WO2010001949A1 - Coating liquid, cured film, resin multilayer body, method for producing the cured film and method for producing the resin multilayer body - Google Patents

Coating liquid, cured film, resin multilayer body, method for producing the cured film and method for producing the resin multilayer body Download PDF

Info

Publication number
WO2010001949A1
WO2010001949A1 PCT/JP2009/062096 JP2009062096W WO2010001949A1 WO 2010001949 A1 WO2010001949 A1 WO 2010001949A1 JP 2009062096 W JP2009062096 W JP 2009062096W WO 2010001949 A1 WO2010001949 A1 WO 2010001949A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cured film
component
coating liquid
resin
Prior art date
Application number
PCT/JP2009/062096
Other languages
French (fr)
Japanese (ja)
Other versions
WO2010001949A9 (en
Inventor
直子 阿部
和彦 伊藤
太 宇都野
一吉 井上
健治 後藤
真弘 関口
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2010519100A priority Critical patent/JP5635402B2/en
Publication of WO2010001949A1 publication Critical patent/WO2010001949A1/en
Publication of WO2010001949A9 publication Critical patent/WO2010001949A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat

Definitions

  • the present invention relates to a coating solution, a cured film, a resin laminate, and a method for producing the cured film and the resin laminate.
  • Thermoplastics especially polycarbonate resins, are widely used as structural materials to replace glass because of their excellent transparency, light weight, and excellent impact resistance.
  • the surface properties such as abrasion resistance, scratch resistance, weather resistance, and chemical resistance are inferior, the use thereof is limited, and there is a strong demand for improving the surface properties of the polycarbonate substrate.
  • a method for improving surface characteristics there is a method of coating the surface of a polycarbonate resin molded article with a surface treatment agent.
  • a method has been proposed in which a cured layer made of a polyfunctional acrylic photocurable resin or a melamine-based or organopolysiloxane-based thermosetting resin is formed on the surface of a polycarbonate substrate.
  • those coated with an organosiloxane resin are considered useful because they are excellent in wear resistance, scratch resistance and chemical resistance.
  • the coating with the organosiloxane resin has a problem in adhesion to the polycarbonate resin, and particularly has a problem that the coating layer is peeled off when used outdoors for a long period of time. Further, in order to improve the adhesion and wear resistance, there is a problem that even if the thickness of the organosiloxane resin is increased, there is a problem that cracking is likely to occur at the time of curing.
  • Patent Document 1 proposes a method in which various polymers having good adhesion are blended into a paint or a hard coat material, but the scratch resistance is insufficient.
  • patent document 2 and 3 describe providing a hardened film on the base-material surface, and also providing an inorganic hard material layer on it, sufficient adhesiveness is not acquired.
  • Patent Documents 4 and 5 disclose a resin laminate comprising a coating layer having a film internal structure in which polymer nanoparticles having ultraviolet absorbing ability are highly dispersed in a siloxane matrix (Si—O skeleton) and a base material. Yes. This resin laminate is excellent in abrasion resistance and initial adhesion between the substrate and the coating layer. There was room for improvement in terms of wear resistance and wear resistance. There was also room for improvement in terms of durability (boiling resistance).
  • the present invention has been made under such circumstances, and has good adhesion to a substrate, an inorganic hard material layer, a transparent conductive film and a photocatalyst layer without using a primer, and has excellent wear resistance.
  • a coating liquid containing a hydrolyzed condensate of a silane compound having an alkoxy group, an organic polymer fine particle comprising a copolymer containing a monomer unit having an ultraviolet absorbing group, colloidal silica, a curing catalyst and a dispersion medium is heated.
  • a cured film having desired characteristics can be obtained, and the cured film is formed on the substrate or between each of the inorganic hard material layer, the transparent conductive film and the photocatalyst layer and the substrate.
  • the inventors have found that a desired resin laminate can be obtained.
  • the present invention has been completed based on such findings.
  • a coating liquid comprising the following components (A) to (E): (A) Hydrolysis condensate of silane compounds having alkoxy groups of the following components (A-1) to (A-5) (A-1) Tetraalkoxysilane compounds (A-2) Amino groups, epoxy groups and isocyanate groups (A-3) Silane compound having amino group and alkoxy group (A-4) Silane compound having epoxy group and alkoxy group (A-5) Blocked isocyanatosilane compound having alkoxy group (B) Organic polymer fine particles comprising a copolymer containing a monomer unit having an ultraviolet absorbing group (C) Colloidal silica (D) Curing catalyst (E) Dispersion medium
  • the component (A-1) is a tetraalkoxysilane compound represented by the following general formula (1).
  • Si (OR 1 ) 4 (1) wherein R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkyl group having an ether bond. A plurality of R 1 may be the same or different.
  • R 4 is an alkyl group having 1 to 4 carbon atoms; vinyl group; phenyl group; or methacryloxy group, amino group (—NH 2 group), aminoalkyl group [— (CH 2 ) x —NH 2 group ( Wherein x is an integer of 1 to 3)]), an alkylamino group [—NHR group (where R is an alkyl group having 1 to 3 carbon atoms)], and the number of carbon atoms substituted with one or more groups 1 to 3 alkyl groups, at least one of R 4 represents an amino group, or an alkyl group having 1 to 3 carbon atoms substituted with either an aminoalkyl group or an alkylamino group; R 5 represents an alkyl group having 1 to 4 carbon atoms, and b represents 1 or 2. If R 4 is plural, R 4 may be the same or different, the plurality of OR 5 may be the same or different. ]
  • R 6 represents an alkyl group having 1 to 3 carbon atoms
  • R 7 represents an alkyl group having 1 to 4 carbon atoms
  • c represents 1 or 2. If R 6 is plural, R 6 may be the same or different, a plurality of OR 7 may be different or identical.
  • R 8 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or an alkyl group having 1 to 3 carbon atoms substituted with one or more groups selected from a methacryloxy group and a blocked isocyanate group.
  • at least one of R 8 represents an alkyl group having 1 to 3 carbon atoms substituted with a blocked isocyanate group.
  • R 9 represents an alkyl group having 1 to 4 carbon atoms, and d represents 1 or 2. If R 8 is plural, R 8 may be the same or different, a plurality of OR 9 may be the same or different.
  • a reaction product obtained by contacting the hydrolysis condensate of components (A-1), (A-2) and (A-4) with components (B) to (E) The coating liquid according to any one of [1] to [7], wherein the component (A-5) is added and reacted, and then the component (A-3) is added and reacted.
  • a reaction product obtained by heating a mixture containing the component (A-1), the component (A-2), the component (A-4) and the components (B) to (E) is added to the reaction product (A -5)
  • a method for producing a cured film comprising a step of heating and curing the coating liquid according to any one of [1] to [9].
  • the method for producing a resin laminate according to [25] further comprising a step of providing a resin layer on a surface of the resin laminate obtained by curing the coating liquid and having no coating layer.
  • the manufacturing method of the resin laminated body characterized by including.
  • the present invention has good adhesion to a substrate, an inorganic hard material layer, a transparent conductive film and a photocatalyst layer without using a primer, and has excellent wear resistance, scratch resistance, and bending resistance. It is possible to provide a coating liquid that gives a cured film having properties such as property, weather resistance (ultraviolet ray absorption ability), and durability (boiling resistance). Further, according to the present invention, the cured film having the above-mentioned characteristics obtained by curing the coating liquid and the cured film on the substrate or between each of the inorganic hard material layer, the transparent conductive film and the photocatalyst layer and the substrate. And a method for producing the cured film and the resin laminate.
  • the coating liquid of the present invention comprises the following components (A) to (E).
  • the coating liquid of the present invention contains hydrolysis condensates of the following five compounds (A-1) to (A-5) as hydrolysis condensates of the silane compound having an alkoxy group as component (A). .
  • the hydrolysis condensate may be a hydrolysis condensate of a single compound in (A-1) to (A-5), or any one of (A-1) to (A-5) It may be a hydrolysis condensate of a mixture of two or more.
  • an alkoxy group-containing silane compound is an alkoxysilane compound and / or a partial condensate thereof, and an alkoxysilane compound partial condensate is a part of an alkoxysilane compound condensed into a siloxane in the molecule.
  • the hydrolyzed condensate of the silane compound having an alkoxy group includes a silane compound having the alkoxy group before hydrolysis and condensation in addition to the hydrolyzed condensate of the silane compound having an alkoxy group. is there.
  • the compound (A-1) is a tetraalkoxysilane compound.
  • a partial condensate (polyalkoxysilane compound) bonded with a siloxane bond (Si—O bond) can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a tetraalkoxysilane compound and a partial condensate thereof can be represented, for example, by the following general formula (1), and a compound represented by the following general formula (6) is particularly preferable.
  • Si (OR 1 ) 4 (1) wherein R 1 is an alkyl group having 1 to 4 carbon atoms or an alkyl group having an ether bond. A plurality of R 1 may be the same or different. ]
  • examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and various butyl groups.
  • OR 1 in which R 1 is an alkyl group having 1 to 4 carbon atoms having an ether bond includes, for example, a 2-methoxyethoxy group, a 3-methoxypropoxy group, and the like.
  • Examples of the tetraalkoxysilane compound (A-1) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, and tetraisobutoxysilane.
  • Examples of the polyalkoxysilane compound include “M silicate 51”, “silicate 40”, and “silicate 45” manufactured by Tama Chemical Industries, Ltd., and “methyl silicate 51”, “methyl silicate 53A”, and “ethyl silicate 40” manufactured by Colcoat Co., Ltd. "Ethyl silicate 48" etc. are mentioned.
  • the compound (A-2) is an organoalkoxysilane compound containing no amino group, epoxy group or isocyanate group. Moreover, the partial condensate can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the organoalkoxysilane compound and the partial condensate thereof are preferably bifunctional alkoxysilane and trifunctional alkoxysilane, and can be represented by, for example, the following general formula (2).
  • the compound represented by (7) is preferred.
  • R 2 a Si (OR 3 ) 4-a (2)
  • R 2 is an alkyl group or a fluorinated alkyl group of 1 to 10 carbon atoms; vinyl group; a phenyl group; or methacryloxy-substituted alkyl group having 1-3 carbon atoms in the group
  • R 3 is a C1- 4 is an alkyl group or an alkyl group having an ether bond
  • a is 1 or 2.
  • R 2 are a plurality, the plurality of R 2 may be the same or different, a plurality of OR 3 may be the same or different.
  • the alkyl group having 1 to 10 carbon atoms may be linear or branched.
  • a methyl group, an ethyl group, an n-propyl group examples include isopropyl group, various butyl groups, various hexyl groups, various octyl groups, and various decyl groups.
  • the fluorinated alkyl group examples include trifluoroethyl group and trifluoropropyl group.
  • the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • the alkyl group having 1 to 4 carbon atoms or the alkyl group having an ether bond is as described in the general formula (1).
  • trifunctional alkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, methyl-tris (2-methoxy).
  • Ethoxy silane ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, ethyl-tris (2-methoxyethoxy) silane, hexyltrimethoxysilane, hexyltriethoxysilane, hexyltripropoxysilane, Hexyl riboxysilane, decyltrimethoxysilane, decyltriethoxysilane, decyltripropoxysilane, decyltributoxysilane, trifluoropropoxy with fluorine atoms introduced into substituents Fluorinated alkyl (trialkoxy) silane, such as trimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxys
  • ⁇ - methacryloxypropyl trimethoxysilane ⁇ - methacryloxypropyl trimethoxysilane.
  • methyldimethoxy (ethoxy) silane, ethyl diethoxy (methoxy) silane, etc. which have two types of alkoxy groups are also mentioned.
  • Examples of the bifunctional alkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, bis (2-methoxyethoxy) dimethylsilane, diethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.
  • Specific examples of the polyorganoalkoxysilane compound include “MTMS-A” manufactured by Tama Chemical Co., Ltd., “SS-101” manufactured by Colcoat Co., Ltd., “AZ-6101” and “SR2402” manufactured by Toray Dow Corning Co., Ltd. And “AY42-163”.
  • the compound (A-3) is an silane compound having an amino group and an alkoxy group, and does not contain an epoxy group or an isocyanate group.
  • the partial condensate (amino group containing polyorganoalkoxysilane compound) can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an amino group-containing organoalkoxysilane compound and a partial condensate thereof can be represented, for example, by the following general formula (3).
  • R 4 is an alkyl group having 1 to 4 carbon atoms; vinyl group; phenyl group; or methacryloxy group, amino group (—NH 2 group), aminoalkyl group [— (CH 2 ) x —NH 2 group ( Wherein x is an integer of 1 to 3)]), an alkylamino group [—NHR group (where R is an alkyl group having 1 to 3 carbon atoms)], and the number of carbon atoms substituted with one or more groups
  • An alkyl group having 1 to 3 carbon atoms and at least one R 4 is an amino group or an alkyl group having 1 to 3 carbon atoms substituted with either an aminoalkyl group or an alkylamino group.
  • R 5 is an alkyl group having 1 to 4 carbon atoms, and b is 1 or 2. If R 4 is plural, R 4 may be the same or different, the plurality of OR 5 may be the same or different.
  • the alkyl group having 1 to 3 carbon atoms and the alkyl group having 1 to 4 carbon atoms are as described in the general formula (1) or (2).
  • amino group-containing organoalkoxysilane compound represented by the general formula (3) examples include N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane and N- (2-aminoethyl) -3-amino.
  • Examples of the amino group-containing polyorganoalkoxysilane compound include “KBP-90” manufactured by Shin-Etsu Silicone Co., Ltd.
  • the compound (A-4) is an alkoxysilane compound having an epoxy group and an alkoxy group and not containing an amino group or an isocyanate group.
  • the partial condensate epoxy group containing polyorganoalkoxysilane compound
  • These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an epoxy group-containing organoalkoxysilane compound and a partial condensate thereof can be represented, for example, by the following general formula (4).
  • R 6 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or a carbon substituted with one or more groups selected from a methacryloxy group, a glycidoxy group, and a 3,4-epoxycyclohexyl group.
  • An alkyl group having 1 to 3 carbon atoms, and at least one of R 6 is an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group or a 3,4-epoxycyclohexyl group.
  • R 7 is an alkyl group having 1 to 4 carbon atoms, and c is 1 or 2.
  • R 6 is plural, R 6 may be the same or different, a plurality of OR 7 may be different or identical.
  • the alkyl group having 1 to 3 carbon atoms and the alkyl group having 1 to 4 carbon atoms are as described in the general formula (1) or (2).
  • epoxy group-containing organoalkoxysilane compound represented by the general formula (4) include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltrimethoxy.
  • examples thereof include silane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane.
  • the compound (A-5) is a blocked isocyanatosilane compound having an alkoxy group (generally also referred to as a blocked isocyanate silane compound), which contains a blocked isocyanate group, but has an amino group and an epoxy group. It is an alkoxysilane compound not included.
  • the partial condensate (blocked isocyanate group containing polyorganoalkoxysilane compound) can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the blocked isocyanatosilane compound is an isocyanatosilane compound in which an isocyanate group is protected by a blocking agent such as oxime to be inactive, and is deblocked by heating to activate (regenerate) the isocyanate group (general) Also referred to as an isocyanate silane compound).
  • a blocked isocyanate group-containing organoalkoxysilane compound and a partial condensate thereof can be represented, for example, by the following general formula (5).
  • R 8 d Si (OR 9 ) 4-d (5) [Wherein R 8 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or an alkyl group having 1 to 3 carbon atoms substituted with one or more groups selected from a methacryloxy group and a blocked isocyanate group. And at least one of R 8 is an alkyl group having 1 to 3 carbon atoms substituted with a blocked isocyanate group.
  • R 9 is an alkyl group having 1 to 4 carbon atoms, and d is 1 or 2. If R 8 is plural, R 8 may be the same or different, a plurality of OR 9 may be the same or different.
  • the alkyl group having 1 to 3 carbon atoms and the alkyl group having 1 to 4 carbon atoms are as described in the general formula (1) or (2).
  • the blocked isocyanate group-containing organoalkoxysilane compound represented by the general formula (5) include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldimethoxysilane. , 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylethyldiethoxysilane and the like in which the isocyanate group is protected with a blocking agent.
  • a preferred compound is 3-blocked isocyanatopropyltriethoxysilane.
  • isocyanate group blocking agents include oxime compounds such as acetooxime, 2-butanone oxime, cyclohexanone oxime, methyl isobutyl ketoxime, lactams such as ⁇ -caprolactam, alkylphenols such as monoalkylphenol (cresol, nonylphenol, etc.), Active methylene compounds such as 3,5-xylenol, dialkylphenols such as di-t-butylphenol, trialkylphenols such as trimethylphenol, malonic acid diesters such as diethyl malonate, acetoacetates such as acetylacetone and ethyl acetoacetate , Alcohols such as methanol, ethanol and n-butanol, hydroxyl group-containing ethers such as methyl cellosolve and butyl cellosolve, ethyl lactate Hydroxyl-containing esters such as amyl lactate, mercaptans such as butyl mercap
  • the coating liquid of the present invention comprises, as component (B), organic polymer fine particles (hereinafter sometimes referred to as polymer UV-absorbing resin fine particles) made of a copolymer containing a monomer unit having an ultraviolet absorbing group. contains.
  • the polymer ultraviolet-absorbing resin fine particles include an acrylic monomer having a skeleton (benzophenone-based, benzotriazole-based, triazine-based, etc.) acting as an ultraviolet absorber in the side chain (hereinafter referred to as an ultraviolet-absorbing acrylic monomer). And those obtained by copolymerizing other ethylenically unsaturated compounds (acrylic acid, methacrylic acid and derivatives thereof, styrene, vinyl acetate, etc.).
  • the ultraviolet-absorbing group acrylic monomer is not particularly limited as long as it is a compound having at least one ultraviolet-absorbing group and acryloyl group in the molecule.
  • examples of such a compound include a benzotriazole compound represented by the following general formula (8) and a benzophenone compound represented by the general formula (9).
  • X is a hydrogen atom or a chlorine atom
  • R 10 is a hydrogen atom, a methyl group, or a tertiary alkyl group having 4 to 8 carbon atoms
  • R 11 is a linear or branched carbon group having 2 to 10 carbon atoms.
  • An alkylene group, R 12 represents a hydrogen atom or a methyl group, and p represents 0 or 1.
  • R 13 is a hydrogen atom or methyl group
  • R 14 is a substituted or unsubstituted linear or branched alkylene group having 2 to 10 carbon atoms
  • R 15 is a hydrogen atom or hydroxyl group
  • R 16 is hydrogen.
  • An atom, a hydroxyl group, or an alkoxy group having 1 to 6 carbon atoms is shown.
  • benzotriazole-based compound represented by the general formula (8) examples include 2- (2′-hydroxy-5 ′-(meth) acryloxyphenyl) -2H-benzotriazole, 2- (2 '-Hydroxy-3'-tert-butyl-5'-(meth) acryloxymethylphenyl) -2H-benzotriazole, 2- [2'-hydroxy-5 '-(2- (meth) acryloxyethyl) phenyl ] -2H-benzotriazole, 2- [2′-hydroxy-3′-tert-butyl-5 ′-(2- (meth) acryloxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [ And 2'-hydroxy-3'-methyl-5 '-(8- (meth) acryloxyoctyl) phenyl] -2H-benzotriazole.
  • benzophenone compounds represented by the general formula (9) include, for example, 2-hydroxy-4- (2- (meth) acryloxyethoxy) benzophenone, 2-hydroxy-4- (4- (meta ) Acryloxybutoxy) benzophenone, 2,2'-dihydroxy-4- (2- (meth) acryloxyethoxy) benzophenone, 2,4-dihydroxy-4 '-(2- (meth) acryloxyethoxy) benzophenone, 2, , 2 ′, 4-trihydroxy-4 ′-(2- (meth) acryloxyethoxy) benzophenone, 2-hydroxy-4- (3- (meth) acryloxy-2-hydroxypropoxy) benzophenone, 2-hydroxy-4 And-(3- (meth) acryloxy-1-hydroxypropoxy) benzophenone.
  • These ultraviolet-absorbing acrylic monomers may be used alone or in combination of two or more.
  • the content of the ultraviolet-absorbing acrylic monomer unit in the polymer ultraviolet-absorbing resin fine particles as the component (B) is from the viewpoint of the ultraviolet absorption ability of the obtained cured film, other physical properties and economic balance, etc. Usually, it is about 5 to 70% by mass, preferably about 10 to 60% by mass.
  • the polymer ultraviolet absorbing resin fine particles used as the component (B) are from the viewpoints of manufacturability, dispersibility in the coating liquid, coating property of the coating solution, and transparency of the cured film.
  • the average particle diameter is preferably in the range of 1 to 200 nm, more preferably in the range of 1 to 100 nm.
  • the average particle diameter of the polymer ultraviolet absorbing resin fine particles can be measured by a laser diffraction scattering method.
  • the polymer ultraviolet absorbing resin fine particles are preferably used in a form dispersed in a dispersion medium.
  • the dispersion medium include water, methanol, ethanol, propanol, 1-methoxy-2-propanol, and the like. Preferred examples include lower alcohols and cellosolves such as methyl cellosolve.
  • the dispersion medium is water.
  • the dispersion medium is water, it can be advantageously used for the hydrolysis and condensation reaction of the silane compound required for forming the matrix having Si—O bonds derived from the component (A).
  • a conventionally well-known method for example, an emulsion polymerization method, a fine suspension polymerization method, etc. are employable.
  • the emulsion polymerization method a mixture composed of an ultraviolet-absorbing acrylic monomer as a monomer and an ethylenically unsaturated monomer copolymerized therewith is obtained from an aqueous dispersion medium, an anionic or nonionic surfactant.
  • a method for obtaining a dispersion of polymer UV-absorbing resin fine particles by proceeding polymerization in a surfactant micelle layer emulsified into fine droplets and enclosing the monomer mixture using an emulsifier and a water-soluble polymerization initiator It is.
  • the fine suspension polymerization solution is first premixed in an aqueous medium by adding the monomer mixture, oil-soluble polymerization initiator, emulsifier and other additives as necessary, and homogenized by a homogenizer. The particle size of the oil droplets is adjusted.
  • the homogenized liquid is sent to a polymerization vessel and a polymerization reaction is performed to obtain a dispersion of polymer ultraviolet absorbing resin fine particles.
  • the polymerization temperature is about 30 to 80 ° C.
  • water-soluble polymerization initiator used in the emulsion polymerization examples include water-soluble peroxides such as potassium persulfate, ammonium persulfate, and hydrogen peroxide, these initiators or cumene hydroperoxide, t-butyl hydroperoxide, and the like.
  • Redox initiators that combine hydroperoxides with reducing agents such as acidic sodium sulfite, ammonium sulfite, and ascorbic acid; water-soluble azo compounds such as 2,2'-azobis (2-methylpropionamidine) dihydrochloride Can be mentioned.
  • oil-soluble polymerization initiator used for fine suspension polymerization examples include oil-soluble organic peroxides such as diacyl peroxides, ketone peroxides, peroxy esters, peroxy dicarbonates, 2, 2 Examples thereof include azo compounds such as' -azobisisobutyronitrile and 2,2'-azobis (2,4-dimethylvaleronitrile).
  • polymer ultraviolet ray absorbing resin fine particles that can be used as the component (B) include coating polymer ultraviolet absorbers ULS-700, ULS-1700, ULS-383MA, ULS manufactured by Yufu Kogyo Co., Ltd. -1383MA, ULS-383MG, ULS-385MG, ULS-1383MG, ULS-1385MG, ULS-635MH, etc. NUV-905-20EM and NCI-905-20EMA Polymer ultraviolet absorber made of a copolymer of styrene monomer and benzotriazole monomer).
  • the polymer ultraviolet absorbing resin fine particles may be used singly or in combination of two or more.
  • the coating liquid of the present invention contains colloidal silica as the component (C).
  • the colloidal silica used in the present invention is also called colloidal silica or colloidal silicic acid. In water, it refers to a colloidal suspension of silicon oxide having Si—OH groups on its surface by hydration, and is formed when hydrochloric acid is added to an aqueous solution of sodium silicate. Recently, new preparation methods have been developed one after another, and there are those dispersed in a non-aqueous solution and fine powders made by a vapor phase method.
  • the average particle size is preferably about 1 to 200 nm.
  • the composition of the particles is indeterminate, and some particles are polymerized by forming siloxane bonds (—Si—O—, —Si—O—Si—).
  • the particle surface is porous and is generally negatively charged in water.
  • the average particle diameter can be measured by a laser diffraction scattering method.
  • colloidal silica (Product name: Snowtex 20, Snowtex 30, Snowtex 40, Snowtex O, Snowtex O-40, Snowtex C, Snowtex N, Snowtex S, Snowtex 20L, Snowtex OL, etc.) )
  • organosilica sol product names: methanol silica sol, MA-ST-MS, MA-ST-L, IPA-ST, IPA-ST-MS, IPA-ST-L, IPA-ST-ZL, IPA-ST-) UP, EG-ST, NPC-ST-30, MEK-ST, MEK-ST-MS, MIBK ST, XBA-ST, PMA-ST, DMAC-ST, such as PGM-ST) "can be mentioned.
  • the colloidal silica may be mentioned as the component (C).
  • the coating liquid of the present invention contains a curing catalyst as the component (D).
  • This curing catalyst is a catalyst for hydrolyzing and condensing (curing) the silane compounds (A-1) to (A-5) in the component (A) described above.
  • Organic metal salts such as sodium propionate, sodium glutamate, potassium propionate, sodium formate, potassium formate, benzoyltrimethylammonium acetate, tetramethylammonium acetate, tin octylate, tetraisopropyl titanate, tetrabutyl titanate, aluminum triisobutoxide , like aluminum triisopropoxide, aluminum acetylacetonate, Lewis acids such as SnCl 4, TiCl 4, ZnCl 4 is It is.
  • an organic acid can be preferably used because it can be highly dispersed even if the blending amount of the components (B) and (C) is increased, and the transparency of the resulting film can be improved.
  • organic carboxylic acids, especially acetic acid can be preferably used.
  • the curing catalyst may be used alone or in combination of two or more.
  • the coating liquid of the present invention contains a dispersion medium as the component (E).
  • the coating liquid of the present invention is used in a state where the component particles are dispersed in a dispersion medium.
  • the dispersion medium used in the present invention is not particularly limited as long as it can uniformly mix and disperse the above component particles.
  • organic dispersion media such as esters and esters.
  • alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, n-hexyl alcohol, n- Octyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, 1-methoxy-2-propanol (propylene glycol monomethyl ether), propylene monomethyl ether acetate, diacetone
  • examples include alcohol, methyl cellosolve, ethyl cellosolve, propyl cellosolve, and butyl cellosolve. Kill.
  • dispersion media examples include cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, xylene, dichloroethane, toluene, methyl acetate, ethyl acetate, ethoxyethyl acetate. Etc.
  • these dispersion media water and alcohols are preferable from the viewpoint of performance as a dispersion medium.
  • the component (E) one type of the dispersion medium may be used alone, or two or more types may be used in combination.
  • the coating liquid of the present invention preferably contains cerium oxide treated (pretreated) with a silane compound as the component (F).
  • the pretreatment here refers to changing the surface state of cerium oxide by reacting the OH group of cerium oxide with the silanol group of the silane compound to form a covalent bond.
  • Silane-treated cerium oxide does not form aggregates or precipitates even when mixed with a sol (for example, colloidal silica) in which anionic particles are dispersed. Can do.
  • the cerium oxide used is not particularly limited, but is preferably in the form of particles and having an average particle diameter of 1 to 200 nm, and more preferably 1 to 100 nm from the viewpoint of transparency. From the viewpoint of improving dispersibility, when adding the component (F) to the coating liquid of the present invention, it is preferable to add the component after dispersing it in a dispersion medium such as water or alcohol.
  • Dispersion in component (F) refers to a state in which a dispersed phase (solid) is suspended and suspended in a dispersion medium (liquid).
  • the “sol” is a colloid having a liquid as a dispersion medium and a solid as dispersed particles, and is sometimes referred to as a colloid solution.
  • the average particle diameter of the cerium oxide fine particles can be measured by a laser diffraction scattering method.
  • As a dispersion medium although it applies to the above-mentioned (E) component, water or alcohol is preferable.
  • the alcohol refers to an alcohol generated from the silane compound described in the components (A-1) to (A-5) in the component (A) and the alcohol described in the component (E), and particularly methanol, ethanol It is preferably dispersed in a lower alcohol such as n-propyl alcohol, isopropyl alcohol or 1-methoxy-2-propanol.
  • a lower alcohol such as n-propyl alcohol, isopropyl alcohol or 1-methoxy-2-propanol.
  • water and alcohol as a dispersion medium may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the component (F) is a dispersion obtained by reacting a cerium oxide sol having a surface charge with a silane compound and modifying the surface, and can be suitably added to the coating liquid of the present invention without agglomeration, precipitation or gelation.
  • This silane compound includes all alkoxysilanes or their hydrolyzed condensates. Therefore, since the exact solid content concentration in the state of the dispersion cannot be obtained, the total amount of cerium oxide as a raw material and the total amount of the complete condensation product of alkoxysilane is divided by the total amount of charge, and expressed as a percentage. This was taken as the calculated solid content concentration.
  • the method for producing the raw material cerium oxide fine particles to be used is not particularly limited. However, since the reaction with the silane compound is difficult with the powder as it is, it is suitably used as a dispersion.
  • an acid-stable cationic cerium oxide sol using an acidic dispersion stabilizer can be preferably used from the viewpoint of promoting the hydrolysis reaction of the silane compound, and the average particle size is 1 to 200 nm.
  • the thickness is preferably from 1 to 100 nm from the viewpoint of imparting transparency.
  • the acidic dispersion stabilizer to be added examples include inorganic acids such as hydrochloric acid, nitric acid and perchloric acid, and organic carboxylic acids such as acetic acid, formic acid and lactic acid. These may be used alone or in combination.
  • the dispersion stabilizer is preferably an inorganic acid, more preferably cerium oxide sol using hydrochloric acid, from the viewpoint of further reacting cerium oxide with the silane compound.
  • examples of commercially available products include “Nidoral H-15” manufactured by Taki Chemical Co., Ltd.
  • the raw material silane compound used can be defined in the same way as the component (A) described above, but in order to form a siloxane bond suitably with the silanol groups of the component (A) and the component (C) during the production of the cured film, (A-1) A compound is preferred. These may be used alone or in combination.
  • organoalkoxysilane or its hydrolysis condensate or polyorganoalkoxysilane is used together. You can also. Specific examples of the organoalkoxysilane are those having one or more organic substituents among the component (A), and more preferably the components (A-2) to (A-5).
  • the structure of the surface treatment may be a complete two-layer structure or a structure in which each alkoxysilane, its hydrolysis condensate or polyalkoxysilane is mixed.
  • the cerium oxide surface layer of the cerium oxide particles Since the OH group on the surface layer of the cerium oxide particles has high reactivity, if only organoalkoxysilane is directly used for the surface treatment, there is a risk of promoting aggregation / gelation of only cerium oxide due to the difference in reaction rate. Therefore, as the surface treatment of cerium oxide in component (F), first, the cerium oxide surface layer is treated with highly reactive tetraalkoxysilane or its hydrolysis condensate, and secondly organoalkoxysilane or its hydrolysis condensation. It is desirable to react with the product.
  • the silane-treated layer of component (F) has a structure in which some organic substituents are present, so that a siloxane bond is suitably formed with the silanol groups of component (A) and component (C) during the production of the cured film.
  • the flexibility of the cured film can be further improved.
  • a general cationic cerium oxide sol must be surface-treated with a silane compound before it becomes agglomerated and gelled with an anionic component in the coating solution of the present invention, making it difficult to add. Therefore, in order to disperse stably in the coating liquid of the present invention, it is necessary to react the OH group of the cerium oxide fine particle surface layer part of the cationic cerium oxide sol with the silanol group of the silane compound and use it after surface treatment as described above. .
  • the amount of the silane compound used for the surface treatment is considered by the mass of the silane compound as a metal oxide.
  • the metal oxide of a silane compound is defined as the following general formula, for example.
  • R 1 m R 2 n SiO ((4-mn) / 2) (Wherein R 1 and R 2 are each independently an alkyl group or fluorinated alkyl group having 1 to 10 carbon atoms; vinyl group; phenyl group; or methacryloxy group, amino group, aminoalkyl group, alkylamino group, glycidoxy group)
  • the following method can be adopted as a specific method for producing the component (F).
  • a first liquid mixture comprising a cationic cerium oxide sol and the above-mentioned component (E) is prepared, and then a second liquid is prepared by mixing one or more silane compound (A) components. After aging at room temperature, the mixture is further stirred at room temperature or heated to obtain component (F).
  • the component (E) may be diluted by further adding the component (F) after preparation, or the dispersion medium may be replaced by adding another dispersion medium.
  • the following method can be more preferably employed.
  • a first mixed liquid composed of a cationic cerium oxide sol and a component (E) described later is prepared, and then a tetraalkoxysilane (component (A)) is mixed to prepare a second liquid. After aging at room temperature, organoalkoxysilane (component (A)) is mixed to prepare a third mixed solution. Furthermore, it is set as (F) component by making it stir at room temperature or heating.
  • the component (E) may be diluted by further adding the component (F) after preparation, or the dispersion medium may be replaced by adding another dispersion medium.
  • the cerium oxide sol may be used alone or in combination of two or more.
  • the coating liquid of the present invention preferably contains a dispersion stabilizer as the component (G).
  • This dispersion stabilizer stably disperses the reactants of the silane compounds (A-1) to (A-5) and the components (B), (C), and (F) in the coating liquid, It is an additive for suppressing gelation.
  • the fine particles of the components (B), (C), and (F) are preferably maintained in a dispersed state without causing aggregation sedimentation or gelation. It is preferable that
  • the coating liquid of the present invention uses a condensation reaction at the time of thermal curing, it is desirable to stop the metal alkoxide in the OH form before coating. Therefore, it is desirable to maintain acidic conditions that promote the hydrolysis reaction and suppress the condensation reaction. Furthermore, since the carboxylic acid itself has not only an effect as an acid but also a coordination effect on a metal and is an effective additive for stabilizing an alkoxide, an organic acid, particularly an organic carboxylic acid is used as the component (G). It can be preferably used.
  • the coating liquid of the present invention forms a cured film by thermal curing, it preferably has a boiling point that does not remain in the cured film during thermal curing, and more preferably acetic acid can be used.
  • the component (G) one type of the dispersion stabilizer may be used alone, or two or more types may be used in combination.
  • the coating liquid of the present invention appropriately contains various known additive components used in conventional coating liquids as necessary. It can be included. Examples of the additive component that can be contained as needed include leveling agents, flexibility imparting agents, lubricity imparting agents, antioxidants, bluing agents, antistatic agents, and antifoaming agents (antifoaming agents). ), A light stabilizer, a weather resistance imparting agent, a colorant, a fine particle dispersant (anti-settling agent), and a fine particle surface activity modifier.
  • a leveling agent can be added to the coating liquid of the present invention in order to improve the smoothness of the resulting cured film and the flowability during coating.
  • Examples thereof include a leveling agent, an acrylic leveling agent, a vinyl leveling agent, and a leveling agent in which a fluorine type and an acrylic type are combined. All work on the surface of the coating and reduce the surface tension. Each has its own characteristics and can be used according to the purpose. The ability to lower the surface tension is strong in silicone and fluorine systems, but acrylic and vinyl systems are advantageous in that wetting defects are less likely to occur when recoating.
  • silicone leveling agent a copolymer of polyoxyalkylene and polydimethylsiloxane can be used.
  • Commercially available silicone leveling agents include FZ-2118, FZ-77, and FZ-2161 manufactured by Toray Dow Corning Co., Ltd., KP321, KP323, KP324, KP326, KP340, KP341, manufactured by Shin-Etsu Chemical Co., Ltd., etc.
  • an aralkyl-modified silicone oil having a polyester modification or a benzene ring is suitable.
  • polyester-modified silicone oils include BYK-310, BYK-315 and BYK-370 manufactured by BYK Japan, Inc., and BYK manufactured by BYK Japan Japan, such as BYK-310, BYK-315 and BYK-370. -322, BYK-323, and the like.
  • fluorine leveling agent a copolymer of polyoxyalkylene and fluorocarbon can be used.
  • fluorine leveling agents include MEGAFAC series manufactured by DIC Corporation, FC series manufactured by Sumitomo 3M Corporation, and the like.
  • acrylic leveling agents include BYK-350, BYK-352, BYK-354, BYK-355, BYK358N, BYK-361N, BYK-380N, BYK-381, BYK-392 manufactured by BYK Japan, Inc. And BYK-340 into which fluorine is introduced.
  • the finished appearance of the cured film is improved and can be uniformly applied as a thin film.
  • the amount of the leveling agent used is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, based on the total amount of the coating solution.
  • it may be blended when preparing the coating liquid, or may be blended into the coating liquid immediately before forming the cured film, and further, preparation of the coating liquid and formation of the cured film. You may mix
  • the coating liquid of the present invention can contain a flexibility imparting agent as a stress relaxation agent in order to improve the flexibility of the obtained cured film.
  • a flexibility imparting agent for example, a silicone resin can be used.
  • silicone resin examples include Wasin Resin MK series, for example, Belsil PMS MK (a polymer containing a repeating unit (unit T) of CH 3 SiO 3/2 , up to 1% by mass (CH 3 )). 2 SiO 2/2 unit (including unit D) and KR-242A manufactured by Shin-Etsu Chemical Co., Ltd.
  • KR-251 containing 88 mass% of unit T and 12 mass% of dimethyl unit D and containing Si—OH end groups
  • KR-220L comprising unit T of formula CH 3 SiO 3/2 , And those containing Si—OH (silanol) end groups.
  • each component in the coating liquid of the present invention can be selected as appropriate, but it is preferable to select the content of each component so as to fall within the following range, for example.
  • the content of each component is expressed in terms of mass% with respect to the total amount of components (A) [(A-1) to (A-5)] to (D).
  • the components (B) and (C) that are preferably used as the dispersion state are calculated using only the respective solid contents, and the dispersion medium included in each component is included in the component (E).
  • the content of the component (A-1) is usually about 0.01 to 40% by mass, preferably 0.1 to 20% by mass.
  • the content of the component (A-2) is usually about 0.1 to 40% by mass, preferably 1 to 30% by mass.
  • the content of the component (A-3) is usually about 0.1 to 30% by mass, preferably 0.3 to 20% by mass.
  • the content of the component (A-4) is usually about 0.1 to 30% by mass, preferably 0.3 to 20% by mass.
  • the content of the component (A-5) is usually about 0.1 to 50% by mass, preferably 1 to 40% by mass.
  • the content of the component (B) is usually about 0.1 to 50% by mass, preferably 1 to 40% by mass.
  • the content of the component (C) is usually about 0.1 to 70% by mass, preferably 1 to 50% by mass.
  • the content of component (D) is usually about 0.001 to 30% by mass, preferably 0.001 to 20% by mass.
  • the content of the component (E) is usually about 5 to 1000 parts by weight, preferably 20 with respect to the total parts by weight of the components (A) [(A-1) to (A-5)] to (D). -800 parts by mass.
  • the molar ratio of the component (A-3) and the component (A-5) is not particularly limited, but is preferably 1: 1 to 1: 5, more preferably 1: 2 to 1: 4. is there. When the blending molar ratio of the component (A-3) to the component (A-5) is within the above range, the durability of the resulting cured film is further improved.
  • the coating liquid of the present invention was obtained by contacting the hydrolysis condensate of components (A-1), (A-2) and (A-4) with components (B) to (E).
  • the reaction product is preferably prepared by adding (A-5) component and reacting, and then adding (A-3) component and reacting. Further, the reaction product obtained by heating the mixture containing the components (A-1), (A-2), (A-4) and (B) to (E) is added to the reaction product (A- It is more preferable to add the component (5) and react, then add the component (A-3) and react. Specifically, it is desirable to prepare a coating solution by performing the following operations.
  • a first mixed solution containing at least the components (A-1), (A-2), (A-4), (B), (D) and (E) is prepared, and then the component (C) Are mixed to prepare a second mixed liquid, and then the component (A-5) is mixed to prepare a third mixed liquid. Finally, it is preferable to prepare a coating solution by mixing the component (A-3).
  • each component separately because the liquid storage stability (such as not gelation) of the coating solution is improved.
  • this effect is more exhibited when the amount of water in the liquid is increased by increasing the amount of the components (B) and (C).
  • the components (A-1), (A-2), (A-4), (B), (D) and (E) are mixed and then the component (C) is added.
  • the component (A-5) is mixed, and finally the component (A-3) is mixed.
  • (E) component can dilute a coating liquid by adding, after preparing a coating liquid.
  • the liquid storage stability of a mixed material such as the coating liquid of the present invention is likely to affect the liquid pH (for example, “Application of the sol-gel method to nanotechnology / supervision: Sakuo Sakuo” MC Publishing).
  • the pH of the solution changes depending on the mixing order.
  • the liquid pH value for example, the liquid pH value evaluated with a portable pH meter (trade name: Checker 1) manufactured by calibration with a pH standard solution for calibration, the first mixed liquid and the second mixed liquid are It is preferable that pH ⁇ 6, the third mixed solution, and the final mixed solution have pH ⁇ 7.
  • the liquid stability may be lowered. It is preferable to keep the solution in an acidic state from the start of preparation of the coating solution to the end of preparation. That is, it is preferable to prepare the coating solution by a procedure that maintains such conditions.
  • the first mixed solution, the second mixed solution, and the third mixed solution are heat-treated after mixing the respective components.
  • the temperature is preferably 30 ° C. to 130 ° C., more preferably 50 ° C. to 90 ° C.
  • the heat treatment time is preferably 30 minutes to 24 hours, more preferably 1 hour to 8 hours.
  • the mixing and heating means is not particularly limited as long as it can uniformly mix and heat. By heating in this way, the condensation reaction of the components (A-1), (A-2), (A-3), (A-4) and (A-5) in the liquid proceeds, and the boiling resistance is increased. And other durability.
  • Reactions of the components (A-1), (A-2), (A-3), (A-4) and (A-5) can be analyzed by solution Si-NMR, thereby obtaining a suitable structure.
  • the final solution (coating solution) after mixing the component (A-3) is also preferably heat-treated.
  • the temperature is preferably 30 ° C. to 130 ° C., more preferably 50 ° C. to 90 ° C., and the time is preferably 5 minutes to 10 hours, more preferably 15 minutes to 6 hours.
  • the mixing and heating means is not particularly limited as long as it can uniformly mix and heat. If the temperature is less than 30 ° C.
  • the effect of the heat treatment is often poor, and if it exceeds 130 ° C. or more than 10 hours, the liquid may gel or become highly viscous and may not be applied.
  • the evaluation results of the cured film produced using the coating liquid obtained after standing for 1 week are described, but there is no particular limitation on the liquid standing period until the cured film is produced.
  • each component in the coating solution containing the components (A) to (G) of the present invention can be appropriately selected, but the contents of the components (A) to (E) are the same as those of the component (E). (A) to (E) except that the content of each component is expressed by mass% with respect to the total amount of components (A) [(A-1) to (A-5)] to (G) excluding the dispersion medium. It can be the same as that of the coating liquid containing the component.
  • the content of the component (F) is usually about 0.01 to 30% by mass, preferably 0.1 to 20% by mass.
  • the content of component (G) is usually about 1 to 60 parts by mass, preferably about 10 to 50 parts by mass.
  • the coating liquid is obtained by bringing the hydrolysis condensate of components (A-1), (A-2), (A-4) and (A-5) into contact with components (B) to (G).
  • a reaction product obtained by adding the component (A-3) to the reaction product is preferable. Specifically, it is desirable to prepare a coating solution by performing the following operations.
  • a first mixed solution containing at least the components (A-1), (A-2), (A-4), (B), and (D), (E), (G) is prepared.
  • the components (C) and (F) are mixed with the second mixture, and then the component (A-5) is mixed to prepare a third mixture.
  • each component separately because the liquid storage stability (such as not gelation) of the coating solution is improved. In particular, this effect is more exhibited when the amount of water in the liquid increases due to an increase in the amount of components (B), (C), and (F) added.
  • (E), (G) are mixed, the components (C) and (F) Add Next, the component (A-5) is mixed, and finally the component (A-3) is mixed.
  • (E) component can dilute a coating liquid by adding, after preparing a coating liquid.
  • Component (F) and component (A-5) are added to the reaction product obtained by contacting with component (G) and reacted, and component (A-3) is added to the reaction product obtained.
  • the coating liquid can be prepared by reacting. Specifically, the mixture containing the components (A-1), (A-2), (A-4), (B), (C), (D), (E), and (G) is heated.
  • the components (F) and (A-5) are added to the reaction product obtained and heated, and then the component (A-3) is added to the obtained reaction product and heated to obtain a coating solution. It is.
  • the dispersibility of the coating liquid can be further improved, and the transparency of the cured film can be improved.
  • hydrolysis condensates of the components (A-1), (A-2), (A-4) and (A-5), and (B), (C), (D), (E) and (E (G) Component (F) is added to the reaction product obtained by contacting G) with the reaction product, and the resulting reaction product is reacted with component (A-3) to prepare a coating solution.
  • component (A-3) component (F) component (F) is added to the reaction product obtained by heating the mixture containing and heated, and then (A-3) component is added to the resulting reaction product and heated to obtain a coating solution. It is.
  • the dispersibility of the coating liquid can be further improved, and the transparency of the cured film can be improved.
  • the coating solution can also be prepared by adding the component -5) to react, and reacting the resulting reaction product by adding the component (A-3).
  • a reaction product obtained by heating a mixture containing the components (A-1), (A-2), (A-4) and (B) to (G) is added to (A- 5) Add component and heat, then add (A-3) component to the resulting reaction product and heat to obtain a coating solution.
  • the liquid storage stability of a mixed material such as the coating liquid of the present invention is likely to affect the liquid pH (for example, “Application of the sol-gel method to nanotechnology / supervision: Sakuo Sakuo” MC Publishing).
  • an acidic component is mixed as the components (D) and (G)
  • a basic component is mixed as the components (A-3) and (D).
  • the liquid pH value for example, the liquid pH value evaluated with a portable pH meter (trade name: Checker 1) manufactured by calibration with a pH standard solution for calibration, the first mixed liquid and the second mixed liquid are It is preferable that pH ⁇ 6, the third mixed solution, and the final mixed solution have pH ⁇ 7.
  • the liquid stability may be lowered. It is preferable to keep the solution in an acidic state from the start of preparation of the coating solution to the end of preparation. That is, it is preferable to prepare the coating solution by a procedure that maintains such conditions.
  • the first mixed solution, the second mixed solution, and the third mixed solution are heat-treated after mixing the respective components.
  • the temperature is preferably 30 ° C. to 130 ° C., more preferably 50 ° C. to 90 ° C.
  • the heat treatment time is preferably 30 minutes to 24 hours, more preferably 1 hour to 8 hours.
  • the mixing and heating means is not particularly limited as long as it can uniformly mix and heat. By heating in this way, the condensation reaction of the components (A-1), (A-2), (A-3), (A-4), and (A-5) in the liquid proceeds and durability is increased. (Boiling resistance) and other properties are improved.
  • the reactions of the components (A-1), (A-2), (A-3), (A-4), and (A-5) can be analyzed by solution Si-NMR, and thus have a suitable structure. Can be designed. When the temperature is less than 30 ° C. or less than 30 minutes, the reaction is often extremely slow. When the temperature exceeds 130 ° C. or more than 24 hours, (A-1), (A-2), (A-3), (A -4) and (A-5) reaction is too advanced, and the liquid may gel or become highly viscous, making it impossible to apply.
  • the final liquid (coating liquid) after mixing the component (A-3) is preferably heat-treated.
  • the temperature is preferably 30 ° C. to 130 ° C., more preferably 50 ° C. to 90 ° C., and the time is preferably 5 minutes to 10 hours, more preferably 15 minutes to 6 hours.
  • the mixing and heating means is not particularly limited as long as it can uniformly mix and heat. If the temperature is less than 30 ° C.
  • the effect of the heat treatment is often poor, and if it exceeds 130 ° C. or more than 10 hours, the liquid may gel or become highly viscous and may not be applied.
  • the evaluation results of the cured film produced using the coating liquid obtained after standing for 1 week are described, but there is no particular limitation on the liquid standing period until the cured film is produced.
  • the component (F) used in the present invention is an acid stable type, when mixed with other dispersions, it is better to mix them in acidic sols in order to prevent aggregation, precipitation and gelation during mixing. preferable.
  • the sol of the basic stable anionic fine particles and the component (F) are directly mixed, there is a possibility that the dispersion cannot be maintained because it is out of the pH range where it can be stably dispersed.
  • the coating liquid of the present invention is excellent in transparency, adhesion to a resin, weather resistance, abrasion resistance, and scratch resistance, and is useful as a coating material for various transparent organic members.
  • resin automobile windows, resin windows for buildings, road sound insulation walls, large-area transparent members such as arcades, instruments such as instrument panels, resin windows for buildings, transparent plastic parts, eyeglass lenses, goggles, transfer films It can be used as a top coat or undercoat material for transparent organic members such as greenhouses. Furthermore, since it is very transparent, it can be easily colored, and is excellent in compatibility with various colored pigments.
  • the present invention can be applied to painting of automobile interior and exterior, industrial machinery, steel furniture, architectural interior and exterior, home appliances, plastic products, and the like.
  • the coating solution of the present invention is in close contact with metal and has high acid resistance, so that it is resistant to acid rain, which has recently been regarded as a problem.
  • it is particularly suitable for members used outdoors such as automobile bodies and aluminum wheels.
  • it can be applied to various inks by taking advantage of high colorability and compatibility with pigments.
  • the coating liquid of the present invention can be applied to precision members used in the electric and electronic fields, the optical field and the like by taking advantage of high transparency, high adhesion, excellent wear resistance and scratch resistance.
  • various displays such as plasma displays, liquid crystal displays, and organic EL displays
  • films that require hard coat properties as one of their functions such as antireflection films, polarizing films, gas barrier films, retardation films, and conductive films. It can be used as these members.
  • hard coat materials for optical disk substrates, optical fiber coating agents, touch panels, solar cell panel coating materials, etc. can also be used for high transparency, high adhesion, excellent wear resistance, and scratch resistance. Can be mentioned.
  • Various protective films are used in color filters, hologram elements, CCD cameras, etc.
  • These protective films have low viscosity to some extent due to manufacturing problems as well as transparency, abrasion resistance, scratch resistance and adhesion. It is also required to be. Since the coating liquid of the present invention can be controlled to a desired viscosity by adjusting the components, it is also useful as the protective film. In addition, the coating liquid of the present invention is a material that can be bent and deformed while having a hard coat performance, and can be used for a flexible display that has been actively studied recently.
  • the coating liquid of the present invention also transmits electromagnetic waves in the near infrared region. Therefore, the present invention can also be applied to covering materials such as antennas for radio wave transmission / reception, RFID data carriers, and vehicle radar devices. Other applications include coating agents for various transparent ornaments, various skin materials (for automobile seats, automobile door interiors, sofas, furniture, etc.), sliding parts (brake pads, etc.), fiber convergence agents, gas barrier coating agents, etc. Can be mentioned.
  • the cured film of the present invention is a cured film obtained by curing the above-described coating liquid of the present invention by a conventional method. Specifically, a coating liquid is sprayed, dipped, curtain flow, bar coater, roll coating, etc. on the base of a resin molded product (injection molded product, film, sheet, etc.) that is a target for forming a cured film. It is applied by a known method to form a coating film. The thickness of the coating film depends on the final form of the cured film to be formed.
  • the thickness of the coating film is adjusted so that the thickness of the cured film is preferably 0.5 to 6 ⁇ m, more preferably 0.5 to 3 ⁇ m.
  • a desired cured film is obtained by heat curing at appropriate curing conditions, usually room temperature to 190 ° C., preferably 80 to 140 ° C., for about 10 minutes to 24 hours, preferably 30 minutes to 3 hours. It is done.
  • the thickness of the coating film is adjusted so that the thickness of the cured film is preferably 1 to 50 ⁇ m, more preferably 2 to 20 ⁇ m.
  • a desired cured film can be obtained by heating and curing at appropriate curing conditions, usually 80 to 190 ° C., preferably 100 to 140 ° C. for about 10 minutes to 24 hours, preferably 30 minutes to 3 hours. .
  • the cured film obtained from the coating solution containing the components (A) to (E) of the present invention has organic polymer fine particles (component (B)) and colloidal silica (component (C)) dispersed in the film.
  • the dispersed state is preferably an inorganic-organic hybrid sea-island structure.
  • the particle diameters of the particle components such as the organic polymer fine particles and colloidal silica that correspond to the islands of the sea-island structure are preferably 200 nm or less, more preferably 100 nm or less, and they are uniformly dispersed without agglomeration.
  • the cured film of the present invention preferably has a total light transmittance of 80% or more, more preferably 85% or more, and a haze value of preferably 10% or less, more preferably 5% or less. Such a cured film has high transparency.
  • the matrix having Si—O bonds in which organic polymer fine particles (component (B)) and colloidal silica (component (C)) are dispersed is (A-1), (A-2), (A-3). ), (A-4) and (A-5).
  • the present invention also provides a method for producing a cured film, comprising the step of heating and curing the above-described coating liquid of the present invention.
  • the cured film obtained from the coating liquid containing the components (A) to (G) of the present invention contains organic polymer fine particles (component (B)), colloidal silica (component (C)), cerium oxide. Particles (component (F)) are dispersed.
  • the cured film of the present invention preferably has a haze value of 10% or less, more preferably 5% or less. Such a cured film has excellent ultraviolet resistance and high transparency.
  • the matrix having Si—O bonds in which organic polymer fine particles (component (B)), colloidal silica (component (C)), and cerium oxide particles (component (F)) are dispersed is added to each component (A). Derived from.
  • the present invention also provides a method for producing a cured film, comprising the step of heating and curing the above-described coating liquid of the present invention.
  • the resin laminate includes a base material and a resin layer formed on the base material.
  • the resin layer formed on the substrate may be a single layer or two or more layers.
  • the 1st resin laminated body of this invention is a laminated body which has the cured film of the said this invention on a base material or between an inorganic layer (inorganic hard material layer) and a base material.
  • the 2nd resin laminated body of this invention is a laminated body which has a base material, the cured film of this invention formed on this base material, and the transparent conductive film formed on the cured film.
  • the 3rd resin laminated body of this invention is a laminated body which has a base material, the cured film of this invention formed on this base material, and the photocatalyst layer formed on the cured film.
  • the first to third resin laminates may be collectively referred to as the resin laminate of the present invention.
  • the method for forming the cured film using the coating liquid of the present invention is as described in the description of the cured film of the present invention.
  • the resin laminate of the present invention has excellent wear resistance, scratch resistance, flex resistance and boiling resistance, and the use thereof is as shown in the description of the application in the coating liquid of the present invention described above. is there.
  • the resin laminate of the present invention is not particularly limited as long as it has the above configuration.
  • Examples of the automotive interior member include an instrument panel, console box, meter cover, meter panel, indicator panel, door trim, door lock bezel, steering wheel, power window switch base, center cluster, dashboard, shift lever cover, Examples include switches and ashtrays.
  • Examples of the automotive exterior member include a weather strip, a bumper, a bumper guard, a side mud guard, a body panel, a door panel, a spoiler, a bonnet, a side protector, a trunk lid, a front grill, a strut mount, a wheel cap, a center pillar, a door mirror, Examples include center ornaments, side moldings, door moldings, wind moldings, windows, headlamps, tail lamps, lamp reflectors, door visors, windshield parts, and the like.
  • Examples of the motorbike member include a cowl, a fender, a tank cover, and a carrier box cover.
  • Examples of AV appliances, washing machines, rice cookers, electric pots, IH cooking heaters, and other household appliances and furniture include front panels, control panels, touch panels, membrane switch panels, buttons, emblems, surface cosmetics, etc. Is mentioned.
  • As the building materials for example, road translucent sound insulation boards, soundproof boards around railways and factories, arcades, windproof panels, snow shelters, carports and bicycle parking lots, bus stops, solariums, crossing corridors, etc. roofs, entrances and dome roofs, etc. Daylighting materials, windows of buildings, etc., and plastic houses.
  • Examples of members of the mobile phone, notebook computer, remote controller, and the like include a housing, a display window, a keypad, and a button.
  • Base material As the base material, a material made of at least one of resin, metal, wood, rubber, concrete, stone, ceramics, leather, paper, cloth and fiber can be used, but a resin base material (resin base material) Is preferably used.
  • the substrate examples include a resin molded body, a film, and a sheet.
  • the film and sheet are produced using a known molding method such as an extrusion molding method, an inflation method, or a solution casting method, and they may be stretched uniaxially and / or biaxially as necessary.
  • a known molding method such as an extrusion molding method, an inflation method, or a solution casting method
  • the base material which concerns on this invention may have an unevenness
  • the resin laminated body which concerns on this invention may have a space inside, and when it has an internal space, another resin layer may be laminated
  • examples of resins that can be used for the substrate include polyethylene, polypropylene, cycloolefin resins (eg, “ARTON” manufactured by JSR Corporation, “ZEONOR” “ZEONEX” manufactured by Nippon Zeon Co., Ltd.), Polyolefin resins such as methylpentene, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, cellulose resins such as diacetylcellulose, triacetylcellulose, acetylcellulose butyrate, polystyrene, syndiotactic polystyrene, acrylonitrile Styrenic resin such as butadiene / styrene resin (ABS resin), imide resin such as polyimide, polyetherimide, polyamideimide, nylon, etc.
  • An acrylic resin, polycarbonate resin, polyphenylene sulfide, polyacetal, modified polyphenylene ether, polyvinyl alcohol, epoxy resin, fluororesin and the like can be mentioned, and a polymer alloy / polymer blend in which a plurality of the above polymers are mixed may be used.
  • stacked the said resin two or more may be sufficient.
  • polyester resins, polyolefin resins, and polycarbonate resins are preferable.
  • the base material made of these resins may be either transparent or translucent, may be colored, or may be uncolored, and may be appropriately selected depending on the application. When used for optical applications, it is excellent in transparency and preferably non-colored.
  • the resins polycarbonates that are excellent in transparency, mechanical properties, heat resistance, and the like are particularly suitable.
  • the thickness of the substrate is not particularly limited and is appropriately selected depending on the situation, but is usually about 5 ⁇ m to 30 mm, preferably 15 ⁇ m to 10 mm.
  • the coating liquid of the present invention can form a cured film with good adhesion on a substrate.
  • at least the surface of the substrate on which the cured film is formed is optionally formed.
  • the surface treatment can be performed by an oxidation method, an unevenness method, or the like.
  • the oxidation method include corona discharge treatment, plasma treatment such as low pressure plasma method and atmospheric pressure plasma method, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, electron beam treatment, and intro treatment.
  • examples of the concavo-convex method include a sand blast method and a solvent treatment method.
  • the corona discharge treatment method is preferably used from the viewpoints of curing and operability. Further, a surface treatment with a silane coupling agent or a primer layer can be provided.
  • the inorganic hard material layer in the 1st resin laminated body can be selected according to the function to give, and there is no restriction
  • the inorganic hard material layer is preferably a SiO x (1.8 ⁇ x ⁇ 2) film, SiN y (1.2 ⁇ y ⁇ 4/3).
  • a film or an amorphous carbon film is suitable.
  • the SiO x (1.8 ⁇ x ⁇ 2) film and SiN y (1.2 ⁇ y ⁇ 4/3) film are formed, for example, by chemical vapor deposition or physical vapor deposition described later. Therefore, the reaction is not completed stoichiometrically. Therefore, the inorganic hard material layer has a defect portion in which oxygen atoms and nitrogen atoms are not introduced, and x and y have a width in the SiO x film and the SiN y film.
  • the hardness of the inorganic hard material layer is sufficient if the increase in haze is less than about 10% in an evaluation using a Taber abrasion tester as shown in the examples. Or what is necessary is just about 500HV or more by micro Vickers hardness.
  • the thickness of the inorganic hard material layer is, for example, preferably 1 ⁇ m or more, more preferably 1 to 8 ⁇ m.
  • the inorganic hard material layer is preferably laminated directly on the cured film.
  • the inorganic hard material layer of the resin laminate of the present invention is preferably formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Specific examples of the CVD method include a plasma CVD method and a photo CVD method.
  • Specific examples of the PVD method include an ion plating method, a vacuum deposition method, and a sputtering method.
  • An inorganic hard material layer formed using a thin film forming technique performed under vacuum as described above usually has a property of being in close contact with an inorganic component but hardly adhering to an organic component.
  • the cured film has an inorganic / organic hybrid structure in which organic fine particles are confined in the Si—O matrix, so that the adhesion between the inorganic hard material layer and the cured film is good.
  • the plasma CVD method is a method in which a raw material gas is introduced into a plasma state having a high energy density, decomposed, and a target material is coated on a base material by a chemical reaction.
  • a laminate comprising a substrate and a cured film in the plasma CVD apparatus is arranged, after the inside of the apparatus in a vacuum, SiO x (1.8 ⁇ x ⁇ 2) plasma CVD apparatus raw material gas of the membrane
  • SiO x (1.8 ⁇ x ⁇ 2)
  • the raw material for forming the SiO x (1.8 ⁇ x ⁇ 2) film is, for example, a silicon source gas and an oxygen source gas.
  • Silane gas or organosilicon compound gas is preferably used as the silicon source gas for forming the SiO x (1.8 ⁇ x ⁇ 2) film.
  • SiH 4 gas, Si 2 H 6 gas, Si 3 H 8 gas and the like are preferably used as silane gas.
  • the organosilicon compound is preferably arbitrarily selected from those in which a group containing carbon is bonded to silicon.
  • organosilicon compounds may be used alone, or two or more thereof may be used in combination.
  • an oxygen source gas that can be suitably used includes N 2 O gas.
  • the silicon source gas of the SiO x (1.8 ⁇ x ⁇ 2) film is an organic silicon compound gas
  • the oxygen source gas preferably used includes N 2 O gas, O 2 gas, and O 3 gas.
  • the flow rates of the silicon source gas and the oxygen source gas are, for example, 1 to 500 cm 3 / min, and preferably 1 to 300 cm 3 / min.
  • the flow rate of the argon gas is, for example, 20 to 400 cm 3 / min, and preferably 100 to 300 cm 3 / min.
  • the plasma CVD apparatus to be used is not particularly limited as long as it is a generally used apparatus.
  • a parallel plate electrode type, a capacitive coupling type, an inductive coupling type, or the like can be used.
  • the pressure in the plasma CVD apparatus is preferably about 1.33 to 133 Pa, and more preferably about 2.7 Pa.
  • the frequency of the power source used for power application can be widely used from the audio wave to the microwave range.
  • an organic silicon compound is used as a silicon source gas, and the organic silicon compound is liquid at room temperature.
  • the entire container containing the organosilicon compound is heated and vaporized for use.
  • the flow rates of the organic silicon compound gas and the oxygen source gas are controlled to 1 to 10 cm 3 / min, for example, and introduced into the plasma CVD apparatus together with the argon gas whose flow rate is controlled to 20 to 400 cm 3 / min. (Direct vaporization method).
  • the organosilicon compound when the organosilicon compound is liquid, argon gas is used as a carrier gas, and argon gas is contained in a temperature-controllable container containing the organosilicon compound, for example, 20 to 400 cm 3 /
  • the organic silicon compound may be bubbled and the organic silicon compound vapor and the argon gas may be introduced together into the plasma CVD apparatus (a bubbling introduction method using a carrier gas).
  • the source gas is, for example, a silicon source gas and a nitrogen source gas.
  • Suitable silicon source gases include silane gases such as SiH 4 gas, Si 2 H 6 gas, and Si 3 H 8 gas.
  • suitable nitrogen source gas to be used include N 2 gas and NH 3 gas.
  • a hydrocarbon gas is suitably used as a raw material gas for forming the amorphous carbon film.
  • the concentration of the hydrocarbon gas is high, it may be diluted by introducing H 2 gas simultaneously.
  • the raw material gas is used as the raw material of the inorganic hard material layer, but the present invention is not limited to this. For example, you may vaporize and use the vapor deposition raw material of the inorganic hard material layer mentioned later.
  • the ion plating method introduces reactive gas into the vacuum deposition system, generates gas plasma in the system by various methods, and ionizes some of the generated deposition particles (atoms / molecules) to accelerate.
  • the base material placed in a vacuum is irradiated with vapor deposition particles and ions thereof to form a thin film of the vapor deposition material on the base material.
  • the ion plating method is a combined technique of vacuum deposition technique and plasma technique.
  • the ion plating method is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-29835.
  • the laminate of the base material and the cured film, and the vapor deposition raw material of the inorganic hard material layer are respectively arranged at predetermined positions in the vacuum vapor deposition apparatus, and plasma is generated, so that argon, xenon, etc. are contained in the apparatus.
  • An inert gas and, if necessary, reactive gases such as O 2 , N 2 , acetylene, and air are introduced into the apparatus, a high-frequency voltage is applied in the vicinity of the vapor deposition raw material, and the vapor deposition raw material is turned into plasma to form a cured film.
  • An inorganic hard material layer is laminated thereon.
  • the inorganic hard material layer As a vapor deposition raw material for the inorganic hard material layer, when the inorganic hard material layer is a SiO x (1.8 ⁇ x ⁇ 2) film, silicon oxide or the like can be cited, and the inorganic hard material layer can be SiN y (1.2. ⁇ y ⁇ 4/3) In the case of a film, silicon nitride and the like can be mentioned. In the case where the inorganic hard material layer is an amorphous carbon film, DLC (diamond-like carbon) and the like can be mentioned.
  • the raw material to be formed as the inorganic hard material layer may be used as the vapor deposition raw material for the inorganic hard material layer.
  • the vapor deposition raw material of the inorganic hard material layer in an ion plating method is not limited to solid.
  • the inorganic hard material layer is introduced by introducing the above-mentioned inorganic hard material layer raw material gas (silicon raw material gas and oxygen raw material gas) into the vacuum vapor deposition apparatus and performing reactive vapor deposition. May be laminated.
  • the pressure in the vacuum evaporation apparatus is, for example, about 1.3 ⁇ 10 ⁇ 3 to 1.3 ⁇ 10 ⁇ 1 Pa.
  • the device for applying the high frequency voltage is not particularly limited as long as it is a device capable of performing high frequency discharge.
  • the high frequency voltage is, for example, about 0.5 kV to 8.0 kV.
  • heating means such as resistance heating, electron beam heating, high frequency induction heating, and laser beam heating so that vapor deposition on the surface layer of the cured film is performed during high frequency discharge. Accordingly, the vapor deposition material may be evaporated.
  • the lamination method of the inorganic hard material layer by the PVD method is not limited to the ion plating method.
  • the inorganic hard material layer can be laminated using a vacuum deposition method, a sputtering method, or the like.
  • the vacuum deposition method is a method in which a raw material is thermally evaporated in a vacuum, the evaporated particles are transported to the substrate surface, and the evaporated particles are rearranged on the substrate surface to form a thin film.
  • the degree of vacuum is usually 1.3 ⁇ 10 ⁇ 2 Pa or less.
  • Sputtering is a method in which an inert gas is turned into plasma, the obtained positive ions collide with the raw material, element atoms on the surface of the raw material are knocked out, and are attached and / or deposited on a nearby substrate. It is a method of forming.
  • the transparent conductive film in the 2nd resin laminated body of this invention can be selected according to the function to give, and there is no restriction
  • the transparent conductive film is preferably composed mainly of zinc oxide, zinc oxide such as AZO (aluminum doped zinc oxide) or GZO (gallium doped zinc oxide).
  • ITO in doped indium oxide
  • SnO 2 tin oxide
  • IZO zinc doped indium oxide
  • ICO cerium doped indium oxide
  • ATO antimony doped tin oxide
  • FTO fluorine doped tin oxide
  • a transparent and conductive material that does not contain zinc oxide as a main component.
  • One of the conductivity indicators of the transparent conductive film is a carrier concentration.
  • a carrier concentration of 1 ⁇ 10 18 / cm 3 or more is preferable because a surface resistance value of 10000 ⁇ / ⁇ or less can be obtained.
  • the carrier concentration is 1 ⁇ 10 19 / cm 3 or more, infrared reflection occurs and it is preferable as an antireflection film.
  • a resin laminate having a surface resistance value of 10 to 1000 ⁇ / ⁇ for use as a touch panel can be produced.
  • Amorphous transparent conductive film materials include IZO (zinc-doped indium oxide), ZTO (zinc oxide-tin oxide) -based thin film, IZTO (indium oxide-zinc oxide-tin oxide) -based, and tin oxide-based thin film.
  • IZO zinc-doped indium oxide
  • ZTO zinc oxide-tin oxide
  • IZTO indium oxide-zinc oxide-tin oxide
  • tin oxide-based thin film e.g., the system etc. which added the oxide which provided the electrical property, the optical characteristic, and the mechanical characteristic to those thin films are mentioned.
  • the surface resistance value is set to a high resistance value, the material can be selected, or can be adjusted depending on the film thickness and film forming conditions.
  • the surface resistance value when the surface resistance value is lowered, a crystalline material having a good (low) resistivity such as ITO can be used for the transparent conductive film.
  • the surface resistance value can be lowered by increasing the film thickness, an improvement in transmittance can be expected by reducing the film thickness of the transparent conductive film.
  • the surface resistance value may be appropriately determined according to the purpose of use, but when used for an electro-optical element, a photoelectric conversion element, a liquid crystal, a touch panel, etc., the surface resistance value is preferably 10 ⁇ / ⁇ or more. 5000 ⁇ / ⁇ or less, more preferably 100 ⁇ / ⁇ or more and 2000 ⁇ / ⁇ or less.
  • the thickness of the transparent conductive film is preferably, for example, 5 nm or more, more preferably 10 to 300 nm.
  • a transparent conductive film is laminated
  • the optimal film thickness of each layer can be determined by the following method, for example. First, the film thickness of the transparent conductive film is determined so as to obtain a necessary surface resistance value according to the application. Next, set the refractive index of the material used for the cured film to a fixed value, and change the thickness of the cured film using an optimization algorithm to obtain the highest transmittance or the lowest reflectance. Find the thickness.
  • the transparent conductive film provided on the cured film may be a single layer or a multilayer film having two or more layers. For example, two or more transparent conductive films may be provided in consideration of the transmittance (reflectance) of the substrate with multilayer film having conductivity, and an antireflection film having a higher refractive index may be provided. Further, even when an antireflection film is formed, it is not limited to a single layer, and a multilayer structure (for example, 2 to 6 layers, etc.) capable of obtaining a desired transmittance (reflectance) may be formed. Good.
  • the method for producing a resin laminate of the present invention comprises a step (a) of forming a cured film formed by curing the coating liquid containing the components (A) to (E) described above on a substrate, and the cured film on the cured film.
  • a step (b) of forming a transparent conductive film is also shown in description of the above-mentioned coating liquid and cured film.
  • the second resin laminate of the present invention has a cured film formed between the transparent conductive film and the substrate, and the transparent conductive film is preferably formed on the cured film by chemical vapor deposition (CVD). Method), physical vapor deposition (PVD method) or coating method.
  • CVD chemical vapor deposition
  • PVD method physical vapor deposition
  • Specific examples of the CVD method include a plasma CVD method, a photo CVD method, a mist method, and the like.
  • Specific examples of the PVD method include an ion plating method, a vacuum deposition method, a sputtering method, and the like.
  • Specific examples include a spray method, a spin coat method, a barcode method, a doctor blade method, and an ink jet method.
  • a transparent conductive film formed by using a thin film forming technique performed under vacuum usually has a property of being in close contact with an inorganic component but hardly adhering to an organic component.
  • the resin laminate of the present invention since the cured film has an inorganic / organic hybrid structure in which organic fine particles are confined in the Si—O matrix, the adhesion between the transparent conductive film and the cured film is good.
  • Sputtering is a method in which an inert gas is turned into plasma, the obtained positive ions collide with the raw material, and element atoms on the surface of the raw material are knocked out and adhered and / or deposited on a substrate called a target placed nearby. And forming a thin film.
  • an ITO sintered body is used for the target.
  • a laminate composed of a base material and a cured film is placed in a sputtering apparatus, and after the inside of the apparatus is evacuated to a pressure of 10 ⁇ 5 Pa or less, an argon gas is introduced and a vacuum of about 0.1 to 10 Pa is applied. Apply DC power of about 1 to 10 kW / cm 2 to generate plasma, and form an ITO film on the cured film.
  • the transparent conductive film is an ITO film, for example, an indium oxide sintered body target added with 10% by mass of SnO 2 is used as a raw material for forming the ITO film.
  • oxygen gas is mixed into the argon gas in order to control conductivity and optical characteristics.
  • the method for laminating the transparent conductive film by the PVD method is not limited to the sputtering method, and the transparent conductive film can be laminated by using a vacuum deposition method, an ion plating method, or the like.
  • the vacuum deposition method is a method in which a raw material is thermally evaporated in a vacuum, the evaporated particles are transported to the substrate surface, and the evaporated particles are rearranged on the substrate surface to form a thin film.
  • the degree of vacuum is usually 1.3 ⁇ 10 ⁇ 2 Pa or less.
  • the ion plating method introduces a reactive gas into a vacuum deposition system, generates gas plasma in the system by various methods, and ionizes a part of the generated deposition particles (atoms / molecules) for acceleration.
  • the base material placed in a vacuum is irradiated with vapor deposition particles and ions thereof to form a thin film of the vapor deposition material on the base material. That is, the ion plating method is a combined technique of vacuum deposition technique and plasma technique.
  • the plasma CVD method is a method in which a raw material gas is introduced into a plasma state having a high energy density, decomposed, and a target material is coated on a base material by a chemical reaction.
  • a laminate consisting of a base material and a cured film is placed in a plasma CVD apparatus, and after the inside of the apparatus is evacuated, a ZnO film source gas is supplied to the plasma CVD apparatus by argon gas. When each gas flow rate is stabilized, power is applied to generate plasma to form a ZnO film on the cured film.
  • the photocatalyst material used for the photocatalyst layer in the third resin laminate of the present invention is not particularly limited, and conventionally known materials such as titanium dioxide, strontium titanate, barium titanate, sodium titanate, zirconium dioxide, ⁇ - Fe 2 O 3 , tungsten oxide, cadmium sulfide, zinc sulfide and the like can be used. These may be used alone or in combination.
  • titanium dioxide, particularly anatase type titanium dioxide is useful as a practical photocatalyst.
  • Preferred examples of the photocatalyst promoter include platinum group metals such as platinum, palladium, rhodium, and ruthenium, and these may be used alone or in combination.
  • the addition amount of the photocatalyst promoter is usually selected in the range of 1 to 20% by mass with respect to the photocatalyst from the viewpoint of photocatalytic activity.
  • a silicone compound is usually used for the matrix of the photocatalyst layer.
  • the manufacturing method of the resin laminated body of this invention includes the process (a) which forms the cured film of this invention mentioned above on a base material, and the process (b) of forming a photocatalyst layer on the said cured film. In addition, about the said process (a), it is as having shown in description of the above-mentioned cured film.
  • a method of forming a photocatalyst layer on a cured film Various methods can be used. For example, a PVD method such as a vacuum deposition method and a sputtering method, a dry method such as a metal spraying method, a wet method using a coating liquid, and the like can be given.
  • a coating liquid used in the wet method a solution obtained by dispersing photocatalyst particles and the like in a suitable inorganic binder (for example, a silicone compound) is preferably used.
  • the coating liquid is applied by a known method such as dip coating, spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, etc.
  • the thickness of the photocatalyst layer is usually 5 nm to 2 ⁇ m, preferably 10 nm to 2 ⁇ m, and particularly preferably 20 nm to 1 ⁇ m. If it is less than 5 nm, the photocatalytic function may not be sufficiently exhibited. If it exceeds 2 ⁇ m, the photocatalytic function is not improved so much even if it is thicker.
  • the resin laminate of the present invention may be a molded article (molded article of a resin laminate).
  • the molded body of the resin laminate can be manufactured by thermoforming.
  • thermoforming include vacuum forming, vacuum / pressure forming, pressure forming, plug assist forming, and match mold forming.
  • substrate used for thermoforming A base material used for thermoforming (hereinafter simply referred to as “base material”) will be described below.
  • base material a base material used for thermoforming
  • ABS resin acrylonitrile / butadiene / styrene Resin
  • AS resin acrylonitrile / styrene resin
  • MS resin methyl methacrylate / styrene resin
  • polyester resin acrylic resin, vinyl chloride resin, fluorine resin, and the like.
  • acrylic resin vinyl chloride resin
  • fluorine resin fluorine resin
  • the decorative layer examples include an ink layer, a high brightness ink layer, and a metal vapor deposition layer. Further, the decoration layer may be a single layer or a laminate in which the decoration layers are combined.
  • the thickness of the substrate will be described.
  • the thickness of the base sheet or film for insert molding is preferably 5 ⁇ m to 0.7 mm. When the thickness is less than 5 ⁇ m, the film strength is low, and there is a problem that the film is broken during molding. On the other hand, when the thickness exceeds 0.7 mm, it is difficult to obtain a wound insert molding sheet, resulting in poor productivity.
  • thermoforming method is not restrict
  • a base sheet that has not been thermoformed is set in an injection mold so that the surface of the cured film faces the movable mold, and pre-molding is performed by vacuum suction using the movable vacuum suction hole. Do. Subsequently, the injection resin and the base sheet are integrated using in-mold molding in which the injection resin is filled on the surface side on which the cured film is not formed. Also, after setting the thermoformed base sheet in the injection mold, the injection resin and base sheet are integrated using insert mold molding that fills the injection resin on the side where the cured film is not formed. You may make it.
  • Thermoforming is performed to form the forming base sheet into an uneven shape, a cylindrical shape, or an elliptical shape.
  • the thermoforming method include vacuum forming (including plug assist forming), vacuum / pressure forming, pressure forming, match mold forming, and press forming.
  • trimming is performed so that unnecessary portions are cut to match the shape of the injection mold.
  • the trimming method is not particularly limited, and examples thereof include a die cutting method, a laser cutting method, a water jet method, a punching blade press method, and a Thomson punching method. Trimming may be performed at the same time as thermoforming.
  • a base sheet that has not been thermoformed is set in an injection mold so that the surface of the cured film faces the movable mold, and preliminary molding is performed by vacuum suction using the vacuum suction hole of the movable mold. Do. Subsequently, the injection resin is filled on the surface side where the cured film is not formed.
  • the injection molding machine may be either a vertical injection molding machine or a horizontal injection molding machine.
  • the insert mold injection molding conditions are not particularly limited, and can be handled within the normal injection molding condition range.
  • the injection molding machine may be either a vertical injection molding machine or a horizontal injection molding machine.
  • the injection mold is provided with a mechanism for setting the base resin sheet that has been thermoformed in the direction in which the injection resin is filled on the surface side where the cured film is not formed.
  • a vertical injection molding machine it is fixed by gravity if it is set in the lower mold of the mold.
  • the base sheet after thermoforming is fixed by vacuum suction from the mold, the method of covering using the convex part of the mold, or fixing with a pin.
  • a horizontal injection molding machine there are a method of fixing by vacuum suction, a method of covering using a convex portion of a mold, a method of fixing with a pin, etc. when setting on either the fixed side or the movable side.
  • the present invention also includes a method for producing a cured film, comprising a step of heating and curing the coating liquid of the present invention, a step of applying the coating liquid of the present invention on a substrate, and the coating
  • a method for producing a resin laminate comprising a step of drying a liquid, a step of thermoforming the substrate, and a step of curing the coating liquid to provide a coating layer.
  • the manufacturing method of the said resin laminated body can further include the process of providing a resin layer in the surface which does not have a coating layer of the resin laminated body formed by hardening
  • Oxide equivalent content derived from inorganic components in cured film (mass%) A sample obtained by thermosetting the coating solution on a Teflon petri dish was subjected to thermogravimetry (20 ° C./min increase under nitrogen, room temperature to 800 ° C.), and obtained from the residue at 800 ° C. It was.
  • Organic polymer fine particle content (% by mass) in the cured film Calculated by calculation. Specifically, the components (A-1) to (A-5) in which the hydrolysis / condensation reaction has completely proceeded (component (A)), organic polymer fine particles (component (B)), and colloidal silica ((C The mass% of organic polymer fine particles in the total mass of component)) was calculated.
  • Organic fine particle dispersion structure A cross-section of the cured film is observed with a TEM (Transmission Electron Microscope), and 10 organic fine particles present in the 1 ⁇ m square are selected. The average particle size was determined using .63. An organic fine particle having an average particle size of 200 nm or less is “ ⁇ ”, an average particle size of greater than 200 nm is “X”, and a particle size of 200 nm or less is present. “ ⁇ ” indicates that there was an amoeba shape of 200 nm or more. (14) Inorganic fine particle dispersion structure The average particle size of each colloidal silica fine particle in the cured film was determined in the same manner as in the above (13). Samples with an average particle size of 200 nm or less were marked with “ ⁇ ”, and those with an average particle size larger than 200 nm were marked with “x”.
  • Component (A-1) M silicate 51 “polyalkoxysilane which is a partial condensate (average 3 to 5 mer) of tetramethoxysilane” manufactured by Tama Chemical Industry Co., Ltd.
  • B) component ULS-385MG (ultraviolet ray absorbing skeleton species: benzophenone series)
  • Example 1 Manufacture of coating liquid It prepared according to the component and compounding quantity which are shown in Table 1. In a sample tube with a volume of 50 ml, 0.80 g of organic polymer fine particles: ULS-1385MG (component (B) + component (E)) was charged, and 1-methoxy-2-propanol (component (E)) was stirred at 500 rpm.
  • a sample tube with a volume of 20 ml was charged with 1.10 g of 3-isocyanatopropyltriethoxysilane and 0.35 g of 2-butanone oxime (isocyanate group blocking agent), stirred at room temperature at 500 rpm for 10 minutes, and then allowed to stand for one day. This was designated as solution C.
  • the blocking of the isocyanate group was confirmed by disappearance of the isocyanate group signal by 13 C-NMR.
  • the total amount of 3-isocyanatopropyltriethoxysilane and 2-butanone oxime was taken as the amount of the blocked isocyanatosilane compound: (A-5) component.
  • polycarbonate substrate manufactured by Idemitsu Kosan Co., Ltd., trade name: Toughlon, product number: IV2200R (anti-glare grade), thickness 3 mm (total light transmittance 90%, haze value 0.5% )] was used.
  • the coating liquid obtained in the above (1) is applied to the surface of a polycarbonate molded body having a thickness of 3 mm with a bar coater so that the cured film has a thickness of 3 ⁇ m, and is thermally cured at 130 ° C. for 2 hours.
  • a laminate composed of a substrate and a cured film was produced.
  • the obtained coating liquid and laminate were evaluated. The evaluation results are shown in Table 2.
  • Examples 2 to 11 A coating solution was produced in the same manner as in Example 1 according to the components and blending amounts shown in Table 1, and a laminate was produced. Table 2 shows the evaluation results for the obtained coating liquid and laminate.
  • Comparative Example 1 It prepared according to the component and compounding quantity which are shown in Table 3.
  • a sample tube with a volume of 50 ml was charged with 0.90 g of ULS-1385MG (component (B) + component (E)) and stirred at 500 rpm, while 2.00 g of 1-methoxy-2-propanol (component (E)), water (Component (E)) 0.09 g, acetic acid (component (D)) 3.20 g, methyltrimethoxysilane (component (A-2)) 2.00 g, dimethoxy-3-glycidoxypropylmethylsilane ((A -4) component) 0.96 g, 5 mass% p-toluenesulfonic acid methanol solution (component (D) + component (E)) 0.20 g was added dropwise over 1 minute each.
  • solution A A sample tube with a volume of 20 ml was charged with 1.10 g of 3-isocyanatopropyltriethoxysilane and 0.36 g of 2-butanone oxime (isocyanate group blocking agent), stirred at room temperature at 500 rpm for 10 minutes, and then allowed to stand for one day. This was designated as solution C.
  • the blocking of the isocyanate group was confirmed by disappearance of the isocyanate group signal by 13 C-NMR.
  • the total amount of 3-isocyanatopropyltriethoxysilane and 2-butanone oxime was taken as the amount of the blocked isocyanatosilane compound: (A-5) component.
  • Example 1 shows a coating liquid produced without using the component (A-1) in the coating liquid of Example 1, and the organic polymer fine particle content in the cured film is the same as that of Example 1.
  • a coating solution was produced in the same manner as in Example 1 (2).
  • the obtained coating liquid and laminate were evaluated. The evaluation results are shown in Table 4.
  • Comparative Examples 2-6 In the same manner as in Comparative Example 1, a coating liquid was produced and a laminate was produced in accordance with the components and blending amounts shown in Table 3.
  • Comparative Examples 2 and 3 show the coating liquids produced without using the component (A-1) in the coating liquids of Examples 2 and 3, and the organic polymer fine particle content in the cured film is shown as follows. The same amount as in Examples 2 and 3.
  • Comparative Example 4 shows the coating liquid produced without using the component (A-5) in the coating liquid of Example 3, and its The content of the organic polymer in the cured film is the same as in Example 3. In Comparative Example 5, the components (A-5) and (C) are not used in the coating liquid of Example 3.
  • Example 3 Comparative Example 6 is a coating liquid of Example 3 (A-1 ) And C produced without using component (C) Is indicative of the coating solution is obtained by the same amount as the organic polymer content Example 3 in the cured film.) The obtained coating liquid and laminate were evaluated. The evaluation results are shown in Table 4.
  • Comparative Examples 1 to 3 and Comparative Example 6 that do not contain the component (A-1) have good liquid stability, film appearance, transparency, adhesion, and boiling resistance, but have good scratch resistance. Compared to 11. Further, Comparative Examples 4 and 5 not containing the component (A-5) have good film appearance, transparency and adhesion, but have liquid stability and boiling resistance compared to those of Examples 1 to 11. Inferior.
  • Examples 12 to 16 The surface of a polycarbonate (PC) molded product having a thickness of 3 mm or a corona-treated polypropylene sheet [manufactured by Idemitsu Unitech Co., Ltd., trade name: Super Pure Array, product number: SG-140TC, thickness 300 ⁇ m (total light transmission) The ratio of 94%, haze value 2.3%) is applied with a bar coater so that the cured film is 3 ⁇ m, and is thermally cured at 130 ° C. for 2 hours to form a laminate composed of the base material and the cured film.
  • the body was made. Furthermore, the inorganic hard material layer was formed into a film by the following method on the laminated body produced above, and the laminated body was obtained. The obtained laminate composed of the base material, the cured film and the inorganic hard material layer was evaluated. The evaluation results are shown in Table 5.
  • SiOx The laminated body made of the base material and the cured film is placed in a plasma CVD apparatus and evacuated until the degree of vacuum in the apparatus becomes 2.7 ⁇ 10 ⁇ 3 Pa to raise the temperature of the base material to 100 ° C.
  • the substrate was degassed by holding for 5 minutes. Then, after returning to room temperature, exhausting was performed until the degree of vacuum in the apparatus reached 2.7 ⁇ 10 ⁇ 4 Pa.
  • SiH 4 gas, N 2 O gas, and Ar gas are introduced into the apparatus, and the gas flow rate is SiH 4 gas flow rate 1 cm 3 / min, N 2 O gas.
  • Amorphous carbon film A laminated body made of the base material and the cured film is placed in a plasma CVD apparatus and evacuated until the degree of vacuum in the apparatus becomes 2.7 ⁇ 10 ⁇ 3 Pa. The temperature was raised to 100 ° C. and held for 5 minutes to degas the substrate. Then, after returning to room temperature, exhausting was performed until the degree of vacuum in the apparatus reached 2.7 ⁇ 10 ⁇ 4 Pa.
  • a plasma CVD apparatus with a vacuum degree of 2.7 ⁇ 10 ⁇ 4 Pa, CH 4 gas, H 2 gas and Ar gas are flowed at a CH 4 gas flow rate of 1 cm 3 / min, and an H 2 gas flow rate of 150 cm 3 / min.
  • SiNy The laminated body made of the base material and the cured film is placed in a plasma CVD apparatus and evacuated until the degree of vacuum in the apparatus becomes 2.7 ⁇ 10 ⁇ 3 Pa to raise the temperature of the base material to 100 ° C.
  • the substrate was degassed by holding for 5 minutes. Then, after returning to room temperature, exhausting was performed until the degree of vacuum in the apparatus reached 2.7 ⁇ 10 ⁇ 4 Pa.
  • SiH 4 gas, NH 3 gas, and Ar gas are introduced into the plasma CVD apparatus at a SiH 4 gas flow rate of 1 cm 3 / min, an NH 3 gas flow rate of 200 cm 3 / min, and an Ar gas flow rate of 400 cm 3 / min.
  • electric power was applied to generate plasma, and an SiN y (1.2 ⁇ y ⁇ 4/3) film (inorganic hard layer) having a thickness of 7 ⁇ m was formed.
  • Comparative Examples 7-11 Using the coating liquid of Comparative Example 1, laminates were obtained in the same manner as in Examples 12-16. Evaluation was made on a laminate composed of the obtained base material, cured film, and inorganic hard material layer. The evaluation results are shown in Table 5.
  • Example 12 to 16 using the coating liquid of Example 1 passed all of the evaluation items.
  • Comparative Examples 7 to 11 are laminates using the coating liquid of Comparative Example 1, and the film appearance, transparency, abrasion resistance, and scratch resistance are good, but the adhesion and boiling resistance are those of Example 12. Compared to ⁇ 16.
  • Oxide equivalent content derived from inorganic components in cured film (mass%) A sample obtained by thermosetting the coating solution on a Teflon petri dish was subjected to thermogravimetry (20 ° C./min increase under nitrogen, room temperature to 800 ° C.), and obtained from the residue at 800 ° C. It was.
  • Organic polymer fine particle content (% by mass) in the cured film Calculated by calculation. Specifically, components (A-1) to (A-5) in which hydrolysis / condensation reaction has completely progressed (component (A)), organic polymer fine particles (component (B)) and colloidal silica ((C ) Component), and mass% of organic polymer fine particles in the total mass of cerium oxide (component (F)) was calculated.
  • Abrasion resistance and scratch resistance The abrasion resistance was evaluated using a wear wheel CS-10F and a Taber abrasion tester (rotary abrasion tester) (made by Toyo Seiki Co., Ltd., model: TS).
  • a 500-rotor Taber abrasion test was performed at 9N, and the difference ( ⁇ H) between the haze before the Taber abrasion test and the haze after the Taber abrasion test was less than 15, and “x” was 15 or more.
  • scratch resistance in Examples 17 to 20 and Comparative Examples 12 to 14, steel wool # 0000 (load 4.9 N) was used, and after 50 reciprocations at 2000 mm / sec, the surface damage state was visually observed. It was evaluated by.
  • Organic fine particle dispersion structure A cross-section of the cured film is observed with a TEM (transmission electron microscope), 10 organic fine particles present in the 1 ⁇ m square are selected, and free software manufactured by NIH (National Institute of Health), USA: NIH The average particle size was determined using Image 1.63.
  • An organic fine particle having an average particle size of 200 nm or less is “ ⁇ ”, an average particle size of greater than 200 nm is “X”, and a particle size of 200 nm or less is present. “ ⁇ ” indicates that there was an amoeba shape of 200 nm or more.
  • Inorganic fine particle dispersion structure The average particle size of each of the cerium oxide fine particles and colloidal silica fine particles in the cured film was determined in the same manner as in the above (13). Those having an average particle size of 200 nm or less were marked with “ ⁇ ”, and those having an average particle size larger than 200 nm were marked with “x”.
  • Yushi Kogyo Co., Ltd. component: ULS-385MG (ultraviolet ray absorbing skeleton species: benzophenone series)
  • the cerium oxide particles were confirmed to have cationic properties.
  • component (F) (dispersion F1) It manufactured according to the component of Table 6, and preparation amount.
  • a sample tube with a volume of 50 ml was charged with 10.0 g of Nidral H-15 (component (F ′)) and stirred at 500 rpm, 7.0 g of 1-methoxy-2-propanol (component (E)), tetraethoxysilane.
  • component (E) component It dripped over 1 minute each in order of 2.23g. Subsequently, the mixture was stirred at room temperature for 90 minutes and then allowed to stand at room temperature for 90 minutes.
  • This and a stirring bar were charged into a 100 ml three-necked flask equipped with a condenser, and heated at 80 ° C. for 4 hours under a nitrogen stream while stirring at 500 rpm. Then, it left still at room temperature for one week, and was set as the dispersion liquid F1 ((F) component) which consists of a reaction product of a silane compound and cerium oxide.
  • component (F) Dispersibility test of component (F) with anionic fine particle sol 1.0 g of IPA-ST-L (IPA dispersion sol in which component (C) and anionic colloidal silica are dispersed) in a 10-ml sample tube While stirring at 400 rpm, 1.0 g of dispersion F1 (component (F)) consisting of the reaction product of the silane compound and cerium oxide was added dropwise over 1 minute, followed by stirring at room temperature for 1 hour. did. It was visually confirmed that the dispersion state after stirring was dispersed without aggregation, precipitation, or gelation.
  • IPA-ST-L IPA dispersion sol in which component (C) and anionic colloidal silica are dispersed
  • component (F) (dispersion F2) It manufactured according to the component of Table 6, and preparation amount.
  • a sample tube with a volume of 50 ml was charged with 10.0 g of Nidral H-15 (component (F ′)) and stirred at 500 rpm, 7.0 g of 1-methoxy-2-propanol (component (E)), tetraethoxysilane.
  • component (E) component ((A) component) It dripped over 1 minute in order of 1.49g. Subsequently, the mixture was stirred at room temperature for 90 minutes and then allowed to stand at room temperature for 90 minutes.
  • Examples 17-18 (4) Manufacture of coating liquid It prepared according to the component of Table 7, and preparation amount.
  • a sample tube having a volume of 50 ml 0.85 g of organic polymer fine particles: ULS-1385MG (Example 17) or ULS-385MG (Example 18) (component (B) + component (E)) was charged and stirred at 500 rpm.
  • solution A Into a 200 ml three-necked flask equipped with a condenser, put A solution and a stir bar, stir at 500 rpm, and apply 6.50 g of IPA-ST-L (component (C) + component (E)) as solution B over 5 minutes. The solution was added dropwise and stirred at room temperature for 20 minutes. Subsequently, the mixture was heated and stirred at 500 rpm and 80 ° C. for 7 hours under a nitrogen stream, and then allowed to stand overnight at room temperature, which was designated as A ′ solution.
  • a sample tube with a volume of 20 ml was charged with 1.10 g of 3-isocyanatopropyltriethoxysilane and 0.35 g of 2-butanone oxime (isocyanate group blocking agent), stirred at room temperature at 500 rpm for 10 minutes, and then allowed to stand for one day. This was designated as solution C.
  • the blocking of the isocyanate group was confirmed by disappearance of the isocyanate group signal by 13 C-NMR.
  • the total amount of 3-isocyanatopropyltriethoxysilane and 2-butanone oxime was taken as the amount of the blocked isocyanatosilane compound: (A-5) component.
  • a dispersion F1 (component (F) + component (E)) consisting of a reaction product of a silane compound and cerium oxide was added dropwise over 5 minutes, and the mixture was stirred at room temperature for 20 minutes. Stir for minutes. Then, C liquid was added over 5 minutes, and it stirred at room temperature for 10 minutes. Subsequently, the mixture was heated and stirred at 650 rpm and 80 ° C. for 4 hours under a nitrogen stream, and then allowed to stand overnight at room temperature. Further, 0.40 g of 3-aminopropyltrimethoxysilane (component (A-3)) was added dropwise thereto as a D solution over 2 minutes. After stirring at room temperature for 10 minutes, the mixture was further heated at 450 rpm and 80 ° C. for 3 hours under a nitrogen stream. Subsequently, it was left to stand for 1 week to obtain a coating solution.
  • a polycarbonate base material [manufactured by Idemitsu Kosan Co., Ltd., trade name: Toughlon, product number: IV2200R (anti-glare grade), thickness 3 mm (total light transmittance 90%, haze value 0.5) %)] was used.
  • the coating solution obtained above is applied to the surface of a polycarbonate molded body having a thickness of 3 mm with a bar coater so that the cured film has a thickness of 7 ⁇ m, and thermally cured at 130 ° C. for 2 hours to obtain a laminate.
  • the obtained coating liquid and laminate were evaluated. Table 8 shows the evaluation results.
  • Comparative Examples 12-14 In the above “(4) Production of coating solution”, instead of the dispersion F1, Niedral U-15 or Niedral H-15 shown in Table 7 was used, and coating according to the comparative example was performed according to the components and preparation amounts shown in Table 7. The liquid was prepared and the laminated body was produced. Table 8 shows the evaluation results for the obtained coating liquid and laminate.
  • the coating liquids of Examples 17 to 20 all had good liquid stability, and the laminates obtained therefrom had excellent results in all evaluations. On the other hand, in Comparative Example 13, the stability of the coating liquid was low and the utility was low. Further, Comparative Examples 12 and 14 had poor adhesion.
  • Examples 21-32 [Production of resin laminate]
  • the coating solutions produced in Examples 1, 2, 5 and 6 were applied to the surface of the substrate so that the thickness of the cured film was 2 to 3 ⁇ m, and the following ⁇ Thermal curing conditions for the substrate and the cured film>
  • the laminated body which consists of a base material and a cured film was produced by thermosetting at the temperature and time according to the used base material.
  • a transparent conductive film was formed by the following method on the laminate composed of the prepared base material and cured film to obtain a resin laminate.
  • Table 9 shows the results of evaluation of the resin laminate comprising the obtained base material, cured film and transparent conductive film.
  • ⁇ Heat-curing conditions for substrate and cured film> (1) Polycarbonate [thickness: 400 ⁇ m (total light transmittance: 92%, haze value: 0.4%)], 120 ° C., 2 hours (2) Polyethylene terephthalate [manufactured by Unitika Ltd., trade name: EMBLET, grade: S, thickness: 25 ⁇ m (Total light transmittance 89%, haze value 2.5%)], 100 ° C. for 2 hours (3) polypropylene [manufactured by Idemitsu Unitech Co., Ltd., trade name: Pure Thermo, thickness 250 ⁇ m (total light transmittance 94%, haze value) 8.5%)] 100 ° C. for 2 hours
  • a thin film of SnO 2 target using a SnO 2 sintered body target were formed in a similar procedure as above (1).
  • Comparative Examples 15 to 26 On the base material used in Example 21, a transparent conductive film was directly formed without forming a cured film to obtain a resin laminate.
  • Table 10 shows the results of the evaluation of the laminate composed of the obtained base material and transparent conductive film.
  • Examples 21 to 32 and Comparative Examples 15 to 26 were determined according to the following procedures.
  • Film appearance The appearance of the resin laminate was visually observed to confirm the presence or absence of foreign matters, mottled patterns, and cracks, and those that were not recognized were evaluated as “ ⁇ ” and those that were recognized as “ ⁇ ”.
  • Total light transmittance and haze The total light transmittance and haze of the resin laminate were measured with a direct reading haze computer (HGM-2DP, manufactured by Suga Test Instruments Co., Ltd.).
  • Adhesiveness In accordance with JIS K 5400, the surface of the transparent conductive film of the resin laminate was cut into 11 grids at intervals of 2 mm at intervals of 2 mm with a razor blade to make 100 grids, and a commercially available cellophane tape (" After CT-24 (width 24mm), manufactured by Nichiban Co., Ltd. is closely attached to the finger pad, it is peeled off rapidly at an angle of 90 °, and the transparent conductive film does not peel off. X) was expressed as X / 100, and the adhesion of the transparent conductive film was evaluated.
  • Crystallinity of transparent conductive film Crystallinity was determined by X-ray diffraction measurement.
  • the measurement conditions of X-ray diffraction measurement (XRD) are as follows. Those having no clear crystallinity peak were regarded as amorphous.
  • X-ray Cu-K ⁇ ray (wavelength 1.5406mm, monochromatized with graphite monochromator)
  • Output 50kV-120mA 2 ⁇ - ⁇ reflection method, continuous scan (1.0 ° / min) 2 ⁇ measurement angle: 5-80 °
  • Sampling interval 0.02 ° Slit DS, SS: 2/3 °
  • RS 0.6 mm
  • the resin laminates (Examples 21 to 32) composed of the base material, the cured film, and the transparent conductive film all passed in almost all evaluation items.
  • Comparative Examples 15 to 26 in which a cured film is not sandwiched Comparative Examples 15 to 18 and 23 to 26 using polycarbonate as a base material have good film appearance, adhesion, and bending resistance, but are transparent. The surface hardness, scratch resistance, and conductivity are inferior to those of Examples 21 to 24 and 29 to 32.
  • Comparative Examples 19 and 20 using polypropylene as the base material are inferior in film appearance, surface hardness, scratch resistance, adhesion, and flex resistance as compared with those in Examples 25 and 26.
  • Comparative Examples 21 and 22 using polyethylene terephthalate as the substrate have good film appearance, optical properties, adhesion, and bending resistance, but surface hardness, scratch resistance, and conductivity are higher than those of Examples 27 and 28. Inferior.
  • Example 33 (Production of resin laminate)
  • the coating liquid obtained in Example 1 was applied to the surface of a polycarbonate molded body having a thickness of 3 mm with a bar coater so that the cured film had a thickness of 2 to 5 ⁇ m, and thermally cured at 130 ° C. for 2 hours.
  • a laminate composed of a substrate and a cured film was produced.
  • the photocatalyst topcoat agent “ST-K211” manufactured by Ishihara Sangyo Co., Ltd. is applied on the cured film of the laminate comprising the base material and the cured film so that the thickness after the heat treatment is about 0.5 ⁇ m.
  • heat treatment was performed at 100 ° C. for 30 minutes to produce a photocatalyst layer.
  • Table 11 shows the results of evaluation of the resin laminate comprising the obtained substrate, cured film and photocatalyst layer.
  • Example 34 A resin laminate comprising a substrate, a cured film and a photocatalyst layer was produced in the same manner as in Example 33 except that the coating liquid obtained in Example 8 was used instead of the coating liquid obtained in Example 1. . Table 11 shows the evaluation results.
  • Example 35 A resin laminate comprising a substrate, a cured film and a photocatalyst layer was produced in the same manner as in Example 33 except that the coating liquid obtained in Example 9 was used instead of the coating liquid obtained in Example 1. . Table 11 shows the evaluation results.
  • Comparative Example 27 A resin laminate comprising a substrate, a cured film and a photocatalyst layer was produced in the same manner as in Example 33 except that the coating liquid obtained in Example 1 was not used. Table 11 shows the evaluation results.
  • Comparative Example 28 Example except that a primer “ST-K300” manufactured by Ishihara Sangyo Co., Ltd. was used instead of the coating solution obtained in Example 1 and this was applied so that the thickness after drying was about 0.3 ⁇ m.
  • a resin laminate comprising a substrate, a cured film and a photocatalyst layer was produced. Table 11 shows the evaluation results.
  • Comparative Example 29 On the primer of Comparative Example 28, an equivalent liquid mixture (ST-K102) of an undercoat agent “ST-K102a” and “ST-K102b” manufactured by Ishihara Sangyo Co., Ltd. was dried to a thickness of about 3 ⁇ m.
  • a resin laminate composed of a substrate, a cured film and a photocatalyst layer was produced in the same manner as in Example 33 except that the coating was performed and dried at room temperature for 5 minutes and then heated at 100 ° C. for 30 minutes. Table 11 shows the evaluation results.
  • the contact angle was measured by dropping 20 ml of ion-exchanged water on the photocatalyst layer surface using a microsyringe and using an image processing contact angle meter (CA-A, manufactured by Kyowa Interface Science Co., Ltd.).
  • Example 36 The coating liquid of Example 1 was applied to a polycarbonate (PC) sheet having a thickness of 0.5 mm (trade name: Iupilon sheet manufactured by Mitsubishi Gas Co., Ltd.) so as to have a film thickness of 2 to 3 ⁇ m.
  • a polycarbonate sheet for molding was produced by drying at 240 ° C. for 240 minutes.
  • the formed molding sheet is vacuum-formed, and then set in an injection mold, and an injection-molded resin made of polycarbonate (made by Idemitsu Kosan Co., Ltd., trade name: Toughlon) is used at a resin temperature of 270 ° C. and a resin pressure of 50 MPa.
  • a molded body of the resin laminate was manufactured by injecting onto the unformed surface. Further, the molded body was post-cured at 120 ° C. for 1 minute.
  • Table 12 shows the evaluation results concerning the following items (1) to (3) for the molded body of the resin laminate.
  • Examples 37-39 A molded body was produced in the same manner as in Example 36.
  • the polycarbonate sheet for molding was prepared according to the pre-curing temperature, pre-curing time, post-curing temperature and post-curing time shown in Table 6. The evaluation results are shown in Table 12.
  • Example 40 The coating liquid of Example 1 was applied to a polypropylene (PP) sheet having a thickness of 0.3 mm (trade name: Wintech, manufactured by Nippon Polypro Co., Ltd.) so as to have a film thickness of 2 to 3 ⁇ m, and pre-cured at 20 ° C. And dried for 240 minutes to produce a polypropylene sheet for molding.
  • the formed molding sheet is vacuum-formed, then set in an injection mold, and an injection-molded resin made of polypropylene (manufactured by Prime Polymer Co., Ltd., trade name: Prime Polypro) is precured at a resin temperature of 270 ° C. and a resin pressure of 40 MPa.
  • the molded body of the resin laminate was manufactured by injecting onto the surface where no is formed. Further, the molded body was post-cured at 120 ° C. for 30 seconds.
  • the evaluation results are shown in Table 12.
  • Examples 41-43 A molded body was produced in the same manner as in Example 40.
  • the molding polypropylene sheet was prepared according to the pre-curing temperature, pre-curing time, post-curing temperature and post-curing time shown in Table 12. The evaluation results are shown in Table 12.
  • Comparative Examples 30 to 33 Using the coating liquid of Comparative Example 1, molded articles were produced in the same manner as in Example 36, Example 39, Example 40, and Example 43. The evaluation results are shown in Table 12.
  • Examples 36 to 43 are molded products of the resin laminate using the coating liquid of Example 1, and all pass in almost all evaluation items.
  • Comparative Examples 30 to 33 are molded products of the resin laminate using the coating liquid of Comparative Example 1, and the film appearance and adhesion are good, but the scratch resistance is inferior to those of Examples 36 to 43. .
  • automobile interior parts such as meter covers, motorcycle and tricycle windshields, resin automobile windows (various vehicle windows), resin construction material windows, roofs for construction machinery, road translucent plates (Sound insulation board), for correction, eyeglass lenses such as sunglasses, sports, safety glasses, displays such as plasma, liquid crystal, organic EL, optical discs, mobile phone parts, touch panel, solar cell and other electronic equipment parts, town It can be used for lighting parts such as road lamps, windproof plates, various resin materials for protective shields, especially polycarbonate materials, and can be suitably used as a glass substitute member.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

Disclosed is a coating liquid containing: (A) a hydrolysis-condensation product of silane compounds having an alkoxy group, namely (A-1) a tetraalkoxysilane compound, (A-2) an organoalkoxysilane compound containing no amino group, no epoxy group and no isocyanate group, (A-3) a silane compound having an amino group and an alkoxy group, (A-4) a silane compound having an epoxy group and an alkoxy group and (A-5) a blocked isocyanate silane compound having an alkoxy group; (B) organic polymer fine particles composed of a copolymer containing a monomer unit having an ultraviolet-absorbing group; (C) a colloidal silica; (D) a curing catalyst and (E) a dispersion medium.  A cured film using the coating liquid, a resin multilayer body, a method for producing the cured film and a method for producing the resin multilayer body are also disclosed.

Description

コーティング液、硬化膜及び樹脂積層体並びに該硬化膜及び樹脂積層体の製造方法Coating liquid, cured film and resin laminate, and method for producing the cured film and resin laminate
 本発明は、コーティング液、硬化膜及び樹脂積層体並びに該硬化膜及び樹脂積層体の製造方法に関する。 The present invention relates to a coating solution, a cured film, a resin laminate, and a method for producing the cured film and the resin laminate.
 熱可塑性プラスチック、特にポリカーボネート樹脂は、透明性に優れており、軽量で耐衝撃性にも優れていることから、ガラスに代わる構造材料として広く使用されている。しかしながら、耐摩耗性、耐擦傷性、耐候性及び耐薬品性などの表面特性に劣ることから、その用途は限定されており、ポリカーボネート基材の表面特性を改良することが切望されている。 Thermoplastics, especially polycarbonate resins, are widely used as structural materials to replace glass because of their excellent transparency, light weight, and excellent impact resistance. However, since the surface properties such as abrasion resistance, scratch resistance, weather resistance, and chemical resistance are inferior, the use thereof is limited, and there is a strong demand for improving the surface properties of the polycarbonate substrate.
 表面特性の改良方法として、ポリカーボネート樹脂成形品の表面を表面処理剤で被覆する方法がある。例えば、多官能アクリル系の光硬化性樹脂や、メラミン系又はオルガノポリシロキサン系の熱硬化性樹脂からなる硬化層をポリカーボネート基材の表面に形成する方法が提案されている。 As a method for improving surface characteristics, there is a method of coating the surface of a polycarbonate resin molded article with a surface treatment agent. For example, a method has been proposed in which a cured layer made of a polyfunctional acrylic photocurable resin or a melamine-based or organopolysiloxane-based thermosetting resin is formed on the surface of a polycarbonate substrate.
 これらの中では、オルガノシロキサン系樹脂で被覆したものが、耐摩耗性、耐擦傷性、耐薬品性に優れるため、有用とされている。しかし、このオルガノシロキサン系樹脂による被覆は、ポリカーボネート樹脂に対する密着性に問題があり、特に屋外で長期間にわたって用いた場合に、コーティング層が剥がれ落ちるという問題があった。また、密着性や耐摩耗性向上のため、オルガノシロキサン系樹脂の膜厚を厚くしようとしても、硬化時に割れを生じ易いなどの問題があり、改良が切望されている。 Among these, those coated with an organosiloxane resin are considered useful because they are excellent in wear resistance, scratch resistance and chemical resistance. However, the coating with the organosiloxane resin has a problem in adhesion to the polycarbonate resin, and particularly has a problem that the coating layer is peeled off when used outdoors for a long period of time. Further, in order to improve the adhesion and wear resistance, there is a problem that even if the thickness of the organosiloxane resin is increased, there is a problem that cracking is likely to occur at the time of curing.
 密着性の改良については、接着性の良好な各種ポリマーを塗料やハードコート材に配合する方法が、特許文献1に提案されているが、耐擦傷性が不十分である。また、基材表面に硬化膜を施し、さらにその上に無機硬質物層を設けることが特許文献2及び3に記載されているが、十分な密着性が得られていない。
 特許文献4及び5には、紫外線吸収能を有する高分子ナノ粒子がシロキサンマトリックス(Si-O骨格)中に高分散した膜内部構造を有する被覆層及び基材からなる樹脂積層体が開示されている。この樹脂積層体は、耐摩耗性、及び基板と被覆層との初期密着性に優れるが、この樹脂積層体をワイパー付車両ウインドウのような激しい摩擦を伴う部品に使用する場合に、耐擦傷性や耐摩耗性などについて改良の余地があった。また、耐久性(耐煮沸性)の面でも改良の余地があった。
For improving the adhesion, Patent Document 1 proposes a method in which various polymers having good adhesion are blended into a paint or a hard coat material, but the scratch resistance is insufficient. Moreover, although patent document 2 and 3 describe providing a hardened film on the base-material surface, and also providing an inorganic hard material layer on it, sufficient adhesiveness is not acquired.
Patent Documents 4 and 5 disclose a resin laminate comprising a coating layer having a film internal structure in which polymer nanoparticles having ultraviolet absorbing ability are highly dispersed in a siloxane matrix (Si—O skeleton) and a base material. Yes. This resin laminate is excellent in abrasion resistance and initial adhesion between the substrate and the coating layer. There was room for improvement in terms of wear resistance and wear resistance. There was also room for improvement in terms of durability (boiling resistance).
特開平11-43646号公報Japanese Patent Laid-Open No. 11-43646 特開昭58-29835号公報JP 58-29835 A 特開昭64-4343号公報JP-A 64-43343 WO2006/022347号パンフレットWO2006 / 022347 pamphlet WO2007/099784号パンフレットWO2007 / 099784 pamphlet
 本発明は、このような状況下になされたもので、プライマーを用いなくても基材や無機硬質物層、透明導電膜及び光触媒層に対して良好な密着性を有すると共に、優れた耐摩耗性、耐擦傷性、耐屈曲性、耐候性(紫外線吸収能)、耐久性(耐煮沸性)などの特性を有する硬化膜を与えるコーティング液、このコーティング液を硬化してなる上記特性を有する硬化膜及び該硬化膜を基材上に有する樹脂積層体、並びに該硬化膜及び樹脂積層体の製造方法を提供することを目的とするものである。 The present invention has been made under such circumstances, and has good adhesion to a substrate, an inorganic hard material layer, a transparent conductive film and a photocatalyst layer without using a primer, and has excellent wear resistance. Coating liquid that gives a cured film having properties such as property, scratch resistance, flex resistance, weather resistance (ultraviolet ray absorption ability), and durability (boiling resistance), and curing having the above-mentioned characteristics by curing this coating liquid It aims at providing the manufacturing method of a resin laminated body which has a film | membrane and this cured film on a base material, and this cured film and resin laminated body.
 本発明者らは、前記特性を有する硬化膜を与えるコーティング液について鋭意研究を重ねた結果、下記の知見を得た。
 アルコキシ基を有するシラン化合物の加水分解縮合物、紫外線吸収基を有する単量体単位を含む共重合体からなる有機高分子微粒子、コロイダルシリカ、硬化触媒及び分散媒体を含むコーティング液を、加熱して硬化させることにより、所望の特性を有する硬化膜が得られること、そして該硬化膜を基材上又は無機硬質物層、透明導電膜及び光触媒層のそれぞれと基材との間に形成させることにより、所望の樹脂積層体が得られることを見出した。
 本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies on the coating liquid that gives a cured film having the above characteristics, the present inventors have obtained the following knowledge.
A coating liquid containing a hydrolyzed condensate of a silane compound having an alkoxy group, an organic polymer fine particle comprising a copolymer containing a monomer unit having an ultraviolet absorbing group, colloidal silica, a curing catalyst and a dispersion medium is heated. By curing, a cured film having desired characteristics can be obtained, and the cured film is formed on the substrate or between each of the inorganic hard material layer, the transparent conductive film and the photocatalyst layer and the substrate. The inventors have found that a desired resin laminate can be obtained.
The present invention has been completed based on such findings.
 すなわち、本発明は、下記のコーティング液、硬化膜及び樹脂積層体並びに該硬化膜及び樹脂積層体の製造方法を提供する。
[1] 下記(A)~(E)成分を含むことを特徴とするコーティング液。
(A)下記(A-1)~(A-5)成分のアルコキシ基を有するシラン化合物の加水分解縮合物
  (A-1)テトラアルコキシシラン化合物
  (A-2)アミノ基、エポキシ基及びイソシアネート基を含まないオルガノアルコキシシラン化合物
  (A-3)アミノ基及びアルコキシ基を有するシラン化合物
  (A-4)エポキシ基及びアルコキシ基を有するシラン化合物
  (A-5)アルコキシ基を有するブロック化イソシアナトシラン化合物
(B)紫外線吸収基を有する単量体単位を含む共重合体からなる有機高分子微粒子
(C)コロイダルシリカ
(D)硬化触媒
(E)分散媒体
That is, this invention provides the following coating liquid, a cured film, a resin laminated body, and the manufacturing method of this cured film and a resin laminated body.
[1] A coating liquid comprising the following components (A) to (E):
(A) Hydrolysis condensate of silane compounds having alkoxy groups of the following components (A-1) to (A-5) (A-1) Tetraalkoxysilane compounds (A-2) Amino groups, epoxy groups and isocyanate groups (A-3) Silane compound having amino group and alkoxy group (A-4) Silane compound having epoxy group and alkoxy group (A-5) Blocked isocyanatosilane compound having alkoxy group (B) Organic polymer fine particles comprising a copolymer containing a monomer unit having an ultraviolet absorbing group (C) Colloidal silica (D) Curing catalyst (E) Dispersion medium
[2] さらに、(F)シラン化合物で処理された酸化セリウムと、(G)分散安定剤とを含むことを特徴とする[1]に記載のコーティング液。
[3] (A-1)成分が下記一般式(1)で表されるテトラアルコキシシラン化合物である[1]又は[2]に記載のコーティング液。
   Si(OR1)4    (1)
[式中、R1は、炭素数1~4のアルキル基もしくはエーテル結合を有するアルキル基を示す。複数のR1は同一でも異なっていてもよい。]
[2] The coating liquid according to [1], further comprising (F) cerium oxide treated with a silane compound and (G) a dispersion stabilizer.
[3] The coating liquid according to [1] or [2], wherein the component (A-1) is a tetraalkoxysilane compound represented by the following general formula (1).
Si (OR 1 ) 4 (1)
[Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkyl group having an ether bond. A plurality of R 1 may be the same or different. ]
[4] (A-2)成分が下記一般式(2)で表されるアミノ基、エポキシ基及びイソシアネート基を含まないオルガノアルコキシシラン化合物である[1]又は[2]に記載のコーティング液。
    R2 aSi(OR34-a    ・・・(2)
[式中、R2は炭素数1~10のアルキル基もしくはフッ素化アルキル基;ビニル基;フェニル基;又はメタクリロキシ基で置換された炭素数1~3のアルキル基、R3は炭素数1~4のアルキル基もしくはエーテル結合を有するアルキル基を示し、aは1又は2を示す。R2が複数ある場合、複数のR2は同一でも異なっていてもよく、複数のOR3は同一でも異なっていてもよい。]
[5] (A-3)成分が下記一般式(3)で表されるアミノ基及びアルコキシ基を有するシラン化合物である[1]又は[2]に記載のコーティング液。
    R4 bSi(OR54-b    ・・・(3)
[式中、R4は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、アミノ基(-NH2基)、アミノアルキル基〔-(CH2x-NH2基(ただし、xは1~3の整数)〕)、アルキルアミノ基〔-NHR基(ただし、Rは炭素数1~3のアルキル基)〕の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基を示し、R4の少なくとも1つは、アミノ基、あるいはアミノアルキル基又はアルキルアミノ基のいずれかで置換された炭素数1~3のアルキル基を示す。R5は炭素数1~4のアルキル基を示し、bは1又は2を示す。R4が複数ある場合、複数のR4は同一でも異なっていてもよく、複数のOR5は同一でも異なっていてもよい。]
[4] The coating liquid according to [1] or [2], wherein the component (A-2) is an organoalkoxysilane compound containing no amino group, epoxy group or isocyanate group represented by the following general formula (2).
R 2 a Si (OR 3 ) 4-a (2)
Wherein, R 2 is an alkyl group or a fluorinated alkyl group of 1 to 10 carbon atoms; vinyl group; a phenyl group; or methacryloxy-substituted alkyl group having 1-3 carbon atoms in the group, R 3 is a C1- 4 represents an alkyl group or an alkyl group having an ether bond, and a represents 1 or 2. When R 2 are a plurality, the plurality of R 2 may be the same or different, a plurality of OR 3 may be the same or different. ]
[5] The coating liquid according to [1] or [2], wherein the component (A-3) is a silane compound having an amino group and an alkoxy group represented by the following general formula (3).
R 4 b Si (OR 5 ) 4-b (3)
[Wherein R 4 is an alkyl group having 1 to 4 carbon atoms; vinyl group; phenyl group; or methacryloxy group, amino group (—NH 2 group), aminoalkyl group [— (CH 2 ) x —NH 2 group ( Wherein x is an integer of 1 to 3)]), an alkylamino group [—NHR group (where R is an alkyl group having 1 to 3 carbon atoms)], and the number of carbon atoms substituted with one or more groups 1 to 3 alkyl groups, at least one of R 4 represents an amino group, or an alkyl group having 1 to 3 carbon atoms substituted with either an aminoalkyl group or an alkylamino group; R 5 represents an alkyl group having 1 to 4 carbon atoms, and b represents 1 or 2. If R 4 is plural, R 4 may be the same or different, the plurality of OR 5 may be the same or different. ]
[6] (A-4)成分が下記一般式(4)で表されるエポキシ基及びアルコキシ基を有するシラン化合物である[1]又は[2]に記載のコーティング液。
    R6 cSi(OR74-c    ・・・(4)
[式中、R6は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、グリシドキシ基、3,4-エポキシシクロヘキシル基の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基を示し、R6の少なくとも1つは、グリシドキシ基又は3,4-エポキシシクロヘキシル基で置換された炭素数1~3のアルキル基を示す。R7は炭素数1~4のアルキル基を示し、cは1又は2を示す。R6が複数ある場合、複数のR6は同一でも異なっていてもよく、複数のOR7は同一でも異なっていてもよい。]
[7] (A-5)成分が下記一般式(5)で表されるアルコキシ基を有するブロック化イソシアナトシラン化合物である[1]又は[2]に記載のコーティング液。
    R8 dSi(OR94-d    ・・・(5)
[式中、R8は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、ブロック化イソシアネート基の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基を示し、R8の少なくとも1つは、ブロック化イソシアネート基で置換された炭素数1~3のアルキル基を示す。R9は炭素数1~4のアルキル基を示し、dは1又は2を示す。R8が複数ある場合、複数のR8は同一でも異なっていてもよく、複数のOR9は同一でも異なっていてもよい。]
[6] The coating liquid according to [1] or [2], wherein the component (A-4) is a silane compound having an epoxy group and an alkoxy group represented by the following general formula (4).
R 6 c Si (OR 7 ) 4-c (4)
[Wherein R 6 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or a carbon substituted with one or more groups selected from a methacryloxy group, a glycidoxy group, and a 3,4-epoxycyclohexyl group. Represents an alkyl group having 1 to 3 carbon atoms, and at least one of R 6 represents an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group or a 3,4-epoxycyclohexyl group. R 7 represents an alkyl group having 1 to 4 carbon atoms, and c represents 1 or 2. If R 6 is plural, R 6 may be the same or different, a plurality of OR 7 may be different or identical. ]
[7] The coating liquid according to [1] or [2], wherein the component (A-5) is a blocked isocyanatosilane compound having an alkoxy group represented by the following general formula (5).
R 8 d Si (OR 9 ) 4-d (5)
[Wherein R 8 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or an alkyl group having 1 to 3 carbon atoms substituted with one or more groups selected from a methacryloxy group and a blocked isocyanate group. And at least one of R 8 represents an alkyl group having 1 to 3 carbon atoms substituted with a blocked isocyanate group. R 9 represents an alkyl group having 1 to 4 carbon atoms, and d represents 1 or 2. If R 8 is plural, R 8 may be the same or different, a plurality of OR 9 may be the same or different. ]
[8] (A-1)成分、(A-2)成分及び(A-4)成分の加水分解縮合物と、(B)~(E)成分とを接触させて得られた反応生成物に、(A-5)成分を加えて反応させた後、さらに(A-3)成分を加えて反応させてなる[1]~[7]のいずれかに記載のコーティング液。
[9] (A-1)成分、(A-2)成分、(A-4)成分及び(B)~(E)成分を含む混合物を加熱することにより得られた反応生成物に、(A-5)成分を加え反応させた後、さらに(A-3)成分を加えて反応させてなる[1]~[7]のいずれかに記載のコーティング液。
[8] A reaction product obtained by contacting the hydrolysis condensate of components (A-1), (A-2) and (A-4) with components (B) to (E) The coating liquid according to any one of [1] to [7], wherein the component (A-5) is added and reacted, and then the component (A-3) is added and reacted.
[9] A reaction product obtained by heating a mixture containing the component (A-1), the component (A-2), the component (A-4) and the components (B) to (E) is added to the reaction product (A -5) The coating liquid according to any one of [1] to [7], wherein the component (A-3) is added and reacted after the component is reacted.
[10] 上記[1]~[9]のいずれかに記載のコーティング液を硬化してなる硬化膜。
[11] 基材と、該基材上に直接形成された[10]に記載の硬化膜とを有することを特徴とする樹脂積層体。
[12] 基材と、該基材上に形成された[10]に記載の硬化膜と、前記硬化膜上に形成された無機層とを有することを特徴とする樹脂積層体。
[13] 基材と、該基材上に形成された[10]に記載の硬化膜と、前記硬化膜上に形成された透明導電膜とを有することを特徴とする樹脂積層体。
[14] 基材と、該基材上に形成された[10]に記載の硬化膜と、前記硬化膜上に形成された光触媒層とを有することを特徴とする樹脂積層体。
[15] 前記硬化膜の厚さが0.1~50μmである[13]に記載の樹脂積層体。
[16] 前記透明導電膜のキャリア濃度が1×1018/cm3以上である[13]に記載の樹脂積層体。
[17] 前記基材が樹脂基材である[13]に記載の樹脂積層体。
[18] 前記基材が凹凸を有することを特徴とする[11]、[12]及び[17]のいずれかに記載の樹脂積層体。
[19] 前記基材が楕円柱型であることを特徴とする[11]、[12]、[17]及び[18]のいずれかに記載の樹脂積層体。
[20] 前記基材が円柱型であることを特徴とする[11]、[12]、[17]及び[18]のいずれかに記載の樹脂積層体。
[21] 前記基材の硬化膜が形成されていない面に樹脂層を有することを特徴とする[11]、[12]、[17]~[20]のいずれかに記載の樹脂積層体。
[22] 前記硬化膜の厚さが0.5~6μmであることを特徴とする[11]、[12]、[14]、[17]~[21]のいずれかに記載の樹脂積層体。
[23] 基材がポリエステル樹脂、ポリカーボネート樹脂又はポリオレフィン系樹脂であることを特徴とする[11]、[12]、[14]、[17]~[22]のいずれかに記載の樹脂積層体。
[10] A cured film obtained by curing the coating liquid according to any one of [1] to [9].
[11] A resin laminate comprising a base material and the cured film according to [10] directly formed on the base material.
[12] A resin laminate comprising a substrate, the cured film according to [10] formed on the substrate, and an inorganic layer formed on the cured film.
[13] A resin laminate comprising a substrate, the cured film according to [10] formed on the substrate, and a transparent conductive film formed on the cured film.
[14] A resin laminate comprising a base material, the cured film according to [10] formed on the base material, and a photocatalyst layer formed on the cured film.
[15] The resin laminate according to [13], wherein the cured film has a thickness of 0.1 to 50 μm.
[16] The resin laminate according to [13], wherein the transparent conductive film has a carrier concentration of 1 × 10 18 / cm 3 or more.
[17] The resin laminate according to [13], wherein the substrate is a resin substrate.
[18] The resin laminate according to any one of [11], [12] and [17], wherein the substrate has irregularities.
[19] The resin laminate according to any one of [11], [12], [17] and [18], wherein the base material has an elliptic cylinder shape.
[20] The resin laminate according to any one of [11], [12], [17] and [18], wherein the base material is a cylindrical shape.
[21] The resin laminate according to any one of [11], [12], and [17] to [20], wherein a resin layer is provided on a surface of the base material on which no cured film is formed.
[22] The resin laminate according to any one of [11], [12], [14], and [17] to [21], wherein the cured film has a thickness of 0.5 to 6 μm. .
[23] The resin laminate according to any one of [11], [12], [14], and [17] to [22], wherein the substrate is a polyester resin, a polycarbonate resin, or a polyolefin resin .
[24] 上記[1]~[9]のいずれかに記載のコーティング液を加熱し、硬化させる工程を含むことを特徴とする硬化膜の製造方法。
[25] 上記[1]~[9]のいずれかに記載のコーティング液を基材上に塗布する工程と、前記コーティング液を乾燥させる工程と、前記基材を熱成形する工程と、前記コーティング液を硬化させてコーティング層を設ける工程とを含むことを特徴とする樹脂積層体の製造方法。
[26] 更に、前記コーティング液を硬化させてなる樹脂積層体のコーティング層を有しない面に樹脂層を設ける工程を含むことを特徴とする[25]に記載の樹脂積層体の製造方法。
[27] 上記[1]~[9]のいずれか一項に記載のコーティング液を硬化させてなる硬化膜を基材上に形成させる工程、上記硬化膜上に透明導電膜を形成させる工程、を含むことを特徴とする樹脂積層体の製造方法。
[28] 上記[1]~[9]のいずれか一項に記載のコーティング液を硬化させてなる硬化膜を基材上に形成させる工程、上記硬化膜上に光触媒層を形成させる工程、を含むことを特徴とする樹脂積層体の製造方法。
[24] A method for producing a cured film, comprising a step of heating and curing the coating liquid according to any one of [1] to [9].
[25] A step of applying the coating liquid according to any one of [1] to [9] on a substrate, a step of drying the coating solution, a step of thermoforming the substrate, and the coating And a step of providing a coating layer by curing the liquid.
[26] The method for producing a resin laminate according to [25], further comprising a step of providing a resin layer on a surface of the resin laminate obtained by curing the coating liquid and having no coating layer.
[27] A step of forming a cured film obtained by curing the coating liquid according to any one of [1] to [9] on a substrate, a step of forming a transparent conductive film on the cured film, The manufacturing method of the resin laminated body characterized by including.
[28] A step of forming a cured film obtained by curing the coating liquid according to any one of [1] to [9] on a substrate, and a step of forming a photocatalytic layer on the cured film. A method for producing a resin laminate, comprising:
 本発明によれば、プライマーを用いてなくても基材や無機硬質物層、透明導電膜及び光触媒層に対して良好な密着性を有すると共に、優れた耐摩耗性、耐擦傷性、耐屈曲性、耐候性(紫外線吸収能)、耐久性(耐煮沸性)などの特性を有する硬化膜を与えるコーティング液を提供することができる。
 また、本発明によれば、上記コーティング液を硬化してなる上記特性を有する硬化膜及び該硬化膜を基材上又は無機硬質物層、透明導電膜及び光触媒層のそれぞれと基材との間に有する樹脂積層体、並びに該硬化膜及び樹脂積層体の製造方法を提供することができる。
According to the present invention, it has good adhesion to a substrate, an inorganic hard material layer, a transparent conductive film and a photocatalyst layer without using a primer, and has excellent wear resistance, scratch resistance, and bending resistance. It is possible to provide a coating liquid that gives a cured film having properties such as property, weather resistance (ultraviolet ray absorption ability), and durability (boiling resistance).
Further, according to the present invention, the cured film having the above-mentioned characteristics obtained by curing the coating liquid and the cured film on the substrate or between each of the inorganic hard material layer, the transparent conductive film and the photocatalyst layer and the substrate. And a method for producing the cured film and the resin laminate.
 まず、本発明のコーティング液について説明する。
[コーティング液]
 本発明のコーティング液は、下記(A)~(E)成分を含むことを特徴とする。
First, the coating liquid of the present invention will be described.
[Coating solution]
The coating liquid of the present invention comprises the following components (A) to (E).
((A)成分)
 本発明のコーティング液は、(A)成分のアルコキシ基を有するシラン化合物の加水分解縮合物として、下記(A-1)~(A-5)の5種の化合物の加水分解縮合物を含有する。加水分解縮合物は(A-1)~(A-5)の中の単独の化合物の加水分解縮合物であってもよいし、(A-1)~(A-5)の中の任意の2種以上からなる混合物の加水分解縮合物であってもよい。
 本発明において、アルコキシ基を有するシラン化合物とは、アルコキシシラン化合物及び/又はその部分縮合物であり、アルコキシシラン化合物の部分縮合物とは、アルコキシシラン化合物の一部が縮合し、分子内にシロキサン結合(Si-O結合)を形成してなるポリアルコキシシラン化合物又はポリオルガノアルコキシシラン化合物を指す。
 また、アルコキシ基を有するシラン化合物の加水分解縮合物とは、アルコキシ基を有するシラン化合物の加水分解縮合物の他に加水分解縮合前の該アルコキシ基を有するシラン化合物を含んでいる状態のものである。
((A) component)
The coating liquid of the present invention contains hydrolysis condensates of the following five compounds (A-1) to (A-5) as hydrolysis condensates of the silane compound having an alkoxy group as component (A). . The hydrolysis condensate may be a hydrolysis condensate of a single compound in (A-1) to (A-5), or any one of (A-1) to (A-5) It may be a hydrolysis condensate of a mixture of two or more.
In the present invention, an alkoxy group-containing silane compound is an alkoxysilane compound and / or a partial condensate thereof, and an alkoxysilane compound partial condensate is a part of an alkoxysilane compound condensed into a siloxane in the molecule. A polyalkoxysilane compound or a polyorganoalkoxysilane compound formed by forming a bond (Si—O bond).
The hydrolyzed condensate of the silane compound having an alkoxy group includes a silane compound having the alkoxy group before hydrolysis and condensation in addition to the hydrolyzed condensate of the silane compound having an alkoxy group. is there.
〈(A-1)化合物〉
 (A-1)化合物は、テトラアルコキシシラン化合物である。また、シロキサン結合(Si-O結合)で結合された部分縮合物(ポリアルコキシシラン化合物)も用いることができる。これら化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (A-1)化合物として、テトラアルコキシシラン化合物及びその部分縮合物は、例えば下記一般式(1)で表すことができ、特に下記一般式(6)で表される化合物が好適である。
     Si(OR1)4    (1)
[式中、R1は、炭素数1~4のアルキル基もしくはエーテル結合を有するアルキル基である。複数のR1は同一でも異なっていてもよい。]
<(A-1) Compound>
The compound (A-1) is a tetraalkoxysilane compound. A partial condensate (polyalkoxysilane compound) bonded with a siloxane bond (Si—O bond) can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
As the compound (A-1), a tetraalkoxysilane compound and a partial condensate thereof can be represented, for example, by the following general formula (1), and a compound represented by the following general formula (6) is particularly preferable.
Si (OR 1 ) 4 (1)
[Wherein R 1 is an alkyl group having 1 to 4 carbon atoms or an alkyl group having an ether bond. A plurality of R 1 may be the same or different. ]
Figure JPOXMLDOC01-appb-C000001
[式中、R1は、上記と同じであり、nは1~15の整数である。]
Figure JPOXMLDOC01-appb-C000001
[Wherein R 1 is the same as described above, and n is an integer of 1 to 15.] ]
 前記一般式(1)及び(6)において、炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、各種ブチル基が挙げられ、また、R1がエーテル結合を有する炭素数1~4のアルキル基であるOR1としては、例えば、2-メトキシエトキシ基、3-メトキシプロポキシ基などが挙げられる。
 (A-1)化合物のテトラアルコキシシラン化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトライソブトキシシランなどが挙げられる。
 また、ポリアルコキシシラン化合物としては、多摩化学工業株式会社製の「Mシリケート51」「シリケート40」「シリケート45」、コルコート株式会社製の「メチルシリケート51」「メチルシリケート53A」「エチルシリケート40」「エチルシリケート48」などが挙げられる。
In the general formulas (1) and (6), examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and various butyl groups. OR 1 in which R 1 is an alkyl group having 1 to 4 carbon atoms having an ether bond includes, for example, a 2-methoxyethoxy group, a 3-methoxypropoxy group, and the like.
Examples of the tetraalkoxysilane compound (A-1) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, and tetraisobutoxysilane.
Examples of the polyalkoxysilane compound include “M silicate 51”, “silicate 40”, and “silicate 45” manufactured by Tama Chemical Industries, Ltd., and “methyl silicate 51”, “methyl silicate 53A”, and “ethyl silicate 40” manufactured by Colcoat Co., Ltd. "Ethyl silicate 48" etc. are mentioned.
〈(A-2)化合物〉
 (A-2)化合物は、アミノ基、エポキシ基及びイソシアネート基を含まないオルガノアルコキシシラン化合物である。また、その部分縮合物も用いることができる。これら化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (A-2)化合物として、オルガノアルコキシシラン化合物及びその部分縮合物は、好ましくは2官能アルコキシシラン、3官能アルコキシシランであり、例えば下記一般式(2)で表わすことができ、特に下記一般式(7)で表される化合物が好適である。
<(A-2) Compound>
The compound (A-2) is an organoalkoxysilane compound containing no amino group, epoxy group or isocyanate group. Moreover, the partial condensate can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
As the compound (A-2), the organoalkoxysilane compound and the partial condensate thereof are preferably bifunctional alkoxysilane and trifunctional alkoxysilane, and can be represented by, for example, the following general formula (2). The compound represented by (7) is preferred.
    R2 aSi(OR34-a    ・・・(2)
[式中、R2は炭素数1~10のアルキル基もしくはフッ素化アルキル基;ビニル基;フェニル基;又はメタクリロキシ基で置換された炭素数1~3のアルキル基、R3は炭素数1~4のアルキル基もしくはエーテル結合を有するアルキル基であり、aは1又は2である。R2が複数ある場合、複数のR2は同一でも異なっていてもよく、複数のOR3は同一でも異なっていてもよい。]
R 2 a Si (OR 3 ) 4-a (2)
Wherein, R 2 is an alkyl group or a fluorinated alkyl group of 1 to 10 carbon atoms; vinyl group; a phenyl group; or methacryloxy-substituted alkyl group having 1-3 carbon atoms in the group, R 3 is a C1- 4 is an alkyl group or an alkyl group having an ether bond, and a is 1 or 2. When R 2 are a plurality, the plurality of R 2 may be the same or different, a plurality of OR 3 may be the same or different. ]
Figure JPOXMLDOC01-appb-C000002
[式中、R2及びR3は上記と同じであり、mは1~15の整数である。]
Figure JPOXMLDOC01-appb-C000002
[Wherein R 2 and R 3 are the same as above, and m is an integer of 1 to 15.] ]
 前記一般式(2)及び(7)において、炭素数1~10のアルキル基としては、直鎖状、分岐状のいずれであってもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、各種ブチル基、各種ヘキシル基、各種オクチル基、各種デシル基などが挙げられ、フッ素化アルキル基としては、例えば、トリフルオロエチル基、トリフルオロプロピル基などが挙げられる。また、炭素数1~3のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。炭素数1~4のアルキル基もしくはエーテル結合を有するアルキル基については、前記一般式(1)で説明したとおりである。 In the general formulas (2) and (7), the alkyl group having 1 to 10 carbon atoms may be linear or branched. For example, a methyl group, an ethyl group, an n-propyl group, Examples include isopropyl group, various butyl groups, various hexyl groups, various octyl groups, and various decyl groups. Examples of the fluorinated alkyl group include trifluoroethyl group and trifluoropropyl group. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. The alkyl group having 1 to 4 carbon atoms or the alkyl group having an ether bond is as described in the general formula (1).
 一般式(2)で表わされるオルガノアルコキシシラン化合物の中で、3官能アルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、メチル-トリス(2-メトキシエトキシ)シラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、エチル-トリス(2-メトキシエトキシ)シラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルトリプロポキシシラン、ヘキシルトリブトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、デシルトリプロポキシシラン、デシルトリブトキシシラン、置換基にフッ素原子を導入したトリフルオロプロピルトリメトキシシランなどのフッ素化アルキル(トリアルコキシ)シラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシランなどが挙げられる。また2種類のアルコキシ基を有するメチルジメトキシ(エトキシ)シラン、エチルジエトキシ(メトキシ)シランなども挙げられる。 Among the organoalkoxysilane compounds represented by the general formula (2), trifunctional alkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, methyl-tris (2-methoxy). Ethoxy) silane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltributoxysilane, ethyl-tris (2-methoxyethoxy) silane, hexyltrimethoxysilane, hexyltriethoxysilane, hexyltripropoxysilane, Hexyl riboxysilane, decyltrimethoxysilane, decyltriethoxysilane, decyltripropoxysilane, decyltributoxysilane, trifluoropropoxy with fluorine atoms introduced into substituents Fluorinated alkyl (trialkoxy) silane, such as trimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, etc. γ- methacryloxypropyl trimethoxysilane. Moreover, methyldimethoxy (ethoxy) silane, ethyl diethoxy (methoxy) silane, etc. which have two types of alkoxy groups are also mentioned.
 2官能アルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ビス(2-メトキシエトキシ)ジメチルシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどが挙げられる。
 ポリオルガノアルコキシシラン化合物の具体例としては、多摩化学工業株式会社製の「MTMS-A」、コルコート株式会社製の「SS-101」、東レ・ダウコーニング株式会社製の「AZ-6101」「SR2402」「AY42-163」などが挙げられる。
Examples of the bifunctional alkoxysilane include dimethyldimethoxysilane, dimethyldiethoxysilane, bis (2-methoxyethoxy) dimethylsilane, diethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldiethoxysilane.
Specific examples of the polyorganoalkoxysilane compound include “MTMS-A” manufactured by Tama Chemical Co., Ltd., “SS-101” manufactured by Colcoat Co., Ltd., “AZ-6101” and “SR2402” manufactured by Toray Dow Corning Co., Ltd. And “AY42-163”.
〈(A-3)化合物〉
 (A-3)化合物は、アミノ基及びアルコキシ基を有するシラン化合物であって、エポキシ基及びイソシアネート基は含まないアルコキシシラン化合物である。また、その部分縮合物(アミノ基含有ポリオルガノアルコキシシラン化合物)も用いることができる。これら化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (A-3)化合物として、アミノ基含有オルガノアルコキシシラン化合物及びその部分縮合物は、例えば下記一般式(3)で表わすことができる。
<(A-3) Compound>
The compound (A-3) is an silane compound having an amino group and an alkoxy group, and does not contain an epoxy group or an isocyanate group. Moreover, the partial condensate (amino group containing polyorganoalkoxysilane compound) can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
As the compound (A-3), an amino group-containing organoalkoxysilane compound and a partial condensate thereof can be represented, for example, by the following general formula (3).
    R4 bSi(OR54-b    ・・・(3)
[式中、R4は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、アミノ基(-NH2基)、アミノアルキル基〔-(CH2x-NH2基(ただし、xは1~3の整数)〕)、アルキルアミノ基〔-NHR基(ただし、Rは炭素数1~3のアルキル基)〕の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基であり、R4の少なくとも1つは、アミノ基、あるいはアミノアルキル基又はアルキルアミノ基のいずれかで置換された炭素数1~3のアルキル基である。R5は炭素数1~4のアルキル基であり、bは1又は2である。R4が複数ある場合、複数のR4は同一でも異なっていてもよく、複数のOR5は同一でも異なっていてもよい。]
 上記一般式(3)において、炭素数1~3のアルキル基、炭素数1~4のアルキル基については、前記一般式(1)又は(2)で説明したとおりである。
R 4 b Si (OR 5 ) 4-b (3)
[Wherein R 4 is an alkyl group having 1 to 4 carbon atoms; vinyl group; phenyl group; or methacryloxy group, amino group (—NH 2 group), aminoalkyl group [— (CH 2 ) x —NH 2 group ( Wherein x is an integer of 1 to 3)]), an alkylamino group [—NHR group (where R is an alkyl group having 1 to 3 carbon atoms)], and the number of carbon atoms substituted with one or more groups An alkyl group having 1 to 3 carbon atoms and at least one R 4 is an amino group or an alkyl group having 1 to 3 carbon atoms substituted with either an aminoalkyl group or an alkylamino group. R 5 is an alkyl group having 1 to 4 carbon atoms, and b is 1 or 2. If R 4 is plural, R 4 may be the same or different, the plurality of OR 5 may be the same or different. ]
In the general formula (3), the alkyl group having 1 to 3 carbon atoms and the alkyl group having 1 to 4 carbon atoms are as described in the general formula (1) or (2).
 一般式(3)で表わされるアミノ基含有オルガノアルコキシシラン化合物の具体例としては、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N―(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-メチルアミノプロピルトリメトキシシラン、N-メチルアミノプロピルトリエトキシシランなどが挙げられる。
 また、アミノ基含有ポリオルガノアルコキシシラン化合物としては、例えば、信越シリコーン株式会社製の「KBP-90」などが挙げられる。
Specific examples of the amino group-containing organoalkoxysilane compound represented by the general formula (3) include N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane and N- (2-aminoethyl) -3-amino. Propyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3- Aminopropyltriethoxysilane, N-methylaminopropyltrimethoxysilane, N-methylaminopropyltriethoxysilane and the like can be mentioned.
Examples of the amino group-containing polyorganoalkoxysilane compound include “KBP-90” manufactured by Shin-Etsu Silicone Co., Ltd.
〈(A-4)化合物〉
 (A-4)化合物は、エポキシ基及びアルコキシ基を有するシラン化合物であって、アミノ基及びイソシアネート基は含まないアルコキシシラン化合物である。また、その部分縮合物(エポキシ基含有ポリオルガノアルコキシシラン化合物)も用いることができる。これら化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (A-4)化合物として、エポキシ基含有オルガノアルコキシシラン化合物及びその部分縮合物は、例えば下記一般式(4)で表わすことができる。
<(A-4) Compound>
The compound (A-4) is an alkoxysilane compound having an epoxy group and an alkoxy group and not containing an amino group or an isocyanate group. Moreover, the partial condensate (epoxy group containing polyorganoalkoxysilane compound) can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
As the compound (A-4), an epoxy group-containing organoalkoxysilane compound and a partial condensate thereof can be represented, for example, by the following general formula (4).
    R6 cSi(OR74-c    ・・・(4)
[式中、R6は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、グリシドキシ基、3,4-エポキシシクロヘキシル基の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基であり、R6の少なくとも1つは、グリシドキシ基又は3,4-エポキシシクロヘキシル基で置換された炭素数1~3のアルキル基である。R7は炭素数1~4のアルキル基であり、cは1又は2である。R6が複数ある場合、複数のR6は同一でも異なっていてもよく、複数のOR7は同一でも異なっていてもよい。]
 上記一般式(4)において、炭素数1~3のアルキル基、炭素数1~4のアルキル基については、前記一般式(1)又は(2)で説明したとおりである。
R 6 c Si (OR 7 ) 4-c (4)
[Wherein R 6 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or a carbon substituted with one or more groups selected from a methacryloxy group, a glycidoxy group, and a 3,4-epoxycyclohexyl group. An alkyl group having 1 to 3 carbon atoms, and at least one of R 6 is an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group or a 3,4-epoxycyclohexyl group. R 7 is an alkyl group having 1 to 4 carbon atoms, and c is 1 or 2. If R 6 is plural, R 6 may be the same or different, a plurality of OR 7 may be different or identical. ]
In the general formula (4), the alkyl group having 1 to 3 carbon atoms and the alkyl group having 1 to 4 carbon atoms are as described in the general formula (1) or (2).
 一般式(4)で表わされるエポキシ基含有オルガノアルコキシシラン化合物の具体例としては、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3、4-エポキシシクロヘキシル)エチルトリエトキシシランなどが挙げられる。 Specific examples of the epoxy group-containing organoalkoxysilane compound represented by the general formula (4) include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltrimethoxy. Examples thereof include silane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane.
〈(A-5)化合物〉
 (A-5)化合物は、アルコキシ基を有するブロック化イソシアナトシラン化合物(一般的にブロック化イソシアネートシラン化合物とも称される)であって、ブロック化イソシアネート基は含むが、アミノ基及びエポキシ基を含まないアルコキシシラン化合物である。また、その部分縮合物(ブロック化イソシアネート基含有ポリオルガノアルコキシシラン化合物)も用いることができる。これら化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、ブロック化イソシアナトシラン化合物とは、イソシアネート基をオキシムなどのブロック剤で保護して不活性としておき、加熱により脱ブロック化してイソシアネート基が活性化(再生)されるイソシアナトシラン化合物(一般的にイソシアネートシラン化合物とも称される)である。
<(A-5) Compound>
The compound (A-5) is a blocked isocyanatosilane compound having an alkoxy group (generally also referred to as a blocked isocyanate silane compound), which contains a blocked isocyanate group, but has an amino group and an epoxy group. It is an alkoxysilane compound not included. Moreover, the partial condensate (blocked isocyanate group containing polyorganoalkoxysilane compound) can also be used. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
The blocked isocyanatosilane compound is an isocyanatosilane compound in which an isocyanate group is protected by a blocking agent such as oxime to be inactive, and is deblocked by heating to activate (regenerate) the isocyanate group (general) Also referred to as an isocyanate silane compound).
 (A-5)化合物として、ブロック化イソシアネート基含有オルガノアルコキシシラン化合物及びその部分縮合物は、例えば下記一般式(5)で表わすことができる。
    R8 dSi(OR94-d    ・・・(5)
[式中、R8は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、ブロック化イソシアネート基の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基であり、R8の少なくとも1つは、ブロック化イソシアネート基で置換された炭素数1~3のアルキル基である。R9は炭素数1~4のアルキル基であり、dは1又は2である。R8が複数ある場合、複数のR8は同一でも異なっていてもよく、複数のOR9は同一でも異なっていてもよい。]
 上記一般式(5)において、炭素数1~3のアルキル基、炭素数1~4のアルキル基については、前記一般式(1)又は(2)で説明したとおりである。
As the compound (A-5), a blocked isocyanate group-containing organoalkoxysilane compound and a partial condensate thereof can be represented, for example, by the following general formula (5).
R 8 d Si (OR 9 ) 4-d (5)
[Wherein R 8 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or an alkyl group having 1 to 3 carbon atoms substituted with one or more groups selected from a methacryloxy group and a blocked isocyanate group. And at least one of R 8 is an alkyl group having 1 to 3 carbon atoms substituted with a blocked isocyanate group. R 9 is an alkyl group having 1 to 4 carbon atoms, and d is 1 or 2. If R 8 is plural, R 8 may be the same or different, a plurality of OR 9 may be the same or different. ]
In the general formula (5), the alkyl group having 1 to 3 carbon atoms and the alkyl group having 1 to 4 carbon atoms are as described in the general formula (1) or (2).
 前記一般式(5)で表わされるブロック化イソシアネート基含有オルガノアルコキシシラン化合物の具合例としては、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-イソシアナトプロピルメチルジメトキシシラン、3-イソシアナトプロピルメチルジエトキシシラン、3-イソシアナトプロピルエチルジエトキシシランなどの化合物におけるイソシアネート基を、ブロック化剤で保護したものが挙げられる。これらの中で、好ましい化合物としては、3-ブロック化イソシアナトプロピルトリエトキシシランを挙げることができる。 Specific examples of the blocked isocyanate group-containing organoalkoxysilane compound represented by the general formula (5) include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldimethoxysilane. , 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylethyldiethoxysilane and the like in which the isocyanate group is protected with a blocking agent. Among these, a preferred compound is 3-blocked isocyanatopropyltriethoxysilane.
 イソシアネート基のブロック化剤としては、アセトオキシム、2-ブタノンオキシム、シクロヘキサノンオキシム、メチルイソブチルケトオキシムなどのオキシム化合物、ε-カプロラクラムなどのラクタム類、モノアルキルフェノール(クレゾール、ノニルフェノールなど)などのアルキルフェノール類、3,5-キシレノール、ジ-t-ブチルフェノールなどのジアルキルフェノール類、トリメチルフェノールなどのトリアルキルフェノール類、マロン酸ジエチルなどのマロン酸ジエステル、アセチルアセトン、アセト酢酸エチルのようなアセト酢酸エステルなどの活性メチレン化合物類、メタノール、エタノール、n-ブタノールなどのアルコール類、メチルセロソルブ、ブチルセロソルブなどの水酸基含有エーテル類、乳酸エチル、乳酸アミルなどの水酸基含有エステル類、ブチルメルカプタン、ヘキシルメルカプタンなどのメルカプタン類、アセトアニリド、アクリルアマイド、ダイマー酸アマイドなどの酸アミド類、イミダゾール、2-エチルイミダゾールなどのイミダゾール類、3,5-ジメチルピラゾールなどのピラゾール類、1,2,4-トリアゾールなどのトリアゾール類、コハク酸イミド、フタル酸イミドなどの酸イミド類などを使用できる。またブロック化剤解離温度を制御するため、ジブチル錫ジラウレートなどの触媒を併用してもよい。 Examples of isocyanate group blocking agents include oxime compounds such as acetooxime, 2-butanone oxime, cyclohexanone oxime, methyl isobutyl ketoxime, lactams such as ε-caprolactam, alkylphenols such as monoalkylphenol (cresol, nonylphenol, etc.), Active methylene compounds such as 3,5-xylenol, dialkylphenols such as di-t-butylphenol, trialkylphenols such as trimethylphenol, malonic acid diesters such as diethyl malonate, acetoacetates such as acetylacetone and ethyl acetoacetate , Alcohols such as methanol, ethanol and n-butanol, hydroxyl group-containing ethers such as methyl cellosolve and butyl cellosolve, ethyl lactate Hydroxyl-containing esters such as amyl lactate, mercaptans such as butyl mercaptan and hexyl mercaptan, acid amides such as acetanilide, acrylic amide and dimer acid amide, imidazoles such as imidazole and 2-ethylimidazole, 3,5-dimethylpyrazole Pyrazoles such as 1, triazoles such as 1,2,4-triazole, and acid imides such as succinimide and phthalic imide can be used. In order to control the dissociation temperature of the blocking agent, a catalyst such as dibutyltin dilaurate may be used in combination.
((B)成分)
 本発明のコーティング液は、(B)成分として、紫外線吸収基を有する単量体単位を含む共重合体からなる有機高分子微粒子(以下、高分子紫外線吸収樹脂微粒子と称すことがある。)を含有する。
 この高分子紫外線吸収樹脂微粒子としては、例えば、紫外線吸収剤として作用する骨格(ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系など)を側鎖に有するアクリル系単量体(以下、紫外線吸収性アクリル系単量体と称する)と他のエチレン系不飽和化合物(アクリル酸、メタクリル酸及びそれらの誘導体、スチレン、酢酸ビニルなど)とを共重合させたものが例示される。従来の紫外線吸収剤が一般に分子量200~700の低分子であるのに対し、高分子紫外線吸収樹脂微粒子の重量平均分子量は通常1万を超える。プラスチックとの相溶性や耐熱性など、従来からある低分子型紫外線吸収剤の欠点が改良され、長期にわたって耐候性能を付与できるものである。
((B) component)
The coating liquid of the present invention comprises, as component (B), organic polymer fine particles (hereinafter sometimes referred to as polymer UV-absorbing resin fine particles) made of a copolymer containing a monomer unit having an ultraviolet absorbing group. contains.
Examples of the polymer ultraviolet-absorbing resin fine particles include an acrylic monomer having a skeleton (benzophenone-based, benzotriazole-based, triazine-based, etc.) acting as an ultraviolet absorber in the side chain (hereinafter referred to as an ultraviolet-absorbing acrylic monomer). And those obtained by copolymerizing other ethylenically unsaturated compounds (acrylic acid, methacrylic acid and derivatives thereof, styrene, vinyl acetate, etc.). While conventional ultraviolet absorbers are generally low molecular weight molecules having a molecular weight of 200 to 700, the weight average molecular weight of the polymer ultraviolet absorbing resin fine particles usually exceeds 10,000. Disadvantages of conventional low molecular weight ultraviolet absorbers such as compatibility with plastics and heat resistance are improved, and weather resistance can be imparted over a long period of time.
 前記の紫外線吸収基アクリル系単量体としては、分子内に紫外線吸収基とアクリロイル基とを、それぞれ少なくとも1つ有する化合物であればよく、特に制限はない。このような化合物としては、例えば、下記一般式(8)で表わされるベンゾトリアゾール系化合物、及び一般式(9)で表わされるベンソフェノン系化合物を挙げることができる。 The ultraviolet-absorbing group acrylic monomer is not particularly limited as long as it is a compound having at least one ultraviolet-absorbing group and acryloyl group in the molecule. Examples of such a compound include a benzotriazole compound represented by the following general formula (8) and a benzophenone compound represented by the general formula (9).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[式中、Xは水素原子又は塩素原子、R10は水素原子、メチル基、又は炭素数4~8の第3級アルキル基、R11は直鎖状又は分岐鎖状の炭素数2~10のアルキレン基、R12は水素原子又はメチル基を示し、pは0又は1を示す。] [Wherein, X is a hydrogen atom or a chlorine atom, R 10 is a hydrogen atom, a methyl group, or a tertiary alkyl group having 4 to 8 carbon atoms, and R 11 is a linear or branched carbon group having 2 to 10 carbon atoms. An alkylene group, R 12 represents a hydrogen atom or a methyl group, and p represents 0 or 1. ]
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[式中、R13は水素原子又はメチル基、R14は置換又は非置換の直鎖状又は分岐鎖状の炭素数2~10のアルキレン基、R15は水素原子又は水酸基、R16は水素原子、水酸基、又は炭素数1~6のアルコキシ基を示す。] [Wherein R 13 is a hydrogen atom or methyl group, R 14 is a substituted or unsubstituted linear or branched alkylene group having 2 to 10 carbon atoms, R 15 is a hydrogen atom or hydroxyl group, and R 16 is hydrogen. An atom, a hydroxyl group, or an alkoxy group having 1 to 6 carbon atoms is shown. ]
 上記一般式(8)で表されるベンゾトリアゾール系化合物の具体例としては、例えば、2-(2’-ヒドロキシ-5’-(メタ)アクリロキシフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-(メタ)アクリロキシメチルフェニル)-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(2-(メタ)アクリロキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-tert-ブチル-5’-(2-(メタ)アクリロキシエチル)フェニル]-5-クロロ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-メチル-5’-(8-(メタ)アクリロキシオクチル)フェニル]-2H-ベンゾトリアゾールなどを挙げることができる。 Specific examples of the benzotriazole-based compound represented by the general formula (8) include 2- (2′-hydroxy-5 ′-(meth) acryloxyphenyl) -2H-benzotriazole, 2- (2 '-Hydroxy-3'-tert-butyl-5'-(meth) acryloxymethylphenyl) -2H-benzotriazole, 2- [2'-hydroxy-5 '-(2- (meth) acryloxyethyl) phenyl ] -2H-benzotriazole, 2- [2′-hydroxy-3′-tert-butyl-5 ′-(2- (meth) acryloxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [ And 2'-hydroxy-3'-methyl-5 '-(8- (meth) acryloxyoctyl) phenyl] -2H-benzotriazole.
 上記一般式(9)で表されるベンゾフェノン系化合物の具体例としては、例えば、2-ヒドロキシ-4-(2-(メタ)アクリロキシエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(4-(メタ)アクリロキシブトキシ)ベンゾフェノン、2,2’-ジヒドロキシ-4-(2-(メタ)アクリロキシエトキシ)ベンゾフェノン、2,4-ジヒドロキシ-4’-(2-(メタ)アクリロキシエトキシ)ベンゾフェノン、2,2’,4-トリヒドロキシ-4’-(2-(メタ)アクリロキシエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)ベンゾフェノン、2-ヒドロキシ-4-(3-(メタ)アクリロキシ-1-ヒドロキシプロポキシ)ベンゾフェノンなどを挙げることができる。
 これらの紫外線吸収性アクリル系単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the benzophenone compounds represented by the general formula (9) include, for example, 2-hydroxy-4- (2- (meth) acryloxyethoxy) benzophenone, 2-hydroxy-4- (4- (meta ) Acryloxybutoxy) benzophenone, 2,2'-dihydroxy-4- (2- (meth) acryloxyethoxy) benzophenone, 2,4-dihydroxy-4 '-(2- (meth) acryloxyethoxy) benzophenone, 2, , 2 ′, 4-trihydroxy-4 ′-(2- (meth) acryloxyethoxy) benzophenone, 2-hydroxy-4- (3- (meth) acryloxy-2-hydroxypropoxy) benzophenone, 2-hydroxy-4 And-(3- (meth) acryloxy-1-hydroxypropoxy) benzophenone.
These ultraviolet-absorbing acrylic monomers may be used alone or in combination of two or more.
 当該(B)成分である高分子紫外線吸収樹脂微粒子における前記紫外線吸収性アクリル系単量体単位の含有量は、得られる硬化膜の紫外線吸収能、その他物性及び経済性のバランスなどの観点から、通常5~70質量%程度、好ましくは10~60質量%程度である。
 本発明のコーティング液においては、当該(B)成分として用いる高分子紫外線吸収樹脂微粒子は、製造性、コーティング液中における分散性、コーティング液の塗工性及び硬化膜の透明性などの観点から、平均粒径が1~200nmの範囲にあるものが好ましく、1~100nmの範囲にあるものがより好ましい。なお、この高分子紫外線吸収樹脂微粒子の平均粒径は、レーザー回折散乱法により測定することができる。
The content of the ultraviolet-absorbing acrylic monomer unit in the polymer ultraviolet-absorbing resin fine particles as the component (B) is from the viewpoint of the ultraviolet absorption ability of the obtained cured film, other physical properties and economic balance, etc. Usually, it is about 5 to 70% by mass, preferably about 10 to 60% by mass.
In the coating liquid of the present invention, the polymer ultraviolet absorbing resin fine particles used as the component (B) are from the viewpoints of manufacturability, dispersibility in the coating liquid, coating property of the coating solution, and transparency of the cured film. The average particle diameter is preferably in the range of 1 to 200 nm, more preferably in the range of 1 to 100 nm. The average particle diameter of the polymer ultraviolet absorbing resin fine particles can be measured by a laser diffraction scattering method.
 本発明においては、当該高分子紫外線吸収樹脂微粒子は、分散媒体に分散させた形態で用いることが好ましく、分散媒体としては、例えば、水、メタノール、エタノール、プロパノール、1-メトキシ-2-プロパノールなどの低級アルコール、メチルセロソルブなどのセロソルブ類などが好ましく挙げられる。このような分散媒体を用いることにより、高分子紫外線吸収樹脂微粒子の分散性が向上し、沈降を防ぐことができる。さらに好ましくは分散媒体が水のものである。分散媒体が水の場合、前述した(A)成分由来のSi-O結合を有するマトリックスの形成の際に必要な、シラン化合物の加水分解、縮合反応にも使用できるので好都合である。 In the present invention, the polymer ultraviolet absorbing resin fine particles are preferably used in a form dispersed in a dispersion medium. Examples of the dispersion medium include water, methanol, ethanol, propanol, 1-methoxy-2-propanol, and the like. Preferred examples include lower alcohols and cellosolves such as methyl cellosolve. By using such a dispersion medium, the dispersibility of the polymer ultraviolet absorbing resin fine particles is improved, and sedimentation can be prevented. More preferably, the dispersion medium is water. When the dispersion medium is water, it can be advantageously used for the hydrolysis and condensation reaction of the silane compound required for forming the matrix having Si—O bonds derived from the component (A).
 当該(B)成分として用いる高分子紫外線吸収樹脂微粒子の製造方法に特に制限はなく、従来公知の方法、例えば、乳化重合法や微細懸濁重合法などを採用することができる。
 乳化重合法は、単量体として紫外線吸収性アクリル系単量体、及びこのものと共重合させるエチレン性不飽和単量体からなる混合物を、水性分散媒体、アニオン性又はノニオン性界面活性剤からなる乳化剤及び水溶性重合開始剤を用いて、微細な液滴に乳化させて上記単量体混合物を包む界面活性剤ミセル層内で重合を進め、高分子紫外線吸収樹脂微粒子の分散液を得る方法である。
 一方、微細懸濁重合液は、まず、水性媒体中に、前記単量体混合物、油溶性重合開始剤、乳化剤及び必要に応じその他添加剤を加えてプレミックスし、ホモジナイザにより均質化処理して、油滴の粒径調節を行う。次いで均質化処理した液を重合器に送り、重合反応を行い、高分子紫外線吸収樹脂微粒子の分散液を得る方法である。
 上記いずれかの方法も、重合温度は30~80℃程度である。
There is no restriction | limiting in particular in the manufacturing method of the polymer ultraviolet rays absorption resin fine particle used as the said (B) component, A conventionally well-known method, for example, an emulsion polymerization method, a fine suspension polymerization method, etc. are employable.
In the emulsion polymerization method, a mixture composed of an ultraviolet-absorbing acrylic monomer as a monomer and an ethylenically unsaturated monomer copolymerized therewith is obtained from an aqueous dispersion medium, an anionic or nonionic surfactant. A method for obtaining a dispersion of polymer UV-absorbing resin fine particles by proceeding polymerization in a surfactant micelle layer emulsified into fine droplets and enclosing the monomer mixture using an emulsifier and a water-soluble polymerization initiator It is.
On the other hand, the fine suspension polymerization solution is first premixed in an aqueous medium by adding the monomer mixture, oil-soluble polymerization initiator, emulsifier and other additives as necessary, and homogenized by a homogenizer. The particle size of the oil droplets is adjusted. Next, the homogenized liquid is sent to a polymerization vessel and a polymerization reaction is performed to obtain a dispersion of polymer ultraviolet absorbing resin fine particles.
In any of the above methods, the polymerization temperature is about 30 to 80 ° C.
 乳化重合に用いる水溶性重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過酸化水素などの水溶性過酸化物、これらの開始剤又はクメンヒドロパーオキシド、t-ブチルヒドロパーオキシドなどのヒドロパーオキシドに、酸性亜硫酸ナトリウム、亜硫酸アンモニウム、アスコルビン酸などの還元剤を組み合わせたレドックス系開始剤、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩などの水溶性アゾ化合物などを挙げることができる。
 一方、微細懸濁重合に用いる油溶性重合開始剤としては、例えば、ジアシルパーオキシド類、ケトンパーオキシド類、パーオキシエステル類、パーオキシジカーボネート類などの油溶性有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)などのアゾ化合物などを挙げることができる。
Examples of the water-soluble polymerization initiator used in the emulsion polymerization include water-soluble peroxides such as potassium persulfate, ammonium persulfate, and hydrogen peroxide, these initiators or cumene hydroperoxide, t-butyl hydroperoxide, and the like. Redox initiators that combine hydroperoxides with reducing agents such as acidic sodium sulfite, ammonium sulfite, and ascorbic acid; water-soluble azo compounds such as 2,2'-azobis (2-methylpropionamidine) dihydrochloride Can be mentioned.
On the other hand, examples of the oil-soluble polymerization initiator used for fine suspension polymerization include oil-soluble organic peroxides such as diacyl peroxides, ketone peroxides, peroxy esters, peroxy dicarbonates, 2, 2 Examples thereof include azo compounds such as' -azobisisobutyronitrile and 2,2'-azobis (2,4-dimethylvaleronitrile).
 当該(B)成分として用いることのできる高分子紫外線吸収樹脂微粒子の具体例としては、一方社油脂工業株式会社製のコーティング用高分子紫外線吸収剤ULS-700、ULS-1700、ULS-383MA、ULS-1383MA、ULS-383MG、ULS-385MG、ULS-1383MG、ULS-1385MG、ULS-635MHなど、株式会社ニッコー化学研究所製の高分子紫外線吸収樹脂塗料NCI-905-20EMやNCI-905-20EMA(スチレンモノマーとベンゾトリアゾール系モノマーの共重合体でできた高分子紫外線吸収剤)などが挙げられる。
 本発明においては、(B)成分として、前記高分子紫外線吸収樹脂微粒子を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the polymer ultraviolet ray absorbing resin fine particles that can be used as the component (B) include coating polymer ultraviolet absorbers ULS-700, ULS-1700, ULS-383MA, ULS manufactured by Yufu Kogyo Co., Ltd. -1383MA, ULS-383MG, ULS-385MG, ULS-1383MG, ULS-1385MG, ULS-635MH, etc. NUV-905-20EM and NCI-905-20EMA Polymer ultraviolet absorber made of a copolymer of styrene monomer and benzotriazole monomer).
In the present invention, as the component (B), the polymer ultraviolet absorbing resin fine particles may be used singly or in combination of two or more.
((C)成分)
 本発明のコーティング液は、(C)成分としてコロイダルシリカを含有する。
 本発明で用いるコロイダルシリカとは、コロイドシリカ、コロイド珪酸ともいう。水中では、水和によって表面にSi-OH基を有する酸化ケイ素のコロイド懸濁液をいい、珪酸ナトリウムの水溶液に塩酸を加えると生成する。最近は、新しい調製法が次々に開発され、非水溶液中に分散したものや、気相法で作った微粉末状のものがあり、粒子径も数nmから数μmのものまで多彩である。平均粒径としては1~200nm程度のものが好ましい。粒子の組成は不定で、シロキサン結合(-Si-O-、-Si-O-Si-)を形成して、高分子化しているものもある。粒子表面は多孔性で、水中では一般的に負に帯電している。なお、上記平均粒径はレーザー回折散乱法により測定することができる。
((C) component)
The coating liquid of the present invention contains colloidal silica as the component (C).
The colloidal silica used in the present invention is also called colloidal silica or colloidal silicic acid. In water, it refers to a colloidal suspension of silicon oxide having Si—OH groups on its surface by hydration, and is formed when hydrochloric acid is added to an aqueous solution of sodium silicate. Recently, new preparation methods have been developed one after another, and there are those dispersed in a non-aqueous solution and fine powders made by a vapor phase method. The average particle size is preferably about 1 to 200 nm. The composition of the particles is indeterminate, and some particles are polymerized by forming siloxane bonds (—Si—O—, —Si—O—Si—). The particle surface is porous and is generally negatively charged in water. The average particle diameter can be measured by a laser diffraction scattering method.
 市販品としては、扶桑化学工業株式会社製「超高純度コロイダルシリカ」クォートロンPLシリーズ(品名:PL-1、PL-3、PL-7)、同社製「高純度オルガノゾル」や、日産化学工業株式会社製「コロイダルシリカ(品名:スノーテックス20、スノーテックス30、スノーテックス40、スノーテックスO、スノーテックスO-40、スノーテックスC、スノーテックスN、スノーテックスS、スノーテックス20L、スノーテックスOLなど)」や「オルガノシリカゾル(品名:メタノールシリカゾル、MA-ST-MS、MA-ST-L、IPA-ST、IPA-ST-MS、IPA-ST-L、IPA-ST-ZL、IPA-ST-UP、EG-ST、NPC-ST-30、MEK-ST、MEK-ST-MS、MIBK-ST、XBA-ST、PMA-ST、DMAC-ST、PGM-STなど)」が挙げられる。
 本発明においては、(C)成分として、前記コロイダルシリカを、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Commercially available products include “Ultra High-Purity Colloidal Silica” Quarton PL Series (product names: PL-1, PL-3, PL-7) manufactured by Fuso Chemical Industry Co., Ltd. “Colloidal silica” (Product name: Snowtex 20, Snowtex 30, Snowtex 40, Snowtex O, Snowtex O-40, Snowtex C, Snowtex N, Snowtex S, Snowtex 20L, Snowtex OL, etc.) ) ”Or“ organosilica sol (product names: methanol silica sol, MA-ST-MS, MA-ST-L, IPA-ST, IPA-ST-MS, IPA-ST-L, IPA-ST-ZL, IPA-ST-) UP, EG-ST, NPC-ST-30, MEK-ST, MEK-ST-MS, MIBK ST, XBA-ST, PMA-ST, DMAC-ST, such as PGM-ST) "can be mentioned.
In the present invention, as the component (C), the colloidal silica may be used alone or in combination of two or more.
((D)成分)
 本発明のコーティング液は、(D)成分として硬化触媒を含有する。
 この硬化触媒は、前述した(A)成分におけるシラン化合物(A-1)~(A-5)成分を加水分解及び縮合(硬化)させる触媒であり、例えば、塩酸、硫酸、硝酸、リン酸、亜硝酸、過塩素酸、スルファミン酸などの無機酸、ギ酸、酢酸、プロピオン酸、酪酸、シュウ酸、クエン酸、酒石酸、コハク酸、マレイン酸、グルタミン酸、乳酸、p-トルエンスルホン酸などの有機酸が挙げられる。
((D) component)
The coating liquid of the present invention contains a curing catalyst as the component (D).
This curing catalyst is a catalyst for hydrolyzing and condensing (curing) the silane compounds (A-1) to (A-5) in the component (A) described above. For example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, Inorganic acids such as nitrous acid, perchloric acid, sulfamic acid, organic acids such as formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, citric acid, tartaric acid, succinic acid, maleic acid, glutamic acid, lactic acid, p-toluenesulfonic acid Is mentioned.
 また、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、n-ヘキシルアミン、ジメチルアミン、トリブチルアミン、ジアザビシクロウンデセン、酢酸エタノールアミン、ギ酸ジメチルアニリン、安息香酸テトラエチルアンモニウム塩、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、グルタミン酸ナトリウム、プロピオン酸カリウム、ギ酸ナトリウム、ギ酸カリウム、酢酸ベンゾイルトリメチルアンモニウム塩、テトラメチルアンモニウムアセテート、オクチル酸スズなどの有機金属塩、テトライソプロピルチタネート、テトラブチルチタネート、アルミニウムトリイソブトキシド、アルミニウムトリイソプロポキシド、アルミニウムアセチルアセトナート、SnCl4、TiCl4、ZnCl4などのルイス酸などが挙げられる。 Lithium hydroxide, sodium hydroxide, potassium hydroxide, n-hexylamine, dimethylamine, tributylamine, diazabicycloundecene, ethanolamine acetate, dimethylaniline formate, tetraethylammonium benzoate, sodium acetate, potassium acetate Organic metal salts such as sodium propionate, sodium glutamate, potassium propionate, sodium formate, potassium formate, benzoyltrimethylammonium acetate, tetramethylammonium acetate, tin octylate, tetraisopropyl titanate, tetrabutyl titanate, aluminum triisobutoxide , like aluminum triisopropoxide, aluminum acetylacetonate, Lewis acids such as SnCl 4, TiCl 4, ZnCl 4 is It is.
 これらの硬化触媒のうち、(B)及び(C)成分の配合量を増量しても高分散化でき、得られる膜の透明性を向上できることから、有機酸が好ましく使用できる。特に有機カルボン酸、なかでも酢酸が好ましく使用できる。
 本発明においては、(D)成分として、前記硬化触媒を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Among these curing catalysts, an organic acid can be preferably used because it can be highly dispersed even if the blending amount of the components (B) and (C) is increased, and the transparency of the resulting film can be improved. In particular, organic carboxylic acids, especially acetic acid can be preferably used.
In the present invention, as the component (D), the curing catalyst may be used alone or in combination of two or more.
((E)成分)
 本発明のコーティング液は、(E)成分として分散媒体を含有する。
 本発明のコーティング液は、前記各成分粒子が分散媒体中に分散された状態で使用される。本発明で用いられる分散媒体は、前記各成分粒子を均一に混合し分散できるものであればよく、特に限定されないが、例えば、水の他、アルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類などの有機系分散媒体を挙げることができる。これら有機系分散媒体のうち、アルコール類の具体例としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、n-ヘキシルアルコール、n-オクチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノール(プロピレングリコールモノメチルエーテル)、プロピレンモノメチルエーテルアセテート、ジアセトンアルコール、メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ、ブチルセロソルブなどを挙げることができる。
((E) component)
The coating liquid of the present invention contains a dispersion medium as the component (E).
The coating liquid of the present invention is used in a state where the component particles are dispersed in a dispersion medium. The dispersion medium used in the present invention is not particularly limited as long as it can uniformly mix and disperse the above component particles. For example, in addition to water, alcohols, aromatic hydrocarbons, ethers, ketones And organic dispersion media such as esters and esters. Among these organic dispersion media, specific examples of alcohols include methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, t-butyl alcohol, n-hexyl alcohol, n- Octyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, 1-methoxy-2-propanol (propylene glycol monomethyl ether), propylene monomethyl ether acetate, diacetone Examples include alcohol, methyl cellosolve, ethyl cellosolve, propyl cellosolve, and butyl cellosolve. Kill.
 その他の分散媒体の具体例としては、シクロヘキサノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、キシレン、ジクロロエタン、トルエン、酢酸メチル、酢酸エチル、酢酸エトキシエチルなどが挙げられる。
 これらの分散媒体の中で、分散媒体としての性能の観点から、水及びアルコール類が好ましい。
 本発明においては、(E)成分として、前記分散媒体を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of other dispersion media include cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, xylene, dichloroethane, toluene, methyl acetate, ethyl acetate, ethoxyethyl acetate. Etc.
Among these dispersion media, water and alcohols are preferable from the viewpoint of performance as a dispersion medium.
In the present invention, as the component (E), one type of the dispersion medium may be used alone, or two or more types may be used in combination.
((F)成分)
 本発明のコーティング液は、(F)成分として、シラン化合物で処理(前処理)された酸化セリウムを含有することが好ましい。
 ここでいう前処理とは、酸化セリウムのOH基とシラン化合物のシラノール基が反応し、共有結合を形成することで酸化セリウムの表面状態を変えることをいう。シラン処理酸化セリウムは、アニオン性粒子が分散したゾル(例えばコロイダルシリカなど)と混合させても凝集や析出物を生じることがなく、さらにこのシラン処理酸化セリウムは水及びアルコールの両方に分散することができる。
 使用する酸化セリウムは、特に限定されないが、粒子状で平均粒径が1~200nmのものが好ましく、透明性の観点から1~100nmのものがより好ましい。また、分散性向上の点から、本発明のコーティング液に(F)成分を添加するに際しては、水やアルコールなどの分散媒に分散させてから添加するのが好ましい。
((F) component)
The coating liquid of the present invention preferably contains cerium oxide treated (pretreated) with a silane compound as the component (F).
The pretreatment here refers to changing the surface state of cerium oxide by reacting the OH group of cerium oxide with the silanol group of the silane compound to form a covalent bond. Silane-treated cerium oxide does not form aggregates or precipitates even when mixed with a sol (for example, colloidal silica) in which anionic particles are dispersed. Can do.
The cerium oxide used is not particularly limited, but is preferably in the form of particles and having an average particle diameter of 1 to 200 nm, and more preferably 1 to 100 nm from the viewpoint of transparency. From the viewpoint of improving dispersibility, when adding the component (F) to the coating liquid of the present invention, it is preferable to add the component after dispersing it in a dispersion medium such as water or alcohol.
 (F)成分における「分散」とは、分散相(固体)が分散媒(液体)に浮遊懸濁した状態のことをいう。また、「ゾル」とは、液体を分散媒とし固体を分散粒子とするコロイドで、コロイド溶液といわれることもある。また、上記酸化セリウム微粒子の平均粒径は、レーザー回折散乱法により、測定することができる。
 分散媒としては、前述の(E)成分に準ずるが、水又はアルコールが好ましい。特にアルコールは、前述した(A)成分における(A-1)~(A-5)成分に記載のシラン化合物から生成するアルコールと前述の(E)成分に記載のアルコールを指し、特にメタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、1-メトキシ-2-プロパノールなどの低級アルコールに好ましく分散する。なお、分散媒としての水やアルコールは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
“Dispersion” in component (F) refers to a state in which a dispersed phase (solid) is suspended and suspended in a dispersion medium (liquid). The “sol” is a colloid having a liquid as a dispersion medium and a solid as dispersed particles, and is sometimes referred to as a colloid solution. The average particle diameter of the cerium oxide fine particles can be measured by a laser diffraction scattering method.
As a dispersion medium, although it applies to the above-mentioned (E) component, water or alcohol is preferable. In particular, the alcohol refers to an alcohol generated from the silane compound described in the components (A-1) to (A-5) in the component (A) and the alcohol described in the component (E), and particularly methanol, ethanol It is preferably dispersed in a lower alcohol such as n-propyl alcohol, isopropyl alcohol or 1-methoxy-2-propanol. In addition, water and alcohol as a dispersion medium may be used individually by 1 type, and may be used in combination of 2 or more type.
 当該(F)成分は、表面電荷を持つ酸化セリウムゾルをシラン化合物と反応させ表面改質させた分散液であり、凝集・析出・ゲル化することなく本発明のコーティング液に好適に添加可能としたものである。このシラン化合物は、アルコキシシラン又はその加水分解縮合物もすべて含むものとする。そのため、分散液の状態での正確な固形分濃度を求めることができないことから、原料となる酸化セリウムの量及びアルコキシシランの完全縮合体の量の総量を仕込み量の総量で割り、百分率で表したものを計算上の固形分濃度とした。 The component (F) is a dispersion obtained by reacting a cerium oxide sol having a surface charge with a silane compound and modifying the surface, and can be suitably added to the coating liquid of the present invention without agglomeration, precipitation or gelation. Is. This silane compound includes all alkoxysilanes or their hydrolyzed condensates. Therefore, since the exact solid content concentration in the state of the dispersion cannot be obtained, the total amount of cerium oxide as a raw material and the total amount of the complete condensation product of alkoxysilane is divided by the total amount of charge, and expressed as a percentage. This was taken as the calculated solid content concentration.
〈(F)成分の製造方法〉
 使用される原料の酸化セリウム微粒子の製造方法は特に制限されるものではないが、粉体のままではシラン化合物との反応が困難なため、分散液として用いるのが適当である。分散させるための安定化剤は、シラン化合物の加水分解反応を促進する観点から、酸性の分散安定剤を用いた酸安定型のカチオン系酸化セリウムゾルが好適に利用でき、平均粒子径は1~200nmのものが望ましく、透明性付与の観点からより好ましくは1~100nmである。添加する酸性の分散安定剤としては、塩酸、硝酸、過塩素酸などの無機酸や、酢酸、蟻酸、乳酸などの有機カルボン酸が挙げられる。これらは、単独あるいは併用して用いても良い。この中で、有機カルボン酸は金属に対する配位効果があるため、酸化セリウムとシラン化合物をより反応させる観点から、分散安定剤は無機酸、より好適には塩酸を用いた酸化セリウムゾルが良い。
 市販品としては、多木化学株式会社製の「ニードラールH-15」などが挙げられる。
<Method for producing component (F)>
The method for producing the raw material cerium oxide fine particles to be used is not particularly limited. However, since the reaction with the silane compound is difficult with the powder as it is, it is suitably used as a dispersion. As the stabilizer for dispersion, an acid-stable cationic cerium oxide sol using an acidic dispersion stabilizer can be preferably used from the viewpoint of promoting the hydrolysis reaction of the silane compound, and the average particle size is 1 to 200 nm. The thickness is preferably from 1 to 100 nm from the viewpoint of imparting transparency. Examples of the acidic dispersion stabilizer to be added include inorganic acids such as hydrochloric acid, nitric acid and perchloric acid, and organic carboxylic acids such as acetic acid, formic acid and lactic acid. These may be used alone or in combination. Among these, since the organic carboxylic acid has a coordination effect on the metal, the dispersion stabilizer is preferably an inorganic acid, more preferably cerium oxide sol using hydrochloric acid, from the viewpoint of further reacting cerium oxide with the silane compound.
Examples of commercially available products include “Nidoral H-15” manufactured by Taki Chemical Co., Ltd.
 使用される原料のシラン化合物は、前述した(A)成分と同等に定義できるが、硬化膜製造時に(A)成分及び(C)成分のシラノール基と好適にシロキサン結合を形成させるため、上記した(A-1)化合物であることが好ましい。これらは、単独で用いてもよく、両方組み合わせて用いても良い。 The raw material silane compound used can be defined in the same way as the component (A) described above, but in order to form a siloxane bond suitably with the silanol groups of the component (A) and the component (C) during the production of the cured film, (A-1) A compound is preferred. These may be used alone or in combination.
 また、(F)成分におけるシラン化合物としては、上記のテトラアルコキシシラン及びその加水分解縮合物もしくはポリアルコキシシランに加えて、オルガノアルコキシシラン又はその加水分解縮合物もしくはポリオルガノアルコキシシランを併用して用いることもできる。オルガノアルコキシシランの具体例としては(A)成分のうち一種類以上の有機置換基を有するものであり、より好ましくは(A-2)~(A-5)成分が挙げられる。
 表面処理の構造は、完全な2層構造でも、それぞれのアルコキシシラン又はその加水分解縮合物もしくはポリアルコキシシランが混在した構造であってもよい。
 酸化セリウム粒子表層のOH基は反応性が高いため、表面処理にオルガノアルコキシシランのみを直接用いてしまうと、その反応速度の違いのため酸化セリウムのみの凝集・ゲル化を促進する恐れがある。そのため、(F)成分における酸化セリウムの表面処理としては、第一に反応性の高いテトラアルコキシシラン又はその加水分解縮合物で酸化セリウム表層を処理し、第二にオルガノアルコキシシラン又はその加水分解縮合物を反応させて処理することが望ましい。
 このように(F)成分のシラン処理層に一部有機置換基をもつような構造とすることで、硬化膜製造時に(A)成分及び(C)成分のシラノール基と好適にシロキサン結合を形成させると同時に、硬化膜の柔軟性をより向上させることができる。
Moreover, as a silane compound in (F) component, in addition to said tetraalkoxysilane and its hydrolysis condensate or polyalkoxysilane, organoalkoxysilane or its hydrolysis condensate or polyorganoalkoxysilane is used together. You can also. Specific examples of the organoalkoxysilane are those having one or more organic substituents among the component (A), and more preferably the components (A-2) to (A-5).
The structure of the surface treatment may be a complete two-layer structure or a structure in which each alkoxysilane, its hydrolysis condensate or polyalkoxysilane is mixed.
Since the OH group on the surface layer of the cerium oxide particles has high reactivity, if only organoalkoxysilane is directly used for the surface treatment, there is a risk of promoting aggregation / gelation of only cerium oxide due to the difference in reaction rate. Therefore, as the surface treatment of cerium oxide in component (F), first, the cerium oxide surface layer is treated with highly reactive tetraalkoxysilane or its hydrolysis condensate, and secondly organoalkoxysilane or its hydrolysis condensation. It is desirable to react with the product.
In this way, the silane-treated layer of component (F) has a structure in which some organic substituents are present, so that a siloxane bond is suitably formed with the silanol groups of component (A) and component (C) during the production of the cured film. At the same time, the flexibility of the cured film can be further improved.
 一般的なカチオン性酸化セリウムゾルは、シラン化合物で表面処理してからでないと、本発明のコーティング液中のアニオン性を有する成分と凝集・ゲル化を起こすため添加することが困難となる。そのため、本発明のコーティング液に安定に分散させるには、上述のとおりカチオン性酸化セリウムゾルの酸化セリウム微粒子表層部のOH基とシラン化合物のシラノール基を反応させ、表面処理してから用いる必要がある。
 (F)成分において、表面処理に用いるシラン化合物の使用量は、シラン化合物の金属酸化物としての質量で考える。シラン化合物の金属酸化物は、例えば下記一般式として定義する。
  R1 m2 nSiO((4-m-n)/2)
(式中、R1及びR2は、それぞれ独立に炭素数1~10のアルキル基もしくはフッ素化アルキル基;ビニル基;フェニル基;又はメタクリロキシ基、アミノ基、アミノアルキル基、アルキルアミノ基、グリシドキシ基、3,4-エポキシシクロヘキシル基及びブロック化イソシアネート基の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基であり、m及びnはそれぞれ独立に0、1又は2であり、m+nは、0、1又は2である。)
 ゾル中の金属酸化物総質量(CeO2とR1 m2 nSiO((4-m-n)/2)の総量)におけるシラン化合物の質量(R1 m2 nSiO((4-m-n)/2))の割合が、50質量%以下であることが好ましく、より好ましくは2~40質量%である。これより少ないと、酸化セリウムそのものが凝集・ゲル化する恐れがあり、さらにこれよりも多いとシラン化合物そのものが反応して凝集・ゲル化する恐れがある。
A general cationic cerium oxide sol must be surface-treated with a silane compound before it becomes agglomerated and gelled with an anionic component in the coating solution of the present invention, making it difficult to add. Therefore, in order to disperse stably in the coating liquid of the present invention, it is necessary to react the OH group of the cerium oxide fine particle surface layer part of the cationic cerium oxide sol with the silanol group of the silane compound and use it after surface treatment as described above. .
In the component (F), the amount of the silane compound used for the surface treatment is considered by the mass of the silane compound as a metal oxide. The metal oxide of a silane compound is defined as the following general formula, for example.
R 1 m R 2 n SiO ((4-mn) / 2)
(Wherein R 1 and R 2 are each independently an alkyl group or fluorinated alkyl group having 1 to 10 carbon atoms; vinyl group; phenyl group; or methacryloxy group, amino group, aminoalkyl group, alkylamino group, glycidoxy group) An alkyl group having 1 to 3 carbon atoms substituted with one or more groups selected from a group, 3,4-epoxycyclohexyl group and blocked isocyanate group, and m and n are each independently 0, 1 or 2 And m + n is 0, 1 or 2.)
Metal oxides total weight of the sol mass of the silane compound in (CeO 2 and R 1 m R 2 n SiO ( (4-mn) / 2 total)) (R 1 m R 2 n SiO ((4-mn) / 2) The ratio of) is preferably 50% by mass or less, more preferably 2 to 40% by mass. If it is less than this, the cerium oxide itself may aggregate and gel, and if it is more than this, the silane compound itself may react and aggregate and gel.
 当該(F)成分の具体的な製造方法としては、下記の方法を採用することができる。
 カチオン性酸化セリウムゾルと前述の(E)成分からなる第一の混合液を調製し、次に一種以上のシラン化合物(A)成分を混合することで第二の液を調製する。室温での熟成後、さらに室温又は加熱撹拌させることで(F)成分とする。(E)成分は、(F)成分を調製後、さらに加えることで希釈してもよく、また他の分散媒を加えて分散媒置換してもよい。
 さらに、オルガノアルコキシシランを併用した場合は、より好ましくは下記の方法を採用することができる。
 カチオン性酸化セリウムゾルと後述の(E)成分からなる第一の混合液を調製し、次にテトラアルコキシシラン((A)成分)を混合することで第二の液を調製する。室温での熟成後、オルガノアルコキシシラン((A)成分)を混合し、第三の混合液を調製する。さらに室温又は加熱撹拌させることで(F)成分とする。(E)成分は、(F)成分を調製後、さらに加えることで希釈してもよく、また他の分散媒を加えて分散媒置換してもよい。
 本発明のコーティング液に添加するシラン処理酸化セリウムゾルは、製造後1週間室温放置しても容器の底部に凝集沈降物が目視で認められない。本発明のコーティング液に添加するまでの該ゾル静置期間については特に制限はない。
 本発明においては、(F)成分として、前記酸化セリウムゾルを1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The following method can be adopted as a specific method for producing the component (F).
A first liquid mixture comprising a cationic cerium oxide sol and the above-mentioned component (E) is prepared, and then a second liquid is prepared by mixing one or more silane compound (A) components. After aging at room temperature, the mixture is further stirred at room temperature or heated to obtain component (F). The component (E) may be diluted by further adding the component (F) after preparation, or the dispersion medium may be replaced by adding another dispersion medium.
Furthermore, when an organoalkoxysilane is used in combination, the following method can be more preferably employed.
A first mixed liquid composed of a cationic cerium oxide sol and a component (E) described later is prepared, and then a tetraalkoxysilane (component (A)) is mixed to prepare a second liquid. After aging at room temperature, organoalkoxysilane (component (A)) is mixed to prepare a third mixed solution. Furthermore, it is set as (F) component by making it stir at room temperature or heating. The component (E) may be diluted by further adding the component (F) after preparation, or the dispersion medium may be replaced by adding another dispersion medium.
Even if the silane-treated cerium oxide sol added to the coating liquid of the present invention is allowed to stand at room temperature for 1 week after production, no aggregated sediment is visually observed at the bottom of the container. There is no restriction | limiting in particular about this sol stationary period until it adds to the coating liquid of this invention.
In the present invention, as the component (F), the cerium oxide sol may be used alone or in combination of two or more.
((G)成分)
 本発明のコーティング液は、(G)成分として分散安定剤を含有することが好ましい。
 この分散安定剤は、シラン化合物(A-1)~(A-5)成分の反応物や(B)、(C)、および(F)成分をコーティング液中で安定に分散させ、凝集沈降やゲル化を抑制するための添加剤である。本発明コーティング液において、(B)、(C)、および(F)成分の微粒子は凝集沈降やゲル化を起こすことなく分散した状態を保つのが好ましく、例えば、安定に浮遊懸濁したコロイド状態であることが好ましい。
((G) component)
The coating liquid of the present invention preferably contains a dispersion stabilizer as the component (G).
This dispersion stabilizer stably disperses the reactants of the silane compounds (A-1) to (A-5) and the components (B), (C), and (F) in the coating liquid, It is an additive for suppressing gelation. In the coating liquid of the present invention, the fine particles of the components (B), (C), and (F) are preferably maintained in a dispersed state without causing aggregation sedimentation or gelation. It is preferable that
 本発明のコーティング液は、熱硬化時における縮合反応を利用するため、コーティング前には金属アルコキシドはOH体に止めておくことが望ましい。従って、加水分解反応が促進され縮合反応が抑制される酸性条件を維持することが望ましい。さらに、カルボン酸自身は酸としての効果だけではなく、金属に対する配位効果もありアルコキシドの安定化に有効な添加剤にもなることから、(G)成分として有機酸、なかでも有機カルボン酸が好ましく利用できる。例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、ピバル酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸などが挙げられる。また、本発明のコーティング液は熱硬化により硬化膜を形成するため、熱硬化時に硬化膜内に残留しない程度の沸点を持つものが好ましく、より好ましくは酢酸が利用できる。
 本発明においては、(G)成分として、前記分散安定剤を1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Since the coating liquid of the present invention uses a condensation reaction at the time of thermal curing, it is desirable to stop the metal alkoxide in the OH form before coating. Therefore, it is desirable to maintain acidic conditions that promote the hydrolysis reaction and suppress the condensation reaction. Furthermore, since the carboxylic acid itself has not only an effect as an acid but also a coordination effect on a metal and is an effective additive for stabilizing an alkoxide, an organic acid, particularly an organic carboxylic acid is used as the component (G). It can be preferably used. For example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and the like can be mentioned. In addition, since the coating liquid of the present invention forms a cured film by thermal curing, it preferably has a boiling point that does not remain in the cured film during thermal curing, and more preferably acetic acid can be used.
In the present invention, as the component (G), one type of the dispersion stabilizer may be used alone, or two or more types may be used in combination.
(任意添加成分)
 本発明のコーティング液には、前記(A)[(A-1)~(A-5)]~(E)成分以外に、必要に応じ、従来コーティング液に用いられる公知の各種添加成分を適宜含有させることができる。
 必要に応じ含有させることのできる添加成分としては、例えば、レベリング剤、可とう性付与剤、さらには潤滑性付与剤、酸化防止剤、ブルーイング剤、帯電防止剤、消泡剤(発泡防止剤)、光安定化剤、耐候性付与剤、着色剤、微粒子の分散剤(沈降防止剤)や微粒子表面活性の改質剤などを挙げることができる。
(Optional additive)
In addition to the components (A) [(A-1) to (A-5)] to (E), the coating liquid of the present invention appropriately contains various known additive components used in conventional coating liquids as necessary. It can be included.
Examples of the additive component that can be contained as needed include leveling agents, flexibility imparting agents, lubricity imparting agents, antioxidants, bluing agents, antistatic agents, and antifoaming agents (antifoaming agents). ), A light stabilizer, a weather resistance imparting agent, a colorant, a fine particle dispersant (anti-settling agent), and a fine particle surface activity modifier.
〈レベリング剤〉
 本発明のコーティング液には、得られる硬化膜の平滑性、並びにコートの際のフロー性を向上させるために、レベリング剤を添加することができ、それらの添加剤として、シリコーン系レベリング剤、フッ素系レベリング剤、アクリル系レベリング剤、ビニル系レベリング剤、並びに、フッ素系とアクリル系が複合化されたレベリング剤などが挙げられる。全て、塗膜表面に働き、表面張力を低下させる。各々特徴があり、目的に応じて使用することができる。表面張力の低下能力は、シリコーン系とフッ素系が強いが、アクリル系とビニル系はリコートを行う場合、濡れ不良が生じにくく有利である。
<Leveling agent>
A leveling agent can be added to the coating liquid of the present invention in order to improve the smoothness of the resulting cured film and the flowability during coating. Examples thereof include a leveling agent, an acrylic leveling agent, a vinyl leveling agent, and a leveling agent in which a fluorine type and an acrylic type are combined. All work on the surface of the coating and reduce the surface tension. Each has its own characteristics and can be used according to the purpose. The ability to lower the surface tension is strong in silicone and fluorine systems, but acrylic and vinyl systems are advantageous in that wetting defects are less likely to occur when recoating.
 シリコーン系レベリング剤の具体例としては、ポリオキシアルキレンとポリジメチルシロキサンの共重合体などを用いることができる。シリコーン系レベリング剤の市販品としては、東レ・ダウコーニング株式会社製FZ-2118、FZ-77、FZ-2161など、信越化学工業株式会社製KP321、KP323、KP324、KP326、KP340、KP341など、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製TSF4440、TSF4441、TSF4445、TSF4450、TSF4446、TSF4452、TSF4453、TSF4460など、ビックケミー・ジャパン株式会社製BYK-300、BYK-302、BYK-306、BYK-307、BYK-320、BYK-325、BYK-330、BYK-331、BYK-333、BYK-337、BYK-341、BYK-344、BYK-345、BYK-346、BYK-348、BYK-377、BYK-378、BYK-UV3500、BYK-3510、BYK-3570などのポリエーテル変性シリコーンオイル(ポリオキシアルキレン変性シリコーンオイル)などを挙げることができる。 As a specific example of the silicone leveling agent, a copolymer of polyoxyalkylene and polydimethylsiloxane can be used. Commercially available silicone leveling agents include FZ-2118, FZ-77, and FZ-2161 manufactured by Toray Dow Corning Co., Ltd., KP321, KP323, KP324, KP326, KP340, KP341, manufactured by Shin-Etsu Chemical Co., Ltd., etc. -Performance Materials Japan GK TSF4440, TSF4441, TSF4445, TSF4450, TSF4446, TSF4452, TSF4453, TSF4460, BYK-300, BYK-302, BYK-306, BYK-307, BYK, etc. -320, BYK-325, BYK-330, BYK-331, BYK-333, BYK-337, BYK-341, BYK-344, BYK-345, BYK-346 BYK-348, BYK-377, BYK-378, BYK-UV3500, BYK-3510, polyether-modified silicone oil, such as BYK-3570 (polyoxyalkylene-modified silicone oil), and the like.
 また、150℃以上の耐熱性が必要な場合は、ポリエステル変性やベンゼン環を有するアラルキル変性シリコーンオイルが適している。ポリエステル変性シリコーンオイルの市販品としては、ビックケミー・ジャパン株式会社製BYK-310、BYK-315、BYK-370など、ベンゼン環を有するアラルキル変性シリコーンオイルの市販品としては、ビックケミー・ジャパン株式会社製BYK-322、BYK-323などが挙げられる。 Also, when heat resistance of 150 ° C. or higher is required, an aralkyl-modified silicone oil having a polyester modification or a benzene ring is suitable. Examples of commercially available polyester-modified silicone oils include BYK-310, BYK-315 and BYK-370 manufactured by BYK Japan, Inc., and BYK manufactured by BYK Japan Japan, such as BYK-310, BYK-315 and BYK-370. -322, BYK-323, and the like.
 フッ素系レベリング剤としては、ポリオキシアルキレンとフルオロカーボンとの共重合体などを用いることができる。
 フッ素系レベリング剤の市販品としては、DIC株式会社製のMEGAFACシリーズ、住友スリーエム株式会社製のFCシリーズなどを挙げられる。
 アクリル系レベリング剤の市販品としては、ビックケミー・ジャパン株式会社製のBYK-350、BYK-352、BYK-354、BYK-355、BYK358N、BYK-361N、BYK-380N、BYK-381、BYK-392など、フッ素を導入したBYK-340などが挙げられる。
As the fluorine leveling agent, a copolymer of polyoxyalkylene and fluorocarbon can be used.
Examples of commercially available fluorine leveling agents include MEGAFAC series manufactured by DIC Corporation, FC series manufactured by Sumitomo 3M Corporation, and the like.
Commercially available acrylic leveling agents include BYK-350, BYK-352, BYK-354, BYK-355, BYK358N, BYK-361N, BYK-380N, BYK-381, BYK-392 manufactured by BYK Japan, Inc. And BYK-340 into which fluorine is introduced.
 このようなレベリング剤を配合することにより、硬化膜の仕上がり外観が改善され、薄膜としても均一に塗布することができる。レベリング剤の使用量は、コーティング液全量に対して、好ましくは0.01~10質量%、さらに好ましくは0.02~5質量%である。
 レベリング剤を配合する方法としては、コーティング液を調製する際に配合してもよいし、硬化膜を形成する直前にコーティング液に配合してもよく、さらにはコーティング液の調製と硬化膜の形成直前の両方の段階で配合してもよい。
By blending such a leveling agent, the finished appearance of the cured film is improved and can be uniformly applied as a thin film. The amount of the leveling agent used is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, based on the total amount of the coating solution.
As a method of blending the leveling agent, it may be blended when preparing the coating liquid, or may be blended into the coating liquid immediately before forming the cured film, and further, preparation of the coating liquid and formation of the cured film. You may mix | blend in both the last steps.
〈可とう性付与剤〉
 本発明のコーティング液には、得られる硬化膜の柔軟性を向上させるために、応力緩和剤として可とう性付与剤を含有させることができる。
 可とう性付与剤としては、例えば、シリコーン樹脂などを用いることができる。
 シリコーン樹脂の市販品としては、Wacker社製Resin MKシリーズ、例えば、Belsil PMS MK(CH3SiO3/2の繰り返し単位(単位T)を含むポリマーであって、1質量%までの(CH32SiO2/2単位(単位D)をも含むもの)や、信越化学工業株式会社製KR-242A(98質量%の単位Tと2質量%のジメチル単位Dを含みSi-OH末端基を含むもの)、KR-251(88質量%の単位Tと12質量%のジメチル単位Dを含みSi-OH末端基を含むもの)、KR-220L(式CH3SiO3/2の単位Tからなり、Si-OH(シラノール)末端基を含むもの)などが挙げられる。
<Flexibility imparting agent>
The coating liquid of the present invention can contain a flexibility imparting agent as a stress relaxation agent in order to improve the flexibility of the obtained cured film.
As the flexibility imparting agent, for example, a silicone resin can be used.
Examples of commercially available silicone resin include Wasin Resin MK series, for example, Belsil PMS MK (a polymer containing a repeating unit (unit T) of CH 3 SiO 3/2 , up to 1% by mass (CH 3 )). 2 SiO 2/2 unit (including unit D) and KR-242A manufactured by Shin-Etsu Chemical Co., Ltd. (including 98% by mass of unit T and 2% by mass of dimethyl unit D and including Si—OH end groups) ), KR-251 (containing 88 mass% of unit T and 12 mass% of dimethyl unit D and containing Si—OH end groups), KR-220L (comprising unit T of formula CH 3 SiO 3/2 , And those containing Si—OH (silanol) end groups).
((A)~(E)成分を含有するコーティング液の調製)
〈各成分の含有量〉
 本発明のコーティング液における各成分の含有量は、適宜選定することができるが、各成分の含有量が、例えば、以下に示す範囲になるように選定することが好ましい。
 (E)成分の分散媒体を除き、(A)[(A-1)~(A-5)]~(D)成分の合計量に対する、各成分含有量を質量%で表わす。なお、分散状態として好ましく用いられる(B)及び(C)成分はそれぞれの固形分のみを用いて計算し、各成分に含まれる分散媒体は(E)成分に含まれるものとする。
 (A-1)成分の含有量は、通常、0.01~40質量%程度、好ましくは0.1~20質量%である。(A-2)成分の含有量は、通常、0.1~40質量%程度、好ましくは1~30質量%である。(A-3)成分の含有量は、通常、0.1~30質量%程度、好ましくは0.3~20質量%である。(A-4)成分の含有量は、通常、0.1~30質量%程度、好ましくは0.3~20質量%である。(A-5)成分の含有量は、通常、0.1~50質量%程度、好ましくは1~40質量%である。
(Preparation of coating solution containing components (A) to (E))
<Content of each component>
The content of each component in the coating liquid of the present invention can be selected as appropriate, but it is preferable to select the content of each component so as to fall within the following range, for example.
Excluding the dispersion medium of component (E), the content of each component is expressed in terms of mass% with respect to the total amount of components (A) [(A-1) to (A-5)] to (D). The components (B) and (C) that are preferably used as the dispersion state are calculated using only the respective solid contents, and the dispersion medium included in each component is included in the component (E).
The content of the component (A-1) is usually about 0.01 to 40% by mass, preferably 0.1 to 20% by mass. The content of the component (A-2) is usually about 0.1 to 40% by mass, preferably 1 to 30% by mass. The content of the component (A-3) is usually about 0.1 to 30% by mass, preferably 0.3 to 20% by mass. The content of the component (A-4) is usually about 0.1 to 30% by mass, preferably 0.3 to 20% by mass. The content of the component (A-5) is usually about 0.1 to 50% by mass, preferably 1 to 40% by mass.
 (B)成分の含有量は、通常、0.1~50質量%程度、好ましくは1~40質量%である。(C)成分の含有量は、通常、0.1~70質量%程度、好ましくは1~50質量%である。(D)成分の含有量は、通常、0.001~30質量%程度、好ましくは0.001~20質量%である。(E)成分の含有量は、(A)[(A-1)~(A-5)]~(D)成分の合計質量部に対して、通常、5~1000質量部程度、好ましくは20~800質量部である。
 なお、(A-3)成分と(A-5)成分の配合モル比としては特に制限はないが、好ましくは1:1~1:5であり、より好ましくは1:2~1:4である。(A-3)成分と(A-5)成分との配合モル比が上記範囲にあれば、得られる硬化膜の耐久性がより向上する。
The content of the component (B) is usually about 0.1 to 50% by mass, preferably 1 to 40% by mass. The content of the component (C) is usually about 0.1 to 70% by mass, preferably 1 to 50% by mass. The content of component (D) is usually about 0.001 to 30% by mass, preferably 0.001 to 20% by mass. The content of the component (E) is usually about 5 to 1000 parts by weight, preferably 20 with respect to the total parts by weight of the components (A) [(A-1) to (A-5)] to (D). -800 parts by mass.
The molar ratio of the component (A-3) and the component (A-5) is not particularly limited, but is preferably 1: 1 to 1: 5, more preferably 1: 2 to 1: 4. is there. When the blending molar ratio of the component (A-3) to the component (A-5) is within the above range, the durability of the resulting cured film is further improved.
〈(A)~(E)成分を含有するコーティング液の調製方法〉
 本発明のコーティング液は、(A-1)成分、(A-2)成分及び(A-4)成分の加水分解縮合物と、(B)~(E)成分とを接触させて得られた反応生成物に、(A-5)成分を加えて反応させた後、さらに(A-3)成分を加えて反応させてなるものが好ましい。また、(A-1)成分、(A-2)成分、(A-4)成分及び(B)~(E)成分を含む混合物を加熱することにより得られた反応生成物に、(A-5)成分を加え反応させた後、さらに(A-3)成分を加えて反応させてなるものがさらに好ましい。
 具体的には、下記の操作を行ってコーティング液を調製することが望ましい。
 まず、少なくとも(A-1)、(A-2)、(A-4)、(B)、(D)及び(E)成分を含む第一の混合液を作製し、次に(C)成分を混合して第二の混合液、さらに引き続き(A-5)成分を混合し第三の混合液を作製する。最後に(A-3)成分を混合してコーティング液を調製することが好ましい。
<Method for preparing coating liquid containing components (A) to (E)>
The coating liquid of the present invention was obtained by contacting the hydrolysis condensate of components (A-1), (A-2) and (A-4) with components (B) to (E). The reaction product is preferably prepared by adding (A-5) component and reacting, and then adding (A-3) component and reacting. Further, the reaction product obtained by heating the mixture containing the components (A-1), (A-2), (A-4) and (B) to (E) is added to the reaction product (A- It is more preferable to add the component (5) and react, then add the component (A-3) and react.
Specifically, it is desirable to prepare a coating solution by performing the following operations.
First, a first mixed solution containing at least the components (A-1), (A-2), (A-4), (B), (D) and (E) is prepared, and then the component (C) Are mixed to prepare a second mixed liquid, and then the component (A-5) is mixed to prepare a third mixed liquid. Finally, it is preferable to prepare a coating solution by mixing the component (A-3).
 このように、各成分を分離して調製すると、コーティング液の液保存安定性(ゲル化しないなど)が向上するため好ましい。
 特に、(B)及び(C)成分の添加量増により液中の水の量が増加した際に、この効果がより発揮される。例えば、(A-1)、(A-2)、(A-4)、(B)、(D)及び(E)成分を混合した後、(C)成分を加える。次に、(A-5)成分を混合し、最後に(A-3)成分を混合する。なお、(E)成分は、コーティング液を調製後、さらに加えることによりコーティング液を希釈することができる。
Thus, it is preferable to prepare each component separately because the liquid storage stability (such as not gelation) of the coating solution is improved.
In particular, this effect is more exhibited when the amount of water in the liquid is increased by increasing the amount of the components (B) and (C). For example, the components (A-1), (A-2), (A-4), (B), (D) and (E) are mixed and then the component (C) is added. Next, the component (A-5) is mixed, and finally the component (A-3) is mixed. In addition, (E) component can dilute a coating liquid by adding, after preparing a coating liquid.
 本発明のコーティング液のような混合材料の液保存安定性は、液pHに影響し易いことが知られている(例えば、「ゾルーゲル法のナノテクノロジーへの応用/監修:作花済夫」シーエムシー出版)。本発明のコーティング液の調製においては、(D)成分として酸性成分が、(A-3)成分及び(D)成分として塩基性成分が混合されるため、混合順序によって液pHが変化する。
 液pH値、例えば、校正用pH標準液で補正したポータブルpHメーター(ハンナ社製:商品名 チェッカー1)で評価した液pH値としては、上記の第一の混合液及び第二の混合液はpH≦6、第三の混合液及び最終の混合液はpH≦7とすることが好ましい。特に、第三の混合液、すなわち(A-3)成分の混合時に液pHが8を越えると、液安定性が低下する恐れがある。コーティング液の調製開始時から調製終了時まで、液は酸性状態に保つことが好ましい。すなわち、このような条件が維持されるような手順で、コーティング液を調製することが好ましい。
It is known that the liquid storage stability of a mixed material such as the coating liquid of the present invention is likely to affect the liquid pH (for example, “Application of the sol-gel method to nanotechnology / supervision: Sakuo Sakuo” MC Publishing). In the preparation of the coating liquid of the present invention, since the acidic component is mixed as the component (D) and the basic component is mixed as the component (A-3) and the component (D), the pH of the solution changes depending on the mixing order.
The liquid pH value, for example, the liquid pH value evaluated with a portable pH meter (trade name: Checker 1) manufactured by calibration with a pH standard solution for calibration, the first mixed liquid and the second mixed liquid are It is preferable that pH ≦ 6, the third mixed solution, and the final mixed solution have pH ≦ 7. In particular, when the pH of the third mixed solution, that is, the component (A-3) exceeds 8, the liquid stability may be lowered. It is preferable to keep the solution in an acidic state from the start of preparation of the coating solution to the end of preparation. That is, it is preferable to prepare the coating solution by a procedure that maintains such conditions.
 また、上記の第一の混合液、第二の混合液、及び第三の混合液は、各成分の混合後、加熱処理することが好ましい。温度は、好ましくは30℃~130℃、より好ましくは、50℃~90℃であり、加熱処理時間は、好ましくは30分~24時間、より好ましくは、1時間~8時間である。混合、加熱手段については、均一に混合、加熱できる手段であれば特に制限はない。このように加熱することで、液内の(A-1)、(A-2)、(A-3)、(A-4)及び(A-5)成分の縮合反応が進み、耐煮沸性やその他耐久性が向上する。(A-1)、(A-2)、(A-3)、(A-4)及び(A-5)成分の反応は、溶液Si-NMRで解析可能であり、それにより適した構造に設計できる。30℃未満や30分未満では反応が極端に遅い場合が多く、また130℃超や24時間超の場合には、(A-1)、(A-2)、(A-3)、(A-4)及び(A-5)成分の反応が進みすぎ、液がゲル化したり高粘性化し、塗布できなくなる恐れがある。 In addition, it is preferable that the first mixed solution, the second mixed solution, and the third mixed solution are heat-treated after mixing the respective components. The temperature is preferably 30 ° C. to 130 ° C., more preferably 50 ° C. to 90 ° C., and the heat treatment time is preferably 30 minutes to 24 hours, more preferably 1 hour to 8 hours. The mixing and heating means is not particularly limited as long as it can uniformly mix and heat. By heating in this way, the condensation reaction of the components (A-1), (A-2), (A-3), (A-4) and (A-5) in the liquid proceeds, and the boiling resistance is increased. And other durability. Reactions of the components (A-1), (A-2), (A-3), (A-4) and (A-5) can be analyzed by solution Si-NMR, thereby obtaining a suitable structure. Can design. The reaction is often extremely slow at less than 30 ° C. or less than 30 minutes, and when it exceeds 130 ° C. or more than 24 hours, (A-1), (A-2), (A-3), (A -4) and (A-5) components may proceed too much, and the liquid may gel or become highly viscous, making it impossible to apply.
 (A-3)成分を混合した後の最終液(コーティング液)も、加熱処理することが好ましい。室温での混合の場合、攪拌効率の影響を受けやすく、これに起因して(A-3)成分の分散度が低い場合は、硬化膜の透明性(全光線透過率低下、ヘイズ上昇)が低下する恐れがある。温度は、好ましくは30℃~130℃、より好ましくは50℃~90℃であり、時間は、好ましくは5分~10時間、より好ましくは15分~6時間である。混合、加熱手段については、均一に混合、加熱できる手段であれば特に制限はない。30℃未満や5分未満では加熱処理の効果が乏しい場合が多く、また130℃超や10時間超だと、液がゲル化したり高粘性化し、塗布できなくなる恐れがある。
 後記する実施例では、1週間静置後得られたコーティング液を用いて製造した硬化膜の評価結果を記載しているが、硬化膜製造までの液静置期間に特に制限はない。
The final solution (coating solution) after mixing the component (A-3) is also preferably heat-treated. In the case of mixing at room temperature, it is easily affected by stirring efficiency, and due to this, when the degree of dispersion of component (A-3) is low, the transparency of the cured film (decrease in total light transmittance, increase in haze) May fall. The temperature is preferably 30 ° C. to 130 ° C., more preferably 50 ° C. to 90 ° C., and the time is preferably 5 minutes to 10 hours, more preferably 15 minutes to 6 hours. The mixing and heating means is not particularly limited as long as it can uniformly mix and heat. If the temperature is less than 30 ° C. or less than 5 minutes, the effect of the heat treatment is often poor, and if it exceeds 130 ° C. or more than 10 hours, the liquid may gel or become highly viscous and may not be applied.
In the examples described later, the evaluation results of the cured film produced using the coating liquid obtained after standing for 1 week are described, but there is no particular limitation on the liquid standing period until the cured film is produced.
((A)~(G)成分を含有するコーティング液の調製)
〈各成分の含有量〉
 本発明の(A)~(G)成分を含有するコーティング液における各成分の含有量は適宜選定することができるが、(A)~(E)成分の各含有量は、(E)成分の分散媒体を除き(A)[(A-1)~(A-5)]~(G)成分の合計量に対する、各成分含有量を質量%で表わすこと以外は、(A)~(E)成分を含有するコーティング液の場合と同様とすることができる。
(Preparation of coating solution containing components (A) to (G))
<Content of each component>
The content of each component in the coating solution containing the components (A) to (G) of the present invention can be appropriately selected, but the contents of the components (A) to (E) are the same as those of the component (E). (A) to (E) except that the content of each component is expressed by mass% with respect to the total amount of components (A) [(A-1) to (A-5)] to (G) excluding the dispersion medium. It can be the same as that of the coating liquid containing the component.
 (F)成分の含有量は、通常、0.01~30質量%程度、好ましくは0.1~20質量%である。(G)成分の含有量は、通常、1~60質量部程度、好ましくは10~50質量部程度である。 The content of the component (F) is usually about 0.01 to 30% by mass, preferably 0.1 to 20% by mass. The content of component (G) is usually about 1 to 60 parts by mass, preferably about 10 to 50 parts by mass.
〈(A)~(G)成分を含有するコーティング液の調製方法〉
 当該コーティング液は、(A-1)、(A-2)、(A-4)及び(A-5)成分の加水分解縮合物と、(B)~(G)成分とを接触させて得られた反応生成物に、(A-3)成分を加えて反応させてなるものが好ましく、具体的には、下記の操作を行ってコーティング液を調製することが望ましい。
<Method for preparing coating liquid containing components (A) to (G)>
The coating liquid is obtained by bringing the hydrolysis condensate of components (A-1), (A-2), (A-4) and (A-5) into contact with components (B) to (G). A reaction product obtained by adding the component (A-3) to the reaction product is preferable. Specifically, it is desirable to prepare a coating solution by performing the following operations.
 まず、少なくとも(A-1)、(A-2)、(A-4)、(B)、及び(D)、(E)、(G)成分を含む第一の混合液を作製し、次に(C)及び(F)成分を混合して第二の混合液、さらに引き続き(A-5)成分を混合し第三の混合液を作製する。最後に(A-3)成分を混合してコーティング液を調製することが好ましい。
 このように、各成分を分離して調製すると、コーティング液の液保存安定性(ゲル化しないなど)が向上するため好ましい。特に、(B)、(C)、及び(F)成分の添加量増により液中の水の量が増加した際に、この効果がより発揮される。
 例えば、(A-1)、(A-2)、(A-4)、(B)、及び(D)、(E)、(G)成分を混合した後、(C)及び(F)成分を加える。次に、(A-5)成分を混合し、最後に(A-3)成分を混合する。
 なお、(E)成分は、コーティング液を調製後、さらに加えることによりコーティング液を希釈することができる。
First, a first mixed solution containing at least the components (A-1), (A-2), (A-4), (B), and (D), (E), (G) is prepared. The components (C) and (F) are mixed with the second mixture, and then the component (A-5) is mixed to prepare a third mixture. Finally, it is preferable to prepare a coating solution by mixing the component (A-3).
Thus, it is preferable to prepare each component separately because the liquid storage stability (such as not gelation) of the coating solution is improved. In particular, this effect is more exhibited when the amount of water in the liquid increases due to an increase in the amount of components (B), (C), and (F) added.
For example, after the components (A-1), (A-2), (A-4), (B), and (D), (E), (G) are mixed, the components (C) and (F) Add Next, the component (A-5) is mixed, and finally the component (A-3) is mixed.
In addition, (E) component can dilute a coating liquid by adding, after preparing a coating liquid.
 さらに好ましいコーティング液の調製方法として、(A-1)、(A-2)、(A-4)成分の加水分解縮合物と、(B)、(C)、(D)、(E)及び(G)成分とを接触させて得られた反応生成物に、(F)及び(A-5)成分を加えて反応させ、得られた反応生成物に、(A-3)成分を加えて反応させてコーティング液を調製することができる。
 具体的には、(A-1)、(A-2)、(A-4)、(B)、(C)、(D)、(E)、及び(G)成分を含む混合物を加熱して得られた反応生成物に、(F)及び(A-5)成分を加えて加熱し、次いで得られた反応生成物に、(A-3)成分を加えて加熱しコーティング液を得るものである。このような調製方法を用いることにより、コーティング液の分散性をより向上させることができ、硬化膜の透明性を向上させることができる。
As a more preferable method for preparing the coating liquid, hydrolysis condensates of the components (A-1), (A-2) and (A-4), (B), (C), (D), (E) and (G) Component (F) and component (A-5) are added to the reaction product obtained by contacting with component (G) and reacted, and component (A-3) is added to the reaction product obtained. The coating liquid can be prepared by reacting.
Specifically, the mixture containing the components (A-1), (A-2), (A-4), (B), (C), (D), (E), and (G) is heated. The components (F) and (A-5) are added to the reaction product obtained and heated, and then the component (A-3) is added to the obtained reaction product and heated to obtain a coating solution. It is. By using such a preparation method, the dispersibility of the coating liquid can be further improved, and the transparency of the cured film can be improved.
 また、(A-1)、(A-2)、(A-4)及び(A-5)成分の加水分解縮合物と、(B)、(C)、(D)、(E)及び(G)成分とを接触させて得られた反応生成物に、(F)成分を加えて反応させ、得られた反応生成物に、(A-3)成分を加えて反応させてコーティング液を調製することもできる。
 具体的には、例えば(A-1)、(A-2)、(A-4)、(A-5)、(B)、(C)、(D)、(E)及び(G)成分を含む混合物を加熱して得られた反応生成物に、(F)成分を加えて加熱し、次いで得られた反応生成物に、(A-3)成分を加えて加熱しコーティング液を得るものである。このような調製方法を用いることにより、コーティング液の分散性をより向上させることができ、硬化膜の透明性を向上させることができる。
Further, hydrolysis condensates of the components (A-1), (A-2), (A-4) and (A-5), and (B), (C), (D), (E) and (E (G) Component (F) is added to the reaction product obtained by contacting G) with the reaction product, and the resulting reaction product is reacted with component (A-3) to prepare a coating solution. You can also
Specifically, for example, (A-1), (A-2), (A-4), (A-5), (B), (C), (D), (E) and (G) components (F) component (F) is added to the reaction product obtained by heating the mixture containing and heated, and then (A-3) component is added to the resulting reaction product and heated to obtain a coating solution. It is. By using such a preparation method, the dispersibility of the coating liquid can be further improved, and the transparency of the cured film can be improved.
 さらに、(A-1)、(A-2)、(A-4)成分の加水分解縮合物と、(B)~(G)成分とを接触させて得られた反応生成物に、(A-5)成分を加えて反応させ、得られた反応生成物に、(A-3)成分を加えて反応させてコーティング液を調製することもできる。
 具体的には、例えば(A-1)、(A-2)、(A-4)及び(B)~(G)成分を含む混合物を加熱して得られた反応生成物に、(A-5)成分を加えて加熱し、次いで得られた反応生成物に、(A-3)成分を加えて加熱しコーティング液を得るものである。このような調製方法を用いることにより、コーティング液の分散性をより向上させることができ、硬化膜の透明性を向上させることができる。
Further, the reaction product obtained by contacting the hydrolysis condensate of components (A-1), (A-2), and (A-4) with components (B) to (G) is added to (A The coating solution can also be prepared by adding the component -5) to react, and reacting the resulting reaction product by adding the component (A-3).
Specifically, for example, a reaction product obtained by heating a mixture containing the components (A-1), (A-2), (A-4) and (B) to (G) is added to (A- 5) Add component and heat, then add (A-3) component to the resulting reaction product and heat to obtain a coating solution. By using such a preparation method, the dispersibility of the coating liquid can be further improved, and the transparency of the cured film can be improved.
 本発明のコーティング液のような混合材料の液保存安定性は、液pHに影響し易いことが知られている(例えば、「ゾルーゲル法のナノテクノロジーへの応用/監修:作花済夫」シーエムシー出版)。本発明のコーティング液の調製においては、(D)及び(G)成分として酸性成分が、(A-3)及び(D)成分として塩基性成分が混合されるため、混合順序によって液pHが変化する。
 液pH値、例えば、校正用pH標準液で補正したポータブルpHメーター(ハンナ社製:商品名 チェッカー1)で評価した液pH値としては、上記の第一の混合液及び第二の混合液はpH≦6、第三の混合液及び最終の混合液はpH≦7とすることが好ましい。特に、第三の混合液、すなわち(A-3)成分の混合時に液pHが8を越えると、液安定性が低下する恐れがある。コーティング液の調製開始時から調製終了時まで、液は酸性状態に保つことが好ましい。すなわち、このような条件が維持されるような手順で、コーティング液を調製することが好ましい。
It is known that the liquid storage stability of a mixed material such as the coating liquid of the present invention is likely to affect the liquid pH (for example, “Application of the sol-gel method to nanotechnology / supervision: Sakuo Sakuo” MC Publishing). In the preparation of the coating liquid of the present invention, an acidic component is mixed as the components (D) and (G), and a basic component is mixed as the components (A-3) and (D). To do.
The liquid pH value, for example, the liquid pH value evaluated with a portable pH meter (trade name: Checker 1) manufactured by calibration with a pH standard solution for calibration, the first mixed liquid and the second mixed liquid are It is preferable that pH ≦ 6, the third mixed solution, and the final mixed solution have pH ≦ 7. In particular, when the pH of the third mixed solution, that is, the component (A-3) exceeds 8, the liquid stability may be lowered. It is preferable to keep the solution in an acidic state from the start of preparation of the coating solution to the end of preparation. That is, it is preferable to prepare the coating solution by a procedure that maintains such conditions.
 また、上記の第一の混合液、第二の混合液、及び第三の混合液は、各成分の混合後、加熱処理することが好ましい。温度は、好ましくは30℃~130℃、より好ましくは、50℃~90℃であり、加熱処理時間は、好ましくは30分~24時間、より好ましくは、1時間~8時間である。混合、加熱手段については、均一に混合、加熱できる手段であれば特に制限はない。このように加熱することで、液内の(A-1)、(A-2)、(A-3)、(A-4)、及び(A-5)成分の縮合反応が進み、耐久性(耐煮沸性)やその他特性が向上する。(A-1)、(A-2)、(A-3)、(A-4)、及び(A-5)成分の反応は、溶液Si-NMRで解析可能であり、それにより適した構造に設計できる。30℃未満や30分未満では反応が極端に遅い場合が多く、また130℃超や24時間超の場合には、(A-1)、(A-2)、(A-3)、(A-4)、及び(A-5)成分の反応が進みすぎ、液がゲル化したり高粘性化し、塗布できなくなる恐れがある。 In addition, it is preferable that the first mixed solution, the second mixed solution, and the third mixed solution are heat-treated after mixing the respective components. The temperature is preferably 30 ° C. to 130 ° C., more preferably 50 ° C. to 90 ° C., and the heat treatment time is preferably 30 minutes to 24 hours, more preferably 1 hour to 8 hours. The mixing and heating means is not particularly limited as long as it can uniformly mix and heat. By heating in this way, the condensation reaction of the components (A-1), (A-2), (A-3), (A-4), and (A-5) in the liquid proceeds and durability is increased. (Boiling resistance) and other properties are improved. The reactions of the components (A-1), (A-2), (A-3), (A-4), and (A-5) can be analyzed by solution Si-NMR, and thus have a suitable structure. Can be designed. When the temperature is less than 30 ° C. or less than 30 minutes, the reaction is often extremely slow. When the temperature exceeds 130 ° C. or more than 24 hours, (A-1), (A-2), (A-3), (A -4) and (A-5) reaction is too advanced, and the liquid may gel or become highly viscous, making it impossible to apply.
 また、(A-3)成分を混合した後の最終液(コーティング液)も、加熱処理することが好ましい。室温での混合の場合、攪拌効率の影響を受けやすく、これに起因して(A-3)成分の分散度が低い場合は、硬化膜の透明性(全光線透過率低下、ヘイズ上昇)が低下する恐れがある。温度は、好ましくは30℃~130℃、より好ましくは50℃~90℃であり、時間は、好ましくは5分~10時間、より好ましくは15分~6時間である。混合、加熱手段については、均一に混合、加熱できる手段であれば特に制限はない。30℃未満や5分未満では加熱処理の効果が乏しい場合が多く、また130℃超や10時間超だと、液がゲル化したり高粘性化し、塗布できなくなる恐れがある。
 後記する実施例では、1週間静置後得られたコーティング液を用いて製造した硬化膜の評価結果を記載しているが、硬化膜製造までの液静置期間に特に制限はない。
Further, the final liquid (coating liquid) after mixing the component (A-3) is preferably heat-treated. In the case of mixing at room temperature, it is easily affected by stirring efficiency, and due to this, when the degree of dispersion of component (A-3) is low, the transparency of the cured film (decrease in total light transmittance, increase in haze) May fall. The temperature is preferably 30 ° C. to 130 ° C., more preferably 50 ° C. to 90 ° C., and the time is preferably 5 minutes to 10 hours, more preferably 15 minutes to 6 hours. The mixing and heating means is not particularly limited as long as it can uniformly mix and heat. If the temperature is less than 30 ° C. or less than 5 minutes, the effect of the heat treatment is often poor, and if it exceeds 130 ° C. or more than 10 hours, the liquid may gel or become highly viscous and may not be applied.
In the examples described later, the evaluation results of the cured film produced using the coating liquid obtained after standing for 1 week are described, but there is no particular limitation on the liquid standing period until the cured film is produced.
 さらに、本発明で使用する(F)成分は、酸性安定型のため、他の分散液と混合する際、混合時の凝集、析出、ゲル化を防ぐため酸性同士のゾルにおいて混合させる方がより好ましい。例えば、塩基性安定型アニオン性微粒子のゾルと(F)成分を直接混合させると、安定に分散できるpHの領域から外れてしまうことにより分散を維持できない可能性がある。 Furthermore, since the component (F) used in the present invention is an acid stable type, when mixed with other dispersions, it is better to mix them in acidic sols in order to prevent aggregation, precipitation and gelation during mixing. preferable. For example, when the sol of the basic stable anionic fine particles and the component (F) are directly mixed, there is a possibility that the dispersion cannot be maintained because it is out of the pH range where it can be stably dispersed.
(コーティング液の用途)
 本発明のコーティング液は、透明性、樹脂との密着性、耐候性、耐摩耗性、耐擦傷性に優れ、各種透明有機部材のコーティング材料として有用である。具体的には、樹脂製自動車ウインドウ、建物などの樹脂窓、道路遮音壁、アーケードなどの大面積透明部材、インパネなどの計器類、建物の樹脂窓、透明プラスチック部品、メガネレンズ、ゴーグル、転写用フィルム、ビニールハウスなどの透明有機部材のトップコートや下塗り材として使用できる。
 さらに、非常に透明性が高いため着色も容易であり、各種着色顔料との相溶性に優れることから、各種塗料の原料や塗装前の下塗り材としても使用できる。例えば、自動車内外装、産業機械、スチール家具、建築用内外装、家電、プラスチック製品などの塗装に適用可能である。また、本発明のコーティング液は金属ともよく密着し、かつ、耐酸性が高いため昨今問題視されている酸性雨にも強い。これより、自動車ボディやアルミホイールなど屋外で使用される部材に特に適している。塗料とよく似た用途として、高着色性、顔料との相溶を生かして、各種のインキにも適用できる。
(Application of coating solution)
The coating liquid of the present invention is excellent in transparency, adhesion to a resin, weather resistance, abrasion resistance, and scratch resistance, and is useful as a coating material for various transparent organic members. Specifically, resin automobile windows, resin windows for buildings, road sound insulation walls, large-area transparent members such as arcades, instruments such as instrument panels, resin windows for buildings, transparent plastic parts, eyeglass lenses, goggles, transfer films It can be used as a top coat or undercoat material for transparent organic members such as greenhouses.
Furthermore, since it is very transparent, it can be easily colored, and is excellent in compatibility with various colored pigments. For example, the present invention can be applied to painting of automobile interior and exterior, industrial machinery, steel furniture, architectural interior and exterior, home appliances, plastic products, and the like. In addition, the coating solution of the present invention is in close contact with metal and has high acid resistance, so that it is resistant to acid rain, which has recently been regarded as a problem. Thus, it is particularly suitable for members used outdoors such as automobile bodies and aluminum wheels. As a use similar to paint, it can be applied to various inks by taking advantage of high colorability and compatibility with pigments.
 また、本発明のコーティング液は、高透明性、密着性の高さ、優れた耐摩耗性、耐擦傷性を生かして、電気電子分野、光学分野などで用いられる精密部材へも適用できる。例えば、プラズマディスプレイ、液晶ディスプレイ、有機ELディスプレイなどの各種ディスプレイでは反射防止膜、偏光フィルム、ガスバリア膜、位相差フィルム、導電性膜など、機能の一つとしてハードコート性を必要とする膜が種々使用されており、これらの部材としても使用可能である。他には、光ディスク基板用のハードコート材、光ファイバーのコーティング剤、タッチパネル、太陽電池パネルの被覆材なども高透明性、密着性の高さ、優れた耐摩耗性、耐擦傷性が生かせる用途として挙げられる。カラーフィルタ、ホログラム素子、CCDカメラなどで各種保護膜が用いられているが、これらの保護膜は透明性、耐摩耗性、耐擦傷性や密着性だけでなく、製造上の問題からある程度低粘度であることも求められている。本発明のコーティング液は成分調整により所望の粘度に制御することができるので、前記保護膜としても有用である。また、本発明のコーティング液はハードコート性能を有していながら、曲げ変形させることも可能な材料であり、昨今盛んに研究されているフレキシブルディスプレイにも用いることができる。 Further, the coating liquid of the present invention can be applied to precision members used in the electric and electronic fields, the optical field and the like by taking advantage of high transparency, high adhesion, excellent wear resistance and scratch resistance. For example, in various displays such as plasma displays, liquid crystal displays, and organic EL displays, there are various films that require hard coat properties as one of their functions, such as antireflection films, polarizing films, gas barrier films, retardation films, and conductive films. It can be used as these members. In addition, hard coat materials for optical disk substrates, optical fiber coating agents, touch panels, solar cell panel coating materials, etc. can also be used for high transparency, high adhesion, excellent wear resistance, and scratch resistance. Can be mentioned. Various protective films are used in color filters, hologram elements, CCD cameras, etc. These protective films have low viscosity to some extent due to manufacturing problems as well as transparency, abrasion resistance, scratch resistance and adhesion. It is also required to be. Since the coating liquid of the present invention can be controlled to a desired viscosity by adjusting the components, it is also useful as the protective film. In addition, the coating liquid of the present invention is a material that can be bent and deformed while having a hard coat performance, and can be used for a flexible display that has been actively studied recently.
 本発明のコーティング液はまた、近赤外領域の電磁波もよく透過する。このことから、電波送受信用のアンテナ、RFIDデータキャリア、車両レーダ装置などの被覆材などにも適用できる。
 その他の用途として、各種透明装飾品のコート剤、各種表皮材(自動車シート、自動車ドア内装用、ソファ、家具など)、摺動部品(ブレーキパッドなど)、繊維の収束剤、ガスバリアコーテング剤などが挙げられる。
The coating liquid of the present invention also transmits electromagnetic waves in the near infrared region. Therefore, the present invention can also be applied to covering materials such as antennas for radio wave transmission / reception, RFID data carriers, and vehicle radar devices.
Other applications include coating agents for various transparent ornaments, various skin materials (for automobile seats, automobile door interiors, sofas, furniture, etc.), sliding parts (brake pads, etc.), fiber convergence agents, gas barrier coating agents, etc. Can be mentioned.
 次に本発明の硬化膜について説明する。
[硬化膜]
 本発明の硬化膜は、前述した本発明のコーティング液を常法により硬化させてなる硬化膜である。
 具体的には、硬化膜を形成する対象である樹脂成形品(射出成形品、フィルム又はシートなど)の基材上に、コーティング液をスプレー、浸漬、カーテンフロー、バーコーター又は、ロールコーティングなどの公知の方法により塗布し、塗膜を形成する。
 塗膜の厚みとしては、形成される硬化膜が最終的にどのような形態使用されるかによる。
 第1の態様としては、塗膜の厚みとして、硬化膜の厚みが好ましくは0.5~6μm、より好ましくは0.5~3μmになるように調整する。その後、適当な硬化条件、通常室温~190℃、好ましくは、80~140℃にて、10分~24時間程度、好ましくは、30分~3時間加熱硬化することにより、所望の硬化膜が得られる。
 第2の態様としては、塗膜の厚みとしては、硬化膜の厚みが好ましくは1~50μm、より好ましくは2~20μmになるように調整する。その後、適当な硬化条件、通常80~190℃、好ましくは、100~140℃にて、10分~24時間程度、好ましくは、30分~3時間加熱硬化することにより所望の硬化膜が得られる。
Next, the cured film of the present invention will be described.
[Curing film]
The cured film of the present invention is a cured film obtained by curing the above-described coating liquid of the present invention by a conventional method.
Specifically, a coating liquid is sprayed, dipped, curtain flow, bar coater, roll coating, etc. on the base of a resin molded product (injection molded product, film, sheet, etc.) that is a target for forming a cured film. It is applied by a known method to form a coating film.
The thickness of the coating film depends on the final form of the cured film to be formed.
In the first aspect, the thickness of the coating film is adjusted so that the thickness of the cured film is preferably 0.5 to 6 μm, more preferably 0.5 to 3 μm. Thereafter, a desired cured film is obtained by heat curing at appropriate curing conditions, usually room temperature to 190 ° C., preferably 80 to 140 ° C., for about 10 minutes to 24 hours, preferably 30 minutes to 3 hours. It is done.
In the second embodiment, the thickness of the coating film is adjusted so that the thickness of the cured film is preferably 1 to 50 μm, more preferably 2 to 20 μm. Thereafter, a desired cured film can be obtained by heating and curing at appropriate curing conditions, usually 80 to 190 ° C., preferably 100 to 140 ° C. for about 10 minutes to 24 hours, preferably 30 minutes to 3 hours. .
 本発明の(A)~(E)成分を含有するコーティング液から得られる硬化膜は、膜中に有機高分子微粒子((B)成分)、コロイダルシリカ((C)成分)が分散している。
 当該分散状態としては、無機有機ハイブリッドの海島構造であることが好ましい。海島構造の島にあたる有機高分子微粒子およびコロイダルシリカ等の粒子成分の粒径は200nm以下であることが好ましく、より好ましくは100nm以下で凝集することなく均一に分散している。
 本発明の硬化膜は、全光線透過率が好ましくは80%以上、より好ましくは85%以上であり、ヘイズ値が好ましくは10%以下、より好ましくは5%以下である。このような硬化膜は、高い透明性を有している。
 なお、有機高分子微粒子((B)成分)、コロイダルシリカ((C)成分)が分散する、Si-O結合を有するマトリックスは、(A-1)、(A-2)、(A-3)、(A-4)及び(A-5)成分に由来する。
 本発明はまた、前述した本発明のコーティング液を加熱し、硬化させる工程を含むことを特徴とする硬化膜の製造方法をも提供する。
The cured film obtained from the coating solution containing the components (A) to (E) of the present invention has organic polymer fine particles (component (B)) and colloidal silica (component (C)) dispersed in the film. .
The dispersed state is preferably an inorganic-organic hybrid sea-island structure. The particle diameters of the particle components such as the organic polymer fine particles and colloidal silica that correspond to the islands of the sea-island structure are preferably 200 nm or less, more preferably 100 nm or less, and they are uniformly dispersed without agglomeration.
The cured film of the present invention preferably has a total light transmittance of 80% or more, more preferably 85% or more, and a haze value of preferably 10% or less, more preferably 5% or less. Such a cured film has high transparency.
The matrix having Si—O bonds in which organic polymer fine particles (component (B)) and colloidal silica (component (C)) are dispersed is (A-1), (A-2), (A-3). ), (A-4) and (A-5).
The present invention also provides a method for producing a cured film, comprising the step of heating and curing the above-described coating liquid of the present invention.
 また、本発明の(A)~(G)成分を含有するコーティング液から得られる硬化膜は、膜中に有機高分子微粒子((B)成分)、コロイダルシリカ((C)成分)、酸化セリウム粒子((F)成分)が分散している。
 本発明の硬化膜は、好ましくはヘイズ値が10%以下、より好ましくは、5%以下である。このような硬化膜は、耐紫外線性に優れ、かつ高い透明性を有している。
 なお、有機高分子微粒子((B)成分)、コロイダルシリカ((C)成分)、酸化セリウム粒子((F)成分)が分散する、Si-O結合を有するマトリックスは、各(A)成分に由来する。
 本発明はまた、前述した本発明のコーティング液を加熱し、硬化させる工程を含むことを特徴とする硬化膜の製造方法をも提供する。
The cured film obtained from the coating liquid containing the components (A) to (G) of the present invention contains organic polymer fine particles (component (B)), colloidal silica (component (C)), cerium oxide. Particles (component (F)) are dispersed.
The cured film of the present invention preferably has a haze value of 10% or less, more preferably 5% or less. Such a cured film has excellent ultraviolet resistance and high transparency.
The matrix having Si—O bonds in which organic polymer fine particles (component (B)), colloidal silica (component (C)), and cerium oxide particles (component (F)) are dispersed is added to each component (A). Derived from.
The present invention also provides a method for producing a cured film, comprising the step of heating and curing the above-described coating liquid of the present invention.
 次に、本発明の樹脂積層体について説明する。
[樹脂積層体]
 樹脂積層体は、基材と基材上に形成された樹脂層を含む。
 基材上に形成された樹脂層は一層であってもよく、二層以上であってもよい。
 以下、本発明の樹脂積層体について詳述する。
 本発明の第1の樹脂積層体は、基材上、又は無機層(無機硬質物層)と基材との間に、前記本発明の硬化膜を有する積層体である。また、本発明の第2の樹脂積層体は、基材と、該基材上に形成された本発明の硬化膜と、硬化膜上に形成された透明導電膜とを有する積層体である。さらに、本発明の第3の樹脂積層体は、基材と、該基材上に形成された本発明の硬化膜と、硬化膜上に形成された光触媒層とを有する積層体である。以下、第1~第3の樹脂積層体をまとめて本発明の樹脂積層体ということがある。
Next, the resin laminate of the present invention will be described.
[Resin laminate]
The resin laminate includes a base material and a resin layer formed on the base material.
The resin layer formed on the substrate may be a single layer or two or more layers.
Hereinafter, the resin laminate of the present invention will be described in detail.
The 1st resin laminated body of this invention is a laminated body which has the cured film of the said this invention on a base material or between an inorganic layer (inorganic hard material layer) and a base material. Moreover, the 2nd resin laminated body of this invention is a laminated body which has a base material, the cured film of this invention formed on this base material, and the transparent conductive film formed on the cured film. Furthermore, the 3rd resin laminated body of this invention is a laminated body which has a base material, the cured film of this invention formed on this base material, and the photocatalyst layer formed on the cured film. Hereinafter, the first to third resin laminates may be collectively referred to as the resin laminate of the present invention.
 本発明のコーティング液を用いて上記硬化膜を形成する方法については、前述した本発明の硬化膜の説明において示したとおりである。本発明の樹脂積層体は、優れた耐摩耗性、耐擦傷性、耐屈曲性及び耐煮沸性を有し、その用途については、前述した本発明のコーティング液における用途の説明において示したとおりである。 The method for forming the cured film using the coating liquid of the present invention is as described in the description of the cured film of the present invention. The resin laminate of the present invention has excellent wear resistance, scratch resistance, flex resistance and boiling resistance, and the use thereof is as shown in the description of the application in the coating liquid of the present invention described above. is there.
 本発明の樹脂積層体は、上記構成を備えていれば特に制限されない。例えば、二輪車、三輪車のウインドシールド、自動車用、鉄道車両用、建設機械車両用窓、建設機械車両用ルーフ、自動車内装用部材、自動車外装用部材、モーターバイク用部材、トラックの荷台カバー、電車、航空機、船舶等の各種乗り物の内外装用部材、AV機器、洗濯機、炊飯器、電気ポット、IHクッキングヒーター等の家庭用電気器具、家具等の部材、携帯電話、ノートパソコン、リモコン等の部材、家具用外装材、建材、自動車窓、建物等の窓用遮光フィルム、壁面、天井、床等の建築用内装、サイディング等の外壁、塀、屋根、門扉、破風板等の建築用外装、窓枠、扉、手すり、敷居、鴨居等の家具類の表面化粧材、ダウンスポット、街路灯等の照明部品、プラズマ、液晶、有機EL等の各種ディスプレイ、太陽電池、反射防止フィルム、光レンズ、光ディスク、ミラー、矯正用メガネ、サングラス、スポーツ用ゴーグル、安全メガネ等のメガネレンズ、窓ガラス等の光学部材、瓶、化粧品容器、洗剤、ボディーソープ、ハンドソープ等の容器、デザートや菓子、ドリンク類の容器、小物入れ等の各種包装容器、包装材料;その他、パチンコ台等の部材、スーツケース等のかばん類、トイレ便座、デスクマット、時計、ホワイトボード、防護盾および雑貨等に使用することができる。 The resin laminate of the present invention is not particularly limited as long as it has the above configuration. For example, motorcycles, tricycle windshields, automobiles, railway vehicles, windows for construction machinery vehicles, roofs for construction machinery vehicles, automotive interior components, automotive exterior components, motorbike components, truck bed covers, trains, Interior and exterior components for various vehicles such as aircraft and ships, AV equipment, washing machines, rice cookers, electric pots, IH cooking heaters and other household appliances, furniture components, mobile phones, laptop computers, remote control components, furniture Exterior materials for buildings, building materials, automotive windows, building shading films for walls, wall interiors, ceilings, floors and other architectural interiors, exterior walls such as siding, fences, roofs, gates, windbreak plates, and other architectural exteriors, window frames, Doors, handrails, sills, furniture for furniture such as duck, lighting parts such as downspots, street lamps, various displays such as plasma, liquid crystal, organic EL, solar cells, antireflection Films, optical lenses, optical disks, mirrors, glasses for correction, sunglasses, sports goggles, eyeglass lenses such as safety glasses, optical members such as window glass, bottles, cosmetic containers, containers such as detergents, body soaps, hand soaps, desserts Various packaging containers such as candy, confectionery and drinks, accessory cases, packaging materials; other parts such as pachinko machines, bags such as suitcases, toilet seats, desk mats, clocks, whiteboards, protective shields and miscellaneous goods Can be used for
 上記自動車内装用部材としては、例えば、インストルメントパネル、コンソールボックス、メーターカバー、メーターパネル、インジケータパネル、ドアトリム、ドアロックベゼル、ステアリングホイール、パワーウィンドウスイッチベース、センタークラスター、ダッシュボード、シフトレバーカバー、スイッチ類、灰皿等を挙げることができる。 Examples of the automotive interior member include an instrument panel, console box, meter cover, meter panel, indicator panel, door trim, door lock bezel, steering wheel, power window switch base, center cluster, dashboard, shift lever cover, Examples include switches and ashtrays.
 上記自動車外装用部材としては、例えば、ウェザーストリップ、バンパー、バンパーガード、サイドマッドガード、ボディパネル、ドアパネル、スポイラー、ボンネット、サイドプロテクター、トランクリッド、フロントグリル、ストラットマウント、ホイールキャップ、センターピラー、ドアミラー、センターオーナメント、サイドモール、ドアモール、ウインドモール等、窓、ヘッドランプ、テールランプ、ランプリフレクター、ドアバイザー、風防部品等が挙げられる。
 また、上記モーターバイク用部材としては、例えば、カウル、フェンダー、タンクカバー、キャリアボックスカバー等が挙げられる。
 上記AV機器、洗濯機、炊飯器、電気ポット、IHクッキングヒーター等の家庭用電気器具、家具等部材としては、例えば、フロントパネル、コントロールパネル、タッチパネル、メンブレンスイッチパネル、ボタン、エンブレム、表面化粧材等が挙げられる。
 上記建材としては、例えば、道路透光性遮音板、鉄道や工場周辺の防音板、アーケード、防風パネル、スノーシェルター、カーポートや駐輪場、バス停、サンルーム、渡り廊下等の屋根やエントランスやドーム屋根等の採光材、建物等の窓、ビニールハウス等が挙げられる。
 上記携帯電話、ノートパソコン、リモコン等の部材として、例えば、筐体、表示窓、キーパッド、ボタン等が挙げられる。
Examples of the automotive exterior member include a weather strip, a bumper, a bumper guard, a side mud guard, a body panel, a door panel, a spoiler, a bonnet, a side protector, a trunk lid, a front grill, a strut mount, a wheel cap, a center pillar, a door mirror, Examples include center ornaments, side moldings, door moldings, wind moldings, windows, headlamps, tail lamps, lamp reflectors, door visors, windshield parts, and the like.
Examples of the motorbike member include a cowl, a fender, a tank cover, and a carrier box cover.
Examples of AV appliances, washing machines, rice cookers, electric pots, IH cooking heaters, and other household appliances and furniture include front panels, control panels, touch panels, membrane switch panels, buttons, emblems, surface cosmetics, etc. Is mentioned.
As the building materials, for example, road translucent sound insulation boards, soundproof boards around railways and factories, arcades, windproof panels, snow shelters, carports and bicycle parking lots, bus stops, solariums, crossing corridors, etc. roofs, entrances and dome roofs, etc. Daylighting materials, windows of buildings, etc., and plastic houses.
Examples of members of the mobile phone, notebook computer, remote controller, and the like include a housing, a display window, a keypad, and a button.
(基材)
 基材としては、樹脂、金属、木材、ゴム、コンクリート、石材、セラミックス、皮革、紙、布及び繊維の少なくともいずれかからなるものを用いることができるが、樹脂製の基材(樹脂基材)を使用することが好ましい。
(Base material)
As the base material, a material made of at least one of resin, metal, wood, rubber, concrete, stone, ceramics, leather, paper, cloth and fiber can be used, but a resin base material (resin base material) Is preferably used.
 基材としては、樹脂製の成形体、フィルム、シートなどが挙げられる。フィルム、シートは押出成形法、インフレーション法、溶液流延法などの公知の成形方法を用いて製造され、それらは必要に応じて一軸及び/又は二軸に延伸されてもよい。基材における樹脂の種類に特に制限はなく、得られる樹脂積層体の用途に応じて、様々な種類の樹脂の中から適宜選択することができる。
 また、本発明に係る基材は、凹凸を有していても良く、また円柱型、楕円柱型、角柱型等基材の形状は問わない。
 また、本発明に係る樹脂積層体は、内部に空間を有していても良く、内部空間を有する場合には、内壁部分に他の樹脂層が積層されていても良い。
 従って、本発明に係る基材の形状は特に制限されず、本発明に係る樹脂積層体は、下記するようなインサート成形やインサートモールド成形により得られる樹脂積層体が含まれる。
Examples of the substrate include a resin molded body, a film, and a sheet. The film and sheet are produced using a known molding method such as an extrusion molding method, an inflation method, or a solution casting method, and they may be stretched uniaxially and / or biaxially as necessary. There is no restriction | limiting in particular in the kind of resin in a base material, According to the use of the resin laminated body obtained, it can select suitably from various types of resin.
Moreover, the base material which concerns on this invention may have an unevenness | corrugation, and shapes of base materials, such as a column shape, an elliptic cylinder type, and a prism shape, are not ask | required.
Moreover, the resin laminated body which concerns on this invention may have a space inside, and when it has an internal space, another resin layer may be laminated | stacked on the inner wall part.
Therefore, the shape of the substrate according to the present invention is not particularly limited, and the resin laminate according to the present invention includes a resin laminate obtained by insert molding or insert mold molding as described below.
 本発明において、基材に用いることができる樹脂としては、例えば、ポリエチレン、ポリプロピレン、シクロオレフィン系樹脂(例:JSR株式会社製「ARTON」、日本ゼオン株式会社製「ZEONOR」「ZEONEX」)、ポリメチルペンテンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂、ジアセチルセルロース、トリアセチルセルロース、アセチルセルロースブチレートなどのセルロース系樹脂、ポリスチレン、シンジオタクチックポリスチレン、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)などのスチレン系樹脂、ポリイミド、ポリエーテルイミド、ポリアミドイミドなどのイミド系樹脂、ナイロンなどのポリアミド系樹脂、ポリエーテルケトン、ポリエーテルエーテルケトンなどのケトン系樹脂、ポリスルホン、ポリエーテルスルホンなどのスルホン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデンなどの塩化ビニル系樹脂、ポリメタアクリル酸メチルなどのアクリル系樹脂、ポリカーボネート樹脂、ポリフェニレンスルフィド、ポリアセタール、変性ポリフェニレンエーテル、ポリビニルアルコール、エポキシ樹脂、フッ素樹脂などを挙げることができ、前記ポリマーを複数混合したポリマーアロイ・ポリマーブレンドでもよい。また、上記樹脂を複数積層した積層構造体でもよい。上記樹脂の中でも、ポリエステル系樹脂、ポリオレフィン系樹脂及びポリカーボネート樹脂が好ましい。 In the present invention, examples of resins that can be used for the substrate include polyethylene, polypropylene, cycloolefin resins (eg, “ARTON” manufactured by JSR Corporation, “ZEONOR” “ZEONEX” manufactured by Nippon Zeon Co., Ltd.), Polyolefin resins such as methylpentene, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, cellulose resins such as diacetylcellulose, triacetylcellulose, acetylcellulose butyrate, polystyrene, syndiotactic polystyrene, acrylonitrile Styrenic resin such as butadiene / styrene resin (ABS resin), imide resin such as polyimide, polyetherimide, polyamideimide, nylon, etc. Such as lyamide resins, polyether ketones, ketone ether resins such as polyether ether ketone, sulfone resins such as polysulfone and polyethersulfone, vinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride, and polymethyl methacrylate An acrylic resin, polycarbonate resin, polyphenylene sulfide, polyacetal, modified polyphenylene ether, polyvinyl alcohol, epoxy resin, fluororesin and the like can be mentioned, and a polymer alloy / polymer blend in which a plurality of the above polymers are mixed may be used. Moreover, the laminated structure which laminated | stacked the said resin two or more may be sufficient. Among the above resins, polyester resins, polyolefin resins, and polycarbonate resins are preferable.
 これらの樹脂を素材とする基材は、透明、半透明のいずれであってもよく、また着色されていてもよいし、無着色のものでもよく、用途に応じて適宜選択すればよい。光学用途に用いる場合には、透明性に優れ、無着色のものが好ましい。前記樹脂の中で、透明性や機械物性、耐熱性などに優れるポリカーボネートが特に好適である。
 基材の厚さに特に制限はなく、状況に応じて適宜選定されるが、通常、5μm~30mm程度、好ましくは15μm~10mmである。
The base material made of these resins may be either transparent or translucent, may be colored, or may be uncolored, and may be appropriately selected depending on the application. When used for optical applications, it is excellent in transparency and preferably non-colored. Among the resins, polycarbonates that are excellent in transparency, mechanical properties, heat resistance, and the like are particularly suitable.
The thickness of the substrate is not particularly limited and is appropriately selected depending on the situation, but is usually about 5 μm to 30 mm, preferably 15 μm to 10 mm.
 本発明のコーティング液は、基材上に密着性よく硬化膜を形成することができるが、その密着性をさらに向上させるために、基材の少なくとも硬化膜が形成される側の表面に所望により、酸化法や凹凸化法などにより表面処理を施すことができる。上記酸化法としては、例えば、コロナ放電処理、低圧プラズマ法や大気圧プラズマ法などのプラズマ処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理、電子線処理、イトロ処理などが挙げられ、また凹凸化法としては、例えば、サンドブラスト法、溶剤処理法などが挙げられる。これらの表面処理法は基材の種類に応じて適宜選ばれるが、一般にはコロナ放電処理法が硬化及び操作性などの面から好ましく用いられる。また、シランカップリング剤での表面処理やプライマー層を設けることもできる。 The coating liquid of the present invention can form a cured film with good adhesion on a substrate. However, in order to further improve the adhesion, at least the surface of the substrate on which the cured film is formed is optionally formed. Further, the surface treatment can be performed by an oxidation method, an unevenness method, or the like. Examples of the oxidation method include corona discharge treatment, plasma treatment such as low pressure plasma method and atmospheric pressure plasma method, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, electron beam treatment, and intro treatment. In addition, examples of the concavo-convex method include a sand blast method and a solvent treatment method. These surface treatment methods are appropriately selected depending on the type of the substrate, but in general, the corona discharge treatment method is preferably used from the viewpoints of curing and operability. Further, a surface treatment with a silane coupling agent or a primer layer can be provided.
(無機硬質物層)
 第1の樹脂積層体における無機硬質物層は、付与させたい機能に応じて選択でき、特に制限はない。例えば、無機硬質物層に耐摩擦性を付与させたい場合、無機硬質物層は、好ましくはSiOx(1.8≦x≦2)膜、SiNy(1.2≦y≦4/3)膜又はアモルファス状炭素膜が適している。
(Inorganic hard material layer)
The inorganic hard material layer in the 1st resin laminated body can be selected according to the function to give, and there is no restriction | limiting in particular. For example, when it is desired to impart friction resistance to the inorganic hard material layer, the inorganic hard material layer is preferably a SiO x (1.8 ≦ x ≦ 2) film, SiN y (1.2 ≦ y ≦ 4/3). A film or an amorphous carbon film is suitable.
 上記SiOx(1.8≦x≦2)膜、SiNy(1.2≦y≦4/3)膜は、例えば後述する化学的気相成長法又は物理的気相成長法により成膜するため、化学量論的に反応は完結しない。したがって、無機硬質物層には、酸素原子や窒素原子が導入されなかった欠損部ができ、SiOx膜及びSiNy膜において、x及びyは幅を持つことになる。
 なお、酸素と窒素を同時に投入すれば作製可能な、酸化ケイ素及び窒化ケイ素が混在した複合化物も適している。
 また、無機硬質物層の硬質性は、実施例で示すようなテーバー摩耗試験機を用いた評価でヘイズの上昇が10%未満程度であれば足りる。あるいは、マイクロビッカース硬度で500HV程度以上であればよい。
 無機硬質物層の厚さは、例えば1μm以上が好ましく、より好ましくは1~8μmである。また後述する無機硬質物層の製造方法において、無機硬質物層は、好ましくは直接硬化膜上に積層する。
The SiO x (1.8 ≦ x ≦ 2) film and SiN y (1.2 ≦ y ≦ 4/3) film are formed, for example, by chemical vapor deposition or physical vapor deposition described later. Therefore, the reaction is not completed stoichiometrically. Therefore, the inorganic hard material layer has a defect portion in which oxygen atoms and nitrogen atoms are not introduced, and x and y have a width in the SiO x film and the SiN y film.
Note that a composite material in which silicon oxide and silicon nitride are mixed, which can be produced by simultaneously adding oxygen and nitrogen, is also suitable.
In addition, the hardness of the inorganic hard material layer is sufficient if the increase in haze is less than about 10% in an evaluation using a Taber abrasion tester as shown in the examples. Or what is necessary is just about 500HV or more by micro Vickers hardness.
The thickness of the inorganic hard material layer is, for example, preferably 1 μm or more, more preferably 1 to 8 μm. Moreover, in the manufacturing method of the inorganic hard material layer mentioned later, the inorganic hard material layer is preferably laminated directly on the cured film.
 本発明の樹脂積層体の無機硬質物層は、好ましくは化学気相成長法(CVD法)又は物理気相成長法(PVD法)により成膜する。CVD法の具体例としては、プラズマCVD法、光CVD法などが挙げられ、PVD法の具体例としては、イオンプレーティング法、真空蒸着法、スパッタリング法などが挙げられる。
 上述のような真空下で行う薄膜形成技術を用いて成膜した無機硬質物層は、通常、無機成分には密着するが、有機成分には密着しにくい性質を有する。本発明の樹脂積層体の場合、硬化膜が、有機微粒子がSi-Oマトリックス中に閉じ込められた無機・有機ハイブリッド構造を有することから、無機硬質物層と硬化膜との密着性は良好である。
The inorganic hard material layer of the resin laminate of the present invention is preferably formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD). Specific examples of the CVD method include a plasma CVD method and a photo CVD method. Specific examples of the PVD method include an ion plating method, a vacuum deposition method, and a sputtering method.
An inorganic hard material layer formed using a thin film forming technique performed under vacuum as described above usually has a property of being in close contact with an inorganic component but hardly adhering to an organic component. In the case of the resin laminate of the present invention, the cured film has an inorganic / organic hybrid structure in which organic fine particles are confined in the Si—O matrix, so that the adhesion between the inorganic hard material layer and the cured film is good. .
 無機硬質物層をCVD法により積層する具体例として、プラズマCVD法を用いて硬化膜上にSiOx(1.8≦x≦2)膜を成膜する場合を説明する。
 プラズマCVD法とは、原料ガスをエネルギー密度の高いプラズマ状態中に導入して分解させ、基材へ化学反応によって目的の材料を被覆させる方法である。本発明においては、プラズマCVD装置内に基材及び硬化膜からなる積層体を配置し、装置内を真空にした後、SiOx(1.8≦x≦2)膜の原料ガスをプラズマCVD装置にアルゴンガスを添加しながら導入し、それぞれのガス流量が安定化したところで、電力を印加してプラズマを発生させ、硬化膜上にSiOx(1.8≦x≦2)膜を成膜する。
As a specific example of laminating the inorganic hard material layer by the CVD method, a case where an SiO x (1.8 ≦ x ≦ 2) film is formed on the cured film using the plasma CVD method will be described.
The plasma CVD method is a method in which a raw material gas is introduced into a plasma state having a high energy density, decomposed, and a target material is coated on a base material by a chemical reaction. In the present invention, a laminate comprising a substrate and a cured film in the plasma CVD apparatus is arranged, after the inside of the apparatus in a vacuum, SiO x (1.8 ≦ x ≦ 2) plasma CVD apparatus raw material gas of the membrane When argon gas is introduced into the gas and the respective gas flow rates are stabilized, power is applied to generate plasma to form a SiO x (1.8 ≦ x ≦ 2) film on the cured film. .
 無機硬質物層がSiOx(1.8≦x≦2)膜である場合、SiOx(1.8≦x≦2)膜を形成する原料は、例えばシリコン原料ガス及び酸素原料ガスである。
 SiOx(1.8≦x≦2)膜を形成するシリコン原料ガスは、好ましくはシランガス又は有機シリコン化合物ガスが用いられる。
 好適に用いられるシランガスとしては、SiH4ガス、Si26ガス、Si38ガスなどが挙げられる。
 有機シリコン化合物は、好ましくはケイ素に炭素を含む基が結合しているものから任意に選択される。好適に用いられる有機シリコン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、テトラメチルジシロキサン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシランなどが挙げられる。
 これらの有機シリコン化合物は、その一種類を単独で用いてもよく、二種類以上を併用してもよい。
When the inorganic hard material layer is a SiO x (1.8 ≦ x ≦ 2) film, the raw material for forming the SiO x (1.8 ≦ x ≦ 2) film is, for example, a silicon source gas and an oxygen source gas.
Silane gas or organosilicon compound gas is preferably used as the silicon source gas for forming the SiO x (1.8 ≦ x ≦ 2) film.
SiH 4 gas, Si 2 H 6 gas, Si 3 H 8 gas and the like are preferably used as silane gas.
The organosilicon compound is preferably arbitrarily selected from those in which a group containing carbon is bonded to silicon. Specific examples of the organic silicon compound suitably used include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, tetramethyldisiloxane, dimethoxydimethylsilane, diethoxydimethylsilane, methyltriethoxysilane, Examples include octamethylcyclotetrasilane.
One of these organosilicon compounds may be used alone, or two or more thereof may be used in combination.
 SiOx(1.8≦x≦2)膜のシリコン原料ガスがシランガスの場合、好適に用いられる酸素原料ガスとしてはN2Oガスが挙げられる。
 また、SiOx(1.8≦x≦2)膜のシリコン原料ガスが有機シリコン化合物ガスの場合、好適に用いられる酸素原料ガスとしてはN2Oガス、O2ガス及びO3ガスが挙げられる。
 上記シリコン原料ガス及び酸素原料ガスの流量は、例えば1~500cm3/分であり、好ましくは1~300cm3/分である。また、アルゴンガスの流量は、例えば20~400cm3/分であり、好ましくは100~300cm3/分である。
When the silicon source gas for the SiO x (1.8 ≦ x ≦ 2) film is a silane gas, an oxygen source gas that can be suitably used includes N 2 O gas.
Further, when the silicon source gas of the SiO x (1.8 ≦ x ≦ 2) film is an organic silicon compound gas, the oxygen source gas preferably used includes N 2 O gas, O 2 gas, and O 3 gas. .
The flow rates of the silicon source gas and the oxygen source gas are, for example, 1 to 500 cm 3 / min, and preferably 1 to 300 cm 3 / min. The flow rate of the argon gas is, for example, 20 to 400 cm 3 / min, and preferably 100 to 300 cm 3 / min.
 用いるプラズマCVD装置は、一般的に使用されている装置であれば特に限定されず、例えば平行平板電極型、容量結合型、誘導結合型などを使用できる。プラズマCVD装置内の圧力は、例えば1.33~133Pa程度が好ましく、約2.7Paが特に好ましい。
 電力印加に用いる電源の周波数はオーディオ波~マイクロ波領域まで幅広く使用することができる。
The plasma CVD apparatus to be used is not particularly limited as long as it is a generally used apparatus. For example, a parallel plate electrode type, a capacitive coupling type, an inductive coupling type, or the like can be used. For example, the pressure in the plasma CVD apparatus is preferably about 1.33 to 133 Pa, and more preferably about 2.7 Pa.
The frequency of the power source used for power application can be widely used from the audio wave to the microwave range.
 上記プラズマCVD法を用いて硬化膜上にSiOX(1.8≦x≦2)膜を成膜する場合において、シリコン原料ガスとして有機シリコン化合物を用いる場合であって有機シリコン化合物が常温で液体又は固体である場合には、有機シリコン化合物の入った容器全体を加熱し、気化させて用いる。
 上記の場合において、有機シリコン化合物ガス及び酸素原料ガスの流量を例えば1~10cm3/分に制御し、例えば20~400cm3/分に流量を制御したアルゴンガスと一緒にプラズマCVD装置に導入する(直接気化導入方式)。
In the case where an SiO x (1.8 ≦ x ≦ 2) film is formed on a cured film using the plasma CVD method, an organic silicon compound is used as a silicon source gas, and the organic silicon compound is liquid at room temperature. Alternatively, in the case of a solid, the entire container containing the organosilicon compound is heated and vaporized for use.
In the above case, the flow rates of the organic silicon compound gas and the oxygen source gas are controlled to 1 to 10 cm 3 / min, for example, and introduced into the plasma CVD apparatus together with the argon gas whose flow rate is controlled to 20 to 400 cm 3 / min. (Direct vaporization method).
 また、上記の直接気化導入方式の他に有機シリコン化合物が液体の場合は、アルゴンガスをキャリアーガスとして用い、有機シリコン化合物の入った温度制御可能な容器に、アルゴンガスを例えば20~400cm3/分の流量で導入し、有機シリコン化合物をバブリングさせて、有機シリコン化合物蒸気及びアルゴンガスを一緒にプラズマCVD装置に導入してもよい(キャリアーガスによるバブリング導入方式)。 In addition to the direct vaporization introduction method described above, when the organosilicon compound is liquid, argon gas is used as a carrier gas, and argon gas is contained in a temperature-controllable container containing the organosilicon compound, for example, 20 to 400 cm 3 / Alternatively, the organic silicon compound may be bubbled and the organic silicon compound vapor and the argon gas may be introduced together into the plasma CVD apparatus (a bubbling introduction method using a carrier gas).
 上記無機硬質物層の製造方法において、無機硬質物層がSiNy(1.2≦y≦4/3)膜である場合、SiNy(1.2≦y≦4/3)膜を形成する原料ガスは、例えばシリコン原料ガス及び窒素原料ガスである。
 好適に用いられるシリコン原料ガスとしては、SiH4ガス、Si26ガス、Si38ガスなどのシランガスが挙げられる。
 また、好適に用いられる窒素原料ガスとしては、N2ガス及びNH3ガスが挙げられる。
In the method for manufacturing the inorganic hard material layer, when the inorganic hard material layer is a SiN y (1.2 ≦ y ≦ 4/3) film, a SiN y (1.2 ≦ y ≦ 4/3) film is formed. The source gas is, for example, a silicon source gas and a nitrogen source gas.
Suitable silicon source gases include silane gases such as SiH 4 gas, Si 2 H 6 gas, and Si 3 H 8 gas.
Further, suitable nitrogen source gas to be used include N 2 gas and NH 3 gas.
 上記無機硬質物層の製造方法において、無機硬質物層がアモルファス状炭素膜である場合、アモルファス状炭素膜を形成する原料ガスとしては、炭化水素ガスが好適に用いられる。
 なお、炭化水素ガスの濃度が高い場合、H2ガスを同時に導入して希釈してもよい。
 上述のCVD法による無機硬質物層の製造方法において、無機硬質物層の原料として原料ガスを用いているが、これに限定されない。例えば、後述する無機硬質物層の蒸着原料を気化させて用いてもよい。
In the method for producing an inorganic hard material layer, when the inorganic hard material layer is an amorphous carbon film, a hydrocarbon gas is suitably used as a raw material gas for forming the amorphous carbon film.
Incidentally, if the concentration of the hydrocarbon gas is high, it may be diluted by introducing H 2 gas simultaneously.
In the manufacturing method of the inorganic hard material layer by the above-described CVD method, the raw material gas is used as the raw material of the inorganic hard material layer, but the present invention is not limited to this. For example, you may vaporize and use the vapor deposition raw material of the inorganic hard material layer mentioned later.
 無機硬質物層をPVD法により積層する具体例として、イオンプレーティング法を用いて無機硬質物層を積層する場合を説明する。
 イオンプレーティング法とは、真空蒸着装置内に反応性ガスなどを導入し、種々の方法により装置内にガスプラズマを発生させ、生成した蒸着粒子(原子・分子)の一部をイオン化して加速し、真空中に置かれた基材に、蒸着粒子及びそのイオンを照射して、基材上に蒸着材料の薄膜を成膜する方法である。すなわち、イオンプレーティング法とは、真空蒸着技術及びプラズマ技術の複合技術である。
 上記イオンプレーティング法は、例えば特開昭58-29835号公報に開示されている。
As a specific example of laminating the inorganic hard material layer by the PVD method, a case where the inorganic hard material layer is laminated using the ion plating method will be described.
The ion plating method introduces reactive gas into the vacuum deposition system, generates gas plasma in the system by various methods, and ionizes some of the generated deposition particles (atoms / molecules) to accelerate. In this method, the base material placed in a vacuum is irradiated with vapor deposition particles and ions thereof to form a thin film of the vapor deposition material on the base material. That is, the ion plating method is a combined technique of vacuum deposition technique and plasma technique.
The ion plating method is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-29835.
 本発明においては、基材及び硬化膜の積層体、及び無機硬質物層の蒸着原料を真空蒸着装置内の所定の位置にそれぞれ配置し、プラズマを発生させるため、装置内にアルゴン、キセノンなどの不活性ガス、及び必要に応じてO2、N2、アセチレン、空気などの反応性ガスを装置内に導入し、蒸着原料の近傍で高周波電圧を印加し、蒸着原料をプラズマ化して、硬化膜上に無機硬質物層を積層する。 In the present invention, the laminate of the base material and the cured film, and the vapor deposition raw material of the inorganic hard material layer are respectively arranged at predetermined positions in the vacuum vapor deposition apparatus, and plasma is generated, so that argon, xenon, etc. are contained in the apparatus. An inert gas and, if necessary, reactive gases such as O 2 , N 2 , acetylene, and air are introduced into the apparatus, a high-frequency voltage is applied in the vicinity of the vapor deposition raw material, and the vapor deposition raw material is turned into plasma to form a cured film. An inorganic hard material layer is laminated thereon.
 無機硬質物層の蒸着原料としては、無機硬質物層がSiOx(1.8≦x≦2)膜である場合は、酸化珪素などが挙げられ、無機硬質物層がSiNy(1.2≦y≦4/3)膜である場合は、窒化珪素などが挙げられ、また無機硬質物層がアモルファス状炭素膜である場合は、DLC(ダイヤモンドライクカーボン)などが挙げられる。
 無機硬質物層の蒸着原料は、無機硬質物層として形成させたい原料そのものを使用すればよい。
 なお、イオンプレーティング法における無機硬質物層の蒸着原料は、固体に限定されない。例えば、蒸着原料が蒸発させにくい原料である場合、上述の無機硬質物層の原料ガス(シリコン原料ガス及び酸素原料ガス)を真空蒸着装置内に導入し、リアクティブ蒸着を行って無機硬質物層を積層してもよい。
As a vapor deposition raw material for the inorganic hard material layer, when the inorganic hard material layer is a SiO x (1.8 ≦ x ≦ 2) film, silicon oxide or the like can be cited, and the inorganic hard material layer can be SiN y (1.2. ≦ y ≦ 4/3) In the case of a film, silicon nitride and the like can be mentioned. In the case where the inorganic hard material layer is an amorphous carbon film, DLC (diamond-like carbon) and the like can be mentioned.
The raw material to be formed as the inorganic hard material layer may be used as the vapor deposition raw material for the inorganic hard material layer.
In addition, the vapor deposition raw material of the inorganic hard material layer in an ion plating method is not limited to solid. For example, when the vapor deposition raw material is difficult to evaporate, the inorganic hard material layer is introduced by introducing the above-mentioned inorganic hard material layer raw material gas (silicon raw material gas and oxygen raw material gas) into the vacuum vapor deposition apparatus and performing reactive vapor deposition. May be laminated.
 真空蒸着装置内の圧力は、例えば1.3×10-3~1.3×10-1Pa程度である。
 高周波電圧を印加する装置は、高周波放電を行うことができる装置であれば特に限定されない。上記高周波電圧は、例えば0.5kV~8.0kV程度である。
 上記イオンプレーティング法において、硬化膜の表層への蒸着が高周波放電中に行われるようにするため、抵抗加熱、電子ビーム加熱、高周波誘導加熱、レーザービーム加熱などの加熱手段を用いて、必要に応じて蒸着原料を蒸発させてもよい。
The pressure in the vacuum evaporation apparatus is, for example, about 1.3 × 10 −3 to 1.3 × 10 −1 Pa.
The device for applying the high frequency voltage is not particularly limited as long as it is a device capable of performing high frequency discharge. The high frequency voltage is, for example, about 0.5 kV to 8.0 kV.
In the above ion plating method, it is necessary to use heating means such as resistance heating, electron beam heating, high frequency induction heating, and laser beam heating so that vapor deposition on the surface layer of the cured film is performed during high frequency discharge. Accordingly, the vapor deposition material may be evaporated.
 PVD法による無機硬質物層の積層方法はイオンプレーティング法に限定されない。上述したように、真空蒸着法、スパッタリング法などを用いて無機硬質物層を積層できる。
 真空蒸着法とは、真空中で原料を熱的に蒸発させて、この蒸発粒子を基材表面まで輸送し、基材表面に蒸発粒子を再配列させて薄膜を形成する方法である。真空蒸着法において、真空度は、通常1.3×10-2Pa以下である。
 スパッタリング法とは、不活性ガスをプラズマにし、得られた正イオンを原料に衝突させ、原料表面の元素原子を叩き出して、これを近くに置いた基材に付着及び/又は堆積させて薄膜を形成する方法である。
The lamination method of the inorganic hard material layer by the PVD method is not limited to the ion plating method. As described above, the inorganic hard material layer can be laminated using a vacuum deposition method, a sputtering method, or the like.
The vacuum deposition method is a method in which a raw material is thermally evaporated in a vacuum, the evaporated particles are transported to the substrate surface, and the evaporated particles are rearranged on the substrate surface to form a thin film. In the vacuum evaporation method, the degree of vacuum is usually 1.3 × 10 −2 Pa or less.
Sputtering is a method in which an inert gas is turned into plasma, the obtained positive ions collide with the raw material, element atoms on the surface of the raw material are knocked out, and are attached and / or deposited on a nearby substrate. It is a method of forming.
(透明導電膜)
 本発明の第2の樹脂積層体における透明導電膜は、付与させたい機能に応じて選択でき、特に制限はない。例えば、透明導電膜に低抵抗な電気特性を付与させたい場合、透明導電膜は、好ましくは、酸化亜鉛、AZO(アルミニウムドープ酸化亜鉛)やGZO(ガリウムドープ酸化亜鉛)等の酸化亜鉛を主成分とする材料、あるいはITO(錫ドープ酸化インジウム)、SnO2(酸化スズ)、IZO(亜鉛ドープ酸化インジウム)、ICO(セリウムドープ酸化インジウム)、ATO(アンチモンドープ酸化スズ)、FTO(フッ素ドープ酸化スズ)等の酸化亜鉛を主成分としない透明かつ導電性を有する材料が挙げられる。
(Transparent conductive film)
The transparent conductive film in the 2nd resin laminated body of this invention can be selected according to the function to give, and there is no restriction | limiting in particular. For example, when it is desired to impart low resistance electrical characteristics to the transparent conductive film, the transparent conductive film is preferably composed mainly of zinc oxide, zinc oxide such as AZO (aluminum doped zinc oxide) or GZO (gallium doped zinc oxide). Or ITO (tin doped indium oxide), SnO 2 (tin oxide), IZO (zinc doped indium oxide), ICO (cerium doped indium oxide), ATO (antimony doped tin oxide), FTO (fluorine doped tin oxide) And a transparent and conductive material that does not contain zinc oxide as a main component.
 透明導電膜の導電性の指標の一つとしてキャリア濃度があるが、キャリア濃度が多いほど導電性は高い。キャリア濃度としては、1×1018/cm3以上であれば、10000Ω/□以下の表面抵抗値が得られるので好ましい。また、キャリア濃度が1×1019/cm3以上であれば、赤外反射が起こり反射防止膜としては好ましい。さらに、5×1019/cm3以上であれば、タッチパネル用途として用いるための10~1000Ω/□の表面抵抗値を持つ樹脂積層体が作製できる。 One of the conductivity indicators of the transparent conductive film is a carrier concentration. The higher the carrier concentration, the higher the conductivity. A carrier concentration of 1 × 10 18 / cm 3 or more is preferable because a surface resistance value of 10000Ω / □ or less can be obtained. Further, when the carrier concentration is 1 × 10 19 / cm 3 or more, infrared reflection occurs and it is preferable as an antireflection film. Furthermore, if it is 5 × 10 19 / cm 3 or more, a resin laminate having a surface resistance value of 10 to 1000 Ω / □ for use as a touch panel can be produced.
 透明導電膜を非晶質薄膜にすると被覆率が良くなるため、より膜厚を小さくすることができ好ましい。非晶質の透明導電膜材料としては、IZO(亜鉛ドープ酸化インジウム)、ZTO(酸化亜鉛-酸化スズ)系薄膜、IZTO(酸化インジウム-酸化亜鉛-酸化スズ)系、酸化スズ系薄膜等であり、またそれらの薄膜に電気特性・光学特性・機械的特性を付与した酸化物を添加した系等が挙げられる。
 表面抵抗値を高抵抗値に設定する場合には、材料を選ぶか、膜厚や成膜の条件により調整できる。例えば、表面抵抗値を下げる場合は、透明導電膜にITO等の抵抗率が良い(低い)結晶性の材料を用いることができる。また、膜厚を増加させることにより表面抵抗値を下げることができるが、透明導電膜の膜厚を薄くすると透過率の向上が期待できる。
 また、表面抵抗値は使用目的に応じて適宜決定すれば良いが、電気光学素子用、光電変換素子用、液晶用、タッチパネル用等に用いるのであれば、好ましくは表面抵抗値が10Ω/□以上5000Ω/□以下であり、より好ましくは100Ω/□以上2000Ω/□以下である。また、透明導電膜の厚さは、例えば5nm以上が好ましく、より好ましくは10~300nmである。また後述する透明導電膜の形成方法において、透明導電膜は、好ましくは直接硬化膜上に積層する。
It is preferable to use an amorphous thin film as the transparent conductive film because the coverage is improved and the film thickness can be further reduced. Amorphous transparent conductive film materials include IZO (zinc-doped indium oxide), ZTO (zinc oxide-tin oxide) -based thin film, IZTO (indium oxide-zinc oxide-tin oxide) -based, and tin oxide-based thin film. Moreover, the system etc. which added the oxide which provided the electrical property, the optical characteristic, and the mechanical characteristic to those thin films are mentioned.
When the surface resistance value is set to a high resistance value, the material can be selected, or can be adjusted depending on the film thickness and film forming conditions. For example, when the surface resistance value is lowered, a crystalline material having a good (low) resistivity such as ITO can be used for the transparent conductive film. Further, although the surface resistance value can be lowered by increasing the film thickness, an improvement in transmittance can be expected by reducing the film thickness of the transparent conductive film.
Further, the surface resistance value may be appropriately determined according to the purpose of use, but when used for an electro-optical element, a photoelectric conversion element, a liquid crystal, a touch panel, etc., the surface resistance value is preferably 10Ω / □ or more. 5000Ω / □ or less, more preferably 100Ω / □ or more and 2000Ω / □ or less. The thickness of the transparent conductive film is preferably, for example, 5 nm or more, more preferably 10 to 300 nm. Moreover, in the formation method of the transparent conductive film mentioned later, Preferably a transparent conductive film is laminated | stacked directly on a cured film.
 また、各層の最適な膜厚は、例えば以下の方法により決定することができる。
 初めに、用途に応じて必要な表面抵抗値が得られるような透明導電膜の膜厚を決定させておく。次に硬化膜に使用する材料の屈折率を固定値とし、最適化アルゴリズムを用いながら硬化膜の膜厚を変化させて、最も高い透過率もしくは最も低い反射率が得られるような硬化膜の膜厚を求める。
 なお、硬化膜上に設けられる透明導電膜は単層であってもよく、2層以上の多層膜であってもよい。例えば、導電性を有する多層膜付基材の透過率(反射率)を考慮し透明導電膜を2層以上設けてもよく、さらに屈折率の高い反射防止膜を設けても良い。また、反射防止膜を形成する場合であっても1層に限るものではなく、所望する透過率(反射率)が得られるような多層構造(例えば2層~6層等)を形成してもよい。
Moreover, the optimal film thickness of each layer can be determined by the following method, for example.
First, the film thickness of the transparent conductive film is determined so as to obtain a necessary surface resistance value according to the application. Next, set the refractive index of the material used for the cured film to a fixed value, and change the thickness of the cured film using an optimization algorithm to obtain the highest transmittance or the lowest reflectance. Find the thickness.
The transparent conductive film provided on the cured film may be a single layer or a multilayer film having two or more layers. For example, two or more transparent conductive films may be provided in consideration of the transmittance (reflectance) of the substrate with multilayer film having conductivity, and an antireflection film having a higher refractive index may be provided. Further, even when an antireflection film is formed, it is not limited to a single layer, and a multilayer structure (for example, 2 to 6 layers, etc.) capable of obtaining a desired transmittance (reflectance) may be formed. Good.
(樹脂積層体の製造方法)
 次に、本発明の第2の樹脂積層体の製造方法について説明する。
 本発明の樹脂積層体の製造方法は、前述した(A)~(E)成分を含むコーティング液を硬化させてなる硬化膜を基材上に形成させる工程(a)、及び上記硬化膜上に透明導電膜を形成させる工程(b)、を含むことを特徴とする。
 なお、上記工程(a)については、前述のコーティング液及び硬化膜の説明において示したとおりである。
(Method for producing resin laminate)
Next, the manufacturing method of the 2nd resin laminated body of this invention is demonstrated.
The method for producing a resin laminate of the present invention comprises a step (a) of forming a cured film formed by curing the coating liquid containing the components (A) to (E) described above on a substrate, and the cured film on the cured film. A step (b) of forming a transparent conductive film.
In addition, about the said process (a), it is as having shown in description of the above-mentioned coating liquid and cured film.
(透明導電膜の形成)
 本発明の第2の樹脂積層体は、透明導電膜と基材との間に硬化膜が形成されたものであり、透明導電膜は、該硬化膜上に好ましくは化学気相成長法(CVD法)、物理気相成長法(PVD法)あるいは塗布法により形成する。CVD法の具体例としては、プラズマCVD法、光CVD法、ミスト法等が挙げられ、PVD法の具体例としては、イオンプレーティング法、真空蒸着法、スパッタリング法等が挙げられ、塗布法による具体例はスプレー法、スピンコート法、バーコード法、ドクターブレード法、インクジェット法等が挙げられる。
 真空下で行う薄膜形成技術を用いて形成した透明導電膜は、通常、無機成分には密着するが、有機成分には密着しにくい性質を有する。本発明の樹脂積層体の場合、硬化膜が、有機微粒子がSi-Oマトリックス中に閉じ込められた無機・有機ハイブリッド構造を有することから、透明導電膜と硬化膜との密着性は良好である。
(Formation of transparent conductive film)
The second resin laminate of the present invention has a cured film formed between the transparent conductive film and the substrate, and the transparent conductive film is preferably formed on the cured film by chemical vapor deposition (CVD). Method), physical vapor deposition (PVD method) or coating method. Specific examples of the CVD method include a plasma CVD method, a photo CVD method, a mist method, and the like. Specific examples of the PVD method include an ion plating method, a vacuum deposition method, a sputtering method, and the like. Specific examples include a spray method, a spin coat method, a barcode method, a doctor blade method, and an ink jet method.
A transparent conductive film formed by using a thin film forming technique performed under vacuum usually has a property of being in close contact with an inorganic component but hardly adhering to an organic component. In the case of the resin laminate of the present invention, since the cured film has an inorganic / organic hybrid structure in which organic fine particles are confined in the Si—O matrix, the adhesion between the transparent conductive film and the cured film is good.
 透明導電膜をスパッタリング法により積層する具体例として、スパッタリング法を用いて硬化膜上にITO膜を形成する場合を説明する。
 スパッタリング法とは、不活性ガスをプラズマにし、得られた正イオンを原料に衝突させ、原料表面の元素原子を叩き出して、これを近くに置いたターゲットと呼ばれる基材に付着及び/又は堆積させて薄膜を形成する方法である。
 この場合、ターゲットにはITO焼結体を用いる。スパッタリング装置内に基材及び硬化膜からなる積層体を配置し、装置内を通常10-5Pa以下の真空にした後、アルゴンガスを流入し、0.1~10Pa程度の真空下で、0.1~10kW/cm2程度の直流電力を印加してプラズマを発生させ、硬化膜上にITO膜を形成する。
 透明導電膜がITO膜である場合、ITO膜を形成する原料は、例えば10質量%SnO2添加の酸化インジウム焼結体ターゲットを用いる。導電率や光学特性の制御のため、アルゴンガスに酸素ガスを混入する場合もある。
As a specific example of laminating a transparent conductive film by a sputtering method, a case where an ITO film is formed on a cured film using a sputtering method will be described.
Sputtering is a method in which an inert gas is turned into plasma, the obtained positive ions collide with the raw material, and element atoms on the surface of the raw material are knocked out and adhered and / or deposited on a substrate called a target placed nearby. And forming a thin film.
In this case, an ITO sintered body is used for the target. A laminate composed of a base material and a cured film is placed in a sputtering apparatus, and after the inside of the apparatus is evacuated to a pressure of 10 −5 Pa or less, an argon gas is introduced and a vacuum of about 0.1 to 10 Pa is applied. Apply DC power of about 1 to 10 kW / cm 2 to generate plasma, and form an ITO film on the cured film.
When the transparent conductive film is an ITO film, for example, an indium oxide sintered body target added with 10% by mass of SnO 2 is used as a raw material for forming the ITO film. In some cases, oxygen gas is mixed into the argon gas in order to control conductivity and optical characteristics.
 PVD法による透明導電膜の積層方法は、上記スパッタリング法に限定されず、真空蒸着法、イオンプレーティング法等を用いて透明導電膜を積層できる。
 真空蒸着法とは、真空中で原料を熱的に蒸発させて、この蒸発粒子を基材表面まで輸送し、基材表面に蒸発粒子を再配列させて薄膜を形成する方法である。真空蒸着法において、真空度は、通常1.3×10-2Pa以下である。
 イオンプレーティング法とは、真空蒸着装置内に反応性ガス等を導入し、種々の方法により装置内にガスプラズマを発生させ、生成した蒸着粒子(原子・分子)の一部をイオン化して加速し、真空中に置かれた基材に、蒸着粒子及びそのイオンを照射して、基材上に蒸着材料の薄膜を形成する方法である。すなわち、イオンプレーティング法とは、真空蒸着技術及びプラズマ技術の複合技術である。
The method for laminating the transparent conductive film by the PVD method is not limited to the sputtering method, and the transparent conductive film can be laminated by using a vacuum deposition method, an ion plating method, or the like.
The vacuum deposition method is a method in which a raw material is thermally evaporated in a vacuum, the evaporated particles are transported to the substrate surface, and the evaporated particles are rearranged on the substrate surface to form a thin film. In the vacuum evaporation method, the degree of vacuum is usually 1.3 × 10 −2 Pa or less.
The ion plating method introduces a reactive gas into a vacuum deposition system, generates gas plasma in the system by various methods, and ionizes a part of the generated deposition particles (atoms / molecules) for acceleration. In this method, the base material placed in a vacuum is irradiated with vapor deposition particles and ions thereof to form a thin film of the vapor deposition material on the base material. That is, the ion plating method is a combined technique of vacuum deposition technique and plasma technique.
 透明導電膜をCVD法により積層する具体例として、プラズマCVD法を用いて硬化膜上にZnO膜を形成する場合を説明する。
 プラズマCVD法とは、原料ガスをエネルギー密度の高いプラズマ状態中に導入して分解させ、基材へ化学反応によって目的の材料を被覆させる方法である。
 本発明の第2の樹脂積層体においては、プラズマCVD装置内に基材及び硬化膜からなる積層体を配置し、装置内を真空にした後、ZnO膜の原料ガスをプラズマCVD装置にアルゴンガスを添加しながら導入し、それぞれのガス流量が安定化したところで、電力を印加してプラズマを発生させ、硬化膜上にZnO膜を形成する。
As a specific example of laminating a transparent conductive film by a CVD method, a case where a ZnO film is formed on a cured film using a plasma CVD method will be described.
The plasma CVD method is a method in which a raw material gas is introduced into a plasma state having a high energy density, decomposed, and a target material is coated on a base material by a chemical reaction.
In the second resin laminate of the present invention, a laminate consisting of a base material and a cured film is placed in a plasma CVD apparatus, and after the inside of the apparatus is evacuated, a ZnO film source gas is supplied to the plasma CVD apparatus by argon gas. When each gas flow rate is stabilized, power is applied to generate plasma to form a ZnO film on the cured film.
(光触媒層)
 本発明の第3の樹脂積層体における光触媒層に用いられる光触媒材料としては特に制限はなく、従来公知のもの、例えば二酸化チタン、チタン酸ストロンチウム、チタン酸バリウム、チタン酸ナトリウム、二酸化ジルコニウム、α-Fe23、酸化タングステン、硫化カドミウム、硫化亜鉛等を用いることができる。これらは単独で用いてもよいし、複数組み合わせて用いてもよい。これらの中で、二酸化チタン、特にアナターセ型二酸化チタンが実用的光触媒として有用である。また、これらの光触媒の活性を促進させる目的で、従来公知の光触媒促進剤を添加してもよい。光触媒促進剤としては例えば、白金、パラジウム、ロジウム、ルテニウム等の白金族金属が好ましく挙げられ、これらは単独で用いてもよいし、複数組み合わせて用いてもよい。この光触媒促進剤の添加量は、光触媒活性の観点から、通常、光触媒に対して1~20質量%の範囲で選ばれる。
(Photocatalyst layer)
The photocatalyst material used for the photocatalyst layer in the third resin laminate of the present invention is not particularly limited, and conventionally known materials such as titanium dioxide, strontium titanate, barium titanate, sodium titanate, zirconium dioxide, α- Fe 2 O 3 , tungsten oxide, cadmium sulfide, zinc sulfide and the like can be used. These may be used alone or in combination. Among these, titanium dioxide, particularly anatase type titanium dioxide, is useful as a practical photocatalyst. Moreover, you may add a conventionally well-known photocatalyst promoter for the purpose of promoting the activity of these photocatalysts. Preferred examples of the photocatalyst promoter include platinum group metals such as platinum, palladium, rhodium, and ruthenium, and these may be used alone or in combination. The addition amount of the photocatalyst promoter is usually selected in the range of 1 to 20% by mass with respect to the photocatalyst from the viewpoint of photocatalytic activity.
 光触媒層の形成法については後述するが、湿式法を用いる場合は、光触媒層のマトリックスに通常、シリコーン系化合物を用いる。例えば一例として、ポリオルガノシロキサン又はテトラエトキシシラン等のアルコキシシランを加水分解した後、縮合したもの等がそのままマトリックスとなる。 The method for forming the photocatalyst layer will be described later, but when a wet method is used, a silicone compound is usually used for the matrix of the photocatalyst layer. For example, as an example, a product obtained by hydrolyzing an alkoxysilane such as polyorganosiloxane or tetraethoxysilane and then condensing it becomes a matrix as it is.
(樹脂積層体の製造方法)
 次に、本発明の第3の樹脂積層体の製造方法について説明する。
 本発明の樹脂積層体の製造方法は、前述した本発明の硬化膜を基材上に形成させる工程(a)、及び上記硬化膜上に光触媒層を形成させる工程(b)、を含む。なお、上記工程(a)については、前述の硬化膜の説明において示したとおりである。
(Method for producing resin laminate)
Next, the manufacturing method of the 3rd resin laminated body of this invention is demonstrated.
The manufacturing method of the resin laminated body of this invention includes the process (a) which forms the cured film of this invention mentioned above on a base material, and the process (b) of forming a photocatalyst layer on the said cured film. In addition, about the said process (a), it is as having shown in description of the above-mentioned cured film.
 硬化膜上に光触媒層を形成する方法として特に制限はなく、様々な方法が使用可能である。例えば、真空蒸着法、スパッタリング法等のPVD法や金属溶射法等の乾式法、塗工液を用いる湿式法等が挙げられる。湿式法に用いる塗工液としては、光触媒粒子その他を適当な無機系バインダー(例えば、シリコーン系化合物等)に分散させたものが好ましく用いられる。
塗工液は、公知の方法、例えば、ディップコート法、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等により塗布し、乾燥又は硬化させて、光触媒層を形成することができる。光触媒層の厚みは、通常、5nm~2μmであり、好ましくは10nm~2μmであり、特に好ましくは20nm~1μmである。5nm未満では光触媒機能が十分発揮されないおそれがある。2μmを越えると、それ以上厚くしても光触媒機能はあまり向上しない。
There is no restriction | limiting in particular as a method of forming a photocatalyst layer on a cured film, Various methods can be used. For example, a PVD method such as a vacuum deposition method and a sputtering method, a dry method such as a metal spraying method, a wet method using a coating liquid, and the like can be given. As the coating liquid used in the wet method, a solution obtained by dispersing photocatalyst particles and the like in a suitable inorganic binder (for example, a silicone compound) is preferably used.
The coating liquid is applied by a known method such as dip coating, spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, etc. It can be dried or cured to form a photocatalytic layer. The thickness of the photocatalyst layer is usually 5 nm to 2 μm, preferably 10 nm to 2 μm, and particularly preferably 20 nm to 1 μm. If it is less than 5 nm, the photocatalytic function may not be sufficiently exhibited. If it exceeds 2 μm, the photocatalytic function is not improved so much even if it is thicker.
 本発明の樹脂積層体は成形体(樹脂積層体の成形体)であってもよい。樹脂積層体の成形体は、熱成形により製造することができる。熱成形としては、例えば、真空成形、真空圧空成形、圧空成形、プラグアシスト成形、マッチモールド成形を挙げることができる。(熱成形に用いる基材)
 熱成形に用いる基材(以下、単に「基材」という。)について以下に説明する。
 熱による成形を行うため、基材の軟化点が50~300℃程度の範囲にある熱可塑性樹脂を主体とするシートもしくはフィルムが好ましく、例えば、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリスチレン、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)、アクリロニトリル・スチレン樹脂(AS樹脂)、メチルメタクリレート・スチレン樹脂(MS樹脂)、ポリエステル系樹脂、アクリル系樹脂、塩化ビニル系樹脂、フッ素系樹脂などを挙げることができ、前記ポリマーを複数混合したポリマーアロイ・ポリマーブレンドでもよい。また、前記樹脂を複数積層した積層構造体でもよい。
 基材の硬化膜が形成されていない面には装飾層を設けてもよい。装飾層としてはインキ層、高輝度インキ層、金属蒸着層などが挙げられる。また、装飾層を単層でもよいし、互いを組み合せた積層でもよい。
 次に、基材の厚さについて説明する。
 インサート成形用基材シートもしくはフィルムの厚みとしては、5μm~0.7mmが好ましい。5μm未満の場合、フィルム強度が低く成形の際にフィルムが破れる問題がある。また、0.7mmを超えると巻き状態のインサート成形用シートとすることが困難であり生産性に劣るものとなる。
The resin laminate of the present invention may be a molded article (molded article of a resin laminate). The molded body of the resin laminate can be manufactured by thermoforming. Examples of thermoforming include vacuum forming, vacuum / pressure forming, pressure forming, plug assist forming, and match mold forming. (Substrate used for thermoforming)
A base material used for thermoforming (hereinafter simply referred to as “base material”) will be described below.
In order to perform molding by heat, a sheet or film mainly composed of a thermoplastic resin having a base material softening point in the range of about 50 to 300 ° C. is preferable. For example, polycarbonate, polypropylene, polyethylene, polystyrene, acrylonitrile / butadiene / styrene Resin (ABS resin), acrylonitrile / styrene resin (AS resin), methyl methacrylate / styrene resin (MS resin), polyester resin, acrylic resin, vinyl chloride resin, fluorine resin, and the like. A polymer alloy / polymer blend in which a plurality of these are mixed may be used. Further, a laminated structure in which a plurality of the resins are laminated may be used.
You may provide a decoration layer in the surface in which the cured film of a base material is not formed. Examples of the decorative layer include an ink layer, a high brightness ink layer, and a metal vapor deposition layer. Further, the decoration layer may be a single layer or a laminate in which the decoration layers are combined.
Next, the thickness of the substrate will be described.
The thickness of the base sheet or film for insert molding is preferably 5 μm to 0.7 mm. When the thickness is less than 5 μm, the film strength is low, and there is a problem that the film is broken during molding. On the other hand, when the thickness exceeds 0.7 mm, it is difficult to obtain a wound insert molding sheet, resulting in poor productivity.
 以下、熱成形方法の一例について説明するが、本発明は下記の記載により制限されるものではない。
 射出成形金型内に熱成形を行っていない基材シートを硬化膜側の面が可動型に面するようにセットし、可動型の真空吸引孔を利用して真空吸引することで予備成形を行う。続けて、硬化膜が形成されていない面側に射出樹脂を充填させるインモールド成形を用いて射出樹脂と基材シートを一体化させる。
 また、射出成形金型内に熱成形を行った基材シートをセットした後に、硬化膜が形成されていない面側に射出樹脂を充填させるインサートモールド成形を用いて射出樹脂と基材シートを一体化させてもよい。
Hereinafter, although an example of a thermoforming method is demonstrated, this invention is not restrict | limited by the following description.
A base sheet that has not been thermoformed is set in an injection mold so that the surface of the cured film faces the movable mold, and pre-molding is performed by vacuum suction using the movable vacuum suction hole. Do. Subsequently, the injection resin and the base sheet are integrated using in-mold molding in which the injection resin is filled on the surface side on which the cured film is not formed.
Also, after setting the thermoformed base sheet in the injection mold, the injection resin and base sheet are integrated using insert mold molding that fills the injection resin on the side where the cured film is not formed. You may make it.
 成形用基材シートを凹凸または円柱型、楕円柱型に成形するには熱成形を行う。熱成形法としては真空成形(プラグアシスト成形などを含む)、真空圧空成形、圧空成形、マッチモールド成形、押圧成形などが挙げられる。
 熱成形を行った基材シートを射出成形金型内に装着するために不要部分をカットして射出成形金型の形状に合わせるトリミングを行う。
 トリミングの方法については特に限定されるものではないが、例えばダイカット法、レーザーカット法、ウォータージェット法、抜き刃プレス法、トムソン打抜き法などが挙げられる。なお、熱成形する際に同時にトリミングを行ってもよい。
Thermoforming is performed to form the forming base sheet into an uneven shape, a cylindrical shape, or an elliptical shape. Examples of the thermoforming method include vacuum forming (including plug assist forming), vacuum / pressure forming, pressure forming, match mold forming, and press forming.
In order to mount the base sheet that has been thermoformed into the injection mold, trimming is performed so that unnecessary portions are cut to match the shape of the injection mold.
The trimming method is not particularly limited, and examples thereof include a die cutting method, a laser cutting method, a water jet method, a punching blade press method, and a Thomson punching method. Trimming may be performed at the same time as thermoforming.
 射出成形金型内に熱成形を行っていない基材シートを硬化膜側の面が可動型に面するようにセットし、可動型の真空吸引孔を利用して真空吸引することにより予備成形を行う。続けて、硬化膜が形成されていない面側に射出樹脂を充填させる。インモールド射出成形の条件については特に制限はなく通常の射出成形の条件範囲内で対応できる。また射出成形機は縦型射出成形機、横型射出成形機のいずれを使用してもよい。 A base sheet that has not been thermoformed is set in an injection mold so that the surface of the cured film faces the movable mold, and preliminary molding is performed by vacuum suction using the vacuum suction hole of the movable mold. Do. Subsequently, the injection resin is filled on the surface side where the cured film is not formed. There are no particular restrictions on the conditions for in-mold injection molding, and the conditions can be met within the range of normal injection molding. The injection molding machine may be either a vertical injection molding machine or a horizontal injection molding machine.
 熱成形を行った基材シートを射出成形金型内にセットした後、硬化膜が形成されていない面側に射出樹脂を充填する。
 インサートモールド射出成形の条件については特に制限はなく通常の射出成形の条件範囲内で対応できる。また射出成形機は縦型射出成形機、横型射出成形機のいずれを使用してもよい。
After the thermoformed substrate sheet is set in an injection mold, an injection resin is filled on the surface side where no cured film is formed.
The insert mold injection molding conditions are not particularly limited, and can be handled within the normal injection molding condition range. The injection molding machine may be either a vertical injection molding machine or a horizontal injection molding machine.
 射出成形金型は熱成形を行った基材シートの硬化膜が形成されていない面側に射出樹脂を充填される向きにセットする機構を備えている。
 縦型射出成形機の場合には金型の下型にセットすれば重力で固定される。金型の上型にセットしなければならない場合には熱成形を行った基材シートを金型から真空吸引して固定する方式や金型の凸部分を利用して被せる方法や、ピンで固定する方法などがある。横型射出成形機の場合には固定側、可動側のいずれにセットする場合も真空吸引して固定する方式や金型の凸部分を利用して被せる方法や、ピンで固定する方法などがある。
The injection mold is provided with a mechanism for setting the base resin sheet that has been thermoformed in the direction in which the injection resin is filled on the surface side where the cured film is not formed.
In the case of a vertical injection molding machine, it is fixed by gravity if it is set in the lower mold of the mold. If it is necessary to set the mold on the upper mold, the base sheet after thermoforming is fixed by vacuum suction from the mold, the method of covering using the convex part of the mold, or fixing with a pin There are ways to do it. In the case of a horizontal injection molding machine, there are a method of fixing by vacuum suction, a method of covering using a convex portion of a mold, a method of fixing with a pin, etc. when setting on either the fixed side or the movable side.
 本発明はまた、前記本発明のコーティング液を加熱し、硬化させる工程を含むことを特徴とする硬化膜の製造方法、並びに前記本発明のコーティング液を基材上に塗布する工程と、前記コーティング液を乾燥させる工程と、前記基材を熱成形する工程と、前記コーティング液を硬化させてコーティング層を設ける工程とを含むことを特徴とする樹脂積層体の製造方法をも提供する。
 なお、上記樹脂積層体の製造方法において、更に、コーティング液を硬化させてなる樹脂積層体のコーティング層を有しない面に樹脂層を設ける工程を含むことができる。
The present invention also includes a method for producing a cured film, comprising a step of heating and curing the coating liquid of the present invention, a step of applying the coating liquid of the present invention on a substrate, and the coating There is also provided a method for producing a resin laminate comprising a step of drying a liquid, a step of thermoforming the substrate, and a step of curing the coating liquid to provide a coating layer.
In addition, the manufacturing method of the said resin laminated body can further include the process of providing a resin layer in the surface which does not have a coating layer of the resin laminated body formed by hardening | curing a coating liquid.
 本発明を実施例によりさらに詳しく説明するが、本発明はこれら例によって何ら限定されるものではない。
 なお、特に言及しない限り各例における諸特性は、下記の要領に従って求めた。
Examples The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Unless otherwise stated, various characteristics in each example were determined according to the following procedure.
(1)硬化膜中の無機成分由来の酸化物換算含量(質量%)
 テフロン(登録商標)シャーレ上で、コーティング液を熱硬化して得られたサンプルを、熱重量測定(窒素下、20℃/分上昇、室温~800℃)し、その800℃での残渣から求めた。
(2)硬化膜中の有機高分子微粒子含量(質量%)
 計算により算出した。詳しくは、(A-1)~(A-5)成分の加水分解・縮合反応が完全に進行したもの((A)成分)、有機高分子微粒子((B)成分)及びコロイダルシリカ((C)成分)の全質量中における有機高分子微粒子の質量%を算出した。
(3)コーティング液の液安定性
 常温で14日間密栓保存して、ゲル化の有無を目視により判定した。ゲル化していないものについては、株式会社エー・アンド・デイ音叉型振動式粘度計SV-10にて粘度測定を行い、初期からの変化率が3倍以内のものを「○」、3倍を超えるもの「×」とした。
(4)膜外観
 硬化膜の外観を目視観察し、異物やまだら模様、白濁を確認し、これが認められないものを「良好」とした。
(5)全光線透過率及びヘイズ
 直読ヘイズコンピュータ(スガ試験機株式会社製、HGM-2DP)にて、積層体の全光線透過率及びヘイズを測定した。
(1) Oxide equivalent content derived from inorganic components in cured film (mass%)
A sample obtained by thermosetting the coating solution on a Teflon petri dish was subjected to thermogravimetry (20 ° C./min increase under nitrogen, room temperature to 800 ° C.), and obtained from the residue at 800 ° C. It was.
(2) Organic polymer fine particle content (% by mass) in the cured film
Calculated by calculation. Specifically, the components (A-1) to (A-5) in which the hydrolysis / condensation reaction has completely proceeded (component (A)), organic polymer fine particles (component (B)), and colloidal silica ((C The mass% of organic polymer fine particles in the total mass of component)) was calculated.
(3) Liquid stability of coating liquid The container was stored tightly for 14 days at room temperature, and the presence or absence of gelation was judged visually. For those that are not gelled, the viscosity is measured with an A & D tuning fork type vibration viscometer SV-10. Exceeded “×”.
(4) Appearance of film The appearance of the cured film was visually observed to confirm foreign matters, mottled patterns, and white turbidity.
(5) Total light transmittance and haze The total light transmittance and haze of the laminate were measured with a direct reading haze computer (HGM-2DP, manufactured by Suga Test Instruments Co., Ltd.).
(6)耐摩耗性
 摩耗輪CS-10F及びテーバー摩耗試験機(ロータリーアブレージョンテスタ)(株式会社東洋精機製、型式:TS)を用いて荷重4.9Nで500回転テーバー摩耗試験を行い、テーバー摩耗試験前のヘイズとテーバー摩耗試験後のヘイズの差(ΔH)が15未満のものを「○」、15以上のものを「×」とした。
(7)耐擦傷性
 実施例1~11及び比較例1~6では、スチールウール#0000(荷重4.9N)を用い、2000mm/secで50往復した後、表面の傷付き状況を目視により評価した。全く傷が付かないものを「1」、わずかに傷が付くものを「2」、擦った箇所の半分以上の面に傷が付くものを「3」とした。
 実施例12~16及び比較例7~11では、スチールウール#0000(荷重9.8N)を用い、2000mm/secで50往復した後、表面の傷付き状況を目視により評価した。全く傷が付かないものを「1」、わずかに傷が付くものを「2」、擦った箇所の半分以上の面に傷が付くものを「3」とした。
(8)密着性
 JIS K 5400に準拠し、サンプル(硬化膜)をかみそりの刃で2mm間隔に縦横11本ずつ切れ目を入れて100個の碁盤目をつくり、市販のセロハンテープ(「CT-24(幅24mm)」、ニチバン株式会社製)を指の腹でよく密着させたのち、90°の角度で手前方向に急激に剥し、硬化膜が剥離しないで残存したます目数(X)を、X/100で表示し、硬化膜の密着性を評価した。
(6) Abrasion resistance Using a wear wheel CS-10F and a Taber abrasion tester (rotary abrasion tester) (Toyo Seiki Co., Ltd., model: TS), a 500 rotation Taber abrasion test was performed at a load of 4.9 N, and Taber abrasion The case where the difference (ΔH) between the haze before the test and the haze after the Taber abrasion test was less than 15 was designated as “◯”, and the case where the haze was 15 or more was designated as “x”.
(7) Scratch resistance In Examples 1 to 11 and Comparative Examples 1 to 6, steel wool # 0000 (load 4.9 N) was used, and after 50 reciprocations at 2000 mm / sec, the surface damage was visually evaluated. did. “1” indicates that there is no scratch at all, “2” indicates that there is a slight scratch, and “3” indicates that scratches are present on more than half of the rubbed area.
In Examples 12 to 16 and Comparative Examples 7 to 11, steel wool # 0000 (load 9.8 N) was used, and after 50 reciprocations at 2000 mm / sec, the surface damage was visually evaluated. “1” indicates that there is no scratch at all, “2” indicates that there is a slight scratch, and “3” indicates that scratches are present on more than half of the rubbed area.
(8) Adhesiveness In accordance with JIS K 5400, a sample (cured film) was cut into 11 grids at 2 mm intervals with a razor blade to make 100 grids, and a commercially available cellophane tape (“CT-24” (Width 24 mm) ”, manufactured by Nichiban Co., Ltd.), and then closely peeled off at an angle of 90 ° toward the near side, and the cured film did not peel off, and the remaining number (X) remained. Displayed by X / 100, the adhesion of the cured film was evaluated.
(9)耐煮沸性(煮沸5時間後の密着性)
 ステンレス製ビーカー中の煮沸水に積層体のサンプルを5時間浸漬したのち、密着性を評価した。密着性の評価は、上記(8)と同様におこなった。
(10)耐候性
 キセノンウェザー試験(アトラス社Ci65、出力6.5kW、ブラックパネル温度63℃、相対湿度50%)を、1000時間で実施した。試験前後の硬化膜密着性の変化で、耐候性を評価した。
(9) Boiling resistance (adhesion after 5 hours of boiling)
After immersing the sample of the laminate in boiling water in a stainless steel beaker for 5 hours, the adhesion was evaluated. The evaluation of adhesion was performed in the same manner as (8) above.
(10) Weather resistance A xenon weather test (Atlas Ci65, output 6.5 kW, black panel temperature 63 ° C., relative humidity 50%) was performed in 1000 hours. The weather resistance was evaluated by the change in adhesion of the cured film before and after the test.
(11)耐屈曲性
 100mm×幅50mm×厚み1mmの住友ベークライト株式会社製ポリカーボネート標準板(商品名:ECK100)を基板として用いた以外は各例と同じ方法で樹脂積層体のサンプルを製造した。
 このサンプルの両端を指で持ち、半径50mmカーブの強制曲げを10回行い積層面にクラックが入らなかったものを「○」、入ったもの「×」とした。
(12)耐熱性
 耐熱性試験(TABAI製、PS-222)にて、110℃、720時間の条件で実施した。試験前後での硬化膜の密着性の変化で、耐熱性を評価した。
(11) Flexibility Resin laminate samples were produced in the same manner as in each example except that a polycarbonate standard plate (trade name: ECK100) manufactured by Sumitomo Bakelite Co., Ltd. having a size of 100 mm × width 50 mm × thickness 1 mm was used as a substrate.
The sample was held at both ends with fingers and subjected to forced bending with a radius of 50 mm curve 10 times, and no crack was found on the laminated surface.
(12) Heat resistance A heat resistance test (manufactured by Tabai, PS-222) was performed at 110 ° C. for 720 hours. The heat resistance was evaluated by the change in the adhesion of the cured film before and after the test.
(13)有機微粒子分散構造
 TEM(透過型電子顕微鏡)で硬化膜の断面観察を行い、その1μm角中に存在する有機微粒子を10個選び、米国NIH(National InstituteofHealth)製フリーソフト:NIH Image 1.63を使用して平均粒径を求めた。有機微粒子の平均粒径が、200nm以下のものを「○」、平均粒径が200nmより大きいものを「×」、また粒径が200nm以下ものも存在するが、粒子が融着し粒径が200nm以上のアメーバ状になったものが存在するのを「△」とした。
(14)無機微粒子分散構造
 硬化膜中のコロイダルシリカ微粒子それぞれの平均粒径を、上記(13)と同様にして求めた。平均粒径が200nm以下のものを「○」、平均粒径が200nmより大きいものを「×」とした。
(13) Organic fine particle dispersion structure A cross-section of the cured film is observed with a TEM (Transmission Electron Microscope), and 10 organic fine particles present in the 1 μm square are selected. The average particle size was determined using .63. An organic fine particle having an average particle size of 200 nm or less is “◯”, an average particle size of greater than 200 nm is “X”, and a particle size of 200 nm or less is present. “Δ” indicates that there was an amoeba shape of 200 nm or more.
(14) Inorganic fine particle dispersion structure The average particle size of each colloidal silica fine particle in the cured film was determined in the same manner as in the above (13). Samples with an average particle size of 200 nm or less were marked with “◯”, and those with an average particle size larger than 200 nm were marked with “x”.
 また、実施例及び比較例において、商品名で記載した原料の詳細は、以下のとおりである。
(A-1)成分:Mシリケート51「テトラメトキシシランの部分縮合物(平均3~5量体)であるポリアルコキシシラン」多摩化学工業株式会社製
(A-2)成分:MTMS-A「メチルトリメトキシシランの部分縮合物であるポリオルガノアルコキシシラン」多摩化学工業株式会社製
(A-2)成分:SR2402「メチルトリメトキシシランの部分縮合物であるポリオルガノアルコキシシラン」東レ・ダウコーニング株式会社製
(B)成分:ULS―1385MG(紫外線吸収骨格種:ベンゾトリアゾール系)一方社油脂工業株式会社製(水分散/固形分濃度30質量%)
(B)成分:ULS―385MG(紫外線吸収骨格種:ベンゾフェノン系)
一方社油脂工業株式会社製(水分散/固形分濃度30質量%)
(C)成分:IPA-ST-L(コロイダルシリカ)
日産化学工業株式会社製(イソプロパノール分散、コロイダルシリカ濃度30質量%、平均粒子径40~50nm(メーカー公表値))
In the examples and comparative examples, the details of the raw materials described by trade names are as follows.
Component (A-1): M silicate 51 “polyalkoxysilane which is a partial condensate (average 3 to 5 mer) of tetramethoxysilane” manufactured by Tama Chemical Industry Co., Ltd. (A-2) component: MTMS-A “Methyl” Polyorganoalkoxysilane which is a partial condensate of trimethoxysilane "(Tama Chemical Industry Co., Ltd. (A-2) component: SR2402" Polyorganoalkoxysilane which is a partial condensate of methyltrimethoxysilane "Toray Dow Corning Co., Ltd.) Product (B) component: ULS-1385MG (ultraviolet ray absorbing skeleton species: benzotriazole), manufactured by Yushi Kogyo Co., Ltd. (water dispersion / solid content concentration 30% by mass)
(B) component: ULS-385MG (ultraviolet ray absorbing skeleton species: benzophenone series)
On the other hand, manufactured by Yushi Kogyo Co., Ltd.
Component (C): IPA-ST-L (Colloidal silica)
Made by Nissan Chemical Industries Ltd. (isopropanol dispersion, colloidal silica concentration 30% by mass, average particle size 40-50 nm (manufacturer's published value))
[実施例1~11、比較例1~6]
実施例1
(1)コーティング液の製造
 表1に示す成分及び配合量に従い調製した。
 容積50mlのサンプル管に、有機高分子微粒子:ULS-1385MG((B)成分+(E)成分)0.80gを仕込み500rpmで撹拌しながら、1-メトキシ-2-プロパノール((E)成分)4.25g、水((E)成分)0.50g、酢酸((D)成分)0.50g、Mシリケート51((A-1)成分)0.40g、MTMS-A((A-2)成分)1.10g、ジメトキシ-3-グリシドキシプロピルメチルシラン((A-4)成分)0.55g、20質量%p-トルエンスルホン酸メタノール液((D)成分+(E)成分)0.05gの順に、それぞれ1分間かけて滴下した。引き続き、室温、500rpmで60分撹拌後、一日静置し、これをA液とした。
 容積20mlのサンプル管に、3-イソシアナトプロピルトリエトキシシラン1.10g及び2-ブタノンオキシム(イソシアネート基のブロック化剤)0.35gを仕込み、室温、500rpmで10分撹拌後、一日静置し、これをC液とした。イソシアネート基がブロック化されたことについては、13C-NMRでイソシアネート基のシグナルが消失することにより確認した。3-イソシアナトプロピルトリエトキシシランと2-ブタノンオキシムの配合量の合計をブロック化イソシアナトシラン化合物:(A-5)成分の量とした。
[Examples 1 to 11, Comparative Examples 1 to 6]
Example 1
(1) Manufacture of coating liquid It prepared according to the component and compounding quantity which are shown in Table 1.
In a sample tube with a volume of 50 ml, 0.80 g of organic polymer fine particles: ULS-1385MG (component (B) + component (E)) was charged, and 1-methoxy-2-propanol (component (E)) was stirred at 500 rpm. 4.25 g, water (component (E)) 0.50 g, acetic acid (component (D)) 0.50 g, M silicate 51 (component (A-1)) 0.40 g, MTMS-A ((A-2) Component) 1.10 g, dimethoxy-3-glycidoxypropylmethylsilane (component (A-4)) 0.55 g, 20 mass% p-toluenesulfonic acid methanol liquid (component (D) + component (E)) 0 In the order of 0.05 g, each was added dropwise over 1 minute. Subsequently, after stirring for 60 minutes at room temperature and 500 rpm, the mixture was allowed to stand for one day, and this was designated as solution A.
A sample tube with a volume of 20 ml was charged with 1.10 g of 3-isocyanatopropyltriethoxysilane and 0.35 g of 2-butanone oxime (isocyanate group blocking agent), stirred at room temperature at 500 rpm for 10 minutes, and then allowed to stand for one day. This was designated as solution C. The blocking of the isocyanate group was confirmed by disappearance of the isocyanate group signal by 13 C-NMR. The total amount of 3-isocyanatopropyltriethoxysilane and 2-butanone oxime was taken as the amount of the blocked isocyanatosilane compound: (A-5) component.
 冷却管を取り付けた200ml三口フラスコに、A液と撹拌子を入れ、500rpmで撹拌しながら、B液としてIPA-ST-L((C)成分+(E)成分)6.50gを5分間かけて滴下し、室温で60分間撹拌した。続いて、窒素気流下、600rpm、80℃で3時間加熱した。引き続き、C液を加え、同条件にて80℃で4時間撹拌後、室温で一晩静置した。
 さらに、これにD液として3-アミノプロピルトリメトキシシラン((A-3)成分)0.40gを2分間かけて滴下した。室温で10分撹拌後、さらに窒素気流下、700rpm、80℃で3時間加熱した。
 引き続き1週間静置し、コーティング液を得た。
Into a 200 ml three-necked flask equipped with a condenser, put A solution and a stir bar, stir at 500 rpm, and apply 6.50 g of IPA-ST-L (component (C) + component (E)) as solution B over 5 minutes The solution was added dropwise and stirred at room temperature for 60 minutes. Then, it heated at 600 rpm and 80 degreeC under nitrogen stream for 3 hours. Then, C liquid was added, and it stirred at 80 degreeC on the same conditions for 4 hours, Then, it left still at room temperature overnight.
Further, 0.40 g of 3-aminopropyltrimethoxysilane (component (A-3)) was added dropwise thereto as a D solution over 2 minutes. After stirring at room temperature for 10 minutes, the mixture was further heated at 700 rpm and 80 ° C. for 3 hours under a nitrogen stream.
Subsequently, it was left to stand for 1 week to obtain a coating solution.
(2)積層体の作製
 基材として、ポリカーボネート基材〔出光興産株式会社製、商品名:タフロン、品番:IV2200R(耐侯グレード)、厚み3mm(全光線透過率90%、ヘイズ値0.5%)〕を用いた。
 上記(1)で得られたコーティング液を、厚み3mmのポリカーボネート成形体の表面に、硬化膜が3μmになるように、バーコーターにて塗布し、130℃、2時間で熱硬化させることにより、基材及び硬化膜よりなる積層体を作製した。
 得られたコーティング液及び積層体について評価した。評価結果を表2に示す。
(2) Production of laminate As a substrate, polycarbonate substrate [manufactured by Idemitsu Kosan Co., Ltd., trade name: Toughlon, product number: IV2200R (anti-glare grade), thickness 3 mm (total light transmittance 90%, haze value 0.5% )] Was used.
The coating liquid obtained in the above (1) is applied to the surface of a polycarbonate molded body having a thickness of 3 mm with a bar coater so that the cured film has a thickness of 3 μm, and is thermally cured at 130 ° C. for 2 hours. A laminate composed of a substrate and a cured film was produced.
The obtained coating liquid and laminate were evaluated. The evaluation results are shown in Table 2.
実施例2~11
 コーティング液を実施例1と同様の方法で、表1に示す成分及び配合量に従い製造し、積層体を作製した。得られたコーティング液及び積層体についての評価結果を表2に示す。
Examples 2 to 11
A coating solution was produced in the same manner as in Example 1 according to the components and blending amounts shown in Table 1, and a laminate was produced. Table 2 shows the evaluation results for the obtained coating liquid and laminate.
比較例1
 表3に示す成分及び配合量に従い調製した。
 容積50mlのサンプル管に、ULS-1385MG((B)成分+(E)成分)0.90gを仕込み500rpmで撹拌しながら、1-メトキシ-2-プロパノール((E)成分)2.00g、水((E)成分)0.09g、酢酸((D)成分)3.20g、メチルトリメトキシシラン((A-2)成分)2.00g、ジメトキシ-3-グリシドキシプロピルメチルシラン((A-4)成分)0.96g、5質量%p-トルエンスルホン酸メタノール液((D)成分+(E)成分)0.20gの順に、それぞれ1分間かけて滴下した。引き続き、室温、500rpmで60分撹拌後、一日静置し、これをA液とした。
 容積20mlのサンプル管に、3-イソシアナトプロピルトリエトキシシラン1.10g及び2-ブタノンオキシム(イソシアネート基のブロック化剤)0.36gを仕込み、室温、500rpmで10分撹拌後、一日静置し、これをC液とした。イソシアネート基がブロック化されたことについては、13C-NMRでイソシアネート基のシグナルが消失することにより確認した。3-イソシアナトプロピルトリエトキシシランと2-ブタノンオキシムの配合量の合計をブロック化イソシアナトシラン化合物:(A-5)成分の量とした。
Comparative Example 1
It prepared according to the component and compounding quantity which are shown in Table 3.
A sample tube with a volume of 50 ml was charged with 0.90 g of ULS-1385MG (component (B) + component (E)) and stirred at 500 rpm, while 2.00 g of 1-methoxy-2-propanol (component (E)), water (Component (E)) 0.09 g, acetic acid (component (D)) 3.20 g, methyltrimethoxysilane (component (A-2)) 2.00 g, dimethoxy-3-glycidoxypropylmethylsilane ((A -4) component) 0.96 g, 5 mass% p-toluenesulfonic acid methanol solution (component (D) + component (E)) 0.20 g was added dropwise over 1 minute each. Subsequently, after stirring for 60 minutes at room temperature and 500 rpm, the mixture was allowed to stand for one day, and this was designated as solution A.
A sample tube with a volume of 20 ml was charged with 1.10 g of 3-isocyanatopropyltriethoxysilane and 0.36 g of 2-butanone oxime (isocyanate group blocking agent), stirred at room temperature at 500 rpm for 10 minutes, and then allowed to stand for one day. This was designated as solution C. The blocking of the isocyanate group was confirmed by disappearance of the isocyanate group signal by 13 C-NMR. The total amount of 3-isocyanatopropyltriethoxysilane and 2-butanone oxime was taken as the amount of the blocked isocyanatosilane compound: (A-5) component.
 冷却管を取り付けた200ml三口フラスコに、A液と撹拌子を入れ、500rpmで撹拌しながら、B液としてIPA-ST-L((C)成分+(E)成分)7.20gを5分間かけて滴下し、室温で10分間撹拌した。続いて、窒素気流下、600rpm、80℃で3時間加熱した。引き続き、C液を加え、同条件にて80℃で4時間撹拌後、室温で一晩静置した。
 さらに、これにD液として3-アミノプロピルトリメトキシシラン((A-3)成分)0.40gを2分間かけて滴下した。室温で10分撹拌後、さらに窒素気流下、700rpm、80℃で3時間加熱した。
 引き続き1週間静置し、コーティング液を得た。(この比較例1は、実施例1のコーティング液において、(A-1)成分を用いないで製造したコーティング液を示すものであり、その硬化膜中の有機高分子微粒子含量を実施例1と同量にしたものである。)次に、このコーティング液を用い、実施例1(2)と同様にして基材及び硬化膜よりなる積層体を作製した。
 得られたコーティング液及び積層体について評価した。評価結果を表4に示す。
Into a 200 ml three-necked flask equipped with a condenser, put A solution and a stir bar and stir at 500 rpm. And then stirred at room temperature for 10 minutes. Then, it heated at 600 rpm and 80 degreeC under nitrogen stream for 3 hours. Then, C liquid was added, and it stirred at 80 degreeC on the same conditions for 4 hours, Then, it left still at room temperature overnight.
Further, 0.40 g of 3-aminopropyltrimethoxysilane (component (A-3)) was added dropwise thereto as a D solution over 2 minutes. After stirring at room temperature for 10 minutes, the mixture was further heated at 700 rpm and 80 ° C. for 3 hours under a nitrogen stream.
Subsequently, it was left to stand for 1 week to obtain a coating solution. (Comparative Example 1 shows a coating liquid produced without using the component (A-1) in the coating liquid of Example 1, and the organic polymer fine particle content in the cured film is the same as that of Example 1. Next, using this coating solution, a laminate composed of a substrate and a cured film was produced in the same manner as in Example 1 (2).
The obtained coating liquid and laminate were evaluated. The evaluation results are shown in Table 4.
比較例2~6
 比較例1と同様の方法で、表3に示す成分及び配合量に従い、コーティング液を製造すると共に、積層体を作製した。(この比較例2,3は、実施例2,3のコーティング液において、(A-1)成分を用いないで製造したコーティング液を示すものであり、その硬化膜中の有機高分子微粒子含量を実施例2,3と同量にしたものである。また、比較例4は、実施例3のコーティング液において、(A-5)成分を用いないで製造したコーティング液を示すものであり、その硬化膜中の有機高分子含有量を実施例3と同量にしたものである。比較例5は、実施例3のコーティング液において、(A-5)成分及び(C)成分を用いないで製造したコーティング液を示すものであり、その硬化膜中の有機高分子含有量を実施例3と同量にしたものである。比較例6は、実施例3のコーティング液において、(A-1)成分及び(C)成分を用いないで製造したコーティング液を示すものであり、その硬化膜中の有機高分子含有量を実施例3と同量にしたものである。)
 得られたコーティング液及び積層体について評価した。評価結果を表4に示す。
Comparative Examples 2-6
In the same manner as in Comparative Example 1, a coating liquid was produced and a laminate was produced in accordance with the components and blending amounts shown in Table 3. (Comparative Examples 2 and 3 show the coating liquids produced without using the component (A-1) in the coating liquids of Examples 2 and 3, and the organic polymer fine particle content in the cured film is shown as follows. The same amount as in Examples 2 and 3. Comparative Example 4 shows the coating liquid produced without using the component (A-5) in the coating liquid of Example 3, and its The content of the organic polymer in the cured film is the same as in Example 3. In Comparative Example 5, the components (A-5) and (C) are not used in the coating liquid of Example 3. The coating liquid produced is shown, and the organic polymer content in the cured film is the same as that in Example 3. Comparative Example 6 is a coating liquid of Example 3 (A-1 ) And C produced without using component (C) Is indicative of the coating solution is obtained by the same amount as the organic polymer content Example 3 in the cured film.)
The obtained coating liquid and laminate were evaluated. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1~4から分かるように、本発明のコーティング液、それから得られる硬化膜及び積層体(実施例1~11)は、いずれもほぼ全ての評価項目において合格である。
 (A-1)成分を含まない比較例1~3及び比較例6は、液安定性、膜外観、透明性、密着性、耐煮沸性は良好であるものの、耐擦傷性が実施例1~11のものに比べて劣る。また、(A-5)成分を含まない比較例4,5は、膜外観、透明性、密着性は良好であるものの、液安定性、耐煮沸性が実施例1~11のものに比べて劣る。
As can be seen from Tables 1 to 4, the coating liquid of the present invention, the cured films obtained from the coating liquid, and the laminates (Examples 1 to 11) all pass in almost all evaluation items.
Comparative Examples 1 to 3 and Comparative Example 6 that do not contain the component (A-1) have good liquid stability, film appearance, transparency, adhesion, and boiling resistance, but have good scratch resistance. Compared to 11. Further, Comparative Examples 4 and 5 not containing the component (A-5) have good film appearance, transparency and adhesion, but have liquid stability and boiling resistance compared to those of Examples 1 to 11. Inferior.
実施例12~16
 実施例1のコーティング液を、厚み3mmのポリカーボネート(PC)成形体の表面又はコロナ処理ポリプロピレンシート〔出光ユニテック株式会社製、商品名:スーパーピュアレイ、品番:SG-140TC、厚み300μm(全光線透過率94%、ヘイズ値2.3%)〕に、硬化膜が3μmになるように、バーコーターにて塗布し、130℃、2時間で熱硬化させることにより、基材及び硬化膜よりなる積層体を作製した。上記で作製した積層体にさらに、下記の方法で無機硬質物層を成膜し、積層体を得た。
 得られた基材、硬化膜及び無機硬質物層よりなる積層体について、評価した。評価結果を表5に示す。
Examples 12 to 16
The surface of a polycarbonate (PC) molded product having a thickness of 3 mm or a corona-treated polypropylene sheet [manufactured by Idemitsu Unitech Co., Ltd., trade name: Super Pure Array, product number: SG-140TC, thickness 300 μm (total light transmission) The ratio of 94%, haze value 2.3%) is applied with a bar coater so that the cured film is 3 μm, and is thermally cured at 130 ° C. for 2 hours to form a laminate composed of the base material and the cured film. The body was made. Furthermore, the inorganic hard material layer was formed into a film by the following method on the laminated body produced above, and the laminated body was obtained.
The obtained laminate composed of the base material, the cured film and the inorganic hard material layer was evaluated. The evaluation results are shown in Table 5.
無機硬質物層の成膜
(1)SiOx
 作製した基材及び硬化膜よりなる積層体をプラズマCVD装置内に設置し、装置内の真空度が2.7×10-3Paになるまで排気して、基材の温度を100℃まで上げ、5分間保持し、基材の脱ガスを行った。その後室温に戻した後、装置内の真空度が2.7×10-4Paになるまで排気を行った。
 真空度を2.7×10-4Paにした後、装置内にSiH4ガス、N2Oガス及びArガスを導入し、ガスの流量がSiH4ガス流量1cm3/分、N2Oガス流量200cm3/分、Arガス流量300cm参/分、真空度2.7Pa程度で安定したところで、電力を印加してプラズマを発生させ、硬化膜上に膜厚が5μmのSiOx(1.8≦x≦2)(無機硬質物層)を成膜した。
Formation of inorganic hard layer (1) SiOx
The laminated body made of the base material and the cured film is placed in a plasma CVD apparatus and evacuated until the degree of vacuum in the apparatus becomes 2.7 × 10 −3 Pa to raise the temperature of the base material to 100 ° C. The substrate was degassed by holding for 5 minutes. Then, after returning to room temperature, exhausting was performed until the degree of vacuum in the apparatus reached 2.7 × 10 −4 Pa.
After the degree of vacuum is 2.7 × 10 −4 Pa, SiH 4 gas, N 2 O gas, and Ar gas are introduced into the apparatus, and the gas flow rate is SiH 4 gas flow rate 1 cm 3 / min, N 2 O gas. When stable at a flow rate of 200 cm 3 / min, an Ar gas flow rate of 300 cm / min, and a degree of vacuum of about 2.7 Pa, an electric power is applied to generate plasma, and a SiO x (1.8 μm) film thickness on the cured film is 1.8 μm. ≦ x ≦ 2) (inorganic hard material layer) was formed.
(2)アモルファス状炭素膜
 作製した基材及び硬化膜よりなる積層体をプラズマCVD装置内に設置し、装置内の真空度が2.7×10-3Paになるまで排気して、基材の温度を100℃まで上げ、5分間保持し、基材の脱ガスを行った。その後室温に戻した後、装置内の真空度が2.7×10-4Paになるまで排気を行った。
 真空度を2.7×10-4PaにしたプラズマCVD装置内にCH4ガス、H2ガス及びArガスを、ガス流量がCH4ガス流量1cm3/分、H2ガス流量150cm3/分、Arガス流量300cm3/分で導入し、真空度2.7Pa程度で安定したところで、電力を印加してプラズマを発生させ、膜厚が7μmのアモルファス状炭素膜(無機硬質物層)を成膜した。
(2) Amorphous carbon film A laminated body made of the base material and the cured film is placed in a plasma CVD apparatus and evacuated until the degree of vacuum in the apparatus becomes 2.7 × 10 −3 Pa. The temperature was raised to 100 ° C. and held for 5 minutes to degas the substrate. Then, after returning to room temperature, exhausting was performed until the degree of vacuum in the apparatus reached 2.7 × 10 −4 Pa.
In a plasma CVD apparatus with a vacuum degree of 2.7 × 10 −4 Pa, CH 4 gas, H 2 gas and Ar gas are flowed at a CH 4 gas flow rate of 1 cm 3 / min, and an H 2 gas flow rate of 150 cm 3 / min. Then, when Ar gas is introduced at a flow rate of 300 cm 3 / min and stable at a vacuum degree of about 2.7 Pa, power is applied to generate plasma to form an amorphous carbon film (inorganic hard layer) having a thickness of 7 μm. Filmed.
(3)SiNy
 作製した基材及び硬化膜よりなる積層体をプラズマCVD装置内に設置し、装置内の真空度が2.7×10-3Paになるまで排気して、基材の温度を100℃まで上げ、5分間保持し、基材の脱ガスを行った。その後室温に戻した後、装置内の真空度が2.7×10-4Paになるまで排気を行った。
 プラズマCVD装置内にSiH4ガス、NH3ガス及びArガスを、SiH4ガス流量1cm3/分、NH3ガス流量200cm3/分、Arガス流量400cm3/分で導入し、真空度2.7Pa程度で安定したところで、電力を印加してプラズマを発生させ、膜厚が7μmのSiNy(1.2≦y≦4/3)膜(無機硬質物層)を成膜した。
(3) SiNy
The laminated body made of the base material and the cured film is placed in a plasma CVD apparatus and evacuated until the degree of vacuum in the apparatus becomes 2.7 × 10 −3 Pa to raise the temperature of the base material to 100 ° C. The substrate was degassed by holding for 5 minutes. Then, after returning to room temperature, exhausting was performed until the degree of vacuum in the apparatus reached 2.7 × 10 −4 Pa.
SiH 4 gas, NH 3 gas, and Ar gas are introduced into the plasma CVD apparatus at a SiH 4 gas flow rate of 1 cm 3 / min, an NH 3 gas flow rate of 200 cm 3 / min, and an Ar gas flow rate of 400 cm 3 / min. When stable at about 7 Pa, electric power was applied to generate plasma, and an SiN y (1.2 ≦ y ≦ 4/3) film (inorganic hard layer) having a thickness of 7 μm was formed.
(4)SiO2
 作製した基材及び硬化膜よりなる積層体をイオンプレーティング装置内に設置し、蒸発源はSiO2グレインとした。装置内の真空度が2.7×10-4Paになるまで排気を行った。高周波電圧1.5kVを高周波コイルに印加し、アルゴンガス及びO2ガスを導入した。ガスの導入を止めた後、装置内の真空度を1.33×10-3Paとし、1~2分間SiO2イオンプレーティングを行った。その後、装置内の真空を保ちながら20分間放置冷却し、硬化膜上に膜厚が1.5μmのSiO2膜(1.8≦x≦2)(無機硬質物層)を成膜した。
(4) SiO 2
The laminate made of the prepared base material and cured film was placed in an ion plating apparatus, and the evaporation source was SiO 2 grain. Evacuation was performed until the degree of vacuum in the apparatus reached 2.7 × 10 −4 Pa. A high frequency voltage of 1.5 kV was applied to the high frequency coil, and argon gas and O 2 gas were introduced. After stopping the introduction of gas, the degree of vacuum in the apparatus was 1.33 × 10 −3 Pa, and SiO 2 ion plating was performed for 1 to 2 minutes. Thereafter, the apparatus was left to cool for 20 minutes while maintaining the vacuum in the apparatus, and a SiO 2 film (1.8 ≦ x ≦ 2) (inorganic hard material layer) having a thickness of 1.5 μm was formed on the cured film.
比較例7~11
 比較例1のコーティング液を用いて、実施例12~16と同様の方法で積層体を得た。
 得られた基材、硬化膜及び無機硬質物層よりなる積層体について評価した。評価結果を表5に示す。
Comparative Examples 7-11
Using the coating liquid of Comparative Example 1, laminates were obtained in the same manner as in Examples 12-16.
Evaluation was made on a laminate composed of the obtained base material, cured film, and inorganic hard material layer. The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表5から分かるように、実施例1のコーティング液を用いた積層体(実施例12~16)は、いずれもほぼ全ての評価項目において合格である。
 比較例7~11は、比較例1のコーティング液を用いた積層体であり、膜外観、透明性、耐摩耗性、耐擦傷性は良好であるものの、密着性、耐煮沸性が実施例12~16のものに比べて劣る。
As can be seen from Table 5, the laminates (Examples 12 to 16) using the coating liquid of Example 1 passed all of the evaluation items.
Comparative Examples 7 to 11 are laminates using the coating liquid of Comparative Example 1, and the film appearance, transparency, abrasion resistance, and scratch resistance are good, but the adhesion and boiling resistance are those of Example 12. Compared to ~ 16.
[実施例17~20及び比較例12~14]
 上記例における諸特性は、下記の要領に従って求めた。
[Examples 17 to 20 and Comparative Examples 12 to 14]
Various characteristics in the above examples were determined according to the following procedures.
(1)硬化膜中の無機成分由来の酸化物換算含量(質量%)
 テフロン(登録商標)シャーレ上で、コーティング液を熱硬化して得られたサンプルを、熱重量測定(窒素下、20℃/分上昇、室温~800℃)し、その800℃での残渣から求めた。
(2)硬化膜中の有機高分子微粒子含量(質量%)
 計算により算出した。詳しくは、(A-1)~(A-5)成分の加水分解・縮合反応が完全に進行したもの((A)成分)、有機高分子微粒子((B)成分)及びコロイダルシリカ((C)成分)、酸化セリウム((F)成分)の全質量中における有機高分子微粒子の質量%を算出した。
(3)硬化膜中の酸化セリウム含量(質量%)
 計算により算出した。
(4)コーティング液の液安定性
 常温で14日間密栓保存して、ゲル化の有無を目視により判定した。ゲル化していないものについては、株式会社エー・アンド・デイ音叉型振動式粘度計SV-10にて粘度測定を行い、初期からの変化率が3倍以内のものを「○」、3倍を超えるもの「×」とした。
(5)膜外観
 硬化膜の外観を目視観察し、異物やまだら模様、白濁を確認し、これが認められないものを「良好」とした。
(6)全光線透過率及びヘイズ
 直読ヘイズコンピュータ(スガ試験機株式会社製、HGM-2DP)にて、積層体の全光線透過率及びヘイズを測定した。
(1) Oxide equivalent content derived from inorganic components in cured film (mass%)
A sample obtained by thermosetting the coating solution on a Teflon petri dish was subjected to thermogravimetry (20 ° C./min increase under nitrogen, room temperature to 800 ° C.), and obtained from the residue at 800 ° C. It was.
(2) Organic polymer fine particle content (% by mass) in the cured film
Calculated by calculation. Specifically, components (A-1) to (A-5) in which hydrolysis / condensation reaction has completely progressed (component (A)), organic polymer fine particles (component (B)) and colloidal silica ((C ) Component), and mass% of organic polymer fine particles in the total mass of cerium oxide (component (F)) was calculated.
(3) Cerium oxide content (% by mass) in the cured film
Calculated by calculation.
(4) Stability of coating solution The solution was stored sealed at room temperature for 14 days, and the presence or absence of gelation was determined visually. For those that are not gelled, the viscosity is measured with an A & D tuning fork type vibration viscometer SV-10. Exceeded “×”.
(5) Appearance of film The appearance of the cured film was visually observed to confirm foreign matters, mottled patterns, and white turbidity.
(6) Total light transmittance and haze The total light transmittance and haze of the laminate were measured with a direct reading haze computer (HGM-2DP, manufactured by Suga Test Instruments Co., Ltd.).
(7)耐摩耗性及び耐擦傷性
 耐摩耗性の評価については、摩耗輪CS-10F及びテーバー摩耗試験機(ロータリーアブレージョンテスタ)(株式会社東洋精機製、型式:TS)を用いて荷重4.9Nで500回転テーバー摩耗試験を行い、テーバー摩耗試験前のヘイズとテーバー摩耗試験後のヘイズの差(ΔH)が15未満のものを「○」、15以上のものを「×」とした。
 耐擦傷性の評価については、実施例17~20及び比較例12~14では、スチールウール#0000(荷重4.9N)を用い、2000mm/secで50往復した後、表面の傷付き状況を目視により評価した。全く傷が付かないものを「1」、わずかに傷が付くものを「2」、擦った箇所の半分以上の面に傷が付くものを「3」とした。
(8)密着性
 JIS K 5400に準拠し、サンプル(硬化膜)をかみそりの刃で2mm間隔に縦横11本ずつ切れ目を入れて100個の碁盤目をつくり、市販のセロハンテープ(「CT-24(幅24mm)」、ニチバン株式会社製)を指の腹でよく密着させたのち、90°の角度で手前方向に急激に剥し、硬化膜が剥離しないで残存したます目数(X)を、X/100で表示し、硬化膜の密着性を評価した。
(7) Abrasion resistance and scratch resistance The abrasion resistance was evaluated using a wear wheel CS-10F and a Taber abrasion tester (rotary abrasion tester) (made by Toyo Seiki Co., Ltd., model: TS). A 500-rotor Taber abrasion test was performed at 9N, and the difference (ΔH) between the haze before the Taber abrasion test and the haze after the Taber abrasion test was less than 15, and “x” was 15 or more.
Regarding evaluation of scratch resistance, in Examples 17 to 20 and Comparative Examples 12 to 14, steel wool # 0000 (load 4.9 N) was used, and after 50 reciprocations at 2000 mm / sec, the surface damage state was visually observed. It was evaluated by. “1” indicates that there is no scratch at all, “2” indicates that there is a slight scratch, and “3” indicates that scratches are present on more than half of the rubbed area.
(8) Adhesiveness In accordance with JIS K 5400, a sample (cured film) was cut into 11 grids at 2 mm intervals with a razor blade to make 100 grids, and a commercially available cellophane tape (“CT-24” (Width 24 mm) ”, manufactured by Nichiban Co., Ltd.), and then closely peeled off at an angle of 90 ° toward the near side, and the cured film did not peel off, and the remaining number (X) remained. Displayed by X / 100, the adhesion of the cured film was evaluated.
(9)耐煮沸性
 ステンレス製ビーカー中の煮沸水に積層体のサンプルを5時間浸漬したのち、密着性を評価した。密着性の評価は、上記(8)と同様におこなった。
(10)耐候性
 キセノンウェザー試験(アトラス社Ci65、出力6.5kW、ブラックパネル温度63℃、相対湿度50%)を、2400時間で実施した。試験前後の硬化膜密着性の変化で、耐候性を評価した。
(11)耐屈曲性
 100mm×幅50mm×厚み1mmの住友ベークライト株式会社製ポリカーボネート標準板(商品名:ポリカエース、品番:ECK100)を基板として用いた以外は各例と同じ方法で樹脂積層体のサンプルを製造した。
 このサンプルの両端を指で持ち、半径50mmカーブの強制曲げを10回行い積層面にクラックが入らなかったものを「○」、入ったもの「×」とした。
(12)耐熱性
 耐熱性試験(TABAI製、PS-222)にて、110℃、720時間の条件で実施した。試験前後での硬化膜の密着性の変化で、耐熱性を評価した。
(9) Boiling resistance A sample of the laminate was immersed in boiling water in a stainless steel beaker for 5 hours, and then the adhesion was evaluated. The evaluation of adhesion was performed in the same manner as (8) above.
(10) Weather resistance A xenon weather test (Atlas Ci65, output 6.5 kW, black panel temperature 63 ° C., relative humidity 50%) was performed in 2400 hours. The weather resistance was evaluated by the change in adhesion of the cured film before and after the test.
(11) Flexural resistance Sample of resin laminate in the same manner as in each example except that a polycarbonate standard plate (trade name: Polycaace, product number: ECK100) manufactured by Sumitomo Bakelite Co., Ltd. having a size of 100 mm × width 50 mm × thickness 1 mm was used as a substrate. Manufactured.
The sample was held at both ends with fingers and subjected to forced bending with a radius of 50 mm curve 10 times, and no crack was found on the laminated surface.
(12) Heat resistance A heat resistance test (manufactured by Tabai, PS-222) was performed at 110 ° C. for 720 hours. The heat resistance was evaluated by the change in the adhesion of the cured film before and after the test.
(13)有機微粒子分散構造
 TEM(透過型電子顕微鏡)で硬化膜の断面観察を行い、その1μm角中に存在する有機微粒子を10個選び、米国NIH(National Institute of Health)製フリーソフト:NIH Image 1.63を使用して平均粒径を求めた。有機微粒子の平均粒径が、200nm以下のものを「○」、平均粒径が200nmより大きいものを「×」、また粒径が200nm以下ものも存在するが、粒子が融着し粒径が200nm以上のアメーバ状になったものが存在するのを「△」とした。
(14)無機微粒子分散構造
 硬化膜中の酸化セリウム微粒子及びコロイダルシリカ微粒子それぞれの平均粒径を、上記(13)と同様にして求めた。それぞれの平均粒径が200nm以下のものを「○」、いずれかの平均粒径が200nmより大きいものを「×」とした。
(13) Organic fine particle dispersion structure A cross-section of the cured film is observed with a TEM (transmission electron microscope), 10 organic fine particles present in the 1 μm square are selected, and free software manufactured by NIH (National Institute of Health), USA: NIH The average particle size was determined using Image 1.63. An organic fine particle having an average particle size of 200 nm or less is “◯”, an average particle size of greater than 200 nm is “X”, and a particle size of 200 nm or less is present. “Δ” indicates that there was an amoeba shape of 200 nm or more.
(14) Inorganic fine particle dispersion structure The average particle size of each of the cerium oxide fine particles and colloidal silica fine particles in the cured film was determined in the same manner as in the above (13). Those having an average particle size of 200 nm or less were marked with “◯”, and those having an average particle size larger than 200 nm were marked with “x”.
 また、実施例及び比較例において、商品名で記載した原料の詳細は、以下のとおりである。
(A)成分:Mシリケート51「テトラメトキシシランの部分縮合物(平均3~5量体)であるポリアルコキシシラン」多摩化学工業株式会社製
(B)成分:ULS―1385MG(紫外線吸収骨格種:ベンゾトリアゾール系)
一方社油脂工業株式会社製(水分散/固形分濃度30質量%)
(B)成分:ULS―385MG(紫外線吸収骨格種:ベンゾフェノン系)
一方社油脂工業株式会社製(水分散/固形分濃度30質量%)
(C)成分:IPA-ST-L(コロイダルシリカ)
日産化学工業株式会社製(イソプロパノール分散、コロイダルシリカ濃度30質量%、平均粒子径40~50nm(メーカー公表値))
In the examples and comparative examples, the details of the raw materials described by trade names are as follows.
Component (A): M silicate 51 “polyalkoxysilane which is a partial condensate of tetramethoxysilane (average 3 to 5 mer)” manufactured by Tama Chemical Industry Co., Ltd. (B) component: ULS-1385MG (ultraviolet absorbing skeleton species: Benzotriazole)
On the other hand, manufactured by Yushi Kogyo Co., Ltd.
(B) component: ULS-385MG (ultraviolet ray absorbing skeleton species: benzophenone series)
On the other hand, manufactured by Yushi Kogyo Co., Ltd.
Component (C): IPA-ST-L (Colloidal silica)
Made by Nissan Chemical Industries Ltd. (isopropanol dispersion, colloidal silica concentration 30% by mass, average particle size 40-50 nm (manufacturer's published value))
(F’)成分:ニードラールU-15(カチオン性酸化セリウム水分散液)
多木化学株式会社製(水分散、酸化セリウム濃度15質量%、平均粒子径8nm以下、pH3.5(メーカーカタログ値))
(なお、ニードラールU-15を、MALVERN社製ゼータサイザーナノシリーズNano-ZSを用いて20℃、分散媒:水、積算回数50回での条件でゼータ電位を測定したところ、+28.8mVであり、酸化セリウム粒子はカチオン性を有していることを確認した。)
(F’)成分:ニードラールH-15(酸安定型酸化セリウム水分散液)
多木化学株式会社製(水分散、酸化セリウム濃度15~16質量%、安定化剤:塩酸1.0質量%未満、pH1~3(メーカー公表値))
(なお、ニードラールH-15を、MALVERN社製ゼータサイザーナノシリーズNano-ZSを用いて20℃、分散媒:水、積算回数50回での条件でゼータ電位を測定したところ、+53.7mVであり、酸化セリウム粒子はカチオン性を有していることを確認した。)
Component (F ′): Niedral U-15 (cationic cerium oxide aqueous dispersion)
Made by Taki Chemical Co., Ltd. (water dispersion, cerium oxide concentration 15% by mass, average particle size 8 nm or less, pH 3.5 (manufacturer catalog value))
(The zeta potential of Nidral U-15 was measured at 20 ° C. using a Zetasizer Nano Series Nano-ZS manufactured by MALVERN under the conditions of dispersion medium: water and 50 times of accumulation, and found to be +28.8 mV. The cerium oxide particles were confirmed to have cationic properties.)
Component (F ′): Niedral H-15 (acid-stable cerium oxide aqueous dispersion)
Manufactured by Taki Chemical Co., Ltd. (water dispersion, cerium oxide concentration 15-16% by mass, stabilizer: hydrochloric acid less than 1.0% by mass, pH 1-3 (published by manufacturer))
(In addition, it was +53.7 mV when the zeta potential of Nidraral H-15 was measured using the Zetasizer Nano Series Nano-ZS manufactured by MALVERN under the conditions of 20 ° C., dispersion medium: water, and 50 accumulations. The cerium oxide particles were confirmed to have cationic properties.)
(1)(F)成分の調製(分散液F1)
 表6の成分及び仕込み量に従い製造した。
 容積50mlのサンプル管に、ニードラールH-15((F’)成分)10.0gを仕込み、500rpmで撹拌しながら、1-メトキシ-2-プロパノール((E)成分)7.0g、テトラエトキシシラン((A)成分)2.23gの順に、それぞれ1分間かけて滴下した。引き続き室温で90分撹拌後、室温で90分間静置した。これと撹拌子を冷却管を取り付けた100ml三口フラスコに仕込み、500rpmで撹拌しながら窒素気流下、80℃で4時間加熱した。引き続き、室温で一週間静置し、シラン化合物と酸化セリウムとの反応生成物からなる分散液F1((F)成分)とした。
(1) Preparation of component (F) (dispersion F1)
It manufactured according to the component of Table 6, and preparation amount.
A sample tube with a volume of 50 ml was charged with 10.0 g of Nidral H-15 (component (F ′)) and stirred at 500 rpm, 7.0 g of 1-methoxy-2-propanol (component (E)), tetraethoxysilane. ((A) component) It dripped over 1 minute each in order of 2.23g. Subsequently, the mixture was stirred at room temperature for 90 minutes and then allowed to stand at room temperature for 90 minutes. This and a stirring bar were charged into a 100 ml three-necked flask equipped with a condenser, and heated at 80 ° C. for 4 hours under a nitrogen stream while stirring at 500 rpm. Then, it left still at room temperature for one week, and was set as the dispersion liquid F1 ((F) component) which consists of a reaction product of a silane compound and cerium oxide.
(2)(F)成分のアニオン性微粒子ゾルとの分散性試験
 容積10mlのサンプル管に、IPA-ST-L((C)成分、アニオン性のコロイダルシリカが分散したIPA分散ゾル)1.0gと撹拌子を仕込み、400rpmで撹拌しながら、シラン化合物と酸化セリウムとの反応生成物からなる分散液F1((F)成分)1.0gを1分間かけて滴下し、引き続き室温で1時間撹拌した。撹拌終了後の分散状態が、凝集、析出、ゲル化することなく分散していることを目視で確認した。
(2) Dispersibility test of component (F) with anionic fine particle sol 1.0 g of IPA-ST-L (IPA dispersion sol in which component (C) and anionic colloidal silica are dispersed) in a 10-ml sample tube While stirring at 400 rpm, 1.0 g of dispersion F1 (component (F)) consisting of the reaction product of the silane compound and cerium oxide was added dropwise over 1 minute, followed by stirring at room temperature for 1 hour. did. It was visually confirmed that the dispersion state after stirring was dispersed without aggregation, precipitation, or gelation.
(3)(F)成分の調製(分散液F2)
 表6の成分及び仕込み量に従い製造した。
 容積50mlのサンプル管に、ニードラールH-15((F’)成分)10.0gを仕込み、500rpmで撹拌しながら、1-メトキシ-2-プロパノール((E)成分)7.0g、テトラエトキシシラン((A)成分)1.49gの順に、それぞれ1分間かけて滴下した。引き続き室温で90分撹拌後、室温で90分間静置した。これと撹拌子を冷却管を取り付けた100ml三口フラスコに仕込み、500rpmで撹拌しながら、3-グリシドキシプロピルトリメトキシシラン((A)成分)0.30gを1分間かけて滴下し、室温で120分撹拌した。これを500rpmで撹拌しながら窒素気流下、80℃で9時間加熱した。引き続き、室温で一週間静置し、シラン化合物と酸化セリウムとの反応生成物からなる分散液F2((F)成分)とした。
 なお、この分散液F2については、上記(2)の分散性試験と同様の方法で、凝集、析出、ゲル化することなく分散していることを確認した。
(3) Preparation of component (F) (dispersion F2)
It manufactured according to the component of Table 6, and preparation amount.
A sample tube with a volume of 50 ml was charged with 10.0 g of Nidral H-15 (component (F ′)) and stirred at 500 rpm, 7.0 g of 1-methoxy-2-propanol (component (E)), tetraethoxysilane. ((A) component) It dripped over 1 minute in order of 1.49g. Subsequently, the mixture was stirred at room temperature for 90 minutes and then allowed to stand at room temperature for 90 minutes. This and a stirring bar were charged into a 100 ml three-necked flask equipped with a condenser, and 0.30 g of 3-glycidoxypropyltrimethoxysilane (component (A)) was added dropwise over 1 minute while stirring at 500 rpm. Stir for 120 minutes. This was heated at 80 ° C. for 9 hours under a nitrogen stream while stirring at 500 rpm. Then, it left still at room temperature for 1 week, and was set as the dispersion liquid F2 ((F) component) which consists of a reaction product of a silane compound and cerium oxide.
In addition, about this dispersion liquid F2, it confirmed that it was disperse | distributing without aggregation, precipitation, and gelatinization by the method similar to the dispersibility test of said (2).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例17~18
(4)コーティング液の製造
 表7の成分及び仕込み量に従い調製した。
 容積50mlのサンプル管に、有機高分子微粒子:ULS-1385MG(実施例17)またはULS-385MG(実施例18)((B)成分+(E)成分)0.85gを仕込み500rpmで撹拌しながら、1-メトキシ-2-プロパノール((E)成分)4.25g、水((E)成分)0.50g、酢酸((G)成分)2.80g、Mシリケート51((A-1)成分)0.40g、メチルトリメトキシシラン((A-2)成分)1.51g、ジメトキシ-3-グリシドキシプロピルメチルシラン((A-4)成分)0.55g、20質量%p-トルエンスルホン酸メタノール液((D)成分+(E)成分)0.05gの順に、それぞれ1分間かけて滴下した。引き続き、室温、500rpmで60分撹拌後、一日静置し、これをA液とした。
 冷却管を取り付けた200ml三口フラスコに、A液と撹拌子を入れ、500rpmで撹拌しながら、B液としてIPA-ST-L((C)成分+(E)成分)6.50gを5分間かけて滴下し、室温で20分間撹拌した。続いて、窒素気流下、500rpm、80℃で7時間加熱撹拌後、室温で一晩静置し、これをA’液とした。
 容積20mlのサンプル管に、3-イソシアナトプロピルトリエトキシシラン1.10g及び2-ブタノンオキシム(イソシアネート基のブロック化剤)0.35gを仕込み、室温、500rpmで10分撹拌後、一日静置し、これをC液とした。イソシアネート基がブロック化されたことについては、13C-NMRでイソシアネート基のシグナルが消失することにより確認した。3-イソシアナトプロピルトリエトキシシランと2-ブタノンオキシムの配合量の合計をブロック化イソシアナトシラン化合物:(A-5)成分の量とした。
A’液を650rpmで撹拌しながら、シラン化合物と酸化セリウムとの反応生成物からなる分散液F1((F)成分+(E)成分)3.26gを5分間かけて滴下し、室温で20分間撹拌した。続いて、C液を5分間かけて加え、室温で10分間撹拌した。引き続き、窒素気流下、650rpm、80℃で4時間加熱撹拌後、室温で一晩静置した。
 さらに、これにD液として3-アミノプロピルトリメトキシシラン((A-3)成分)0.40gを2分間かけて滴下した。室温で10分撹拌後、さらに窒素気流下、450rpm、80℃で3時間加熱した。
 引き続き1週間静置し、コーティング液を得た。
Examples 17-18
(4) Manufacture of coating liquid It prepared according to the component of Table 7, and preparation amount.
In a sample tube having a volume of 50 ml, 0.85 g of organic polymer fine particles: ULS-1385MG (Example 17) or ULS-385MG (Example 18) (component (B) + component (E)) was charged and stirred at 500 rpm. 1-methoxy-2-propanol (component (E)) 4.25 g, water (component (E)) 0.50 g, acetic acid (component (G)) 2.80 g, M silicate 51 (component (A-1)) 0.40 g, 1.51 g of methyltrimethoxysilane (component (A-2)), 0.55 g of dimethoxy-3-glycidoxypropylmethylsilane (component (A-4)), 20 mass% p-toluenesulfone Acid methanol solution (component (D) + component (E)) was added dropwise in the order of 0.05 g over 1 minute. Subsequently, after stirring for 60 minutes at room temperature and 500 rpm, the mixture was allowed to stand for one day, and this was designated as solution A.
Into a 200 ml three-necked flask equipped with a condenser, put A solution and a stir bar, stir at 500 rpm, and apply 6.50 g of IPA-ST-L (component (C) + component (E)) as solution B over 5 minutes. The solution was added dropwise and stirred at room temperature for 20 minutes. Subsequently, the mixture was heated and stirred at 500 rpm and 80 ° C. for 7 hours under a nitrogen stream, and then allowed to stand overnight at room temperature, which was designated as A ′ solution.
A sample tube with a volume of 20 ml was charged with 1.10 g of 3-isocyanatopropyltriethoxysilane and 0.35 g of 2-butanone oxime (isocyanate group blocking agent), stirred at room temperature at 500 rpm for 10 minutes, and then allowed to stand for one day. This was designated as solution C. The blocking of the isocyanate group was confirmed by disappearance of the isocyanate group signal by 13 C-NMR. The total amount of 3-isocyanatopropyltriethoxysilane and 2-butanone oxime was taken as the amount of the blocked isocyanatosilane compound: (A-5) component.
While stirring the A ′ liquid at 650 rpm, 3.26 g of a dispersion F1 (component (F) + component (E)) consisting of a reaction product of a silane compound and cerium oxide was added dropwise over 5 minutes, and the mixture was stirred at room temperature for 20 minutes. Stir for minutes. Then, C liquid was added over 5 minutes, and it stirred at room temperature for 10 minutes. Subsequently, the mixture was heated and stirred at 650 rpm and 80 ° C. for 4 hours under a nitrogen stream, and then allowed to stand overnight at room temperature.
Further, 0.40 g of 3-aminopropyltrimethoxysilane (component (A-3)) was added dropwise thereto as a D solution over 2 minutes. After stirring at room temperature for 10 minutes, the mixture was further heated at 450 rpm and 80 ° C. for 3 hours under a nitrogen stream.
Subsequently, it was left to stand for 1 week to obtain a coating solution.
(5)積層体の作製
 樹脂基材として、ポリカーボネート基材〔出光興産株式会社製、商品名:タフロン、品番:IV2200R(耐侯グレード)、厚み3mm(全光線透過率90%、ヘイズ値0.5%)〕を用いた。
 上記で得られたコーティング液を、厚み3mmのポリカーボネート成形体の表面に、硬化膜が7μmになるように、バーコーターにて塗布し、130℃、2時間で熱硬化させることにより、積層体を作製した。
 得られたコーティング液及び積層体について評価した。評価結果を表8に示す。
(5) Production of Laminate As a resin base material, a polycarbonate base material [manufactured by Idemitsu Kosan Co., Ltd., trade name: Toughlon, product number: IV2200R (anti-glare grade), thickness 3 mm (total light transmittance 90%, haze value 0.5) %)] Was used.
The coating solution obtained above is applied to the surface of a polycarbonate molded body having a thickness of 3 mm with a bar coater so that the cured film has a thickness of 7 μm, and thermally cured at 130 ° C. for 2 hours to obtain a laminate. Produced.
The obtained coating liquid and laminate were evaluated. Table 8 shows the evaluation results.
実施例19~20
 上記「(4)コーティング液の製造」において、分散液F1の代わりに分散液F2を使用し、表7の成分及び仕込み量に従い当該実施例に係るコーティング液を調製し、積層体を作製した。得られたコーティング液及び積層体についての評価結果を表8に示す。
Examples 19-20
In the above “(4) Production of coating liquid”, the dispersion liquid F2 was used in place of the dispersion liquid F1, and the coating liquid according to the example was prepared according to the components and preparation amounts shown in Table 7 to prepare a laminate. Table 8 shows the evaluation results for the obtained coating liquid and laminate.
比較例12~14
 上記「(4)コーティング液の製造」において、分散液F1の代わりに、表7に示すニードラールU-15又はニードラールH-15を使用し、表7の成分及び仕込み量に従い当該比較例に係るコーティング液を調製し、積層体を作製した。得られたコーティング液及び積層体についての評価結果を表8に示す。
Comparative Examples 12-14
In the above “(4) Production of coating solution”, instead of the dispersion F1, Niedral U-15 or Niedral H-15 shown in Table 7 was used, and coating according to the comparative example was performed according to the components and preparation amounts shown in Table 7. The liquid was prepared and the laminated body was produced. Table 8 shows the evaluation results for the obtained coating liquid and laminate.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 実施例17~20のコーティング液はすべて液安定性が良好であり、これから得られた積層体もすべての評価において優れた結果となった。一方、比較例13は、そのコーティング液の安定性が低く実用性が低かった。また比較例12、14は、密着性が劣っていた。 The coating liquids of Examples 17 to 20 all had good liquid stability, and the laminates obtained therefrom had excellent results in all evaluations. On the other hand, in Comparative Example 13, the stability of the coating liquid was low and the utility was low. Further, Comparative Examples 12 and 14 had poor adhesion.
[実施例21~32、比較例15~26]
実施例21~32
[樹脂積層体の作製]
 実施例1、2、5、6により製造されたコーティング液を、基材表面に硬化膜の厚さが2~3μmとなるように塗布し、下記〈基材及び硬化膜の熱硬化条件〉のとおり、用いた基材に応じた温度及び時間にて熱硬化させることにより、基材及び硬化膜よりなる積層体を作製した。
 次に、作製した基材及び硬化膜よりなる積層体に、下記の方法により透明導電膜を形成し、樹脂積層体を得た。
 得られた基材、硬化膜及び透明導電膜よりなる樹脂積層体について評価した結果を表9に示す。
[Examples 21 to 32, Comparative Examples 15 to 26]
Examples 21-32
[Production of resin laminate]
The coating solutions produced in Examples 1, 2, 5 and 6 were applied to the surface of the substrate so that the thickness of the cured film was 2 to 3 μm, and the following <Thermal curing conditions for the substrate and the cured film> As mentioned above, the laminated body which consists of a base material and a cured film was produced by thermosetting at the temperature and time according to the used base material.
Next, a transparent conductive film was formed by the following method on the laminate composed of the prepared base material and cured film to obtain a resin laminate.
Table 9 shows the results of evaluation of the resin laminate comprising the obtained base material, cured film and transparent conductive film.
〈基材及び硬化膜の熱硬化条件〉
(1)ポリカーボネート〔厚み400μm(全光線透過率92%、ヘイズ値0.4%)〕、120℃2時間
(2)ポリエチレンテレフタレート〔ユニチカ株式会社製、商品名:EMBLET、グレード:S、厚み25μm(全光線透過率89%、ヘイズ値2.5%)〕、100℃2時間
(3)ポリプロピレン〔出光ユニテック株式会社製、商品名:ピュアサーモ、厚み250μm(全光線透過率94%、ヘイズ値8.5%)〕100℃2時間
<Heat-curing conditions for substrate and cured film>
(1) Polycarbonate [thickness: 400 μm (total light transmittance: 92%, haze value: 0.4%)], 120 ° C., 2 hours (2) Polyethylene terephthalate [manufactured by Unitika Ltd., trade name: EMBLET, grade: S, thickness: 25 μm (Total light transmittance 89%, haze value 2.5%)], 100 ° C. for 2 hours (3) polypropylene [manufactured by Idemitsu Unitech Co., Ltd., trade name: Pure Thermo, thickness 250 μm (total light transmittance 94%, haze value) 8.5%)] 100 ° C. for 2 hours
〈透明導電膜の形成方法〉
(1)IZO薄膜
 作製した基材及び硬化膜よりなる積層体をスパッタリング装置(島津HSM-552)内に設置し、装置内の真空度が1.0×10-4Paになるまで排気した。その後、アルゴンガスを装置内に流入し、装置内の圧力を0.2Paに調整した。ターゲットにはIZO(In23:ZnO=90:10質量%)焼結体ターゲットを用いた。スパッタDC出力100Wで、膜厚20nm又は膜厚120nmの透明導電膜を作製した。基板温度は室温である。
(2)IZTO薄膜
 ターゲットにIZTOターゲット(In23:ZnO:SnO2=20:40:40質量%)を用いて、上記(1)と同様な方法で形成した。
(3)ZTO薄膜
 ターゲットにZTOターゲット(ZnO:SnO2=10:90質量%)を用いて、上記(1)と同様な方法で形成した。
(4)SnO2薄膜
 ターゲットにSnO2焼結体ターゲットを用いて、上記(1)と同様な手順で形成を行った。
(5)ITO薄膜
 ターゲットにITOターゲット(In23:SnO2=90:10質量%)を用いて、上記(1)と同様な方法で形成した。形成後に、大気中オーブンで120℃、1時間熱処理を行った。
<Method for forming transparent conductive film>
(1) IZO thin film A laminate comprising the prepared base material and cured film was placed in a sputtering apparatus (Shimadzu HSM-552) and evacuated until the degree of vacuum in the apparatus became 1.0 × 10 −4 Pa. Thereafter, argon gas was introduced into the apparatus, and the pressure in the apparatus was adjusted to 0.2 Pa. An IZO (In 2 O 3 : ZnO = 90: 10 mass%) sintered compact target was used as the target. A transparent conductive film having a film thickness of 20 nm or 120 nm was produced at a sputtering DC output of 100 W. The substrate temperature is room temperature.
(2) IZTO thin film An IZTO target (In 2 O 3 : ZnO: SnO 2 = 20: 40: 40% by mass) was used as the target and was formed by the same method as in the above (1).
(3) ZTO thin film Using a ZTO target (ZnO: SnO 2 = 10: 90 mass%) as a target, the ZTO thin film was formed by the same method as in the above (1).
(4) a thin film of SnO 2 target using a SnO 2 sintered body target were formed in a similar procedure as above (1).
(5) ITO thin film Using an ITO target (In 2 O 3 : SnO 2 = 90: 10% by mass) as a target, the ITO thin film was formed by the same method as in the above (1). After the formation, heat treatment was performed at 120 ° C. for 1 hour in an atmospheric oven.
比較例15~26
 実施例21で用いた基材上に、硬化膜を形成させずに、直接透明導電膜を形成し、樹脂積層体を得た。
 得られた基材及び透明導電膜よりなる積層体について評価した結果を表10に示す。
Comparative Examples 15 to 26
On the base material used in Example 21, a transparent conductive film was directly formed without forming a cured film to obtain a resin laminate.
Table 10 shows the results of the evaluation of the laminate composed of the obtained base material and transparent conductive film.
 実施例21~32、比較例15~26の各例における諸特性は、下記の要領に従って求めた。
(1)膜外観
 樹脂積層体の外観を目視観察し、異物やまだら模様、ひび割れの有無を確認し、これが認められないものを「○」、認められるものを「×」とした。
(2)全光線透過率及びヘイズ
 直読ヘイズコンピュータ(スガ試験機株式会社製、HGM-2DP)にて、樹脂積層体の全光線透過率及びヘイズを測定した。
(3)表面硬度
 JIS K5600-5-4に準拠し、塗膜用鉛筆引掻き試験機(手動式)(株式会社井元製作所製)を用いて、樹脂積層体の透明導電膜表面で評価を行った。
(4)耐擦傷性
 樹脂積層体の透明導電膜の表面をスチールウール#0000、荷重4.9N、2000mm/secで10往復した後、透明導電膜の表面の傷付きの状態を目視により3段階で評価した。全く傷が付かないものを「1」、わずかに傷が付くものを「2」、擦った箇所の半分以上の面に傷が付くものを「3」とした。
(5)密着性
 JIS K 5400に準拠し、樹脂積層体の透明導電膜表面をかみそりの刃で2mm間隔に縦横11本ずつ切れ目を入れて100個の碁盤目をつくり、市販のセロハンテープ(「CT-24(幅24mm)」、ニチバン株式会社製)を指の腹でよく密着させたのち、90°の角度で手前方向に急激に剥し、透明導電膜が剥離しないで残存したます目数(X)を、X/100で表示し、透明導電膜の密着性を評価した。
(6)耐湿性
 耐湿性試験(小型環境試験器、エスペック株式会社製、SH-221)にて、50℃、95RH%の雰囲気下に100時間静置したのち、密着性を評価した。密着性は、上記(5)と同様にして評価した。
Various characteristics in Examples 21 to 32 and Comparative Examples 15 to 26 were determined according to the following procedures.
(1) Film appearance The appearance of the resin laminate was visually observed to confirm the presence or absence of foreign matters, mottled patterns, and cracks, and those that were not recognized were evaluated as “◯” and those that were recognized as “×”.
(2) Total light transmittance and haze The total light transmittance and haze of the resin laminate were measured with a direct reading haze computer (HGM-2DP, manufactured by Suga Test Instruments Co., Ltd.).
(3) Surface hardness In accordance with JIS K5600-5-4, evaluation was performed on the surface of the transparent conductive film of the resin laminate using a pencil scratch tester for coating film (manual type) (manufactured by Imoto Seisakusho Co., Ltd.). .
(4) Scratch resistance After the surface of the transparent conductive film of the resin laminate is reciprocated 10 times with steel wool # 0000, a load of 4.9 N and 2000 mm / sec, the surface of the transparent conductive film is visually checked in three stages. It was evaluated with. “1” indicates that there is no scratch at all, “2” indicates that there is a slight scratch, and “3” indicates that scratches are present on more than half of the rubbed area.
(5) Adhesiveness In accordance with JIS K 5400, the surface of the transparent conductive film of the resin laminate was cut into 11 grids at intervals of 2 mm at intervals of 2 mm with a razor blade to make 100 grids, and a commercially available cellophane tape (" After CT-24 (width 24mm), manufactured by Nichiban Co., Ltd. is closely attached to the finger pad, it is peeled off rapidly at an angle of 90 °, and the transparent conductive film does not peel off. X) was expressed as X / 100, and the adhesion of the transparent conductive film was evaluated.
(6) Moisture resistance In a moisture resistance test (small environment tester, manufactured by ESPEC Corporation, SH-221), the sample was allowed to stand in an atmosphere of 50 ° C. and 95 RH% for 100 hours, and then the adhesion was evaluated. The adhesion was evaluated in the same manner as (5) above.
(7)耐屈曲性
 樹脂積層体サンプルの両端を指で持ち、半径50mmカーブの強制曲げを10回行い、積層面にクラックや剥離の有無を確認し、これらが認められなかったものを「○」、認められたものを「×」とした。
(8)比抵抗
 低抵抗率計ロレスタ-EP(三菱化学株式会社製)を用いて、四探針法により樹脂積層体の透明導電膜表面で比抵抗の測定を行った。
(9)キャリア濃度
 キャリア濃度はvan der Pole法で測定した。ホール測定装置及びその測定条件は下記のとおりである。
・ホール測定装置
 東陽テクニカ製:Resi Test8310
・測定条件
 測定温度:室温(25℃)
 測定磁場:0.5T
 測定電流:10-12~10-4
 測定モード:AC磁場
(7) Bending resistance Hold both ends of the resin laminate sample with fingers, perform a forced bending of a curve with a radius of 50 mm 10 times, check the presence or absence of cracks or delamination on the laminated surface, "," Was recognized as "x".
(8) Specific Resistance Using a low resistivity meter Loresta-EP (manufactured by Mitsubishi Chemical Corporation), the specific resistance was measured on the surface of the transparent conductive film of the resin laminate by the four-probe method.
(9) Carrier concentration The carrier concentration was measured by the van der Pole method. The Hall measuring device and its measurement conditions are as follows.
・ Hall measuring device manufactured by Toyo Technica: Resi Test 8310
・ Measurement conditions Measurement temperature: Room temperature (25 ℃)
Measurement magnetic field: 0.5T
Measurement current: 10 -12 to 10 -4 A
Measurement mode: AC magnetic field
(10)透明導電膜の結晶性
 結晶性の判定はX線回折測定で行った。X線回折測定(XRD)の測定条件は下記のとおりである。明確な結晶性ピークがないものを非晶とした。
・X線回折測定装置
 株式会社リガク製:Ultima-III
・測定条件
 X線:Cu-Kα線(波長1.5406Å、グラファイトモノクロメータにて単色化)
 出力:50kV-120mA
 2θ-θ反射法、連続スキャン(1.0°/分)
 2θ測定角度:5~80°
 サンプリング間隔:0.02°
 スリット DS、SS:2/3°、RS:0.6mm
(10) Crystallinity of transparent conductive film Crystallinity was determined by X-ray diffraction measurement. The measurement conditions of X-ray diffraction measurement (XRD) are as follows. Those having no clear crystallinity peak were regarded as amorphous.
-X-ray diffraction measurement device manufactured by Rigaku Corporation: Ultimate-III
・ Measurement conditions X-ray: Cu-Kα ray (wavelength 1.5406mm, monochromatized with graphite monochromator)
Output: 50kV-120mA
2θ-θ reflection method, continuous scan (1.0 ° / min)
2θ measurement angle: 5-80 °
Sampling interval: 0.02 °
Slit DS, SS: 2/3 °, RS: 0.6 mm
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表9、10から分かるように、基材、硬化膜及び透明導電膜よりなる樹脂積層体(実施例21~32)は、いずれもほぼ全ての評価項目において合格である。
 硬化膜を挟んでいない比較例15~26のうち、基材にポリカーボネートを用いている比較例15~18及び23~26は、膜外観、密着性、耐屈曲性は良好であるものの、透明性、表面硬度、耐擦傷性、導電性が実施例21~24及び29~32に比べて劣る。また、基材にポリプロピレンを用いている比較例19,20は、実施例25,26のものに比べて、膜外観、表面硬度、耐擦傷性、密着性、耐屈曲性が劣る。基材にポリエチレンテレフタレートを用いている比較例21,22は膜外観、光学特性、密着性、耐屈曲性は良好であるものの、表面硬度、耐擦傷性、導電性が実施例27,28に比べて劣る。
As can be seen from Tables 9 and 10, the resin laminates (Examples 21 to 32) composed of the base material, the cured film, and the transparent conductive film all passed in almost all evaluation items.
Among Comparative Examples 15 to 26 in which a cured film is not sandwiched, Comparative Examples 15 to 18 and 23 to 26 using polycarbonate as a base material have good film appearance, adhesion, and bending resistance, but are transparent. The surface hardness, scratch resistance, and conductivity are inferior to those of Examples 21 to 24 and 29 to 32. Further, Comparative Examples 19 and 20 using polypropylene as the base material are inferior in film appearance, surface hardness, scratch resistance, adhesion, and flex resistance as compared with those in Examples 25 and 26. Comparative Examples 21 and 22 using polyethylene terephthalate as the substrate have good film appearance, optical properties, adhesion, and bending resistance, but surface hardness, scratch resistance, and conductivity are higher than those of Examples 27 and 28. Inferior.
[実施例33~35、比較例27~29]
実施例33
(樹脂積層体の作製)
 実施例1で得られたコーティング液を、厚み3mmのポリカーボネート成形体の表面に、硬化膜が2~5μmになるように、バーコーターにて塗布し、130℃、2時間で熱硬化させることにより、基材及び硬化膜よりなる積層体を作製した。
 次に、作製した基材及び硬化膜よりなる積層体の硬化膜上に、石原産業株式会社製光触媒トップコート剤「ST-K211」を加熱処理後の厚みが約0.5μmとなるように塗布した後、100℃で30分間加熱処理して、光触媒層を作製した。
 得られた基材、硬化膜及び光触媒層よりなる樹脂積層体について評価した結果を表11に示す。
[Examples 33 to 35, Comparative Examples 27 to 29]
Example 33
(Production of resin laminate)
The coating liquid obtained in Example 1 was applied to the surface of a polycarbonate molded body having a thickness of 3 mm with a bar coater so that the cured film had a thickness of 2 to 5 μm, and thermally cured at 130 ° C. for 2 hours. A laminate composed of a substrate and a cured film was produced.
Next, the photocatalyst topcoat agent “ST-K211” manufactured by Ishihara Sangyo Co., Ltd. is applied on the cured film of the laminate comprising the base material and the cured film so that the thickness after the heat treatment is about 0.5 μm. After that, heat treatment was performed at 100 ° C. for 30 minutes to produce a photocatalyst layer.
Table 11 shows the results of evaluation of the resin laminate comprising the obtained substrate, cured film and photocatalyst layer.
実施例34
 実施例1で得られたコーティング液の代わりに実施例8で得られたコーティング液を使用した以外は、実施例33と同様にして基材、硬化膜及び光触媒層よりなる樹脂積層体を作製した。これについて評価した結果を表11に示す。
Example 34
A resin laminate comprising a substrate, a cured film and a photocatalyst layer was produced in the same manner as in Example 33 except that the coating liquid obtained in Example 8 was used instead of the coating liquid obtained in Example 1. . Table 11 shows the evaluation results.
実施例35
 実施例1で得られたコーティング液の代わりに実施例9で得られたコーティング液を使用した以外は、実施例33と同様にして基材、硬化膜及び光触媒層よりなる樹脂積層体を作製した。これについて評価した結果を表11に示す。
Example 35
A resin laminate comprising a substrate, a cured film and a photocatalyst layer was produced in the same manner as in Example 33 except that the coating liquid obtained in Example 9 was used instead of the coating liquid obtained in Example 1. . Table 11 shows the evaluation results.
比較例27
 実施例1で得られたコーティング液を使用しなかった以外は、実施例33と同様にして基材、硬化膜及び光触媒層よりなる樹脂積層体を作製した。これについて評価した結果を表11に示す。
Comparative Example 27
A resin laminate comprising a substrate, a cured film and a photocatalyst layer was produced in the same manner as in Example 33 except that the coating liquid obtained in Example 1 was not used. Table 11 shows the evaluation results.
比較例28
 実施例1で得られたコーティング液の代わりに石原産業(株)製プライマー「ST-K300」を使用し、乾燥後の厚みが約0.3μmとなるようにこれを塗布した以外は、実施例33と同様にして基材、硬化膜及び光触媒層よりなる樹脂積層体を作製した。これについて評価した結果を表11に示す。
Comparative Example 28
Example except that a primer “ST-K300” manufactured by Ishihara Sangyo Co., Ltd. was used instead of the coating solution obtained in Example 1 and this was applied so that the thickness after drying was about 0.3 μm. In the same manner as in No. 33, a resin laminate comprising a substrate, a cured film and a photocatalyst layer was produced. Table 11 shows the evaluation results.
比較例29
 比較例28のプライマー上に、さらに石原産業(株)製アンダーコート剤「ST-K102a」と「ST-K102b」との等量混合液(ST-K102)を乾燥加熱後の厚みが約3μmになるように塗布し、室温で5分乾燥させた後、100℃で30分間加熱した以外は、実施例33と同様にして基材、硬化膜及び光触媒層よりなる樹脂積層体を作製した。これについて評価した結果を表11に示す。
Comparative Example 29
On the primer of Comparative Example 28, an equivalent liquid mixture (ST-K102) of an undercoat agent “ST-K102a” and “ST-K102b” manufactured by Ishihara Sangyo Co., Ltd. was dried to a thickness of about 3 μm. A resin laminate composed of a substrate, a cured film and a photocatalyst layer was produced in the same manner as in Example 33 except that the coating was performed and dried at room temperature for 5 minutes and then heated at 100 ° C. for 30 minutes. Table 11 shows the evaluation results.
 実施例33~35、比較例27~29の各例における諸特性は、下記の要領に従って求めた。
1.樹脂積層体の評価
(1)光触媒機能
 光触媒機能が発現しているか否かの指標として、親水性の度合いが挙げられる(一般に水との接触角が40°以下の親水性を有すれば防汚性を有するといわれている)。どの程度光触媒機能が発現されているかの指標として、以下の方法により接触角を測定した。
光触媒層側にブラックライトブルーランプにて1mW/cm2の紫外線を照射し、接触角の経時変化を測定した。接触角は、光触媒層面にマイクロシリンジを用いてイオン交換水20mlを滴下し、水滴を画像処理接触角度計(協和界面科学(株)製、CA-A)を用いて測定した。
Various characteristics in Examples 33 to 35 and Comparative Examples 27 to 29 were determined according to the following procedures.
1. Evaluation of resin laminate (1) Photocatalytic function As an index of whether or not the photocatalytic function is manifested, the degree of hydrophilicity can be mentioned (in general, if the contact angle with water has a hydrophilicity of 40 ° or less, antifouling It is said to have sex). As an index of how much photocatalytic function is expressed, the contact angle was measured by the following method.
The photocatalyst layer was irradiated with 1 mW / cm 2 of ultraviolet light with a black light blue lamp, and the change in contact angle with time was measured. The contact angle was measured by dropping 20 ml of ion-exchanged water on the photocatalyst layer surface using a microsyringe and using an image processing contact angle meter (CA-A, manufactured by Kyowa Interface Science Co., Ltd.).
(2)全光線透過率及びヘイズ
 直読ヘイズコンピュータ(スガ試験機株式会社製、HGM-2DP)にて、積層体の全光線透過率及びヘイズを測定した。
(2) Total light transmittance and haze The total light transmittance and haze of the laminate were measured with a direct reading haze computer (HGM-2DP, manufactured by Suga Test Instruments Co., Ltd.).
(3)黄変度(YI)
 SZ-optical SENSOR(日本電色工業(株)製)を用い、JIS K7105に準拠して測定した。
(3) Degree of yellowing (YI)
Measurement was performed according to JIS K7105 using SZ-optical SENSOR (manufactured by Nippon Denshoku Industries Co., Ltd.).
(4)耐摩耗性
 摩耗輪CS-10F及びテーバー摩耗試験機(ロータリーアブレージョンテスタ)(株式会社東洋精機製、型式:TS)を用いて荷重4.9Nで500回転テーバー摩耗試験を行い、テーバー摩耗試験前のヘイズとテーバー摩耗試験後のヘイズの差(ΔH)が15未満のものを「○」、15以上のものを「×」とした。
(5)耐擦傷性
 樹脂積層体の光触媒層の表面をスチールウール#0000(荷重4.9N)を用い、2000mm/secで50往復した後、光触媒層の表面の傷付き状況を目視により評価した。全く傷が付かないものを「1」、わずかに傷が付くものを「2」、擦った箇所の半分以上の面に傷が付くものを「3」とした。
(4) Abrasion resistance Using a wear wheel CS-10F and a Taber abrasion tester (rotary ablation tester) (Toyo Seiki Co., Ltd., model: TS), a 500 rotation Taber abrasion test was conducted at a load of 4.9 N, and Taber abrasion The case where the difference (ΔH) between the haze before the test and the haze after the Taber abrasion test was less than 15 was designated as “◯”, and the case where the difference was 15 or more was designated as “x”.
(5) Scratch resistance The surface of the photocatalyst layer of the resin laminate was reciprocated 50 times at 2000 mm / sec using steel wool # 0000 (load 4.9 N), and then the surface damage state of the photocatalyst layer was visually evaluated. . “1” indicates that there is no scratch at all, “2” indicates that there is a slight scratch, and “3” indicates that scratches are present on more than half of the rubbed area.
(6)密着性
 JIS K 5400に準拠し、樹脂積層体の光触媒層表面をかみそりの刃で2mm間隔に縦横11本ずつ切れ目を入れて100個の碁盤目をつくり、市販のセロハンテープ(「CT-24(幅24mm)」、ニチバン株式会社製)を指の腹でよく密着させたのち、90°の角度で手前方向に急激に剥し、光触媒層が剥離しないで残存したます目数(X)を、X/100で表示し、光触媒層の密着性を評価した。
(6) Adhesiveness In accordance with JIS K 5400, the surface of the photocatalyst layer of the resin laminate was cut into 11 grids at intervals of 2 mm with a razor blade to make 100 grids, and a commercially available cellophane tape (“CT -24 (width 24 mm) "(made by Nichiban Co., Ltd.) was adhered closely with the belly of the finger, then peeled off rapidly at an angle of 90 °, and the photocatalyst layer remained without peeling (X) Was expressed as X / 100, and the adhesion of the photocatalyst layer was evaluated.
(7)耐候性
キセノンウェザー試験(アトラス社Ci65、出力6.5kW、ブラックパネル温度63℃、湿度50%)を実施し、上記ヘイズ、黄変度、密着性のパラメータの変化度合いで耐候性を評価した。
(7) Weather resistance A xenon weather test (Atlas Ci65, output 6.5 kW, black panel temperature 63 ° C., humidity 50%) was conducted, and the weather resistance was determined by the degree of change in the parameters of haze, yellowing, and adhesion. evaluated.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例33~35はいずれの評価も比較例27~29より耐摩耗性、耐擦傷性及び耐候性が良好であった。 In each of Examples 33 to 35, the abrasion resistance, scratch resistance and weather resistance were better than those of Comparative Examples 27 to 29 in all evaluations.
実施例36~43、比較例30~33
(樹脂積層体の成形体)
実施例36
 実施例1のコーティング液を、厚み0.5mmのポリカーボネート(PC)シート〔三菱ガス株式会社製、商品名:ユーピロン・シート〕に膜厚が2~3μmとなるように塗布し、前硬化として20℃で240分間乾燥させて成形用ポリカーボネートシートを作製した。作製した成形用シートを真空成形し、その後射出成形金型にセットしポリカーボネートからなる射出成形樹脂〔出光興産株式会社製、商品名:タフロン〕を樹脂温度270℃、樹脂圧力50MPaで前硬化膜が形成されていない面に射出することにより、樹脂積層体の成形体を製造した。さらに成形体を120℃で1分間後硬化させた。この樹脂積層体の成形体について、下記項目(1)~(3)に係る評価結果を表12に示す。
Examples 36 to 43, Comparative Examples 30 to 33
(Molded body of resin laminate)
Example 36
The coating liquid of Example 1 was applied to a polycarbonate (PC) sheet having a thickness of 0.5 mm (trade name: Iupilon sheet manufactured by Mitsubishi Gas Co., Ltd.) so as to have a film thickness of 2 to 3 μm. A polycarbonate sheet for molding was produced by drying at 240 ° C. for 240 minutes. The formed molding sheet is vacuum-formed, and then set in an injection mold, and an injection-molded resin made of polycarbonate (made by Idemitsu Kosan Co., Ltd., trade name: Toughlon) is used at a resin temperature of 270 ° C. and a resin pressure of 50 MPa. A molded body of the resin laminate was manufactured by injecting onto the unformed surface. Further, the molded body was post-cured at 120 ° C. for 1 minute. Table 12 shows the evaluation results concerning the following items (1) to (3) for the molded body of the resin laminate.
(1)膜外観
 成形体の硬化膜面の外観を目視観察し、異物やまだら模様、クラックを確認し、これらが認められないものを「○」、認められたものを「×」とした。
(2)耐擦傷性
 スチールウール#0000(荷重4.9N)を用いて10往復した後、表面の傷付き状況を目視により評価した。全く傷が付かないものを「1」、わずかに傷が付くものを「2」、擦った箇所の半分以上の面に傷が付くものを「3」とした。
(3)密着性
 JIS K 5400に準拠し、成形体の硬化膜面をかみそりの刃で2mm間隔に縦横11本ずつ切れ目を入れて100個の碁盤目をつくり、市販のセロハンテープ(「CT-24(幅24mm)」、ニチバン株式会社製)を指の腹でよく密着させたのち、90°の角度で手前方向に急激に剥し、硬化膜が基材から剥離しないで残存したます目数(X)を、X/100で表示し、硬化膜の密着性を評価した。
(1) Film appearance The appearance of the cured film surface of the molded product was visually observed to check for foreign matters, mottled patterns, and cracks.
(2) Scratch resistance After 10 reciprocations using steel wool # 0000 (load 4.9 N), the surface damage was visually evaluated. “1” indicates that there is no scratch at all, “2” indicates that there is a slight scratch, and “3” indicates that scratches are present on more than half of the rubbed area.
(3) Adhesiveness In accordance with JIS K 5400, the cured film surface of the molded product was cut into 11 grids at 2 mm intervals with a razor blade to make 100 grids, and a commercially available cellophane tape (“CT- 24 (width 24 mm) ”(manufactured by Nichiban Co., Ltd.) was adhered closely with the belly of the finger, and then peeled off rapidly at an angle of 90 °, and the cured film remained without peeling from the base material ( X) was expressed as X / 100, and the adhesion of the cured film was evaluated.
実施例37~39
 実施例36と同様の方法で成形体を製造した。成形用ポリカーボネートシートは表6に示す前硬化温度、前硬化時間、後硬化温度及び後硬化時間に従い作製した。評価結果を表12に示す。
Examples 37-39
A molded body was produced in the same manner as in Example 36. The polycarbonate sheet for molding was prepared according to the pre-curing temperature, pre-curing time, post-curing temperature and post-curing time shown in Table 6. The evaluation results are shown in Table 12.
実施例40
 実施例1のコーティング液を、厚み0.3mmのポリプロピレン(PP)シート〔日本ポリプロ株式会社製、商品名:ウィンテック〕に膜厚が2~3μmとなるように塗布し、前硬化として20℃で240分間乾燥させて成形用ポリプロピレンシートを作製した。作製した成形用シートを真空成形し、その後射出成形金型にセットしポリプロピレンからなる射出成形樹脂〔株式会社プライムポリマー製、商品名:プライムポリプロ〕を樹脂温度270℃、樹脂圧力40MPaで前硬化膜が形成されていない面に射出することにより、樹脂積層体の成形体を製造した。さらに成形体を120℃で30秒間後硬化させた。評価結果を表12に示す。
Example 40
The coating liquid of Example 1 was applied to a polypropylene (PP) sheet having a thickness of 0.3 mm (trade name: Wintech, manufactured by Nippon Polypro Co., Ltd.) so as to have a film thickness of 2 to 3 μm, and pre-cured at 20 ° C. And dried for 240 minutes to produce a polypropylene sheet for molding. The formed molding sheet is vacuum-formed, then set in an injection mold, and an injection-molded resin made of polypropylene (manufactured by Prime Polymer Co., Ltd., trade name: Prime Polypro) is precured at a resin temperature of 270 ° C. and a resin pressure of 40 MPa. The molded body of the resin laminate was manufactured by injecting onto the surface where no is formed. Further, the molded body was post-cured at 120 ° C. for 30 seconds. The evaluation results are shown in Table 12.
実施例41~43
 実施例40と同様の方法で成形体を製造した。成形用ポリプロピレンシートは表12に示す前硬化温度、前硬化時間、後硬化温度及び後硬化時間に従い作製した。評価結果を表12に示す。
Examples 41-43
A molded body was produced in the same manner as in Example 40. The molding polypropylene sheet was prepared according to the pre-curing temperature, pre-curing time, post-curing temperature and post-curing time shown in Table 12. The evaluation results are shown in Table 12.
比較例30~33
 比較例1のコーティング液を用いて、実施例36、実施例39、実施例40、実施例43と同様の方法で成形体を製造した。評価結果を表12に示す。
Comparative Examples 30 to 33
Using the coating liquid of Comparative Example 1, molded articles were produced in the same manner as in Example 36, Example 39, Example 40, and Example 43. The evaluation results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表12から分かるように、実施例36~43は実施例1のコーティング液を用いた樹脂積層体の成形体であり、いずれもほぼ全ての評価項目において合格である。
 比較例30~33は比較例1のコーティング液を用いた樹脂積層体の成形体であり、膜外観、密着性は良好であるものの、耐擦傷性が実施例36~43のものに比べて劣る。
As can be seen from Table 12, Examples 36 to 43 are molded products of the resin laminate using the coating liquid of Example 1, and all pass in almost all evaluation items.
Comparative Examples 30 to 33 are molded products of the resin laminate using the coating liquid of Comparative Example 1, and the film appearance and adhesion are good, but the scratch resistance is inferior to those of Examples 36 to 43. .
 本発明のコーティング液を用いることにより、メーターカバーなどの自動車内部部品、二輪車や三輪車のウインドシールド、樹脂製自動車窓(各種車両窓)、樹脂製建材窓、建機用のルーフ、道路透光板(遮音板)、矯正用の他、サングラス、スポーツ用、安全メガネなどの眼鏡レンズ、プラズマや液晶、有機EL等のディスプレイ、光ディスク、携帯電話部品、タッチパネル、太陽電池等の電子機器部品等、街路灯などの照明部品、防風板、防護盾用の種々の樹脂製材料、特にポリカーボネート製材料への展開が可能となり、ガラス代替部材として好適に使用できる。 By using the coating liquid of the present invention, automobile interior parts such as meter covers, motorcycle and tricycle windshields, resin automobile windows (various vehicle windows), resin construction material windows, roofs for construction machinery, road translucent plates (Sound insulation board), for correction, eyeglass lenses such as sunglasses, sports, safety glasses, displays such as plasma, liquid crystal, organic EL, optical discs, mobile phone parts, touch panel, solar cell and other electronic equipment parts, town It can be used for lighting parts such as road lamps, windproof plates, various resin materials for protective shields, especially polycarbonate materials, and can be suitably used as a glass substitute member.

Claims (28)

  1.  下記(A)~(E)成分を含むことを特徴とするコーティング液。
    (A)下記(A-1)~(A-5)成分のアルコキシ基を有するシラン化合物の加水分解縮合物
      (A-1)テトラアルコキシシラン化合物
      (A-2)アミノ基、エポキシ基及びイソシアネート基を含まないオルガノアルコキシシラン化合物
      (A-3)アミノ基及びアルコキシ基を有するシラン化合物
      (A-4)エポキシ基及びアルコキシ基を有するシラン化合物
      (A-5)アルコキシ基を有するブロック化イソシアナトシラン化合物
    (B)紫外線吸収基を有する単量体単位を含む共重合体からなる有機高分子微粒子
    (C)コロイダルシリカ
    (D)硬化触媒
    (E)分散媒体
    A coating liquid comprising the following components (A) to (E):
    (A) Hydrolysis condensate of silane compounds having alkoxy groups of the following components (A-1) to (A-5) (A-1) Tetraalkoxysilane compounds (A-2) Amino groups, epoxy groups and isocyanate groups (A-3) Silane compound having amino group and alkoxy group (A-4) Silane compound having epoxy group and alkoxy group (A-5) Blocked isocyanatosilane compound having alkoxy group (B) Organic polymer fine particles comprising a copolymer containing a monomer unit having an ultraviolet absorbing group (C) Colloidal silica (D) Curing catalyst (E) Dispersion medium
  2.  さらに、(F)シラン化合物で処理された酸化セリウムと、(G)分散安定剤とを含むことを特徴とする請求項1に記載のコーティング液。 The coating liquid according to claim 1, further comprising (F) cerium oxide treated with a silane compound and (G) a dispersion stabilizer.
  3.  (A-1)成分が下記一般式(1)で表されるテトラアルコキシシラン化合物である請求項1又は2に記載のコーティング液。
       Si(OR1)4    (1)
    [式中、R1は、炭素数1~4のアルキル基もしくはエーテル結合を有するアルキル基を示す。複数のR1は同一でも異なっていてもよい。]
    The coating liquid according to claim 1 or 2, wherein the component (A-1) is a tetraalkoxysilane compound represented by the following general formula (1).
    Si (OR 1 ) 4 (1)
    [Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms or an alkyl group having an ether bond. A plurality of R 1 may be the same or different. ]
  4.  (A-2)成分が下記一般式(2)で表されるアミノ基、エポキシ基及びイソシアネート基を含まないオルガノアルコキシシラン化合物である請求項1又は2に記載のコーティング液。
        R2 aSi(OR34-a    ・・・(2)
    [式中、R2は炭素数1~10のアルキル基もしくはフッ素化アルキル基;ビニル基;フェニル基;又はメタクリロキシ基で置換された炭素数1~3のアルキル基、R3は炭素数1~4のアルキル基もしくはエーテル結合を有するアルキル基を示し、aは1又は2を示す。R2が複数ある場合、複数のR2は同一でも異なっていてもよく、複数のOR3は同一でも異なっていてもよい。]
    The coating liquid according to claim 1 or 2, wherein the component (A-2) is an organoalkoxysilane compound containing no amino group, epoxy group or isocyanate group represented by the following general formula (2).
    R 2 a Si (OR 3 ) 4-a (2)
    Wherein, R 2 is an alkyl group or a fluorinated alkyl group of 1 to 10 carbon atoms; vinyl group; a phenyl group; or methacryloxy-substituted alkyl group having 1-3 carbon atoms in the group, R 3 is a C1- 4 represents an alkyl group or an alkyl group having an ether bond, and a represents 1 or 2. When R 2 are a plurality, the plurality of R 2 may be the same or different, a plurality of OR 3 may be the same or different. ]
  5.  (A-3)成分が下記一般式(3)で表されるアミノ基及びアルコキシ基を有するシラン化合物である請求項1又は2に記載のコーティング液。
        R4 bSi(OR54-b    ・・・(3)
    [式中、R4は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、アミノ基(-NH2基)、アミノアルキル基〔-(CH2x-NH2基(ただし、xは1~3の整数)〕)、アルキルアミノ基〔-NHR基(ただし、Rは炭素数1~3のアルキル基)〕の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基を示し、R4の少なくとも1つは、アミノ基、あるいはアミノアルキル基又はアルキルアミノ基のいずれかで置換された炭素数1~3のアルキル基を示す。R5は炭素数1~4のアルキル基を示し、bは1又は2を示す。R4が複数ある場合、複数のR4は同一でも異なっていてもよく、複数のOR5は同一でも異なっていてもよい。]
    The coating liquid according to claim 1 or 2, wherein the component (A-3) is a silane compound having an amino group and an alkoxy group represented by the following general formula (3).
    R 4 b Si (OR 5 ) 4-b (3)
    [Wherein R 4 is an alkyl group having 1 to 4 carbon atoms; vinyl group; phenyl group; or methacryloxy group, amino group (—NH 2 group), aminoalkyl group [— (CH 2 ) x —NH 2 group ( Wherein x is an integer of 1 to 3)]), an alkylamino group [—NHR group (where R is an alkyl group having 1 to 3 carbon atoms)], and the number of carbon atoms substituted with one or more groups 1 to 3 alkyl groups, at least one of R 4 represents an amino group, or an alkyl group having 1 to 3 carbon atoms substituted with either an aminoalkyl group or an alkylamino group; R 5 represents an alkyl group having 1 to 4 carbon atoms, and b represents 1 or 2. If R 4 is plural, R 4 may be the same or different, the plurality of OR 5 may be the same or different. ]
  6.  (A-4)成分が下記一般式(4)で表されるエポキシ基及びアルコキシ基を有するシラン化合物である請求項1又は2に記載のコーティング液。
        R6 cSi(OR74-c    ・・・(4)
    [式中、R6は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、グリシドキシ基、3,4-エポキシシクロヘキシル基の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基を示し、R6の少なくとも1つは、グリシドキシ基又は3,4-エポキシシクロヘキシル基で置換された炭素数1~3のアルキル基を示す。R7は炭素数1~4のアルキル基を示し、cは1又は2を示す。R6が複数ある場合、複数のR6は同一でも異なっていてもよく、複数のOR7は同一でも異なっていてもよい。]
    The coating liquid according to claim 1 or 2, wherein the component (A-4) is a silane compound having an epoxy group and an alkoxy group represented by the following general formula (4).
    R 6 c Si (OR 7 ) 4-c (4)
    [Wherein R 6 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or a carbon substituted with one or more groups selected from a methacryloxy group, a glycidoxy group, and a 3,4-epoxycyclohexyl group. Represents an alkyl group having 1 to 3 carbon atoms, and at least one of R 6 represents an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group or a 3,4-epoxycyclohexyl group. R 7 represents an alkyl group having 1 to 4 carbon atoms, and c represents 1 or 2. If R 6 is plural, R 6 may be the same or different, a plurality of OR 7 may be different or identical. ]
  7.  (A-5)成分が下記一般式(5)で表されるアルコキシ基を有するブロック化イソシアナトシラン化合物である請求項1又は2に記載のコーティング液。
        R8 dSi(OR94-d    ・・・(5)
    [式中、R8は炭素数1~4のアルキル基;ビニル基;フェニル基;又はメタクリロキシ基、ブロック化イソシアネート基の中から選ばれる1以上の基で置換された炭素数1~3のアルキル基を示し、R8の少なくとも1つは、ブロック化イソシアネート基で置換された炭素数1~3のアルキル基を示す。R9は炭素数1~4のアルキル基を示し、dは1又は2を示す。R8が複数ある場合、複数のR8は同一でも異なっていてもよく、複数のOR9は同一でも異なっていてもよい。]
    The coating liquid according to claim 1 or 2, wherein the component (A-5) is a blocked isocyanatosilane compound having an alkoxy group represented by the following general formula (5).
    R 8 d Si (OR 9 ) 4-d (5)
    [Wherein R 8 is an alkyl group having 1 to 4 carbon atoms; a vinyl group; a phenyl group; or an alkyl group having 1 to 3 carbon atoms substituted with one or more groups selected from a methacryloxy group and a blocked isocyanate group. And at least one of R 8 represents an alkyl group having 1 to 3 carbon atoms substituted with a blocked isocyanate group. R 9 represents an alkyl group having 1 to 4 carbon atoms, and d represents 1 or 2. If R 8 is plural, R 8 may be the same or different, a plurality of OR 9 may be the same or different. ]
  8.  (A-1)成分、(A-2)成分及び(A-4)成分の加水分解縮合物と、(B)~(E)成分とを接触させて得られた反応生成物に、(A-5)成分を加えて反応させた後、さらに(A-3)成分を加えて反応させてなる請求項1~7のいずれかに記載のコーティング液。 The reaction product obtained by bringing the hydrolysis condensate of the components (A-1), (A-2) and (A-4) and the components (B) to (E) into contact with (A) The coating liquid according to any one of claims 1 to 7, which is prepared by adding and reacting the component -5) and further reacting by adding the component (A-3).
  9.  (A-1)成分、(A-2)成分、(A-4)成分及び(B)~(E)成分を含む混合物を加熱することにより得られた反応生成物に、(A-5)成分を加え反応させた後、さらに(A-3)成分を加えて反応させてなる請求項1~7のいずれかに記載のコーティング液。 The reaction product obtained by heating the mixture containing the component (A-1), the component (A-2), the component (A-4) and the components (B) to (E) is added to the reaction product (A-5). The coating liquid according to any one of claims 1 to 7, wherein the component (A-3) is further reacted after the component is reacted.
  10.  請求項1~9のいずれかに記載のコーティング液を硬化してなる硬化膜。 A cured film obtained by curing the coating liquid according to any one of claims 1 to 9.
  11.  基材と、該基材上に直接形成された請求項10に記載の硬化膜とを有することを特徴とする樹脂積層体。 A resin laminate comprising a substrate and the cured film according to claim 10 formed directly on the substrate.
  12.  基材と、該基材上に形成された請求項10に記載の硬化膜と、前記硬化膜上に形成された無機層とを有することを特徴とする樹脂積層体。 A resin laminate comprising a substrate, the cured film according to claim 10 formed on the substrate, and an inorganic layer formed on the cured film.
  13.  基材と、該基材上に形成された請求項10に記載の硬化膜と、前記硬化膜上に形成された透明導電膜とを有することを特徴とする樹脂積層体。 A resin laminate comprising a base material, the cured film according to claim 10 formed on the base material, and a transparent conductive film formed on the cured film.
  14.  基材と、該基材上に形成された請求項10に記載の硬化膜と、前記硬化膜上に形成された光触媒層とを有することを特徴とする樹脂積層体。 A resin laminate comprising a substrate, the cured film according to claim 10 formed on the substrate, and a photocatalyst layer formed on the cured film.
  15.  前記硬化膜の厚さが0.1~50μmである請求項13に記載の樹脂積層体。 The resin laminate according to claim 13, wherein the thickness of the cured film is 0.1 to 50 µm.
  16.  前記透明導電膜のキャリア濃度が1×1018/cm3以上である請求項13に記載の樹脂積層体。 Resin laminate according to claim 13 a carrier concentration of the transparent conductive film is 1 × 10 18 / cm 3 or more.
  17.  前記基材が樹脂基材である請求項13に記載の樹脂積層体。 The resin laminate according to claim 13, wherein the substrate is a resin substrate.
  18.  前記基材が凹凸を有することを特徴とする請求項11、12、及び17のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 11, 12, and 17, wherein the substrate has irregularities.
  19.  前記基材が楕円柱型であることを特徴とする請求項11、12、17及び18のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 11, 12, 17 and 18, wherein the base material is an elliptic cylinder.
  20.  前記基材が円柱型であることを特徴とする請求項11、12、17及び18のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 11, 12, 17 and 18, wherein the base material is a column type.
  21.  前記基材の硬化膜が形成されていない面に樹脂層を有することを特徴とする請求項11、12、17~20のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 11, 12, and 17 to 20, further comprising a resin layer on a surface of the substrate on which no cured film is formed.
  22.  前記硬化膜の厚さが0.5~6μmであることを特徴とする請求項11、12、14、17~21のいずれかに記載の樹脂積層体。 The resin laminate according to any one of claims 11, 12, 14, and 17 to 21, wherein the cured film has a thickness of 0.5 to 6 µm.
  23.  基材がポリエステル樹脂、ポリカーボネート樹脂又はポリオレフィン系樹脂であることを特徴とする請求項11、12、14、17~22のいずれかに記載の樹脂積層体。 23. The resin laminate according to claim 11, wherein the substrate is a polyester resin, a polycarbonate resin or a polyolefin resin.
  24.  請求項1~9のいずれかに記載のコーティング液を加熱し、硬化させる工程を含むことを特徴とする硬化膜の製造方法。 A method for producing a cured film, comprising a step of heating and curing the coating liquid according to any one of claims 1 to 9.
  25.  請求項1~9のいずれかに記載のコーティング液を基材上に塗布する工程と、前記コーティング液を乾燥させる工程と、前記基材を熱成形する工程と、前記コーティング液を硬化させてコーティング層を設ける工程とを含むことを特徴とする樹脂積層体の製造方法。 A step of applying the coating liquid according to any one of claims 1 to 9 on a substrate, a step of drying the coating solution, a step of thermoforming the substrate, and curing the coating solution to coat the substrate. And a step of providing a layer.
  26.  更に、前記コーティング液を硬化させてなる樹脂積層体のコーティング層を有しない面に樹脂層を設ける工程を含むことを特徴とする請求項25に記載の樹脂積層体の製造方法。 Furthermore, the manufacturing method of the resin laminated body of Claim 25 including the process of providing a resin layer in the surface which does not have the coating layer of the resin laminated body formed by hardening | curing the said coating liquid.
  27.  請求項1~9のいずれか一項に記載のコーティング液を硬化させてなる硬化膜を基材上に形成させる工程、
     上記硬化膜上に透明導電膜を形成させる工程、
    を含むことを特徴とする樹脂積層体の製造方法。
    Forming a cured film formed by curing the coating liquid according to any one of claims 1 to 9 on a substrate;
    Forming a transparent conductive film on the cured film,
    The manufacturing method of the resin laminated body characterized by the above-mentioned.
  28.  請求項1~9のいずれか一項に記載のコーティング液を硬化させてなる硬化膜を基材上に形成させる工程、
     上記硬化膜上に光触媒層を形成させる工程、
    を含むことを特徴とする樹脂積層体の製造方法。
    Forming a cured film formed by curing the coating liquid according to any one of claims 1 to 9 on a substrate;
    Forming a photocatalytic layer on the cured film,
    The manufacturing method of the resin laminated body characterized by the above-mentioned.
PCT/JP2009/062096 2008-07-02 2009-07-02 Coating liquid, cured film, resin multilayer body, method for producing the cured film and method for producing the resin multilayer body WO2010001949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519100A JP5635402B2 (en) 2008-07-02 2009-07-02 Coating liquid, cured film and resin laminate, and method for producing the cured film and resin laminate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008173560 2008-07-02
JP2008-173560 2008-07-02
JP2009-018342 2009-01-29
JP2009018342 2009-01-29
JP2009101282 2009-04-17
JP2009-101282 2009-04-17

Publications (2)

Publication Number Publication Date
WO2010001949A1 true WO2010001949A1 (en) 2010-01-07
WO2010001949A9 WO2010001949A9 (en) 2010-02-25

Family

ID=41466040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062096 WO2010001949A1 (en) 2008-07-02 2009-07-02 Coating liquid, cured film, resin multilayer body, method for producing the cured film and method for producing the resin multilayer body

Country Status (4)

Country Link
JP (1) JP5635402B2 (en)
KR (1) KR101653417B1 (en)
TW (1) TWI462979B (en)
WO (1) WO2010001949A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244610A (en) * 2010-05-19 2011-12-01 Autonetworks Technologies Ltd Solar cell mounting vehicle
JP2012127467A (en) * 2010-12-17 2012-07-05 Nagoya Oil Chem Co Ltd High-pressure gas container
WO2012099253A1 (en) * 2011-01-20 2012-07-26 日産化学工業株式会社 Coating composition for touch panels, coating film, and touch panel
WO2012120918A1 (en) * 2011-03-09 2012-09-13 株式会社Adeka Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
WO2013110491A3 (en) * 2012-01-24 2013-09-19 BSH Bosch und Siemens Hausgeräte GmbH Component for a household appliance
JP2014084419A (en) * 2012-10-24 2014-05-12 Idemitsu Kosan Co Ltd Coating composition
JP2014173019A (en) * 2013-03-11 2014-09-22 Panasonic Corp Coating agent composition for metal coating
JP2014173020A (en) * 2013-03-11 2014-09-22 Panasonic Corp Coating agent composition for metal coating
JP2021047428A (en) * 2014-02-18 2021-03-25 日東電工株式会社 Laminate and image display device
EP4349925A1 (en) 2022-10-06 2024-04-10 ETA SA Manufacture Horlogère Suisse Method for producing an article comprising a coloured abrasion resistant coating, and article comprising such a coating

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249782B1 (en) * 2011-03-04 2013-04-03 대주나노솔라주식회사 Heat-curable dip-coating composition
JP5889561B2 (en) * 2011-07-15 2016-03-22 日本パーカライジング株式会社 Water-based metal surface treatment agent and metal material with surface coating
TWI418472B (en) * 2011-08-08 2013-12-11 Prior Company Ltd Decoration film, decorated molding article and method for fabricating decorated molding article
WO2014119907A1 (en) * 2013-01-31 2014-08-07 Kolon Industries, Inc. Silicone resin and method of preparing the same
CN103264566B (en) * 2013-05-09 2015-08-19 无锡市中星工业胶带有限公司 A kind of heat resistant fire-proof plate BOPET diaphragm
KR102367063B1 (en) * 2015-06-24 2022-02-24 동우 화인켐 주식회사 Hard Coating Composition and Hard Coating Film Using the Same
US10428198B2 (en) 2016-01-27 2019-10-01 International Business Machines Corporation Ultraviolet light absorbing matrix-modified light stabilizing silica particles
CN114127197B (en) * 2019-09-04 2023-09-26 三星Sdi株式会社 Curable resin composition, cured film, and electronic device
KR20230050843A (en) * 2021-10-08 2023-04-17 주식회사 엘지화학 Cover window for flexible display device of substrate less type, flexible display device including the same and method for manufacturing thereof

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347606A (en) * 1993-06-04 1994-12-22 Asahi Optical Co Ltd Production of dyed lens with hard coat
JPH07199165A (en) * 1993-12-28 1995-08-04 Nitto Denko Corp Substrate for liquid crystal display element
JPH07204581A (en) * 1994-01-24 1995-08-08 Sekisui Chem Co Ltd Production of laminated body
JPH08113760A (en) * 1994-10-14 1996-05-07 Seiko Epson Corp Coating composition
JPH08309790A (en) * 1995-05-17 1996-11-26 Mitsubishi Gas Chem Co Inc Polycarbonate molded article and production thereof
JP2002052677A (en) * 2000-08-11 2002-02-19 Teijin Chem Ltd Polycarbonate resin laminate
JP2003025478A (en) * 2001-07-17 2003-01-29 Lintec Corp Hard coating film
JP2003306605A (en) * 2002-04-11 2003-10-31 Bayer Ag Composition containing inorganic uv absorption agent
JP2004024967A (en) * 2002-06-24 2004-01-29 Nitto Denko Corp Production method of coated sheet, production method of antireflection sheet, antireflection sheet, optical element, and image displaying device
WO2006022347A1 (en) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. Coating composition and resin multilayer body
JP2006077075A (en) * 2004-09-08 2006-03-23 Sumitomo Metal Mining Co Ltd Resin composition, transparent molded resin article for ultraviolet-shielding and transparent resin laminate for ultraviolet-shielding
JP2006088615A (en) * 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd Lamination type gas barrier film
JP2007136800A (en) * 2005-11-17 2007-06-07 Fujifilm Corp Gas-barrier laminated film and image display element using the same
JP2007168218A (en) * 2005-12-21 2007-07-05 Toppan Printing Co Ltd Conductive laminate and display
WO2007099784A1 (en) * 2006-02-24 2007-09-07 Idemitsu Kosan Co., Ltd. Coating composition, hardened film and resin laminate
JP2008500169A (en) * 2004-05-28 2008-01-10 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Multilayer coating comprising inorganic oxide network containing layer and application method thereof
JP2008194993A (en) * 2007-02-15 2008-08-28 Idemitsu Kosan Co Ltd Resin laminated body and manufacturing method of the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829835A (en) 1981-08-14 1983-02-22 Asahi Glass Co Ltd Method for forming inorganic film on surface of transparent plastic substrate
US4842941A (en) 1987-04-06 1989-06-27 General Electric Company Method for forming abrasion-resistant polycarbonate articles, and articles of manufacture produced thereby
EP0877068A3 (en) 1997-05-05 2000-01-12 General Electric Company A primerless silicone hardcoat composition for plastic substrates, and related articles

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347606A (en) * 1993-06-04 1994-12-22 Asahi Optical Co Ltd Production of dyed lens with hard coat
JPH07199165A (en) * 1993-12-28 1995-08-04 Nitto Denko Corp Substrate for liquid crystal display element
JPH07204581A (en) * 1994-01-24 1995-08-08 Sekisui Chem Co Ltd Production of laminated body
JPH08113760A (en) * 1994-10-14 1996-05-07 Seiko Epson Corp Coating composition
JPH08309790A (en) * 1995-05-17 1996-11-26 Mitsubishi Gas Chem Co Inc Polycarbonate molded article and production thereof
JP2002052677A (en) * 2000-08-11 2002-02-19 Teijin Chem Ltd Polycarbonate resin laminate
JP2003025478A (en) * 2001-07-17 2003-01-29 Lintec Corp Hard coating film
JP2003306605A (en) * 2002-04-11 2003-10-31 Bayer Ag Composition containing inorganic uv absorption agent
JP2004024967A (en) * 2002-06-24 2004-01-29 Nitto Denko Corp Production method of coated sheet, production method of antireflection sheet, antireflection sheet, optical element, and image displaying device
JP2008500169A (en) * 2004-05-28 2008-01-10 ピーピージー インダストリーズ オハイオ, インコーポレイテッド Multilayer coating comprising inorganic oxide network containing layer and application method thereof
WO2006022347A1 (en) * 2004-08-26 2006-03-02 Idemitsu Kosan Co., Ltd. Coating composition and resin multilayer body
JP2006077075A (en) * 2004-09-08 2006-03-23 Sumitomo Metal Mining Co Ltd Resin composition, transparent molded resin article for ultraviolet-shielding and transparent resin laminate for ultraviolet-shielding
JP2006088615A (en) * 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd Lamination type gas barrier film
JP2007136800A (en) * 2005-11-17 2007-06-07 Fujifilm Corp Gas-barrier laminated film and image display element using the same
JP2007168218A (en) * 2005-12-21 2007-07-05 Toppan Printing Co Ltd Conductive laminate and display
WO2007099784A1 (en) * 2006-02-24 2007-09-07 Idemitsu Kosan Co., Ltd. Coating composition, hardened film and resin laminate
JP2008194993A (en) * 2007-02-15 2008-08-28 Idemitsu Kosan Co Ltd Resin laminated body and manufacturing method of the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244610A (en) * 2010-05-19 2011-12-01 Autonetworks Technologies Ltd Solar cell mounting vehicle
JP2012127467A (en) * 2010-12-17 2012-07-05 Nagoya Oil Chem Co Ltd High-pressure gas container
JPWO2012099253A1 (en) * 2011-01-20 2014-06-30 日産化学工業株式会社 Coating composition for touch panel, coating film and touch panel
WO2012099253A1 (en) * 2011-01-20 2012-07-26 日産化学工業株式会社 Coating composition for touch panels, coating film, and touch panel
KR101829495B1 (en) * 2011-01-20 2018-02-14 닛산 가가쿠 고교 가부시키 가이샤 Coating composition for touch panels, coating film, and touch panel
JP6048148B2 (en) * 2011-01-20 2016-12-21 日産化学工業株式会社 Coating composition for touch panel, coating film and touch panel
TWI548640B (en) * 2011-03-09 2016-09-11 Adeka Corp A zinc oxide film forming composition, and a method for producing a zinc oxide film
KR101507673B1 (en) 2011-03-09 2015-03-31 가부시키가이샤 아데카 Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
US9133349B2 (en) 2011-03-09 2015-09-15 Adeka Corporation Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
JP2012188510A (en) * 2011-03-09 2012-10-04 Adeka Corp Zinc oxide film-forming composition, zinc oxide film production method and zinc compound
WO2012120918A1 (en) * 2011-03-09 2012-09-13 株式会社Adeka Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
WO2013110491A3 (en) * 2012-01-24 2013-09-19 BSH Bosch und Siemens Hausgeräte GmbH Component for a household appliance
JP2014084419A (en) * 2012-10-24 2014-05-12 Idemitsu Kosan Co Ltd Coating composition
JP2014173019A (en) * 2013-03-11 2014-09-22 Panasonic Corp Coating agent composition for metal coating
JP2014173020A (en) * 2013-03-11 2014-09-22 Panasonic Corp Coating agent composition for metal coating
JP2021047428A (en) * 2014-02-18 2021-03-25 日東電工株式会社 Laminate and image display device
JP7117070B2 (en) 2014-02-18 2022-08-12 日東電工株式会社 Laminate and image display device
EP4349925A1 (en) 2022-10-06 2024-04-10 ETA SA Manufacture Horlogère Suisse Method for producing an article comprising a coloured abrasion resistant coating, and article comprising such a coating

Also Published As

Publication number Publication date
KR101653417B1 (en) 2016-09-01
TWI462979B (en) 2014-12-01
KR20110030493A (en) 2011-03-23
JPWO2010001949A1 (en) 2011-12-22
WO2010001949A9 (en) 2010-02-25
TW201012882A (en) 2010-04-01
JP5635402B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5635402B2 (en) Coating liquid, cured film and resin laminate, and method for producing the cured film and resin laminate
EP1849835B1 (en) Organic-inorganic composite body
CN106132694B (en) Polymeric substrate and its manufacturing method with hard conating
JP4597368B2 (en) Nanostructured molded body and layer and method for producing the same using stable water-soluble precursor
KR101871867B1 (en) Organic resin laminate
WO2004070436A1 (en) Method for producing article having been subjected to low reflection treatment, solution for forming low reflection layer and article having been subjected to low reflection treatment
US20090011256A1 (en) Coating composition, hardened film and resin laminate
JP5074053B2 (en) Resin laminate and method for producing the same
US20210032429A1 (en) Organic resin laminate
JP2012224077A (en) Organic resin laminated body
JP2016505162A (en) Superhydrophilic antireflection coating composition containing a siloxane compound, superhydrophilic antireflection film using the same, and method for producing the same
WO2009099106A1 (en) Coating liquid, cured film and resin laminate
KR20140141741A (en) Water-borne top coating formulations and a method of the same
JP2016114766A (en) Heat-ray shielding member having network structure, heat-ray shielding film using the same, glass, intermediate film, and laminated glass
WO2020241745A1 (en) Coating liquid, cured film, multilayer body provided with said cured film, lighting component provided with said multilayer body, display, lens, component for solar cells, antireflective film, lighting cover, and lighting device
JP2016069645A (en) Composition for forming infrared shielding body and method for producing the same
JP2002053772A (en) Structural body carrying photocatalyst
JP2008150576A (en) Coating composition, cured film, and resin laminate
JP5964202B2 (en) Coating composition
WO2019239810A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
EP4316806A1 (en) Inorganic fine particle dispersion
KR20190061841A (en) Resin laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107029362

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010519100

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773527

Country of ref document: EP

Kind code of ref document: A1