easy to obtain a good coating property compared to a coating solution for forming a film, which will be described later, and it becomes easy to form a coating by flexographic printing. Although it is not certain, at the time of solvent replacement in Step 2, water is partially removed by azeotropy together with the organic solvent in the pre-substitution solution, and a solution obtained after Step 2 (hereinafter referred to as a substitution solution). The water content in the liquid is reduced, and the storage stability of the replacement solution and the coating solution for forming a film obtained by using the replacement solution is remarkably improved.
また、工程 2においては、溶媒 (C)の量を調整することによって、置換溶液の金属 酸ィ匕物固形分換算濃度を調整することも可能である。その際、金属酸化物固形分換 算濃度は、好ましくは、 20質量%以下、特に好ましくは 15質量%以下とされる。なお 、必要に応じて所望の濃度を選択することができる。  In step 2, it is also possible to adjust the metal oxide solids equivalent concentration of the replacement solution by adjusting the amount of the solvent (C). At that time, the metal oxide solid content conversion concentration is preferably 20% by mass or less, particularly preferably 15% by mass or less. A desired concentration can be selected as necessary.
このように、上記した工程 1及び工程 2を経ることによって、(A)成分を溶媒 (B)中で 加水分解 ·縮合反応した縮合物を含有する溶液 (置換前溶液)を、溶媒 (C)で置換し て得られる溶液、即ち、置換溶液を得ることができる。  As described above, the solution containing the condensate obtained by hydrolysis / condensation reaction of the component (A) in the solvent (B) by passing through the above-described step 1 and step 2 is converted into the solvent (C). A solution obtained by substituting with, that is, a replacement solution can be obtained.
[0032] [工程 3]について: [0032] About [Step 3]:
工程 3は、被膜形成用塗布液を調製する工程であるが、上記で得られた置換溶液 を、そのまま被膜形成用塗布液とする場合は、この工程を省略することも可能である 通常は、被膜形成用塗布液の酸化物固形分換算濃度の調整や塗布性改善を目 的として更に溶媒 (D)を加えることで、被膜形成用塗布液を調製する。  Step 3 is a step of preparing a coating solution for forming a film, but when the replacement solution obtained above is used as a coating solution for forming a film as it is, this step can be omitted. A coating solution for film formation is prepared by adding a solvent (D) for the purpose of adjusting the oxide solid content equivalent concentration of the coating solution for coating formation and improving coating properties.
また、本発明の効果を損なわない限りにおいて、必要に応じて、無機微粒子、界面 活性剤、レべリング剤等のその他の成分を添加することも可能である。  Further, as long as the effects of the present invention are not impaired, other components such as inorganic fine particles, surfactants and leveling agents can be added as necessary.
本発明においては、被膜形成用塗布液の金属酸化物換算濃度は、好ましくは 0. 5 〜20質量%、特に好ましくは、 1〜15質量%である。無機微粒子を用いる場合は、 置換溶液中の金属原子と無機微粒子中の金属原子の合計量を酸化物換算した濃 度を 0. 5〜20質量%とすることが好ましい。 In the present invention, the metal oxide equivalent concentration of the coating liquid for forming a film is preferably 0.5 to 20% by mass, particularly preferably 1 to 15% by mass. When inorganic fine particles are used, the total amount of metal atoms in the substitution solution and inorganic fine particles is the concentration in terms of oxides. The degree is preferably 0.5 to 20% by mass.
上記の溶媒 (D)及びその他の成分を添加する方法は、均質な溶液が得られる限り にお 、ては特に限定されな 、。  The method for adding the solvent (D) and other components is not particularly limited as long as a homogeneous solution is obtained.
溶媒 (D)としては、置換溶液と相溶する溶媒が使用され、この限りにおいて特に限 定されず、複数種を併用してもよい。  As the solvent (D), a solvent that is compatible with the substitution solution is used, and is not particularly limited as long as it is used, and a plurality of types may be used in combination.
その具体例を挙げると、メタノール、エタノール、 1 プロパノール(n プロパノール )、 2—プロパノール(イソプロパノール)、 1ーブタノール、 2—ブタノール、 2—メチル 1 プロパノール、 1, 1ージメチルエタノール、へキサノール、ォクタノール、ジァセ トンアルコール等のアルコール類、酢酸ェチル、乳酸ェチル、酢酸ブチル、 γーブチ ルラクトン等のエステル類;テトラヒドロフラン、ジェチルエーテル、 1, 4 ジォキサン 等のエーテル類;アセトン、 2 ブタノン、 3—メチル 2 ブタノン、 4—メチル 2— ペンタノン等のケトン類;エチレングリコール、 1, 2 プロパンジオール、 1, 3 プロ パンジオール、 1, 2 ブタンジオール、 1, 3 ブタンジオール、 2, 3 ブタンジォー ル、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 2—メチルー 2, 4 ペンタン ジオール(へキシレングリコール)、 3—メチルー 1, 5 ペンタンジオール、 1, 6 へ キサンジオール、 2 ェチルー 1, 3 へキサンジオール等のグリコール類;アセトン、 2 ブタノン、 3—メチル 2 ブタノン、 4—メチル 2 ペンタノン等のケトン類; 1— メトキシ 2—エタノール、 1 エトキシ 2—エタノール、 1 プロポキシ 2—ェタノ ール、 1 ブトキシ 2—エタノール、 1ーメトキシ 2—プロパノール、 1 エトキシー 2—プロパノール、 1 ブトキシー 2—プロパノール、ジエチレングリコールモノメチル エーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジエチレングリコーノレモノブチ ノレエーテノレ、ジエチレングリコールジメチルエーテル、ジエチレングリコールジェチル エーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコーノレモノメチ ノレエーテノレ、ジプロピレングリコーノレモノェチノレエーテノレ、ジプロピレングリコーノレモ ノブチノレエーテノレ、ジプロピレングリコールジメチルエーテル、ジプロピレングリコール ジェチノレエーテノレ、ジプロピレングリコールジブチルエーテル、ェチノレカノレビトーノレ、 ブチルカルビトール、ジェチルカルビトール等のグリコールエーテル類; Ν—メチルピ 口リドン;ジメチルフオルムアミド、ジメチルァセトアミド等のアミド類等が挙げられる。 [0034] 無機微粒子としては、シリカ微粒子や、アルミナ、チタ二了、ゼォライト等の金属酸 ィ匕物微粒子; ATO (antimony-tin oxide)、 ITO (indium-tin oxide)、 IZO (indium— zi nc oxide)等の複合酸ィ匕物微粒子が好ましい。特にコロイド溶液のものが好ましい。 このコロイド溶液は、無機微粒子粉を分散媒に分散したものでもよいし、市販のコロイ ド溶液であってもよい。 Specific examples include methanol, ethanol, 1 propanol (n propanol), 2-propanol (isopropanol), 1-butanol, 2-butanol, 2-methyl 1 propanol, 1,1-dimethylethanol, hexanol, octanol, Alcohols such as diacetone alcohol, esters such as ethyl acetate, ethyl lactate, butyl acetate, and γ-butyrlactone; ethers such as tetrahydrofuran, jetyl ether, and 1,4 dioxane; acetone, 2 butanone, 3-methyl 2 butanone , 4-methyl-2-pentanone and other ketones; ethylene glycol, 1,2 propanediol, 1,3 propanediol, 1,2 butanediol, 1,3 butanediol, 2,3 butanediol, 1,4 butane Diol, 1,5 Pentanediol, 2-Methyl-2, 4 Glycols such as ntane diol (hexylene glycol), 3-methyl-1,5-pentanediol, 1,6 hexanediol, 2-ethyl-1,3 hexanediol; acetone, 2 butanone, 3-methyl-2-butanone, 4- Ketones such as methyl 2-pentanone; 1-methoxy 2-ethanol, 1 ethoxy 2-ethanol, 1 propoxy 2-ethanol, 1 butoxy 2-ethanol, 1-methoxy 2-propanol, 1 ethoxy 2-propanol, 1 butoxy 2 —Propanol, diethylene glycol monomethyl etherenole, diethylene glycol monomono chinenoate ethere, diethylene glycol monomono butyl etherenole, diethylene glycol dimethyl ether, diethylene glycol jetyl ether, diethylene glycol dibutyl ether Dipropylene glycol monomethenoylenoate, dipropylene glyconomonoethylenoateol, dipropylene glycolnoreno nobinoreatenore, dipropylene glycol dimethyl ether, dipropylene glycol jetino leenotenole, dipropylene glycol dibutyl ether, Glycol ethers such as ethinorecanorebitonole, butyl carbitol, and jetyl carbitol; Ν-methyl pyridine, amides such as dimethylformamide and dimethylacetamide, and the like. [0034] Examples of the inorganic fine particles include silica fine particles, metal oxide fine particles such as alumina, titania, and zeolite; ATO (antimony-tin oxide), ITO (indium-tin oxide), IZO (indium-zi nc Composite oxide fine particles such as oxide) are preferred. A colloidal solution is particularly preferable. This colloidal solution may be a dispersion of inorganic fine particle powder in a dispersion medium, or a commercially available colloid solution.
本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表 面形状やその他の機能を付与することが可能となる。無機微粒子としては、その平均 粒子径カ SO. 001〜0. 2 mであること力 S好ましく、更に好ましくは 0. 001〜0. 1 m である。無機微粒子の平均粒子径が 0. 2 mを超える場合には、調製される塗布液 によって形成される硬化被膜の透明性が低下する場合がある。  In the present invention, the inclusion of inorganic fine particles makes it possible to impart the surface shape of the formed cured film and other functions. The inorganic fine particles preferably have an average particle size of SO.001 to 0.2 m, preferably S, and more preferably 0.001 to 0.1 m. When the average particle diameter of the inorganic fine particles exceeds 0.2 m, the transparency of the cured film formed by the prepared coating liquid may be lowered.
無機微粒子の分散媒は、被膜形成用塗布液の保存安定性を良好に保っために、 有機溶媒である方が好ましい。コロイド溶液としては、被膜形成用塗布液の安定性の 観点から、 pH又は pKaが 2〜10、特に 3〜7に調整されていることが好ましい。  The dispersion medium of the inorganic fine particles is preferably an organic solvent in order to keep the storage stability of the coating liquid for forming a film. As the colloidal solution, it is preferable that the pH or pKa is adjusted to 2 to 10, particularly 3 to 7, from the viewpoint of the stability of the coating solution for film formation.
[0035] コロイド溶液の分散媒に用いる有機溶媒としては、メタノール、エタノール、イソプロ パノール(2—プロパノール)、 1ーブタノール等のアルコール類;エチレングリコール 、プロピレングリコーノレ、へキシレングリコーノレ、エチレングリコーノレモノプロピノレエ一 テル等のグリコール類;アセトン、メチルェチルケトン(2—ブタノン)、メチルイソブチ ルケトン(3 メチル 2 ブタノン)、 4 メチル - 2-ペンタノン等のケトン類;トルェ ン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルァセトアミド、 N メチルピロリドン等のアミド類;酢酸ェチル、酢酸ブチル、 y ブチロラタトン等のェ ステル類;テトラヒドロフラン、 1, 4 ジォキサン等のェ—テル類、更には、溶媒 (B) , 溶媒 (C)、溶媒 ( として、それぞれ、上記例示した溶媒を挙げることができる。これ らの中で、アルコール類又はダリコール類が好ましい。これら有機溶剤は、単独で又 は 2種以上を混合して分散媒として使用することができる。 [0035] Examples of the organic solvent used for the dispersion medium of the colloidal solution include alcohols such as methanol, ethanol, isopropanol (2-propanol), 1-butanol; ethylene glycol, propylene glycolol, hexylene glycolol, ethylene glycololmono. Glycols such as propionole ether; Ketones such as acetone, methyl ethyl ketone (2-butanone), methyl isobutyl ketone (3 methyl 2 butanone), 4 methyl-2-pentanone; aromatics such as toluene and xylene Hydrocarbons; Amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; Esters such as ethyl acetate, butyl acetate and y butyrolataton; Ethers such as tetrahydrofuran and 1,4 dioxane; Solvent (B), Solvent (C), Solvent (as Among these solvents, alcohols or dallicols are preferable, and these organic solvents can be used alone or in admixture of two or more as a dispersion medium.
また、レべリング剤及び界面活性剤等は、公知のものを用いることができ、特に巿販 品は入手が容易なので好まし!/、。  As leveling agents and surfactants, known ones can be used. In particular, commercial products are preferred because they are easily available!
上記したように、本発明により得られる被膜形成用塗布液は、 [工程 1]及び [工程 2 ]を含む製造方法で調製され、必要に応じて [工程 3]を含む方法で調製することもで きる。 As described above, the coating liquid for forming a film obtained by the present invention is prepared by a production method including [Step 1] and [Step 2], and may be prepared by a method including [Step 3] as necessary. so wear.
[0036] [被膜の形成]  [0036] [Formation of coating film]
本発明の製造方法により得られる被膜形成用塗布液は、基材に塗布し、熱硬化す ることで所望の硬化被膜を得ることができる。塗布方法は、公知又は周知の方法を採 用できる。例えば、ディップ法、フローコート法、スプレー法、バーコート法、グラビアコ ート法、ロールコート法、ブレードコート法、エアーナイフコート法、フレキソ印刷法、ィ ンクジェット法等を採用できる。これらに中でもフレキソ印刷法にぉ 、て良好な塗膜を 形成することができる。  The coating liquid for forming a film obtained by the production method of the present invention can be applied to a substrate and thermally cured to obtain a desired cured film. As a coating method, a known or well-known method can be adopted. For example, a dip method, a flow coating method, a spray method, a bar coating method, a gravure coating method, a roll coating method, a blade coating method, an air knife coating method, a flexographic printing method, an ink jet method and the like can be employed. Among these, a good coating film can be formed by the flexographic printing method.
その際、用いる基材は、プラスチック;ガラス; ATO、 FTO (fluorine- doped tin oxi de)、 ITO、 IZO等の透明電極付ガラス;セラミックス等の基材を挙げることができる。 プラスチックとしては、ポリカーボネート、ポリ(メタ)アタリレート、ポリエーテルサルホン 、ポリアリレート、ポリウレタン、ポリスルホン、ポリエーテル、ポリエーテルケトン、ポリオ レフイン、ポリエチレンテレフタレート、ポリアクリロニトリル、トリァセチルセルロース、ジ ァセチルセルロース、アセテートブチレートセルロース等が挙げられる。その形状は、 板又はフィルム等が挙げられる。  In this case, examples of the substrate to be used include plastics; glass; glass with a transparent electrode such as ATO, FTO (fluorine-doped tin oxide), ITO, IZO; and substrates such as ceramics. Examples of plastics include polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, polyolefin, polyethylene terephthalate, polyacrylonitrile, triacetylcellulose, diacetylcellulose, Examples include acetate butyrate cellulose. Examples of the shape include a plate or a film.
被膜形成用塗布液は、塗布前に、フィルタ一等を用いて濾過することが一般的であ る。  The coating solution for forming a film is generally filtered using a filter or the like before coating.
[0037] 基材に形成された塗膜は、室温〜 120°Cの温度で乾燥させた後、好ましくは温度 1 50〜250°Cで熱硬化する。その際、乾燥に要する時間は、 30秒間以上であればよ いが、 10分間以下で充分である。  [0037] The coating film formed on the substrate is dried at a temperature of room temperature to 120 ° C, and then preferably thermally cured at a temperature of 150 to 250 ° C. At this time, the time required for drying may be 30 seconds or more, but 10 minutes or less is sufficient.
熱硬化に要する時間は、所望の硬化被膜特性に応じて適宜選択することができる 力 10分間以上であればよい。低い硬化温度を選択する場合は、硬化時間を長くす ることで充分な硬さを有する硬化被膜を得られやす ヽ。  The time required for thermosetting may be appropriately selected according to the desired cured film characteristics, and may be a force of 10 minutes or more. When a low curing temperature is selected, it is easy to obtain a cured film having sufficient hardness by increasing the curing time.
なお、本発明の被膜形成用塗布液は、温度 250°Cを超える硬化温度であっても充 分な硬さを有する硬化被膜を得ることができる。  The coating liquid for forming a film of the present invention can provide a cured film having sufficient hardness even at a curing temperature exceeding 250 ° C.
また、熱硬化に先立ち、水銀ランプ、メタルノヽライドランプ、キセノンランプ、エキシ マランプ等を用いてエネルギー線 (紫外線等)を照射することも有効である。乾燥した 塗膜にエネルギー線を照射することで、更に硬化温度を低下できたり、被膜の硬さを 高めたり、屈折率を高めたりすることができる。エネルギー線の照射量は必要に応じ て適宜選択することができるが、通常、数百〜数千 mjZcm2が適当である。 It is also effective to irradiate energy rays (ultraviolet rays, etc.) using a mercury lamp, a metal nitride lamp, a xenon lamp, an excimer lamp, etc. prior to thermosetting. By irradiating the dried coating with energy rays, the curing temperature can be further reduced, and the hardness of the coating can be reduced. The refractive index can be increased. The irradiation amount of the energy beam can be appropriately selected as necessary, but usually several hundred to several thousand mjZcm 2 is appropriate.
本発明により得られる被膜形成用塗布液は、フレキソ印刷での塗膜形成能に優れ The coating liquid for forming a film obtained by the present invention is excellent in film forming ability in flexographic printing.
、低温で充分に硬化できる被膜を形成することできる。 A film that can be sufficiently cured at a low temperature can be formed.
そして、この被膜上への液晶配向材の印刷性が良好であるため、はじきやピンホー ルを抑制した液晶配向膜を形成することができる。  And since the printability of the liquid crystal aligning material on this film is favorable, the liquid crystal aligning film which suppressed repelling and pinhole can be formed.
従って、本発明により得られる被膜形成用塗布液は、上記した如き特性を有する被 膜を形成できるため、液晶表示素子の表示特性向上に非常に有用である。  Therefore, the coating liquid for forming a film obtained according to the present invention can form a film having the above-described characteristics, and thus is very useful for improving the display characteristics of a liquid crystal display element.
実施例 Example
以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実 施例に制限されるものではな 、。  EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples.
本実施例における略語の説明は以下のとおりである。  The explanation of the abbreviations in this embodiment is as follows.
TEOS:テトラエトキシシラン TEOS: Tetraethoxysilane
MTES:メチルトリエトキシシラン MTES: Methyltriethoxysilane
TET:テトラエトキシチタン TET: Tetraethoxytitanium
TIPT:テトライソプロポキシチタン TIPT: Tetraisopropoxy titanium
HG :へキシレングリコール(別名: 2—メチルー 2, 4 ペンタンジオール)  HG: Hexylene glycol (also known as 2-methyl-2, 4 pentanediol)
THF :テトラヒドロフラン THF: tetrahydrofuran
PG :プロピレングリコール(別名: 1, 2—プロパンジオール)  PG: Propylene glycol (also known as 1, 2-propanediol)
EG :エチレングリコール EG: Ethylene glycol
PGME :プロピレングリコールモノメチルエーテル(別名: 1—メトキシ一 2—プロパノ ール)  PGME: Propylene glycol monomethyl ether (also known as: 1-methoxy-2-propanol)
BCS:ブチルセ口ソルブ(別名: 1 ブトキシ 2—エタノール)  BCS: Butyl Seguchi Solve (also known as: 1 butoxy 2-ethanol)
PB:プロピレングリコールモノブチルエーテル(別名: 1 ブトキシ 2—プロパノール PB: Propylene glycol monobutyl ether (also known as: 1 butoxy 2-propanol
) )
AN:硝酸アルミニウム九水和物  AN: Aluminum nitrate nonahydrate
CN:硝酸セリウム六水和物 CN: Cerium nitrate hexahydrate
IN:硝酸インジウム三水和物 下記実施例における測定法を以下に示す。 IN: Indium nitrate trihydrate The measurement methods in the following examples are shown below.
[0039] [残存溶媒 (B)の測定方法]  [0039] [Measurement method of residual solvent (B)]
ジエチレングリコールジブチルエーテルを希釈溶媒とし、ジエチレングリコールジェ チルエーテルを内標準物質として、希釈溶媒 Z内標準物質 Z被膜形成用塗布液の 質量比 97. 5/0. 5/2. 0の試料を調製し、ガスクロマトグラフィー(以下、 GCと称 す。)を用いた内標準法により、被膜形成用塗布液に残存する溶媒 (B)量を測定した 。 GCの測定条件は以下の通りである。  Using diethylene glycol dibutyl ether as a diluent solvent and diethylene glycol diethyl ether as an internal standard material, prepare a sample with a mass ratio of 97.5 / 0.5 / 5/2. The amount of the solvent (B) remaining in the coating solution for coating formation was measured by an internal standard method using chromatography (hereinafter referred to as GC). GC measurement conditions are as follows.
GC測定条件:  GC measurement conditions:
装置: Shimadzu GC— 14B。  Equipment: Shimadzu GC—14B.
カラム:キヤピラリーカラム、 CBP1 - W25 - 100 (25mm X 0. 53mm Χ 1 ^ πι) 0 カラム温度:カラム温度は昇温プログラムを用いて制御した。開始温度 40°Cで 4分間 保持後、 15°CZ分で昇温して到達温度 300°Cで 3分保持した。 Column: Capillary column, CBP1-W25-100 (25 mm X 0.53 mmΧ1 ^ πι) 0 Column temperature: The column temperature was controlled using a temperature raising program. After holding at a starting temperature of 40 ° C for 4 minutes, the temperature was raised at 15 ° CZ for 3 minutes at an ultimate temperature of 300 ° C.
試料注入量: 1 L。  Sample injection volume: 1 L.
インジェクション温度: 270°C。  Injection temperature: 270 ° C.
検出器温度: 320°C。  Detector temperature: 320 ° C.
キヤリヤーガス:窒素(流量 30mLZmin)。  Carrier gas: Nitrogen (flow rate 30mLZmin).
検出方法: FID法。  Detection method: FID method.
[0040] [調製例 1] [0040] [Preparation Example 1]
300mlフラスコに純水 2. 70g、溶媒(B)としてエタノール 62. 53g及び触媒として ANを 2. 96g仕込み、撹拌して均一な溶液を得た。この溶液にその他金属アルコキ シドとして TEOSを 24. 98gカロえ、室温で 30分撹拌した。その後、 TETを 6. 84g添 加し、室温で 30分撹拌した。この溶液を置換前溶液 (P1)とした。  A 300 ml flask was charged with 2.70 g of pure water, 62.53 g of ethanol as a solvent (B) and 2.96 g of AN as a catalyst, and stirred to obtain a uniform solution. In this solution, 24.98 g of TEOS as other metal alkoxide was added and stirred at room temperature for 30 minutes. Thereafter, 6.84 g of TET was added and stirred at room temperature for 30 minutes. This solution was designated as pre-substitution solution (P1).
[0041] [調製例 2〜: L 1] [0041] [Preparation Example 2: L 1]
表 1に示す組成で、調製例 1と同様の方法で置換前溶液 (P2〜P 11 )を調製した。 但し、調整例 4ではその他アルコキシドを用いなかった。  With the composition shown in Table 1, pre-substitution solutions (P2 to P11) were prepared in the same manner as in Preparation Example 1. However, in Adjustment Example 4, no other alkoxide was used.
なお、表 1中の硝酸は 60質量%硝酸水溶液を意味する。  The nitric acid in Table 1 means a 60 mass% nitric acid aqueous solution.
[0042] [表 1]
Figure imgf000019_0001
[実施例 1]
[0042] [Table 1]
Figure imgf000019_0001
[Example 1]
300mlフラスコ中で、調製例 1で得られた置換前溶液 (P1)を 24. 00gと、溶媒 (C) として HG25. 87gを混合した。次に、 NEWロータリーバキュームエバポレーター(東 京理化器械社製、 NE- 1)により 60°Cで 20mmHg (2. 67kPa)まで徐々に減圧し ながら溶媒を留去して、 28. 91gの置換溶液 (Q1)を得た。その後、置換溶液 (Ql) 2 8. 91gに溶媒 (D)として PGME11. 09gを混合して被膜形成用塗布液 (Z1)を調製 した。この塗布液 (Z1)について、溶媒 (B)の残存量を GCで測定したところ、 5. 7質 量%であった。  In a 300 ml flask, 24.00 g of the pre-substitution solution (P1) obtained in Preparation Example 1 was mixed with 25.87 g of HG as a solvent (C). Next, using a NEW rotary vacuum evaporator (manufactured by Tokyo Rika Kikai Co., Ltd., NE-1), the solvent was distilled off while gradually reducing the pressure to 20 mmHg (2.67 kPa) at 60 ° C, and 28.91 g of the replacement solution ( Q1) was obtained. Thereafter, 11.09 g of PGME as a solvent (D) was mixed with 2.91 g of the substitution solution (Ql) to prepare a coating solution (Z1) for film formation. With respect to this coating solution (Z1), the residual amount of the solvent (B) was measured by GC and found to be 5.7% by mass.
また、得られた被膜形成用塗布液 (Z1)について、後述する方法を用いて鉛筆硬度 、屈折率、印刷性及び液晶配向膜印刷性を評価した。結果は表 3に示す。 [0044] [実施例 2 15] Further, the obtained coating liquid for forming a film (Z1) was evaluated for pencil hardness, refractive index, printability, and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3. [0044] [Example 2 15]
表 2に示す組成で、置換前溶液 (P2 P11)を溶媒 (C)で、実施例 1と同様の方法 で置換し、置換溶液 (Q2 Q15)を得た。そして、表 2に示す組成で、置換溶液 (Q2 Q15)に溶媒 (D)を加えて被膜形成用塗布液 (Z2 Z15)を調製した。この塗布 液 (Z2 Z15)中の残存溶媒 (B)量を GCで測定した。  With the composition shown in Table 2, the pre-substitution solution (P2 P11) was substituted with the solvent (C) in the same manner as in Example 1 to obtain a substitution solution (Q2 Q15). Then, a solvent (D) was added to the replacement solution (Q2 Q15) with the composition shown in Table 2 to prepare a coating solution for coating film formation (Z2 Z15). The amount of residual solvent (B) in this coating solution (Z2 Z15) was measured by GC.
また、得られた被膜形成用塗布液 (Z2 Z 15)について、後述する方法を用いて鉛 筆硬度、屈折率、印刷性及び液晶配向膜印刷性を評価した。結果は表 3に示す。  Further, the lead coating hardness, refractive index, printability, and liquid crystal alignment film printability of the obtained coating liquid for forming a film (Z2 Z15) were evaluated using the methods described later. The results are shown in Table 3.
[0045] [表 2] [0045] [Table 2]
Figure imgf000020_0001
Figure imgf000020_0001
[実施例 16] [Example 16]
TEOS20. 8gをエタノールに混合した溶液に、水 5. 4gとアルカリ触媒として 28質 量0 /0アンモニア水溶液 0. 6gとをエタノール 23. 2gに溶解、混合した溶液を、室温で 撹拌しながら混合した。 30分後、液はコロイド色を呈し始め、粒子状の生成物が確認 された。その後、室温で 24時間撹拌を続け、 SiO換算濃度で 6質量%の、エタノー TEOS20. 8g in solution was mixed with ethanol, water 5. dissolved and 28 mass 0/0 aqueous ammonia 0. 6 g as 4g and the alkali catalyst in ethanol 23. 2 g, a mixed solution with stirring at room temperature mixed did. After 30 minutes, the liquid begins to show a colloidal color, confirming the formation of particulate products It was done. After that, stirring was continued for 24 hours at room temperature.
2  2
ルに分散したシリカコロイド溶液を得た。得られた溶液のコロイド粒子の粒子径を、 D LS - 7000 (大塚電子社製)を用いて測定した結果、動的光散乱法による平均粒子 径が 20nmであった。  A colloidal silica solution was obtained. As a result of measuring the particle size of the colloidal particles in the obtained solution using DLS-7000 (manufactured by Otsuka Electronics Co., Ltd.), the average particle size by dynamic light scattering was 20 nm.
[0047] 次に、 300mlフラスコ中で、得られたシリカコロイド溶液 40. Ogと HG22. 8gを混合 した。次に、 NEWロータリーバキュームエバポレーター (東京理化器械社製、 NE- 1)により 60°Cで 20mmHg (2. 67kPa)まで徐々に減圧しながら溶媒を留去して、 25 . 3gの HGに分散したシリカコロイド溶液を得た。その後、得られた HGに分散したシリ 力コロイド溶液に PGME14. 7gをカ卩え、粒子分散溶液 Kを調製した。  [0047] Next, 40. Og of the obtained silica colloid solution and 22.8 g of HG were mixed in a 300 ml flask. Next, using a NEW rotary vacuum evaporator (manufactured by Tokyo Rika Kikai Co., Ltd., NE-1), the solvent was distilled off while gradually reducing the pressure to 20 mmHg (2.67 kPa) at 60 ° C to disperse in 25.3 g of HG. A silica colloid solution was obtained. After that, 14.7 g of PGME was added to the resulting colloidal silica solution dispersed in HG to prepare a particle dispersion solution K.
表 2に示される被膜形成用塗布液 (Z2) 10. 00gと粒子分散溶液 K10. 00gを混合 して、被膜形成用塗布液 (Z16)を調製した。  A coating solution for coating film formation (Z16) was prepared by mixing 10.00 g of the coating solution for coating film formation (Z2) shown in Table 2 and 10.00 g of the particle dispersion K1.
また、得られた被膜形成用塗布液 (Z16)について、後述する方法を用いて鉛筆硬 度、屈折率、印刷性及び液晶配向膜印刷性を評価した。結果は表 3に示す。  Further, the obtained coating liquid for forming a film (Z16) was evaluated for pencil hardness, refractive index, printability, and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3.
[0048] [比較例 1]  [0048] [Comparative Example 1]
300mlフラスコ中で、純水 1. 49gに AN1. 63gを溶解した溶液と、 PGME23. 66 gと HG26. 94gとを混合した。これに TEOS8. 60gを添カ卩して室温で 30分撹拌した 。その後、 TET9. 42gと HG28. 26gをあらかじめ混合しておいた溶液をカ卩え、室温 で 30分撹拌して塗布液 (T1)を得た。  In a 300 ml flask, a solution prepared by dissolving 1.63 g of AN in 1.49 g of pure water was mixed with 23.66 g of PGME and 26.94 g of HG. To this was added TEOS 8.60 g and stirred at room temperature for 30 minutes. Thereafter, a solution in which 9.42 g of TET and 28.26 g of HG were mixed in advance was collected and stirred at room temperature for 30 minutes to obtain a coating solution (T1).
また、得られた塗布液 (T1)について、後述する方法を用いて鉛筆硬度、屈折率、 印刷性及び液晶配向膜印刷性を評価した。結果は表 3に示す。  Further, the obtained coating liquid (T1) was evaluated for pencil hardness, refractive index, printability and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3.
[0049] [比較例 2] [0049] [Comparative Example 2]
300mlフラスコ中で、純水 1. 31gに AN1. 43gを溶解した溶液と、 PGME24. 20 gと HG6. 74gとを混合した。これに、 TET16. 58gと HG49. 74gをあら力じめ混合 してお!/、た溶液を加え、室温で 30分撹拌して塗布液 (T2)を得た。  In a 300 ml flask, a solution of 1.43 g of AN dissolved in 1.31 g of pure water was mixed with 24.20 g of PGME and 6.74 g of HG. Add TET16.58g and HG49.74g to this and mix! The solution was added and stirred at room temperature for 30 minutes to obtain a coating solution (T2).
また、得られた塗布液 (T2)について、後述する方法を用いて鉛筆硬度、屈折率、 印刷性及び液晶配向膜印刷性を評価した。結果は表 3に示す。  Further, the obtained coating liquid (T2) was evaluated for pencil hardness, refractive index, printability and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3.
[0050] [比較例 3] [0050] [Comparative Example 3]
300mlフラスコ中で、純水 1. 49gに AN1. 63gを溶解した溶液と、 PGME23. 66 gと EG7. 89gと HG19. 07gとを混合した。これに TEOS8. 60gを添カロして室温で 3 0分撹拌した。その後、 TET9. 42gと HG28. 25gをあらかじめ混合しておいた溶液 を加え、室温で 30分撹拌して塗布液 (T3)を得た。 In a 300 ml flask, a solution of AN1.63 g in 1.49 g of pure water and PGME23.66 g, EG 7.89 g and HG 19.07 g were mixed. To this was added TEOS 8.60 g and stirred at room temperature for 30 minutes. Thereafter, a solution prepared by previously mixing 9.42 g of TET and 28.25 g of HG was added and stirred at room temperature for 30 minutes to obtain a coating solution (T3).
また、得られた塗布液 (T3)について、後述する方法を用いて鉛筆硬度、屈折率、 印刷性及び液晶配向膜印刷性を評価した。結果は表 3に示す。  Further, the obtained coating liquid (T3) was evaluated for pencil hardness, refractive index, printability, and liquid crystal alignment film printability using the methods described later. The results are shown in Table 3.
[0051] [鉛筆硬度] [0051] [Pencil hardness]
実施例の被膜形成用塗布液及び比較例の塗布液をクロマトディスク(倉敷紡績社 製、孔径 0. 45 m)を用いて濾過した。その後、 ITO付ガラス基板 (ITOの膜厚が 0 . 7mm)上に滴下して、スピンコーター(ミカサ社製、 1H— DX2)を用いて、回転数 3 OOrpmで 5秒間の予備回転の後、回転数 4000rpmで 20秒間回転させて塗膜を形 成した。次いで、温度 80°Cのホットプレート上で 3分間乾燥させた後、ホットプレート 上で硬化温度 180°Cとして 15分間加熱して硬化被膜を得た。得られた硬化被膜の 鉛筆硬度を試験法 CFIS K5400)に準拠して測定した。  The coating solution for forming a film of the example and the coating solution of the comparative example were filtered using a chromatodisc (manufactured by Kurashiki Boseki Co., Ltd., pore size 0.45 m). Then, it was dropped on a glass substrate with ITO (ITO film thickness was 0.7 mm), and after a preliminary rotation for 5 seconds at a rotation speed of 3 OOrpm using a spin coater (Mikasa, 1H-DX2), The coating film was formed by rotating at 4000 rpm for 20 seconds. Next, after drying on a hot plate at a temperature of 80 ° C. for 3 minutes, the cured film was obtained by heating on the hot plate for 15 minutes at a curing temperature of 180 ° C. The pencil hardness of the obtained cured film was measured according to the test method CFIS K5400).
但し、実施例 3、実施例 14及び比較例 3においては、硬化温度を 200°Cとし、実施 例 4及び比較例 2においては硬化温度を 250°Cとした。  However, in Example 3, Example 14 and Comparative Example 3, the curing temperature was 200 ° C, and in Example 4 and Comparative Example 2, the curing temperature was 250 ° C.
[0052] [屈折率] [0052] [Refractive index]
基板を ITO付ガラス基板力もシリコン基板(100)に代えた以外は、上記の [鉛筆硬 度]評価と同様の方法で硬化被膜を形成した。エリプソメーター (溝尻光学工業所社 製、 DVA— 36L型)で波長 633nmにおける屈折率を測定した。  A cured film was formed in the same manner as in the above [pencil hardness] evaluation, except that the glass substrate with ITO was replaced with a silicon substrate (100). The refractive index at a wavelength of 633 nm was measured with an ellipsometer (manufactured by Mizojiri Optical Industry Co., Ltd., DVA-36L type).
[0053] [印居 IJ'性] [0053] [Inui IJ 'sex]
実施例の被膜形成用塗布液及び比較例の塗布液をクロマトディスク(倉敷紡績社 製、孔径 0. 45 m)を用いて濾過した。その後、 DR型印刷機(日本写真印刷社製、 ァ-ロックスロール (360 # )、凸版 (網点 400L30%70° ) )を用いて ITO付ガラス基 板 (ITOの膜厚が 0. 7mm)上に塗膜を形成した。この塗膜を、温度 80°Cのホットプ レート上で 3分間乾燥させた後、ホットプレート上で硬化温度 180°Cとして 15分間加 熱して硬化被膜を得た。得られた硬化被膜を目視で観察し、硬化被膜にピンホール 'ムラがない良好な場合を〇、ピンホール 'ムラが生じている場合を△、はじきを生じ て基板上に充分に成膜されていない状態を Xとした。 但し、実施例 3、実施例 14及び比較例 3においては、硬化温度を 200°Cとし、実施 例 4及び比較例 2においては硬化温度を 250°Cとした。 The coating solution for forming a coating film of the example and the coating solution of the comparative example were filtered using a chromatodisc (manufactured by Kurashiki Boseki Co., Ltd., pore size 0.45 m). After that, using a DR type printing machine (Nihon Photo Printing Co., Ltd., Arox Roll (360 #), letterpress (halftone dot 400L30% 70 °)), a glass substrate with ITO (ITO film thickness 0.7mm) A coating was formed on top. This coating film was dried on a hot plate at a temperature of 80 ° C. for 3 minutes and then heated on a hot plate at a curing temperature of 180 ° C. for 15 minutes to obtain a cured coating film. The cured film obtained is visually observed. When the cured film is good with no pinhole unevenness, ◯, when pinhole unevenness is present, △ is generated. X is the state that is not. However, in Example 3, Example 14 and Comparative Example 3, the curing temperature was 200 ° C, and in Example 4 and Comparative Example 2, the curing temperature was 250 ° C.
[0054] [液晶配向膜印刷性]  [0054] [Liquid crystal alignment film printability]
上記した [印刷性]と同様の方法で形成した硬化被膜上に、 DR型印刷機(日本写 真印刷社製、ァ-ロックスロール(360 # )、凸版 (網点 400L30%70° ;) )を用いて、 液晶配向材(日産化学工業社製、サンエバー (登録商標) SE— 5291 032B (商品 名))を塗布した。その後、温度 80°Cのホットプレート上で、 3分間乾燥して液晶配向 膜を形成した。形成した液晶配向膜を目視で観察し、液晶配向膜にはじき、ピンホー ル及びムラがない良好な場合を〇、ピンホール又はムラが生じている場合を△、はじ きを生じて基板上に充分に成膜されて 、な 、状態を Xとした。  On the cured film formed by the same method as the above [Printability], DR type printing machine (Nippon Photo Printing Co., Ltd., Arox Roll (360 #), letterpress (halftone dot 400L30% 70 °;)) Was used to apply a liquid crystal alignment material (manufactured by Nissan Chemical Industries, Ltd., Sunever (registered trademark) SE-5291 032B (trade name)). Thereafter, it was dried on a hot plate at a temperature of 80 ° C. for 3 minutes to form a liquid crystal alignment film. Visually observe the formed liquid crystal alignment film, repel the liquid crystal alignment film, ◯ when there is no pinhole and unevenness, △ when pinhole or unevenness is generated, The state was set to X.
[0055] [表 3]  [0055] [Table 3]
Figure imgf000023_0001
Figure imgf000023_0001
[0056] [実施例 17] [0056] [Example 17]
実施例 1で得られた被膜形成用塗布液 (Z1)について、以下に示す方法により、鉛 筆硬度 (UV照射有)、屈折率 (UV照射有)及び液晶配向膜印刷性 (UV照射有)を 評価した。結果を表 4に示す。 About the coating liquid for forming a film (Z1) obtained in Example 1, lead was obtained by the following method. The brush hardness (with UV irradiation), the refractive index (with UV irradiation) and the liquid crystal alignment film printability (with UV irradiation) were evaluated. The results are shown in Table 4.
[0057] [実施例 18]  [0057] [Example 18]
実施例 2で得られた被膜形成用塗布液 (Z2)について、以下に示す方法により、鉛 筆硬度 (UV照射有)、屈折率 (UV照射有)及び液晶配向膜印刷性 (UV照射有)を 評価した。結果を表 4に示す。  For the coating liquid for forming a film (Z2) obtained in Example 2, lead brush hardness (with UV irradiation), refractive index (with UV irradiation), and liquid crystal alignment film printability (with UV irradiation) were obtained by the following methods. Evaluated. The results are shown in Table 4.
[0058] [鉛筆硬度 (UV照射有) ]  [0058] [Pencil hardness (with UV irradiation)]
被膜形成用塗布液をクロマトディスク (倉敷紡績社製、孔径 0. 45 m)を用いて濾 過した後、 ITO付ガラス基板上に滴下して、スピンコーター(ミカサ社製、 1H-DX2) を用いて、回転数 300rpmで 5秒間の予備回転の後、回転数 4000rpmで 20秒間回 転させて塗膜を形成した。次いで、温度 80°Cのホットプレート上で 3分間乾燥させた 。その後、紫外線照射装置 (アイグラフィックス社製、 UB 011— 3A形)、高圧水銀ラ ンプ(入力電源 1000W)を用いて 50mWZcm2 (波長 350nm換算)で 2分間照射し (積算 6000miZcm2)、ホットプレート上で硬化温度 150°Cとして 15分間加熱して硬 化被膜を得た。得られた硬化被膜の鉛筆硬度を試験法 CFIS K5400)に準拠して測The coating solution for coating formation is filtered using a chromatodisc (Kurashita Boseki Co., Ltd., pore size 0.45 m), then dropped on a glass substrate with ITO, and a spin coater (Mikasa Co., 1H-DX2) is applied The coating film was formed by pre-rotating at 300 rpm for 5 seconds and then rotating at 4000 rpm for 20 seconds. Subsequently, it was dried on a hot plate at a temperature of 80 ° C. for 3 minutes. Then, irradiate it with 50mWZcm 2 (wavelength 350nm conversion) for 2 minutes using an ultraviolet irradiation device (I Graphics, UB 011-3A type), high pressure mercury lamp (input power supply 1000W) (total 6000miZcm 2 ), hot A cured film was obtained by heating on a plate at a curing temperature of 150 ° C for 15 minutes. The pencil hardness of the cured film obtained was measured according to the test method CFIS K5400).
¾し 7こ。 ¾ 7
[0059] [屈折率 (UV照射有) ]  [0059] [Refractive index (with UV irradiation)]
基板を ITO付ガラス基板力もシリコン基板(100)に代えた以外は、上記の [鉛筆硬 度 (UV照射有) ]評価と同様の方法で硬化被膜を形成した。エリプソメーター (溝尻 光学工業所社製、 DVA- 36L型)で波長 633nmにおける屈折率を測定した。  A cured film was formed in the same manner as in the above [Pencil hardness (with UV irradiation)] evaluation, except that the glass substrate with ITO was replaced with a silicon substrate (100). The refractive index at a wavelength of 633 nm was measured with an ellipsometer (Mitoshiri Optical Industry Co., Ltd., DVA-36L type).
[0060] [液晶配向膜印刷性]  [0060] [Liquid crystal alignment film printability]
上記した [鉛筆硬度 (UV照射有) ]評価と同様の方法で形成した硬化被膜上に、 D R型印刷機 (日本写真印刷社製、ァニロックスロール (360 # )、凸版 (網点 400L30 %70° ) )を用いて、液晶配向材(日産化学工業社製、サンエバー (登録商標) SE- 5291 032B (商品名))を塗布した。その後、温度 80°Cのホットプレート上で、 3分間 乾燥して液晶配向膜を形成した。形成した液晶配向膜を目視で観察し、液晶配向膜 にはじき、ピンホール及びムラがない良好な場合を〇、ピンホール又はムラが生じて いる場合を△、はじきを生じて基板上に充分に成膜されていない状態を Xとした。 [0061] [表 4] On the cured film formed by the same method as the above [Pencil hardness (with UV irradiation)] evaluation, DR type printer (Nihon Photo Printing Co., Anilox Roll (360 #), letterpress (halftone dot 400L30% 70 °)) was applied to a liquid crystal alignment material (manufactured by Nissan Chemical Industries, Ltd., Sunever (registered trademark) SE-5291 032B (trade name)). Thereafter, it was dried on a hot plate at 80 ° C. for 3 minutes to form a liquid crystal alignment film. The formed liquid crystal alignment film is visually observed. The liquid crystal alignment film is repelled, ◯ when there is no pinhole and unevenness, △ when pinhole or unevenness is generated, X is the state where no film is formed. [0061] [Table 4]
Figure imgf000025_0001
Figure imgf000025_0001
[0062] [参考例 1] [0062] [Reference Example 1]
実施例 1で得られた被膜形成用塗布液 (Z1)について、硬化温度を 150°Cから 300 °Cに代えた以外は実施例 17と同様の方法により、鉛筆硬度 (UV照射有)、屈折率( UV照射有)及び液晶配向膜印刷性 (UV照射有)を評価した。結果を表 5に示す。  For the coating solution for forming a film (Z1) obtained in Example 1, the pencil hardness (with UV irradiation), refraction was performed in the same manner as in Example 17 except that the curing temperature was changed from 150 ° C to 300 ° C. The rate (with UV irradiation) and the liquid crystal alignment film printability (with UV irradiation) were evaluated. The results are shown in Table 5.
[0063] [参考例 2] [0063] [Reference Example 2]
実施例 2で得られた被膜形成用塗布液 (Z2)について、硬化温度を 150°Cから 300 °Cに代えた以外は実施例 18と同様の方法により、鉛筆硬度 (UV照射有)、屈折率( UV照射有)及び液晶配向膜印刷性 (UV照射有)を評価した。結果を表 5に示す。  For the coating solution for forming a film (Z2) obtained in Example 2, the pencil hardness (with UV irradiation), refraction was performed in the same manner as in Example 18 except that the curing temperature was changed from 150 ° C to 300 ° C. The rate (with UV irradiation) and the liquid crystal alignment film printability (with UV irradiation) were evaluated. The results are shown in Table 5.
[0064] [表 5] [0064] [Table 5]
Figure imgf000025_0002
Figure imgf000025_0002
[0065] [実施例 19] [0065] [Example 19]
実施例 2の被膜形成用塗布液 (Z2)を秤量瓶に lg秤量し、オーブンで温度 120°C 1時間乾燥後、温度 180°Cで 2時間焼成した。焼成残分の質量を測定し、次の式を 用いて、残留有機成分量を算出した。その際、被膜形成用塗布液に含まれる全ての 金属原子を酸化物として算出した値を金属酸化物固形分量とした。結果を表 6に示 す。  The coating liquid for forming a film (Z2) of Example 2 was weighed in a weighing bottle, dried in an oven at 120 ° C. for 1 hour, and then baked at 180 ° C. for 2 hours. The mass of the firing residue was measured, and the amount of residual organic components was calculated using the following formula. At that time, a value obtained by calculating all metal atoms contained in the coating liquid for forming a film as an oxide was defined as a metal oxide solid content. The results are shown in Table 6.
(i)残留有機成分量 (質量%) = { (焼成残分の質量 金属酸化物固形分量) / (焼 成残分の質量) } X 100  (i) Residual organic component amount (% by mass) = {(Mass of firing residue, metal oxide solids) / (Mass of firing residue)} X 100
(ii)固形分濃度 (質量%) = { (焼成残分の質量) / (被膜形成用塗布液の質量) } X 100 (iii)金属酸化物換算濃度 (質量%) = { (金属酸化物固形分量) / (被膜用形成塗布 液の質量) } X 100 (ii) Solid content concentration (mass%) = {(mass of firing residue) / (mass of coating liquid for film formation)} X 100 (iii) Metal oxide equivalent concentration (mass%) = {(metal oxide solid content) / (mass of film forming coating solution)} X 100
[0066] [比較例 4] [0066] [Comparative Example 4]
比較例 1の塗布液 (T1)につ 、て、実施例 19の被膜形成用塗布液 (Z2)を塗布液( T1)に代えた以外は実施例 19と同様にして残留有機成分量を算出した。結果は表 6 に示す。  For the coating liquid (T1) of Comparative Example 1, the amount of residual organic components was calculated in the same manner as in Example 19 except that the coating liquid for coating formation (Z2) of Example 19 was replaced with the coating liquid (T1). did. The results are shown in Table 6.
[0067] [表 6] [0067] [Table 6]
Figure imgf000026_0001
Figure imgf000026_0001
[0068] [実施例 20] [0068] [Example 20]
実施例 2の被膜形成用塗布液 (Z2)について、 Z2をガラス基板上に滴下し、スピン コーター(ミカサ社製、 1H— DX2)を用いて、回転数 300rpmで 5秒の予備回転の後 、回転数 4000rpmで 20秒回転させて成膜した。次いで、成膜したガラス基板をホッ トプレート上で温度 80°C、 3分間乾燥させた。この塗膜を、削って、 Z2の乾燥粉末を 採取した。採取した粉末を熱重量示差熱分析測定装置 (マックサイエンス社製、モデ ル WS 002)を用い、室温から 500°Cまで毎分 5°Cで昇温させて、粉末の TG (重 量減少率)及び DTA (示差熱)を測定した。測定結果を図 1及び図 2に示す。  For the coating liquid for forming a film (Z2) of Example 2, Z2 was dropped on a glass substrate, and after a preliminary rotation for 5 seconds at a rotation speed of 300 rpm using a spin coater (Mikasa, 1H—DX2), The film was formed by rotating at 4000 rpm for 20 seconds. Next, the formed glass substrate was dried on a hot plate at a temperature of 80 ° C. for 3 minutes. The coating film was shaved and a dry powder of Z2 was collected. The collected powder was heated from room temperature to 500 ° C at 5 ° C per minute using a thermogravimetric differential thermal analyzer (Model WS 002, manufactured by Mac Science), and the powder TG (weight loss rate) ) And DTA (differential heat). The measurement results are shown in Figs.
この結果から、 140°C付近に吸熱を伴う重量減少と、 200°C付近に、吸熱した後に 発熱を伴う重量減少が確認された。  From these results, it was confirmed that the weight decreased with heat absorption near 140 ° C and the weight decreased with heat generation after heat absorption near 200 ° C.
[0069] [比較例 5]  [0069] [Comparative Example 5]
実施例 20において、被膜形成用塗布液 (Z2)を比較例 1の塗布液 (T1)に代えた 以外は実施例 20と同様にして、 T1の乾燥粉末の重量減少率及び示差熱を測定し た。測定結果を図 1及び図 2に示す。  In Example 20, the weight reduction rate and differential heat of the dry powder of T1 were measured in the same manner as in Example 20, except that the coating solution for forming a film (Z2) was replaced with the coating solution (T1) of Comparative Example 1. It was. The measurement results are shown in Figs.
この結果、 160°C付近に吸熱を伴う重量減少、 230°C付近に吸熱を伴う重量減少 及び 270°C付近に発熱を伴う重量減少が確認された。  As a result, it was confirmed that the weight decreased with endotherm near 160 ° C, the weight decreased with endotherm near 230 ° C, and the weight decreased with heat generation near 270 ° C.
[0070] [まとめ] 実施例 1〜実施例 16の結果 (表 3参照)から、本発明により得られる被膜形成用塗 布液は、低温の硬化温度において、一般的にその被膜を液晶表示素子の電極保護 膜 (絶縁膜)として使用する場合に充分な硬度とされる 5H以上の鉛筆硬度を示した。 そして、この被膜上に、はじきやピンホールを抑制した液晶配向膜を形成することが 確認された。 [0070] [Summary] From the results of Examples 1 to 16 (see Table 3), the coating liquid for film formation obtained by the present invention is generally applied to an electrode protective film (insulating film) of a liquid crystal display element at a low curing temperature. It showed a pencil hardness of 5H or higher, which is considered to be sufficient when used as a film. Then, it was confirmed that a liquid crystal alignment film with suppressed repelling and pinholes was formed on this film.
また、熱硬化に先立ち、乾燥した塗膜に紫外線を照射することで、更に硬化温度を 低下して 150°Cで、被膜の硬さ及び屈折率を高めることができ、さらに、この被膜上 に形成された液晶配向膜は、はじきやピンホールのな!/、優れた成膜性を示した。 更に、屈折率を 1. 5〜2. 1の範囲で任意に調整しうる被膜が形成された。  In addition, by irradiating the dried coating with ultraviolet rays prior to heat curing, the curing temperature can be further lowered to increase the hardness and refractive index of the coating at 150 ° C. The formed liquid crystal alignment film showed no film repellent or pinhole! / Excellent film formability. Furthermore, a film was formed in which the refractive index could be arbitrarily adjusted in the range of 1.5 to 2.1.
[0071] カロえて、実施例 1〜実施例 16における置換溶液 (Q1〜Q16)及び被膜形成用塗 布液 (Z1〜Z16)は、 25°C湿度 50%RHで 1ヶ月保存した後も、析出物の発生がみ られず、非常に保存安定性に優れることが確認された。 [0071] The replacement solution (Q1 to Q16) and the coating solution for film formation (Z1 to Z16) in Examples 1 to 16 were stored at 25 ° C and humidity of 50% RH for 1 month. No generation of precipitates was observed, and it was confirmed that the storage stability was excellent.
実施例 19及び比較例 4の結果 (表 6参照)から、本発明により得られる被膜形成用 塗布液は、低温で硬化した被膜に残存する有機成分 (炭素成分)が少ないことが確 認された。このことから、低温の硬化条件で有機成分 (主としてグリコール)の脱離'分 解が起こっていると推察される。  From the results of Example 19 and Comparative Example 4 (see Table 6), it was confirmed that the coating liquid for forming a film obtained according to the present invention had little organic component (carbon component) remaining in the film cured at low temperature. . From this, it is inferred that desorption and decomposition of organic components (mainly glycol) occurs under low-temperature curing conditions.
実施例 20及び比較例 5の熱重量示差熱分析の結果(図 1及び図 2)から、本発明 により得られる被膜形成用塗布液を用いて形成される塗膜の残留有機成分が、より 離脱'分解し易い状態であると推察される。このことが、塗膜の硬化を促進し、低温で 硬化し易 、ことに繋がると考えられる。  From the results of thermogravimetric differential thermal analysis of Example 20 and Comparative Example 5 (FIGS. 1 and 2), the remaining organic components of the coating film formed using the coating liquid for film formation obtained by the present invention are more separated. 'It is inferred that it is easy to disassemble. This is thought to accelerate the curing of the coating film and to facilitate curing at low temperatures.
産業上の利用可能性  Industrial applicability
[0072] 本発明により得られる被膜形成用塗布液は、フレキソ印刷での塗膜形成能に優れ 、低温で充分に硬化できる被膜を形成することできる。さらに、この被膜上へは、はじ きやピンホールを抑制した液晶配向膜を形成することができる。 [0072] The coating liquid for forming a film obtained by the present invention is excellent in film forming ability in flexographic printing and can form a film that can be sufficiently cured at a low temperature. Furthermore, a liquid crystal alignment film with suppressed repellency and pinholes can be formed on this film.
従って、各種電子部品や表示装置、特に液晶表示装置に有用である。 なお、 2005年 8月 19曰に出願された曰本特許出願 2005— 239057号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。 Therefore, it is useful for various electronic components and display devices, particularly liquid crystal display devices. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2005-239057 filed on August 19, 2005 are incorporated herein by reference. It is included as an indication.

Claims

請求の範囲 [1] 金属アルコキシド (A)を溶媒 (B)中で加水分解 '縮合反応して生成する縮合物を 含有する溶液を得る [工程 1]と、 上記 [工程 1]で得られた溶液を溶媒 (C)で置換した溶液を得る [工程 2]と、を有する ことを特徴とする被膜形成用塗布液の製造方法。 但し、金属アルコキシド (A)は、式(1)で表される化合物(式中、 R1は炭素数 1〜5の アルキル基を表す)力 選ばれる少なくとも 1種の金属アルコキシドであり; Claims [1] Hydrolysis of metal alkoxide (A) in solvent (B) 'Obtaining a solution containing a condensate produced by condensation reaction [Step 1] and obtained in [Step 1] above And [Step 2] to obtain a solution obtained by substituting the solution with the solvent (C). Provided that the metal alkoxide (A) is at least one metal alkoxide selected from the compound represented by the formula (1) (wherein R1 represents an alkyl group having 1 to 5 carbon atoms);
[化 1] iCOR^ (1) 溶媒 )は、炭素数 1〜10のアルコール、炭素数 2〜5のエステル、テトラヒドロフラン 及び炭素数 2〜5のエーテル力 なる群力 選ばれる少なくとも 1種の有機溶媒であり ;溶媒 (C)は、炭素数 2〜10のグリコール力も選ばれる少なくとも 1種の有機溶媒であ る。  [Chemical 1] iCOR ^ (1) Solvent) is an alcohol having 1 to 10 carbon atoms, an ester having 2 to 5 carbon atoms, tetrahydrofuran and a group force consisting of ether forces having 2 to 5 carbon atoms. At least one organic solvent selected Solvent (C) is at least one organic solvent in which a glycol power of 2 to 10 carbon atoms is also selected.
[2] 金属アルコキシド (A)力 更に、式(2)で表される化合物力も選ばれる少なくとも 1 種のアルコキシシランを含有する請求項 1に記載の被膜形成用塗布液の製造方法。  [2] Metal alkoxide (A) force The method for producing a coating liquid for forming a film according to claim 1, further comprising at least one alkoxysilane selected from the compound force represented by formula (2).
[化 2]  [Chemical 2]
(R2)nSi(OR3)4.„ (2) (R 2 ) n Si (OR 3 ) 4. „(2)
(式中、 R2はアルキル基、ァルケ-ル基、又はァリール基を表し、 R3は炭素数 1〜5の アルキル基を表し、 nは 0から 2の整数を表す。) (In the formula, R 2 represents an alkyl group, a alkenyl group, or an aryl group, R 3 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 2.)
[3] アルコキシシラン力 式(2)の n力^である化合物力 選ばれる少なくとも 1種の硅素 化合物である請求項 2に記載の被膜形成用塗布液の製造方法。 [3] The alkoxysilane force The compound force which is n force in the formula (2) The method for producing a coating liquid for forming a film according to claim 2, which is at least one silicon compound selected.
[4] 金属アルコキシド(A)力 アルコキシチタンの 1モルに対してアルコキシシランを 0. [4] Metal alkoxide (A) force
05〜4モル含有する請求項 1乃至 3のいずれか 1項に記載の被膜形成用塗布液の 製造方法。  The manufacturing method of the coating liquid for film formation of any one of Claims 1 thru | or 3 containing 05-4 mol.
[5] 金属塩類から選ばれる 1種又は複数種の触媒を [工程 1]で使用する請求項 1乃至 4のいずれか 1項に記載の被膜形成用塗布液の製造方法。 [5] The method for producing a coating liquid for coating formation according to any one of claims 1 to 4, wherein one or a plurality of catalysts selected from metal salts are used in [Step 1].
[6] [工程 2]で得られた溶液に対し、該溶液と相溶する溶媒 (D)を添加する [工程 3]を 有する請求項 1乃至 5のいずれか 1項に記載の被膜形成用塗布液の製造方法。 [6] The film-forming material according to any one of claims 1 to 5, further comprising [Step 3], wherein a solvent (D) compatible with the solution is added to the solution obtained in [Step 2]. Manufacturing method of coating liquid.
[7] 請求項 1乃至 6のいずれか 1項に記載の製造方法により得られる被膜形成用塗布 液。  [7] A coating-forming coating solution obtained by the production method according to any one of [1] to [6].
[8] 請求項 7に記載の被膜形成用塗布液を用いて得られる被膜。  [8] A film obtained using the coating liquid for forming a film according to claim 7.
[9] 請求項 7に記載の被膜形成用塗布液を用 Vヽて得られる絶縁膜。 [9] An insulating film obtained by using the coating liquid for forming a film according to claim 7.
[10] 請求項 7に記載の被膜形成用塗布液を用いて形成される被膜を有する液晶表示 素子用基板。 [10] A substrate for a liquid crystal display device having a coating film formed using the coating liquid for forming a coating film according to [7].
[11] 請求項 7に記載の被膜形成用塗布液を用いて形成される被膜を有する液晶表示 素子。  [11] A liquid crystal display device having a film formed using the coating liquid for forming a film according to claim 7.
PCT/JP2006/314923 2005-08-19 2006-07-27 Method for producing coating liquid for film formation WO2007020781A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007530931A JP4941302B2 (en) 2005-08-19 2006-07-27 Method for producing coating liquid for film formation
CN2006800294371A CN101243149B (en) 2005-08-19 2006-07-27 Method for producing coating liquid for film formation
KR1020087001270A KR101266728B1 (en) 2005-08-19 2008-01-16 Method for producing coating liquid for film formation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005239057 2005-08-19
JP2005-239057 2005-08-19

Publications (1)

Publication Number Publication Date
WO2007020781A1 true WO2007020781A1 (en) 2007-02-22

Family

ID=37757446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314923 WO2007020781A1 (en) 2005-08-19 2006-07-27 Method for producing coating liquid for film formation

Country Status (5)

Country Link
JP (1) JP4941302B2 (en)
KR (1) KR101266728B1 (en)
CN (1) CN101243149B (en)
TW (1) TWI409308B (en)
WO (1) WO2007020781A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104424A1 (en) * 2008-02-22 2009-08-27 日本曹達株式会社 Solution for formation of organic thin film, and method for production thereof
WO2012099253A1 (en) * 2011-01-20 2012-07-26 日産化学工業株式会社 Coating composition for touch panels, coating film, and touch panel
WO2013065696A1 (en) * 2011-10-31 2013-05-10 日産化学工業株式会社 Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
WO2013115333A1 (en) * 2012-02-01 2013-08-08 日産化学工業株式会社 Coating solution for metal oxide film and metal oxide film
JP2013533909A (en) * 2010-06-18 2013-08-29 ディーエスエム アイピー アセッツ ビー.ブイ. Inorganic oxide coating
WO2013187450A1 (en) * 2012-06-14 2013-12-19 日産化学工業株式会社 Coating fluid for metal oxide coating film and metal oxide coating film
WO2014054748A1 (en) * 2012-10-03 2014-04-10 日産化学工業株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
WO2015005333A1 (en) * 2013-07-11 2015-01-15 日産化学工業株式会社 High-refractive-index film forming composition
JP2016530344A (en) * 2013-06-06 2016-09-29 ハネウェル・インターナショナル・インコーポレーテッド Liquid titanium oxide composition, method for forming it, and method for etching a layer of material on or covering a substrate using it
JPWO2014119680A1 (en) * 2013-01-31 2017-01-26 日産化学工業株式会社 Glass substrate and device using the same
US20180209859A1 (en) * 2017-01-25 2018-07-26 Winbond Electronics Corp. Transparent pressure sensor and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170069309A (en) * 2009-12-02 2017-06-20 닛산 가가쿠 고교 가부시키 가이샤 Agent for forming electrode protective film
TW201209109A (en) * 2010-08-30 2012-03-01 jun-jie Wang Wear-resistant optical film, preparation method thereof, wear-resistant optical coating composition and liquid crystal display
TWI485211B (en) * 2013-09-24 2015-05-21 Chi Mei Corp Composition for electrode protection film, electrode protection film, electronic device and liquid crystal display apparatus
TWI500703B (en) * 2013-12-26 2015-09-21 Chi Mei Corp Photo-curing coating composition, photo-curing coating film and touch panel
JP6398847B2 (en) * 2014-04-16 2018-10-03 信越化学工業株式会社 Titanium oxide solid solution organic solvent dispersion, method for producing the same, and coating agent
CN106536651B (en) * 2014-05-29 2019-12-20 日产化学工业株式会社 Adhesive coating forming agent for alumina substrate or aluminum substrate
TWI512058B (en) * 2014-12-25 2015-12-11 Chi Mei Corp Photo-curing coating composition, photo-curing coating film and touch panel
KR102184439B1 (en) * 2019-03-15 2020-11-30 주식회사 디케이티 The method for fabricating a transparent electrode device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02672A (en) * 1988-01-14 1990-01-05 Sumitomo Electric Ind Ltd Coating composition and insulated wire
JPH02258646A (en) * 1988-12-15 1990-10-19 Nissan Chem Ind Ltd Coating composition and production thereof
JPH0497103A (en) * 1990-08-09 1992-03-30 Nissan Motor Co Ltd Production of uv cut filter
JPH0633000A (en) * 1992-07-17 1994-02-08 Nissan Chem Ind Ltd Coating solution for forming insulation film with high refractive index for liquid crystal display device
JPH10204323A (en) * 1997-01-23 1998-08-04 Nissan Motor Co Ltd Coating liquid for forming hydrophilic coating film and its production
JP2001335745A (en) * 2000-05-29 2001-12-04 Jsr Corp Film-forming composition, film-forming method, and silica- base film
JP2002363490A (en) * 2001-06-11 2002-12-18 Jsr Corp Insulating film-forming composition, method for producing the film, and silica-based insulating film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL84025A0 (en) * 1986-10-03 1988-02-29 Ppg Industries Inc Organosiloxane/metal oxide coating compositions and their production
JP3517890B2 (en) * 1993-02-18 2004-04-12 日産化学工業株式会社 Coating liquid for insulating film formation for liquid crystal display element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02672A (en) * 1988-01-14 1990-01-05 Sumitomo Electric Ind Ltd Coating composition and insulated wire
JPH02258646A (en) * 1988-12-15 1990-10-19 Nissan Chem Ind Ltd Coating composition and production thereof
JPH0497103A (en) * 1990-08-09 1992-03-30 Nissan Motor Co Ltd Production of uv cut filter
JPH0633000A (en) * 1992-07-17 1994-02-08 Nissan Chem Ind Ltd Coating solution for forming insulation film with high refractive index for liquid crystal display device
JPH10204323A (en) * 1997-01-23 1998-08-04 Nissan Motor Co Ltd Coating liquid for forming hydrophilic coating film and its production
JP2001335745A (en) * 2000-05-29 2001-12-04 Jsr Corp Film-forming composition, film-forming method, and silica- base film
JP2002363490A (en) * 2001-06-11 2002-12-18 Jsr Corp Insulating film-forming composition, method for producing the film, and silica-based insulating film

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5276024B2 (en) * 2008-02-22 2013-08-28 日本曹達株式会社 Organic thin film forming solution and method for producing the same
US9303124B2 (en) 2008-02-22 2016-04-05 Nippon Soda Co., Ltd. Solution for formation of organic thin film, and method for production thereof
WO2009104424A1 (en) * 2008-02-22 2009-08-27 日本曹達株式会社 Solution for formation of organic thin film, and method for production thereof
JP2018087346A (en) * 2010-06-18 2018-06-07 ディーエスエム アイピー アセッツ ビー.ブイ. Inorganic oxide coating
JP2013533909A (en) * 2010-06-18 2013-08-29 ディーエスエム アイピー アセッツ ビー.ブイ. Inorganic oxide coating
JPWO2012099253A1 (en) * 2011-01-20 2014-06-30 日産化学工業株式会社 Coating composition for touch panel, coating film and touch panel
WO2012099253A1 (en) * 2011-01-20 2012-07-26 日産化学工業株式会社 Coating composition for touch panels, coating film, and touch panel
JP6048148B2 (en) * 2011-01-20 2016-12-21 日産化学工業株式会社 Coating composition for touch panel, coating film and touch panel
JPWO2013065696A1 (en) * 2011-10-31 2015-04-02 日産化学工業株式会社 Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
CN104011260B (en) * 2011-10-31 2018-02-13 日产化学工业株式会社 Manufacture method, metal oxide coating coating fluid and the metal oxide coating of metal oxide coating coating fluid
CN104011260A (en) * 2011-10-31 2014-08-27 日产化学工业株式会社 Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
KR102094049B1 (en) 2011-10-31 2020-03-26 닛산 가가쿠 가부시키가이샤 Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
WO2013065696A1 (en) * 2011-10-31 2013-05-10 日産化学工業株式会社 Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
KR20140098095A (en) 2011-10-31 2014-08-07 닛산 가가쿠 고교 가부시키 가이샤 Method for producing coating solution for metal oxide coating, coating solution for metal oxide coating, and metal oxide coating
JPWO2013115333A1 (en) * 2012-02-01 2015-05-11 日産化学工業株式会社 Metal oxide coating liquid and metal oxide coating
WO2013115333A1 (en) * 2012-02-01 2013-08-08 日産化学工業株式会社 Coating solution for metal oxide film and metal oxide film
WO2013187450A1 (en) * 2012-06-14 2013-12-19 日産化学工業株式会社 Coating fluid for metal oxide coating film and metal oxide coating film
JPWO2013187450A1 (en) * 2012-06-14 2016-02-08 日産化学工業株式会社 Metal oxide coating liquid and metal oxide coating
JPWO2014054748A1 (en) * 2012-10-03 2016-08-25 日産化学工業株式会社 Coating liquid for forming finely coated inorganic oxide film and method for producing finely divided inorganic oxide film
WO2014054748A1 (en) * 2012-10-03 2014-04-10 日産化学工業株式会社 Application liquid capable of fine application, for forming inorganic oxide coating film, and method for manufacturing fine inorganic oxide coating film
JPWO2014119680A1 (en) * 2013-01-31 2017-01-26 日産化学工業株式会社 Glass substrate and device using the same
JP2016530344A (en) * 2013-06-06 2016-09-29 ハネウェル・インターナショナル・インコーポレーテッド Liquid titanium oxide composition, method for forming it, and method for etching a layer of material on or covering a substrate using it
WO2015005333A1 (en) * 2013-07-11 2015-01-15 日産化学工業株式会社 High-refractive-index film forming composition
US20180209859A1 (en) * 2017-01-25 2018-07-26 Winbond Electronics Corp. Transparent pressure sensor and manufacturing method thereof
JP2018119947A (en) * 2017-01-25 2018-08-02 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Transparent pressure sensor and manufacturing method thereof
US10527504B2 (en) 2017-01-25 2020-01-07 Winbond Electronics Corp. Transparent pressure sensor and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2007020781A1 (en) 2009-02-19
KR20080034887A (en) 2008-04-22
TW200712146A (en) 2007-04-01
JP4941302B2 (en) 2012-05-30
CN101243149A (en) 2008-08-13
CN101243149B (en) 2011-01-26
KR101266728B1 (en) 2013-05-28
TWI409308B (en) 2013-09-21

Similar Documents

Publication Publication Date Title
JP4941302B2 (en) Method for producing coating liquid for film formation
JP5716675B2 (en) Electrode protective film forming agent
JP5034301B2 (en) High refractive material forming composition and cured body thereof, and method for producing high refractive material forming composition
JP6010299B2 (en) UV absorbing film forming coating solution and UV absorbing glass article
JP5459229B2 (en) Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element
KR102092523B1 (en) Composite of metal oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
TW200909541A (en) Abrasion-resistant coating composition and coated article
JP5262722B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
WO2010074261A1 (en) Liquid-crystal alignment material for ink-jet coating, liquid-crystal alignment film, and liquid-crystal display element
JP5458575B2 (en) Coating liquid for forming low refractive index film, production method thereof and antireflection material
JP6617699B2 (en) Glass article
JPWO2007119805A1 (en) Coating liquid for coating formation containing phosphoric ester compound and antireflection film
JP6152799B2 (en) Coating liquid for forming a metal oxide film for protecting molybdenum-containing metals
WO2015166863A1 (en) Liquid composition, and glass article
JP2017179225A (en) Coating liquid for forming coated film and manufacturing method therefor, manufacturing method of substrate with coated film
JP6578946B2 (en) Glass substrate with protective film
JP6480781B2 (en) Transparent film forming coating liquid, method for producing transparent film forming coating liquid, substrate with transparent film, and method for producing substrate with transparent film
JP6480780B2 (en) Coating liquid for forming transparent film, method for producing the same, and substrate with transparent film
JP2021155664A (en) Coating liquid
JP5459228B2 (en) Liquid crystal alignment agent for inkjet coating, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029437.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087001270

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007530931

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781834

Country of ref document: EP

Kind code of ref document: A1