WO2012098964A1 - 発光素子と発光素子および半導体素子の製造方法 - Google Patents

発光素子と発光素子および半導体素子の製造方法 Download PDF

Info

Publication number
WO2012098964A1
WO2012098964A1 PCT/JP2012/050363 JP2012050363W WO2012098964A1 WO 2012098964 A1 WO2012098964 A1 WO 2012098964A1 JP 2012050363 W JP2012050363 W JP 2012050363W WO 2012098964 A1 WO2012098964 A1 WO 2012098964A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
growth substrate
semiconductor layer
forming
Prior art date
Application number
PCT/JP2012/050363
Other languages
English (en)
French (fr)
Inventor
嘉孝 門脇
豊田 達憲
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to US13/978,677 priority Critical patent/US9082893B2/en
Publication of WO2012098964A1 publication Critical patent/WO2012098964A1/ja
Priority to US14/725,635 priority patent/US9318653B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the present invention relates to a light-emitting element, a method for manufacturing a light-emitting element, and a semiconductor element, and more particularly to a light-emitting element having a configuration in which a p-type semiconductor layer and an n-type semiconductor layer are stacked on a support and a method for manufacturing the light-emitting element. is there.
  • Group III nitride semiconductors are widely used as materials for light emitting elements such as blue and green LEDs (light emitting diodes) and LDs (laser diodes) because of their wide band gaps.
  • a p-type semiconductor layer (p-type layer) and an n-type semiconductor layer (n-type layer) are laminated by epitaxial growth.
  • this structure In order to manufacture this structure with good quality and low cost, it is generally performed by epitaxially growing a p-type layer and an n-type layer on a growth substrate made of a material other than a group III nitride semiconductor. .
  • the growth substrate materials that can be used are limited.
  • gallium nitride (GaN) which is a representative group III nitride semiconductor, is grown on a heterogeneous growth substrate made of SiC, sapphire, etc. by MOCVD (metal organic chemical vapor deposition) or HVPE (hydride vapor deposition). Can be made.
  • sapphire is an insulator, it is necessary to provide two electrical contact portions on the upper surface of the semiconductor layer stacked on the sapphire, reducing the effective light emitting area on the same substrate area as compared with the conductor substrate, and the same. Since both electrodes are provided on the surface, there is a problem that the current density is locally increased and the element is deteriorated due to heat generation.
  • Patent Document 1 discloses a method for manufacturing a light-emitting element using a laser lift-off technique
  • Patent Document 2 discloses a method for manufacturing a light-emitting element using a chemical lift-off technique.
  • a conductive support is newly formed on the p-side electrode side, and the sapphire substrate is peeled off.
  • the chemical lift-off technology is superior to the laser lift-off technology in terms of productivity and less damage to the light emitting layer.
  • the chemical lift-off technology supplies an etchant to the lift-off layer when the compound semiconductor layer that forms the light emitting element is peeled from the growth substrate. It is necessary to etch from the periphery. Therefore, when the lift-off layer and the compound semiconductor layer are gradually peeled off, the internal stress caused by the difference in lattice constant and thermal expansion coefficient between the heterogeneous growth substrate and the compound semiconductor layer during growth still peels off. It has been found that there is a problem that the compound semiconductor layer is cracked by concentrating on the unexposed portion.
  • an object of the present invention is to provide a light emitting element that does not cause cracking of the compound semiconductor layer due to internal stress of the compound semiconductor layer at the time of chemical lift-off and a method for manufacturing a semiconductor element including the light emitting element.
  • a light emitting device and a method for manufacturing a light emitting device and a semiconductor device according to the present invention are configured as follows in order to achieve the above object.
  • a first method for manufacturing a semiconductor element is a method for manufacturing a semiconductor element, in which an element region including a semiconductor layer is formed on a part of a growth substrate via a lift-off layer.
  • a region forming step, a sacrificial portion forming step for forming a sacrificial portion that is not removed in the chemical lift-off step described later around the element region on the growth substrate, and the semiconductor layer and a part on the sacrificial portion are excluded.
  • a first light-emitting element manufacturing method is a light-emitting element manufacturing method comprising a semiconductor layer having a light-emitting layer, wherein the first light-emitting element is formed on a part of a growth substrate via a lift-off layer.
  • the second light emitting element manufacturing method (corresponding to claim 3) is the above method, preferably, the semiconductor layer is made of a group III nitride semiconductor in order from the growth substrate side in the element region forming step.
  • the third light-emitting element manufacturing method (corresponding to claim 4) is the above-described method.
  • a photoresist is applied to form a growth substrate on the surface of the coating layer at least on the sacrificial portion.
  • a part of the covering layer on the semiconductor layer and on the sacrificial portion is removed by photolithography.
  • the fourth light emitting element manufacturing method (corresponding to claim 5) is the above method, preferably, in the base layer forming step, the base layer includes a reflective layer on the semiconductor layer side. .
  • the first light emitting element (corresponding to claim 6) is manufactured by the manufacturing method of the first to fourth light emitting elements.
  • a second light-emitting element is a light-emitting element having a semiconductor layer having a light-emitting layer on a support portion, wherein the support portion has a concave shape, and the semiconductor layer has a concave bottom portion.
  • the support part is provided with a convex part which is formed of a base layer and is discontinuously independent at the top of the concave part.
  • the third light emitting element (corresponding to claim 8) is preferably characterized in that, in the above configuration, a leakage current when a reverse voltage of 10 volts is applied is 10 ⁇ A or less.
  • the present invention it is possible to provide a light emitting element, a light emitting element, and a method for manufacturing the semiconductor element, in which the compound semiconductor layer is not cracked due to internal stress between the growth substrate and the compound semiconductor layer at the time of chemical lift-off.
  • FIG. 1 is a cross-sectional view (a) and a top view (b) of a light-emitting element according to this embodiment of the present invention.
  • the light emitting element 40 has a configuration in which the semiconductor layer 11 including the light emitting layer 11 b is supported by the support portion 12.
  • the support part 12 is formed by plating.
  • the support portion 12 has a concave shape, and is formed with a concave portion 13 composed of a flat bottom surface (flat portion) 13a and a tapered side surface 13b, and a reflective layer 14b is formed on the surface.
  • the semiconductor layer 11 of the light emitting element 40 is placed on the flat portion 13a, and is formed so that the surface height of the base layer 14 in a region away from the flat portion 13a is higher than that of the light emitting layer 11b. Thereby, the light that has reached the side surface 13b from the light emitting layer 11b has a component emitted in the normal direction of the flat portion 13a by being reflected by the reflective layer 14b.
  • the light emitting element 40 includes a convex portion 41 formed of the base layer 14 at a position which is a part of the side surface 13b and becomes a concave top portion.
  • the convex portion 41 is a columnar portion that has been joined by the sacrificial portion during the chemical lift-off process.
  • the semiconductor layer 11 of the light emitting element 40 includes a light emitting layer 11b between an n type GaN layer (n type semiconductor layer: n type layer) 11a and a p type GaN layer (p type semiconductor layer: p type layer) 11c. .
  • a p-side electrode 23 is formed on the p-type GaN layer 11c.
  • the support portion 12 of the light emitting element 40 is formed by, for example, Ni plating or Cu plating.
  • FIG. 1 also shows the seed layer 14a when the support portion 12 is formed.
  • the seed layer 14a on the plating side of the underlayer 14 is made of palladium (Pd) when Ni plating is used, and platinum (Pt) / copper (Cu) is used when Cu plating is performed.
  • the reflective layer 14b of the light emitting element 40 is preferably made of rhodium (Rh) or ruthenium (Ru). This is because it has a high reflectance with respect to the wavelength region of the group III nitride and is not easily affected by the chemical lift-off etching solution.
  • the light emitting element 40 has the above-described configuration, and when the conventional flat support portion is used, light emitted from the light emitting layer in the lateral direction leaks in the lateral direction, and the light cannot be extracted sufficiently effectively.
  • the light reaching the side surface 13b from the light emitting layer 11b has a component emitted in the normal direction of the flat portion 13a by being reflected by the reflective layer 14 and the convex portion 41, so that the light is sufficiently effective. Can be taken out.
  • the structure in which the reflective portion is provided in the side surface direction of the semiconductor layer via the insulating film on the conventional support portion is not the structure in which the insulating film is provided on the support portion 12.
  • the reflection layer 14 is directly provided on the support portion 12. Accordingly, the light emitting element 10 has a simple structure, and the light emitting element 40 can be easily manufactured as described below.
  • the n-type and p-type semiconductor layers 11 used in the light emitting element 40 are obtained by epitaxial growth on a growth substrate. However, in the light-emitting element 40 that is actually manufactured, the growth substrate is removed, and a support 12 different from the growth substrate is connected to the side opposite to the side where the growth substrate was present.
  • FIG. 2 is a flowchart showing a process for manufacturing a light emitting device according to this embodiment of the present invention.
  • 3 and 4 are cross-sectional views of the substrate at each step of the method for manufacturing a light emitting device according to the embodiment of the present invention.
  • a light emitting diode (LED) made of a gallium nitride (GaN) material is manufactured as the light emitting element will be described.
  • This LED is a laminate of an n-type layer, a light emitting layer, and a p-type layer.
  • FIG. 1 the configuration of only one LED element is shown.
  • a plurality of LEDs can be formed on a single support, and can be individually separated after element formation, or These can be connected in series or in parallel.
  • the semiconductor element manufacturing method includes a compound semiconductor layer forming process (step S31), an element region forming process (step S32), a sacrificial part forming process (step S33), and a covering process (step S34). , Window forming step (step S35), underlayer forming step (step S36), plating step (step S37), coating layer removing step (step S38), chemical lift-off step (step S39), and sacrificial portion removal.
  • a lift-off layer (metal buffer layer) and a compound semiconductor layer on the lift-off layer are formed on the growth substrate.
  • the lift-off layer 21 is formed on the growth substrate 20.
  • an AlN template substrate (a substrate having an AlN layer on the surface of sapphire) is particularly preferably used.
  • the lift-off layer 21 on this for example, scandium (Sc) or chromium (Cr) can be used.
  • the lift-off layer 21 can be formed by sputtering, vacuum deposition, or the like.
  • the lift-off layer 21 is nitrided by heating in an ammonia atmosphere, for example, an ammonia atmosphere.
  • an ammonia atmosphere for example, an ammonia atmosphere.
  • a scandium nitride layer metal nitride layer: ScN layer
  • a chromium nitride layer metal nitride layer: CrN layer
  • Sc ScN layer
  • an n-type GaN layer (n-type semiconductor layer: n-type layer) 11a, a light emitting layer 11b, and a p-type GaN layer (p-type semiconductor layer: p-type layer) 11c are sequentially formed on the lift-off layer 21 ( Epitaxial growth process).
  • This film formation is performed, for example, by metal organic chemical vapor deposition (MOCVD), and the n-type layer 11a is doped with an impurity serving as a donor, and the p-type layer 11c is doped with an impurity serving as an acceptor.
  • MOCVD metal organic chemical vapor deposition
  • step S32 At least a part of the compound semiconductor layer (laminated body) 11 is removed by etching to simultaneously form the element region 11d and the separation groove 22 (FIG. 3B).
  • the separation groove 22 has a depth reaching the surface of the growth substrate 20 from the upper side (p-type layer 11c side) in FIG. Thereby, the stacked body 11 is divided on the substrate 20.
  • FIG. 3B a cross section in one direction is shown, but the separation groove 22 is also formed in a different direction, and a plurality of element regions 11d surrounded by the separation groove 22 are formed. The Thereby, the chemical lift-off etching solution can be supplied to the lift-off layer in each element region.
  • the element region 11d is preferably circular. This is because the undissolved region is uniformly reduced during etching in the chemical lift-off process, and the generation of cracks due to stress concentration at the outer periphery of the element region can be suppressed.
  • the element separation planned line of the separation groove is preferably a polygon, and particularly preferably a quadrangle. This is because the element can be easily separated by dicing or the like and used for forming the sacrificial portion.
  • the separation groove 22 is formed as follows, for example.
  • a SiO 2 film is formed on the compound semiconductor layer 11 by CVD, patterned using a resist, and etched with BHF to form a SiO 2 mask. Thereafter, dry etching of the compound semiconductor layer is performed using SiO 2 as a mask until the growth substrate is exposed. Thereafter, the SiO 2 mask is removed using BHF.
  • a material that can make ohmic contact with the p-type layer 11 c is formed as the p-side electrode 23 on the entire surface of the p-type layer 11 c existing on the uppermost surface.
  • Ni / Au 50 ⁇ / 200 ⁇
  • Ni / Au is deposited by sputtering or vapor deposition and annealed.
  • a sacrificial part 42 made of a material that is not removed in the chemical lift-off process and having a height lower than the surface of the semiconductor layer 11 is formed around the element region on the growth substrate 20 (see FIG. FIG. 3 (b)).
  • the material of the sacrificial portion 42 is a material that can secure adhesion to the growth substrate 20 and the subsequent underlayer 14, is not removed in the chemical lift-off process, and can be easily removed without adversely affecting the other after the chemical lift-off process.
  • chromium (Cr) or silicon dioxide (SiO 2 ) can be used.
  • the periphery of the element region on the growth substrate 20 is a portion that is not continuous with the element region on the growth substrate exposed by the separation groove 22 and is discontinuously and independently arranged at a position symmetrical to the element region. There is a need. This is because if the sacrificial portion 42 blocks the lift-off layer 21 from the outside, the chemical lift-off process in the chemical lift-off process is blocked, so that the chemical lift-off takes time and productivity is deteriorated.
  • the covering layer 24 is covered so that the growth substrate 20, the semiconductor layer 11, and the sacrificial portion 42 are covered and the height of the surface in the region away from the element region is lower than the surface of the light emitting layer 11b. It is preferable to form (FIG. 3C).
  • the coating layer 24 is preferably made of a photoresist that can obtain the above-described shape depending on the coating conditions and is easily dissolved and removed.
  • the height of the side surface 13b of the reflective layer 14 after being turned upside down after the chemical lift-off process is such that the height of the coating surface is lower than the surface of the light emitting layer 11b with the growth substrate side as the bottom. Is lower than the light emitting layer 11b in a region away from the element region.
  • the light emitted from the active layer in the horizontal direction can be reflected by the side surface 13b and extracted in the vertical direction.
  • the description is given using the portion having the sacrifice portion.
  • the height of the surface of the coating layer 24 in the region away from the element region also emits light similarly in the location without the sacrifice portion.
  • the covering layer 24 is preferably formed so as to be lower than the surface of the layer 11b. That is, after separating the element region into individual elements, the height of the side surface 13b of the reflective layer 14 surrounding the active layer in the element region is set to be lower than the entire 360 degrees in the horizontal direction of the active layer. The height is preferably higher than that of the light emitting layer 11b.
  • step S35 the covering layer 24 on the semiconductor layer 11 and the surface of the sacrificial portion 42 is removed, and the window 25 and the window 43 are formed (FIG. 3D).
  • This window forming step (step S35) is performed by photolithography if the covering step is a photoresist. Any method may be used as long as the growth substrate can be covered as described above except for a part on the semiconductor layer and the sacrificial portion, and without distinguishing between the window forming step and the covering step as in this embodiment. It is good also as a coating process.
  • the underlayer 14 is formed on the surface of the coating layer 24, the surface of the semiconductor layer 11 (including the surface of the p-side electrode 23), and the sacrificial portion 42.
  • the underlayer has good adhesion to the semiconductor layer 11 and the sacrificial portion 42, and serves as a seed in the plating method. It is preferable that the semiconductor layer side of the base layer is not attacked by the etching solution for the covering layer, the lift-off layer, and the sacrificial portion. Further, when the base layer 14 has a function of reflecting light from the light emitting layer, it can be composed of a seed layer 14a and a reflective layer 14b.
  • the reflective layer 14b is, for example, a surface on the semiconductor layer side.
  • the seed layer 14a preferably uses palladium (Pd) on the surface on the plating side when Ni plating is used in the next plating step, and Pt / Cu when Cu plating is used. A part of the base layer 14 that forms a bond with the sacrificial portion 42 becomes the convex portion 41.
  • the support portion 12 is formed by plating on the reflective layer 14 (FIG. 3 (f)).
  • the type of plating may be any metal that can be plated and is different from the lift-off layer and the sacrificial part.
  • Ni plating or Cu plating is preferable.
  • the plating method may be dry plating or wet plating.
  • the covering layer 24 is removed (FIG. 4G).
  • a photoresist solution By dipping in a photoresist solution, the gap between the semiconductor layer 11 and the growth substrate 20 that has been blocked by the coating layer 24 is restored, and an etching solution intrusion path in a subsequent chemical lift-off process is formed.
  • the photoresist solution need not affect at least the sacrificial part, and is selected according to the type of the photoresist. For example, an organic solvent such as acetone can be used.
  • step S39 the semiconductor layer 11 and the growth substrate 20 are separated (FIG. 4 (h)).
  • step S39 for example, the lift-off layer 21 is dissolved by immersing the substrate 50 supported by plating in hydrochloric acid and performing chemical etching (FIG. 4 (h)).
  • step S39 the convex portion 41 and the sacrificial portion 42 on the side surface are joined to form a column, so even if the undissolved portion is reduced by etching the lift-off layer 21, the growth substrate side
  • the semiconductor layer 11 can be peeled from the growth substrate 20 so that the deformation on the semiconductor layer side is suppressed, the stress applied to the semiconductor layer 11 is relaxed, and cracks are not generated.
  • the sacrificial portion removing step (step S40) is performed by, for example, Cr selective etching solution (cerium ammonium nitrate) when the sacrificial portion is Cr, for example, BHF (buffered hydrofluoric acid) when the sacrificial portion is silicon dioxide (SiO 2 ).
  • Cr selective etching solution cerium ammonium nitrate
  • BHF buffered hydrofluoric acid
  • the sacrificial part 42 is melted by performing chemical etching using the above, and the growth substrate 20 is peeled off. Since the semiconductor layer has already been separated by chemical lift-off, the sacrificial part maintaining the bonding can be mechanically peeled off, but it is preferable to use etching because it is less likely to cause extra deposits.
  • step S41 After the sacrificial portion removal process, light is effectively passed through an n-type electrode formation process (step S41), an element isolation process (not shown) such as dicing in an element isolation scheduled line, and a wire bonding process (step S42).
  • a vertical LED (semiconductor element) that can be taken out can be manufactured. It is more preferable to form a protective film that covers the entire element region except on the n-type electrode. This is to prevent leakage between the side surface 13a of the support portion and the semiconductor layer.
  • the AlN template substrate is used as the growth substrate 20.
  • the growth substrate 20 in addition to the AlN template substrate, high-quality GaN, AlN, and AlGaN are provided via the buffer layer 21 and the like.
  • Other materials such as sapphire and SiC can be used as long as they can grow a group III nitride semiconductor such as BAlInGaN (n-type layer 11a, light-emitting layer 11b, and p-type layer 11c). is there.
  • the same kind of group III nitride substrate may be used, but internal stress is not generated easily, and internal stress is generated when lift-off is performed using a growth substrate that generates internal stress with a semiconductor layer to be grown, that is, a heterogeneous growth substrate. It is particularly effective as a method for controlling the above.
  • the laminated body is described as being composed of the n-type layer 11a, the light emitting layer 11b, and the p-type layer 11c, both of which are made of a GaN-based material.
  • a semiconductor device such as a HEMT, a diode using a simple pn junction, a light emitting diode (LED) or a laser diode is similarly provided by providing a light emitting layer (active layer) between an n-type layer and a p-type layer. It is also clear that it can be manufactured.
  • the n-type layer and the p-type layer are not GaN, but other group III nitride semiconductors such as Al a In b Ga 1-ab N (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, a + b ⁇ 1) ).
  • group III nitride semiconductors such as Al a In b Ga 1-ab N (0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1, a + b ⁇ 1) ).
  • an n-type layer 11a, an active layer, and a p-type layer 11c are formed in this order.
  • step S39 when Cr was used as the lift-off layer 21, a chemical lift-off process (step S39).
  • sodium permanganate or potassium permanganate may be used as the lift-off layer etching solution used in the above.
  • SiO 2 may be used instead of Cr as the sacrificial layer 42 in the sacrificial portion forming step (step S33).
  • BHF may be used as a sacrificial layer etchant used in the sacrificial portion removing step (step S40).
  • the type of the sacrificial layer and the etchant that can maintain the bonding without being etched in the chemical lift-off process is selected.
  • Non-doped AlGaN, Si-doped n-type AlGaN layer (1.5 ⁇ m), MQW active layer (0.1 ⁇ m), and Mg-doped p-type AlGaN layer (0.3 ⁇ m) are sequentially formed on the ScN layer by MOCVD.
  • a film was formed.
  • a SiO 2 film is formed on the p-type AlGaN layer by CVD, patterning is performed using a resist, an SiO 2 mask is formed by etching with BHF, a compound semiconductor layer is dry-etched, and an AlN template substrate is formed. Etching was performed until exposed. Thereafter, the SiO 2 mask was removed using BHF to form a circular element region having a diameter of 850 ⁇ m.
  • Ni / Au 50/200 mm was formed as a p-side electrode on the p-type layer in the element region, and annealed at 550 ° C. for 15 minutes.
  • a Cr (200 mm) layer having a diameter of about 95 ⁇ m was formed as a sacrificial layer at four corners at intervals from the element region on the AlN template substrate exposed by dry etching.
  • a photoresist was spin coated as the coating layer, and patterning was performed so that the element region and the sacrificial layer were exposed.
  • the exposed portion of the element region has a diameter of 840 ⁇ m, and the exposed portion of the sacrificial layer has a diameter of 90 ⁇ m.
  • the thickness of the photoresist remaining on the outer periphery of the sacrificial layer after patterning was about 2 ⁇ m, and the height of the photoresist surface from the growth substrate was lower than that of the active layer.
  • Pt / Au / Pt / Pd 250 ⁇ / 5500 ⁇ / 250 ⁇ / 150 ⁇ was sequentially formed as a base layer on the coating layer and the exposed element region and sacrificial layer by sputtering.
  • Ni was plated on the underlayer using a commercially available Ni electroless plating solution to form a Ni support having a thickness from the flat bottom of 100 ⁇ m.
  • the photoresist in the coating layer was removed by immersion in acetone.
  • the chemical lift-off process the growth substrate and the semiconductor layer are separated.
  • the lift-off layer was chemically etched by being immersed in hydrochloric acid for 24 hours, and the AlN template plate and the semiconductor layer were separated by removing the lift-off layer.
  • the connection between the AlN template substrate and the Ni support is maintained via the sacrificial layer and the base layer.
  • the sacrificial layer was immersed in a cerium ammonium nitrate solution in the sacrificial layer removing process, and the sacrificial layer was removed by etching to separate the support (underlayer) and the AlN template substrate.
  • Example 2 A sacrificial layer was not formed, and the same procedure as in Example was performed except that the photoresist was patterned so that only the element region was exposed in the covering layer forming step. In the chemical lift-off process, the support portion and the AlN template substrate are separated, and there is no sacrificial layer removal process.
  • FIG. 5 shows that in the comparative example after peeling off the substrate, cracks occurred in the center of the compound semiconductor layer after peeling off the AlN template substrate in 9 out of 10 pieces using a metal microscope and an electron microscope.
  • stress concentration between the substrate, the compound semiconductor layer, and the support portion in a minute region that is etched from the outer periphery of the compound semiconductor layer and remains in the central portion immediately before the AlN template substrate is peeled off cracks occur after peeling. It is thought that it was observed.
  • FIG. 5 shows that in the comparative example after peeling off the substrate, cracks occurred in the center of the compound semiconductor layer after peeling off the AlN template substrate in 9 out of 10 pieces using a metal microscope and an electron microscope.
  • the light-emitting element, the light-emitting element, and the method for manufacturing a semiconductor element according to the present invention are used as an LED optical element and a method for manufacturing the LED optical element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 ケミカルリフトオフ時に化合物半導体層の内部応力による化合物半導体層の割れが生じない発光素子と発光素子および半導体素子の製造方法を提供する。 発光素子の製造方法は、成長基板上の一部に、リフトオフ層を介して、半導体層からなる素子領域を形成する素子領域形成工程と、ケミカルリフトオフ工程において除去されない材料で構成された犠牲部を、成長基板上の素子領域の周囲に形成する犠牲部形成工程と、成長基板及び半導体層を覆い、素子領域から離れた領域におけるその表面の高さが発光層表面よりも低くなるように、被覆層を形成する被覆工程と、半導体層上における被覆層と犠牲部表面における被覆層とを除去する窓形成工程と、被覆層表面及び半導体層表面に反射層を形成する反射層形成工程と、反射層上にめっきを施すことによって支持部を形成するめっき工程と、を具備する。

Description

発光素子と発光素子および半導体素子の製造方法
 本発明は、発光素子と発光素子および半導体素子の製造方法に関し、特に、支持部上にp型半導体層とn型半導体層が積層された構成をもつ発光素子と発光素子の製造方法に関するものである。
 III族窒化物半導体は、そのバンドギャップが広いために、青色、緑色等のLED(発光ダイオード)、LD(レーザーダイオード)等の発光素子の材料として広く用いられている。こうした発光素子においては、p型の半導体層(p型層)とn型の半導体層(n型層)とがエピタキシャル成長によって積層されて構成される。
 良質かつ低コストでこの構造を製造するためには、III族窒化物半導体以外の材料からなる成長基板上にp型層とn型層をエピタキシャル成長することによって得ることが一般的に行われている。この場合、特に良質の半導体層を得るためには、使用できる成長基板の材料は限られる。例えば、III族窒化物半導体の代表である窒化ガリウム(GaN)は、MOCVD(有機金属気相成長)法やHVPE(ハイドライド気相成長)等によって、SiC、サファイア等からなる異種成長基板上に成長させることができる。
 しかしながら、サファイアは絶縁体であるため、その上に積層される半導体層の上面に2つの電気接触部を設ける必要があり、導電体基板に比べて同一基板面積における有効発光面積を狭めるとともに、同一面に両電極を有するため、電流密度が局部的に高くなり、発熱に起因して素子の劣化を招くという問題があった。
 そこで、特許文献1には、レーザーリフトオフ技術を利用した発光素子の製造方法が開示されており、特許文献2には、ケミカルリフトオフ技術を利用した発光素子の製造方法が開示されている。これらの製造方法においては、サファイア基板上にn型層、p型層、p側電極を順次形成した後で、p側電極側に導電性の支持部を新たに形成し、サファイア基板を剥離する。
 このようなリフトオフ技術を用いた垂直型の発光素子では、熱伝導率などが最適化された他の材料からなる支持部を用いることができるため、高い放熱性や信頼性も得ることができる。
特開2008-53685号 再公表2006―126330号
 ケミカルリフトオフ技術はレーザーリフトオフ技術に比べて生産性や発光層へのダメージが少ない点で優れている。しかしながら、レーザーリフトオフ技術とは異なり、ケミカルリフトオフ技術によれば、成長基板から発光素子を形成する化合物半導体層を剥離するときに、リフトオフ層にエッチング液を供給し、エッチング液が接触するリフトオフ層の周辺からエッチングしていく必要がある。そのため、徐々にリフトオフ層と化合物半導体層が剥離していく際に、成長時に異種成長基板と化合物半導体層との間の格子定数や熱膨張係数の違いにより生じている内部応力が、未だ剥離していない部分に集中し、化合物半導体層に割れが生じてしまうという問題点があることが分かった。
 本発明の目的は、上記の課題に鑑み、ケミカルリフトオフ時に化合物半導体層の内部応力による化合物半導体層の割れが生じない発光素子と発光素子を含む半導体素子の製造方法を提供することにある。
 本発明に係る発光素子と発光素子および半導体素子の製造方法は、上記の目的を達成するため、次のように構成される。
 第1の半導体素子の製造方法(請求項1に対応)は、半導体素子の製造方法であって、成長基板上の一部に、リフトオフ層を介して、半導体層からなる素子領域を形成する素子領域形成工程と、後記ケミカルリフトオフ工程で除去されない犠牲部を前記成長基板上の前記素子領域の周囲に形成する犠牲部形成工程と、前記半導体層上および前記犠牲部上の一部を除いた前記成長基板上を覆う被覆層を形成する被覆工程と、前記半導体層上および前記犠牲部上の一部および被覆層表面を含む前記成長基板上の表面に下地層を形成する下地層形成工程と、前記下地層上にめっきを施すことによって支持部を形成するめっき工程と、前記被覆層を溶解除去する被覆層除去工程と、前記リフトオフ層を溶解除去することにより、前記半導体層と前記成長基板とを分離するケミカルリフトオフ工程と、前記ケミカルリフトオフ工程の後に、前記犠牲部において前記成長基板と前記下地層とを分離する犠牲部除去工程と、を具備することを特徴とする。
 第1の発光素子の製造方法(請求項2に対応)は、発光層を有する半導体層を具備する発光素子の製造方法であって、成長基板上の一部に、リフトオフ層を介して、前記半導体層からなる素子領域を形成する素子領域形成工程と、後記ケミカルリフトオフ工程で除去されない犠牲部を前記成長基板上の前記素子領域の周囲に形成する犠牲部形成工程と、前記半導体層上および前記犠牲部上の一部を除いた前記成長基板上を覆う被覆層を形成する被覆工程と、前記半導体層上および前記犠牲部上の一部および被覆層表面を含む前記成長基板上の表面に下地層を形成する下地層形成工程と、前記下地層上にめっきを施すことによって支持部を形成するめっき工程と、前記被覆層を溶解除去する被覆層除去工程と、前記リフトオフ層を溶解除去することにより、前記半導体層と前記成長基板とを分離するケミカルリフトオフ工程と、前記ケミカルリフトオフ工程の後に、前記犠牲部において前記成長基板と前記下地層とを分離する犠牲部除去工程と、を具備することを特徴とする。
 第2の発光素子の製造方法(請求項3に対応)は、上記の方法において、好ましくは、前記半導体層は、前記素子領域形成工程において、前記成長基板側から順にIII族窒化物半導体からなるn型層、発光層、p型層を具備することを特徴とする。
 第3の発光素子の製造方法(請求項4に対応)は、上記の方法において、好ましくは、前記被覆工程は、フォトレジストを塗布することにより、少なくとも犠牲部上の前記被覆層表面の成長基板からの高さが前記発光層よりも低くなるように被覆され、前記被覆層の前記半導体層上および前記犠牲部上の一部をフォトリソグラフィによって除去されることを特徴とする。
 第4の発光素子の製造方法(請求項5に対応)は、上記の方法において、好ましくは、前記下地層形成工程において、前記下地層は前記半導体層側に反射層を含むことを特徴とする。
 第1の発光素子(請求項6に対応)は、上記第1~第4の発光素子の製造方法によって製造されたことを特徴とする。
 第2の発光素子(請求項7に対応)は、支持部の上に発光層を具備する半導体層を有する発光素子において、前記支持部は凹形状を有し、前記半導体層は凹形状の底部に下地層を介して接続され、前記支持部は凹形状の頂部に、下地層からなり不連続に独立した凸部を具えることを特徴とする。
 第3の発光素子(請求項8に対応)は、上記の構成において、好ましくは、10ボルトの逆方向電圧を印加したときのリーク電流が10μA以下であることを特徴とする。
 本発明によれば、ケミカルリフトオフ時に成長基板と化合物半導体層との間の内部応力による化合物半導体層の割れが生じない発光素子と発光素子および半導体素子の製造方法を提供することができる。
本発明の本実施形態に係る発光素子の断面図である。 本発明の本実施形態に係る発光素子を製造する工程を示すフローチャートである。 本発明の本実施形態に係る発光素子の製造方法の各工程での基板の断面図である。 本発明の本実施形態に係る発光素子の製造方法の各工程での基板の断面図である。 本実施例に係る犠牲層除去工程後の支持部側の化合物半導体層表面を観察した顕微鏡写真である。
 以下に、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。
 図1は、本発明の本実施形態に係る発光素子の断面図(a)と上面図(b)である。発光素子40は、発光層11bを具備する半導体層11が支持部12に支持された構成を具備している。発光素子40では、支持部12は、めっきで形成されている。支持部12は凹状であり、平坦な底面(平坦部)13aとテーパー形状の側面13bで構成された凹部13が形成され、かつ表面には反射層14bが形成されている。また、発光素子40の半導体層11は平坦部13aに載置され、平坦部13aから離れた領域における下地層14の表面の高さが発光層11bよりも高くなるように形成されている。それにより、発光層11bから側面13bに達した光は、反射層14bで反射されることによって平坦部13aの法線方向に発される成分をもつ。さらに、この発光素子40では、側面13bの一部であり、凹状の頂部となる位置に、下地層14で形成された凸部41を具備している。この凸部41は、ケミカルリフトオフ工程の際に犠牲部により接合を維持していた柱状の部分である。
 発光素子40の半導体層11は、n型GaN層(n型半導体層:n型層)11a、p型GaN層(p型半導体層:p型層)11cの間に発光層11bを備えている。p型GaN層11cにはp側電極23が形成されている。
 発光素子40の支持部12は、例えばNiめっきやCuめっきにより形成されている。また、図1には、支持部12を形成するときのシード層14aが示されている。下地層14のめっき側であるシード層14aは、Niめっきのときにはパラジウム(Pd)が用いられ、Cuめっきのときには白金(Pt)/銅(Cu)が用いられる。
 発光素子40の反射層14bは、ロジウム(Rh)やルテニウム(Ru)を用いることが好ましい。III族窒化物の波長領域に対して高い反射率を有し、ケミカルリフトオフのエッチング液に侵されにくいからである。
 発光素子40は、上記構成により、従来の平坦な支持部を用いた場合では発光層から横方向へ放出する光は、横方向へと漏れてしまい、光を十分効果的に取り出すことはできなかったものが、発光層11bから側面13bに達した光は、反射層14と凸部41で反射されることによって平坦部13aの法線方向に発される成分をもつことにより、光を十分効果的に取り出すことができる。
 また、本実施形態に係る発光素子40では、従来の支持部上の絶縁膜を介して半導体層の側面方向に反射部を設けた構造ではなく、支持部12上に絶縁膜を介した構造ではなく、支持部12上に直接反射層14を設けた構成となっている。それにより、発光素子10は、構造が単純で、以下に説明するように発光素子40は、簡単に製造することができる。
 以下、本発明の本実施形態に係る発光素子40の製造方法について説明する。この発光素子40において用いられるn型、p型の半導体層11は、成長基板上にエピタキシャル成長することによって得られる。ただし、実際に製造される発光素子40においては、この成長基板は除去され、成長基板があった側と反対側に成長基板とは異なる支持部12が接続される。
 図2は、本発明の本実施形態に係る発光素子を製造する工程を示すフローチャートである。図3と図4は、本発明の実施形態に係る発光素子の製造方法の各工程での基板の断面図である。ここでは、この発光素子として、窒化ガリウム(GaN)系材料を材料とする発光ダイオード(LED)を製造する場合につき説明する。このLEDはn型層と発光層、p型層の積層体であり。また、図1においてはLEDの1素子分だけの構成が示されているが、実際には、単一の支持部上に複数のLEDを形成することができ、素子形成後に個々に分離、または、これらを直列あるいは並列に接続して使用することができる。
 本実施形態に係る半導体素子の製造方法は、化合物半導体層形成工程(ステップS31)と、素子領域形成工程(ステップS32)と、犠牲部形成工程(ステップS33)と、被覆工程(ステップS34)と、窓形成工程(ステップS35)と、下地層形成工程(ステップS36)と、めっき工程(ステップS37)と、被覆層除去工程(ステップS38)と、ケミカルリフトオフ工程(ステップS39)と、犠牲部除去工程(ステップS40)と、n型電極形成工程(ステップS41)と、ワイヤボンディング工程(ステップS42)と、を有している。
 化合物半導体層形成工程(ステップS31)では、成長基板上に、リフトオフ層(金属バッファー層)と、リフトオフ層上の化合物半導体層を形成する。まず、図3(a)に示されるように、成長基板20上に、リフトオフ層21を形成する。成長基板20としては、AlNテンプレート基板(サファイアの表面にAlN層を有する基板)が特に好ましく用いられる。また、この上のリフトオフ層21としては、例えばスカンジウム(Sc)やクロム(Cr)を用いることができる。リフトオフ層21の成膜は、スパッタリング法、真空蒸着法等により行うことができる。
 次に、この状態で窒化処理、例えばアンモニア雰囲気で加熱することにより、リフトオフ層21は窒化され、例えば窒化スカンジウム層(金属窒化物層:ScN層)や窒化クロム層(金属窒化物層:CrN層)となる。なお、リフトオフ層21にSc(ScN層)を用いた場合を例に以下説明する。
 次に、リフトオフ層21上に、n型GaN層(n型半導体層:n型層)11a、発光層11b、p型GaN層(p型半導体層:p型層)11cを順次成膜する(エピタキシャル成長工程)。この成膜は、例えば有機金属気相成長法(MOCVD法)で行われ、n型層11aにはドナーとなる不純物が、p型層11cにはアクセプタとなる不純物がそれぞれドーピングされる。
 素子領域形成工程(ステップS32)では、少なくとも化合物半導体層(積層体)11の一部を、エッチングにより除去して素子領域11dと分離溝22を同時に形成する(図3(b))。図3(b)に示されるように、分離溝22は、図3中の上側(p型層11c側)から、成長基板20表面に達する深さをもつ。これにより、積層体11は基板20上で分断される。図3(b)においては、一方向における断面が示されているが、この分離溝22はこれと異なる方向にも形成され、分離溝22で囲まれた複数の領域の素子領域11dが形成される。これにより、ケミカルリフトオフのエッチング液を各素子領域のリフトオフ層に供給することができる。なお、素子領域11dは円形が好ましい。ケミカルリフトオフ工程でのエッチング時に未溶解領域が均等に縮小され、素子領域の外周部での応力集中によるクラック発生を抑制できるためである。なお、分離溝の素子分離予定ラインは多角形が好ましく、特に四角形が好ましい。ダイシング等での素子分離が容易であり、かつ、犠牲部の形成に用いるためである。
 分離溝22の形成は、例えば、次のようにして行われる。化合物半導体層11にCVDによりSiOを成膜して、レジストを用いてパターニングを行い、BHFでエッチングすることで、SiOのマスクを形成する。その後、SiOをマスクとして化合物半導体層のドライエッチングを行い、成長基板が露出するまで、エッチングを行う。その後、BHFを使用してSiOマスクを除去する。
 次に、最上面に存在するp型層11cの全面に、p側電極23として、p型層11cとオーミック性接触のとれる材料を成膜する。例えば、Ni/Au(50Å/200Å)をスパッタまたは蒸着により成膜し、アニールを行う。
 犠牲部形成工程(ステップS33)では、ケミカルリフトオフ工程において除去されない材料で構成され、その高さが半導体層11表面よりも低い犠牲部42を、成長基板20上の素子領域の周囲に形成する(図3(b))。犠牲部42の材料としては、成長基板20や後の下地層14との密着性を確保でき、ケミカルリフトオフ工程において除去されず、かつケミカルリフトオフ工程後に他に悪影響を与えず容易に除去できる材料であれば良く、例えば、クロム(Cr)または二酸化けい素(SiO)が使用できる。
 成長基板20上の素子領域の周囲とは、分離溝22により露出した成長基板上で素子領域とは連続しない箇所であり、素子領域に対して対称な位置に不連続に独立して配置される必要がある。犠牲部42が外界からリフトオフ層21を塞いでしまうとケミカルリフトオフ工程でのエッチング液の浸入経路が遮られるためケミカルリフトオフに時間がかかり、生産性が悪化するためである。
 被覆工程(ステップS34)では、成長基板20と半導体層11と犠牲部42を覆い、素子領域から離れた領域におけるその表面の高さが発光層11b表面よりも低くなるように、被覆層24を形成する(図3(c))ことが好ましい。被覆層24は、塗布条件により上記の形状を得ることができ、溶解除去が容易なフォトレジストを用いることが好ましい。
 成長基板側を下として、被膜表面の高さが発光層11b表面よりも低くなるようにすることにより、ケミカルリフトオフ工程後に上下逆転した後の反射層14の側面13bの高さが、支持部側を下として素子領域から離れた領域において発光層11bよりも高くなる。これにより、活性層から水平方向に向かう発光を側面13bで反射させて垂直方向に取り出すことが出来る。なお、図では犠牲部を有している箇所を用いて説明しているが、犠牲部を有さない場所においても同様に、素子領域から離れた領域における被覆層24の表面の高さが発光層11b表面よりも低くなるように、被覆層24を形成することが好ましい。つまり、素子領域を個々の素子に分離した後に、素子領域の活性層を取り囲む、反射層14の側面13bの高さが、活性層の水平方向の360度全体に対して支持部側を下として発光層11bよりも高くなることが好ましい。
 窓形成工程(ステップS35)では、半導体層11上と犠牲部42表面における被覆層24を除去し、窓25と窓43を形成する(図3(d))。この窓形成工程(ステップS35)は、被覆工程がフォトレジストならばフォトリソグラフィによって行われる。なお、半導体層上および犠牲部上の一部を除いて成長基板上を上記のように覆うことができればいかなる方法でもよく、本実施形態のように窓形成工程と被覆工程とを区別せずに被覆工程としても良い。
 下地層形成工程(ステップS36)では、被覆層24表面及び半導体層11表面(p側電極23表面を含む)と犠牲部42に下地層14を形成する。下地層は、半導体層11および犠牲部42との良好な密着性を持ち、かつ、めっき法でのシードの役目を果たすものである。下地層の半導体層側は、被覆層、リフトオフ層、犠牲部の各エッチング液に対し侵されないことが好ましい。さらに、下地層14に発光層からの光の反射機能を持たせる場合は、シード層14aと反射層14bとから構成することが可能であり、その場合の反射層14bは例えば半導体層側の表面をロジウム(Rh)またはルテニウム(Ru)等の白金族とすることができ、下地層形成工程(ステップS36)において、半導体層側から反射層14b、シード層14aの順に形成すればよい(図3(e))。シード層14aは、次のめっき工程でNiめっきを用いる場合はめっき側の表面にパラジウム(Pd)を用い、Cuめっきを用いる場合はPt/Cuを用いることが好ましい。なお、犠牲部42との接合を形成した下地層14の一部が凸部41となる。
 めっき工程(ステップS37)では、反射層14上にめっきを施すことによって支持部12を形成する(図3(f))。めっきの種類はめっきが可能でリフトオフ層や犠牲部と異なる金属であればよく、例えば、Niめっき、またはCuめっきが好ましい。めっき方法は乾式めっきでも湿式めっきでもよい。
 被覆層除去工程(ステップS38)では、被覆層24を除去する(図4(g))。フォトレジストの溶解液に浸漬することで、被覆層24で塞いでいた半導体層11と成長基板20との間の隙間を復活させ、後のケミカルリフトオフ工程でのエッチング液の浸入経路を形成する。フォトレジストの溶解液は少なくとも犠牲部等に影響が無ければよく、フォトレジストの種類により選択し、例えばアセトンなどの有機溶媒などが利用できる。
 ケミカルリフトオフ工程(ステップS39)では、半導体層11と成長基板20とを分離する(図4(h))。ケミカルリフトオフ工程(ステップS39)は、例えば、めっきで支持した基板50を塩酸に浸漬してケミカルエッチングを行うことによりリフトオフ層21を溶解する(図4(h))。このケミカルリフトオフ工程(ステップS39)においては、側面の凸部41と犠牲部42が接合されて柱のようになっているため、リフトオフ層21のエッチングにより未溶解部分が縮小しても成長基板側と半導体層側の変形が抑制され、半導体層11にかかる応力が緩和され、割れが生じないようにして、成長基板20から半導体層11を剥離することができる。
 犠牲部除去工程(ステップS40)は、例えば、犠牲部がCrの場合はCr選択エッチング液(硝酸セリウムアンモニウム)、例えば、犠牲部が二酸化けい素(SiO)の場合はBHF(バッファードフッ酸)を用いて、ケミカルエッチングを行うことにより犠牲部42を溶解し、成長基板20を剥離する。既にケミカルリフトオフにより半導体層が分離しているため、接合を維持している犠牲部は機械的に剥離することも可能だが、エッチングを用いた方が余分な付着物が生じにくく好ましい。
 犠牲部除去工程後には、n型電極形成工程(ステップS41)と素子分離予定ラインでのダイシング等による素子分離工程(図示せず)、ワイヤボンディング工程(ステップS42)を経て、光を効果的に取り出すことができる垂直型のLED(半導体素子)を製造することができる。なお、n型電極上を除き素子領域全体を覆う保護膜を形成することがより好ましい。支持部の側面13aと半導体層との間のリークを防ぐためである。
 なお、上記実施形態においては、成長基板20として、AlNテンプレート基板を用いて説明したが、成長基板20としては、AlNテンプレート基板以外にも、バッファ層21等を介して良質のGaNやAlN、AlGaN、BAlInGaNなどのIII族窒化物半導体(n型層11a、発光層11b、p型層11c)を成長させることができるものであれば、他の材料、例えばサファイアやSiC等を用いることも可能である。同種のIII族窒化物基板を用いても良いが内部応力の発生がすくなく、成長させる半導体層との間に内部応力を発生する成長基板、つまり異種成長基板を用いてリフトオフをする場合の内部応力を制御する方法として特に有効である。
 なお、上記の例では、積層体は、共にGaN系材料からなるn型層11a、発光層11b、p型層11cで構成されるものとして説明した。しかしながら、この他の場合であっても、同様の効果を奏することは明らかである。例えば、HEMTなどの半導体デバイスや、単純なpn接合を利用したダイオードや、n型層とp型層との間に発光層(活性層)を設けて発光ダイオード(LED)やレーザーダイオードを同様に製造できることも明らかである。また、n型層やp型層はGaNではなく、他のIII族窒化物半導体、例えばAlInGa1-a-bN(0≦a≦1、0≦b≦1、a+b≦1)としてもよい。発光素子の場合には、例えばエピタキシャル成長工程において、n型層11a、活性層、p型層11cの順に形成する。
 また、上記実施形態においては、化合物半導体層形成工程(ステップS31)におけるリフトオフ層21としてScを用いて説明したが、例えばリフトオフ層21としてCrを用いた場合には、ケミカルリフトオフ工程(ステップS39)で用いるリフトオフ層エッチング液として過マンガン酸ナトリウムまたは過マンガン酸カリウム等を用いればよい。そのときは、犠牲部形成工程(ステップS33)における犠牲層42としてCrではなくSiOを用いればよい。そのときには、犠牲部除去工程(ステップS40)で用いる犠牲層エッチング液としてBHFを用いればよい。このように、リフトオフ層21の種類によって、ケミカルリフトオフ工程ではエッチングされずに接合を維持できる犠牲層とエッチング液の種類を選択する。
(実施例)
 サファイア上にMOCVD法を用いてAlN単結晶層(厚さ1μm)を成長させたAlN(0001)テンプレート基板面上にリフトオフ層として100Åの膜厚のスカンジウム(Sc)をスパッタリング法により成膜した。
 次に、アンモニア雰囲気で1200℃で10分間の窒化処理を行い、リフトオフ層は窒化され、窒化スカンジウム層(ScN層)が形成された。
 次に、ScN層上に、ノンドープAlGaNを2μm、Siドープn型AlGaN層(1.5μm)、MQW活性層(0.1μm)、Mgドープp型AlGaN層(0.3μm)を順次MOCVD法で成膜した。
 p型AlGaN層上にCVDによりSiOを成膜して、レジストを用いてパターニングを行い、BHFでエッチングすることでSiOマスクを形成し、化合物半導体層のドライエッチングを行い、AlNテンプレート基板が露出するまで、エッチングを行った。
その後、BHFを使用してSiOマスクを除去し、直径850μmの円形の素子領域を形成した。
 次に素子領域のp型層上にp側電極としてNi/Au(50Å/200Å)を成膜し、550℃で15分のアニールを行った。
 犠牲層形成工程では、ドライエッチングにより露出したAlNテンプレート基板上の素子領域と間隔を空けて4隅に犠牲層として直径約95μmのCr(200Å)層を形成した。
 被覆層形成工程では被覆層としてフォトレジストをスピンコートし、素子領域および犠牲層が露出するようにパターニングを行った。素子領域の露出部分は直径840μmであり、犠牲層の露出部分は直径90μmである。パターニング後に犠牲層外周上に残ったフォトレジストの厚さは約2μmであり、フォトレジスト表面の成長基板からの高さは活性層よりも低かった。
 被膜層上および露出した素子領域および犠牲層上に、下地層として、スパッタリング法によりPt/Au/Pt/Pd(250Å/5500Å/250Å/150Å)を順に成膜した。その後、下地層上に市販のNi無電解めっき液を用いてNiめっきを行い、平坦な底部からの厚さが100μmのNi支持部を形成した。
 被覆層除去工程ではアセトンに浸漬して被覆層のフォトレジストを除去した。
 ケミカルリフトオフ工程では成長基板と半導体層を分離する。塩酸に24時間浸漬することでリフトオフ層のケミカルエッチングを行い、リフトオフ層を除去することでAlNテンプレート板と半導体層を分離した。このケミカルリフトオフ工程において、犠牲層はエッチング液で除去されないため、AlNテンプレート基板とNi支持部は犠牲層と下地層を介して接続が維持されていた。
 ケミカルリフトオフ工程の後、犠牲層除去工程で硝酸セリウムアンモニウム溶液に浸漬して犠牲層をエッチングにより除去し、支持部(下地層)とAlNテンプレート基板とを分離した。
 (比較例)
 犠牲層を形成せず、被覆層形成工程において素子領域のみが露出するようにフォトレジストのパターニングを行った以外は、実施例と同様とした。なお、ケミカルリフトオフ工程において支持部とAlNテンプレート基板は分離され、犠牲層除去工程は無い。
 実施例と比較例のAlNテンプレート基板剥離後の化合物半導体層の品質を、光学顕微鏡での表面観察により比較した。図5は基板剥離後に比較例では、10個中9個において、AlNテンプレート基板剥離後の化合物半導体層の中央部に割れが生じていることが金属顕微鏡および電子顕微鏡により観察された。化合物半導体層の外周部からエッチングされ、AlNテンプレート基板が剥離する直前に中央部に残る微小領域で、基板と化合物半導体層および支持部との間の応力の集中が生じた結果、剥離後に割れが観察されたと考えられる。しかしながら実施例では、図5に示すように、化合物半導体層に比較例のような割れやクラックは観察されなかった。ケミカルリフトオフ工程において成長基板と半導体層の間の柱としての役割を担う犠牲層部側が変形を抑えるため、柱で囲まれた素子領域側で半導体層にかかる応力は比較例に比べて大幅に緩和されており、素子領域側の化合物半導体層に割れが生じないと考えられる。従って、実施例ではAlNテンプレート基板剥離時に割れが生じず、リフトオフ層を周辺からエッチングしてリフトオフされる化合物半導体層のエッチングの進行により応力が集中する箇所の割れを抑制できることが分かった。
 また、実施例および比較例において作成したサンプルについて、さらに剥離した化合物半導体層のノンドープのAlGaN層の一部を、n電極形成に必要な範囲でドライエッチングにより除去し、露出したn型AlGaN層にTi/Alを順に成膜することによりn型電極を形成して、定電流電圧測定装置によりI-V測定を行った。逆方向電圧Vr(-10μA)において、実施例が10V以上であったのに対して、比較例で割れが観察されたものは約6Vと低かった。比較例では応力集中が発生したことでリーク電流が増加したと考えられる。よって本発明により、リーク電流の少ない高品質の発光素子が得られることが分かった。
 以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成の組成等については例示にすぎない。なお、ケミカルリフトオフ時に割れが発生しないことは、発光素子に限らず半導体素子全般に必要な技術である。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
 ただし、半導体素子に用いることが可能な限られた材料の中から本発明の各選択エッチング液とエッチング液に対する耐性の関係を全て満たす材料構成を得ることが、本発明の実施に必要である。
 本発明に係る発光素子と発光素子および半導体素子の製造方法は、LED光学系素子とLED光学系素子を製造する方法に利用される。
 11    半導体層
 11a   n型GaN層(n型半導体層:n型層)
 11b   発光層
 11c   p型GaN層(p型半導体層:p型層)
 12    支持部
 13    凹部
 13a   平坦な底部(平坦部)
 13b   テーパー形状の側面
 14    下地層
 14a   シード層
 14b   反射層
 20    成長基板
 21    リフトオフ層
 22    分離溝
 23    p側電極
 24    被覆層
 40    発光素子
 42    犠牲部

Claims (8)

  1.  半導体素子の製造方法であって、
     成長基板上の一部に、リフトオフ層を介して、半導体層からなる素子領域を形成する素子領域形成工程と、
     後記ケミカルリフトオフ工程で除去されない犠牲部を前記成長基板上の前記素子領域の周囲に形成する犠牲部形成工程と、
     前記半導体層上および前記犠牲部上の一部を除いた前記成長基板上を覆う被覆層を形成する被覆工程と、
     前記半導体層上および前記犠牲部上の一部および被覆層表面を含む前記成長基板上の表面に下地層を形成する下地層形成工程と、
     前記下地層上にめっきを施すことによって支持部を形成するめっき工程と、
     前記被覆層を溶解除去する被覆層除去工程と、
     前記リフトオフ層を溶解除去することにより、前記半導体層と前記成長基板とを分離するケミカルリフトオフ工程と、
     前記ケミカルリフトオフ工程の後に、前記犠牲部において前記成長基板と前記下地層とを分離する犠牲部除去工程と、
     を具備することを特徴とする半導体素子の製造方法。
  2.  発光層を有する半導体層を具備する発光素子の製造方法であって、
     成長基板上の一部に、リフトオフ層を介して、前記半導体層からなる素子領域を形成する素子領域形成工程と、
     後記ケミカルリフトオフ工程で除去されない犠牲部を前記成長基板上の前記素子領域の周囲に形成する犠牲部形成工程と、
     前記半導体層上および前記犠牲部上の一部を除いた前記成長基板上を覆う被覆層を形成する被覆工程と、
     前記半導体層上および前記犠牲部上の一部および被覆層表面を含む前記成長基板上の表面に下地層を形成する下地層形成工程と、
     前記下地層上にめっきを施すことによって支持部を形成するめっき工程と、
     前記被覆層を溶解除去する被覆層除去工程と、
     前記リフトオフ層を溶解除去することにより、前記半導体層と前記成長基板とを分離するケミカルリフトオフ工程と、
     前記ケミカルリフトオフ工程の後に、前記犠牲部において前記成長基板と前記下地層とを分離する犠牲部除去工程と、
     を具備することを特徴とする発光素子の製造方法。
  3.  前記半導体層は、前記素子領域形成工程において、前記成長基板側から順にIII族窒化物半導体からなるn型層、発光層、p型層を具備することを特徴とする請求項2に記載の発光素子の製造方法。
  4.  前記被覆工程は、フォトレジストを塗布することにより、少なくとも犠牲部上の前記被覆層表面の成長基板からの高さが前記発光層よりも低くなるように被覆され、前記被覆層の前記半導体層上および前記犠牲部上の一部をフォトリソグラフィによって除去されることを特徴とする請求項2または3に記載の発光素子の製造方法。
  5.  前記下地層形成工程において、前記下地層は前記半導体層側に反射層を含むことを特徴とする請求項4に記載の発光素子の製造方法。
  6.  請求項2~5のいずれか1項に記載の発光素子の製造方法によって製造されたことを特徴とする発光素子。
  7.  支持部の上に発光層を具備する半導体層を有する発光素子において、前記支持部は凹形状を有し、前記半導体層は凹形状の底部に下地層を介して接続され、前記支持部は凹形状の頂部に、下地層からなり不連続に独立した凸部を具えることを特徴とする発光素子。
  8.  10ボルトの逆方向電圧を印加したときのリーク電流が10μA以下であることを特徴とする請求項7記載の発光素子。
PCT/JP2012/050363 2011-01-17 2012-01-11 発光素子と発光素子および半導体素子の製造方法 WO2012098964A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/978,677 US9082893B2 (en) 2011-01-17 2012-01-11 Luminescent device and manufacturing method for luminescent device and semiconductor device
US14/725,635 US9318653B2 (en) 2011-01-17 2015-05-29 Luminescent device and manufacturing method for luminescent device and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-007083 2011-01-17
JP2011007083A JP4940359B1 (ja) 2011-01-17 2011-01-17 発光素子と発光素子および半導体素子の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/978,677 A-371-Of-International US9082893B2 (en) 2011-01-17 2012-01-11 Luminescent device and manufacturing method for luminescent device and semiconductor device
US14/725,635 Division US9318653B2 (en) 2011-01-17 2015-05-29 Luminescent device and manufacturing method for luminescent device and semiconductor device

Publications (1)

Publication Number Publication Date
WO2012098964A1 true WO2012098964A1 (ja) 2012-07-26

Family

ID=46395334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050363 WO2012098964A1 (ja) 2011-01-17 2012-01-11 発光素子と発光素子および半導体素子の製造方法

Country Status (4)

Country Link
US (2) US9082893B2 (ja)
JP (1) JP4940359B1 (ja)
TW (1) TWI543402B (ja)
WO (1) WO2012098964A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014049885A1 (ja) * 2012-09-28 2016-08-22 ビービーエスエイ リミテッドBBSA Limited Iii族窒化物半導体素子およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888132B2 (ja) * 2012-06-08 2016-03-16 豊田合成株式会社 発光装置の製造方法
JP6390898B2 (ja) 2014-08-22 2018-09-19 アイシン精機株式会社 基板の製造方法、加工対象物の切断方法、及び、レーザ加工装置
JP7035800B2 (ja) 2018-05-22 2022-03-15 宇部興産株式会社 還元性石膏及びその製造方法、セメント組成物及びその製造方法、並びに地盤改良材
CN114038876B (zh) * 2021-08-09 2022-10-21 重庆康佳光电技术研究院有限公司 一种发光芯片的制作方法、发光芯片和发光器件
CN116544323B (zh) * 2023-07-06 2023-09-01 江西兆驰半导体有限公司 一种led芯片的制备方法及led芯片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200929A (ja) * 2006-01-23 2007-08-09 Sumitomo Electric Ind Ltd 半導体発光素子の製造方法
JP2008078275A (ja) * 2006-09-20 2008-04-03 Tohoku Univ 化合物半導体素子の製造方法
JP2009541989A (ja) * 2006-06-23 2009-11-26 エルジー エレクトロニクス インコーポレイティド 垂直型発光素子及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW408497B (en) * 1997-11-25 2000-10-11 Matsushita Electric Works Ltd LED illuminating apparatus
KR100437886B1 (ko) * 2001-09-25 2004-06-30 한국과학기술원 고발광효율 광결정 유기발광소자
TWI244220B (en) * 2004-02-20 2005-11-21 Epistar Corp Organic binding light-emitting device with vertical structure
TWI244222B (en) * 2004-03-11 2005-11-21 Epistar Corp A ternary nitride buffer layer containing nitride light-emitting device and manufacturing method of the same
EP2197049B1 (en) 2005-04-04 2011-08-03 Tohoku Techno Arch Co., Ltd. Process for producing a GaN-based element
JP2008053685A (ja) 2006-08-23 2008-03-06 Samsung Electro Mech Co Ltd 垂直構造窒化ガリウム系発光ダイオード素子及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200929A (ja) * 2006-01-23 2007-08-09 Sumitomo Electric Ind Ltd 半導体発光素子の製造方法
JP2009541989A (ja) * 2006-06-23 2009-11-26 エルジー エレクトロニクス インコーポレイティド 垂直型発光素子及びその製造方法
JP2008078275A (ja) * 2006-09-20 2008-04-03 Tohoku Univ 化合物半導体素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014049885A1 (ja) * 2012-09-28 2016-08-22 ビービーエスエイ リミテッドBBSA Limited Iii族窒化物半導体素子およびその製造方法

Also Published As

Publication number Publication date
US9082893B2 (en) 2015-07-14
TW201244181A (en) 2012-11-01
JP2012151178A (ja) 2012-08-09
TWI543402B (zh) 2016-07-21
US9318653B2 (en) 2016-04-19
US20150295129A1 (en) 2015-10-15
US20130285074A1 (en) 2013-10-31
JP4940359B1 (ja) 2012-05-30

Similar Documents

Publication Publication Date Title
KR100867541B1 (ko) 수직형 발광 소자의 제조 방법
JP5095143B2 (ja) 発光素子の製造方法
TWI506816B (zh) Semiconductor device and method for manufacturing semiconductor element
JP4940359B1 (ja) 発光素子と発光素子および半導体素子の製造方法
US8860183B2 (en) Semiconductor substrate, semiconductor device, and manufacturing methods thereof
JP5774712B2 (ja) 半導体素子およびその製造方法
KR20110006652A (ko) 양면 패시베이션을 갖는 반도체 발광 소자
US10453991B2 (en) Light-emitting device comprising active nanowires and contact nanowires and method of fabrication
US8587017B2 (en) Light emitting device and method of fabricating a light emitting device
JP2012199357A (ja) 半導体発光素子及びその製造方法
JP2011211015A (ja) 半導体発光素子およびその製造方法
US8368111B2 (en) Semiconductor light emitting device and method for manufacturing thereof
US9048348B2 (en) Method of separating substrate and method of fabricating semiconductor device using the same
KR20140068474A (ko) 기판 분리 방법 및 이를 이용한 발광 다이오드 칩 제조 방법
KR20100051925A (ko) 수직구조 발광다이오드 및 그 제조방법
TWI811729B (zh) 半導體結構及其製作方法
KR101018244B1 (ko) 질화물계 반도체 발광소자의 제조방법
CN111725369B (zh) 发光装置
KR101181018B1 (ko) 주기적 편향구조가 내재된 발광소자 및 그 제조방법
KR20090002285A (ko) 수직형 반도체 발광소자 및 그 제조방법
KR20110113311A (ko) 기판 분리 기술을 이용한 발광 다이오드 제조방법
JP5674692B2 (ja) 窒化物半導体素子及び窒化物半導体素子の製造方法
KR20150048474A (ko) 기판 분리 방법 및 이를 이용한 반도체 소자 제조 방법
KR20150118752A (ko) 발광소자 및 발광소자 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13978677

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736561

Country of ref document: EP

Kind code of ref document: A1