WO2012099016A1 - 酸化物超電導線材およびその製造方法 - Google Patents

酸化物超電導線材およびその製造方法 Download PDF

Info

Publication number
WO2012099016A1
WO2012099016A1 PCT/JP2012/050595 JP2012050595W WO2012099016A1 WO 2012099016 A1 WO2012099016 A1 WO 2012099016A1 JP 2012050595 W JP2012050595 W JP 2012050595W WO 2012099016 A1 WO2012099016 A1 WO 2012099016A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oxide superconducting
oxide
superconducting wire
metal
Prior art date
Application number
PCT/JP2012/050595
Other languages
English (en)
French (fr)
Inventor
鈴木 龍次
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011006961A external-priority patent/JP2012150915A/ja
Priority claimed from JP2011015129A external-priority patent/JP5695431B2/ja
Priority claimed from JP2011042194A external-priority patent/JP2012181933A/ja
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2012099016A1 publication Critical patent/WO2012099016A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661Processes performed after copper oxide formation, e.g. patterning
    • H10N60/0716Passivating

Definitions

  • the present invention relates to an oxide superconducting wire and a method for producing the same.
  • This application is based on Japanese Patent Application No. 2011-006961 filed in Japan on January 17, 2011, Japanese Patent Application No. 2011-042194 filed in Japan on February 28, 2011, and January 27, 2011. Further, priority is claimed based on Japanese Patent Application No. 2011-015129 filed in Japan, the contents of which are incorporated herein.
  • RE-123 oxide superconductor discovered in recent years (REBa 2 Cu 3 O 7-X, where RE is a rare earth element including Y) exhibits superconductivity above liquid nitrogen temperature and has low current loss. It is a very promising material for practical use.
  • This oxide superconductor into a wire and using it as a power supply conductor or a magnetic coil.
  • As a method of processing this oxide superconductor into a wire a method of forming an oxide superconducting layer on a metal base tape has been studied.
  • the oxide superconducting wire has a structure in which two stabilization layers are laminated. That is, a thin silver stabilization layer is formed on the oxide superconducting layer, and a thick stabilization layer made of a highly conductive metal material such as copper is provided thereon.
  • the silver stabilization layer is provided to adjust fluctuations in the amount of oxygen when the oxide superconducting layer is subjected to oxygen heat treatment, and the copper stabilization layer is formed from the superconducting state to the normal conducting state. It is provided in order to function as a bypass for commutating the current of the oxide superconducting layer when the transition is made to.
  • a thin silver stabilization layer is formed by sputtering on an oxide superconducting layer, and then the entire wire is immersed in a copper sulfate aqueous plating bath to perform electroplating.
  • a technique for forming a copper stabilization layer on a silver stabilization layer is known (see Patent Document 1). Also, by stabilizing the silver stability by superposing the wire with a thin silver stabilization layer by sputtering on the oxide superconducting layer and the copper stabilizer tape through solder and passing them through a heating / pressure roll.
  • a technique for forming a copper stabilization layer on a stabilization layer is also known (see Patent Document 2).
  • the RE-123 oxide superconductor exhibits superconductivity at liquid nitrogen temperature and has a low current loss. Therefore, the application of the RE-123 oxide superconductor as a power supply conductor or a coil conductor is possible. Development is in progress. As an example of a method for processing this oxide superconductor into a wire, a metal having a high strength, heat resistance, and easy to process into a wire is processed into a long tape, and this metal base tape A technique for forming an oxide superconducting layer thereon is known.
  • the oxide superconductor crystal has electrical anisotropy, it is necessary to control the crystal orientation when forming the oxide superconducting layer on the base tape.
  • the orientation control method a technique is known in which an oxide superconducting layer is laminated on a base material via an intermediate layer.
  • an ion beam assisted deposition method IBAD method: Ion Beam Assisted Deposition
  • IBAD method Ion Beam Assisted Deposition
  • a base tape having a target line width is prepared from the start of production, and an intermediate layer and an oxide superconductor layer are formed thereon, There is a method of forming an oxide superconductor by forming a stabilizing layer.
  • a base tape having a certain line width is prepared in advance, and an intermediate layer and an oxide superconducting layer are formed thereon, and a stabilization layer is formed to form an oxide superconducting conductor.
  • an oxide superconducting conductor is prepared in advance with a constant line width, and the oxide superconducting conductor is cut to a target line width to obtain an oxide superconducting wire. It is considered that the method of obtaining the above is advantageous in terms of production efficiency.
  • Patent Document 3 As an example of a method for cutting an oxide superconducting conductor, a method using a cutter tool including a plurality of pairs of a pair of cutting portions has been proposed (see Patent Document 3). According to this method, a plurality of oxide superconducting wires are obtained by mechanically sandwiching a tape-shaped oxide superconducting conductor between the cutting edges of a pair of cutter tools and cutting the oxide superconducting conductor along its width direction. Is obtained. In addition, after slitting a tape-shaped oxide superconducting conductor having a metal substrate, an intermediate layer, an oxide superconducting layer, and a first silver stabilizing layer, electroplating is performed to protect the oxide superconducting layer. 2 discloses a method for producing an oxide superconducting wire by forming a silver stabilizing layer (see Patent Document 4).
  • Japanese Unexamined Patent Publication No. 2007-80780 Japanese Unexamined Patent Publication No. 2009-48987 Japanese Unexamined Patent Publication No. 2007-287629 Japanese Unexamined Patent Publication No. 2010-176892
  • the RE-123 oxide superconducting layer having a specific composition is easily deteriorated by moisture.
  • the wire is stored in an environment with a lot of moisture or when the wire is left in a state where moisture is adhered, if the moisture enters the oxide superconducting layer, the superconducting characteristics may be deteriorated.
  • the copper stabilization layer is formed by plating as in Patent Document 1
  • if there is a defect in the copper plating part moisture enters from the plating defect part to reach the oxide superconducting layer, and the oxide superconductivity There is a risk that the layer will deteriorate.
  • the oxide superconductor has a laminated structure, so that the oxide superconductor is oxidized near the cut surface.
  • the superconducting layer is inevitably peeled or deformed, which may cause deterioration of superconducting properties.
  • the part where peeling occurred in the oxide superconducting layer is easily peeled off mechanically thereafter, and the peeling strength may be reduced.
  • the second silver stabilizing layer is formed by electroplating to form the second silver stabilizing layer after slit processing. Need to form.
  • the process for forming the second silver stabilizing layer increases, the cost increases. Furthermore, depending on the composition, the RE-123-based oxide superconducting layer tends to deteriorate its superconducting properties when exposed to an atmosphere containing moisture for a long time. Protecting an oxide superconducting layer from moisture in an oxide superconducting conductor having a laminated structure is also an important issue.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an oxide superconducting wire capable of suppressing the intrusion of moisture into the oxide superconducting layer and a method for producing the same. Furthermore, the present invention provides an oxide superconducting wire capable of fusing an oxide superconducting conductor with a laser beam to obtain a plurality of oxide superconducting wires and forming a protective layer covering the oxide superconducting layer simultaneously with fusing. An object is to provide a manufacturing method and an oxide superconducting wire.
  • the first aspect of the present invention is a first step of preparing a superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, a silver layer, a solder layer, and a metal stabilizing layer are laminated in this order; By pressing and heating at least one width direction end of the metal stabilizing layer and the base material, a part of at least one width direction end of the solder layer and the base material is melted. And a second step of forming a protective layer covering at least the side surface of the oxide superconducting layer by solidifying after flowing to the side surface of the superconducting laminate, and a method for producing an oxide superconducting wire.
  • the manufacturing method of the oxide superconducting wire by pressing and heating at least one width direction end of the metal stabilizing layer and the base, the end of the solder layer or the base is melted, A protective layer covering at least the side surface of the oxide superconducting layer is formed by allowing the superconducting laminate to flow and then solidifying. Therefore, it is possible to manufacture an oxide superconducting wire having a structure in which all side surfaces of the oxide superconducting layer are shielded from the outside, and it is possible to prevent moisture from entering and prevent the oxide superconducting layer from being deteriorated by moisture.
  • the protective layer is formed by melting the base of the superconducting laminate or the end of the solder layer. Therefore, the protective layer is coated by covering the superconducting laminate by plating. Compared with the conventional method to form, a protective layer can be formed simply.
  • the end in the width direction of the substrate may be pressurized and energized with a roller electrode, and a part of the end in the width direction of the substrate may be melted by resistance heat generation.
  • a protective layer that covers at least the side surfaces of the intermediate layer and the oxide superconducting layer is formed.
  • the portion exposed to the outside of the manufactured oxide superconducting wire is any of a base material made of a metal material, a protective layer, a metal stabilization layer, a solder layer, and a silver layer. That is, since the outermost surface of the oxide superconducting wire is covered with a metal material, it is possible to prevent moisture from entering the inside and prevent the oxide superconducting layer from being deteriorated by moisture.
  • the protective layer which covers the side surface of an oxide superconducting layer continuously in a wire rod longitudinal direction can be formed.
  • an oxide superconducting wire having a structure in which all side surfaces of the oxide superconducting layer are shielded from the outside can be manufactured. Therefore, it is possible to provide an oxide superconducting wire capable of suppressing the permeation of moisture into the oxide superconducting layer and preventing the oxide superconducting layer from being damaged by moisture and degrading the superconducting characteristics.
  • a part of the width direction end portion of the solder layer may be melted by pressurizing and heating the width direction end portion of the metal stabilizing layer.
  • the protective layer that covers the side surface of the oxide superconducting layer can be formed by pressurizing and heating the widthwise end of the metal stabilizing layer to melt the end of the solder layer. Therefore, an oxide superconducting wire having a structure in which the side surface of the oxide superconducting layer is shielded from the outside can be manufactured. Therefore, it is possible to provide an oxide superconducting wire capable of suppressing the permeation of moisture into the oxide superconducting layer and preventing the oxide superconducting layer from being damaged by moisture and degrading the superconducting characteristics. Further, the protective layer can be formed by heating to a temperature equal to or higher than the melting point of the solder. Therefore, there is no possibility that the oxide superconducting layer is deteriorated by heating at a higher temperature than necessary.
  • the second aspect of the present invention is an oxide superconducting wire comprising an oxide superconducting laminate in which a substrate, an intermediate layer, an oxide superconducting layer, a silver layer, a solder layer, and a metal stabilizing layer are laminated in this order. Then, at least one width direction end of the base material and the solder layer extends in the stacking direction of the superconducting laminate so as to form a protective layer covering at least the side surface of the oxide superconducting layer. .
  • a protective layer is formed so as to cover at least the side surface of the oxide superconducting layer. Therefore, it is possible to prevent moisture from entering the oxide superconducting layer and prevent the oxide superconducting layer from being damaged by moisture and degrading the superconducting characteristics.
  • the protective layer may be formed from an end portion of the base material extending in the stacking direction of the superconducting laminate, and may cover at least the side surfaces of the intermediate layer and the oxide superconducting layer. In this case, at least the side surfaces of the intermediate layer and the oxide superconducting layer are covered with the protective layer.
  • the portion exposed to the outside is any one of a base material made of a metal material, a protective layer, a metal stabilization layer, a solder layer, and a silver layer. That is, since the outermost surface of the oxide superconducting wire is covered with a metal material, it is possible to prevent moisture from entering the inside and prevent the oxide superconducting layer from being deteriorated by moisture.
  • the protective layer may be formed from an end portion of the solder layer extending in the stacking direction of the superconducting laminate, and may cover at least side surfaces of the silver layer and the oxide superconducting layer. In this case, since at least the side surfaces of the silver layer and the oxide superconducting layer are covered with the protective layer, the infiltration of moisture into the oxide superconducting layer is suppressed, and the oxide superconducting layer is damaged by moisture and the superconducting characteristics deteriorate. Can be prevented.
  • the oxide superconducting wire manufacturing method at least the side surface of the oxide superconducting layer is irradiated by irradiating a laser to the end portion in the width direction of the superconducting laminate, and melting and solidifying the end portion of the superconducting laminate.
  • An overlying melt-solidified layer is formed. Therefore, an oxide superconducting wire having a structure in which the side surface of the oxide superconducting layer is shielded from the outside by the melt-solidified layer can be manufactured, and the ingress of moisture can be prevented and deterioration of the oxide superconducting layer due to moisture can be suppressed.
  • At least one of the base material and the metal stabilizing layer may be melt-solidified to obtain the melt-solidified layer.
  • the melt-solidified layer melts any one of the base material and the metal stabilizing layer to form a melt-solidified layer that covers at least the side surface of the oxide superconducting layer. Therefore, a structure in which the oxide superconducting layer is shielded from the outside can be realized.
  • the melt-solidified layer can cover the entire side surface of the superconducting laminate. In this case, a structure in which the entire side surface of the superconducting laminate is shielded from the outside can be realized. Therefore, it is possible to provide an oxide superconducting wire that can more effectively prevent moisture from entering and reliably prevent deterioration of the oxide superconducting layer due to moisture.
  • the laser may be irradiated after the surface roughness of the surface irradiated with the laser is increased.
  • the reflectance of the laser irradiated surface can be reduced by increasing the surface roughness of the surface irradiated with the laser. For this reason, even if a general-purpose laser is used, the laser energy can be reliably transmitted to the irradiation unit, and the laser irradiation unit can be heated and melted.
  • the laser beam reflected from the laser irradiation surface can be reduced, the reflection of the laser beam to the laser processing machine is also reduced. Therefore, deterioration due to the laser beam of the laser processing machine can be suppressed.
  • the laser irradiation may be performed using a fiber laser.
  • a fiber laser that is a continuous wave laser unlike the case of using another laser such as a pulse laser, the laser irradiation portion is suppressed from being vaporized, and a melt-solidified layer can be formed reliably.
  • the metal stabilizing layer may be formed by bonding or plating a metal tape.
  • the thickness of the metal stabilization layer can be easily adjusted by adjusting the thickness of the metal tape, which is sufficient to stabilize the oxide superconducting layer. Easy to secure thickness. Therefore, an oxide superconducting wire having a high stabilization effect can be manufactured.
  • the metal stabilization layer when the metal stabilization layer is formed by plating, the metal stabilization layer can also be formed on the back side of the base material of the superconducting laminate, so that it is easy to ensure a sufficient thickness to stabilize the oxide superconducting layer. . Therefore, an oxide superconducting wire having further excellent stability can be manufactured.
  • a superconducting laminate in which a base material, an intermediate layer, an oxide superconducting layer, a silver layer, and a metal stabilizing layer are laminated in this order;
  • An oxide superconducting wire comprising: a melt-solidified layer formed by laser irradiation on at least one of the base material and the metal stabilizing layer. According to the oxide superconducting wire, the side surface of the oxide superconducting layer is covered with the molten solidified layer and shielded from the outside. Therefore, it is possible to prevent moisture from entering the oxide superconducting layer and to suppress deterioration of the oxide superconducting layer due to moisture.
  • the melt-solidified layer may include a melt-solidified product of at least one of the base material and the metal stabilizing layer.
  • the molten and solidified layer contains a molten and solidified material of the substrate, at least the side surfaces of the substrate, the intermediate layer, and the oxide superconducting layer are shielded from the outside by the molten and solidified layer. Therefore, the oxide superconducting wire can prevent the ingress of moisture into the oxide superconducting layer and suppress the deterioration of the oxide superconducting layer due to moisture.
  • the molten solidified layer contains the molten solidified product of the metal stabilizing layer
  • at least the side surfaces of the metal stabilizing layer, the silver layer, and the oxide superconductor are shielded from the outside by the molten solidified layer among the side surfaces of the superconducting laminate.
  • the oxide superconducting wire can prevent the ingress of moisture into the oxide superconducting layer and suppress the deterioration of the oxide superconducting layer due to moisture.
  • the melt-solidified layer includes the melt-solidified material of both the base material and the metal stabilizing layer, the melt-solidified layer can cover the entire side surface of the superconducting laminate.
  • the metal stabilizing layer may be formed by laminating or plating a metal tape.
  • the thickness of the metal stabilization layer can be adjusted easily by adjusting the thickness of the metal tape. It is easy to ensure a sufficient thickness. Therefore, an oxide superconducting wire having a high stabilization effect can be provided.
  • the metal stabilization layer is also formed on the back side of the base material of the superconducting laminate, which is sufficient to stabilize the oxide superconducting layer. Easy to secure thickness. Therefore, an oxide superconducting wire having excellent stability can be provided.
  • a fifth aspect of the present invention is a step of preparing an oxide superconducting conductor comprising a tape-shaped base material, an intermediate layer provided on the base material, an oxide superconducting layer, and a stabilizing layer made of silver. Irradiating a laser beam along the length direction of the base material from the stabilizing layer forming side of the oxide superconductor, and fusing the oxide superconductor in the width direction thereof.
  • a method of manufacturing a superconducting wire in the step of fusing the oxide superconducting conductor, by irradiating a laser while blowing a shielding gas to the fusing position of the oxide superconducting conductor, thereby fusing the edge of the oxide superconducting layer
  • a protective layer is formed by extending the molten solidified body of the stabilization layer in the direction of jetting the shielding gas so as to cover the portion and the melted portion of the edge of the intermediate layer.
  • the oxide superconducting wire (s) covered with the solidified body can be produced.
  • the melted portion of the oxide superconducting layer is covered with a protective layer made of a molten solidified body of the silver stabilizing layer, so that it is possible to prevent moisture from entering into the oxide superconducting wire. Therefore, even if it is a case where it is used for a long time in the atmosphere with much moisture, the oxide superconducting wire can be provided in which the superconducting characteristics are not deteriorated by the penetration of moisture.
  • the oxide superconducting conductor is blown while spraying the shielding gas, the oxide superconducting conductor can be cut while preventing the melted portion from being oxidized. That is, an oxide superconducting wire whose fusing part is not oxidized can be obtained.
  • the laser beam is irradiated to the oxide superconductor through an injection nozzle, and the shield gas is injected from the injection nozzle in the thickness direction of the oxide superconductor.
  • the fusing position of the oxide superconductor may be covered with the shielding gas.
  • a continuous wave laser beam may be used as the laser beam.
  • a laser beam of a continuous wave laser is used, large irregularities are not generated on the melted surface as compared with other laser beams such as a pulse laser. That is, the oxide superconducting conductor can be surely divided into a plurality of oxide superconducting wires having a smooth melting section.
  • an oxide superconducting conductor comprising a tape-like base material, an intermediate layer provided on the base material, an oxide superconducting layer, and a silver stabilizing layer is formed by a laser beam.
  • An oxide superconducting wire formed by fusing in the width direction, wherein the fusing part of the oxide superconducting layer edge and the fusing part of the intermediate layer edge are made of a molten solidified body of the stabilization layer Covered by a layer.
  • the protective layer may be integrated with the melted portion of the base material.
  • the protective layer made of a melt-solidified body of the silver stabilization layer extends to the melted portion of the base so as to cover the oxide superconducting layer and the intermediate layer, the oxide superconducting layer and the intermediate layer The fusing part of can be reliably covered with a protective layer. Therefore, it is possible to provide an oxide superconducting wire having a structure with no risk of moisture intrusion.
  • an oxide superconducting wire capable of suppressing moisture intrusion into the oxide superconducting layer and a method for manufacturing the same.
  • an oxide superconducting wire having no fear of moisture intrusion can be provided in which the melted portion of the base material by the laser beam is covered with a protective layer made of a molten solidified body of the silver stabilization layer.
  • FIG. 18 is an explanatory view showing an example of a method of fusing an oxide superconducting conductor with a continuous wave laser from a fiber laser device. It is the schematic which shows the whole structure of the fiber laser apparatus shown in FIG. It is a perspective view which shows an example of the structure of an oxide superconducting conductor before fusing by the fiber laser apparatus shown in FIG. It is a perspective view which shows an example of the structure of the oxide superconducting wire melt
  • FIG. 22 is an explanatory view showing an example of the concavo-convex portion formed on the base material of the oxide superconducting wire after fusing.
  • FIG. 23 is an explanatory diagram of a peel test of the oxide superconducting wire manufactured in Example 6.
  • FIG. 24 is a perspective view showing an example of a state in which an insulating tape is wound around a conventional oxide superconducting wire. It is a photograph which shows the cross-sectional structure
  • FIG. 1 is a cross-sectional view schematically showing an oxide superconducting wire according to the first embodiment of the present invention
  • FIG. 2 is a superconducting laminate applied to the first step of the manufacturing method of the oxide superconducting wire shown in FIG.
  • FIG. 3A is a cross-sectional perspective view showing an example of the structure of the body
  • FIGS. 3A and 3B are process explanatory views showing an embodiment of the method for manufacturing the oxide superconducting wire shown in FIG.
  • a metal stabilizing layer 6, a solder layer 5, a silver layer 4, an oxide superconducting layer 3, an intermediate layer 2, and a substrate 1A are sequentially laminated.
  • the side surface in the width direction of the laminate S1 in which the metal stabilizing layer 6, the solder layer 5, the silver layer 4, the oxide superconducting layer 3, and the intermediate layer 2 are laminated is covered with a protective layer 7.
  • the protective layer 7 is comprised from the edge of the width direction of 1 A of base materials extended in the lamination direction of laminated body S1. That is, the end portion of the base material 1 ⁇ / b> A extends from the intermediate layer 2 to the metal stabilization layer 6 so as to cover the side surface of the multilayer body S ⁇ b> 1.
  • Both end portions in the width direction of the base material 1A have shapes with rounded corners.
  • the protective layer 7 extends thinly downward from the rounded corners and covers the side surface in the width direction of the multilayer body S1.
  • the thickness of the protective layer 7 extending from the edge of the substrate 1A is thinner than the thickness of the substrate 1A.
  • “the thickness of the protective layer” refers to the thickness in the left-right direction of one of the protective layers 7 formed at both ends of the laminate S ⁇ b> 1.
  • "" Refers to the thickness of the substrate 1A in the left-right direction.
  • the thickness of the protective layer and “the thickness of the base material” are defined in the same manner as described above. As shown in FIG.
  • the oxide superconducting wire 10 shown in FIG. 1 includes a base material 1, an intermediate layer 2, an oxide superconducting layer 3, a silver layer 4, a solder layer 5, and a metal stabilizing layer 6 laminated in this order.
  • the superconducting laminate S0 is manufactured. Specifically, the end portion in the width direction of the superconducting laminate S0 is pressurized and heated from the substrate 1 side to melt the end portion of the substrate 1 and flow downward on the side surface of the laminate S1 according to gravity.
  • the protective layer 7 is formed by solidifying later.
  • the end portion in the width direction of the base material 1 of the superconducting laminate S0 is pressurized and heated, a part of the end portion in the width direction of the base material 1 melts and flows through the side surface of the superconducting laminate S0.
  • the solidified layer forms the protective layer 7.
  • the base material 1 and the base material 1A may be any material that can be used as a base material for ordinary superconducting wires.
  • a long plate-like, sheet-like or tape-like substrate is preferred.
  • a substrate made of a heat-resistant metal is preferred.
  • heat resistant metals an alloy is preferable, and a nickel (Ni) alloy or a copper (Cu) alloy is more preferable.
  • Hastelloy (trade name, manufactured by Haynes) is preferable as a commercial product. Any kind of Hastelloy B, C, G, N, W, etc., having different component amounts such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co), etc. can be used.
  • an oriented metal base material in which a texture is introduced into a nickel (Ni) alloy or the like may be used as the base material 1, and the intermediate layer 2 and the oxide superconducting layer 3 may be formed thereon.
  • the thickness of the substrate 1 and the substrate 1A may be appropriately adjusted according to the purpose, and is usually preferably 10 to 500 ⁇ m, more preferably 20 to 200 ⁇ m. If the thickness of the substrate is not less than the above lower limit, the strength can be further improved, and if it is not more than the upper limit, the critical current density of the overall can be further improved.
  • the intermediate layer 2 controls the crystal orientation of the oxide superconducting layer 3 and prevents diffusion of the metal elements in the base material 1 and the base material 1 ⁇ / b> A to the oxide superconducting layer 3. Further, the intermediate layer 2 functions as a buffer layer that alleviates the difference in physical properties (thermal expansion coefficient, lattice constant, etc.) between the base material 1 and the base material 1A and the oxide superconducting layer 3.
  • the material is preferably a metal oxide whose physical properties are intermediate values between the substrate 1 and the substrate 1A and the oxide superconducting layer 3.
  • Preferred materials for the intermediate layer 2 include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr.
  • Examples thereof include metal oxides such as 2 O 3 , Ho 2 O 3 and Nd 2 O 3 .
  • the intermediate layer 2 may be a single layer or a plurality of layers.
  • the layer made of the metal oxide (metal oxide layer) preferably has crystal orientation. In the case of a plurality of layers, it is preferable that the outermost layer (the layer closest to the oxide superconducting layer 3) has at least crystal orientation.
  • the intermediate layer 2 may have a multi-layer structure in which a bed layer is provided on the base 1 and the base 1A side.
  • the bed layer has high heat resistance and is provided in order to reduce interfacial reactivity, and is used to obtain the orientation of a film disposed thereon.
  • Such a bed layer is arranged as needed.
  • yttria Y 2 O 3
  • silicon nitride Si 3 N 4
  • aluminum oxide Al 2 O 3 , also referred to as “alumina”
  • the bed layer is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 200 nm, for example.
  • the intermediate layer 2 may have a multi-layer structure in which a diffusion preventing layer and a bed layer are laminated on the base 1 and the base 1A side.
  • a diffusion preventing layer is interposed between the base material 1 and the base material 1A and the bed layer.
  • the diffusion preventing layer is formed for the purpose of preventing diffusion of the constituent elements of the substrate 1 and the substrate 1A.
  • the diffusion prevention layer is made of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), rare earth metal oxide, or the like, and has a thickness of, for example, 10 to 400 nm.
  • the crystallinity of the diffusion preventing layer since the crystallinity of the diffusion preventing layer is not questioned, it may be formed by a film forming method such as a normal sputtering method.
  • the diffusion preventing layer when the diffusion preventing layer is interposed between the base material 1 and the base material 1A and the bed layer, when forming the other layer constituting the intermediate layer 2, the oxide superconducting layer 3 or the like, the base material 1 and part of the constituent elements of the substrate 1A can be effectively suppressed from diffusing to the oxide superconducting layer 3 side through the bed layer. It is effective when the base material 1 and the base material 1A are necessarily heated or heat-treated and as a result receive a heat history.
  • Al 2 O 3 can be used as the diffusion preventing layer and Y 2 O 3 can be used as the bed layer.
  • the intermediate layer 2 may have a multilayer structure in which a cap layer is further laminated on the metal oxide layer.
  • the cap layer has a function of controlling the orientation of the oxide superconducting layer 3, diffuses the elements constituting the oxide superconducting layer 3 into the intermediate layer 2, and intermediates between the gas used for stacking the oxide superconducting layer 3 and the intermediate layer It has a function of suppressing the reaction with the layer 2 and the like.
  • the cap layer is formed through a process of epitaxially growing on the surface of the metal oxide layer, and then growing the grains in the lateral direction (plane direction) (overgrowth) and selectively growing the crystal grains in the in-plane direction.
  • the ones made are preferred.
  • an in-plane orientation degree higher than that of the metal oxide layer can be obtained.
  • the material of the cap layer is not particularly limited as long as it can exhibit the above function.
  • Preferred materials for the cap layer include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr 2 O 3 , Ho 2 O 3 , Nd 2 O 3 and the like.
  • the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
  • the thickness of the intermediate layer 2 may be appropriately adjusted according to the purpose, but is usually 0.1 to 5 ⁇ m.
  • the thickness of the cap layer is usually 0.1 to 1.5 ⁇ m.
  • the intermediate layer 2 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, or ion beam assisted vapor deposition (hereinafter abbreviated as IBAD); chemical vapor deposition (CVD). ); Coating pyrolysis method (MOD method); can be formed by a known method of forming an oxide thin film such as thermal spraying.
  • IBAD physical vapor deposition
  • CVD chemical vapor deposition
  • MOD method Coating pyrolysis method
  • the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 3 and the cap layer is high.
  • the IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface during deposition.
  • an argon (Ar) ion beam is used as the ion beam.
  • the value of ⁇ FWHM: full width at half maximum
  • FWHM: full width at half maximum
  • an oxide superconducting layer made of an oxide superconductor having a generally known composition can be widely used.
  • an oxide superconductor represented by REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd), specifically, Y123 (YBa 2 Cu 3 O
  • An oxide superconducting layer made of y ) or Gd123 (GdBa 2 Cu 3 O y ) can be used.
  • Other oxide superconductors, for example, Bi 2 Sr 2 Ca n- 1 Cu n O 4 + 2n + ⁇ may be an oxide superconducting layer made of a high oxide superconductor critical temperature as represented by.
  • the oxide superconducting layer 3 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, or electron beam vapor deposition; chemical vapor deposition (CVD); coating pyrolysis (MOD). It can. Of these, laser vapor deposition is preferred.
  • the oxide superconducting layer 3 has a thickness of about 0.5 to 5 ⁇ m and preferably a uniform thickness.
  • the silver layer 4 laminated on the oxide superconducting layer 3 is formed by a film forming method such as a sputtering method, and the thickness thereof is, for example, about 1 to 30 ⁇ m.
  • the reason why the silver layer 4 is provided on the oxide superconducting layer 3 is that silver has good conductivity and has a low contact resistance with the oxide superconducting layer 3 and a good familiarity. Further, the reason is that silver has the property of making it difficult to escape the doped oxygen from the oxide superconducting layer 3 in the annealing step of doping the oxide superconducting layer 3 with oxygen.
  • the metal stabilization layer 6 is made of a highly conductive metal material.
  • the metal stabilizing layer 6 functions as a bypass through which the current of the oxide superconducting layer 3 commutates together with the silver layer 4.
  • the metal stabilizing layer 6 is laminated on the silver layer 4 via the solder layer 5. Since the solder layer 5 is interposed between the metal stabilizing layer 6 and the silver layer 4, the metal stabilizing layer 6 and the silver layer 4 are electrically and mechanically connected by the solder layer 5. The bonding between the layer 4 and the metal stabilizing layer 6 becomes strong, and the connection resistance is lowered. Therefore, the effect of stabilizing the oxide superconducting layer 3 can be improved.
  • the thickness of the solder layer 5 is not particularly limited and can be adjusted as appropriate. For example, the thickness can be about 2 to 20 ⁇ m.
  • solder layer 5 conventionally known solder can be used, for example, lead-free solder such as Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, Pb— Examples thereof include Sn-based alloy solder, eutectic solder, and low-temperature solder, and these solders can be used alone or in combination. Among these, it is preferable to use solder having a melting point of 300 ° C. or less. As a result, the metal stabilizing layer 6 and the silver layer 4 can be soldered at a temperature of 300 ° C. or lower, so that the deterioration of the characteristics of the oxide superconducting layer 3 due to the heat of soldering is suppressed. Can do.
  • the metal stabilization layer 6 is formed of a long metal tape made of a highly conductive metal. It is preferable to use a metal tape made of a relatively inexpensive material such as Cu, brass (Cu—Zn alloy), a Cu alloy such as Cu—Ni alloy, and stainless steel. Among them, it is preferable to use a metal tape made of Cu because it has high conductivity and is inexpensive.
  • the thickness of the metal stabilizing layer 6 is not particularly limited and can be adjusted as appropriate, but is preferably 10 to 300 ⁇ m. If the thickness of the metal stabilizing layer is not less than the above lower limit value, a higher effect of stabilizing the oxide superconducting layer 3 can be obtained, and if it is not more than the upper limit value, the oxide superconducting wire 10 can be thinned. When the oxide superconducting wire 10 is used for a superconducting fault current limiter, the metal stabilizing layer 6 is made of a resistance metal material, and a Ni-based alloy such as Ni—Cr can be used.
  • the protective layer 7 is comprised from the edge part of 1 A of base materials extended to the side surface of the width direction of laminated body S1. Therefore, examples of the material for the protective layer 7 include the same materials as the base material 1 and the base material 1A described above.
  • the protective layer 7 covers the entire side surface in the width direction of the intermediate layer 2, the oxide superconducting layer 3, the silver layer 4, and the solder layer 5. Further, the protective layer 7 covers a portion close to the solder layer 5 on the side surface in the width direction of the metal stabilizing layer 6.
  • the oxide superconducting wire of this embodiment is not limited to the example shown in FIG.
  • the protective layer 7 needs to be formed so as to cover at least the side surface of the intermediate layer 2 and the side surface of the oxide superconducting layer 3. If the side surface of the oxide superconducting layer 3 is covered with the protective layer 7, the penetration of moisture into the oxide superconducting layer 3 is suppressed, and the oxide superconducting layer 3 is damaged by moisture and the superconducting characteristics deteriorate. Can be prevented.
  • the thickness of the protective layer 7 is thinner than the thickness of the substrate 1A.
  • the thickness of the protective layer 7 is not particularly limited and can be appropriately changed, but is preferably in the range of 2 to 20 ⁇ m. By making the thickness of the protective layer 7 2 ⁇ m or more, it is possible to effectively prevent moisture from entering the oxide superconducting layer 3. By making the thickness of the protective layer 7 20 ⁇ m or less, the oxide The superconducting wire 10 can be reduced in size.
  • a protective layer 7 is formed so as to cover at least the side surface of the oxide superconducting layer 3. According to this configuration, it is possible to prevent moisture from entering the oxide superconducting layer 3 and prevent the oxide superconducting layer 3 from being damaged by moisture and deteriorating superconducting characteristics.
  • the oxide superconducting wire 10 of this embodiment at least the side surfaces of the intermediate layer 2 and the oxide superconducting layer 3 are covered with the protective layer 7.
  • a portion exposed to the outside of the oxide superconducting wire 10 is any one of the base material 1 made of a metal material, the protective layer 7, the metal stabilizing layer 6, the solder layer 5, and the silver layer 3. That is, since the outermost surface of the oxide superconducting wire 10 is covered with a metal material, it is possible to prevent moisture from entering the inside and to prevent the oxide superconducting layer 3 from being deteriorated by moisture.
  • the metal stabilization layer 6 formed in a tape shape in advance is used. Therefore, in the oxide superconducting wire 10 of this embodiment, pinholes such as plating defects are not formed in the metal stabilizing layer unlike the conventional superconducting wire in which the stabilizing layer is formed by plating. Therefore, according to the oxide superconducting wire 10 of the present embodiment, moisture does not enter the oxide superconducting layer 3 and the superconducting characteristics are not deteriorated.
  • the manufacturing method of the oxide superconducting wire 10 of this embodiment includes a base material 1, an intermediate layer 2, an oxide superconducting layer 3, a silver layer 4, a solder layer 5, and a metal stabilizing layer 6.
  • the long superconducting laminate S0 described above is prepared (first step).
  • the laminated body in which the base material 1, the intermediate layer 2, the oxide superconducting layer 3, and the silver layer 4 are laminated, and the stabilization in which the solder layer 5 is formed on one surface of the metal stabilizing layer 6 A layer tape is prepared, and the silver layer 4 and the metal stabilizing layer are passed by passing a heating / pressurizing roll in a state where the metal stabilizing layer 6 is laminated on the silver layer 4 of the laminated body via the solder layer 5. 6 is preferably joined electrically and mechanically by the solder layer 5. As a result, the bonding between the silver layer 4 and the metal stabilizing layer 5 is strengthened and the connection resistance is lowered, so that the effect of stabilizing the oxide superconducting layer 3 can be improved.
  • the superconducting laminate S0 is arranged so that the base material 1 is on top, and a pair of tapered shapes facing each other at the end portions 1P and 1P on both sides in the width direction of the base material 1 are provided.
  • Roller electrodes 20 and 20 are arranged.
  • the roller electrode 20 can be a conventionally known roller electrode for seam welding, and is made of a highly conductive material such as copper.
  • the roller electrodes 20 and 20 are brought into contact with the end portions 1P and 1P of the substrate 1 with appropriate pressure, and the roller electrodes 20 and 20 are superconducting while applying a pulse current to the roller electrodes 20 and 20 for seam welding.
  • the end portions 1P and 1P on both sides of the substrate 1 are melted by rotating along the longitudinal direction of the multilayer body S0.
  • an electric current flows through the base material 1 in contact with the roller electrode 20, and heat is generated due to the electric resistance of the base material 1.
  • the resistance heat generation in the base material 1 is the largest in contact with the roller electrode 20, and the vicinity of the end 1P of the base material 1 is melted by the resistance heat generation.
  • the metal (molten metal) in which the end portion 1P of the base material 1 is melted is composed of the metal stabilizing layer 6, the solder layer 5, the silver layer 4, the oxide superconducting layer 3, the intermediate layer 2, as shown in FIG. 3B. After being flowed downward according to gravity so as to thinly cover both side surfaces in the width direction of the laminated body S1 laminated, the solidified. Thereby, as shown in FIG. 3B, an oxide superconducting wire 10 in which at least the side surfaces of the intermediate layer 2 and the oxide superconducting layer 3 are covered with the protective layer 7 can be manufactured.
  • the current value applied to the roller electrode 20 may be appropriately adjusted depending on the material and thickness of the substrate 1 to be used. Further, the pressure applied by the roller electrode 20 may be appropriately adjusted depending on the material and thickness of the substrate 1. For example, when using a tape made of Hastelloy (trade name, manufactured by Haynes, Inc.) having a thickness of 100 ⁇ m as the base material 1, by applying a current having a current value of about 20 to 100 A while applying a pressure of about 10 to 20 MPa, The protective layer 7 can be formed by mainly melting the end portion 1P of the substrate 1.
  • the end 1P of the substrate 1 may not melt, and if the current value exceeds 100A, layers other than the substrate 1 may also melt. .
  • the rotational traveling speed of the roller electrode 20 can also be adjusted as appropriate.
  • the end portions 1P and 1P are energized while pressing the end portions 1P and 1P on both sides of the substrate 1 of the superconducting laminate S0 with the roller electrodes 20 and 20 for seam welding.
  • the protective layer 7 which covers the side surface of the oxide superconducting layer 3 continuously in the longitudinal direction is formed. Therefore, an oxide superconducting wire having a structure in which all side surfaces of the oxide superconducting layer 3 are shielded from the outside can be manufactured.
  • the manufacturing method of the oxide superconducting wire of the present embodiment the ingress of moisture into the oxide superconducting layer 3 is suppressed, and the oxide superconducting layer 3 is prevented from being damaged by moisture and deteriorating the superconducting characteristics.
  • An oxide superconducting wire that can be provided can be provided.
  • the manufacturing method of the oxide superconducting wire of this embodiment forms the protective layer 7 by melting the end portion 1P of the base material 1 of the superconducting laminate S0. Therefore, unlike the conventional method of forming a protective layer by covering the superconducting laminate by plating, the protective layer 7 can be easily formed without requiring equipment such as a plating apparatus.
  • the manufacturing method of the oxide superconducting wire of this embodiment uses the metal stabilization layer 6 previously processed into a tape shape. That is, since the metal stabilizing layer 6 has no defects such as pinholes due to plating, in the oxide superconducting wire manufactured using the metal stabilizing layer 6, moisture enters the oxide superconducting layer 3. Superconducting properties are not degraded. Moreover, in the manufacturing method of the oxide superconducting wire of this embodiment, the protective layer 7 which covers at least the intermediate layer 2 and the side surfaces of the oxide superconducting layer 3 is formed. The portion exposed to the outside of the manufactured oxide superconducting wire is any one of the base material 1 made of a metal material, the protective layer 7, the metal stabilization layer 6, the solder layer 5, and the silver layer 3.
  • FIG. 4 is a cross-sectional view schematically showing an oxide superconducting wire according to the second embodiment of the present invention
  • FIGS. 5A and 5B are process descriptions showing an embodiment of the method for producing the oxide superconducting wire shown in FIG.
  • FIG. 6 is a cross-sectional perspective view showing another example of a method for producing an oxide superconducting wire. 4 to 6, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the base material 1, the intermediate layer 2, the oxide superconducting layer 3, the silver layer 4, the solder layer 5A, and the metal stabilizing layer 6A are sequentially laminated.
  • the side surface in the width direction of the laminate S2 in which the base material 1, the intermediate layer 2, the oxide superconducting layer 3, and the silver layer 4 are laminated is covered with a protective layer 17.
  • the protective layer 17 is composed of an end portion in the width direction of the solder layer 5A extending in the stacking direction of the stacked body S2. That is, the end portion of the solder layer 5A extends from the silver layer 4 to the base material 1 so as to cover the side surface of the multilayer body S2.
  • Both end portions in the width direction of the solder layer 5A have shapes with rounded corners.
  • the protective layer 17 extends thinly downward from the rounded corners and covers the side surface in the width direction of the multilayer body S2.
  • the thickness of the protective layer 17 extending from the edge of the solder layer 5A is thinner than the thickness of the solder layer 5A.
  • the oxide superconducting wire 30 shown in FIG. 4 has a melting point lower than that of the metal stabilizing layer 6 by pressing and heating the edge in the width direction of the superconducting laminate S0 shown in FIG. 2 from the metal stabilizing layer 6 side. The end of the solder layer 5 is melted.
  • the molten solder is pressed to protrude from the end of the laminate S2, and the protective layer 17 is formed by allowing the solder to flow downward on the side surface of the laminate S2 according to gravity and then solidifying. That is, when the end portion in the width direction of the metal stabilizing layer 6 of the superconducting laminate S0 is pressurized and heated, a part of the end portion in the width direction of the solder layer 5 is melted, and along the side surface of the superconducting laminate S0. What solidifies after flowing forms the protective layer 17.
  • solder layer 5A examples include those similar to the solder layer 5 described above. Among them, it is preferable to use solder having a melting point of 300 ° C. or lower. By heating at a temperature of 300 ° C. or lower, it becomes possible to melt the end portion of the solder layer 5 to form the solder layer 5A and the protective layer 17, so that the oxide superconducting layer 3 is heated by the heat when the protective layer 17 is formed. It is possible to suppress the deterioration of the characteristics.
  • the thicknesses of the solder layers 5 and 5A are not particularly limited and can be adjusted as appropriate, but can be, for example, about 2 to 20 ⁇ m.
  • the thickness of the solder layer 5 By setting the thickness of the solder layer 5 to 2 ⁇ m or more, it is possible to prevent the protective layer 17 from being formed because the solder layer 5 is too thin. Moreover, by setting the thickness of the solder layer 5 to 20 ⁇ m or less, the thickness of the formed solder layer 5A does not become too thick, and it is possible to suppress an increase in connection resistance.
  • the metal stabilization layer 6A is formed from a long metal tape made of a highly conductive metal. It is preferable to use a metal tape made of a relatively inexpensive material such as Cu, brass (Cu—Zn alloy), a Cu alloy such as Cu—Ni alloy, and stainless steel. Among them, it is preferable to use a metal tape made of Cu because it has high conductivity and is inexpensive.
  • the thickness of the metal stabilizing layer 6A is not particularly limited and can be adjusted as appropriate, but is preferably 10 to 300 ⁇ m.
  • the thickness of the metal stabilizing layer is not less than the above lower limit value, a higher effect of stabilizing the oxide superconducting layer 3 can be obtained, and if it is not more than the upper limit value, the oxide superconducting wire 30 can be thinned.
  • the protective layer 17 is composed of an end portion of the solder layer 5A extending to the side surface in the width direction of the multilayer body S2. Therefore, the material of the protective layer 17 is the same as that of the solder layers 5 and 5A described above.
  • the protective layer 17 covers the entire side surface in the width direction of the silver layer 4, the oxide superconducting layer 3, and the intermediate layer 2. Further, the protective layer 17 covers a portion close to the intermediate layer 2 on the side surface in the width direction of the substrate 1.
  • the oxide superconducting wire of this embodiment is not limited to the example shown in FIG. 4, the protective layer 17 needs to be formed so as to cover at least the side surface of the silver layer 4 and the side surface of the oxide superconducting layer 3.
  • the protective layer 17 is thinner than the solder layer 5A.
  • the thickness of the protective layer 17 is not particularly limited and can be appropriately changed, but is preferably in the range of 2 to 20 ⁇ m. By setting the thickness of the protective layer 17 to 2 ⁇ m or more, it is possible to effectively prevent moisture from entering the oxide superconducting layer 3. By setting the thickness of the protective layer 17 to 20 ⁇ m or less, the oxide The superconducting wire 30 can be reduced in size.
  • the protective layer 17 is formed so as to cover at least the side surface of the oxide superconducting layer 3. According to this configuration, it is possible to prevent moisture from entering the oxide superconducting layer 3 and prevent the oxide superconducting layer 3 from being damaged by moisture and deteriorating superconducting characteristics.
  • the metal stabilization layer 6 previously formed in a tape shape is used for the metal stabilization layer 6A of the oxide superconducting wire 30 of the present embodiment. Therefore, in the oxide superconducting wire 30 of the present embodiment, pinholes such as plating defects are not formed in the metal stabilizing layer unlike the conventional superconducting wire in which the stabilizing layer is formed by plating. Therefore, according to the oxide superconducting wire 30 of the present embodiment, moisture does not enter the oxide superconducting layer 3 and the superconducting characteristics are not deteriorated.
  • the manufacturing method of the oxide superconducting wire 30 of this embodiment includes a base material 1, an intermediate layer 2, an oxide superconducting layer 3, a silver layer 4, a solder layer 5, and a metal stabilizing layer 6.
  • the long superconducting laminate S0 described above is prepared (first step).
  • the superconducting laminate S0 is disposed so that the metal stabilizing layer 6 is on top, and a pair of opposite ends 6P, 6P on both sides in the width direction of the metal stabilizing layer 6 are opposed to each other.
  • the tapered roller electrodes 20 and 20 are arranged.
  • the roller electrode 20 can be a conventionally known roller electrode for seam welding, and is made of a highly conductive material such as copper.
  • the roller electrodes 20 and 20 are brought into contact with the end portions 6P and 6P of the metal stabilizing layer 6 with an appropriate pressure, and a pulse current is applied to the roller electrodes 20 and 20 for seam welding, while the roller electrodes 20 and 20 are applied. Is rotated along the longitudinal direction of the superconducting laminate S0 to melt the end portions 5P and 5P on both sides of the solder layer 5.
  • the electrode when an electric current is applied to the roller electrode 20 for seam welding, the electrode flows through the metal stabilizing layer 6, the solder layer 5, and the silver layer 4, but the metal stabilizing layer 6 and silver made of a highly conductive metal material.
  • the layer 4 has a low electrical resistance, and the amount of resistance heat generated by energization is smaller than that of the solder layer 5.
  • the solder layer 5 whose electric resistance is larger than that of the metal stabilizing layer 6 and the silver layer 4
  • heat is generated due to the electric resistance when energized. Resistance heat generation in the solder layer 5 is greatest near the end portion 5P near the roller electrode 20, and the vicinity of the end portion 5P of the solder layer 5 is mainly melted by resistance heat generation.
  • the metal (molten metal) in which the end portion 5P of the solder layer 5 is melted is, as shown in FIG. 5B, the silver layer 4, the oxide superconducting layer 3, the intermediate layer 2, and the base material 1 by the pressure of the roller electrode 20. Spills out on the side surface of the laminated body S2, and flows downward according to gravity to cover both side surfaces in the width direction of the laminated body S2 and then solidify. Thereby, as shown in FIG. 5B, an oxide superconducting wire 30 in which at least the side surfaces of the silver layer 4 and the oxide superconducting layer 3 are covered with the protective layer 17 can be manufactured.
  • the current value applied to the roller electrode 20 may be appropriately adjusted depending on the material, melting point, and thickness of the solder layer 5 to be used. Further, the pressure applied by the roller electrode 20 may be appropriately adjusted depending on the material, melting point, and thickness of the solder layer 5. For example, when a tin solder having a thickness of 10 ⁇ m (melting point: 230 ° C.) is used as the solder layer 5, by applying a current of about 100 to 500 A while applying a pressure of about 10 to 20 MPa, The protective layer 17 can be formed by melting the end portion 5P.
  • the oxide superconducting wire 30 shown in FIG. 1 can be manufactured.
  • the protective layer 17 can be formed by heating to the temperature which can melt
  • pressurization and heating in the second step are not limited to the above example using the roller electrode 20 for seam welding.
  • the end portion 5P of the solder layer 5 is melted by heating and pressing the end portion of the metal stabilizing layer 6 while heating the pressure roller itself to a temperature equal to or higher than the melting point of the solder constituting the solder layer 5.
  • the solder layer 5A and the protective layer 17 can be formed by allowing the superconducting laminate S0 to protrude from the side surface and then flowing downward according to gravity to solidify.
  • the jig used for heating and pressurization is not limited to the roller shape as described above, and for example, a jig 21 as shown in FIG. 6 can be used.
  • a columnar jig 21 having a suitable length at the end of the superconducting laminate S0 is used.
  • the solder layer 5A and the protective layer 17 can be formed by melting the end 5P of the solder layer and allowing it to flow and solidify on the side surface of the superconducting laminate S0.
  • the end portion 5P of the solder layer 5 is melted by pressurizing and heating the end portion in the width direction of the metal stabilizing layer 6, and continuously in the longitudinal direction.
  • a protective layer 17 covering the side surface of the oxide superconducting layer 3 is formed. Therefore, an oxide superconducting wire having a structure in which all side surfaces of the oxide superconducting layer 3 are shielded from the outside can be manufactured. Therefore, according to the manufacturing method of the oxide superconducting wire of the present embodiment, the ingress of moisture into the oxide superconducting layer 3 is suppressed, and the oxide superconducting layer 3 is prevented from being damaged by moisture and deteriorating the superconducting characteristics. An oxide superconducting wire that can be provided can be provided.
  • the manufacturing method of the oxide superconducting wire of this embodiment forms the protective layer 17 by melting the end portion 5P of the solder layer 5 of the superconducting laminate S0. Therefore, unlike the conventional method of forming a protective layer by covering the superconducting laminate by plating, the protective layer 17 can be easily formed without requiring equipment such as a plating apparatus.
  • the metal stabilization layer 6A is produced using the metal stabilization layer 6 previously processed into a tape shape. Since the metal stabilizing layer 6A has no defects such as pinholes due to plating, the oxide superconducting wire manufactured using the metal stabilizing layer 6A deteriorates in superconducting characteristics due to moisture entering the oxide superconducting layer 3. There is nothing to do.
  • each part of the oxide superconducting wire is an example, and is appropriately changed without departing from the scope of the present invention. It is possible.
  • the protective layer 7 covers the entire side surface in the width direction of the intermediate layer 2, the oxide superconducting layer 3, the silver layer 4, and the solder layer 5, and further stabilizes the metal. The portion on the solder layer 5 side of the side surface in the width direction of the layer 6 is covered, but the present invention is not limited to this example.
  • the protective layer 7 of the oxide superconducting wire 10 may cover only the side surface of the intermediate layer 2 and the side surface of the oxide superconducting layer 3, and the intermediate layer 2, the oxide superconducting layer 3, the silver layer 4, the solder layer 5, and the metal All the side surfaces of the stabilization layer 6 may be covered. Further, in the oxide superconducting wire 30 of the second embodiment, the protective layer 17 covers the entire side surface in the width direction of the silver layer 4, the oxide superconducting layer 3, and the intermediate layer 2. Of these, the intermediate layer 2 side is covered, but the present invention is not limited to this example.
  • the protective layer 17 of the oxide superconducting wire 30 may cover only the side surface of the silver layer 4 and the side surface of the oxide superconducting layer 3, and the side surfaces of the silver layer 4, the oxide superconducting layer 3, the intermediate layer 2, and the substrate 1. It may cover everything.
  • Gd 2 Zr 2 O 7 Gd 2 Zr 2 O 7
  • base material made of Hastelloy C276 (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm by the IBAD method.
  • formed was further deposited capping layer of 1.0 ⁇ m thickness of CeO 2 having a composition by the PLD method on the intermediate layer.
  • an oxide superconducting layer having a composition of GdBa 2 Cu 3 O 7-x having a thickness of 1.0 ⁇ m is formed on the cap layer by a PLD method, and further, a 10 ⁇ m thickness is formed on the oxide superconducting layer by a sputtering method.
  • a silver layer was formed and subjected to oxygen annealing.
  • a copper tape (metal stabilization layer) having a width of 10 mm and a thickness of 50 ⁇ m is laminated via a tin solder (melting point: 230 ° C.) having a thickness of 5 ⁇ m, and the obtained laminate is cut along the longitudinal direction.
  • Example 1 As shown in FIG. 3A, the superconducting laminate produced as described above was arranged so that the base material Hastelloy C276 (trade name, manufactured by Haynes, USA) was on top. While pressing both ends in the width direction of the base material with a pair of roller electrodes, the roller electrode is energized and the roller electrode is rotated to melt both ends of the base material and flow to the side of the laminate. Then, the oxide superconducting wire having the structure shown in FIG. 1 was prepared by solidifying to form a protective layer. The thickness of the protective layer of the obtained oxide superconducting wire was 2 ⁇ m.
  • the protective layer covered the entire side surface of the intermediate layer, the cap layer, the oxide superconducting layer, the silver layer, and the solder layer, and part of the side surface of the metal stabilizing layer.
  • the pressurization and heating with the roller electrode were performed under the following conditions. Roller electrode material: copper, current value: 50 A, pulse application time: 10 ms, cooling time 30 ms, roller electrode rotational travel speed: 5 mm / s, applied pressure: 100 g.
  • Example 2 As shown in FIG. 5A, the superconducting laminate produced as described above was placed so that the copper tape as the metal stabilization layer was on top. While pressing both ends in the width direction of the base material with a pair of roller electrodes, by energizing the roller electrodes and rotating the roller electrodes, both ends of the solder layer are melted and flowed to the side of the laminate. Then, the oxide superconducting wire having the structure shown in FIG. 4 was produced by solidifying to form a protective layer. The thickness of the protective layer of the obtained oxide superconducting wire was 2 ⁇ m. The protective layer covered the entire side surface of the silver layer, the cap layer, and the intermediate layer, and part of the side surface of the substrate.
  • roller electrode material copper
  • current value 300 A
  • pulse application time 10 ms
  • cooling time 30 ms
  • roller electrode rotational travel speed 5 mm / s
  • applied pressure 200 g.
  • Example 1 After the produced oxide superconducting wires of Example 1, Example 2, and Comparative Example 1 were held in an atmosphere of a temperature of 121 ° C., a humidity of 100%, and 2 atmospheres for 24 hours, 48 hours, 72 hours, and 100 hours, The critical current value Ic of the oxide superconducting wire at the liquid nitrogen temperature (77 K) was measured. Then, a ratio Ic / Ic0 of the critical current value Ic after the test to the critical current value Ic0 before the test was obtained.
  • FIG. 7 shows a graph in which Ic / Ic0 is plotted against the test time. In FIG. 7, the closer the vertical axis Ic / Ic0 is to 1.0, the less the deterioration of the superconducting characteristics and the higher the durability against moisture.
  • the oxide superconducting wires of Example 1 and Example 2 according to the present invention did not show a decrease in critical current value even after a 100-hour durability test, and moisture entered the oxide superconducting layer. It is clear that it can be suppressed.
  • the oxide superconducting wire of Comparative Example 1 had a critical current value Ic of 0 after a 48 hour durability test, and the durability was low.
  • FIG. 8 is a sectional view schematically showing an oxide superconducting wire according to the third embodiment of the present invention
  • FIG. 9 is a partially enlarged sectional view of the oxide superconducting wire shown in FIG.
  • An oxide superconducting wire 110 shown in FIG. 8 includes a superconducting laminate S101 in which a base 101, an intermediate layer 102, an oxide superconducting layer 103, a silver layer 104, a solder layer 105, and a metal stabilizing layer 106 are sequentially laminated, And a melt-solidified layer 107 covering substantially the entire side surface in the width direction of the superconducting laminate S101.
  • the melt-solidified layer 107 is formed by irradiating a laser to the end of the superconducting laminate S100 having the same layer structure as the superconducting laminate S101, and melting and solidifying the end of the superconducting laminate S100. Is done.
  • the shape of the melt-solidified layer 107 changes depending on the laser irradiation conditions, it may be other than the shape shown in FIG. 8, but in the present invention, the melt-solidified layer 107 covers at least the side surface of the oxide superconducting layer 103. That's fine.
  • the base material 101 may be any material that can be used as a base material for ordinary superconducting wires.
  • a long plate-like, sheet-like or tape-like substrate made of a heat-resistant metal is preferable.
  • heat resistant metals alloys are preferable, and nickel (Ni) alloys are more preferable.
  • Hastelloy (trade name, manufactured by Haynes) is preferable as a commercial product. Any kind of Hastelloy B, C, G, N, W, etc., having different component amounts such as molybdenum (Mo), chromium (Cr), iron (Fe), cobalt (Co), etc. can be used.
  • an oriented metal base material in which a texture is introduced into a nickel (Ni) alloy or the like may be used as the base material 101, and the intermediate layer 102 and the oxide superconducting layer 103 may be formed thereon.
  • the thickness of the substrate 101 may be appropriately adjusted depending on the purpose, and is usually preferably 10 to 500 ⁇ m, more preferably 20 to 200 ⁇ m. If the thickness of the substrate is not less than the above lower limit, the strength can be further improved, and if it is not more than the upper limit, the critical current density of the overall can be further improved.
  • the intermediate layer 102 controls the crystal orientation of the oxide superconducting layer 103 and prevents diffusion of metal elements in the base material 101 into the oxide superconducting layer 103. Further, the intermediate layer 102 functions as a buffer layer that alleviates a difference in physical characteristics (thermal expansion coefficient, lattice constant, etc.) between the base material 101 and the oxide superconducting layer 103.
  • the material is preferably a metal oxide whose physical characteristics show an intermediate value between the substrate 101 and the oxide superconducting layer 103.
  • Preferred materials for the intermediate layer 102 include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr. Examples thereof include metal oxides such as 2 O 3 , Ho 2 O 3 and Nd 2 O 3 .
  • the intermediate layer 102 may be a single layer or a plurality of layers.
  • the layer made of the metal oxide (metal oxide layer) preferably has crystal orientation.
  • the outermost layer the layer closest to the oxide superconducting layer 103) preferably has at least crystal orientation.
  • the intermediate layer 102 may have a multi-layer structure in which a bed layer is provided on the substrate 101 side.
  • the bed layer has high heat resistance and is provided in order to reduce interfacial reactivity, and is used to obtain the orientation of a film disposed thereon.
  • Such a bed layer is arranged as needed.
  • the bed layer is made of, for example, yttria (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), or the like.
  • the bed layer is formed by a film forming method such as a sputtering method, and has a thickness of 10 to 200 nm, for example.
  • the intermediate layer 102 may have a multi-layer structure in which a diffusion prevention layer and a bed layer are laminated on the base material 101 side.
  • a diffusion preventing layer is interposed between the base material 101 and the bed layer.
  • the diffusion prevention layer is formed for the purpose of preventing the diffusion of the constituent elements of the substrate 101.
  • the diffusion prevention layer is made of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 ), rare earth metal oxide, or the like, and has a thickness of, for example, 10 to 400 nm. Note that since the crystallinity of the diffusion preventing layer is not questioned, it may be formed by a film forming method such as a normal sputtering method.
  • the diffusion preventing layer when the diffusion preventing layer is interposed between the base material 101 and the bed layer, when forming the other layers constituting the intermediate layer 102, the oxide superconducting layer 103, etc., the constituent elements of the base material 101 Can be effectively suppressed from diffusing to a part of the oxide superconducting layer 103 through the bed layer. This is effective when the substrate 101 is subjected to a thermal history as a result of being inevitably heated or heat-treated.
  • a diffusion preventing layer is interposed between the base material 101 and the bed layer, for example, Al 2 O 3 can be used as the diffusion preventing layer and Y 2 O 3 can be used as the bed layer.
  • the intermediate layer 102 may have a multi-layer structure in which a cap layer is further laminated on the metal oxide layer.
  • the cap layer has a function of controlling the orientation of the oxide superconducting layer 103, diffuses the elements constituting the oxide superconducting layer 103 into the intermediate layer 102, and intermediates the gas used when the oxide superconducting layer 103 is laminated. A function of suppressing a reaction with the layer 102 and the like.
  • the cap layer is formed through a process of epitaxially growing on the surface of the metal oxide layer, and then growing the grains in the lateral direction (plane direction) (overgrowth) and selectively growing the crystal grains in the in-plane direction.
  • the ones made are preferred.
  • an in-plane orientation degree higher than that of the metal oxide layer can be obtained.
  • the material of the cap layer is not particularly limited as long as it can exhibit the above function.
  • Preferred materials for the cap layer include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , Zr 2 O 3 , Ho 2 O 3 , Nd 2 O 3 and the like.
  • the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
  • the cap layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like, but it is preferable to use the PLD method from the viewpoint of obtaining a high film formation rate.
  • the thickness of the intermediate layer 102 may be appropriately adjusted according to the purpose, but is usually 0.1 to 5 ⁇ m.
  • the thickness of the cap layer is usually 0.1 to 1.5 ⁇ m.
  • the intermediate layer 102 is formed by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, or ion beam assisted vapor deposition (hereinafter abbreviated as IBAD); chemical vapor deposition (CVD). ); Coating pyrolysis method (MOD method); can be formed by a known method of forming an oxide thin film such as thermal spraying.
  • IBAD method sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, or ion beam assisted vapor deposition
  • CVD chemical vapor deposition
  • MOD method Coating pyrolysis method
  • the metal oxide layer formed by the IBAD method is preferable in that the crystal orientation is high and the effect of controlling the crystal orientation of the oxide superconducting layer 103 and the cap layer is high.
  • the IBAD method is a method of orienting crystal axes by irradiating an ion beam at a predetermined angle with respect to a crystal deposition surface during deposition.
  • an argon (Ar) ion beam is used as the ion beam.
  • the value of ⁇ (FWHM: full width at half maximum) that is an index representing the degree of orientation in the IBAD method can be reduced. Therefore, it is particularly suitable.
  • an oxide superconducting layer made of an oxide superconductor having a generally known composition can be widely used.
  • an oxide superconductor represented by REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd), specifically, Y123 (YBa 2 Cu 3 O
  • An oxide superconducting layer made of y ) or Gd123 (GdBa 2 Cu 3 O y ) can be used.
  • Other oxide superconductors, for example, Bi 2 Sr 2 Ca n- 1 Cu n O 4 + 2n + ⁇ may be an oxide superconducting layer made of a high oxide superconductor critical temperature as represented by.
  • the oxide superconducting layer 103 is formed by physical vapor deposition such as sputtering, vacuum vapor deposition, laser vapor deposition, or electron beam vapor deposition; chemical vapor deposition (CVD); coating pyrolysis (MOD). It can. Of these, laser vapor deposition is preferred.
  • the oxide superconducting layer 103 has a thickness of about 0.5 to 5 ⁇ m and preferably a uniform thickness.
  • the silver layer 104 laminated on the oxide superconducting layer 103 is formed by a film forming method such as a sputtering method, and the thickness thereof is, for example, about 1 to 30 ⁇ m.
  • the reason why the silver layer 104 is provided on the oxide superconducting layer 103 is that silver has a good conductivity and has a low contact resistance with the oxide superconducting layer 103 and a good familiarity.
  • Another reason is that silver has the property of making it difficult for the oxygen doped in the oxide superconducting layer 103 to escape from the oxide superconducting layer 103 in the annealing step of doping the oxide superconducting layer 103 with oxygen.
  • the metal stabilization layer 106 is made of a highly conductive metal material. When the oxide superconducting layer 103 attempts to transition from the superconducting state to the normal conducting state, the metal stabilization layer 106 functions as a bypass through which the current of the oxide superconducting layer 103 commutates together with the silver layer 104.
  • the metal stabilization layer 106 is laminated on the silver layer 104 via the solder layer 105. Since the solder layer 105 is interposed between the metal stabilization layer 106 and the silver layer 104, the metal stabilization layer 106 and the silver layer 104 are electrically and mechanically connected to each other by the solder layer 105. Bonding between the layer 104 and the metal stabilization layer 106 is strengthened, and the connection resistance is reduced. Therefore, the effect of stabilizing the oxide superconducting layer 103 can be improved.
  • the thickness of the solder layer 105 is not particularly limited and can be adjusted as appropriate. For example, the thickness can be about 2 to 20 ⁇ m.
  • solder layer 105 a conventionally known solder can be used.
  • lead-free solder such as Sn—Ag alloy, Sn—Bi alloy, Sn—Cu alloy, Sn—Zn alloy, Pb— Examples thereof include Sn-based alloy solder, eutectic solder, and low-temperature solder, and these solders can be used alone or in combination.
  • solder having a melting point of 300 ° C. or less.
  • the metal stabilizing layer 106 and the silver layer 104 can be soldered at a temperature of 300 ° C. or lower, so that the deterioration of the characteristics of the oxide superconducting layer 103 due to the heat of soldering is suppressed. Can do.
  • the metal stabilization layer 106 is formed of a long metal tape made of a highly conductive metal. It is preferable to use a metal stabilizing layer 106 made of a relatively inexpensive material such as Cu, brass (Cu—Zn alloy), a Cu alloy such as Cu—Ni alloy, and stainless steel. Among them, it is preferable to use a metal tape made of Cu because it has high conductivity and is inexpensive.
  • the thickness of the metal stabilizing layer 106 is not particularly limited and can be adjusted as appropriate, but is preferably 10 to 300 ⁇ m.
  • the thickness of the metal stabilizing layer is not less than the above lower limit value, a higher effect of stabilizing the oxide superconducting layer 103 can be obtained, and if it is not more than the upper limit value, the oxide superconducting wire 110 can be thinned.
  • the metal stabilizing layer 106 is made of a resistance metal material, and a Ni-based alloy such as Ni—Cr can be used.
  • the melt-solidified layer 107 is formed by irradiating the end of the superconducting laminate S100 having the same layer structure as that of the superconducting laminate S101 with a laser to melt and solidify the end of the superconducting laminate S100. Therefore, the melted and solidified layer 107 contains the constituent components (melted and solidified product) of the superconducting laminate S101 and the superconducting laminate S100.
  • FIG. 9 is a diagram schematically showing one end portion in the width direction of the oxide superconducting wire 110 of the present embodiment.
  • the structure of the melt-solidified layer 107 formed by the laser irradiation is not limited to the structure shown in FIG. 9 because it changes depending on the laser irradiation conditions.
  • the melted and solidified layer 107A formed on the side surface of the metal stabilizing layer 106 contains a large amount of the constituent components (melted and solidified product) of the metal stabilizing layer 106, and the melted and solidified layer 107C formed on the side surface of the substrate 101 is composed of the substrate 101. It contains a lot of constituents (molten solidified product).
  • the melt-solidified layer 107B on the side surface of the intermediate layer 102, the oxide superconducting layer 103, the silver layer 104, and the solder layer 105 is in addition to the constituent components of the intermediate layer 102, the oxide superconducting layer 103, the silver layer 104, and the solder layer 105.
  • the metal stabilizing layer 106 and the constituent components (melted solidified product) of the substrate 101 are also included.
  • the melt-solidified layer 107 changes depending on the laser irradiation conditions, it may be other than the shape shown in FIGS. 8 and 9.
  • the melt-solidified layer 107 has at least the side surface of the oxide superconducting layer 103. Just cover it. If the melted and solidified layer 107 covers at least the side surface of the oxide superconducting layer 103, the intrusion of moisture into the oxide superconducting layer 103 can be suppressed. Therefore, it is possible to prevent the oxide superconducting layer 103 from being damaged by moisture and deteriorating superconducting characteristics.
  • the thickness of the melt-solidified layer 107 is not particularly limited and can be appropriately changed. However, the thickness of the thinnest portion of the melt-solidified layer 107 is preferably 10 ⁇ m or more. By setting the thickness of the molten and solidified layer 107 to 10 ⁇ m or more, it is possible to effectively prevent moisture from entering the oxide superconducting layer 103.
  • the thickness of the thickest part of the melt-solidified layer 107 is preferably 150 ⁇ m or less. If the thickness of the melted and solidified layer 107 exceeds 150 ⁇ m, the area of the oxide superconducting layer 103 lost by laser irradiation increases, so that the superconducting characteristics may be deteriorated.
  • the oxide superconducting wire 110 of the present embodiment almost the entire side surface of the superconducting laminate S101 is covered with the melt-solidified layer 107 and shielded from the outside. Therefore, moisture can be prevented from entering the oxide superconducting layer 103, and deterioration of the oxide superconducting layer 103 due to moisture can be suppressed.
  • 10A to 10C are process explanatory views showing an embodiment of a method of manufacturing the oxide superconducting wire 110 shown in FIG.
  • the manufacturing method of the oxide superconducting wire of this embodiment prepares a superconducting laminate S100 in which a base material 101, an intermediate layer 102, an oxide superconducting layer 103, a silver layer 104, and a metal stabilizing layer 106 are laminated in this order.
  • a superconducting laminate S100 having the same layer configuration as that of the above-described superconducting laminate S101 is prepared (third step).
  • a diffusion prevention layer and a bed layer are formed on the base material 101 by a sputtering method, and an intermediate layer 102 is formed on the bed layer by an IBAD method.
  • a cap layer and an oxide superconducting layer 103 are formed by a PLD method, and then a silver layer 104 is formed on the oxide superconducting layer 103 by a sputtering method.
  • a superconducting laminate S100 is obtained by laminating a metal tape via solder on the silver layer 104 of the laminate in which the intermediate layer 102, the oxide superconducting layer 103, and the silver layer 104 are formed on the substrate 101.
  • a wide superconducting laminate may be produced, and the wide superconducting laminate may be cut along the longitudinal direction so as to be divided into a plurality of portions in the width direction.
  • the obtained superconducting laminate S100 is arranged so that the base material 101 faces upward.
  • the end portion in the width direction of superconducting laminate S100 arranged in this way is irradiated with a laser from above to melt and solidify the end portion of superconducting laminate S100 to cover the side surface of superconducting laminate S101.
  • 107 is formed (fourth step).
  • laser may be irradiated from the back surface 101A side of the base material 101 of the superconducting laminate S100.
  • the metal stabilizing layer 106 of the superconducting laminate S100 is arranged so as to be upside down from FIG.
  • the metal stabilization layer 106 is made of a metal material having a high reflectance such as copper and the reflectance of the back surface 101A of the base material 101 is low, a laser is emitted from the back surface 101A side of the base material 101 as shown in FIG. 10B. Irradiation can heat the laser irradiation part more efficiently.
  • the metal stabilizing layer 106 is made of the metal tape of the above-described highly conductive material, particularly when using a metal tape made of a metal or an alloy such as copper having a high reflectance, laser welding is performed. It is necessary to set the laser output high or set the laser irradiation time long.
  • the reflectance of a copper tape having a glossy surface is 33.0% at a wavelength of 280 nm, 47.5% at a wavelength of 400 nm, 97.5% at a wavelength of 700 nm, and 98.5% at a wavelength of 1000 nm.
  • copper has a very high reflectance in the vicinity of a wavelength of 1000 nm, such as a YAG laser or a semiconductor laser (fiber laser), there is a problem that the laser is reflected and is difficult to weld.
  • the metal stabilization layer 106 when the laser is irradiated from the surface 106A side of the metal stabilization layer 106 of the superconducting laminate S100, the metal stabilization layer 106 is irradiated with the laser in advance (end in the width direction). It is preferable to irradiate the laser after roughening the surface roughness. As a result, even when the metal stabilization layer 106 made of a metallic tape having a glossy surface on copper or the like is used, the reflectivity of the laser irradiation unit is reduced, and the laser energy is reliably transmitted to the irradiation unit, thereby superconducting.
  • the edge part of laminated body S100 can be heated and melted.
  • the surface roughness Ra of the laser irradiation portion (width direction end) of the metal stabilization layer 106 should be 10 ⁇ m or more and 100 ⁇ m or less. Is preferred.
  • a superconducting laminate is formed at a good production rate using a general-purpose laser.
  • the melted and solidified layer 107 can be formed by melting and solidifying the end of the body S100.
  • the surface roughness Ra represents the arithmetic surface roughness Ra (JIS B0601-1994).
  • the method for roughening the surface roughness of the laser irradiation portion (width direction end portion) of the metal stabilization layer 106 before laser irradiation is not particularly limited, and conventionally known methods such as embossing and scoring are applied. it can. Specifically, for example, as shown by a two-dot chain line in FIG. 10B, there is a method of applying pressure by a forming tool 120 such as a pressure roller having an uneven surface. In this case, the surface of the metal stabilizing layer 106 that is contact-pressed by the forming tool can be processed into a concavo-convex shape obtained by inverting the concavo-convex shape on the surface of the forming tool to obtain a desired surface roughness.
  • a forming tool 120 such as a pressure roller having an uneven surface.
  • Examples of the laser that can be used in the fourth step include a YAG laser, a semiconductor laser, a CO 2 laser, and a fiber laser that transmits these laser beams through an optical fiber.
  • a fiber laser is preferable.
  • the laser irradiated portion is vaporized and the melted and solidified layer 107 may not be formed.
  • the second harmonic (532 nm) having a relatively low copper reflectance can be used.
  • FIG. 16 is a schematic configuration diagram of a fiber laser device used in the method for manufacturing an oxide superconducting wire according to this embodiment.
  • the fiber laser device 130 in this example includes a plurality of (three in the example of FIG. 16) excitation laser light emitting devices 131 and a coupler as a beam combiner that couples the excitation lasers from the plurality of light sources 121.
  • a coupler as a beam combiner that couples the excitation lasers from the plurality of light sources 121.
  • an amplification fiber 133 made of a double clad fiber connected to the coupler 132, a transmission fiber 134 connected to the amplification fiber 133, and an output unit connected to the tip of the transmission fiber 134 135.
  • a rare earth-doped fiber that is an optical amplification medium can be used.
  • a rare earth-doped fiber a rare earth-doped double clad fiber comprising a core doped with a rare earth element, a first clad surrounding the outer periphery of the core, and a second clad surrounding the first clad can be used.
  • the rare earth element to be added include Yb (ytterbium), Er (erbium), Tm (thulium), Nd (neodymium), and Pr (praseodymium).
  • the multimode excitation light input from the excitation light emitting device 131 to the coupler 132 via the connection fiber 131 a is optically coupled by the coupler 132.
  • the optically coupled pumping light is input to the amplifying fiber 133, the wavelength is amplified and the output is amplified in the amplifying fiber 133, converted into a single mode, and is transmitted from the output unit 135 as a continuous wave laser via the transmission fiber 134. Is output.
  • the end in the width direction of the superconducting laminate S100 can be heated. it can. Thereby, the end portions in the width direction of the base material 101, the intermediate layer 102, the oxide superconducting layer 103, the silver layer 104, the solder layer 105, and the metal stabilizing layer 106 can be locally melted. The melted portion adheres so as to cover the side surface of the superconducting laminate S101, and then solidifies to form a melt-solidified layer 107 that covers the side surface in the width direction of the superconducting laminate S101.
  • An inert gas such as nitrogen, argon or helium is supplied to the laser processing machine 121 from a gas supply port 123 connected to an external assist gas supply device, and this inert gas 100G is supplied from the tip of the laser processing machine 121.
  • the laser beam 100L is configured to be blown to the irradiation unit. Thus, it can prevent that the metal tape welded oxidizes by welding, spraying inert gas, such as nitrogen, to a welding part. It is necessary to adjust the gas injection pressure so as not to blow off the melt with an inert gas.
  • the spot diameter of the laser at the time of laser irradiation is not particularly limited, but is preferably set to about 10 to 100 ⁇ m.
  • the spot diameter of the laser at the time of laser irradiation is not particularly limited, but is preferably set to about 10 to 100 ⁇ m.
  • the melt-solidified layer 107 can be reliably formed.
  • the laser spot diameter By setting the laser spot diameter to 100 ⁇ m or less, it is possible to prevent the energy density of the laser irradiation portion from becoming too low and to obtain sufficient processing power.
  • the area of the oxide superconducting layer 103 lost by laser irradiation can be suppressed, a decrease in superconducting characteristics can be suppressed to a minimum.
  • the thickness of the melt-solidified layer 107 formed is about 10 to 150 ⁇ m.
  • the laser output and wavelength during laser welding are not particularly limited, and may be appropriately adjusted depending on the type of laser used and the layer configuration and thickness of the superconducting laminate S100.
  • the laser processing machine 121 is connected to the superconducting laminate while irradiating the end portion in the width direction of the superconducting laminate S100 with laser light 100L (from the back surface 101A side of the base material 101 in the example shown in FIG. 10B).
  • the irradiation position of the laser beam 100L is moved by scanning along the longitudinal direction of S100 or by moving the superconducting laminate S100. In this way, while moving the irradiation position of the laser beam 100L, the end portion in the width direction of the superconducting laminate S100 is continuously irradiated with the laser beam 100L, and the end portion of the superconducting laminate S100 is heated to be melted and solidified.
  • the melt-solidified layer 107 covering the side surface in the width direction of the superconducting laminate S101 can be formed.
  • the molten solidified layer 107 covering the other side surface of the superconducting laminate S101 can be formed.
  • the oxide superconducting wire 110 having the structure shown in FIGS. 8 and 10C in which both side surfaces in the width direction of the superconducting laminate S101 are covered with the melt-solidified layer 107 can be manufactured.
  • the laser irradiation position when irradiating the end portion in the width direction of superconducting laminate S100 is not limited to the example shown in FIGS. 10A to 10C, and is slightly inside or outside the laser irradiation position shown in FIGS. 10A to 10C.
  • the melt-solidified layer 107 may be formed by irradiating a laser beam at the position.
  • the manufacturing method of the oxide superconducting wire according to the present embodiment irradiates a laser to the end portion in the width direction of the superconducting laminate S100 to melt and solidify the end portion of the superconducting laminate S100.
  • a melt-solidified layer 107 covering the side surface is formed. Therefore, it is possible to manufacture the oxide superconducting wire 110 having a structure in which all the side surfaces of the superconducting laminate S101 are shielded from the outside by the melted and solidified layer 107, and it is possible to prevent moisture from entering and suppress deterioration of the oxide superconducting layer 103 due to moisture.
  • the oxide superconducting wire 110 can be provided.
  • the metal stabilization layer 106 is formed by laminating a metal tape. For this reason, the thickness of the metal stabilization layer 106 can be easily adjusted by adjusting the thickness of the metal tape to be used. Therefore, it is easy to ensure a sufficient thickness to stabilize the oxide superconducting layer 103, and the oxide superconducting wire 110 having a high stabilizing effect can be manufactured.
  • the end portion of superconducting laminate S100 is melted and solidified by laser irradiation to form melted and solidified layer 107, so that metal stabilization layer 106 is melted and solidified layer 107. Therefore, the metal stabilization layer 106 is not peeled off. Therefore, in the unlikely event that the oxide superconducting wire 110 is exposed to a high-temperature environment, such as coil processing, winding processing, cable processing, or storage environment, the solder layer 105 is melted.
  • the oxide superconducting wire 110 capable of preventing moisture from entering the oxide superconducting layer 103 can be manufactured.
  • the oxide superconducting wire 110 having high mechanical strength can be provided.
  • the superconducting laminate S100 before the formation of the melt-solidified layer 107 and the superconducting laminate S101 after the formation of the melt-solidified layer 107 hardly increase the thickness and width of the entire wire, so that the size of the wire is not increased.
  • a structure for shielding the oxide superconducting layer 103 from the outside can be realized.
  • FIG. 11 is a sectional view schematically showing an oxide superconducting wire according to the fourth embodiment of the present invention
  • FIG. 12 is a partially enlarged sectional view of the oxide superconducting wire shown in FIG.
  • the same components as those in the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • An oxide superconducting wire 110B shown in FIG. 11 includes a laminated body T101 in which a base material 101, an intermediate layer 102, an oxide superconducting layer 103, and a silver layer 104 are sequentially laminated, and an upper surface, a lower surface, and a width direction of the laminated body T101.
  • melting solidification layer 117 which covers one side surface of the width direction of the superconducting laminated body S111 which consists of laminated body T101 and the metal stabilization layer 116 are provided.
  • the metal stabilization layer 116 includes a metal stabilization layer 116A that covers the upper surface of the multilayer body T101 (the surface of the silver layer 104), a metal stabilization layer 116B that covers the lower surface of the multilayer body S102 (the back surface of the base material 101), The metal stabilization layer 116C covers one side surface of the body S102 in the width direction.
  • the melt-solidified layer 117 is formed on the side surface of the laminate T101 where the metal stabilizing layer 116 is not formed.
  • the superconducting laminate S111 shown in FIG. 11 is formed by dividing a laminate in which a metal stabilizing layer is originally plated on the entire circumference. Therefore, in the superconducting laminate S111, the metal stabilizing layer 116 is formed only on one of the side surfaces in the width direction. As will be described later, the superconducting laminate S111 is encapsulated by plating a laminate having the same layer configuration as the laminate T101 and wider than the laminate T101, and forming a metal stabilizing layer on the entire periphery thereof. It is formed by cutting the laminate along the longitudinal direction and dividing it in the width direction.
  • the melt-solidified layer 117 irradiates the superconducting laminate S110 having the same layer configuration as that of the superconducting laminate S111 with a laser on the widthwise end portion on the side where the metal stabilizing layer 116 is not formed. It is formed by melting and then solidifying the end of the body S110. Since the shape of the molten solidified layer 117 changes depending on the laser irradiation conditions, it may be other than the shape shown in FIG. 11. In the present invention, the molten solidified layer 117 covers at least the side surface of the oxide superconducting layer 103. That's fine.
  • the metal stabilizing layer 116 covering the top surface, the bottom surface, and one side surface in the width direction of the multilayer body T101 is an oxide superconducting layer together with the silver layer 104 when the oxide superconducting layer 103 is about to transition from the superconducting state to the normal conducting state. It functions as a bypass through which the current 103 commutates.
  • the metal stabilization layer 116 is formed by electroplating.
  • the material constituting the metal stabilizing layer 116 is preferably a highly conductive metal, and examples thereof include Cu and Al. Among them, Cu is particularly preferable because of high conductivity.
  • the thickness of the metal stabilizing layer 116 is not particularly limited and can be changed as appropriate.
  • the thickness can be about 10 to 100 ⁇ m, preferably 20 to 100 ⁇ m, more preferably 20 to 50 ⁇ m. preferable.
  • the thickness of the metal stabilization layer 116 By setting the thickness of the metal stabilization layer 116 to 10 ⁇ m or more, a higher effect of stabilizing the oxide superconducting layer 103 can be obtained.
  • the thickness By setting the thickness to 100 ⁇ m or less, the oxide superconducting wire 110B can be thinned.
  • melt-solidified layer 117 as shown in FIG. 13C to be described later, of the superconducting laminate S110 B of the same layer structure and the superconducting laminate S111, the widthwise end portion towards the metal stabilization layer 116 is not formed laser is irradiated with, it is formed by melting and solidifying the end portion of the superconducting laminate S110 B. Therefore, melt-solidified layer 117 contains components of the superconductor laminate S111 and superconductor laminate S110 B (the molten coagulation).
  • FIG. 12 is a diagram schematically showing the melt-solidified layer 117 of the oxide superconducting wire 110B of the present embodiment.
  • the structure of the melt-solidified layer 117 formed by laser irradiation varies depending on the laser irradiation conditions, and is not limited to the structure shown in FIG.
  • the melted and solidified layers 117A and 117D formed on the side surfaces of the metal stabilizing layers 116A and 116B contain a large amount of constituent components (melted and solidified products) of the metal stabilizing layer 116, and the melted and solidified layer 117C formed on the side surfaces of the substrate 101. Contains many constituent components (melted solidified product) of the substrate 101.
  • the melt-solidified layer 117B on the side surfaces of the intermediate layer 102, the oxide superconducting layer 103, and the silver layer 104 includes the metal stabilizing layer 116 and the base material 101 in addition to the constituent components of the intermediate layer 102, the oxide superconducting layer 103, and the silver layer 104. Are also included (molten solidified product).
  • the shape of the melt-solidified layer 117 varies depending on the laser irradiation conditions, it may be other than the shape shown in FIGS. 11 and 12, but in the present invention, the melt-solidified layer 117 has at least the side surface of the oxide superconducting layer 103. Just cover it. If the melted and solidified layer 117 covers at least the side surface of the oxide superconducting layer 103, the intrusion of moisture into the oxide superconducting layer 103 can be suppressed. Therefore, it is possible to prevent the oxide superconducting layer 103 from being damaged by moisture and deteriorating superconducting characteristics.
  • the thickness of the melt-solidified layer 117 is not particularly limited and can be changed as appropriate.
  • the thickness of the thinnest portion of the melt-solidified layer 117 is preferably 10 ⁇ m or more. By setting the thickness of the melt-solidified layer 117 to 10 ⁇ m or more, it is possible to effectively prevent moisture from entering the oxide superconducting layer 103.
  • the thickness of the thickest portion of the melt-solidified layer 117 is preferably 150 ⁇ m or less. If the thickness of the melt-solidified layer 117 exceeds 150 ⁇ m, the area of the oxide superconducting layer 103 lost by laser irradiation increases, so that the superconducting characteristics may be deteriorated.
  • the side surface of the superconducting laminate S111 is covered with the molten solidified layer 117 and shielded from the outside. Therefore, it is possible to prevent moisture from entering the oxide superconducting layer 103 and to suppress deterioration of the oxide superconducting layer 103 due to moisture.
  • the metal stabilization layer is formed by plating, and the metal stabilization layer 116 is also formed on the back surface side of the substrate 101. For this reason, it is easy to ensure a sufficient thickness to stabilize the oxide superconducting layer 103, and the oxide superconducting wire 110B having a high stabilizing effect is obtained.
  • FIG. 13A to 13D are process explanatory views showing an embodiment of a method of manufacturing the oxide superconducting wire 110B shown in FIG.
  • the manufacturing method of the oxide superconducting wire according to this embodiment includes a superconducting laminate shown in FIG. 13B in which a base 101, an intermediate layer 102, an oxide superconducting layer 103, a silver layer 104, and a metal stabilizing layer 106 are laminated in this order.
  • the third step first, as shown in FIG. 13A, and to produce a laminate T101 P having the same layer structure as the laminate T101 at wider than laminate T101.
  • a diffusion prevention layer and a bed layer are formed on the base material 101 by a sputtering method, and an intermediate layer 102 is formed on the bed layer by an IBAD method.
  • Further oxide superconducting layer 103 and the capping layer in the PLD method then it is possible to obtain a laminate T101 P by forming a silver layer 104 by a sputtering method over the oxide superconducting layer 103.
  • the metal stabilization layer 116 P are formed of Cu or Al, and more preferably formed from Cu.
  • a metal of Cu covering the entire periphery of the laminate T101 A it is possible to form the stabilization layer 116 P.
  • the resulting superconductor laminate S110 A cut along the longitudinal direction, as shown in 13B, the splitting into two superconducting laminate S110 B, S110 B. It is not particularly restricted but includes dividing method of a superconducting laminate S110 A, mechanical cutting method such as by fusing method or the rotary blade by laser and the like.
  • the obtained superconductor laminate S110 B by irradiating a laser to the end in the width direction of the cut surface C101 side, the ends of the superconducting laminate S110 B is melted and solidified, the superconducting laminate S111 A melt-solidified layer 117 that covers the side surface in the width direction on the cut surface C101 side is formed (fourth step).
  • the laser may be irradiated from the surface side of the metal stabilization layer 116A near the superconducting laminate S110 silver layer 104 of the B.
  • a laser from the surface side of the metal stabilization layer 116B closer to the superconducting laminate S110 substrate 101 of B may be irradiated.
  • the surface roughness of the laser irradiation portion (the end in the width direction on the cut surface C101 side) of the metal stabilization layer 116 is previously roughened before laser irradiation. It is preferable to irradiate with a laser.
  • the reflectance of the laser irradiation portion of the metal stabilization layer 116 made of a material having high reflectivity such as copper surely convey the energy of the laser irradiation unit, the cut surface of the superconducting laminate S110 B The end on the C101 side can be heated and melted.
  • the laser types that can be used in the fourth step are the same as those in the third embodiment.
  • a laser beam 100L condensed by the condenser lens 122 from the tip of the laser processing machine 121 is injected, it is irradiated to the edge in the width direction of the cut surface C101 side of the superconducting laminate S110 B.
  • the widthwise ends of the base 101, the intermediate layer 102, the oxide superconducting layer 103, the silver layer 104, and the metal stabilizing layers 116A and 16B on the cut surface C101 side are locally melted. Thereafter, the molten portion is solidified to form a melt-solidified layer 117 covering one side surface of the superconducting laminate S111 in the width direction.
  • the laser processing machine is supplied with an inert gas such as nitrogen, argon or helium from a gas supply port 123 connected to an external assist gas supply device, and this inert gas 100G is supplied from the tip of the laser processing machine 121.
  • the laser beam 100L is configured to be sprayed onto the irradiation unit. Thus, it can prevent that the metal tape welded oxidizes by welding, spraying inert gas, such as nitrogen, to a welding part.
  • the spot diameter of the laser at the time of laser irradiation is not particularly limited, but is preferably set to about 10 to 100 ⁇ m.
  • the spot diameter of the laser at the time of laser irradiation is not particularly limited, but is preferably set to about 10 to 100 ⁇ m.
  • the melt-solidified layer 117 can be reliably formed.
  • the laser spot diameter By setting the laser spot diameter to 100 ⁇ m or less, it is possible to prevent the energy density of the laser irradiation portion from becoming too low and to obtain sufficient processing power.
  • the area of the oxide superconducting layer 103 lost by laser irradiation can be suppressed, a decrease in superconducting characteristics can be suppressed to a minimum.
  • the thickness of the melt-solidified layer 117 formed is about 10 to 150 ⁇ m.
  • the laser output and wavelength during laser welding are not particularly limited, and may be appropriately adjusted depending on the type of laser used and the layer configuration and thickness of the superconducting laminate S100.
  • the oxide superconducting wire 110B having the structure shown in FIGS. 11 and 13D can be manufactured.
  • the superconducting laminate S110 B is irradiated with a laser in the width direction end portion of the cut surface C101 side, thereby melting and solidifying the end portion of the superconducting laminate S110 B
  • the melt-solidified layer 117 covering one side surface (side surface on the cut surface C101 side) of the superconducting laminate S111 is formed. Therefore, it is possible to manufacture the oxide superconducting wire 110B having a structure in which all the side surfaces of the superconducting laminate S111 are shielded from the outside by the metal stabilizing layer 116C and the melt-solidified layer 117, and prevent the intrusion of moisture and the oxide superconducting layer due to moisture.
  • the oxide superconducting wire 110 ⁇ / b> B that can suppress the deterioration of 103 can be provided.
  • the metal stabilizing layer 116 is formed by plating. For this reason, since the metal stabilization layer 116B can be formed also on the back surface side of the base material 101, it is easy to ensure a sufficient thickness to stabilize the oxide superconducting layer 103, and the oxide superconducting wire 110B having a high stabilizing effect. Can be manufactured.
  • each part of the oxide superconducting wire is an example, and is appropriately changed without departing from the scope of the present invention. It is possible.
  • the present invention is not limited to this example.
  • superconducting laminate S110 A along the longitudinal direction is divided three or more in the width direction, and the laser irradiation in the same manner as in the fourth embodiment with respect to the cut surface of the divided superconductor laminate, the The cut surface can be covered with a melt-solidified layer.
  • the oxide superconducting layer 103 is shielded from the outside by covering the cut surface with the melt-solidified layer, deterioration of the oxide superconducting layer 103 due to moisture ingress can be suppressed.
  • FIG. 14 is a schematic sectional view showing an oxide superconducting wire according to the fifth embodiment of the present invention
  • FIG. 15 is a schematic sectional view showing an oxide superconducting wire according to the sixth embodiment of the present invention.
  • a metal solidification layer 106, a solder layer 105, a silver layer 104, an oxide superconducting layer 103, and a molten solidified layer 107C covering the side surfaces of the intermediate layer 102 are formed.
  • the oxide superconducting wire 110C of this embodiment can be manufactured by the manufacturing process shown in FIGS. 10A to 10C.
  • the laser is irradiated from the metal stabilization layer 106 side during the laser irradiation shown in FIG. 10B, and the metal stabilization layer 106, the solder layer 105, the silver layer 104, and the oxide superconducting layer 103 at the width direction end of the superconducting laminate S100.
  • the intermediate layer 102 is heated and melted, and the melted and solidified layer 107C is formed by solidifying the melted portion.
  • the oxide superconducting wire 110C of this embodiment has a structure in which the side surface of the oxide superconducting layer 103 is shielded from the outside by the molten solidified layer 107C. Intrusion can be prevented.
  • a molten solidified layer 107D is formed to cover the side surfaces of the base material 101, the intermediate layer 102, the oxide superconducting layer 103, the silver layer 104, and the solder layer 105.
  • the oxide superconducting wire 110D of this embodiment can be manufactured by the manufacturing steps shown in FIGS. 10A to 10C.
  • the laser beam is irradiated from the substrate 101 side during the laser irradiation shown in FIG. Is melted by heating, and the melted solidified layer 107D is formed by solidifying the melted portion.
  • the oxide superconducting wire 110D of this embodiment has a structure in which the side surface of the oxide superconducting layer 103 is shielded from the outside by the molten solidified layer 107D. Intrusion can be prevented.
  • Example 3 An intermediate layer of Gd 2 Zr 2 O 7 (GZO) having a thickness of 1.2 ⁇ m is formed on the base material made of Hastelloy C276 (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm by the IBAD method. formed was further deposited capping layer of 1.0 ⁇ m thickness of CeO 2 having a composition by the PLD method on the intermediate layer.
  • GZO Gd 2 Zr 2 O 7
  • an oxide superconducting layer having a composition of GdBa 2 Cu 3 O 7-x having a thickness of 1.0 ⁇ m is formed on the cap layer by a PLD method, and further, a 10 ⁇ m thickness is formed on the oxide superconducting layer by a sputtering method.
  • a silver layer was formed and subjected to oxygen annealing.
  • a copper tape (metal stabilizing layer) having a width of 10 mm and a thickness of 100 ⁇ m was laminated on the silver layer via a tin solder having a thickness of 5 ⁇ m (melting point: 230 ° C.).
  • the substrate of the superconducting laminate is made to rotate in the longitudinal direction while being pressed at a pressure of 10 to 20 MPa with a pressure roller having a concavo-convex process on the both ends in the width direction on the substrate side of the produced superconducting laminate.
  • the surface roughness Ra at both ends in the width direction on the material side was processed to 50 ⁇ m.
  • a melt-solidified layer (thickness) covering the side surface of the superconducting laminate by irradiating a fiber laser from the substrate side to the position 20 ⁇ m from both ends in the width direction of the superconducting laminate, and melting and solidifying.
  • the oxide superconducting wire having the structure shown in FIGS. 8 and 10C was produced.
  • the critical current value Ic0 at the liquid nitrogen temperature (77K) of the obtained oxide superconducting wire was 150A.
  • Laser irradiation was performed under the following conditions. Laser used: fiber laser (wavelength 1065 nm, output 200 W), spot diameter: 20 ⁇ m, welding speed: 10 m / min, laser irradiation was performed while blowing nitrogen gas as an assist gas to the laser irradiation part.
  • the prepared oxide superconducting wire of Example 3 was held in an atmosphere of temperature 121 ° C., humidity 100%, 2 atm for 100 hours, and then the critical current value Ic of the oxide superconducting wire at liquid nitrogen temperature (77 K) was measured. did.
  • Ic / Ic0 0.99, and the superconducting characteristics were maintained without deterioration.
  • Example 4 An oxide superconducting wire was produced in the same manner as in Example 3 except that the fiber laser was irradiated from the copper tape (metal stabilization layer) side.
  • the critical current value Ic0 at the liquid nitrogen temperature (77K) of the obtained oxide superconducting wire was 150A.
  • the prepared oxide superconducting wire of Example 4 was held in an atmosphere of a temperature of 121 ° C., a humidity of 100%, and 2 atmospheres for 100 hours, and then the critical current value Ic of the oxide superconducting wire at a liquid nitrogen temperature (77 K) was measured. did.
  • Ic / Ic0 0.98, and the superconducting characteristics were maintained without deterioration.
  • Example 5 An intermediate layer of Gd 2 Zr 2 O 7 (GZO) having a thickness of 1.2 ⁇ m is formed on the base material made of Hastelloy C276 (trade name, manufactured by Haynes, USA) having a width of 10 mm and a thickness of 0.1 mm by the IBAD method. formed was further deposited capping layer of 1.0 ⁇ m thickness of CeO 2 having a composition by the PLD method on the intermediate layer. Next, an oxide superconducting layer having a composition of GdBa 2 Cu 3 O 7-x having a thickness of 1.0 ⁇ m is formed on the cap layer by the PLD method, and further 10 ⁇ m thick is formed on the oxide superconducting layer by a sputtering method.
  • GZO Gd 2 Zr 2 O 7
  • a silver layer was formed and subjected to oxygen annealing to produce a laminate. Subsequently, the obtained laminate was cut to a width of 5 mm along the longitudinal direction, and 5 mm thick and 100 ⁇ m thick via a 5 ⁇ m thick tin solder (melting point 230 ° C.) on the silver layer of the cut laminate.
  • a copper tape metal stabilization layer
  • a heating / pressurizing roll heating temperature: 240 ° C., pressing force: 10 to 20 MPa, passing speed: 100 m / h
  • a superconducting laminate was produced by bonding a copper tape (metal stabilization layer) onto the silver layer via a solder layer.
  • an oxide superconducting wire was produced by forming a melt-solidified layer by irradiating a fiber laser to both ends in the width direction of the superconducting laminate from the substrate side.
  • the critical current value Ic0 at the liquid nitrogen temperature (77K) of the obtained oxide superconducting wire was 75A.
  • the prepared oxide superconducting wire of Example 5 was held in an atmosphere of temperature 121 ° C., humidity 100%, 2 atm for 100 hours, and then the critical current value Ic of the oxide superconducting wire at liquid nitrogen temperature (77 K) was measured. did.
  • Comparative Example 2 What produced the superconducting laminated body by the method similar to Example 5 was made into the oxide superconducting wire as it was.
  • the critical current value Ic0 at the liquid nitrogen temperature (77K) of the obtained oxide superconducting wire was 150A.
  • the produced oxide superconducting wire of Comparative Example 2 was held in an atmosphere of a temperature of 121 ° C., a humidity of 100%, and 2 atmospheres for 48 hours, and then the superconducting characteristics of the oxide superconducting wire were measured.
  • the critical current value Ic at the liquid nitrogen temperature (77 K) was 0 A, and the superconducting characteristics were deteriorated.
  • the oxide superconducting wire of Comparative Example 2 since the side surface of the oxide superconducting layer was exposed, it was considered that moisture entered from this exposed portion and the oxide superconducting layer deteriorated.
  • FIG. 17 is a plot of the ratio Ic / Ic0 of the critical current value Ic after the test to the critical current value Ic0 before the test against the test time. It shows that durability is so high that vertical axis
  • FIG. 18 is an explanatory view showing a state in which a tape-shaped oxide superconducting conductor is cut by a continuous wave laser based on the method according to the present embodiment
  • FIG. 19 is a fiber laser device used for generating the continuous wave laser
  • 20A and 20B are perspective views showing an oxide superconducting conductor to be cut and an oxide superconducting wire after cutting
  • FIGS. 21A and 21B are a state in which the obtained oxide superconducting wire is covered and a partially enlarged view.
  • an intermediate layer 205, an oxide superconducting layer 206, and a stabilizing layer 207 are formed on a metal tape-like base material 203.
  • the oxide superconducting wire 210 can be obtained.
  • this oxide superconducting wire 210 is obtained by dividing the oxide superconducting conductor 201 in the width direction, it has the same structure as the oxide superconducting conductor 201 except for its narrow width.
  • an intermediate layer 205a, an oxide superconducting layer 206a, and a stabilizing layer 207a are laminated on a metal tape-like substrate 203a.
  • the oxide superconducting wire 210 is formed by laminating an intermediate layer 205 having a diffusion prevention layer 211, a bed layer 212, an alignment layer 215, and a cap layer 216 on the upper surface of a base material 203a, as shown in FIG. 21A. On top of this, an oxide superconducting layer 206a and a stabilizing layer 207a are laminated. 20A and 20B, the intermediate layer 205 is drawn as one layer for the sake of simplicity of illustration. Note that the diffusion preventing layer 211, the bed layer 212, and the cap layer 216 are not essential and may be omitted in some cases. In the oxide superconducting wire 210 shown in FIG.
  • a thicker stabilization layer 208 is laminated on the stabilization layer 207a.
  • An insulating layer 218 is formed by winding a resin tape 217 around the entire circumference of the laminate including the oxide superconducting wire 210 and the stabilization layer 208.
  • the stabilization layer 208 is formed by attaching or plating the oxide superconducting wire 210 obtained by cutting with a laser beam.
  • the oxide superconducting wire 210 insulated by the insulating layer 218 as shown in FIG. 21A can be used for applications such as a superconducting coil by coil processing. Further, the oxide superconducting wire 210 insulated by the insulating layer 218 can be used for a superconducting cable for power transmission.
  • the melted portion of the oxide superconducting wire 210 is inward (in the figure, the melted cross section of the intermediate layer 205a and the oxide superconducting layer 206a with respect to the melted surface 203b of the base material 203a. It is located on the left.
  • a step 203c is formed between the melt cross section of the intermediate layer 205a and the oxide superconducting layer 206a and the melt cross section 203b of the base material 203a.
  • a protective layer 207b in which a melted and solidified body of the stabilization layer 207a extends is formed so as to cover the step portion 203c.
  • FIG. 21B the thicknesses of the base material 203a, the intermediate layer 205a, the oxide superconducting layer 206a, and the stabilizing layer 207a are shown in a ratio close to that of the actual superconducting wire.
  • FIG. 20B in the melted portion of the oxide superconducting wire 210, the edge of the oxide superconducting layer 505a is covered with a protective layer 207b extending from the edge of the stabilizing layer 207a.
  • FIG. 21A is an exploded perspective view centering on the laminated structure of the oxide superconducting wire 210, and omits the description of the protective layer 207b.
  • the base material 203 (203a) can be used as a base material of a normal superconducting wire, and may be high strength.
  • a base material made of a heat-resistant metal is preferable.
  • various high-strength, high-heat-resistant metal materials such as nickel alloys such as stainless steel and hastelloy, or ceramics disposed on these various metal materials, and the like can be given.
  • nickel alloys are preferable.
  • Hastelloy (trade name, manufactured by Haynes, USA) is preferable as a commercial product.
  • Hastelloy B, C, G, N, W, etc. having different component amounts such as molybdenum, chromium, iron, cobalt, etc. can be used.
  • the thickness of the substrate 203 may be appropriately adjusted according to the purpose, and can usually be in the range of 10 to 500 ⁇ m.
  • the diffusion preventing layer 211 is formed for the purpose of preventing the constituent element diffusion of the base material 203 (203a).
  • the diffusion prevention layer 211 is made of silicon nitride (Si 3 N 4 ), aluminum oxide (Al 2 O 3 , also referred to as “alumina”), GZO (Gd 2 Zr 2 O 7 ), or the like.
  • the film thickness is 10 to 400 nm, for example.
  • the bed layer 212 has high heat resistance and is provided to reduce interfacial reactivity, and is used to obtain the orientation of a film disposed thereon.
  • Such a bed layer 212 is, for example, a rare earth oxide such as yttria (Y 2 O 3 ), and an oxidation represented by a composition formula ( ⁇ 1 O 2 ) 2x ( ⁇ 2 O 3 ) (1-x). A thing can be illustrated. More specifically, Er 2 O 3, CeO 2 , Dy 2 O 3, Er 2 O 3, Eu 2 O 3, Ho 2 O 3, can be exemplified La 2 O 3 and the like.
  • the bed layer 212 is formed by a film forming method such as sputtering, and has a thickness of 10 to 100 nm, for example.
  • the alignment layer 215 may be either a single layer structure or a multilayer structure, and is selected from materials that are biaxially aligned in order to control the crystal orientation of the cap layer 216 stacked thereon.
  • preferred materials for the alignment layer 215 include Gd 2 Zr 2 O 7 , MgO, ZrO 2 —Y 2 O 3 (YSZ), SrTiO 3 , CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2.
  • the metal oxide include O 3 , Zr 2 O 3 , Ho 2 O 3 , and Nd 2 O 3 .
  • this orientation layer 215 is formed by IBAD (Ion-Beam-Assisted Deposition) so as to have good crystal orientation (for example, a crystal orientation degree of 15 ° or less), the crystal orientation of the cap layer 216 formed thereon (Eg, the degree of crystal orientation is around 5 °).
  • the crystal orientation of the oxide superconducting layer 206 formed on the cap layer 216 can be improved, the oxide superconducting layer 206 that can exhibit excellent superconducting characteristics can be obtained.
  • the alignment layer 215 made of Gd 2 Zr 2 O 7 , MgO, or ZrO 2 —Y 2 O 3 (YSZ) has a small value of ⁇ (FWHM: full width at half maximum) that is an index representing the degree of crystal orientation in the IBAD method. This is particularly preferable because it can be performed.
  • the cap layer 216 is epitaxially grown by being formed on the surface of the orientation layer 215 in which the in-plane crystal axes are oriented as described above, and then grows laterally, so that the crystal grains are self-oriented in the in-plane direction.
  • Any material that can be used is not particularly limited.
  • Preferred materials for the cap layer include CeO 2 , Y 2 O 3 , Al 2 O 3 , Gd 2 O 3 , ZrO 2 , Ho 2 O 3 , Nd 2 O 3 and the like.
  • the cap layer may include a Ce—M—O-based oxide in which part of Ce is substituted with another metal atom or metal ion.
  • the CeO 2 layer can be formed by a PLD method (pulse laser deposition method), a sputtering method, or the like.
  • the thickness of the CeO 2 layer is preferably 100 nm or more in order to obtain sufficient orientation, but if it is too thick, the crystal orientation deteriorates, so it can be in the range of 50 to 5000 nm.
  • An oxide superconducting layer made of a known oxide superconductor can be used for the oxide superconducting layer 206 (206a).
  • an oxide superconducting layer made of an oxide superconductor represented by REBa 2 Cu 3 O y (RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd) can be exemplified.
  • RE represents a rare earth element such as Y, La, Nd, Sm, Er, Gd
  • Examples of the oxide superconducting layer 206 include Y123 (YBa 2 Cu 3 O 7-X ) or Gd123 (GdBa 2 Cu 3 O 7-X ).
  • the oxide superconducting layer 206 is formed by a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD).
  • a physical vapor deposition method such as sputtering, vacuum vapor deposition, laser vapor deposition, electron beam vapor deposition, chemical vapor deposition (CVD), or thermal coating decomposition (MOD).
  • PLD pulse laser deposition
  • TFA-MOD method organic metal deposition method using trifluoroacetate, coating pyrolysis method
  • CVD thermal coating decomposition
  • the first stabilizing layer 207a laminated on the oxide superconducting layer 206 has a good conductivity such as Ag, and has a low contact resistance with the oxide superconducting layer 206 and a familiar metal material. Formed from.
  • a film forming method such as a sputtering method is employed, and the thickness thereof can be formed to about 1 to 30 ⁇ m.
  • the second stabilization layer 208 is provided for stabilization of the oxide superconducting layer 206a, and is provided for current bypassing to prevent the oxide superconducting layer 206a from transitioning to the normal conducting state. Yes.
  • the stabilization layer 208 is formed from a highly conductive metal material such as Cu, Al, or an alloy thereof.
  • the stabilization layer 208 can be made of a metal material having a high resistance to Cu, Ag, Al, such as NiCr.
  • the stabilization layer 208 is formed thicker than the stabilization layer 207 and has a thickness of about 100 to 300 ⁇ m in order to ensure a sufficient capacity as a current bypass path.
  • the stabilization layer 208 can be formed on the stabilization layer 207 by using a bonding method using a solder or a conductive adhesive or a plating method.
  • FIG. 18 shows a schematic configuration of a cutting device 220 used for generating a continuous wave laser to cut the oxide superconducting conductor 201.
  • the cutting device 220 in this example is a beam combiner that combines a plurality of (three in the example of FIG. 18) excitation laser light emitting devices 221 that are light sources and the excitation lasers from the plurality of light emitting devices 221. Coupler 222, amplification fiber 223 made of double clad fiber connected to this coupler 222, amplification fiber 223, transmission fiber 224 connected to this amplification fiber 223, and tip of transmission fiber 224 And an output unit 225 connected to the unit.
  • a rare earth-doped fiber that is an optical amplification medium can be used.
  • a rare earth-doped fiber a rare earth-doped double clad fiber comprising a core doped with a rare earth element, a first clad surrounding the outer periphery of the core, and a second clad surrounding the first clad can be used.
  • the rare earth element to be added include Yb (ytterbium), Er (erbium), Tm (thulium), Nd (neodymium), and Pr (praseodymium).
  • the output unit 225 is connected to a cylindrical guide unit 226 for introducing a laser output from the transmission fiber 224, an optical device 227 accommodated in the upper part of the guide unit 226, and a lower part of the guide unit 226.
  • An injection nozzle 228, and a gas supply source 229 connected to the lower portion of the injection nozzle 228.
  • the optical device 227 includes a plurality of optical lenses. By adjusting the mutual position of these optical lenses, the diameter of the laser light incident from the transmission fiber 224 is reduced, and the laser light is condensed so as to have an appropriate beam diameter outside the tip of the ejection nozzle 228. Can be irradiated.
  • a gas inlet 230 is formed on the upper wall of the injection nozzle 228, and a gas supply source 229 such as an inert gas is connected to the gas inlet 230.
  • a shield gas such as an inert gas from the gas supply source 229 to the inside of the injection nozzle 228, the shield gas can be ejected from the opening at the tip of the injection nozzle 228.
  • the tip of the injection nozzle 228 is positioned, for example, at the center in the width direction of the oxide superconducting conductor 201 installed horizontally.
  • the central portion of the oxide superconductor 201 is irradiated with a laser beam of a continuous wave laser, and the oxide superconductor 201 is moved in the length direction at a predetermined speed.
  • the multimode excitation light inputted from the excitation light emitting device 221 to the coupler 222 via the connecting fiber 221 a in the cutting device 220 is optically coupled in the coupler 222.
  • the optically coupled pumping light is input to the amplifying fiber 223, amplified in wavelength and output in the amplifying fiber 223, converted into a single mode, and output as a continuous wave laser via the transmission fiber 224.
  • a continuous wave laser having a center wavelength of 1080 nm can be used.
  • the beam output is, for example, 300 W, and the beam diameter on the beam front end side when the laser beam is condensed and irradiated to the outside of the tip of the ejection nozzle 228 is about 10 ⁇ m to 100 ⁇ m, for example, 20 ⁇ m.
  • the central wavelength of the continuous wave laser is, for example, about 1050 to 1100 nm.
  • the optical device 227 is adjusted so that the laser beam diameter of the continuous wave laser having a center wavelength of 1080 nm reaching the output unit 225 from the transmission fiber 224 is reduced to about 20 ⁇ m, and the oxide is emitted from the tip of the injection nozzle 228 as described above.
  • the stabilization layer 207, the oxide superconducting layer 206, the intermediate layer 205, and the base material 203 in the central portion of the oxide superconducting conductor 201 can be fused by a laser beam.
  • the shield gas ejected from the tip of the ejection nozzle 228 blows away and removes the melt of the stabilization layer 207, the oxide superconducting layer 206, the intermediate layer 205, and the base material 203.
  • the shield gas ejected from the tip of the ejection nozzle 228 in a state where the laser beam penetrates the base material 203 causes the melted stabilization layer 207, oxide superconducting layer 206, intermediate layer 205, and base material 203 to be oxidized.
  • the superconducting conductor 201 is blown off to the back side and removed. By these actions, it is possible to prevent the molten dross caused by the melted material of the stabilization layer 207, the oxide superconducting layer 206, the intermediate layer 205, and the base material 203 from adhering to the portion melted by the laser beam.
  • the irradiation angle of the laser beam with respect to the oxide superconducting conductor 201 may be 90 °. However, since the light reflectance of the Ag stabilizing layer 207 is high, the irradiation angle may be inclined from 90 ° to about 1 to 2 ° so that the reflected light does not return to the optical fibers 242 and 232. .
  • the oxide superconducting conductor 201 is sequentially moved in the length direction at a predetermined speed (for example, 150 mm / s), so that the oxide superconducting conductor 201 is moved in the length direction. Then, it can be divided into two oxide superconducting wires by melting at the center. The above operation is repeated a plurality of times at predetermined intervals in the width direction of the oxide superconducting conductor 201. For example, by performing the above operation three times, the oxide superconducting conductor 201 can be divided into four as shown in FIG. 20B. When the oxide superconducting conductor 201 is long, it takes time to scan the laser beam over its entire length.
  • a predetermined speed for example, 150 mm / s
  • the oxide superconducting conductor 201 can be divided into four parts by scanning the laser beam once over the entire length of the oxide superconducting conductor 201.
  • the oxide superconductor 201 when the oxide superconductor 201 is blown by the laser beam of the continuous wave laser while the shield gas is sprayed from the tip of the injection nozzle 228 in the thickness direction of the oxide superconductor 201, the laser beam is heated and melted. The melted portions of the base material 203a, the intermediate layer 205a, the oxide superconducting layer 206a, and the stabilizing layer 207a are blown away by the pressure of the shielding gas and removed while the fusing progresses.
  • the melted portion of the stabilization layer 207a located at the uppermost layer is extended in the flow direction of the shield gas so that the melt cross section between the intermediate layer 205a and the oxide superconducting layer 206a is formed.
  • the protective layer 207b can be formed on the edge portion of the stabilization layer 207a over the entire length of the oxide superconducting wire 210 by this fusing treatment.
  • the side surface of the oxide superconducting layer 206a can be shielded by the protective layer 207b over the entire length of the oxide superconducting wire 210. Accordingly, it is possible to obtain the oxide superconducting wire 210 having a structure capable of preventing moisture from entering the oxide superconducting layer 206a from the outside.
  • FIG. 22 is a partially enlarged view showing an example of a melted cross section of the oxide superconducting wire 210 obtained by fusing with a laser beam of a continuous wave laser.
  • the melted portion of the oxide superconducting wire 210 is enlarged, a large number of uneven portions 210c are formed in the length direction of the oxide superconducting wire 210 (in the left-right direction in FIG. 22).
  • the maximum height Rz of the uneven portion 210 c can be set to 5 ⁇ m or less.
  • the maximum height Rz of the concavo-convex portion becomes larger than 10 ⁇ m.
  • the oxide superconducting conductor 201 is melted with a YAG laser, an uneven portion having a maximum height of 10 to 20 ⁇ m is generated. This is because the portion irradiated with the laser is vaporized and sublimated, so that deformation due to melting of the end portion is difficult to occur.
  • the output of the oxide superconducting conductor 201 is insufficient with a short-wavelength laser, and the oxide superconducting conductor 201 may be difficult to melt itself.
  • the long CO high light reflectance of the stabilizing layer 207 of Ag in such 2 laser wavelengths oxides at high speed becomes more light reflecting stabilization layer 207 is irradiated with a CO 2 laser superconducting conductor 201 It becomes difficult to melt.
  • the laser beam of the continuous wave laser used in the present embodiment the melted surface can be processed more smoothly than in the prior art so as to have an uneven portion with a maximum height of 5 ⁇ m or less.
  • the oxide superconducting conductor 201 When the oxide superconducting conductor 201 is long, the oxide superconducting conductor 201 is wound around a reel or the like, and the oxide superconducting conductor 201 is irradiated with a laser beam while being sequentially unwound from the reel and wound around another reel. Thus, the oxide superconducting conductor 201 may be divided into the oxide superconducting wire 210 over its entire length.
  • Example 6 A tape-shaped substrate made of Hastelloy C276 (trade name of US Haynes Co., Ltd.) having a width of 10 mm, a thickness of 0.1 mm, and a length of 100 m is prepared, and the thickness of the tape-shaped substrate made of Al 2 O 3 is 100 nm. Then, a 30 nm thick bed layer made of Y 2 O 3 was formed thereon by ion beam sputtering. In carrying out the ion beam sputtering method, the tape-shaped substrate was wound around the first reel inside the sputtering apparatus, and film formation was performed while the tape was fed from the first reel to the second reel.
  • Hastelloy C276 trade name of US Haynes Co., Ltd.
  • a diffusion prevention layer and a bed layer were formed over the entire length of the tape-like substrate.
  • an alignment layer of MgO having a thickness of 10 nm was formed on the bed layer by ion beam assisted vapor deposition.
  • the incident angle of the assist ion beam was 45 ° with respect to the normal of the film-formed surface of the tape-like substrate.
  • a cap layer having a thickness of 500 nm made of CeO 2 was formed on the MgO alignment layer using a pulsed laser deposition method (PLD method). Further, an oxide superconducting layer having a thickness of 1 ⁇ m made of GdBa 2 Cu 3 O 7-x was formed on the cap layer by a pulse laser deposition method. Next, a stabilizing base layer made of Ag having a thickness of 10 ⁇ m was formed on the oxide superconducting layer by sputtering, and oxygen annealing was performed at 500 ° C. The oxide superconducting conductor provided with the diffusion prevention layer, the bed layer, the orientation layer, the cap layer, the oxide superconducting layer, and the stabilizing layer was formed on the tape-like long base material by the above process.
  • PLD method pulsed laser deposition method
  • the oxide superconducting conductor is irradiated with a continuous wave laser beam having a central wavelength of 1080 nm by using a cutting apparatus having a schematic configuration shown in FIG. 18, and adjusted to an output of 200 W, a beam diameter of 20 ⁇ m, and a processing speed of 500 mm / s. Then, a cutting process for dividing the oxide superconducting conductor having a width of 10 mm into two oxide superconducting wires having a width of 5 mm was performed.
  • the nitrogen gas pressure applied to the injection nozzle is set to 0.9 MPa, and nitrogen gas is jetted from the tip of the injection nozzle (inner diameter 2 mm) onto the upper surface of the oxide superconductor to cause molten dross on the cutting process surface. It processed so that it might not adhere. Moreover, the oxidation of the melting surface was prevented by injecting nitrogen gas. By this operation, an uneven portion having a maximum height Rz: 3 ⁇ m was generated on the cut surface of the Hastelloy tape substrate. When observed with the naked eye, large uneven portions were not seen, and the surface was smooth.
  • the oxide superconducting wire having a width of 0.5 mm obtained by the above cutting process was insulated by winding a polyimide resin insulating tape having a width of 4 mm and a thickness of 12.5 ⁇ m with a tension of 150 g. In this insulation treatment, winding could be performed without cutting the insulation tape.
  • an aluminum alloy pin member 237 having a disk portion 235 having an outer diameter of 2.6 mm and a rod portion 236 on the upper surface of the stabilization layer 207 of the cut oxide superconducting wire 210 is epoxy bonded.
  • a peeling test was performed in which the rod part 236 was pulled in a direction perpendicular to the oxide superconducting wire 210 by being bonded with a resin adhesive.
  • FIG. 25 is an enlarged photograph showing the cross-sectional structure of the fused portion of the oxide superconducting wire of this example.
  • a protective layer could be formed in the melted portion of the stabilization layer. This protective layer completely covered the side surfaces of the oxide superconducting layer and the intermediate layer located under the stabilization layer, and reached and adhered to the thick substrate located under them.
  • an oxide superconducting wire having a structure capable of preventing moisture from entering could be obtained.
  • Example 7 An oxide superconductor having the same configuration as that of the oxide superconductor used in Example 6 was prepared. Using a fiber laser with a central wavelength of 1080 nm, an oxide superconductor having a width of 10 mm is divided into two 5 mm widths in the same manner as in Example 6 under the conditions of a frequency of 60 KHz, an output of 300 W, a beam diameter of 20 nm, and a processing speed of 500 mm / s. Cutting was performed. The jet pressure applied to the nitrogen gas jet nozzle was set to 0.9 MPa. With the fiber laser under this condition, the oxide superconducting conductor could be melted, but a protective layer could not be formed on the edge of the silver stabilizing layer.
  • the edge part of the silver stabilization layer was blown off with nitrogen gas without deformation.
  • the melt cross sections at both end portions of the oxide superconducting layer are exposed, so that some protective layer needs to be additionally formed.
  • a resin tape equivalent to that used in Example 6 was wound around the oxide superconducting wire with the same tension, it could be wound without cutting the resin tape.
  • the average peel force was about 29 kgf.
  • “Comparative Example 3” An oxide superconductor having the same configuration as that of the oxide superconductor used in Example 6 was prepared. Using a YAG laser with a center wavelength of 355 nm, under the conditions of a frequency of 30 KHz, an output of 2.4 W, a beam diameter of 20 nm, and a processing speed of 5 mm / s, a 10 mm-wide oxide superconductor is formed to a width of 5 mm, as in Example 6. The cutting process which divides into two was performed. During the fusing process, nitrogen gas was blown from the tip of the injection nozzle. The YAG laser is a pulse laser, and sublimates the material of the fusing part in an instant.
  • the oxide superconducting conductor could not be cut when the processing speed was increased.
  • the oxide superconducting wire is cut by setting the above processing speed so as not to generate the uneven portion. Obtained. Note that, on the cut surface by the YAG laser of this example, uneven portions having a maximum height Rz of 10 to 20 ⁇ m were generated on the cut surface even at the above-described processing speed.
  • the present invention can be used for oxide superconducting wires used in various electric power devices and superconducting devices such as superconducting motors, current limiters, superconducting coils, and superconducting cables for power transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

 基材と中間層と酸化物超電導層と銀層と半田層と金属安定化層とがこの順に積層されてなる超電導積層体を準備する第1工程と;前記金属安定化層及び前記基材のうちの少なくとも一方の幅方向端部を加圧および加熱することにより、前記半田層及び前記基材のうちの少なくとも一方の幅方向端部の一部を溶融させ、前記超電導積層体の側面に流動させた後に凝固させて、少なくとも前記酸化物超電導層の側面を覆う保護層を形成する第2工程と;を備える酸化物超電導線材の製造方法。

Description

酸化物超電導線材およびその製造方法
 本発明は、酸化物超電導線材およびその製造方法、に関する。
 本願は、2011年1月17日に、日本に出願された特願2011-006961号、2011年2月28日に、日本に出願された特願2011-042194号、及び2011年1月27日に、日本に出願された特願2011-015129号に基づき優先権を主張し、これらの内容をここに援用する。
 近年になって発見されたRE-123系酸化物超電導体(REBaCu7-X:REはYを含む希土類元素)は、液体窒素温度以上で超電導性を示し、電流損失が低いため、実用上極めて有望な素材である。この酸化物超電導体を線材に加工して電力供給用の導体あるいは磁気コイル等として使用することが要望されている。この酸化物超電導体を線材に加工する方法として、金属基材テープ上に酸化物超電導層を形成する方法が研究されている。
 酸化物超電導線材にあっては、2層の安定化層が積層された構造が採用されている。すなわち、酸化物超電導層上に薄い銀の安定化層を形成し、その上に銅などの良導電性金属材料からなる厚い安定化層が設けられている。前記銀の安定化層は、酸化物超電導層を酸素熱処理する際に酸素量の変動を調節するために設けられており、銅の安定化層は、酸化物超電導層が超電導状態から常電導状態に遷移しようとしたとき、該酸化物超電導層の電流を転流させるバイパスとして機能させるために設けられている。
 2層構造の安定化層を形成する技術の一例として、酸化物超電導層の上にスパッタリングにより薄い銀の安定化層を設けた後、線材全体を硫酸銅水溶液のめっき浴に浸漬し、電気めっきにより銀の安定化層上に銅の安定化層を形成する技術が知られている(特許文献1参照)。また、酸化物超電導層の上にスパッタリングにより薄い銀の安定化層を設けた線材と銅製の安定化材テープとをはんだを介して重ね合わせて加熱・加圧ロールに通すことによって、銀の安定化層上に銅の安定化層を形成する技術も知られている(特許文献2参照)。
 また、RE-123系の酸化物超電導体は、液体窒素温度で超電導性を示し、電流損失が低いため、電力供給用の導体あるいはコイル用の導体としてRE-123系の酸化物超電導体の応用開発がなされている。この酸化物超電導体を線材に加工するための方法の一例として、強度が高く、耐熱性があり、線材に加工することが容易な金属を長尺のテープ状に加工し、この金属基材テープ上に酸化物超電導層を形成する技術が知られている。
 また、酸化物超電導体の結晶は電気的異方性を有しているので、基材テープ上に酸化物超電導層を形成する場合、結晶の配向制御を行う必要がある。その配向制御の方法の一例として、基材上に中間層を介し酸化物超電導層を積層する技術が知られている。この中間層を利用する技術の一例として、イオンビームアシスト成膜法(IBAD法:Ion Beam Assisted Deposition)が知られている。このIBAD法により高い2軸配向性を示す中間層を基材上に成膜することができ、この中間層上に酸化物超電導層を形成することにより、超電導特性の優れた酸化物超電導導体を得ることができる。
 この種の酸化物超電導導体において目的の線幅を得るためには、製造開始段階から目的の線幅の基材テープを準備し、その上に中間層及び酸化物超電導層の成膜を行い、安定化層を形成して酸化物超電導導体を製造する方法がある。あるいは、予め一定の線幅の基材テープを準備し、その上に中間層と酸化物超電導層の成膜を行い、安定化層を形成して酸化物超電導導体とした後に目的の線幅になるように切断加工する方法がある。製造の容易性、及び様々な線幅への対応性を考慮すると、予め一定の線幅で酸化物超電導導体を作製し、その酸化物超電導導体を目的の線幅に切断して酸化物超電導線材を得る方法が製造効率の面で有利であると考えられる。
 酸化物超電導導体の切断方法の一例として、1対の切断部を複数組備えたカッターバイトを用いる方法が提案されている(特許文献3参照)。この方法によれば、一対のカッターバイトの切断部の刃先によってテープ状の酸化物超電導導体を機械的に挟み込み、酸化物超電導導体をその幅方向に沿って切断して、複数の酸化物超電導線材が得られる。
 また、金属基板と中間層と酸化物超電導層と第1の銀安定化層とを備えたテープ状の酸化物超電導導体をスリット加工した後、酸化物超電導層を保護するために電気めっきにより第2の銀安定化層を形成して、酸化物超電導線材を製造する方法が開示されている(特許文献4参照)。
日本国特開2007-80780号公報 日本国特開2009-48987号公報 日本国特開2007-287629号公報 日本国特開2010-176892号公報
 特定組成のRE-123系酸化物超電導層は水分により劣化しやすい。線材を水分の多い環境に保管した場合や、線材に水分が付着した状態のまま放置した場合に、酸化物超電導層に水分が浸入すると、超電導特性の低下を引き起こす虞がある。
 特許文献1のようにめっき処理して銅の安定化層を形成した構造では、銅めっき部に欠陥があると、そのめっき欠陥部から水分が浸入して酸化物超電導層に達し、酸化物超電導層が劣化してしまう虞がある。
 特許文献2のように銀の安定化層上に銅製の安定化材テープを積層して銅の安定化層を形成する方法によれば、上述のような銅の安定化層にめっき欠陥部が形成されるという問題はない。しかし、上記方法によれば、銀の安定化層の上面のみが銅の安定化層で保護され、水分によりダメージを受けやすい酸化物超電導層の側面が外部に露呈しているため、側面より水分が浸入することにより超電導特性の低下を引き起こす虞がある。
 特許文献3に記載されているように、切断部を有するカッターバイトを用いて機械的に酸化物超電導導体を切断する方法では、酸化物超電導導体が積層構造であるために、切断面付近で酸化物超電導層に剥離や変形が必然的に発生し、超電導特性の劣化を生じるおそれがある。このように酸化物超電導層に剥離が発生した箇所はその後に機械的に剥がれやすくなり、剥離強度が低下するおそれがある。
 また、特許文献4に記載されているように、酸化物超電導導体をスリット加工した後、第2の銀安定化層を電気めっきにより被覆形成する方法では、スリット加工後に第2の銀安定化層を形成する必要がある。すなわち、第2の銀安定化層を形成する工程が増加するので、コスト増になってしまう。
 更に、RE-123系の酸化物超電導層は、組成によって、水分を含む雰囲気中に長時間曝露すると、超電導特性が劣化する傾向がある。積層構造の酸化物超電導導体において酸化物超電導層を水分から保護することも重要な課題とされている。
 本発明は、以上に鑑みなされたものであり、酸化物超電導層への水分の浸入を抑えることができる酸化物超電導線材及びその製造方法の提供を目的とする。
 さらに本発明は、レーザービームにより酸化物超電導導体を溶断して複数の酸化物超電導線材を得ることができ、酸化物超電導層を覆う保護層を溶断と同時形成することができる酸化物超電導線材の製造方法及び酸化物超電導線材の提供を目的とする。
 上記課題を解決するため、本発明は以下を採用している。
 本発明の第1の態様は、基材と中間層と酸化物超電導層と銀層と半田層と金属安定化層とがこの順に積層されてなる超電導積層体を準備する第1工程と;前記金属安定化層及び前記基材のうちの少なくとも一方の幅方向端部を加圧および加熱することにより、前記半田層及び前記基材のうちの少なくとも一方の幅方向端部の一部を溶融させ、前記超電導積層体の側面に流動させた後に凝固させて、少なくとも前記酸化物超電導層の側面を覆う保護層を形成する第2工程と;を備える酸化物超電導線材の製造方法である。
 上記酸化物超電導線材の製造方法によれば、金属安定化層及び基材のうちの少なくとも一方の幅方向端部を加圧および加熱することにより、半田層または基材の端部を溶融させ、超電導積層体の側面に流動させた後に凝固させて、少なくとも酸化物超電導層の側面を覆う保護層を形成する。そのため、酸化物超電導層の側面全てが外部から遮蔽された構造の酸化物超電導線材を製造でき、水分の浸入を防止して水分により酸化物超電導層が劣化することを抑止できる。
 また、上記酸化物超電導線材の製造方法によれば、超電導積層体の基材または半田層の端部を溶融させて保護層が形成されるため、めっきにより超電導積層体を被覆して保護層を形成する従来の方法に比べて、簡便に保護層を形成できる。
 前記第2工程において、前記基材の幅方向端部に、ローラー電極により加圧および通電加熱を行い、抵抗発熱により前記基材の幅方向端部の一部を溶融させてもよい。
 この場合、少なくとも中間層と酸化物超電導層との側面を覆う保護層が形成される。製造される酸化物超電導線材の外側に露出する部分は、金属材料よりなる基材、保護層、金属安定化層、半田層、銀層のいずれかである。すなわち、酸化物超電導線材の最外面が金属材料で覆われるため、水分が内部に浸入することを抑制でき、酸化物超電導層が水分により劣化することを防ぐことができる。
 また、基材の両端部に、ローラー電極により加圧しながら通電加熱するため、線材長手方向に連続的に酸化物超電導層の側面を覆う保護層を形成することができる。その結果、酸化物超電導層の側面全てが外部から遮蔽された構造の酸化物超電導線材を製造できる。従って、酸化物超電導層への水分の浸入を抑え、酸化物超電導層が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる酸化物超電導線材を提供できる。
 前記第2工程において、前記金属安定化層の幅方向端部を加圧および加熱することにより、前記半田層の幅方向端部の一部を溶融させてもよい。
 この場合、金属安定化層の幅方向端部を加圧および加熱することにより、半田層の端部を溶融させて、酸化物超電導層の側面を覆う保護層を形成することができる。そのため、酸化物超電導層の側面が外部から遮蔽された構造の酸化物超電導線材を製造できる。従って、酸化物超電導層への水分の浸入を抑え、酸化物超電導層が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる酸化物超電導線材を提供できる。
 また、半田の融点以上の温度に加熱することにより保護層を形成できる。そのため、必要以上に高温で加熱することにより酸化物超電導層が劣化するおそれがない。
 本発明の第2の態様は、基材と中間層と酸化物超電導層と銀層と半田層と金属安定化層とがこの順に積層された酸化物超電導積層体を備える酸化物超電導線材であって、前記基材及び前記半田層のうちの少なくとも一方の幅方向端部は、少なくとも前記酸化物超電導層の側面を覆う保護層を形成するように前記超電導積層体の積層方向に延出している。
 上記酸化物超電導線材では、少なくとも酸化物超電導層の側面を覆うように保護層が形成されている。そのため、酸化物超電導層への水分の浸入を抑え、酸化物超電導層が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる。
 前記保護層が、前記超電導積層体の積層方向に延出した前記基材の端部から形成されて且つ、少なくとも前記中間層および前記酸化物超電導層の側面を覆ってもよい。
 この場合、少なくとも中間層と酸化物超電導層との側面が保護層で覆われる。外側に露出する部分は、金属材料よりなる基材、保護層、金属安定化層、半田層、銀層のいずれかである。すなわち、酸化物超電導線材の最外面が金属材料で覆われるため、水分が内部に浸入することを抑制でき、酸化物超電導層が水分により劣化することを防ぐことができる。
 前記保護層が、前記超電導積層体の積層方向に延出した前記半田層の端部から形成されて且つ、少なくとも前記銀層および前記酸化物超電導層の側面を覆ってもよい。
 この場合、少なくとも銀層と酸化物超電導層との側面が保護層で覆われるため、酸化物超電導層への水分の浸入を抑え、酸化物超電導層が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる。
 本発明の第3の態様は、基材と中間層と酸化物超電導層と銀層と金属安定化層とがこの順に積層されてなる超電導積層体を準備する第3工程と;前記超電導積層体の幅方向端部にレーザを照射して前記超電導積層体の端部を溶融凝固させて、少なくとも前記酸化物超電導層の側面を覆う溶融凝固層を形成する第4工程と、を備える酸化物超電導線材の製造方法である。
 上記酸化物超電導線材の製造方法によれば、超電導積層体の幅方向の端部にレーザを照射して、この超電導積層体の端部を溶融凝固させることにより、少なくとも酸化物超電導層の側面を覆う溶融凝固層を形成する。そのため、酸化物超電導層の側面が溶融凝固層により外部から遮蔽された構造の酸化物超電導線材を製造でき、水分の浸入を防止して水分による酸化物超電導層の劣化を抑止できる。
 前記基材及び前記金属安定化層のうちの少なくとも一方を溶融凝固させて前記溶融凝固層を得てもよい。
 この場合、溶融凝固層は基材及び金属安定化層のうちのいずれか一方を溶融させて、少なくとも酸化物超電導層の側面を覆う溶融凝固層が形成される。よって、酸化物超電導層を外部から遮蔽した構造を実現できる。さらに、基材及び金属安定化層の両方を溶融させて溶融凝固層を形成する場合、溶融凝固層は超電導積層体の側面全体を覆うことができる。この場合、超電導積層体の側面全体を外部から遮蔽した構造を実現できる。従って、より効果的に水分の浸入を防止して水分による酸化物超電導層の劣化を確実に抑止できる酸化物超電導線材を提供できる
 前記第4工程において、前記レーザが照射される面の表面粗さを粗くした後に、前記レーザを照射してもよい。
 この場合、レーザが照射される面の表面粗さを粗くすることにより、レーザ照射面の反射率を低下させることができる。このため、汎用のレーザを使用しても確実にレーザのエネルギーを照射部に伝えて、レーザ照射部を加熱・溶融することができる。また、レーザ照射面より反射されるレーザ光を低減できるので、レーザ加工機へのレーザ光の反射も低減される。よって、レーザ加工機のレーザ光による劣化を抑制できる。
 前記レーザの照射を、ファイバーレーザを用いて行ってもよい。
 この場合、連続波レーザであるファイバーレーザを用いることにより、パルスレーザ等の他のレーザを用いる場合とは異なり、レーザ照射部が気化することが抑制され、確実に溶融凝固層を形成できる。
 金属テープの貼合せ又はめっきにより前記金属安定化層を形成してもよい。
 金属テープの貼合せにより金属安定化層を形成する場合、金属テープの厚さを調整することで容易に金属安定化層の厚さを調整できるので、酸化物超電導層を安定化するに充分な厚さを確保しやすい。よって、安定化効果が高い酸化物超電導線材を製造できる。
 また、めっきにより金属安定化層を形成する場合、超電導積層体の基材の裏面側にも金属安定化層が形成できるので、酸化物超電導層を安定化するに充分な厚さを確保しやすい。よって、安定性のさらに優れた酸化物超電導線材を製造できる。
 本発明の第4の態様は、基材と中間層と酸化物超電導層と銀層と金属安定化層とがこの順に積層されてなる超電導積層体と;少なくとも前記酸化物超電導層の側面を覆い、前記基材及び前記金属安定化層のうちの少なくとも一方に対するレーザの照射により形成された溶融凝固層と;を備える酸化物超電導線材である。
 上記酸化物超電導線材によれば、酸化物超電導層の側面が溶融凝固層により覆われ、外部から遮蔽されている。そのため、酸化物超電導層への水分の浸入を防止でき、水分による酸化物超電導層の劣化を抑止できる。
 前記溶融凝固層が、前記基材及び前記金属安定化層のうちの少なくとも一方の溶融凝固物を含んでもよい。
 溶融凝固層が基材の溶融凝固物を含む場合、超電導積層体の側面のうち、少なくとも基材と中間層と酸化物超電導層との側面が溶融凝固層により外部から遮蔽される。従って、酸化物超電導層への水分の浸入を防止でき、水分による酸化物超電導層の劣化を抑止できる酸化物超電導線材となる。
 また、溶融凝固層が金属安定化層の溶融凝固物を含む場合、超電導積層体の側面のうち、少なくとも金属安定化層と銀層と酸化物超電導との側面が溶融凝固層により外部から遮蔽される。従って、酸化物超電導層への水分の浸入を防止でき、水分による酸化物超電導層の劣化を抑止できる酸化物超電導線材となる。
 さらに、溶融凝固層が基材と金属安定化層との両方の溶融凝固物を含む場合、溶融凝固層は超電導積層体の側面全体を覆うことができる。この場合、超電導積層体の側面全体を外部から遮蔽した構造を実現できる。従って、より効果的に水分の浸入を防止して水分による酸化物超電導層の劣化を確実に抑止できる酸化物超電導線材を提供できる。
 前記金属安定化層が、金属テープの貼合せ又はめっきにより形成されていてもよい。
 金属安定化層が金属テープの貼合せにより形成されている場合、金属テープの厚さを調整することで容易に金属安定化層の厚さを調整できるので、酸化物超電導層を安定化するに充分な厚さを確保しやすい。よって、安定化効果が高い酸化物超電導線材を提供できる。
 また、金属安定化層がめっきにより形成されている場合、超電導積層体の基材の裏面側にも金属安定化層が形成される構成となるため、酸化物超電導層を安定化するに充分な厚さを確保しやすい。よって、安定性の優れた酸化物超電導線材を提供できる。
 本発明の第5の態様は、テープ状の基材と、前記基材上に設けられた中間層と酸化物超電導層と銀からなる安定化層とを備えた酸化物超電導導体を準備する工程と;前記酸化物超電導導体の前記安定化層形成側から前記基材の長さ方向に沿ってレーザービームを照射し、前記酸化物超電導導体をその幅方向に溶断する工程と;を備える酸化物超電導線材の製造方法であって、前記酸化物超電導導体を溶断する工程において、前記酸化物超電導導体の溶断位置にシールドガスを吹き付けつつレーザーを照射することにより、前記酸化物超電導層端縁の溶断部分と前記中間層端縁の溶断部分とを覆うように前記安定化層の溶融凝固体をシールドガスの噴出方向に延出させて保護層を形成する。
 上記酸化物超電導線材の製造方法によれば、1本の酸化物超電導導体から、目的の幅を有し、酸化物超電導層の溶断部分と中間層の溶断部分とが銀の安定化層の溶融凝固体によって被覆された(複数の)酸化物超電導線材を製造できる。この酸化物超電導線材では、酸化物超電導層の溶断部分が銀の安定化層の溶融凝固体からなる保護層で覆われているので、酸化物超電導線材の内部への水分の浸入を防止できる。よって、水分の多い雰囲気中において長時間使用した場合であっても、水分の浸入によって超電導特性が劣化することのない酸化物超電導線材を提供できる。また、シールドガスを吹き付けつつ酸化物超電導導体を溶断するので、溶断部分の酸化を防止しながら酸化物超電導導体を分断することができる。すなわち、溶断部分が酸化していない酸化物超電導線材を得ることができる。
 前記酸化物超電導導体を溶断する工程において、噴射ノズルを介し前記酸化物超電導導体に前記レーザービームを照射するとともに、前記噴射ノズルから前記シールドガスを前記酸化物超電導導体の厚さ方向に噴出することにより、前記酸化物超電導導体の溶断位置を前記シールドガスで覆ってもよい。
 シールドガスを酸化物超電導導体の厚さ方向に噴射することで、銀の安定化層の溶融凝固体を酸化物超電導導体の厚さ方向に確実に引き延ばして酸化物超電導層の側面を被覆することができる。すなわち、酸化物超電導層の溶断部分を銀の安定化層の溶融凝固体で確実に覆うことができる。これにより、酸化物超電導層の溶断部分を確実に保護層で覆い、水分シールド効果を得ることができる。
 前記レーザービームとして連続波レーザーのレーザービームを用いてもよい。
 連続波レーザーのレーザービームを用いる場合、パルスレーザー等の他のレーザービームに比較し、溶断面に大きな凹凸を生じることない。すなわち、酸化物超電導導体を、滑らかな溶断面を有する複数の酸化物超電導線材に確実に分割できる。
 本発明の第6の態様は、テープ状の基材と、前記基材上に設けられた中間層と酸化物超電導層と銀の安定化層とを備えた酸化物超電導導体を、レーザービームによりその幅方向に溶断して形成された酸化物超電導線材であって、前記酸化物超電導層端縁の溶断部分と前記中間層端縁の溶断部分は、前記安定化層の溶融凝固体からなる保護層によって被覆されている。
 この場合、酸化物超電導層の溶断部分が銀の安定化層の溶融凝固体からなる保護層で覆われているので、酸化物超電導線材内部への水分の浸入を防止できる。よって、水分の多い雰囲気中において長時間使用した場合であっても、水分の浸入によって超電導特性が劣化することのない酸化物超電導線材を提供できる。
 前記保護層が前記基材の溶断部分と一体化していてもよい。
 この場合、銀の安定化層の溶融凝固体からなる保護層が、酸化物超電導層と中間層とを覆うように基材の溶断部分まで延出しているため、酸化物超電導層と中間層との溶断部分を確実に保護層で覆うことができる。よって、水分浸入のおそれのない構造を有する酸化物超電導線材を提供できる。
 本発明の上記態様によれば、酸化物超電導層への水分の浸入を抑えることができる酸化物超電導線材及びその製造方法が提供される。
 本発明の態様によれば、レーザービームによる基材の溶断部分が銀の安定化層の溶融凝固体からなる保護層で覆われて、水分浸入のおそれのない酸化物超電導線材を提供できる。
本発明の第1実施形態に係る酸化物超電導線材を示す断面図である。 図1に示す酸化物超電導線材の製造方法の第1工程に適用される超電導積層体の構造の一例を示す断面斜視図である。 図1に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 図1に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 本発明の第2実施形態に係る酸化物超電導線材を示す断面図である。 図4に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 図4に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 図4に示す酸化物超電導線材の製造方法の他の例を示す断面斜視図である。 実施例1、2および比較例1の酸化物超電導線材の耐久試験結果を示すグラフである。 本発明の第3実施形態に係る酸化物超電導線材を示す断面図である。 図8に示す酸化物超電導線材の部分拡大断面図である。 図8に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 図8に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 図8に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 本発明の第4実施形態に係る酸化物超電導線材を示す断面図である。 図11に示す酸化物超電導線材の部分拡大断面図である。 図12に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 図12に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 図12に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 図12に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。 本発明の第5実施形態に係る酸化物超電導線材を示す断面図である。 本発明の第6実施形態に係る酸化物超電導線材を示す断面図である。 本発明の実施形態に係る酸化物超電導線材の製造方法に用いるファイバーレーザ装置の概略構成図である。 実施例3~5および比較例2の酸化物超電導線材の耐久試験結果を示すグラフである。 図18はファイバーレーザー装置からの連続波レーザーによって酸化物超電導導体を溶断する方法の一例を示す説明図である。 図18に示すファイバーレーザー装置の全体構成を示す概略図である。 図18に示すファイバーレーザー装置によって溶断される前の、酸化物超電導導体の構造の一例を示す斜視図である。 図18に示すファイバーレーザー装置によって溶断された酸化物超電導線材の構造の一例を示す斜視図である。 溶断後の酸化物超電導線材に絶縁テープによる絶縁被覆を形成した状態を示す斜視図である。 酸化物超電導線材の部分断面図である。 図22は溶断後の酸化物超電導線材の基材に形成されている凹凸部の一例を示す説明図である。 図23は実施例6において製造された酸化物超電導線材の剥離テストの説明図である。 図24は従来の酸化物超電導線材に絶縁テープを巻き付けている状態の一例を示す斜視図である。 実施例6において酸化物超電導導体を溶断して得た酸化物超電導線材の溶断部分の断面組織を示す写真である。
 以下、本発明の第1実施形態に係る酸化物超電導線材及びその製造方法について図面に基づいて説明する。
[第1実施形態]
 図1は本発明の第1実施形態に係る酸化物超電導線材を模式的に示す断面図であり、図2は図1に示す酸化物超電導線材の製造方法の第1工程に適用される超電導積層体の構造の一例を示す断面斜視図であり、図3A及び3Bは図1に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図である。
 図1に示す酸化物超電導線材10では、金属安定化層6と半田層5と銀層4と酸化物超電導層3と中間層2と基材1Aとが順次積層されている。金属安定化層6と半田層5と銀層4と酸化物超電導層3と中間層2とが積層された積層体S1の幅方向の側面は保護層7に覆われている。保護層7は積層体S1の積層方向に延出した基材1Aの幅方向の端縁から構成されている。すなわち、基材1Aの端部は、中間層2から金属安定化層6にわたって積層体S1の側面を覆うように延出している。基材1Aの幅方向両端部は角部が丸まった形状である。保護層7はこの丸まった角部から下方に薄く延びて積層体S1の幅方向側面を覆っている。基材1Aの端縁から延出する保護層7の厚さは基材1Aの厚さよりも薄い。図1の例によれば、「保護層の厚さ」とは、積層体S1の両端に形成された保護層7のうちの一方の、左右方向における厚さを指し、「基材の厚さ」とは、基材1Aの左右方向における厚さを指す。以下、特に断りのない限り、「保護層の厚さ」及び「基材の厚さ」は、上記と同様に規定される。
 図1に示す酸化物超電導線材10は、図2に示すように、基材1と中間層2と酸化物超電導層3と銀層4と半田層5と金属安定化層6とがこの順に積層された超電導積層体S0から製造される。具体的には、超電導積層体S0の幅方向端部を、基材1側から加圧および加熱して基材1の端部を溶融させて積層体S1の側面に重力に従って下方に流動させた後に凝固させることにより保護層7を形成する。すなわち、超電導積層体S0の基材1の幅方向端部が加圧および加熱されることにより、基材1の幅方向端部の一部が溶融し、超電導積層体S0の側面を流動した後に凝固したものが保護層7を形成する。
 基材1および基材1Aは、通常の超電導線材の基材として使用し得るものであれば良い。長尺のプレート状、シート状又はテープ状の基材が好ましい。耐熱性の金属からなる基材が好ましい。耐熱性の金属の中でも、合金が好ましく、ニッケル(Ni)合金又は銅(Cu)合金がより好ましい。中でも、市販品であればハステロイ(商品名、ヘインズ社製)が好適である。モリブデン(Mo)、クロム(Cr)、鉄(Fe)、コバルト(Co)等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。また、基材1としてニッケル(Ni)合金などに集合組織を導入した配向金属基材を用い、その上に中間層2および酸化物超電導層3を形成してもよい。
 基材1および基材1Aの厚さは、目的に応じて適宜調整すれば良く、通常は、10~500μmであることが好ましく、20~200μmであることがより好ましい。基材の厚さが上記下限値以上であれば強度が一層向上し、上限値以下であればオーバーオールの臨界電流密度を一層向上させることができる。
 中間層2は、酸化物超電導層3の結晶配向性を制御し、基材1および基材1A中の金属元素の酸化物超電導層3への拡散を防止する。さらに中間層2は、基材1および基材1Aと酸化物超電導層3との物理的特性(熱膨張率や格子定数等)の差を緩和するバッファー層として機能する。その材質は、物理的特性が基材1および基材1Aと酸化物超電導層3との中間的な値を示す金属酸化物が好ましい。中間層2の好ましい材質として、GdZr、MgO、ZrO-Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物が例示できる。
 中間層2は、単層でも良いし、複数層でも良い。例えば、前記金属酸化物からなる層(金属酸化物層)は、結晶配向性を有していることが好ましい。複数層である場合には、最外層(最も酸化物超電導層3に近い層)が少なくとも結晶配向性を有していることが好ましい。
 中間層2は、基材1および基材1A側にベッド層が設けられた複数層構造でもよい。ベッド層は、耐熱性が高く、界面反応性を低減するために設けられ、その上に配される膜の配向性を得るために用いる。このようなベッド層は、必要に応じて配される。例えば、イットリア(Y)、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)等から構成される。このベッド層は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10~200nmである。
 さらに、本実施形態において、中間層2は、基材1および基材1A側に拡散防止層とベッド層が積層された複数層構造でもよい。この場合、基材1および基材1Aとベッド層との間に拡散防止層が介在される。拡散防止層は、基材1および基材1Aの構成元素の拡散を防止する目的で形成される。拡散防止層は、窒化ケイ素(Si)、酸化アルミニウム(Al)、あるいは希土類金属酸化物等から構成され、その厚さは例えば10~400nmである。なお、拡散防止層の結晶性は問われないので、通常のスパッタ法等の成膜法により形成すればよい。
 このように基材1および基材1Aとベッド層との間に拡散防止層を介在させることにより、中間層2を構成する他の層や酸化物超電導層3等を形成する際に、基材1および基材1Aの構成元素の一部がベッド層を介して酸化物超電導層3側に拡散することを効果的に抑制することができる。基材1および基材1Aが必然的に加熱されたり、熱処理され、結果として熱履歴を受ける場合に、効果的である。基材1および基材1Aとベッド層との間に拡散防止層を介在させる場合、例えば、拡散防止層としてAl、ベッド層としてYを用いることができる。
 中間層2は、前記金属酸化物層の上に、さらにキャップ層が積層された複数層構造でも良い。キャップ層は、酸化物超電導層3の配向性を制御する機能を有するとともに、酸化物超電導層3を構成する元素の中間層2への拡散や、酸化物超電導層3積層時に使用するガスと中間層2との反応を抑制する機能等を有する。
 キャップ層は、前記金属酸化物層の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層では、前記金属酸化物層よりも高い面内配向度が得られる。
 キャップ層の材質は、上記機能を発現し得るものであれば特に限定されない。キャップ層の好ましい材質として、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe-M-O系酸化物を含んでいても良い。
 中間層2の厚さは、目的に応じて適宜調整すれば良いが、通常は、0.1~5μmである。
 中間層2が、前記金属酸化物層の上にキャップ層が積層された複数層構造である場合には、キャップ層の厚さは、通常は、0.1~1.5μmである。
 中間層2は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、イオンビームアシスト蒸着法(以下、IBAD法と略記する)等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法で形成できる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層3やキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、結晶の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO-Y(YSZ)からなる中間層2では、IBAD法における配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
 酸化物超電導層3には、通常知られている組成の酸化物超電導体からなる酸化物超電導層を広く用いることができる。たとえば、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)で表される酸化物超電導体、具体的には、Y123(YBaCu)又はGd123(GdBaCu)からなる酸化物超電導層を用いることができる。その他の酸化物超電導体、例えば、BiSrCan-1Cu4+2n+δで表されるような臨界温度の高い酸化物超電導体からなる酸化物超電導層を用いても良い。
 酸化物超電導層3は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法)等で形成できる。なかでもレーザ蒸着法が好ましい。
 酸化物超電導層3の厚みは、0.5~5μm程度であって、均一な厚みであることが好ましい。
 酸化物超電導層3の上に積層されている銀層4は、スパッタ法などの成膜法により形成され、その厚さは、たとえば1~30μm程度である。
 酸化物超電導層3上に銀層4を設ける理由としては、銀が良導電性を有してかつ、酸化物超電導層3との接触抵抗が低くなじみの良い点が挙げられる。さらにその理由として、銀が、酸化物超電導層3に酸素をドープするアニール工程においてドープした酸素を酸化物超電導層3から逃避し難くする性質を有する点を挙げることができる。
 金属安定化層6は、良導電性の金属材料からなる。酸化物超電導層3が超電導状態から常電導状態に遷移しようとした時に、金属安定化層6は、銀層4とともに、酸化物超電導層3の電流が転流するバイパスとして機能する。
 金属安定化層6は銀層4上に半田層5を介して積層されている。半田層5が金属安定化層6と銀層4との間に介在していることにより、金属安定化層6と銀層4とが半田層5により電気的および機械的に接続されて、銀層4と金属安定化層6との接合が強固となり、接続抵抗が低下する。よって、酸化物超電導層3を安定化する効果を向上できる。
 半田層5の厚さは、特に限定されず、適宜調整可能であるが、例えば、2~20μm程度とすることができる。
 半田層5としては、従来公知の半田を使用することができ、例えば、Sn-Ag系合金、Sn-Bi系合金、Sn-Cu系合金、Sn-Zn系合金などの鉛フリー半田、Pb-Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を1種または2種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。これにより、300℃以下の温度で金属安定化層6と銀層4とを半田付けすることが可能となるので、半田付けの熱によって酸化物超電導層3の特性が劣化することを抑止することができる。
 金属安定化層6は、良導電性の金属よりなる長尺の金属テープより形成されている。Cu、黄銅(Cu-Zn合金)、Cu-Ni合金等の銅合金、ステンレス等の比較的安価な材質からなる金属テープを用いることが好ましい。中でも高い導電性を有し、安価であることからCu製の金属テープを用いることが好ましい。
 金属安定化層6の厚さは特に限定されず、適宜調整可能であるが、10~300μmとすることが好ましい。金属安定化層の厚さが上記下限値以上であれば酸化物超電導層3を安定化する一層高い効果が得られ、上限値以下であれば酸化物超電導線材10を薄型化できる。
 なお、酸化物超電導線材10を超電導限流器に使用する場合は、金属安定化層6は抵抗金属材料より構成され、Ni-Cr等のNi系合金などを使用できる。
 保護層7は、積層体S1の幅方向の側面に延出している基材1Aの端部から構成されている。そのため、保護層7の材質としては、前記した基材1および基材1Aと同様のものが挙げられる。図1に示す例では、保護層7は中間層2と酸化物超電導層3と銀層4と半田層5との幅方向側面全体を覆っている。さらに、保護層7は、金属安定化層6の幅方向側面のうち、半田層5に近い部分を覆っている。本実施形態の酸化物超電導線材は図1に示す例に限定されないが、保護層7が少なくとも中間層2の側面と、酸化物超電導層3の側面を覆うように形成されている必要がある。保護層7により酸化物超電導層3の側面が被覆されていれば、酸化物超電導層3への水分の浸入を抑え、酸化物超電導層3が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる。
 保護層7の厚さは基材1Aの厚さよりも薄い。保護層7の厚さは、特に制限されず適宜変更可能であるが、2~20μmの範囲とすることが好ましい。保護層7の厚さを2μm以上とすることにより、酸化物超電導層3に水分が浸入することを効果的に防ぐことができ、保護層7の厚さを20μm以下とすることにより、酸化物超電導線材10を小型化できる。
 本実施形態の酸化物超電導線材10は、少なくとも酸化物超電導層3の側面を覆うように保護層7が形成されている。この構成によれば、酸化物超電導層3への水分の浸入を抑え、酸化物超電導層3が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる。
 また、本実施形態の酸化物超電導線材10は、少なくとも中間層2と酸化物超電導層3との側面が保護層7で覆われている。酸化物超電導線材10のうち外側に露出する部分は、金属材料よりなる基材1、保護層7、金属安定化層6、半田層5、銀層3のいずれかである。すなわち、酸化物超電導線材10の最外面が金属材料で覆われるため、水分が内部に浸入することを抑制でき、酸化物超電導層3が水分により劣化することを防ぐことができる。
 本実施形態の酸化物超電導線材10では、予めテープ状に形成された金属安定化層6を使用している。そのため、本実施形態の酸化物超電導線材10では、めっきにより安定化層が形成されている従来の超電導線材のように金属安定化層にめっき欠陥部などのピンホールが形成されることがない。よって、本実施形態の酸化物超電導線材10によれば、酸化物超電導層3に水分が浸入して超電導特性が劣化することがない。
 次に、酸化物超電導線材10の製造方法の一実施形態について図面に基づいて説明する。
 図3A及び3Bは酸化物超電導線材の製造方法の一実施形態の工程を説明するための説明図である。
 本実施形態の酸化物超電導線材10の製造方法は、図2に示すように、基材1と中間層2と酸化物超電導層3と銀層4と半田層5と金属安定化層6とがこの順に積層されてなる超電導積層体S0を準備する第1工程と;基材1の幅方向端部を加圧および加熱することにより基材1の幅方向端部の一部を溶融させ、超電導積層体の側面に流動させた後に凝固させて、少なくとも酸化物超電導層3の側面を覆う保護層7を形成する第2工程と;を備える。
 まず、前述した長尺の超電導積層体S0を準備する(第1工程)。
 第1工程において、基材1と中間層2と酸化物超電導層3と銀層4とが積層された積層体と、金属安定化層6の一方の面に半田層5が形成された安定化層テープを準備し、積層体の銀層4上に半田層5を介して金属安定化層6を積層した状態で、加熱/加圧ロールを通過させることにより、銀層4と金属安定化層6とを半田層5により電気的および機械的に接合することが好ましい。これにより、銀層4と金属安定化層5との接合が強固となり、接続抵抗が低下するため、酸化物超電導層3を安定化する効果を向上できる。
 次に、図3Aに示すように、基材1が上となるように超電導積層体S0を配置し、基材1の幅方向両側の端部1P、1Pに、互いに対向する一対のテーパー状のローラー電極20、20を配置する。ローラー電極20は、従来公知のシーム溶接用のローラー電極を使用でき、銅等の良導電性材料より構成されている。
 次いで、ローラー電極20、20を基材1の端部1P、1Pに適度な加圧で接触させ、シーム溶接用のローラー電極20、20にパルス電流を印加しながら、ローラー電極20、20を超電導積層体S0の長手方向に沿って回転走行させて基材1の両側の端部1P、1Pを溶融させる。
 ここで、シーム溶接用のローラー電極20に電流を印加すると、ローラー電極20と接触している基材1に電流が流れ、基材1の電気抵抗により発熱が起こる。基材1における抵抗発熱はローラー電極20との接触部分が最も大きく、基材1の端部1P付近が抵抗発熱により溶融する。そして、基材1の端部1Pが溶融した金属(溶融金属)は、図3Bに示すように、金属安定化層6と半田層5と銀層4と酸化物超電導層3と中間層2とが積層された積層体S1の幅方向の両側面を薄く覆うように重力に従って下方へ流動した後、凝固する。これにより、図3Bに示すように、少なくとも中間層2と酸化物超電導層3の側面が保護層7により被覆された酸化物超電導線材10を製造できる。
 第2工程において、ローラー電極20に印加する電流値は、使用する基材1の材質や厚さによって適宜調整すればよい。また、ローラー電極20による加圧も、基材1の材質や厚さによって適宜調整すればよい。例えば、基材1として厚さ100μmのハステロイ(米国ヘインズ社製商品名)製テープを使用する場合、圧力10~20MPa程度で加圧しながら、電流値20~100A程度の電流を印加することにより、基材1の端部1Pを主に溶融させて保護層7を形成することができる。ローラー電極20に印加する電流値が20A未満であると基材1の端部1Pが溶融しない場合があり、電流値が100Aを超えると基材1以外の層も溶融してしまう可能性がある。ローラー電極20の回転走行速度も適宜調整可能である。
 以上の工程により、図1に示す酸化物超電導線材10を製造できる。
 本実施形態の酸化物超電導線材の製造方法は、超電導積層体S0の基材1の両側の端部1P、1Pをシーム溶接用のローラー電極20、20により加圧しながら端部1P、1Pに通電加熱して、長手方向に連続的に酸化物超電導層3の側面を覆う保護層7を形成する。そのため、酸化物超電導層3の側面全てが外部から遮蔽された構造の酸化物超電導線材を製造できる。従って、本実施形態の酸化物超電導線材の製造方法によれば、酸化物超電導層3への水分の浸入を抑え、酸化物超電導層3が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる酸化物超電導線材を提供できる。また、本実施形態の酸化物超電導線材の製造方法は、超電導積層体S0の基材1の端部1Pを溶融させて保護層7を形成する。そのため、めっきにより超電導積層体を被覆して保護層を形成する従来の方法のように、めっき処理装置等の設備を必要とせず、簡便に保護層7を形成できる。
 本実施形態の酸化物超電導線材の製造方法は、予めテープ状に加工された金属安定化層6を使用している。すなわち、金属安定化層6にはめっきによるピンホールなどの欠陥部は無いので、この金属安定化層6を用いて製造される酸化物超電導線材では、酸化物超電導層3に水分が浸入して超電導特性が劣化することがない。
 また、本実施形態の酸化物超電導線材の製造方法では、少なくとも中間層2と酸化物超電導層3の側面を覆う保護層7が形成される。製造される酸化物超電導線材の外側に露出する部分は、金属材料よりなる基材1、保護層7、金属安定化層6、半田層5、銀層3のいずれかである。すなわち、酸化物超電導線材の最外面が金属材料で覆われるため、水分が内部に浸入することを抑制でき、酸化物超電導層3が水分により劣化することを防ぐことができる酸化物超電導線材を提供できる。
[第2実施形態]
 図4は本発明の第2実施形態に係る酸化物超電導線材を模式的に示す断面図であり、図5A及び5Bは図4に示す酸化物超電導線材の製造方法の一実施形態を示す工程説明図であり、図6は酸化物超電導線材の製造方法の他の例を示す断面斜視図である。図4~6において上記第1実施形態と同一の構成要素には同一の符号を付し、説明を省略する。
 図4に示す酸化物超電導線材30では、基材1と中間層2と酸化物超電導層3と銀層4と半田層5Aと金属安定化層6Aとが順次積層されている。基材1と中間層2と酸化物超電導層3と銀層4とが積層された積層体S2の幅方向の側面は保護層17に覆われている。保護層17は積層体S2の積層方向に延出した半田層5Aの幅方向の端部から構成されている。すなわち、半田層5Aの端部は、銀層4から基材1にわたって積層体S2の側面を覆うように延出している。半田層5Aの幅方向両端部は角部が丸まった形状である。保護層17はこの丸まった角部から下方に薄く延びて積層体S2の幅方向側面を覆っている。半田層5Aの端縁から延出する保護層17の厚さは半田層5Aの厚さよりも薄い。
 図4に示す酸化物超電導線材30は、図2に示す超電導積層体S0の幅方向端縁を、金属安定化層6側から加圧および加熱して、金属安定化層6よりも融点の低い半田層5の端部を溶融させる。溶融した半田を加圧して積層体S2の端部にはみ出させ、積層体S2の側面に重力に従って下方に流動させた後、凝固させることにより保護層17を形成する。すなわち、超電導積層体S0の金属安定化層6の幅方向端部が加圧および加熱されることにより半田層5の幅方向端部の一部が溶融し、超電導積層体S0の側面に沿って流動した後に凝固したものが保護層17を形成する。
 半田層5Aとしては、前記した半田層5と同様のものが挙げられ、中でも、融点が300℃以下の半田を用いることが好ましい。300℃以下の温度で加熱することにより半田層5の端部を溶融させて半田層5Aおよび保護層17を形成することが可能となるので、保護層17形成時の熱によって酸化物超電導層3の特性が劣化することを抑止することができる。
 半田層5および5Aの厚さは、特に限定されず、適宜調整可能であるが、例えば、2~20μm程度とすることができる。半田層5の厚さを2μm以上とすることにより、半田層5が薄すぎるために保護層17が形成されなくなるのを防ぐことができる。また、半田層5の厚さを20μm以下とすることにより、形成される半田層5Aの厚さが厚くなり過ぎることがなく、接続抵抗が高くなることを抑止できる。
 金属安定化層6Aは、前記した金属安定化層6と同様に、良導電性の金属よりなる長尺の金属テープより形成されている。Cu、黄銅(Cu-Zn合金)、Cu-Ni合金等の銅合金、ステンレス等の比較的安価な材質からなる金属テープを用いることが好ましい。中でも高い導電性を有し、安価であることからCu製の金属テープを用いることが好ましい。
 金属安定化層6Aの厚さは特に限定されず、適宜調整可能であるが、10~300μmとすることが好ましい。金属安定化層の厚さが上記下限値以上であれば酸化物超電導層3を安定化する一層高い効果が得られ、上限値以下であれば酸化物超電導線材30を薄型化できる。
 保護層17は、積層体S2の幅方向の側面に延出している半田層5Aの端部から構成されている。そのため、保護層17の材質としては、前記した半田層5および5Aと同様のものが挙げられる。図4に示す例では、保護層17は銀層4と酸化物超電導層3と中間層2との幅方向側面全体を覆っている。さらに、保護層17は、基材1の幅方向側面のうち、中間層2に近い部分を覆っている。本実施形態の酸化物超電導線材は図4に示す例に限定されないが、保護層17が少なくとも銀層4の側面と、酸化物超電導層3の側面を覆うように形成されている必要がある。保護層17により酸化物超電導層3の側面が被覆されていれば、酸化物超電導層3への水分の浸入を抑え、酸化物超電導層3が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる。
 保護層17の厚さは半田層5Aの厚さよりも薄い。保護層17の厚さは、特に制限されず適宜変更可能であるが、2~20μmの範囲とすることが好ましい。保護層17の厚さを2μm以上とすることにより、酸化物超電導層3に水分が浸入することを効果的に防ぐことができ、保護層17の厚さを20μm以下とすることにより、酸化物超電導線材30を小型化できる。
 本実施形態の酸化物超電導線材30は、少なくとも酸化物超電導層3の側面を覆うように保護層17が形成されている。この構成によれば、酸化物超電導層3への水分の浸入を抑え、酸化物超電導層3が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる。
 本実施形態の酸化物超電導線材30の金属安定化層6Aには、予めテープ状に形成された金属安定化層6を使用している。そのため、本実施形態の酸化物超電導線材30では、めっきにより安定化層が形成されている従来の超電導線材のように金属安定化層にめっき欠陥部などのピンホールが形成されることがない。よって、本実施形態の酸化物超電導線材30よれば、酸化物超電導層3に水分が浸入して超電導特性が劣化することがない。
 次に、酸化物超電導線材30の製造方法の一実施形態について図面に基づいて説明する。
 図5A及び5Bは酸化物超電導線材の製造方法の一実施形態の工程を説明するための説明図である。
 本実施形態の酸化物超電導線材30の製造方法は、図2に示すように、基材1と中間層2と酸化物超電導層3と銀層4と半田層5と金属安定化層6とがこの順に積層されてなる超電導積層体S0を準備する第1工程と;金属安定化層6の幅方向端部を加圧および加熱することにより、金属安定化層6よりも融点の低い半田層5の幅方向端部の一部を溶融させ、超電導積層体の側面に流動させた後に凝固させて、少なくとも酸化物超電導層3の側面を覆う保護層17を形成する第2工程と;を備える。
 まず、前述した長尺の超電導積層体S0を準備する(第1工程)。
 次に、図5Aに示すように、金属安定化層6が上となるように超電導積層体S0を配置し、金属安定化層6の幅方向両側の端部6P、6Pに、互いに対向する一対のテーパー状のローラー電極20、20を配置する。ローラー電極20は、従来公知のシーム溶接用のローラー電極を使用でき、銅等の良導電性材料より構成されている。
 次いで、ローラー電極20、20を金属安定化層6の端部6P、6Pに適度な加圧で接触させ、シーム溶接用のローラー電極20、20にパルス電流を印加しながら、ローラー電極20、20を超電導積層体S0の長手方向に沿って回転走行させて半田層5の両側の端部5P、5Pを溶融させる。
 ここで、シーム溶接用のローラー電極20に電流を印加すると、金属安定化層6、半田層5、銀層4に電極が流れるが、良導電性の金属材料よりなる金属安定化層6および銀層4は電気抵抗が低く、通電による抵抗発熱量は半田層5と比較して小さい。これに対し、電気抵抗が金属安定化層6および銀層4よりも大きい半田層5では、通電すると電気抵抗により発熱が起こる。半田層5における抵抗発熱はローラー電極20に近い端部5P付近が最も大きく、半田層5の端部5P付近が抵抗発熱により主に溶融する。そして、半田層5の端部5Pが溶融した金属(溶融金属)は、図5Bに示すように、ローラ電極20の加圧により銀層4と酸化物超電導層3と中間層2と基材1とが積層された積層体S2の側面にはみ出し、重力に従って下方に流動して積層体S2の幅方向の両側面を薄く覆った後、凝固する。これにより、図5Bに示すように、少なくとも銀層4と酸化物超電導層3の側面が保護層17により被覆された酸化物超電導線材30を製造できる。
 第2工程において、ローラー電極20に印加する電流値は、使用する半田層5の材質、融点、厚さによって適宜調整すればよい。また、ローラー電極20による加圧も、半田層5の材質、融点、厚さによって適宜調整すればよい。例えば、半田層5として厚さ10μmのスズ半田(融点230℃)を使用する場合、圧力10~20MPa程度で加圧しながら、電流値100~500A程度の電流を印加することにより、半田層5の端部5Pを溶融させて保護層17を形成することができる。ローラー電極20に印加する電流値が100A未満であると半田層5の端部5Pが溶融しない場合があり、電流値が500Aを超えると半田層5以外の層も溶融してしまう可能性がある。ローラー電極20の回転走行速度も適宜調整可能である。
 以上の工程により、図1に示す酸化物超電導線材30を製造できる。
 なお、図4に示す酸化物超電導線材30の製造方法において、半田層5の端部5を溶融させることができる温度に加熱することで保護層17を形成できる。よって、第2工程における加圧および加熱は、シーム溶接用のローラー電極20を使用する前述の例に限定されない。
 例えば、加圧ローラー自体を半田層5を構成する半田の融点以上の温度に加熱しながら金属安定化層6の端部を加熱および加圧することにより、半田層5の端部5Pを溶融して超電導積層体S0の側面にはみ出させた後、重力に従って下方に流動させて凝固させることにより、半田層5Aおよび保護層17を形成することができる。また、加熱および加圧に用いる治具は、前述のようなローラー形状のものに限定されるものではなく、例えば、図6に示すような治具21を使用することもできる。図6に示す例では、超電導積層体S0の端部に適度な長さを有する断面三角形の柱状の治具21を用いている。この例では、半田層5を構成する半田の融点以上の温度に治具21を加熱しながら、治具21の1つの面を金属安定化層6の端部に押し当て、加圧および加熱する。これにより、半田層の端部5Pを溶融し、超電導積層体S0の側面に流動させて凝固させることにより、半田層5Aおよび保護層17を形成することができる。
 本実施形態の酸化物超電導線材の製造方法は、金属安定化層6の幅方向端部を加圧および加熱することにより、半田層5の端部5Pを溶融させて、長手方向に連続的に酸化物超電導層3の側面を覆う保護層17を形成する。そのため、酸化物超電導層3の側面全てが外部から遮蔽された構造の酸化物超電導線材を製造できる。従って、本実施形態の酸化物超電導線材の製造方法によれば、酸化物超電導層3への水分の浸入を抑え、酸化物超電導層3が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる酸化物超電導線材を提供できる。
 また、本実施形態の酸化物超電導線材の製造方法は、超電導積層体S0の半田層5の端部5Pを溶融させて保護層17を形成する。そのため、めっきにより超電導積層体を被覆して保護層を形成する従来の方法のように、めっき処理装置等の設備を必要とせず、簡便に保護層17を形成できる。
 本実施形態の酸化物超電導線材の製造方法では、予めテープ状に加工された金属安定化層6を使用して金属安定化層6Aを作製している。金属安定化層6Aにはめっきによるピンホールなどの欠陥部は無いので、金属安定化層6A用いて製造される酸化物超電導線材は、酸化物超電導層3に水分が浸入して超電導特性が劣化することがない。
 以上、本発明の酸化物超電導線材およびその製造方法の実施形態について説明したが、上記実施形態において、酸化物超電導線材の各部は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することが可能である。
 例えば、上記第1実施形態の酸化物超電導線材10では、保護層7が中間層2と酸化物超電導層3と銀層4と半田層5との幅方向側面全体を覆い、さらに、金属安定化層6の幅方向側面のうち、半田層5側の部分を覆っているが、本発明はこの例に限定されない。酸化物超電導線材10の保護層7が中間層2の側面と酸化物超電導層3の側面のみを覆っていてもよく、中間層2と酸化物超電導層3と銀層4と半田層5と金属安定化層6の側面全てを覆っていてもよい。
 また、上記第2実施形態の酸化物超電導線材30では、保護層17が銀層4と酸化物超電導層3と中間層2の幅方向側面全体を覆い、さらに、基材1の幅方向側面のうち、中間層2側の部分を覆っているが、本発明はこの例に限定されない。酸化物超電導線材30の保護層17が銀層4の側面と酸化物超電導層3の側面のみを覆っていてもよく、銀層4と酸化物超電導層3と中間層2と基材1の側面全てを覆っていてもよい。
 以下、実施例を示して本発明をさらに詳細に説明する。本発明は以下の実施例に限定されない。
「超電導積層体の作製」
 幅10mm、厚さ0.1mmのハステロイC276(米国ヘインズ社製商品名)製の基材の上に、IBAD法により1.2μm厚のGdZr(GZO)なる組成の中間層を形成し、さらにこの中間層の上にPLD法により1.0μm厚のCeOなる組成のキャップ層を成膜した。次に、このキャップ層の上にPLD法により1.0μm厚のGdBaCu7-xなる組成の酸化物超電導層を形成し、さらにこの酸化物超電導層の上にスパッタ法により10μm厚の銀層を形成し、酸素アニールを施した。続いて、幅10mm、厚さ50μmの銅製テープ(金属安定化層)を、厚さ5μmのスズ半田(融点230℃)を介して積層し、得られた積層体を長手方向に沿って裁断することにより、幅5mm、長さ10m、液体窒素温度(77K)における臨界電流値Ic0=100Aの超電導積層体を作製した。
「酸化物超電導線材の作製」
(実施例1)
 上記で作製した超電導積層体を、図3Aに示すように、基材であるハステロイC276(米国ヘインズ社製商品名)が上になるように配置した。基材の幅方向の両端部を一対のローラー電極で加圧しながら、ローラー電極に通電して、ローラー電極を回転走行させることにより、基材の両端部を溶融させて積層体の側面に流動させた後、凝固させて保護層を形成することにより図1に示す構造の酸化物超電導線材を作製した。得られた酸化物超電導線材の保護層の厚さは2μmであった。保護層は中間層とキャップ層と酸化物超電導層と銀層と半田層との側面全体、および、金属安定化層の側面の一部を覆っていた。なお、ローラー電極による加圧および加熱は次の条件で行った。
 ローラー電極の材質:銅、電流値:50A、パルス印加時間:10ms、冷却時間30ms、ローラー電極の回転走行速度:5mm/s、加圧力:100g。
(実施例2)
 上記で作製した超電導積層体を、図5Aに示すように、金属安定化層である銅製テープが上になるように配置した。基材の幅方向の両端部を一対のローラー電極で加圧しながら、ローラー電極に通電して、ローラー電極を回転走行させることにより、半田層の両端部を溶融させて積層体の側面に流動させた後、凝固させて保護層を形成することにより図4に示す構造の酸化物超電導線材を作製した。得られた酸化物超電導線材の保護層の厚さは2μmであった。保護層は銀層とキャップ層と中間層の側面全体、および、基材の側面の一部を覆っていた。なお、ローラー電極による加圧および加熱は次の条件で行った。
 ローラー電極の材質:銅、電流値:300A、パルス印加時間:10ms、冷却時間30ms、ローラー電極の回転走行速度:5mm/s、加圧力:200g。
(比較例1)
 上記で作製した超電導積層体をそのまま酸化物超電導線材として用いた。
 作製した実施例1、実施例2および比較例1の酸化物超電導線材を、温度121℃、湿度100%、2気圧の雰囲気中で24時間、48時間、72時間、および100時間保持した後に、液体窒素温度(77K)における酸化物超電導線材の臨界電流値Icを測定した。そして、試験前の臨界電流値Ic0に対する試験後の臨界電流値Icの割合Ic/Ic0を求めた。試験時間に対して、Ic/Ic0をプロットしたグラフを図7に示す。なお、図7において、縦軸Ic/Ic0が1.0に近いほど超電導特性の劣化が少なく、水分に対する耐久性が高いことを示す。
 図7の結果より、本発明に係る実施例1および実施例2の酸化物超電導線材は、100時間の耐久試験後も臨界電流値の低下が見られず、酸化物超電導層への水分の浸入を抑えることができることが明らかである。これに対し、比較例1の酸化物超電導線材は、48時間の耐久試験後に臨界電流値Icが0になっており、耐久性が低かった。
 以下、本発明の実施形態に係る酸化物超電導線材について図面に基づいて説明する。
[第3実施形態]
 図8は本発明の第3実施形態に係る酸化物超電導線材を模式的に示す断面図であり、図9は図8に示す酸化物超電導線材の部分拡大断面図である。
 図8に示す酸化物超電導線材110は、基材101と中間層102と酸化物超電導層103と銀層104と半田層105と金属安定化層106が順次積層された超電導積層体S101と、この超電導積層体S101の幅方向の側面ほぼ全体を覆う溶融凝固層107とを備える。
 溶融凝固層107は、後述のように、超電導積層体S101と同じ層構成の超電導積層体S100の端部にレーザを照射し、超電導積層体S100の端部を溶融させた後に凝固させることにより形成される。溶融凝固層107の形状はレーザの照射条件により変化するので、図8に示す形状以外となる場合もあるが、本発明において、溶融凝固層107は少なくとも酸化物超電導層103の側面を覆っていればよい。
 基材101は、通常の超電導線材の基材として使用し得るものであれば良い。長尺のプレート状、シート状又はテープ状であり、耐熱性の金属からなる基材が好ましい。耐熱性の金属の中でも、合金が好ましく、ニッケル(Ni)合金がより好ましい。中でも、市販品であればハステロイ(商品名、ヘインズ社製)が好適である。モリブデン(Mo)、クロム(Cr)、鉄(Fe)、コバルト(Co)等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。また、基材101としてニッケル(Ni)合金などに集合組織を導入した配向金属基材を用い、その上に中間層102および酸化物超電導層103を形成してもよい。
 基材101の厚さは、目的に応じて適宜調整すれば良く、通常は、10~500μmであることが好ましく、20~200μmであることがより好ましい。基材の厚さが上記下限値以上であれば強度が一層向上し、上限値以下であればオーバーオールの臨界電流密度を一層向上させることができる。
 中間層102は、酸化物超電導層103の結晶配向性を制御し、基材101中の金属元素の酸化物超電導層103への拡散を防止する。さらに、中間層102は、基材101と酸化物超電導層103との物理的特性(熱膨張率や格子定数等)の差を緩和するバッファー層として機能する。その材質は、物理的特性が基材101と酸化物超電導層103との中間的な値を示す金属酸化物が好ましい。中間層102の好ましい材質として、GdZr、MgO、ZrO-Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物が例示できる。
 中間層102は、単層でも良いし、複数層でも良い。例えば、前記金属酸化物からなる層(金属酸化物層)は、結晶配向性を有していることが好ましい。複数層である場合には、最外層(最も酸化物超電導層103に近い層)が少なくとも結晶配向性を有していることが好ましい。
 中間層102は、基材101側にベッド層が設けられた複数層構造でもよい。ベッド層は、耐熱性が高く、界面反応性を低減するために設けられ、その上に配される膜の配向性を得るために用いる。このようなベッド層は、必要に応じて配される。ベッド層は、例えば、イットリア(Y)、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)等から構成される。このベッド層は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10~200nmである。
 さらに、本実施形態において、中間層102は、基材101側に拡散防止層とベッド層が積層された複数層構造でもよい。この場合、基材101とベッド層との間に拡散防止層が介在される。拡散防止層は、基材101の構成元素の拡散を防止する目的で形成される。拡散防止層は、窒化ケイ素(Si)、酸化アルミニウム(Al)、あるいは希土類金属酸化物等から構成され、その厚さは例えば10~400nmである。なお、拡散防止層の結晶性は問われないので、通常のスパッタ法等の成膜法により形成すればよい。
 このように基材101とベッド層との間に拡散防止層を介在させることにより、中間層102を構成する他の層や酸化物超電導層103等を形成する際に、基材101の構成元素の一部がベッド層を介して酸化物超電導層103側に拡散することを効果的に抑制することができる。基材101が必然的に加熱されたり、熱処理される結果として熱履歴を受ける場合に、効果的である。基材101とベッド層との間に拡散防止層を介在させる場合、例えば、拡散防止層としてAl、ベッド層としてYを用いることができる。
 また中間層102は、前記金属酸化物層の上に、さらにキャップ層が積層された複数層構造でも良い。キャップ層は、酸化物超電導層103の配向性を制御する機能を有するとともに、酸化物超電導層103を構成する元素の中間層102への拡散や、酸化物超電導層103積層時に使用するガスと中間層102との反応を抑制する機能等を有する。
 キャップ層は、前記金属酸化物層の表面に対してエピタキシャル成長し、その後、横方向(面方向)に粒成長(オーバーグロース)して、結晶粒が面内方向に選択成長するという過程を経て形成されたものが好ましい。このようなキャップ層では、前記金属酸化物層よりも高い面内配向度が得られる。
 キャップ層の材質は、上記機能を発現し得るものであれば特に限定されない。キャップ層の好ましい材質として、CeO、Y、Al、Gd、Zr、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe-M-O系酸化物を含んでいても良い。
 キャップ層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができるが、大きな成膜速度を得られる点でPLD法を用いることが好ましい。
 中間層102の厚さは、目的に応じて適宜調整すれば良いが、通常は、0.1~5μmである。
 中間層102が、前記金属酸化物層の上にキャップ層が積層された複数層構造である場合には、キャップ層の厚さは、通常は、0.1~1.5μmである。
 中間層102は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法、イオンビームアシスト蒸着法(以下、IBAD法と略記する)等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法);溶射等、酸化物薄膜を形成する公知の方法で形成できる。特に、IBAD法で形成された前記金属酸化物層は、結晶配向性が高く、酸化物超電導層103やキャップ層の結晶配向性を制御する効果が高い点で好ましい。IBAD法とは、蒸着時に、結晶の蒸着面に対して所定の角度でイオンビームを照射することにより、結晶軸を配向させる方法である。通常は、イオンビームとして、アルゴン(Ar)イオンビームを使用する。例えば、GdZr、MgO又はZrO-Y(YSZ)からなる中間層102では、IBAD法における配向度を表す指標であるΔΦ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
 酸化物超電導層103には、通常知られている組成の酸化物超電導体からなる酸化物超電導層を広く用いることができる。たとえば、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)で表される酸化物超電導体、具体的には、Y123(YBaCu)又はGd123(GdBaCu)からなる酸化物超電導層を用いることができる。その他の酸化物超電導体、例えば、BiSrCan-1Cu4+2n+δで表されるような臨界温度の高い酸化物超電導体からなる酸化物超電導層を用いても良い。
 酸化物超電導層103は、スパッタ法、真空蒸着法、レーザ蒸着法、電子ビーム蒸着法等の物理的蒸着法;化学気相成長法(CVD法);塗布熱分解法(MOD法)等で形成できる。なかでもレーザ蒸着法が好ましい。
 酸化物超電導層103の厚みは、0.5~5μm程度であって、均一な厚みであることが好ましい。
 酸化物超電導層103の上に積層されている銀層104は、スパッタ法などの成膜法により形成され、その厚さは、たとえば1~30μm程度である。
 酸化物超電導層103上に銀層104を設ける理由としては、銀が良導電性を有してかつ、酸化物超電導層103との接触抵抗が低くなじみの良い点が挙げられる。さらにその理由として、銀が、酸化物超電導層103に酸素をドープするアニール工程においてドープした酸素を酸化物超電導層103から逃避し難くする性質を有する点を挙げることができる。
 金属安定化層106は、良導電性の金属材料からなる。酸化物超電導層103が超電導状態から常電導状態に遷移しようとした時に、金属安定化層106は、銀層104とともに、酸化物超電導層103の電流が転流するバイパスとして機能する。
 金属安定化層106は銀層104上に半田層105を介して積層されている。半田層105が金属安定化層106と銀層104との間に介在していることにより、金属安定化層106と銀層104とが半田層105により電気的および機械的に接続されて、銀層104と金属安定化層106との接合が強固となり、接続抵抗が低下する。よって、酸化物超電導層103を安定化する効果を向上できる。
 半田層105の厚さは、特に限定されず、適宜調整可能であるが、例えば、2~20μm程度とすることができる。
 半田層105としては、従来公知の半田を使用することができ、例えば、Sn-Ag系合金、Sn-Bi系合金、Sn-Cu系合金、Sn-Zn系合金などの鉛フリー半田、Pb-Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を1種または2種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。これにより、300℃以下の温度で金属安定化層106と銀層104とを半田付けすることが可能となるので、半田付けの熱によって酸化物超電導層103の特性が劣化することを抑止することができる。
 金属安定化層106は、良導電性の金属よりなる長尺の金属テープより形成されている。Cu、黄銅(Cu-Zn合金)、Cu-Ni合金等の銅合金、ステンレス等の比較的安価な材質からなる金属安定化層106を用いることが好ましい。中でも高い導電性を有し、安価であることからCu製の金属テープを用いることが好ましい。
 金属安定化層106の厚さは特に限定されず、適宜調整可能であるが、10~300μmとすることが好ましい。金属安定化層の厚さが上記下限値以上であれば酸化物超電導層103を安定化する一層高い効果が得られ、上限値以下であれば酸化物超電導線材110を薄型化できる。
 なお、酸化物超電導線材110を超電導限流器に使用する場合は、金属安定化層106は抵抗金属材料より構成され、Ni-Cr等のNi系合金などを使用できる。
 溶融凝固層107は、超電導積層体S101と同一の層構成の超電導積層体S100の端部にレーザを照射し、超電導積層体S100の端部を溶融・凝固させることにより形成されている。そのため、溶融凝固層107は、超電導積層体S101および超電導積層体S100の構成成分(溶融凝固物)を含んでいる。図9は本実施形態の酸化物超電導線材110の幅方向の一端部を模式的に示す図である。レーザの照射により形成された溶融凝固層107の構造は、レーザ照射条件により変化するため図9に示す構造に限定されるわけではない。金属安定化層106の側面に形成された溶融凝固層107Aは金属安定化層106の構成成分(溶融凝固物)を多く含み、基材101の側面に形成された溶融凝固層107Cは基材101の構成成分(溶融凝固物)を多く含む。中間層102と酸化物超電導層103と銀層104と半田層105の側面の溶融凝固層107Bは、中間層102と酸化物超電導層103と銀層104と半田層105との構成成分に加え、金属安定化層106および基材101の構成成分(溶融凝固物)も含む。
 溶融凝固層107の形状はレーザの照射条件により変化するので、図8及び図9に示す形状以外となる場合もあるが、本発明において、溶融凝固層107は少なくとも酸化物超電導層103の側面を覆っていればよい。溶融凝固層107が少なくとも酸化物超電導層103の側面を覆っていれば、酸化物超電導層103への水分の浸入を抑えることができる。よって、酸化物超電導層103が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる。
 溶融凝固層107の厚さは特に制限されず適宜変更可能であるが、溶融凝固層107の最薄部の厚さが10μm以上とすることが好ましい。溶融凝固層107の厚さを10μm以上とすることにより、酸化物超電導層103に水分が浸入することを効果的に防ぐことができる。また、溶融凝固層107の最厚部の厚さは150μm以下とすることが好ましい。溶融凝固層107の厚さが150μmを超えると、レーザの照射により失われる酸化物超電導層103の面積が増加するため、超電導特性が低下する虞がある。
 本実施形態の酸化物超電導線材110は、超電導積層体S101の側面のほぼ全体が溶融凝固層107により覆われ、外部から遮蔽される。そのため、酸化物超電導層103への水分の浸入を防止でき、水分による酸化物超電導層103の劣化を抑止できる。
 次に、酸化物超電導線材110の製造方法の一実施形態について図面に基づいて説明する。
 図10A~10Cは、図8に示す酸化物超電導線材110の製造方法の一実施形態を示す工程説明図である。
 本実施形態の酸化物超電導線材の製造方法は、基材101と中間層102と酸化物超電導層103と銀層104と金属安定化層106とがこの順に積層されてなる超電導積層体S100を準備する第3工程と;超電導積層体S100の幅方向端部にレーザを照射して超電導積層体S100の端部を溶融・凝固させて、超電導積層体S101の側面を覆う溶融凝固層107を形成する第4工程と;を備える。
 まず、図10Aに示すように、前述した超電導積層体S101と同じ層構成の超電導積層体S100を準備する(第3工程)。一例として、基材101上にスパッタ法で拡散防止層とベッド層とを形成し、このベッド層の上にIBAD法で中間層102を形成する。さらにPLD法でキャップ層と酸化物超電導層103を形成し、次に、酸化物超電導層103上にスパッタ法により銀層104を形成する。その後、基材101上に中間層102、酸化物超電導層103、銀層104が形成された積層体の銀層104上に、半田を介して金属テープを積層することにより超電導積層体S100を得ることができる。なお、超電導積層体S100としては、幅広の超電導積層体を作製し、この幅広の超電導積層体を幅方向に複数に分割するように長手方向に沿って切断したものを使用してもよい。
 次に、図10Bに示すように、基材101が上になるように、得られた超電導積層体S100を配置する。このように配置された超電導積層体S100の幅方向の端部に上からレーザを照射して、超電導積層体S100の端部を溶融・凝固させて、超電導積層体S101の側面を覆う溶融凝固層107を形成する(第4工程)。
 第4工程において、超電導積層体S100の基材101の裏面101A側からレーザを照射してもよい。また、図10Bとは上下逆になるように超電導積層体S100の金属安定化層106が上になるように配置して、超電導積層体S100の金属安定化層106の表面106A側からレーザを照射してもよい。金属安定化層106が銅などの反射率の高い金属材料より構成され、基材101の裏面101Aの反射率が低い場合は、図10Bに示すように、基材101の裏面101A側からレーザを照射する方が効率的にレーザ照射部を加熱できる。
 ここで、金属安定化層106が前記した良導電性材料の金属テープよりなる場合、特に、反射率の高い銅などの金属や合金などより構成された金属テープを用いる場合、レーザ溶接するには、レーザの出力を高く設定したり、レーザ照射時間を長く設定する必要がある。例えば、表面を光沢面とした銅テープの反射率は、波長280nmで33.0%、波長400nmで47.5%、波長700nmで97.5%、波長1000nmで98.5%とされている。このように銅は、YAGレーザや半導体レーザ(ファイバーレーザ)等の波長1000nm付近での反射率が非常に高いため、レーザが反射されてしまい溶接加工し難いという問題がある。
 そこで、本実施形態においては、超電導積層体S100の金属安定化層106の表面106A側からレーザを照射する場合には、予め金属安定化層106においてレーザが照射される部分(幅方向端部)の表面粗さを粗くしてからレーザを照射することが好ましい。これにより、銅等の表面に光沢がある金属テープよりなる金属安定化層106を用いた場合でも、レーザ照射部の反射率を低下させて、確実にレーザのエネルギーを照射部に伝えて、超電導積層体S100の端部を加熱・溶融することができる。
 超電導積層体S100の金属安定化層106の表面106A側からレーザを照射する場合、金属安定化層106のレーザ照射部(幅方向端部)の表面粗さRaは、10μm以上100μm以下とすることが好ましい。このような表面粗さRaとすることにより、金属安定化層106が銅等の反射率の高い金属材料より構成される場合にも、汎用のレーザを使用して、良好な製造速度で超電導積層体S100の端部を溶融・凝固させて溶融凝固層107を形成できる。また、金属安定化層106により反射されるレーザ光を低減できるので、レーザ加工機へのレーザ光の反射も低減され、レーザ加工機がレーザ光により劣化しやすくなることを抑制できる。なお、本発明において、表面粗さRaとは、算術表面粗さRa(JIS B0601-1994)を表す。
 レーザ照射前に、金属安定化層106のレーザ照射部(幅方向端部)の表面粗さを粗く加工する方法としては、特に限定されず、型押し、鑢がけなど、従来公知の方法が適用できる。具体的には、例えば、図10Bに二点鎖線で示すように、表面に凹凸加工が施された加圧ローラーなどの成形具120により加圧する方法が挙げられる。この場合、成形具により接触加圧される金属安定化層106の表面を、成形具表面の凹凸形状が反転した凹凸形状に加工し、所望の表面粗さとすることができる。
 なお、レーザ照射前にレーザ照射部の表面粗さを粗く加工する方法は、超電導積層体S100の基材101の裏面101A側からレーザを照射する場合にも行ってもよい。
 第4工程において使用できるレーザとしては、YAGレーザ、半導体レーザ、COレーザ、およびこれらのレーザ光を光ファイバにより伝送するファイバーレーザ等が挙げられる。中でも、連続波であるため、ファイバーレーザが好ましい。パルスレーザの場合は1パルスのエネルギーが大きすぎるために、レーザ照射部分が気化してしまい溶融凝固層107が形成されない場合がある。銅の金属安定化層106に対するレーザ照射にYAGレーザを使用する場合は、銅の反射率が比較的低い第2高調波(532nm)を使用することができる。
 図16は本実施形態の酸化物超電導線材の製造方法に用いるファイバーレーザ装置の概略構成図である。この例のファイバーレーザ装置130は、複数の(図16の例では3基の)励起用レーザーの発光装置131と、これら複数の光源121からの励起用レーザーを結合するビームコンパイナとしての結合器132と、この結合器132に接続されたダブルクラッドファイバーからなる増幅用ファイバー133と、この増幅用ファイバー133に接続された伝送用ファイバー134と、伝送用ファイバー134の先端部に接続された出力部135を備えている。
 増幅用ファイバー133は、一例として、光増幅媒体である希土類添加ファイバーを用いることができる。希土類添加ファイバーとして、希土類元素が添加されたコアと、コアの外周を囲む第1クラッドと、この第1クラッドを囲む第2クラッドとからなる希土類添加ダブルクラッドファイバーを用いることができる。添加される希土類元素としては、例えば、Yb(イッテルビウム)、Er(エルビウム)、Tm(ツリウム)、Nd(ネオジム)、Pr(プラセオジム)が挙げられる。
 ファイバーレーザ装置130において、励起光の発光装置131から接続用ファイバー131aを介し結合器132に入力したマルチモードの励起光は、結合器132において光結合される。光結合され励起光は、増幅用ファイバー133に入力され、増幅用ファイバー133において波長の増幅と出力増幅がなされて、シングルモードに変換され、伝送用ファイバー134を介し連続波レーザーとして出力部135から出力される。
 図10Bに示すように、レーザ加工機121の先端(出力部135)から集光レンズ122で集光されたレーザ光100Lを射出すると、超電導積層体S100の幅方向の端部を加熱することができる。これにより、基材101と中間層102と酸化物超電導層103と銀層104と半田層105と金属安定化層106の幅方向の端部を局部的に溶融できる。溶融した部分は超電導積層体S101の側面を覆うように付着し、その後、凝固すると、超電導積層体S101の幅方向の側面を覆う溶融凝固層107が形成される。レーザ加工機121には、外部のアシストガス供給装置に接続されたガス供給口123から窒素、アルゴン、ヘリウム等の不活性ガスが供給され、この不活性ガス100Gがレーザ加工機121の先端部よりレーザ光100Lの照射部へと吹き付けられるように構成されている。このように、溶接部に窒素などの不活性ガスを吹き付けながら溶接することにより、溶接される金属テープが酸化することを防ぐことができる。なお、不活性ガスで溶融物を吹き飛ばさないようにガス噴射圧を調整することが必要である。
 レーザ照射時のレーザのスポット径は、特に制限されないが、10~100μm程度に設定することが好ましい。レーザのスポット径を10μm以上とすることにより溶融凝固層107を確実に形成することができる。レーザのスポット径を100μm以下とすることにより、レーザ照射部のエネルギー密度が低くなりすぎることを防ぎ、充分な加工パワーを得られる。また、レーザ照射により失われる酸化物超電導層103の面積を抑えることができるので、超電導特性の低下を少なく抑えることができる。
 レーザのスポット径10~100μm程度でレーザを照射することにより、形成される溶融凝固層107の厚さは10~150μm程度である。
 レーザ溶接時のレーザの出力および波長は特に制限されず、使用するレーザ種や超電導積層体S100の層構成や厚さにより適宜調整すればよい。
 図10Bに示すように、超電導積層体S100の幅方向の端部に(図10Bに示す例では基材101の裏面101A側から)レーザ光100Lを照射しながら、レーザ加工機121を超電導積層体S100の長手方向に沿って走査する、あるいは、超電導積層体S100を移動させることにより、レーザ光100Lの照射位置を移動させる。このようにレーザ光100Lの照射位置を移動させながら、超電導積層体S100の幅方向の端部に連続的にレーザ光100Lを照射し、超電導積層体S100の端部を加熱して溶融・凝固させることにより、超電導積層体S101の幅方向の側面を覆う溶融凝固層107を形成できる。
 同様に、超電導積層体S100の他方の幅方向端部にもレーザ光100Lを照射することにより、超電導積層体S101の他方の側面を覆う溶融凝固層107を形成できる。これにより、超電導積層体S101の幅方向の両側面が溶融凝固層107により覆われた図8及び図10Cに示す構造の酸化物超電導線材110を製造できる。
 なお、超電導積層体S100の幅方向の端部にレーザを照射する際のレーザ照射位置は図10A~10Cに示す例に限定されず、図10A~10Cに示すレーザ照射位置よりも若干内側あるいは外側の位置にレーザを照射して溶融凝固層107を形成してもよい。
 本実施形態の酸化物超電導線材の製造方法は、超電導積層体S100の幅方向の端部にレーザを照射して、超電導積層体S100の端部を溶融・凝固させることにより、超電導積層体S101の側面を覆う溶融凝固層107を形成する。そのため、超電導積層体S101の側面全てが溶融凝固層107により外部から遮蔽された構造の酸化物超電導線材110を製造でき、水分の浸入を防止して水分による酸化物超電導層103の劣化を抑止できる酸化物超電導線材110を提供できる。
 また、本実施形態の酸化物超電導線材の製造方法では、金属テープの貼合せにより金属安定化層106を形成する。このため、使用する金属テープの厚さを調整することで容易に金属安定化層106の厚さを調整できる。したがって、酸化物超電導層103を安定化するに充分な厚さを確保しやすく、安定化効果が高い酸化物超電導線材110を製造できる。
 本実施形態の超電導線材の製造方法によれば、超電導積層体S100の端部をレーザ照射により溶融・凝固させて溶融凝固層107を形成しているため、金属安定化層106は溶融凝固層107と連続的に構成されているため、金属安定化層106が剥離することがない。したがって、万一、コイル加工や巻線加工、ケーブル加工など、あるいは、保管環境などにおいて酸化物超電導線材110が高温環境に曝されて半田層105が溶融するなどの現象を起こした場合であっても、酸化物超電導層103に水分が浸入することを防止できる酸化物超電導線材110を製造できる。また、機械的強度が高い酸化物超電導線材110を提供できる。
 さらに、溶融凝固層107形成前の超電導積層体S100と、溶融凝固層107形成後の超電導積層体S101とでは、線材全体の厚みや幅が増加することがほとんどないため、線材を大型化させずに酸化物超電導層103を外部から遮蔽する構造を実現できる。
[第4実施形態]
 図11は本発明の第4実施形態に係る酸化物超電導線材を模式的に示す断面図であり、図12は図11に示す酸化物超電導線材の部分拡大断面図である。図11および図12において、上記第3実施形態と同一の構成要素には同一の符号を付し、説明を省略する。
 図11に示す酸化物超電導線材110Bは、基材101と中間層102と酸化物超電導層103と銀層104が順次積層された積層体T101と、この積層体T101の上面、下面および幅方向の一側面を覆う金属安定化層116と、積層体T101と金属安定化層116よりなる超電導積層体S111の幅方向の一側面を覆う溶融凝固層117とを備える。
 金属安定化層116は、積層体T101の上面(銀層104の表面)を覆う金属安定化層116Aと、積層体S102の下面(基材101の裏面)を覆う金属安定化層116Bと、積層体S102の幅方向の一側面を覆う金属安定化層116Cより構成されている。溶融凝固層117は積層体T101の金属安定化層116が形成されてない側面に形成されている。
 図11に示す超電導積層体S111は元々金属安定化層を全周にめっきした積層体を分割して形成されている。したがって、超電導積層体S111において、幅方向の側面のうち片方のみに金属安定化層116が形成されている。後述のように、超電導積層体S111は、積層体T101と同一の層構成で且つ積層体T101よりも幅広の積層体にめっきを行い、その全周に金属安定化層を形成してカプセル化した積層体を長手方向に沿って切断してその幅方向に分割することにより形成される。
 溶融凝固層117は、後述のように、超電導積層体S111と同じ層構成の超電導積層体S110の、金属安定化層116が形成されていない側の幅方向端部にレーザを照射し、超電導積層体S110の端部を溶融させた後に凝固させることにより形成される。溶融凝固層117の形状はレーザの照射条件により変化するので、図11に示す形状以外となる場合もあるが、本発明において、溶融凝固層117は少なくとも酸化物超電導層103の側面を覆っていればよい。
 積層体T101の上面、下面および幅方向の一側面を覆う金属安定化層116は、酸化物超電導層103が超電導状態から常電導状態に遷移しようとした時に、銀層104とともに、酸化物超電導層103の電流が転流するバイパスとして機能する。
 金属安定化層116は、電気めっきにより形成されている。金属安定化層116を構成する材質としては、良導電性の金属が好ましく、Cu、Alなどが挙げられる。中でも高い導電性を有するためCuが特に好ましい。金属安定化層116の厚さは特に限定されず、適宜変更可能であるが、10~100μm程度とすることができ、20μm以上100μm以下とすることが好ましく、20μm以上50μm以下とすることがより好ましい。金属安定化層116の厚さを10μm以上とすることにより酸化物超電導層103を安定化する一層高い効果が得られ、100μm以下とすることにより酸化物超電導線材110Bを薄型化できる。
 溶融凝固層117は、後に説明する図13Cに示すように、超電導積層体S111と同一の層構成の超電導積層体S110の、金属安定化層116が形成されていない方の幅方向端部にレーザを照射し、超電導積層体S110の端部を溶融・凝固させることにより形成されている。そのため、溶融凝固層117は、超電導積層体S111および超電導積層体S110の構成成分(溶融凝固物)を含んでいる。
 図12は本実施形態の酸化物超電導線材110Bの溶融凝固層117を模式的に示す図である。レーザの照射により形成された溶融凝固層117の構造は、レーザ照射条件により変化するため図12に示す構造に限定されるわけではない。金属安定化層116A、116Bの側面に形成された溶融凝固層117A、117Dは金属安定化層116の構成成分(溶融凝固物)を多く含み、基材101の側面に形成された溶融凝固層117Cは基材101の構成成分(溶融凝固物)を多く含む。中間層102と酸化物超電導層103と銀層104の側面の溶融凝固層117Bは、中間層102と酸化物超電導層103と銀層104の構成成分に加え、金属安定化層116および基材101の構成成分(溶融凝固物)も含む。
 溶融凝固層117の形状はレーザの照射条件により変化するので、図11及び図12に示す形状以外となる場合もあるが、本発明において、溶融凝固層117は少なくとも酸化物超電導層103の側面を覆っていればよい。溶融凝固層117が少なくとも酸化物超電導層103の側面を覆っていれば、酸化物超電導層103への水分の浸入を抑えることができる。よって、酸化物超電導層103が水分によりダメージを受けて超電導特性が劣化することを防ぐことができる。
 溶融凝固層117の厚さは特に制限されず適宜変更可能であるが、溶融凝固層117の最薄部の厚さが10μm以上とすることが好ましい。溶融凝固層117の厚さを10μm以上とすることにより、酸化物超電導層103に水分が浸入することを効果的に防ぐことができる。
また、溶融凝固層117の最厚部の厚さは150μm以下とすることが好ましい。溶融凝固層117の厚さが150μmを超えると、レーザの照射により失われる酸化物超電導層103の面積が増加するため、超電導特性が低下する虞がある。
 本実施形態の酸化物超電導線材110Bは、超電導積層体S111の側面が溶融凝固層117により覆われ、外部から遮蔽される。そのため、酸化物超電導層103への水分の浸入を防止でき、水分による酸化物超電導層103の劣化を抑止できる。
 また、本実施形態の酸化物超電導線材110Bは、金属安定化層がめっきにより形成されており、基材101の裏面側にも金属安定化層116が形成される。このため、酸化物超電導層103を安定化するに充分な厚さを確保しやすく、安定化効果が高い酸化物超電導線材110Bが得られる。
 次に、酸化物超電導線材110Bの製造方法の一実施形態について図面に基づいて説明する。
 図13A~13Dは、図11に示す酸化物超電導線材110Bの製造方法の一実施形態を示す工程説明図である。
 本実施形態の酸化物超電導線材の製造方法は、基材101と中間層102と酸化物超電導層103と銀層104と金属安定化層106とがこの順に積層されてなる図13Bに示す超電導積層体S110を準備する第3工程と;図13Cに示すように、超電導積層体S110の幅方向端部にレーザを照射して超電導積層体S110の端部を溶融・凝固させて、図13Dに示すように、超電導積層体S111の側面を覆う溶融凝固層117を形成する第4工程と;を備える。
 第3工程では、まず、図13Aに示すように、積層体T101よりも幅広で且つ積層体T101と同じ層構成の積層体T101を作製する。一例として、基材101上にスパッタ法で拡散防止層とベッド層とを形成し、このベッド層の上にIBAD法で中間層102を形成する。さらにPLD法でキャップ層と酸化物超電導層103し、次に、酸化物超電導層103上にスパッタ法により銀層104を形成することにより積層体T101を得ることができる。
 次に、作製した積層体T101をめっき浴に浸漬させて電気めっきを行うことにより、積層体T101の全周を覆う金属安定化層116を形成して、図13Aに示す超電導積層体S110を作製する。金属安定化層116はCuまたはAlより形成されていることが好ましく、Cuより形成されていることがより好ましい。
 金属安定化層116をCuのめっきより形成する場合、たとえば積層体T101を硫酸銅水溶液のめっき浴に浸漬させて電気めっきを行うことにより、積層体T101の全周を覆うCuの金属安定化層116を形成することができる。
 その後の第4工程では、得られた超電導積層体S110を長手方向に沿って切断し、図13Bに示すように、2つの超電導積層体S110、S110に分割する。超電導積層体S110の分割方法としては特に限定されず、レーザによる溶断方法あるいは回転刃などによる機械的な切断方法が挙げられる。
 続いて、得られた超電導積層体S110の、切断面C101側の幅方向の端部にレーザを照射して、超電導積層体S110の端部を溶融・凝固させて、超電導積層体S111の切断面C101側の幅方向側面を覆う溶融凝固層117を形成する(第4工程)。
 第4工程において、超電導積層体S110の銀層104に近い金属安定化層116Aの表面側からレーザを照射してもよい。超電導積層体S110の基材101に近い金属安定化層116Bの表面側からレーザを照射してもよい。
 本実施形態においては、上記第3実施形態の場合と同様に、レーザ照射前に予め金属安定化層116のレーザ照射部(切断面C101側の幅方向端部)の表面粗さを粗くしてからレーザを照射することが好ましい。これにより、銅等の反射率の高い材料よりなる金属安定化層116のレーザ照射部の反射率を低下させて、確実にレーザのエネルギーを照射部に伝えて、超電導積層体S110の切断面C101側の端部を加熱、溶融することができる。
 金属安定化層116のレーザ照射部(幅方向端部)の表面粗さRa、及び、金属安定化層116のレーザ照射部表面を粗く加工する方法については、上記第3実施形態と同様である。
 また、第4工程において使用できるレーザ種も上記第3実施形態と同様である。
 図13Cに示すように、レーザ加工機121の先端から集光レンズ122で集光されたレーザ光100Lを射出し、超電導積層体S110の切断面C101側の幅方向の端部に照射する。これにより、基材101と中間層102と酸化物超電導層103と銀層104と金属安定化層116A、16Bの切断面C101側の幅方向端部を局部的に溶融する。その後、溶融部分を凝固することにより、超電導積層体S111の幅方向の一側面を覆う溶融凝固層117を形成する。レーザ加工機にはは、外部のアシストガス供給装置に接続されたガス供給口123から窒素、アルゴン、ヘリウム等の不活性ガスが供給され、この不活性ガス100Gがレーザ加工機121の先端部よりレーザ光100Lの照射部へと吹き付けられるように構成されている。このように、溶接部に窒素などの不活性ガスを吹き付けながら溶接することにより、溶接される金属テープが酸化することを防ぐことができる。
 レーザ照射時のレーザのスポット径は、特に制限されないが、10~100μm程度に設定することが好ましい。レーザのスポット径を10μm以上とすることにより溶融凝固層117を確実に形成することができる。レーザのスポット径を100μm以下とすることにより、レーザ照射部のエネルギー密度が低くなりすぎることを防ぎ、充分な加工パワーを得られる。また、レーザ照射により失われる酸化物超電導層103の面積を抑えることができるので、超電導特性の低下を少なく抑えることができる。
 レーザのスポット径10~100μm程度でレーザを照射することにより、形成される溶融凝固層117の厚さは10~150μm程度である。
 レーザ溶接時のレーザの出力および波長は特に制限されず、使用するレーザ種や超電導積層体S100の層構成や厚さにより適宜調整すればよい。
 図13Cに示すように、超電導積層体S110の切断面C101側の幅方向端部にレーザ光100Lを照射しながら、レーザ加工機121を超電導積層体S110の長手方向に沿って走査する、あるいは、超電導積層体S110を移動させることにより、レーザ光100Lの照射位置を移動させる。このようにレーザ光100Lの照射位置を移動させながら、超電導積層体S110の幅方向の端部に連続的にレーザ光100Lを照射し、超電導積層体S110の端部を加熱して溶融・凝固させることにより、超電導積層体S111の幅方向の一側面を覆う溶融凝固層117を形成できる。
 以上の工程により、図11及び図13Dに示す構造の酸化物超電導線材110Bを製造できる。
 本実施形態の酸化物超電導線材の製造方法は、超電導積層体S110の、切断面C101側の幅方向端部にレーザを照射して、超電導積層体S110の端部を溶融・凝固させることにより、超電導積層体S111の一側面(切断面C101側の側面)を覆う溶融凝固層117を形成する。そのため、超電導積層体S111の側面全てが金属安定化層116Cおよび溶融凝固層117により外部から遮蔽された構造の酸化物超電導線材110Bを製造でき、水分の浸入を防止して水分による酸化物超電導層103の劣化を抑止できる酸化物超電導線材110Bを提供できる。
 また、本実施形態の超電導線材の製造方法では、金属安定化層116をめっきにより形成する。このため、基材101の裏面側にも金属安定化層116Bが形成できるので、酸化物超電導層103を安定化するに充分な厚さを確保しやすく、安定化効果が高い酸化物超電導線材110Bを製造できる。
 以上、本発明の酸化物超電導線材およびその製造方法の実施形態について説明したが、上記実施形態において、酸化物超電導線材の各部は一例であって、本発明の範囲を逸脱しない範囲で適宜変更することが可能である。
 例えば、上記第4実施形態では、外周に金属安定化層がめっきされてカプセル化された超電導積層体S110を2分割した例を示したが、本発明はこの例に限定されない。
例えば、超電導積層体S110を長手方向に沿って、幅方向に3以上に分割し、分割された超電導積層体の切断面に対して上記第4実施形態と同様にしてレーザ照射して、該切断面を溶融凝固層で被覆することもできる。この場合、切断面が溶融凝固層に覆われていることにより酸化物超電導層103が外部から遮蔽された構造を実現できるため、水分の浸入による酸化物超電導層103の劣化を抑制できる。
 また、上記第3および第4実施形態では、超電導積層体S101、S111の側面全体を覆うように溶融凝固層107、117が形成された例を示したが、本発明はこの例に限定されない。
少なくとも酸化物超電導層103の側面を覆うように溶融凝固層が形成されていれば、酸化物超電導層103に側面側から水分が浸入することを防止できる。
 図14は本発明の第5実施形態に係る酸化物超電導線材を示す概略断面図であり、図15は本発明の第6実施形態に係る酸化物超電導線材を示す概略断面図である。図14および図15において、図8~図13A~13Dに示す上記実施形態と同一の構成要素には同一の符号を付し、説明を省略する。
 図14に示す酸化物超電導線材110Cでは、基材101と中間層102と酸化物超電導層103と銀層104と半田層105と金属安定化層106とがこの順に積層された超電導積層体の幅方向の側面に、金属安定化層106と半田層105と銀層104と酸化物超電導層103と中間層102の側面を覆う溶融凝固層107Cが形成されている。
 本実施形態の酸化物超電導線材110Cは、上記した図10A~10Cに示す製造工程により製造できる。すなわち、図10Bに示すレーザ照射時に金属安定化層106側からレーザを照射し、超電導積層体S100の幅方向端部の金属安定化層106と半田層105と銀層104と酸化物超電導層103と中間層102を加熱して溶融させ、溶融部分を凝固させることにより溶融凝固層107Cを形成する。
 この実施形態の酸化物超電導線材110Cも、上記実施形態と同様に、酸化物超電導層103の側面が溶融凝固層107Cにより外部より遮蔽された構造を有するため、酸化物超電導層103への水分の侵入を防止できる。
 図15に示す酸化物超電導線材110Dでは、基材101と中間層102と酸化物超電導層103と銀層104と半田層105と金属安定化層106とがこの順に積層された超電導積層体の幅方向の側面に、基材101と中間層102と酸化物超電導層103と銀層104と半田層105の側面を覆う溶融凝固層107Dが形成されている。
 本実施形態の酸化物超電導線材110Dは、上記した図10A~10Cに示す製造工程により製造できる。すなわち、図10Bに示すレーザ照射時に基材101側からレーザを照射し、超電導積層体S100の幅方向端部の基材101と中間層102と酸化物超電導層103と銀層104と半田層105を加熱して溶融させ、溶融部分を凝固させることにより溶融凝固層107Dを形成する。
 この実施形態の酸化物超電導線材110Dも、上記実施形態と同様に、酸化物超電導層103の側面が溶融凝固層107Dにより外部より遮蔽された構造を有するため、酸化物超電導層103への水分の侵入を防止できる。
 以下、実施例を示して本発明をさらに詳細に説明する。本発明はこれらの実施例に限定されるものではない。
「実施例3」
 幅10mm、厚さ0.1mmのハステロイC276(米国ヘインズ社製商品名)製の基材の上に、IBAD法により1.2μm厚のGdZr(GZO)なる組成の中間層を形成し、さらにこの中間層の上にPLD法により1.0μm厚のCeOなる組成のキャップ層を成膜した。次に、このキャップ層の上にPLD法により1.0μm厚のGdBaCu7-xなる組成の酸化物超電導層を形成し、さらにこの酸化物超電導層の上にスパッタ法により10μm厚の銀層を形成し、酸素アニールを施した。続いて、銀層上に厚さ5μmのスズ半田(融点230℃)を介して幅10mm、厚さ100μmの銅製テープ(金属安定化層)を積層した。この積層体を加熱・加圧ロール(加熱温度:240℃、加圧力:10~20MPa、通過速度:100m/h)に通過させることにより、銀層上に半田層を介して銅製テープ(金属安定化層)を接合した。こうして超電導積層体を作製した。
 作製した超電導積層体の基材側の幅方向両端部に対し、表面に凹凸加工された加圧ローラーにより圧力10~20MPaで加圧しながら、長手方向に回転走行させることにより、超電導積層体の基材側の幅方向両端部の表面粗さRaを50μmに加工した。図10Bに示すように、超電導積層体の幅方向の両端部から20μmの位置に基材側からファイバーレーザを照射して、溶融・凝固させることにより超電導積層体の側面を覆う溶融凝固層(厚さ約10μm)を形成して、図8及び図10Cに示す構造の酸化物超電導線材を作製した。得られた酸化物超電導線材の液体窒素温度(77K)における臨界電流値Ic0は150Aであった。なお、レーザ照射は次の条件で行った。
 使用レーザ:ファイバーレーザ(波長1065nm、出力200W)、スポット径:20μm、溶接速度:10m/分、アシストガスとして窒素ガスをレーザ照射部に吹きつけながらレーザ照射を行った。
 作製した実施例3の酸化物超電導線材を、温度121℃、湿度100%、2気圧の雰囲気中で100時間保持した後に、液体窒素温度(77K)における酸化物超電導線材の臨界電流値Icを測定した。試験前の臨界電流値Ic0に対する試験後の臨界電流値Icの割合Ic/Ic0を求めたところ、Ic/Ic0=0.99であり、超電導特性は劣化せずに保持されていた。
「実施例4」
 銅製テープ(金属安定化層)側からファイバーレーザを照射したこと以外は、実施例3と同様にして酸化物超電導線材を作製した。得られた酸化物超電導線材の液体窒素温度(77K)における臨界電流値Ic0は150Aであった。
 作製した実施例4の酸化物超電導線材を、温度121℃、湿度100%、2気圧の雰囲気中で100時間保持した後に、液体窒素温度(77K)における酸化物超電導線材の臨界電流値Icを測定した。試験前の臨界電流値Ic0に対する試験後の臨界電流値Icの割合Ic/Ic0を求めたところ、Ic/Ic0=0.98であり、超電導特性は劣化せずに保持されていた。
「実施例5」
 幅10mm、厚さ0.1mmのハステロイC276(米国ヘインズ社製商品名)製の基材の上に、IBAD法により1.2μm厚のGdZr(GZO)なる組成の中間層を形成し、さらにこの中間層の上にPLD法により1.0μm厚のCeOなる組成のキャップ層を成膜した。次に、このキャップ層の上にPLD法により1.0μm厚のGdBaCu7-xなる組成の酸化物超電導層を形成し、さらにこの酸化物超電導層の上にスパッタ法により10μm厚の銀層を形成し、酸素アニールを施して積層体を作製した。続いて、得られた積層体を長手方向に沿って幅5mmに裁断し、裁断後の積層体の銀層上に厚さ5μmのスズ半田(融点230℃)を介して幅5mm、厚さ100μmの銅製テープ(金属安定化層)を、積層し、この積層体を加熱・加圧ロール(加熱温度:240℃、加圧力:10~20MPa、通過速度:100m/h)に通過させることにより、銀層上に半田層を介して銅製テープ(金属安定化層)を接合させることにより超電導積層体を作製した。
 次に、実施例3と同様にして超電導積層体の幅方向の両端部に基材側からファイバーレーザを照射することにより溶融凝固層を形成することにより酸化物超電導線材を作製した。得られた酸化物超電導線材の液体窒素温度(77K)における臨界電流値Ic0は75Aであった。
 作製した実施例5の酸化物超電導線材を、温度121℃、湿度100%、2気圧の雰囲気中で100時間保持した後に、液体窒素温度(77K)における酸化物超電導線材の臨界電流値Icを測定した。試験前の臨界電流値Ic0に対する試験後の臨界電流値Icの割合Ic/Ic0を求めたところ、Ic/Ic0=0.97であり、超電導特性は劣化せずに保持されていた。
「比較例2」
 実施例5と同様の方法で超電導積層体を作製したものをそのまま酸化物超電導線材とした。得られた酸化物超電導線材の液体窒素温度(77K)における臨界電流値Ic0は150Aであった。
 作製した比較例2の酸化物超電導線材を、温度121℃、湿度100%、2気圧の雰囲気中で48時間保持した後、酸化物超電導線材の超電導特性を測定した。液体窒素温度(77K)における臨界電流値Icは0Aであり超電導特性が劣化していた。比較例2の酸化物超電導線材は、酸化物超電導層の側面が露出していたため、この露出部から水分が浸入して酸化物超電導層が劣化したと考えられる。
 実施例3~5および比較例2の酸化物超電導線材の耐久試験結果を図17に示す。図17は、試験時間に対して、試験前の臨界電流値Ic0に対する試験後の臨界電流値Icの割合Ic/Ic0をプロットしたものである。縦軸Ic/Ic0が1.0に近いほど耐久性が高いことを示す。
 図17の結果より、本発明に係る実施例3~5の酸化物超電導線材は、酸化物超電導層への水分の浸入を抑えることができることが明らかである。
 以下、本発明の第7実施形態に係る酸化物超電導線材の製造方法について図面に基づいて説明する。
 図18は本実施形態に係る方法に基づき、テープ状の酸化物超電導導体を連続波レーザーにより切断している状態を示す説明図、図19は同連続波レーザーを発生させるために用いるファイバーレーザー装置の概略構成図、図20A及び20Bは切断対象となる酸化物超電導導体と切断後の酸化物超電導線材を示す斜視図、図21A及び21Bは得られた酸化物超電導線材を被覆した状態と部分拡大した状態を示す図である。
 本実施形態において切断対象である酸化物超電導導体201では、図20Aに示すように、金属製のテープ状の基材203の上に、中間層205と酸化物超電導層206と安定化層207が積層されている。この酸化物超電導導体201を、後述するように、連続波レーザーのレーザービームによって切断することにより、図20Bに示すように酸化物超電導導体201よりも幅狭の複数本(図20Bでは4本)の酸化物超電導線材210を得ることができる。
 この酸化物超電導線材210は、酸化物超電導導体201をその幅方向に分割して得られるので、幅が狭い点を除き酸化物超電導導体201と同じ構造である。酸化物超電導線材210では、金属製のテープ状の基材203aの上に、中間層205aと酸化物超電導層206aと安定化層207aとが積層されている。
 前記酸化物超電導線材210は、より詳細には図21Aに示すように、基材203aの上面に拡散防止層211とベッド層212と配向層215とキャップ層216とを有する中間層205が積層され、その上に酸化物超電導層206aと安定化層207aとが積層されている。図20A及び20Bでは図示の簡略化のために中間層205を1層のように描いている。なお、拡散防止層211とベッド層212とキャップ層216は必須ではなく、場合によって略しても良い。
 図21Aに示す酸化物超電導線材210では、安定化層207aの上に更に厚い安定化層208が積層されている。酸化物超電導線材210と安定化層208とを有する積層体の全周に樹脂テープ217を巻き付けて絶縁層218が形成されている。
 前記安定化層208は、図20Bに示すように、レーザービームによる切断により得られた酸化物超電導線材210に、貼り付けあるいはめっきなどにより形成されたものである。
 図21Aに示したような絶縁層218で絶縁処理した酸化物超電導線材210をコイル加工することで超電導コイルなどの用途に用いることができる。また、絶縁層218で絶縁処理した酸化物超電導線材210を用いて送電用の超電導ケーブルなどの用途に用いることもできる。
 前記酸化物超電導線材210の溶断部分は、図21Bに拡大して示すように、基材203aの溶断面203bに対し、中間層205aと酸化物超電導層206aの溶断面は内方(図中で左方)に位置している。基材203aの上面であって、中間層205aおよび酸化物超電導層206aの溶断面と基材203aの溶断面203bとの間には段部203cが形成されている。この段部203cを覆うように安定化層207aの溶融凝固体が延出した保護層207bが形成されている。図21Bでは、基材203a、中間層205a、酸化物超電導層206a、及び安定化層207aの厚さを実際の超電導線材に近い比率で示しているが、図20Bにおいては図面を見やすくするために模式的に示している。図20Bに示すように、酸化物超電導線材210の溶断部分において、酸化物超電導層505aの端縁は安定化層207aの端縁から延出する保護層207bによって覆われている。図21Aは、酸化物超電導線材210の積層構造を中心に示す分解斜視図であり、保護層207bの記載を略している。
 以下に酸化物超電導線材210の各要素について説明する。
 前記基材203(203a)は、通常の超電導線材の基材として使用することができ、高強度であれば良い。長尺のケーブルとするためにテープ状であり、耐熱性の金属からなる基材が好ましい。例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種高強度高耐熱性の金属材料、もしくはこれら各種金属材料上にセラミックスを配したもの、等が挙げられる。各種耐熱性の金属の中でも、ニッケル合金が好ましい。そのなかでも、市販品であれば、ハステロイ(米国ヘインズ社製商品名)が好適である。モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等のいずれの種類も使用できる。基材203の厚さは、目的に応じて適宜調整すれば良く、通常は、10~500μmの範囲とすることができる。
 拡散防止層211は、基材203(203a)の構成元素拡散を防止する目的で形成される。拡散防止層211は、窒化ケイ素(Si)、酸化アルミニウム(Al、「アルミナ」とも呼ぶ)、あるいは、GZO(GdZr)等から構成され、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10~400nmである。
 ベッド層212は、耐熱性が高く、界面反応性を低減するために設けられ、その上に配される膜の配向性を得るために用いる。このようなベッド層212は、例えば、イットリア(Y)などの希土類酸化物であり、組成式(α2x(β(1-x)で表される酸化物が例示できる。より具体的には、Er、CeO、Dy3、Er、Eu、Ho、La等を例示することができる。このベッド層212は、例えばスパッタリング法等の成膜法により形成され、その厚さは例えば10~100nmである。
 配向層215は、単層構造あるいは複層構造のいずれでも良く、その上に積層されるキャップ層216の結晶配向性を制御するために2軸配向する物質から選択される。配向層215の好ましい材質として具体的には、GdZr、MgO、ZrO-Y(YSZ)、SrTiO、CeO、Y、Al、Gd、Zr、Ho、Nd等の金属酸化物を例示することができる。
 この配向層215をIBAD(Ion-Beam-Assisted Deposition)法により良好な結晶配向性(例えば結晶配向度15゜以下)を有するように成膜すれば、その上に形成するキャップ層216の結晶配向性も良好(例えば結晶配向度5゜前後)とすることができる。これによりキャップ層216の上に成膜する酸化物超電導層206の結晶配向性も良好にできるため、優れた超電導特性を発揮できる酸化物超電導層206を得ることができる。
 例えば、GdZr、MgO又はZrO-Y(YSZ)からなる配向層215は、IBAD法における結晶配向度を表す指標であるΔφ(FWHM:半値全幅)の値を小さくできるため、特に好適である。
 キャップ層216は、上述のように面内結晶軸が配向した配向層215の表面に成膜されることによってエピタキシャル成長し、その後、横方向に粒成長して、結晶粒が面内方向に自己配向し得る材料、であれば特に限定されないが。キャップ層の好ましい材質として、CeO、Y、Al、Gd、ZrO、Ho、Nd等が例示できる。キャップ層の材質がCeOである場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe-M-O系酸化物を含んでいても良い。
 例えばCeOによって構成されるキャップ層216は、上述のように自己配向していることにより、配向層215よりも更に高い面内配向度、例えばΔφ=4~6゜程度を得ることができる。
 例えば、CeO層は、PLD法(パルスレーザ蒸着法)、スパッタリング法等で成膜することができる。CeO層の膜厚は、十分な配向性を得るには100nm以上が好ましいが、厚すぎると結晶配向性が悪くなるので、50~5000nmの範囲とすることができる。
 酸化物超電導層206(206a)には公知の酸化物超電導体からなる酸化物超電導層を用いることができる。具体的には、REBaCu(REはY、La、Nd、Sm、Er、Gd等の希土類元素を表す)で表される酸化物超電導体からなる酸化物超電導層を例示できる。この酸化物超電導層206として、Y123(YBaCu7-X)又はGd123(GdBaCu7-X)などを例示することができる。
 酸化物超電導層206は、スパッタ法、真空蒸着法、レーザー蒸着法、電子ビーム蒸着法、化学気相成長法(CVD法)等の物理的蒸着法;熱塗布分解法(MOD法)等で形成することができる。なかでも生産性の観点から、PLD(パルスレーザー蒸着)法、TFA-MOD法(トリフルオロ酢酸塩を用いた有機金属堆積法、塗布熱分解法)又はCVD法を用いることができる。
 前記酸化物超電導層206の上に積層されている第1番目の安定化層207aはAgなどの良導電性を有してかつ、酸化物超電導層206との接触抵抗が低くなじみの良い金属材料から形成される。Agの安定化層207を成膜するには、スパッタ法などの成膜法を採用し、その厚さを1~30μm程度に形成できる。
 第2番目の安定化層208は、酸化物超電導層206aの安定化のために設けられ、酸化物超電導層206aが常電導状態に転移することを防止するために電流のバイパス用として設けられている。安定化層208は、CuやAlまたはそれらの合金などの良導電性の金属材料から形成される。なお、酸化物超電導線材210を限流器などに適用する場合は安定化層208として高抵抗材料を用いることが好ましい。この場合、NiCrなど、CuやAg、Alに対して高抵抗の金属材料から安定化層208を構成することができる。
 安定化層208は安定化層207よりも厚く形成して電流のバイパス路として十分な容量を確保するため、100~300μm程度の厚さに形成する。その場合、半田や導電性接着剤による貼付け法あるいはめっき法などを用いて安定化層207の上に安定化層208を形成することができる。
 本実施形態においては、厚い安定化層208を設ける前に、酸化物超電導層206上にAgの安定化層207を形成した図20Aに示す酸化物超電導導体201を切断して幅狭の酸化物超電導線材210を製造する。この場合に連続波レーザーのレーザービームを用いて切断する。
 図18は、連続波レーザーを発生させて酸化物超電導導体201を切断するために用いる切断装置220の概略構成を示す。この例の切断装置220は、光源である複数の(図18の例では3基の)励起用レーザーの発光装置221と、これら複数の発光装置221からの励起用レーザーを結合するビームコンパイナとしての結合器222と、この結合器222に接続されたダブルクラッドファイバーからなる増幅用ファイバー223増幅用ファイバー223と、この増幅用ファイバー223に接続された伝送用ファイバー224と、伝送用ファイバー224の先端部に接続された出力部225と、を備えている。
 増幅用ファイバー223には、一例として、光増幅媒体である希土類添加ファイバーを用いることができる。希土類添加ファイバーとして、希土類元素が添加されたコアと、コアの外周を囲む第1クラッドと、この第1クラッドを囲む第2クラッドとからなる希土類添加ダブルクラッドファイバーを用いることができる。添加される希土類元素としては、例えば、Yb(イッテルビウム)、Er(エルビウム)、Tm(ツリウム)、Nd(ネオジム)、Pr(プラセオジム)が挙げられる。
 前記出力部225は、伝送用ファイバー224からのレーザー出力を導入する筒型の案内部226と、この案内部226の上部に収容されている光学装置227と、案内部226の下部に接続されている噴射ノズル228と、この噴射ノズル228の下部に接続されたガス供給源229と、を備えている。
 前記光学装置227は複数の光学レンズを備えている。これらの光学レンズの相互位置を調整することにより、伝送用ファイバー224から入射されたレーザー光の径を絞って噴射ノズル228の先端外方において適切なビーム径になるようにレーザー光を集光して照射することができる。噴射ノズル228の上部壁にはガス導入部230が形成されているとともに、このガス導入部230に不活性ガスなどのガス供給源229が接続されている。このガス供給源229から噴射ノズル228の内部に不活性ガスなどのシールドガスを送ることにより噴射ノズル228の先端開口からシールドガスを噴出できる。
 前記切断装置220を用いて酸化物超電導導体201を切断するには、図18に示すように、水平に設置した酸化物超電導導体201の例えば幅方向中央部に噴射ノズル228の先端を位置させる。この状態で酸化物超電導導体201の中央部に連続波レーザーのレーザービームを照射するとともに、酸化物超電導導体201をその長さ方向に所定の速度で移動させる。
 切断装置220において励起光の発光装置221から接続用ファイバー221aを介し結合器222に入力したマルチモードの励起光は、結合器222において光結合される。光結合された励起光は、増幅用ファイバー223に入力され、増幅用ファイバー223において波長の増幅と出力増幅がなされて、シングルモードに変換され、伝送用ファイバー224を介し連続波レーザーとして出力される。
 本実施形態において適用する連続波レーザーの一例として、中心波長1080nmの連続波レーザーを用いることができる。ビーム出力は、例えば300W、噴射ノズル228の先端外方にレーザービームを集光照射した際のビーム先端側のビーム径は、10μm~100μm程度、例えば20μmである。連続波レーザーの中心波長は、たとえば、1050~1100nm程度である。
 光学装置227を調節して、伝送用ファイバー224から出力部225に達した中心波長1080nmの連続波レーザーのレーザービーム径を20μm程度に絞り、噴射ノズル228の先端から、上述のように、酸化物超電導導体201の中央部に照射すると、酸化物超電導導体201の中央部の安定化層207と酸化物超電導層206と中間層205と基材203とをレーザービームにより溶断することができる。
 また、レーザービームを安定化層207の外側から照射すると、酸化物超電導導体201において安定化層207と酸化物超電導層206と中間層205と基材203との順にレーザービームが照射された部分を順次溶融できる。このとき、噴射ノズル228の先端から噴出されているシールドガスが、安定化層207と酸化物超電導層206と中間層205と基材203との溶融物を吹き飛ばして除去する。また、レーザービームが基材203を貫通した状態において噴射ノズル228の先端から噴出されているシールドガスが、溶融した安定化層207と酸化物超電導層206と中間層205と基材203を酸化物超電導導体201の裏面側に吹き飛ばして除去する。これらの作用により、レーザービームによって溶断した部分に、安定化層207と酸化物超電導層206と中間層205と基材203との溶融物に起因する溶融ドロスが付着するのを阻止できる。なお、レーザービームの酸化物超電導導体201に対する照射角度は90゜でもよい。ただし、Agの安定化層207の光反射率が高いので、反射光が光ファイバー242、232に戻らないようにするためには、上記照射角度を90゜から1~2゜程度傾斜させてもよい。
 このレーザービームによる溶融を開始した状態で、酸化物超電導導体201を順次その長さ方向に所定の速度(例えば150mm/s)で移動させることにより、酸化物超電導導体201をその長さ方向の全長に渡り中央部で溶断して2本の酸化物超電導線材に分割することができる。
 以上の操作を酸化物超電導導体201の幅方向に所定間隔毎に複数回繰り返す。例えば、上記操作を3回行うことにより図20Bに示すように、酸化物超電導導体201を4分割することができる。なお、酸化物超電導導体201が長尺である場合は、その全長に渡りレーザービームを走査するのに時間がかかる。3基の出力部225を並列に設けてレーザービームを3本同時に照射できる装置を用いてもよい。この場合、酸化物超電導導体201の全長に対しレーザービームを1回走査することにより、酸化物超電導導体201を4分割できる。
 前述のように、噴射ノズル228の先端からシールドガスを酸化物超電導導体201の厚さ方向に噴射しつつ、連続波レーザーのレーザービームにより酸化物超電導導体201を溶断した場合、レーザービームにより加熱溶融された基材203aと中間層205aと酸化物超電導層206aと安定化層207aの溶融部分はシールドガスの圧力により吹き飛ばれて除去されながら、溶断が進行する。ここで、シールドガスの噴射圧力を調整すると、最上層に位置する安定化層207aの溶融部分をシールドガスの流れ方向に延出させて中間層205aと酸化物超電導層206aとの溶断面部分に被着させることができる。この溶断処理によって酸化物超電導線材210の全長にわたり、図20Bあるいは図21Bに示すように、安定化層207aの端縁部分に保護層207bを形成することができる。
 このように酸化物超電導線材210の全長にわたり、酸化物超電導層206aの側面を保護層207bでシールドすることができる。従って、外部から酸化物超電導層206aへの水分の浸入を防止できる構造の酸化物超電導線材210を得ることができる。
 一方、前述のように、連続波レーザーのレーザービームにより酸化物超電導導体201を溶断した場合、酸化物超電導導体201の溶断部分において従来技術のパルスレーザーを用いて溶断した場合よりも溶断部分を滑らかに形成できる。図22は連続波レーザーのレーザービームにより溶断して得られた酸化物超電導線材210の溶断面の一例を示す部分拡大図である。
 このように酸化物超電導線材210の溶断部分を拡大視すると、凹凸部210cが酸化物超電導線材210の長さ方向に(図22の左右方向に)多数形成されている。本実施形態のように、連続波レーザーのレーザービームを用いてビーム径20μmに設定して上述の条件で溶断すると、この凹凸部210cの最大高さRzを5μm以下にできる。
 パルスレーザーのレーザービームを用いた従来技術によれば、極めて高いピークパワーを有するパルスを繰り返し出力することで対象物を溶断する。このパルスレーザーのレーザービームで酸化物超電導導体201の溶断を行う場合、凹凸部の最大高さRzが10μmよりも大きくなる。一例として、YAGレーザーで酸化物超電導導体201を溶断した場合、10~20μmの最大高さの凹凸部が生成する。これは、レーザーが照射される部分が気化昇華するので、端部の溶融による変形が生じにくいことが原因となっている。
 また、短波長のレーザーでは酸化物超電導導体201を溶断するための出力が不足し、酸化物超電導導体201の溶断自体が困難であることがある。さらに、波長の長いCOレーザーなどではAgの安定化層207の光反射率が高いので、COレーザーを照射しても安定化層207の光反射が多くなって高速に酸化物超電導導体201を溶断することが困難になる。
 これらに対し本実施形態において用いた連続波レーザーのレーザービームでは、最大高さ5μm以下の凹凸部を有するように、溶断面を従来技術よりも滑らかに加工できる。
 また、前記酸化物超電導導体201が長尺の場合、酸化物超電導導体201をリールなどに巻き付けておき、リールから順次繰り出して他のリールに巻き付けながら、酸化物超電導導体201にレーザービームを照射して酸化物超電導導体201をその全長にわたり酸化物超電導線材210に分割してもよい。
 「実施例6」
 幅10mm、厚さ0.1mm、長さ100mのハステロイC276(米国ヘインズ社商品名)製のテープ状の基材を用意し、このテープ状基材の表面にAlからなる厚さ100nmの拡散防止層を形成し、更にその上にイオンビームスパッタ法を用いてYからなる厚さ30nmのベッド層を形成した。イオンビームスパッタ法の実施にあたりテープ状の基材はスパッタ装置の内部において第1のリールに巻回しておき、第1のリールから第2のリールに繰り出す間に成膜を行った。こうしてテープ状基材の全長にわたり、拡散防止層とベッド層を形成した。次に、イオンビームアシスト蒸着法によりベッド層上に厚さ10nmのMgOの配向層を形成した。この際、アシストイオンビームの入射角度は、テープ状基材の成膜面の法線に対し、45゜とした。
 続いてパルスレーザー蒸着法(PLD法)を用いてMgOの配向層上にCeOからなる厚さ500nmのキャップ層を形成した。更に、このキャップ層上にパルスレーザー蒸着法によりGdBaCu7-xからなる厚さ1μmの酸化物超電導層を形成した。
 次に、スパッタ法により酸化物超電導層上に厚さ10μmのAgからなる安定化基層を形成し、酸素アニールを500℃で行った。以上の工程により、テープ状の長尺の基材上に拡散防止層とベッド層と配向層とキャップ層と酸化物超電導層と安定化層を備えた酸化物超電導導体を形成した。
 前記酸化物超電導導体に対し、図18に概略構成を示す切断加工装置を用いて、中心波長1080nmの連続波レーザーのレーザービームを照射し、出力200W、ビーム径20μm、加工速度500mm/sに調整して、10mm幅の酸化物超電導導体を5mm幅の2本の酸化物超電導線材に分割する切断加工を行った。切断加工に際し、噴射ノズルに印加する窒素ガス圧力を0.9MPaに設定し、噴射ノズル(内径2mm)の先端から窒素ガスを酸化物超電導導体の上面に噴出することで切断加工面に溶融ドロスが付着しないように加工した。また、窒素ガスを噴射することにより溶断面の酸化を防止した。
 この操作によってハステロイテープ基材の切断面には最大高さRz:3μmの凹凸部が生成された。肉眼観察では大きな凹凸部分は見られず、滑らかな切断面であった。
 上記切断加工により得られた幅0.5mmの酸化物超電導線材に対し、ポリイミド樹脂製の幅4mm、厚み12.5μmの絶縁テープを張力150gで巻き付けて絶縁処理した。この絶縁処理では、絶縁テープを切ることなく巻き付けを行うことができた。
 また、図23に示すように、切断加工した酸化物超電導線材210の安定化層207の上面に外径2.6mmの円盤部235とロッド部236とを有するアルミ合金製のピン部材237をエポキシ樹脂接着剤で接着し、ロッド部236を酸化物超電導線材210に対して垂直方向に引っ張る剥離試験を行った。前記連続波レーザーのレーザービームで切断した酸化物超電導線材の試料5個それぞれに対し、同様の剥離試験を行ったところ、剥離力の平均値は約30Kgfであった。
 図25は、本実施例の酸化物超電導線材の溶断部分の断面組織を拡大して示す写真である。図25中に白矢印で示すように、安定化層の溶断部分に保護層を形成することができた。この保護層は、安定化層の下に位置する酸化物超電導層と中間層の側面を完全にカバーし、それらの下に位置する厚い基材まで達して密着していた。このように、水分の浸入を防止できる構造を有する酸化物超電導線材を得ることができた。
「実施例7」
 実施例6において使用した酸化物超電導導体と同じ構成の酸化物超電導導体を用意した。
 中心波長1080nmのファイバーレーザーを使用し、周波数60KHz、出力300W、ビーム径20nm、加工速度500mm/sの条件にて、実施例6と同様に10mm幅の酸化物超電導導体を5mm幅に2分割する切断加工を行った。窒素ガスの噴射ノズルに印加する噴出圧力は0.9MPaに設定した。
 この条件のファイバーレーザーでは、酸化物超電導導体の溶断はできたが、銀の安定化層の端縁に保護層を形成できなかった。銀の安定化層の端縁部分においては、銀安定化層の端部が変形することなく、窒素ガスで吹き飛ばされた。この例では酸化物超電導層の両端部分の溶断面が剥き出しの状態であるため、何らかの保護層を追加作製する必要がある。
 実施例6において用いたものと同等の樹脂テープを酸化物超電導線材に同等張力で巻き付けてみたところ、樹脂テープを切ることなく巻き付けができた。
 前記ファイバーレーザーで切断して得た酸化物超電導線材の試料5個に対し、同様の剥離試験を行ったところ、剥離力の平均値は約29Kgfであった。
 「比較例3」
 実施例6において使用した酸化物超電導導体と同じ構成の酸化物超電導導体を用意した。
 中心波長355nmのYAGレーザーを使用し、周波数30KHz、出力2.4W、ビーム径20nm、加工速度5mm/sの条件にて、実施例6と同様に、10mm幅の酸化物超電導導体を5mm幅に2分割する切断加工を行った。溶断加工に際し、窒素ガスを噴射ノズルの先端から吹き付けた。
 YAGレーザーは、パルスレーザーであり、溶断部分の材料を一瞬で昇華させる。本例では、溶断部分における銀の安定化層は瞬時に昇華し、蒸発したために、安定化層の溶断部分に保護層は生成していなかった。
 また、YAGレーザーでは、上述の加工速度を上げると酸化物超電導導体に切断できない箇所が発生した。上述の加工速度を上げると酸化物超電導導体の基材の切断面に大きな凹凸部分が発生するので、上述の加工速度に設定して凹凸部分が発生しないように切断加工し、酸化物超電導線材を得た。なお、本例のYAGレーザーによる切断面においては、前述の加工速度であっても切断面には最大高さRz10~20μmの凹凸部が生じていた。
 実施例6において用いたものと同等の樹脂テープを酸化物超電導線材に同等張力で巻き付けてみたところ、樹脂テープを切ることなく巻き付けができた。
 得られた酸化物超電導線材に対し実施例6と同等の条件でピン部材237を用いた剥離試験を行った。
 前記YAGレーザーで切断して得た酸化物超電導線材の試料5個に対し、同様の剥離試験を行ったところ、剥離力の平均値は約28Kgfであった。
 本発明は、例えば超電導モータ、限流器、超電導コイル、送電用超電導ケーブル、など、各種電力機器や超電導機器に用いられる酸化物超電導線材に利用することができる。
 1、1A 基材
 1P 端部
 2 中間層
 3 酸化物超電導層
 4 銀層
 5、5A 半田層
 5P 端部
 6、6A 金属安定化層
 7、17 保護層
 10、30 酸化物超電導線材
 S0 超電導積層体
 S1、S2 積層体
 20 ローラー電極
 21 治具
 101 基材
 102 中間層
 103 酸化物超電導層
 104 銀層
 105 半田層
 106、 116A、 116B、 116C、 116 金属安定化層
 107、 117、 107C、 107D 溶融凝固層
 110、 110B、 110C、 110D 酸化物超電導線材
 121 レーザ加工機
 122 集光レンズ
 L レーザ光
 S100、 S101、 S111、 S110、 S110 超電導積層体
 T101、 T101 積層体
 C101 切断面
 201 酸化物超電導導体
 203、203a 基材
 205、205a 中間層
 206、206a 酸化物超電導層
 207、207a 安定化層
 207b 保護層
 208 安定化層
 210 酸化物超電導線材
 211 拡散防止層
 212 ベッド層
 215 配向層
 216 キャップ層
 217 絶縁テープ
 218 絶縁層
 220 切断装置
 221 励起用レーザーの発光装置
 222 結合器
 223 増幅用ファイバー
 224 伝送用ファイバー
 225 出力部
 227 光学系
 228 噴射ノズル
 229 ガス供給源

Claims (19)

  1.  基材と中間層と酸化物超電導層と銀層と半田層と金属安定化層とがこの順に積層されてなる超電導積層体を準備する第1工程と;
     前記金属安定化層及び前記基材のうちの少なくとも一方の幅方向端部を加圧および加熱することにより、前記半田層及び前記基材のうちの少なくとも一方の幅方向端部の一部を溶融させ、前記超電導積層体の側面に流動させた後に凝固させて、少なくとも前記酸化物超電導層の側面を覆う保護層を形成する第2工程と;
    を備えることを特徴とする酸化物超電導線材の製造方法。
  2.  前記第2工程において、前記基材の幅方向端部に、ローラー電極により加圧および通電加熱を行い、抵抗発熱により前記基材の幅方向端部の一部を溶融させることを特徴とする請求項1に記載の酸化物超電導線材の製造方法。
  3.  前記第2工程において、前記金属安定化層の幅方向端部を加圧および加熱することにより、前記半田層の幅方向端部の一部を溶融させることを特徴とする請求項1に記載の酸化物超電導線材の製造方法。
  4.  基材と中間層と酸化物超電導層と銀層と半田層と金属安定化層とがこの順に積層された酸化物超電導積層体を備える酸化物超電導線材であって、前記基材及び前記半田層のうちの少なくとも一方の幅方向端部は、少なくとも前記酸化物超電導層の側面を覆う保護層を形成するように前記超電導積層体の積層方向に延出していることを特徴とする酸化物超電導線材。
  5.  前記保護層が、前記超電導積層体の積層方向に延出した前記基材の端部から形成されて且つ、少なくとも前記中間層および前記酸化物超電導層の側面を覆うことを特徴とする請求項4に記載の酸化物超電導線材。
  6.  前記保護層が、前記超電導積層体の積層方向に延出した前記半田層の端部から形成されて且つ、少なくとも前記銀層および前記酸化物超電導層の側面を覆うことを特徴とする請求項4に記載の酸化物超電導線材。
  7.  基材と中間層と酸化物超電導層と銀層と金属安定化層とがこの順に積層されてなる超電導積層体を準備する第3工程と;
     前記超電導積層体の幅方向端部にレーザを照射して前記超電導積層体の端部を溶融凝固させて、少なくとも前記酸化物超電導層の側面を覆う溶融凝固層を形成する第4工程と、
    を備えることを特徴とする酸化物超電導線材の製造方法。
  8.  前記基材及び前記金属安定化層のうちの少なくとも一方を溶融凝固させて前記溶融凝固層を得ることを特徴とする請求項7に記載の酸化物超電導線材の製造方法。
  9.  前記第4工程において、前記レーザが照射される面の表面粗さを粗くした後に、前記レーザを照射することを特徴とする請求項7または8に記載の酸化物超電導線材の製造方法。
  10.  前記レーザの照射を、ファイバーレーザを用いて行うことを特徴とする請求項7~9のいずれか一項に記載の酸化物超電導線材の製造方法。
  11.  金属テープの貼合せ又はめっきにより前記金属安定化層を形成することを特徴とする請求項7~10のいずれか一項に記載の酸化物超電導線材の製造方法。
  12.  基材と中間層と酸化物超電導層と銀層と金属安定化層とがこの順に積層されてなる超電導積層体と;
     少なくとも前記酸化物超電導層の側面を覆い、前記基材及び前記金属安定化層のうちの少なくとも一方に対するレーザの照射により形成された溶融凝固層と;
    を備えることを特徴とする酸化物超電導線材。
  13.  前記溶融凝固層が、前記基材及び前記金属安定化層のうちの少なくとも一方の溶融凝固物を含むことを特徴とする請求項12に記載の酸化物超電導線材。
  14.  前記金属安定化層が、金属テープの貼合せ又はめっきにより形成されていることを特徴とする請求項12または13に記載の酸化物超電導線材。
  15.  テープ状の基材と、前記基材上に設けられた中間層と酸化物超電導層と銀からなる安定化層とを備えた酸化物超電導導体を準備する工程と;
     前記酸化物超電導導体の前記安定化層形成側から前記基材の長さ方向に沿ってレーザービームを照射し、前記酸化物超電導導体をその幅方向に溶断する工程と;
    を備える酸化物超電導線材の製造方法であって、
     前記酸化物超電導導体を溶断する工程において、前記酸化物超電導導体の溶断位置にシールドガスを吹き付けつつレーザーを照射することにより、前記酸化物超電導層端縁の溶断部分と前記中間層端縁の溶断部分とを覆うように前記安定化層の溶融凝固体をシールドガスの噴出方向に延出させて保護層を形成することを特徴とする酸化物超電導線材の製造方法。
  16.  前記酸化物超電導導体を溶断する工程において、噴射ノズルを介し前記酸化物超電導導体に前記レーザービームを照射するとともに、前記噴射ノズルから前記シールドガスを前記酸化物超電導導体の厚さ方向に噴出することにより、前記酸化物超電導導体の溶断位置を前記シールドガスで覆うことを特徴とする請求項15に記載の酸化物超電導線材の製造方法。
  17.  前記レーザービームとして連続波レーザーのレーザービームを用いることを特徴とする請求項15~16のいずれか一項に記載の酸化物超電導線材の製造方法。
  18.  テープ状の基材と、前記基材上に設けられた中間層と酸化物超電導層と銀の安定化層とを備えた酸化物超電導導体を、レーザービームによりその幅方向に溶断して形成された酸化物超電導線材であって、前記酸化物超電導層端縁の溶断部分と前記中間層端縁の溶断部分は、前記安定化層の溶融凝固体からなる保護層によって被覆されていることを特徴とする酸化物超電導線材。
  19.  前記保護層が前記基材の溶断部分と一体化していることを特徴とする請求項18に記載の酸化物超電導線材。
PCT/JP2012/050595 2011-01-17 2012-01-13 酸化物超電導線材およびその製造方法 WO2012099016A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-006961 2011-01-17
JP2011006961A JP2012150915A (ja) 2011-01-17 2011-01-17 酸化物超電導線材およびその製造方法
JP2011-015129 2011-01-27
JP2011015129A JP5695431B2 (ja) 2011-01-27 2011-01-27 酸化物超電導線材の製造方法
JP2011-042194 2011-02-28
JP2011042194A JP2012181933A (ja) 2011-02-28 2011-02-28 酸化物超電導線材およびその製造方法

Publications (1)

Publication Number Publication Date
WO2012099016A1 true WO2012099016A1 (ja) 2012-07-26

Family

ID=46515644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050595 WO2012099016A1 (ja) 2011-01-17 2012-01-13 酸化物超電導線材およびその製造方法

Country Status (1)

Country Link
WO (1) WO2012099016A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235017A1 (ja) * 2018-06-05 2019-12-12 住友電気工業株式会社 超電導線材及び超電導線材の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647427A (en) * 1987-06-30 1989-01-11 Toshiba Corp Manufacture of superconductive wire of oxide type
JP2007524198A (ja) * 2003-12-31 2007-08-23 スーパーパワー インコーポレイテッド 超伝導体物品、及びそれを製造および使用する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647427A (en) * 1987-06-30 1989-01-11 Toshiba Corp Manufacture of superconductive wire of oxide type
JP2007524198A (ja) * 2003-12-31 2007-08-23 スーパーパワー インコーポレイテッド 超伝導体物品、及びそれを製造および使用する方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235017A1 (ja) * 2018-06-05 2019-12-12 住友電気工業株式会社 超電導線材及び超電導線材の製造方法

Similar Documents

Publication Publication Date Title
JP5684601B2 (ja) 酸化物超電導線材およびその製造方法
KR101242007B1 (ko) 고온 초전도체 적층 와이어용의 양면 접합부
JP5568361B2 (ja) 超電導線材の電極部接合構造、超電導線材、及び超電導コイル
JP5695921B2 (ja) 酸化物超電導線材の製造方法及び酸化物超電導線材
JP2012181933A (ja) 酸化物超電導線材およびその製造方法
JP6012658B2 (ja) 酸化物超電導線材とその製造方法
WO2012099016A1 (ja) 酸化物超電導線材およびその製造方法
US20180358153A1 (en) Oxide superconducting thin film wire and method for producing the same
JP5695431B2 (ja) 酸化物超電導線材の製造方法
WO2012039444A1 (ja) 酸化物超電導線材およびその製造方法
JP5701281B2 (ja) 酸化物超電導線材
JP2013037991A (ja) 酸化物超電導線材の接続構造体及び酸化物超電導線材の接続方法
JP2012150981A (ja) 酸化物超電導線材およびその製造方法
JP2012150982A (ja) 酸化物超電導線材およびその製造方法
JP5775810B2 (ja) 酸化物超電導線材の製造方法
JP6609613B2 (ja) 超電導線材の製造方法
JP5723553B2 (ja) 酸化物超電導線材の製造装置および酸化物超電導線材の製造方法
JP5640022B2 (ja) 超電導線材と外部端子の接合方法、および超電導線材の外部端子接合構造体
JP6279459B2 (ja) 酸化物超電導線材および酸化物超電導線材の製造方法
JP2013030317A (ja) 酸化物超電導積層体及び酸化物超電導線材、並びに、酸化物超電導線材の製造方法
JP6492205B2 (ja) 酸化物超電導線材の製造方法
JP2017152210A (ja) 酸化物超電導線材及びその製造方法
JP2014232696A (ja) 酸化物超電導線材
JP2012150915A (ja) 酸化物超電導線材およびその製造方法
JP2020145070A (ja) 超電導線材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736579

Country of ref document: EP

Kind code of ref document: A1