WO2012098798A1 - 生体内観察装置およびカプセル型内視鏡装置 - Google Patents

生体内観察装置およびカプセル型内視鏡装置 Download PDF

Info

Publication number
WO2012098798A1
WO2012098798A1 PCT/JP2011/079343 JP2011079343W WO2012098798A1 WO 2012098798 A1 WO2012098798 A1 WO 2012098798A1 JP 2011079343 W JP2011079343 W JP 2011079343W WO 2012098798 A1 WO2012098798 A1 WO 2012098798A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination light
wavelength band
reflectance
region
blood
Prior art date
Application number
PCT/JP2011/079343
Other languages
English (en)
French (fr)
Inventor
豊 越川
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN201180055517.5A priority Critical patent/CN103220959B/zh
Priority to EP11855989.7A priority patent/EP2641525A4/en
Priority to JP2012544772A priority patent/JP5220961B2/ja
Publication of WO2012098798A1 publication Critical patent/WO2012098798A1/ja
Priority to US13/927,896 priority patent/US9155456B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/162Capsule shaped sensor housings, e.g. for swallowing or implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Definitions

  • the present invention relates to an in-vivo observation device and a capsule endoscope device.
  • an imaging apparatus including an illumination unit that irradiates light of two wavelengths having different absorption intensities with respect to blood is known (for example, see Patent Documents 1 and 2).
  • an image obtained by irradiating narrowband light that is an absorption wavelength of hemoglobin, and an image obtained by irradiating narrowband light in other wavelength bands is extracted. Acquired separately, accumulation of capillaries in tissues such as mucous membranes can be observed without staining.
  • the small intestine endoscope and the capsule endoscope for the small intestine are often used for patients with unknown bleeding, and are used for screening for the presence or absence of bleeding in the small intestine region. For this reason, it is desired to extract fine bleeding with high sensitivity.
  • the present invention has been made in view of the above-described circumstances, and can extract minute bleeding in the small intestine with high sensitivity, and can easily detect the presence or absence of bleeding in patients with unknown bleeding and
  • An object of the present invention is to provide a capsule endoscope apparatus.
  • a first aspect of the present invention includes an illumination unit that generates two types of illumination light having different wavelength bands, and an imaging unit that has sensitivity in the wavelength bands of the two types of illumination light from the illumination unit, For the illumination light of the first wavelength band from the illumination unit, blood and background tissue have a reflectance higher than a predetermined threshold, and for the illumination light of the second wavelength band, blood is lower than the threshold.
  • This in-vivo observation device has reflectivity and satisfies the following conditions.
  • R1b / R1a is the reflectance of the background tissue with respect to the illumination light in the first wavelength band
  • R1b is the reflectance of blood with respect to the illumination light in the first wavelength band
  • R2a is relative to the illumination light in the second wavelength band
  • the reflectance of the background tissue, R2b is the reflectance of blood with respect to the illumination light in the second wavelength band.
  • the illumination light of the first wavelength band is reflected on the blood and the background tissue, Photographed by an image sensor having sensitivity in the first wavelength band.
  • the illumination light in the second wavelength band is absorbed more by the blood, and the reflected light is photographed by the image sensor having sensitivity in the second wavelength band.
  • the wavelength bands of the two types of illumination light are selected so as to satisfy the above-described conditions, when the reflected light image in the second wavelength band is dark, the distance from the illumination unit to the living tissue is long, so that the dark band is dark Whether it is dark due to bleeding or not is easily discriminated based on the brightness of the reflected light image in the first wavelength band, and fine bleeding is also clearly extracted and bleeding can be easily found.
  • the imaging unit includes an imaging optical system and an imaging element, and the imaging element includes pixels each having sensitivity in an R region, a G region, and a B region, and the first wavelength.
  • the band may be included in both the G region and the R region of the image sensor, and the second wavelength band may be included in the B region of the image sensor.
  • the observation structure is stable because there is less change in the biological structure compared to the stomach and large intestine, and spectral estimation processing is performed even with illumination light from two types of monochromatic LEDs. It is easy to do. Then, three types of images of the R region, the G region, and the B region can be obtained from the illumination light from the two types of single color LEDs, and the white light image can be estimated.
  • the 2nd aspect of this invention is a capsule type endoscope apparatus provided with a capsule-shaped housing
  • the luminous efficiency is poor by using two types of monochromatic LEDs.
  • a white light image can be acquired while reducing energy consumption compared to the case of using a white LED.
  • battery consumption can be suppressed, the imaging time of the capsule endoscope apparatus that does not supply power from the outside can be extended, or the casing can be downsized by reducing the size of the battery. it can.
  • the in-vivo observation device 1 includes an illumination unit 2 that generates illumination light for a living body, an imaging unit 3 that captures reflected light from the living body, and the imaging unit. 3 is provided with a storage unit 4 for storing the images acquired by the control unit 3 and a control unit 5 for controlling them.
  • the imaging unit 3 includes an imaging optical system and an imaging element.
  • the illumination unit 2 generates illumination light in two different wavelength bands.
  • the first wavelength band has a center wavelength of about 600 nm, and has a bandwidth of about 40 nm, for example.
  • the second wavelength band has a center wavelength of about 415 nm, for example, a bandwidth of about 40 nm.
  • the bandwidth is a wavelength width that gives an intensity of 25% or more with respect to the intensity of the peak wavelength.
  • the spectral sensitivity of the imaging unit 3 is the total of the spectral sensitivity of the imaging device and the spectral transmission characteristics of the imaging optical system (including a color correction filter if it is included). It has sensitivity in the B region of 380 to 520 nm, the G region of about 460 to 610 nm, and the R region of about 590 to 740 nm.
  • the sensitivity width is a width of a wavelength that gives a sensitivity of 25% or more with respect to a sensitivity peak (sensitivity of about 550 nm in the present embodiment).
  • the symbol R R is a wavelength band that is luminance information independent of the R region in the first wavelength band
  • RG is a wavelength band that is luminance information independent of the G region.
  • Fig. 3 shows the reflectance characteristics of porcine blood, lingual blood vessels and oral mucosa.
  • the oral mucosa background tissue
  • the lingual blood vessel background tissue
  • blood has a reflectance higher than a predetermined threshold with respect to the illumination light in the first wavelength band described above.
  • blood has a reflectance lower than a threshold for illumination light in the second wavelength band.
  • the control unit 5 controls the illumination unit 2 to emit the illumination light of the first wavelength band and the illumination light of the second wavelength band alternately in a time division manner. Further, the control unit 5 controls the imaging unit 3 to output an image acquired when the illumination light of the first wavelength band and the illumination light of the second wavelength band are emitted to the storage unit 4, respectively. It is supposed to let you.
  • the control unit 5 operates the illumination unit 2 to alternately switch the illumination light of the first wavelength band and the illumination light of the second wavelength band to the living body.
  • the reflected light that is reflected and returned from the living body when irradiated toward the subject is photographed by the imaging unit 3 to obtain a reflected light image.
  • the reflectance of the background tissue is higher than the threshold value for the illumination light of the second wavelength band
  • the reflectance of blood is lower than the threshold value. Therefore, in the image obtained when the illumination light of the second wavelength band is irradiated. There may be bleeding in the dark area.
  • the living body located away from the illumination unit 2 is also a dark region in the image. Therefore, it is difficult to determine whether a dark area in the image is bleeding or far from the illumination unit 2 only with the image obtained when the illumination light of the second wavelength band is irradiated.
  • both the blood and the background tissue have a reflectance higher than the threshold for the illumination light in the first wavelength band, so that the bleeding region near the illumination unit 2 is a dark region in the image. A certain amount of bright images can be obtained.
  • the illumination unit It can be determined that the illumination light does not reach because the distance between 2 and the living body is large.
  • the in-vivo observation device 1 it is possible to easily pick up an image suspected of having bleeding from the acquired image, and time for analyzing an enormous number of images after acquiring the image. (Reading time) can be greatly reduced. On the other hand, if an image suspected of having bleeding is picked up in real time based on the acquired image, the number of images to be stored can be reduced.
  • the wavelength band included in both the G region and the R region of the image sensor composed of a color CCD is selected as the first wavelength band, spectral estimation is performed from the two acquired images.
  • three types of images of R region, G region, and B region can be obtained, and a white light image can be generated by image estimation processing.
  • the present embodiment has the following characteristics in order to obtain a good white image. Rather than the crossing width of the substantial sensitivity width (the width of the wavelength that gives a sensitivity of 25% or more with respect to the sensitivity peak in each region) on the short wavelength side of the R region and the long wavelength side of the G region.
  • the bandwidth of one wavelength band is wide.
  • the luminance information obtained in the R region and the G region can be obtained with a more balanced intensity ratio when the weight is placed in the G region. It becomes possible. That is, the wavelength on the short wavelength side of the first wavelength band (25% with respect to the intensity of the peak wavelength) rather than the substantial sensitivity limit wavelength (wavelength that becomes 25% with respect to the sensitivity peak) on the short wavelength side of the R region It is possible to obtain a better white image by setting the short wavelength side) to the short wavelength side.
  • the observation structure is stable because there is less change in the biological structure compared to the stomach and large intestine, and the illumination light in two narrow wavelength bands is sufficiently white.
  • An optical image can be estimated.
  • an image for confirming the presence of the bleeding region is stored in the storage unit 4, but instead of this, bleeding from the acquired image is performed.
  • a determination unit (not shown) for determining the presence or absence of a region may be provided, and only the image determined by the determination unit to be suspected of having a bleeding region may be stored in the storage unit 4.
  • a capsule endoscope apparatus 10 in which the in-vivo observation apparatus 1 according to the present embodiment is housed in a transparent capsule-shaped casing 6 may be configured.
  • it replaces with the memory
  • the capsule endoscope apparatus 10 since it is driven by a battery (not shown), as the illuminating unit 2 that irradiates two narrow wavelength band illumination lights like the in-vivo observation apparatus 1 according to the present embodiment, Two types of single-color LEDs can be used, and there is an effect that battery consumption can be reduced. That is, a white light image can be obtained by image estimation only by illumination from two types of single color LEDs. Compared with the case of using a white LED with low luminous efficiency, battery consumption can be reduced.
  • the housing 6 can be reduced in size and the entire apparatus can be reduced in size and weight. Also, by feeding back the determination result of the presence or absence of the bleeding area and re-photographing the area that is suspected of bleeding, the intensity of the illumination light is increased by utilizing the reduced battery consumption. You can also

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)

Abstract

 小腸における微細な出血も感度よく抽出して、不明出血の患者の出血の有無を容易に発見する。波長帯域の異なる2種類の照明光を発生する照明部(2)と、該照明部(2)からの2種類の照明光の波長帯域にそれぞれ感度を有する撮像部(3)とを備え、照明部(2)からの第1の波長帯域の照明光に対して、血液および背景組織が所定の閾値より高い反射率を有し、第2の波長帯域の照明光に対して、血液が閾値より低い反射率を有し、条件(R1b/R1a)>(R2b/R2a)を満足する生体内観察装置(1)を提供する。ここで、R1aは、第1の波長帯域の照明光に対する背景組織の反射率、R1bは、第1の波長帯域の照明光に対する血液の反射率、R2aは、第2の波長帯域の照明光に対する背景組織の反射率、R2bは、第2の波長帯域の照明光に対する血液の反射率である。

Description

生体内観察装置およびカプセル型内視鏡装置
 本発明は、生体内観察装置およびカプセル型内視鏡装置に関するものである。
 従来、血液に対する吸収強度の異なる2つの波長の光を照射する照明手段を備えた撮像装置が知られている(例えば、特許文献1,2参照。)。
 この撮像装置によれば、ヘモグロビンの吸収波長である狭帯域光を照射することにより、血管の形状を抽出した画像と、それ以外の波長帯域の狭帯域光を照射して得られた画像とを別々に取得し、粘膜等の組織内における毛細血管の集積等を、染色によることなく観察することができる。
特開2009-66147号公報 特開2009-153621号公報
 しかしながら、小腸内視鏡や小腸用のカプセル内視鏡は、不明出血の患者に対して使用されることが多く、小腸部位での出血の有無発見のためのスクリーニングに利用される。このため、微細な出血も感度よく抽出することが望まれている。
 本発明は、上述した事情に鑑みてなされたものであって、小腸における微細な出血も感度よく抽出して、不明出血の患者の出血の有無を容易に発見することができる生体内観察装置およびカプセル型内視鏡装置を提供することを目的としている。
 上記目的を達成するために、本発明は以下の手段を提供する。
 本発明の第1の態様は、波長帯域の異なる2種類の照明光を発生する照明部と、該照明部からの2種類の照明光の波長帯域にそれぞれ感度を有する撮像部とを備え、前記照明部からの第1の波長帯域の照明光に対して、血液および背景組織が所定の閾値より高い反射率を有し、第2の波長帯域の照明光に対して、血液が前記閾値より低い反射率を有し、以下の条件を満足する生体内観察装置である。
 (R1b/R1a)>(R2b/R2a)
 ここで、R1aは、第1の波長帯域の照明光に対する背景組織の反射率、R1bは、第1の波長帯域の照明光に対する血液の反射率、R2aは、第2の波長帯域の照明光に対する背景組織の反射率、R2bは、第2の波長帯域の照明光に対する血液の反射率である。
 本発明の第1の態様によれば、照明部から発せられた2種類の照明光が生体組織に照射されると、第1の波長帯域の照明光が血液および背景組織において反射して、該第1の波長帯域に感度を有する撮像素子により撮影される。一方、第2の波長帯域の照明光は、血液により多く吸収され、その反射光が第2の波長帯域に感度を有する撮像素子により撮影される。2種類の照明光の波長帯域は、上記条件を満足するように選択されているので、第2の波長帯域の反射光画像が暗い場合に、照明部から生体組織までの距離が遠いために暗いのか出血により暗いのかを、第1の波長帯域の反射光画像の明暗によって容易に判別することができ、微細な出血も鮮明に抽出して、出血を容易に発見することができる。
 上記の第1の態様においては、前記撮像部が撮像光学系と撮像素子とを備え、該撮像素子が、R領域、G領域およびB領域にそれぞれ感度を有する画素を備え、前記第1の波長帯域が、前記撮像素子のG領域およびR領域の両方に含まれ、前記第2の波長帯域が、前記撮像素子のB領域に含まれてもよい。
 このようにすることで、照明部として、撮像素子のG領域およびR領域の両方に含まれる波長の単色LED、および撮像素子のB領域に含まれる波長の単色LEDの2種の単色LEDを採用することができる。この発光効率の良い単色LEDを採用することで、一般の白色LEDよりも消費電力を抑えることが可能となり、長寿命化やバッテリーの小型化が可能となる。
 また、観察する生体組織として小腸が選択される場合には、胃や大腸に比べて生体的構造に変化が少ないので観察シーンが安定的であり、2種の単色LEDによる照明光でも分光推定処理を行い易い。そして、2種の単色LEDによる照明光からR領域、G領域およびB領域の3種類の画像を得て、白色光画像を推定処理することができる。
 また、本発明の第2の態様は、カプセル状の筐体と、該筐体内に密封状態に配置された上記生体内観察装置とを備えるカプセル型内視鏡装置である。
 本発明の第2の態様によれば、カプセル型の筐体内に上記生体内観察装置を密封状態に備えたカプセル型内視鏡装置では、2種の単色LEDを用いることで、発光効率の悪い白色LEDを使用する場合と比較して消費エネルギを低減しながら白色光画像を取得することができる。すなわち、バッテリの消耗を抑えることができ、外部からの給電を行わないカプセル型内視鏡装置の撮影時間を長くすることができ、あるいは、バッテリの小型化による筐体の小型化を図ることができる。
 本発明によれば、小腸における微細な出血も感度よく抽出して、不明出血の患者の出血の有無を容易に発見することができるという効果を奏する。
本発明の一実施形態に係る生体内観察装置を示すブロック図である。 図1の生体内観察装置の照明部および撮像部の波長特性を示すグラフである。 生体の反射率特性の一例を示すグラフである。 図1の生体内観察装置を筐体内に収容したカプセル型内視鏡装置を示すブロック図である。
 本発明の一実施形態に係る生体内観察装置1について、図面を参照して以下に説明する。
 本実施形態に係る生体内観察装置1は、図1に示されるように、生体に対して照明光を発生する照明部2と、生体からの反射光を撮影する撮像部3と、該撮像部3により取得された画像を記憶する記憶部4と、これらを制御する制御部5とを備えている。撮像部3は撮像光学系と撮像素子とを備える。
 照明部2は、2つの異なる波長帯域の照明光を発生する。第1の波長帯域は、図2に示されるように、約600nmの中心波長を有し、例えば、40nm程度の帯域幅を有している。第2の波長帯域は、約415nmの中心波長を有し、例えば、40nm程度の帯域幅を有している。ここで帯域幅とは、ピーク波長の強度に対して25%以上の強度となる波長の幅である。
 撮像部3の分光感度は、撮像素子の分光感度と撮像光学系(色補正フィルターが入っていればそれも含む)の分光透過特性の総合であり、本実施形態では図2に示すように約380~520nmのB領域、約460~610nmのG領域、約590~740nmのR領域に感度を有している。感度幅は、感度ピーク(本実施形態では約550nmの感度)に対して25%以上の感度となる波長の幅である。また、図2において、符号Rは、第1の波長帯域において、R領域に独立した輝度情報となる波長帯域、RはG領域に独立した輝度情報となる波長帯域である。
 図3に、豚の血液、舌裏血管および口粘膜の反射率特性を示す。この反射率特性において、上述した第1の波長帯域の照明光に対して、口粘膜(背景組織)、舌裏血管(背景組織)および血液は所定の閾値より高い反射率を有している。また、第2の波長帯域の照明光に対して、血液は閾値より低い反射率を有している。
 そして、第1の波長帯域の照明光に対する背景組織の反射率R1a、第1の波長帯域の照明光に対する血液の反射率R1b、第2の波長帯域の照明光に対する背景組織の反射率R2a、第2の波長帯域の照明光に対する血液の反射率R2bとすると、以下の条件式が成立している。
 (R1b/R1a)>(R2b/R2a)
 制御部5は、照明部2を制御して、第1の波長帯域の照明光と第2の波長帯域の照明光とを時分割に交互に射出させるようになっている。
 また、制御部5は、撮像部3を制御して、第1の波長帯域の照明光と第2の波長帯域の照明光とがそれぞれ射出されたときに取得された画像を記憶部4に出力させるようになっている。
 このように構成された本実施形態に係る生体内観察装置1の作用について以下に説明する。
 本実施形態に係る生体内観察装置1によれば、制御部5が照明部2を作動させて第1の波長帯域の照明光と第2の波長帯域の照明光とを交互に切り替えて生体に向けて照射したときに、生体において反射して戻る反射光が撮像部3によりそれぞれ撮影され反射光画像が取得される。
 第2の波長帯域の照明光に対して、背景組織の反射率は閾値より高いが、血液の反射率が閾値より低いので、第2の波長帯域の照明光を照射したときに得られる画像中の暗い領域には出血が存在している可能性がある。その一方で、照明部2から離れた位置にある生体も画像中では暗い領域となる。したがって、この第2の波長帯域の照明光を照射したときに得られた画像のみでは、画像中の暗い領域が出血であるか照明部2から遠いためであるのかの判断が困難となる。
 一方、第1の波長帯域の照明光に対して、血液および背景組織の両方が閾値より高い反射率を有しているので、照明部2から近い位置にある出血領域は画像中で暗い領域とはならず、ある程度の明るい画像が得られる。
 すなわち、第2の波長帯域の照明光を照射したときに取得された画像において暗い領域が、第1の波長帯域の照明光を照射したときに取得された画像において明るい場合には、その領域に出血が存在する疑いがあると判断することができる。
 また、第1の波長帯域の照明光を照射したときに取得される画像および第2の波長帯域の照明光を照射したときに取得される画像の両方において同じ領域が暗い場合には、照明部2と生体との距離が離れているために照明光が届いていないと判断することができる。
 本実施形態に係る生体内観察装置1によれば、取得された画像から出血の存在する疑いのある画像を簡易にピックアップすることができ、画像取得後に膨大な数の画像を分析するための時間(読映時間)を大幅に短縮することができる。また、逆に、取得された画像に基づいてリアルタイムで出血の存在する疑いのある画像をピックアップすれば、記憶する画像数を減らすことができる。
 また、本実施形態においては、第1の波長帯域としてカラーCCDからなる撮像素子のG領域およびR領域の両方に含まれる波長帯域を選択しているので、取得された2枚の画像から分光推定処理を行って、R領域、G領域およびB領域の3種類の画像を得て、白色光画像を画像推定処理により生成することができる。
 更に本実施形態では良好な白色画像を得るために、以下の特徴を有している。R領域の短波長側とG領域の長波長側で、それぞれの実質的な感度幅(各領域における感度ピークに対して25%以上の感度となる波長の幅)のクロスする幅よりも、第1の波長帯域の帯域幅が広い。このような構成をとることにより、第1の波長帯域のうち、短波長側でG領域に実質的に独立した輝度情報を得ることが可能となり、長波長側でR領域に実質的に独立した輝度情報を得ることが可能となる。よって、RGB各領域に独立した輝度情報を得ることができ、分光推定などの色再現処理をすることで、良好な白色画像を得ることが可能となる。
 また、生体は図3に示すように赤領域の反射率が高いため、照明はG領域にウェイトを置いた方が、R領域とG領域とで得られる輝度情報をよりバランス良い強度比で得ることが可能となる。つまり、R領域の短波長側の実質的な感度限界波長(感度ピークに対して25%となる波長)よりも、第1の波長帯域の短波長側波長(ピーク波長の強度に対して25%となる波長)を短波長側とすることで更に良好な白色画像を得ることが可能となる。
 特に、観察する生体組織として小腸が選択される場合には、胃や大腸に比べて生体的構造に変化が少ないので観察シーンが安定的であり、2つの狭い波長帯域の照明光でも十分に白色光画像を推定することができる。
 なお、本実施形態に係る生体内観察装置1においては、出血領域の存在を確認するための画像を記憶部4に記憶していくこととしたが、これに代えて、取得された画像から出血領域の有無を判定する判定部(図示略)を設け、該判定部により出血領域が存在する疑いがあると判定された画像についてのみ記憶部4に記憶していくことにしてもよい。
 また、図4に示されるように、本実施形態に係る生体内観察装置1を透明なカプセル状の筐体6内に収容したカプセル型内視鏡装置10を構成することにしてもよい。図4においては、記憶部4に代えて、取得された画像を体外に向けて発信する発信部7を備えたものを示している。
 カプセル型内視鏡装置10の場合には、図示しないバッテリにより駆動されるので、本実施形態に係る生体内観察装置1のように2つの狭い波長帯域の照明光を照射する照明部2として、2種の単色LEDを使用することができ、バッテリの消耗を軽減することができるという効果がある。すなわち、2種の単色LEDからの照明のみによっても、画像推定により白色光画像を得ることができる。発光効率の低い白色LEDを使用する場合と比較して、バッテリの消耗を軽減できる。
 また、バッテリ容量が十分な場合には、容量を減らすことが可能となり、その場合には、筐体6の小型化、装置全体の小型軽量化を図ることができるという利点がある。
 また、出血領域の有無の判定結果をフィードバックして、出血の疑いがある領域に対して再撮影を行う際に、バッテリの消耗が軽減された分を利用して、照明光の強度を増大させることもできる。
1 生体内観察装置
2 照明部
3 撮像部
6 筐体
10 カプセル型内視鏡装置

Claims (3)

  1.  波長帯域の異なる2種類の照明光を発生する照明部と、
     該照明部からの2種類の照明光の波長帯域にそれぞれ感度を有する撮像部とを備え、
     前記照明部からの第1の波長帯域の照明光に対して、血液および背景組織が所定の閾値より高い反射率を有し、第2の波長帯域の照明光に対して、血液が前記閾値より低い反射率を有し、以下の条件を満足する生体内観察装置。
     (R1b/R1a)>(R2b/R2a)
     ここで、R1aは、第1の波長帯域の照明光に対する背景組織の反射率、R1bは、第1の波長帯域の照明光に対する血液の反射率、R2aは、第2の波長帯域の照明光に対する背景組織の反射率、R2bは、第2の波長帯域の照明光に対する血液の反射率である。
  2.  前記撮像部が撮像光学系と撮像素子とを備え、
     該撮像素子が、R領域、G領域およびB領域にそれぞれ感度を有する画素を備え、
     前記第1の波長帯域が、前記撮像素子のG領域およびR領域の両方に含まれ、
     前記第2の波長帯域が、前記撮像素子のB領域に含まれる請求項1に記載の生体内観察装置。
  3.  カプセル状の筐体と、
     該筐体内に密封状態に配置された請求項2に記載の生体内観察装置とを備えるカプセル型内視鏡装置。
PCT/JP2011/079343 2011-01-17 2011-12-19 生体内観察装置およびカプセル型内視鏡装置 WO2012098798A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180055517.5A CN103220959B (zh) 2011-01-17 2011-12-19 生物体内观察装置及胶囊型内窥镜装置
EP11855989.7A EP2641525A4 (en) 2011-01-17 2011-12-19 In vivo examination apparatus and capsule endoscope
JP2012544772A JP5220961B2 (ja) 2011-01-17 2011-12-19 生体内観察装置およびカプセル型内視鏡装置
US13/927,896 US9155456B2 (en) 2011-01-17 2013-06-26 In vivo examination apparatus and capsule endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-007220 2011-01-17
JP2011007220 2011-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/927,896 Continuation US9155456B2 (en) 2011-01-17 2013-06-26 In vivo examination apparatus and capsule endoscope

Publications (1)

Publication Number Publication Date
WO2012098798A1 true WO2012098798A1 (ja) 2012-07-26

Family

ID=46515435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079343 WO2012098798A1 (ja) 2011-01-17 2011-12-19 生体内観察装置およびカプセル型内視鏡装置

Country Status (5)

Country Link
US (1) US9155456B2 (ja)
EP (1) EP2641525A4 (ja)
JP (1) JP5220961B2 (ja)
CN (1) CN103220959B (ja)
WO (1) WO2012098798A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145814A1 (ja) * 2014-03-28 2015-10-01 オリンパス株式会社 生体観察システム
WO2015166843A1 (ja) * 2014-05-01 2015-11-05 オリンパス株式会社 内視鏡装置
JP2018500095A (ja) * 2014-12-16 2018-01-11 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 波長帯選択による画像化を用いた尿管検出
JP2020512856A (ja) * 2017-03-31 2020-04-30 プロジェニティ, インコーポレイテッド 摂取可能装置のための位置確認システムおよび方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9749507B1 (en) * 2013-06-07 2017-08-29 Hooker Trust Llc Submersible video camera housing adapted for in-line connection with fishing rig
WO2015099749A1 (en) * 2013-12-27 2015-07-02 Capso Vision Inc. Capsule camera device with multi-spectral light sources
CN110325098A (zh) 2016-11-28 2019-10-11 适内有限责任公司 具有可分离一次性轴的内窥镜
CN109621169B (zh) * 2019-01-09 2021-06-08 李红岩 一种产科观察治疗仪
USD1018844S1 (en) 2020-01-09 2024-03-19 Adaptivendo Llc Endoscope handle
USD1031035S1 (en) 2021-04-29 2024-06-11 Adaptivendo Llc Endoscope handle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141711A (ja) * 2004-11-19 2006-06-08 Olympus Corp 内視鏡観察光学系
JP2007202589A (ja) * 2006-01-30 2007-08-16 National Cancer Center-Japan 電子内視鏡装置
JP2009066147A (ja) 2007-09-12 2009-04-02 Olympus Medical Systems Corp 生体観測装置
JP2009153621A (ja) 2007-12-25 2009-07-16 Olympus Corp 生体観察装置および内視鏡装置
JP2010075513A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 狭帯域画像取得方法および狭帯域画像取得システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826424B1 (en) * 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
US20090076322A1 (en) * 2007-09-13 2009-03-19 Atsushi Matsunaga Capsule endoscope
EP2130484B1 (en) * 2008-06-04 2011-04-20 FUJIFILM Corporation Illumination device for use in endoscope
JP5604248B2 (ja) * 2010-09-28 2014-10-08 富士フイルム株式会社 内視鏡画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141711A (ja) * 2004-11-19 2006-06-08 Olympus Corp 内視鏡観察光学系
JP2007202589A (ja) * 2006-01-30 2007-08-16 National Cancer Center-Japan 電子内視鏡装置
JP2009066147A (ja) 2007-09-12 2009-04-02 Olympus Medical Systems Corp 生体観測装置
JP2009153621A (ja) 2007-12-25 2009-07-16 Olympus Corp 生体観察装置および内視鏡装置
JP2010075513A (ja) * 2008-09-26 2010-04-08 Fujifilm Corp 狭帯域画像取得方法および狭帯域画像取得システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2641525A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015145814A1 (ja) * 2014-03-28 2017-04-13 オリンパス株式会社 生体観察システム
WO2015145814A1 (ja) * 2014-03-28 2015-10-01 オリンパス株式会社 生体観察システム
US9949624B2 (en) 2014-03-28 2018-04-24 Olympus Corporation Living body observation system with contrast enhancement processing
JP5905170B2 (ja) * 2014-03-28 2016-04-20 オリンパス株式会社 生体観察システム
US10368728B2 (en) 2014-05-01 2019-08-06 Olympus Corporation Endoscope apparatus
CN106231988A (zh) * 2014-05-01 2016-12-14 奥林巴斯株式会社 内窥镜装置
JP2015211727A (ja) * 2014-05-01 2015-11-26 オリンパス株式会社 内視鏡装置
WO2015166843A1 (ja) * 2014-05-01 2015-11-05 オリンパス株式会社 内視鏡装置
JP2018500095A (ja) * 2014-12-16 2018-01-11 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 波長帯選択による画像化を用いた尿管検出
US10588711B2 (en) 2014-12-16 2020-03-17 Intuitive Surgical Operations, Inc. Ureter detection using waveband-selective imaging
US11389267B2 (en) 2014-12-16 2022-07-19 Intuitive Surgical Operations, Inc. Waveband-selective imaging systems and methods
US12016738B2 (en) 2014-12-16 2024-06-25 Intuitive Surgical Operations, Inc. Waveband-selective imaging systems and methods
JP2020512856A (ja) * 2017-03-31 2020-04-30 プロジェニティ, インコーポレイテッド 摂取可能装置のための位置確認システムおよび方法
JP7071995B2 (ja) 2017-03-31 2022-05-19 プロジェニティ, インコーポレイテッド 摂取可能装置
US11363964B2 (en) 2017-03-31 2022-06-21 Progenity Inc. Localization systems and methods for an ingestible device
US11918342B2 (en) 2017-03-31 2024-03-05 Biora Therapeutics, Inc. Localization systems and methods for an ingestible device

Also Published As

Publication number Publication date
US20130289415A1 (en) 2013-10-31
EP2641525A4 (en) 2017-12-13
CN103220959A (zh) 2013-07-24
US9155456B2 (en) 2015-10-13
JP5220961B2 (ja) 2013-06-26
CN103220959B (zh) 2014-08-06
EP2641525A1 (en) 2013-09-25
JPWO2012098798A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5220961B2 (ja) 生体内観察装置およびカプセル型内視鏡装置
US10244972B2 (en) Fluorescence observation device, endoscopic system, processor device, and operation method
JP5426620B2 (ja) 内視鏡システムおよび内視鏡システムの作動方法
JP5074256B2 (ja) 蛍光観察装置
EP2441374B1 (en) Capsule endoscope device
US7787121B2 (en) Imaging apparatus
JP5303012B2 (ja) 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法
JP6204314B2 (ja) 電子内視鏡システム
EP2338404B1 (en) Imaging device and imaging system
JP2019081044A (ja) 画像処理装置、画像処理装置の作動方法、および画像処理プログラム
JP5914496B2 (ja) 内視鏡システム及びプロセッサ装置並びに内視鏡システムの作動方法
JP5887350B2 (ja) 内視鏡システム及びその作動方法
JP2012147935A (ja) 内視鏡装置
JP6876810B2 (ja) 内視鏡用光源装置及び内視鏡システム
US20110218398A1 (en) Image processing system, imaging device, receiving device and image display device
JP2009297290A (ja) 内視鏡装置およびその画像処理方法
JP2012016545A (ja) 内視鏡装置
JP2007075366A (ja) 赤外観察システム
JP2012143337A (ja) 内視鏡診断装置
JP2012130504A (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、及び画像生成方法
JP5766773B2 (ja) 内視鏡システムおよび内視鏡システムの作動方法
JP2009279169A (ja) 蛍光画像取得方法および蛍光画像取得装置
WO2020054255A1 (ja) 内視鏡装置、内視鏡プロセッサ、及び内視鏡装置の操作方法
JP5336749B2 (ja) カプセル型医療装置とその作動方法
CN204618177U (zh) 内窥镜用照明装置和内窥镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012544772

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011855989

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE