WO2012098758A1 - 検出装置 - Google Patents

検出装置 Download PDF

Info

Publication number
WO2012098758A1
WO2012098758A1 PCT/JP2011/076229 JP2011076229W WO2012098758A1 WO 2012098758 A1 WO2012098758 A1 WO 2012098758A1 JP 2011076229 W JP2011076229 W JP 2011076229W WO 2012098758 A1 WO2012098758 A1 WO 2012098758A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical prism
optical
detection
prism
Prior art date
Application number
PCT/JP2011/076229
Other languages
English (en)
French (fr)
Inventor
藤巻 真
昌次 秋山
永田 和寿
Original Assignee
独立行政法人産業技術総合研究所
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 信越化学工業株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2012553566A priority Critical patent/JP5885350B2/ja
Priority to US13/980,373 priority patent/US8937721B2/en
Priority to EP11856595.1A priority patent/EP2667181A4/en
Priority to CN201180065674.4A priority patent/CN103328952B/zh
Publication of WO2012098758A1 publication Critical patent/WO2012098758A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the present invention relates to a small detection apparatus that can detect adsorption, detachment, proximity, and alteration of a sample to be detected with high sensitivity using a wavelength-resolved measurement method and an optical waveguide mode.
  • a sensor using surface plasmon resonance is known as a sensor for detecting various substances such as minute substances contained in a liquid, for example, proteins in biological samples, pathogenic bacteria, metal ions in water, and organic molecules.
  • SPR Surface Plasmon Resonance
  • Sensors using this surface plasmon resonance are generally called SPR (Surface Plasmon Resonance) sensors, and many companies such as GE Healthcare, Fuji Photo Film Co., Ltd., NTT Advanced Technology Co., Ltd., and OptQuest Co., Ltd. Products are sold from.
  • FIG. 1 shows a configuration example of the most popular SPR sensor 200 called Kretschmann arrangement.
  • a metal thin film layer 202 is formed by vapor deposition of a metal such as gold or silver on a glass substrate 201, and an optical prism 203 is formed on the surface of the glass substrate 201 opposite to the surface on which the metal thin film layer 202 is formed.
  • the laser light irradiated from the light source 204 is polarized by the polarizing plate 205 and irradiated onto the glass substrate 201 through the optical prism 203.
  • Incident light 210A is incident under conditions of total reflection. Surface plasmon resonance appears at a certain incident angle by the evanescent wave that oozes out to the metal surface side of the incident light 210A.
  • the evanescent wave is absorbed by the surface plasmon, so that the intensity of the reflected light is remarkably reduced near this incident angle.
  • the condition for surface plasmon resonance to appear varies depending on the dielectric constant in the vicinity of the surface of the metal thin film layer 202. Therefore, when the detected sample is bonded or adsorbed on the surface of the metal thin film layer 202, the dielectric constant changes. A change occurs in the reflection characteristics of the incident light 210A. Therefore, the sample to be detected can be detected by monitoring the intensity change of the reflected light 210 ⁇ / b> B reflected from the metal thin film layer 202 with the detector 206.
  • the SPR sensor 200 detects a change in the dielectric constant in the vicinity of the surface of the metal thin film layer 202, not only adsorption of a substance to be detected but also a specific substance approaches (approaches) the metal surface. These can be detected even if the substance adhering to the surface is detached or the properties of what was originally present on the metal surface are altered.
  • the optical system including the light source 204 is driven to change the angle ⁇ at which the incident light 210A is introduced into the metal thin film layer 202. Since it is necessary to properly monitor the reflected light 210B with the detector 206, the arrangement of the optical system becomes complicated, and there is a problem that the size of the detection apparatus is increased.
  • FIG. 2 shows an outline of an SPR sensor 300 including an optical system employed in Non-Patent Document 6.
  • Incident light 310A is guided from the light source 301 to the front of the optical prism 303 via the optical fiber 302A, converted into parallel light by the collimator lens 304, converted to p-polarized light by the polarizing plate 305, and then incident on the optical prism 303.
  • the incident light 310A is applied to the metal thin film layer 307 on the glass substrate 306 arranged in close contact with the optical prism 303, and is reflected through the condenser lens 308 as reflected light 310B reflected from the metal thin film layer 307. It is led to the detector 309 by the fiber 302B.
  • the photodetector 309 includes a spectroscope 309A, and observes the reflection spectrum of the reflected light 310B.
  • the SPR sensor 300 can detect a change in dielectric constant when a change in dielectric constant occurs near the surface of the metal thin film layer 307, and can detect a change in dielectric constant.
  • the optical system is driven to change the incident angle of the incident angle 310A with respect to the metal thin film layer, and the reflected light 310B is subjected to wavelength decomposition for measurement, that is, the spectrum is measured, thus simplifying the optical system.
  • This has the advantage that the device can be miniaturized.
  • SPR sensors using surface plasmon resonance have problems in measurement stability and sensitivity, and there is a demand for providing a detection device with higher stability and higher sensitivity.
  • FIG. 3 shows an optical waveguide mode sensor 400 using an arrangement similar to the Kretschmann arrangement.
  • the optical waveguide mode sensor 400 includes a transparent substrate 401a (plate glass or the like), a reflective film layer 401b composed of a metal layer or a semiconductor layer coated thereon, and a transparent optical waveguide formed on the reflective film layer 401b.
  • a detection plate 401 including the layer 401c is used.
  • the optical prism 402 is brought into close contact with the surface of the detection plate 401 opposite to the surface on which the transparent optical waveguide layer 401c is formed via refractive index adjusting oil.
  • the incident light 410A is incident on the detection plate 401 under conditions that cause total reflection.
  • an optical waveguide mode also called a leakage mode or leaky mode
  • the optical waveguide mode is excited, and light is reflected near the incident angle of light.
  • the light intensity changes greatly.
  • Such an optical waveguide mode excitation condition changes depending on the dielectric constant in the vicinity of the surface of the transparent optical waveguide layer 401c.
  • silica glass also referred to as SiO 2 glass, silica, quartz glass, or the like
  • silicon Si
  • a detection plate SiO 2 / Si / SiO 2 detection plate having a layer on which a layer of silicon oxide (including thermally oxidized SiO 2 and silica glass) has been devised, and a highly sensitive and highly stable sensor has been devised. Has been developed.
  • Japanese Patent No. 4581135 Japanese Patent No. 4,595,072 JP 2007-271596 A JP 2008-46093 A JP 2009-85714 A
  • the wavelength-resolved measurement method reported in the above-mentioned SPR sensor can be applied to the optical waveguide mode sensor, a high-performance and compact sensor can be expected.
  • the optical setup is similar between the SPR sensor and the optical waveguide mode sensor, since the SPR excitation condition and the optical waveguide mode excitation condition are completely different, the SPR excitation condition in the SPR sensor and the optical waveguide are different. It is necessary to supplement the difference from the optical waveguide mode excitation condition in the mode sensor.
  • the wavelength of light that can excite the SPR is limited to a specific wavelength band depending on the metal material used.
  • the SPR excitation condition is determined by the complex refractive index of each material of the metal material, the substrate material, and the optical prism used. For example, incident light passes through the substrate and enters the metal material surface. In this case, the optimum value of the incident angle is uniquely determined by the materials used.
  • the excitation wavelength of the optical waveguide mode of the optical waveguide mode sensor using the SiO 2 / Si / SiO 2 detector plate greatly depends on the thickness of the silicon layer and the thickness of the silicon oxide layer.
  • the excitation wavelength band of the optical waveguide mode can be freely set as long as it is in the ultraviolet to near-infrared region.
  • the optimum value of the incident angle from the substrate to the optical waveguide layer on the surface of the detection plate is the thickness of the silicon layer and the silicon oxide layer, and further the wavelength of the incident light. Dependent. Therefore, as the detection device, the optical waveguide mode sensor having a large degree of freedom in design is more advantageous.
  • the angle of the optical prism on which light from the light source is incident is specified. If the angle is set so that light optimal for excitation of the optical waveguide mode is incident, the difference between the SPR excitation condition in the SPR sensor and the optical waveguide mode excitation condition in the optical waveguide mode sensor is complemented. be able to.
  • the present invention solves the above-mentioned problems in the prior art and a new technical problem that has arisen in order to provide a detection apparatus to which the wavelength-resolved measurement method is applied using the optical waveguide mode sensor.
  • the objective is to achieve the objective. That is, when realizing a detection apparatus adapted to the wavelength-resolved measurement method using an optical waveguide mode sensor, the difference between the SPR excitation condition in the SPR sensor and the optical waveguide mode excitation condition in the optical waveguide mode sensor is complemented.
  • An object of the present invention is to provide a small, stable and highly sensitive detection device.
  • Means for solving the problems are as follows. That is, ⁇ 1> A detection plate in which a silicon layer and a silicon oxide layer are arranged in this order on a silica glass substrate, an optical prism that is optically adhered to the silica glass substrate side of the detection plate, and the optical prism A light irradiating means for irradiating the detection plate with light, the light incident angle being fixed to the optical prism, and a light detecting means for detecting the intensity of the reflected light reflected from the detection plate And detecting a change in dielectric constant in the vicinity of the surface of the silicon oxide layer of the detection plate by detecting a change in characteristics of the reflected light, wherein the optical prism includes the light irradiation An angle formed by an incident surface on which light emitted from the means is incident and a close contact surface in close contact with the detection plate is 43 ° or less.
  • ⁇ 2> The detection device according to ⁇ 1>, wherein the light irradiation unit emits light in parallel to the in-plane direction of the contact surface.
  • ⁇ 3> The detection device according to any one of ⁇ 1> and ⁇ 2>, wherein the silicon layer is formed of single crystal silicon.
  • ⁇ 4> The detection device according to any one of ⁇ 1> to ⁇ 3>, wherein an interface roughness at an interface between the silicon layer and the silicon oxide layer is 0.5 nm or less in terms of RMS.
  • the light irradiation means includes a light source, a collimator that uses the light emitted from the light source as collimated light, and a polarizing plate that polarizes the collimated light so as to be s-polarized light, and the optical prism
  • the detection device according to any one of ⁇ 1> to ⁇ 4>, wherein the detection plate is irradiated with s-polarized light.
  • the light detection unit includes a spectroscope that spectrally detects at least reflected light.
  • ⁇ 7> The detection device according to any one of ⁇ 1> to ⁇ 6>, wherein the optical prism has an exit surface that is at the same angle as the incident surface with respect to the contact surface.
  • the optical prism is formed of silica glass having the same refractive index as the silica glass substrate.
  • ⁇ 9> The detection device according to any one of ⁇ 1> to ⁇ 8>, wherein the optical prism and the detection plate are integrally formed.
  • ⁇ 10> The detection device according to any one of ⁇ 1> to ⁇ 9>, wherein any one of adsorption, separation, approach, and alteration of a substance in the vicinity of the surface of the silicon oxide layer is detected as a change in dielectric constant.
  • the present invention solves the above-mentioned problems in the prior art and a new technical problem that has arisen in order to provide a detection apparatus to which the wavelength-resolved measurement method is adapted using the optical waveguide mode sensor. Compensate for the difference between the SPR excitation condition in the SPR sensor and the optical waveguide mode excitation condition in the optical waveguide mode sensor when realizing a detection device that adapts the wavelength-resolved measurement method using the optical waveguide mode sensor. In addition, a small, stable and highly sensitive detection device can be provided.
  • the detection apparatus of the present invention includes a detection plate, an optical prism, a light irradiation unit, and a light detection unit.
  • the detection plate is formed by arranging a silicon layer and a silicon oxide layer in this order on a silica glass substrate.
  • the silica glass substrate is not particularly limited as long as it is a glass material formed of silica glass, and can be appropriately selected according to the purpose. For example, from a glass material called SiO 2 glass, silica, quartz glass, or the like. It can be selected appropriately.
  • the material for forming the silicon layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include materials containing silicon as a main constituent, such as single crystal silicon, amorphous silicon, and polysilicon. Among these, single crystal silicon is preferable from the viewpoint of optical and structural uniformity.
  • the silicon oxide layer is not particularly limited as long as it functions as an optical waveguide layer, and can be appropriately selected according to the purpose. Examples thereof include silicon oxide such as thermal silicon oxide (SiO 2 ) and silica glass. Is mentioned.
  • the thickness of the silica glass substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 mm to 3 mm from the viewpoint of easy handling.
  • the thickness of the silicon layer is not particularly limited as long as the optical waveguide mode can be excited, and can be appropriately selected according to the purpose.
  • the optical waveguide can be used in a wavelength region between the near ultraviolet region and the near infrared region. From the viewpoint of exciting the mode, the thickness is preferably 10 nm to 1 ⁇ m, and from the viewpoint of easy production, the upper limit is more preferably 500 nm or less.
  • the thickness of the silicon oxide layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 200 nm to 800 nm from the viewpoint of functioning as an optical waveguide and easy manufacture.
  • the interface roughness between the silicon layer and the silicon oxide layer is not particularly limited and may be appropriately selected depending on the purpose.
  • RMS Root Mean Square; root mean square
  • Square root is preferably 0.5 nm or less, and ideally 0 nm.
  • detection sensitivity can be improved by forming nanopores on the surface of the silicon oxide layer.
  • FIG. 4 The cross-sectional structure of the detection plate is shown in FIG. As shown in FIG. 4, in the detection plate 6, a silicon layer 6b and a silicon oxide layer 6c are arranged in this order on a silica glass substrate 6a, and a silicon oxide layer 6c of the silica glass substrate 6a is formed. An optical prism, which will be described later, is brought into close contact with the opposite surface.
  • the optical prism is optically adhered to the silica glass substrate side of the detection plate.
  • the material for forming the optical prism is not particularly limited and may be appropriately selected depending on the purpose. From the viewpoint of suppressing light reflection and refraction at the interface with the detection plate, the same refraction as the silica glass substrate is used. It is preferable to be formed of silica glass with a ratio.
  • the core of the technology is that the angle is 43 ° or less.
  • Preferred embodiments of the optical prism include a trapezoidal prism and a isosceles triangle prism as shown in FIG. Since these optical prisms have an exit surface that forms the same angle (angle ⁇ in FIG. 6) as the incident surface on which the light irradiated from the light irradiating unit is incident on the contact surface with the detection plate.
  • the light irradiating means and the light detecting means can be optically arranged symmetrically with the optical prism as the center, and the detecting device can be made smaller and more easily arranged.
  • the method for contacting the detection plate and the optical prism is not particularly limited and may be appropriately selected according to the purpose.
  • a refractive index adjusting oil or a refractive index adjusting polymer is provided between the detection plate and the optical prism. It is preferable that it is filled with a sheet and is in close contact so as to be optically continuous.
  • the detection plate and the optical prism may be integrally formed from the viewpoint of more easily obtaining optical continuity. In this case, the same effect can be obtained even if the silica glass substrate portion of the detection plate is polished and used in a prism shape.
  • FIG. 7 shows an example in which the detection plate and the optical prism are integrally formed.
  • a chip in which a silicon layer 16b and a silicon oxide layer 16c are arranged in this order on a prism-like silica glass substrate 16a formed by processing a silica glass substrate into an optical prism shape is used as a detection plate and an optical plate. Used as a prism.
  • the angle ( ⁇ in the figure) formed by the light incident surface of the prism-like silica glass substrate 16a and the contact surface between the detection plate (here, the silicon layer 16b) is set to 43 ° or less.
  • the light irradiating means irradiates the detection plate with light through the optical prism, and the light incident angle is fixed to the optical prism.
  • the light irradiation means is not particularly limited and may be appropriately selected depending on the intended purpose, but it is preferable to irradiate light parallel to the in-plane direction of the contact surface.
  • a smaller and simpler optical system can be obtained.
  • the light irradiating means As a preferable configuration example of the light irradiating means, a light source, a collimator that uses collimated light as light emitted from the light source, and a polarizing plate that polarizes the collimated light to form s-polarized light, an optical prism is provided.
  • the structure which irradiates the said s-polarized light to a detection plate through this is mentioned.
  • the light source is preferably a white lamp, LED, LD, or the like from the viewpoint of performing wavelength-resolved measurement.
  • a p-polarizing plate can be used instead of the s-polarizing plate, but higher sensitivity can be obtained by using the s-polarizing plate.
  • an optical member such as an optical fiber for guiding light emitted from the light source to a collimator can be provided.
  • the light detection means has a function of detecting the intensity of reflected light reflected from the detection plate.
  • the detection device of the present invention detects a change in dielectric constant in the vicinity of the surface of the silicon oxide layer of the detection plate by detecting a characteristic change of the reflected light.
  • the light detection means is not particularly limited as long as it has the above-mentioned functions.
  • the light detection means can be composed of at least a spectroscope and a light detector, and if necessary, a condensing lens, an optical fiber, etc. are added. Can be configured. By using the condensing lens and the optical fiber, a degree of freedom can be given to the optical arrangement.
  • the photodetector is not particularly limited and can be appropriately selected according to the purpose. For example, the intensity of reflected light emitted from the optical prism such as a CCD array, a photodiode array, or a photomultiplier is measured. And the intensity of the reflected light or the reflected spectrum in the specific wavelength band can be detected from the reflected light intensity for each wavelength acquired from the spectrometer.
  • FIG. 8 shows a detection device 50 according to an embodiment of the present invention.
  • the light irradiation means includes a light source 1, an optical fiber 2 ⁇ / b> A, a collimator lens 3, and a polarizing plate 4.
  • Light from the light source 1 enters the optical fiber 2A and is guided to a position where it easily enters the optical prism 5.
  • the collimator lens 3 disposed at the tip of the optical fiber 2A sets the outgoing light from the optical fiber 2A to be parallel light.
  • the emitted light is polarized to a desired polarization state by the polarizing plate 4 and then enters the optical prism 5.
  • the light incident on the optical prism 5 is reflected by the detection plate 6 and emitted from the optical prism 5 as reflected light, and then collected by the condenser lens 7 and taken into the optical fiber 2B.
  • the detector 9 can observe the reflection intensity or the reflection spectrum.
  • the detection plate 6 is configured by a silicon layer 6b and a silicon oxide layer 6c arranged in this order on a silica glass substrate 6a, and is opposite to the surface on which the silicon oxide layer 6c of the silica glass substrate 6a is arranged.
  • the optical prism 5 is disposed in optical contact with the side surface.
  • the angle ( ⁇ in the figure) formed by the incident surface through which light enters through the polarizing plate 4 and the contact surface that is in close contact with the detection plate 6 is set to 43 ° or less. .
  • the detection device 50 having such a structure observes characteristics after the incident light is reflected by the detection plate 6, for example, a reflected light spectrum, light in a specific wavelength band of the incident light is applied to the surface of the detection plate 6.
  • a phenomenon occurs in which the conditions for exciting the optical waveguide mode that locally propagates in and around the formed silicon oxide layer 6c are satisfied, and the reflection intensity is significantly reduced in this wavelength band. Since the optical waveguide mode excitation condition changes depending on the dielectric constant in the vicinity of the surface of the silicon oxide layer 6c of the detection plate 6, if the dielectric constant in the vicinity of the surface of the silicon oxide layer 6c changes, the reflection spectrum changes.
  • the cause of the change in the dielectric constant in the vicinity of the surface of the silicon oxide layer 6c for example, adsorption, approach, separation, Alteration can be detected by the photodetector 9.
  • FIG. 9 shows an outline of a detection apparatus 100 manufactured as an embodiment of the present invention.
  • the light irradiated from the tungsten halogen lamp light 101 is introduced in the order of the collimator lens 103 and the polarizing plate 104 through the optical fiber 102 ⁇ / b> A to be converted into s-polarized parallel light, and then to the prism 105. Irradiate.
  • a detection plate 106 is optically adhered to the prism 105.
  • the prism 105 a trapezoidal prism having two base angles ⁇ of 38 ° is used.
  • the detection plate 106 As the detection plate 106, a single-crystal Si layer 106b having a thickness of 220 nm and a thermally oxidized silicon layer 106c having a thickness of 448 nm are arranged in this order on a silica glass substrate 106a having a thickness of 1.2 mm.
  • the detection apparatus 100 reflects the light applied to the detection plate 106 via the light incident surface A of the prism 105 by the detection plate and emits the light from the light output surface B of the prism 105, and then collects the light from the condenser lens 107 and the light. It was led to a spectroscope 108 with a CCD array via a fiber 102B, and fabricated so that a spectrum could be observed by a photodetector 109.
  • the detection plate 106 is immersed in a weak alkaline aqueous solution for 10 hours and then dried, and then immersed in an ethanol solution of 0.2% by mass of 3-aminopropyltriethoxysilane for 10 hours, so that the surface of the silicon oxide layer 106c is reactive.
  • the amino group was modified.
  • succinimide group-containing compound After rinsing with ethanol and drying, it was immersed in a 1/15 M phosphate buffer containing 0.1 mM sulfosuccinimidyl-N- (D-biotinyl) -6-aminohexanate (succinimide group-containing compound). . It was left as it was for 5 hours, the amino group and the succinimide group of the succinimide group-containing compound were reacted to introduce a biotinyl group on the surface of the silicon oxide layer 106c. In this way, specific adsorption of streptavidin to the biotinyl group can be observed.
  • a biotinyl group is introduced into the silicon oxide surface 106c by the above-described method, and then a liquid cell is packaged on the silicon oxide surface 106c, and a 1 / 15M phosphate buffer solution is placed in the liquid cell. It was performed by driving the detection apparatus 100 and observing the reflection spectrum from the photodetector 109. This observation result is indicated by a solid line in FIG. Thereafter, the 1/15 M phosphate buffer was removed, and then a 1/15 M phosphate buffer containing 0.5 ⁇ M of streptavidin was injected into the liquid cell, and the reflection spectrum was observed again. This observation result is indicated by a broken line in FIG. As can be seen from FIG. 10, by the injection of the solution containing streptavidin, an adsorption reaction of biotin 110 and streptavidin 111 occurs, and the position of the dip seen in the reflection spectrum is shifted to the longer wavelength side.
  • the conditions used for the calculation are as follows: (1) When the silicon layer thickness on the detection plate is 45 nm and the bottom of the dip is at a position where the incident wavelength is 600 nm, (2) When the silicon layer thickness on the detection plate is 80 nm When the bottom of the dip is at the position of wavelength 470 nm, (3) When the thickness of the silicon layer on the detection plate is 160 nm and the bottom of the dip is at the position of incident wavelength 520 nm, (4) The thickness of the silicon layer on the detection plate was 220 nm and the bottom of the dip was at the incident wavelength of 650 nm, the following four conditions were used. In either case, the calculation was made assuming that the silicon layer was single crystal silicon.
  • the calculation was performed assuming that the surface of the detection plate 106 is immersed in a liquid having a refractive index equivalent to that of water. It was calculated that the silicon oxide layer 106c was silica glass. Since the thickness of the silicon oxide layer 106c affects the wavelength position where the dip appears, when the calculation is performed, the dip position is set to the above-described wavelengths while the detection plate surface is immersed in the liquid. The thickness of the silicon oxide layer was set. The shift amount of the dip position was calculated on the assumption that a substance having a thickness of 5 nm and a refractive index of 1.45 was adsorbed on the surface of the detection plate 106.
  • FIG. 11 shows the result of calculation showing the dependence of the wavelength shift amount on the angle ⁇ of the prism.
  • FIG. 12 shows the shift amount normalized with the value when the angle ⁇ of the prism is 31 °.
  • the prism angle ⁇ is smaller in any case, although the thickness of the silicon layer constituting the detection plate 106 and the excitation wavelength band are different. It can be seen that the shift amount is large, that is, the sensitivity is high.
  • the angle ⁇ of the prism is smaller than 30 °, the incident light does not satisfy the total reflection condition on the surface of the detection plate 106, that is, the incident angle of the light on the surface of the detection plate 106 becomes smaller than the critical angle.
  • the angle ⁇ of the prism is such that the incident angle of light on the detection plate surface is smaller than the critical angle. However, if the incident angle of light is smaller than the critical angle, the optical waveguide mode is not excited.
  • the prism angle If the angle of ⁇ is 43 ° or less, the dip position shift is 60% or more with respect to the amount of shift of the dip position when the angle ⁇ of the prism is 31 ° under all the calculated conditions. The quantity is obtained (see FIG. 12). Therefore, when the angle ⁇ of the prism is set to 43 ° or less, high sensitivity can be obtained when using the SiO 2 / Si / SiO 2 detection plate and applying the wavelength-resolved measurement method.
  • the angle ⁇ of the prism is 41 ° or less, about 70% of the shift amount of the dip position when the angle ⁇ of the prism is 31 ° under all the calculated conditions. Or, since the shift amount of the dip position larger than that is obtained (see FIG. 12), it is more preferable.
  • the detection apparatus of the present invention is small, highly stable and highly sensitive, it is a protein such as DNA, antigen-antibody, biosensor such as sugar chain, and chemical substance sensor such as metal ion and organic molecule, temperature.
  • the present invention can be applied to a variety of fields such as medicine, drug discovery, food, and environment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】波長分解型測定法を用いた光導波モードセンサーに最適な光学系を実現し、小型で、安定的かつ高感度な検出装置を提供すること。 【解決手段】シリカガラス基板上にシリコン層と酸化シリコン層とがこの順で配される検出板と、前記検出板の前記シリカガラス基板側に光学的に密着される光学プリズムと、前記光学プリズムを介して前記検出板に光を照射し、前記光学プリズムに対して光の入射角が固定されて配される光照射手段と、前記検出板から反射される反射光の強度を検出する光検出手段とを有し、前記反射光の特性変化を検出することにより、前記検出板の前記酸化シリコン層の表面近傍における誘電率の変化を検出する検出装置であって、前記光学プリズムは、前記光照射手段から照射される光が入射される入射面と、前記検出板に密着される密着面とのなす角の角度が43°以下であることを特徴とする。

Description

検出装置
 本発明は、波長分解測定法と光導波モードを利用して、被検出試料の吸着、離脱、近接、変質を高感度に検出することができる小型の検出装置に関する。
 液体中に含まれる微小物質、例えば、生体試料中のタンパク質や、病原菌、水中の金属イオン、有機分子など様々な物質を検出するセンサーとして、表面プラズモン共鳴(SPR)を用いるセンサーが知られている(例えば、非特許文献1~7参照)。この表面プラズモン共鳴を用いたセンサーは、一般的にSPR(Surface Plasmon Resonance)センサーと呼ばれ、GEヘルスケア社、富士写真フィルム株式会社、NTTアドバンステクノロジ株式会社、株式会社オプトクエスト、など多くの企業から製品が販売されている。
 図1に、クレッチマン配置と呼ばれる最もポピュラーなSPRセンサー200の構成例を示す。このSPRセンサー200は、ガラス基板201上に金や銀などの金属を蒸着して金属薄膜層202を形成し、ガラス基板201の金属薄膜層202を形成した面と反対側の面に光学プリズム203を密着させた構造からなり、光源204から照射されるレーザー光を偏光板205にて偏光し、光学プリズム203を通じてガラス基板201に照射する。入射光210Aは、全反射となる条件で入射する。入射光210Aの金属の表面側に染み出すエバネセント波によって、ある入射角で表面プラズモン共鳴が発現する。表面プラズモン共鳴が起こると、エバネセント波は表面プラズモンによって吸収されるので、この入射角付近では反射光の強度が著しく減少する。表面プラズモン共鳴が発現する条件は、金属薄膜層202表面近傍の誘電率によって変化することから、金属薄膜層202の表面上に被検出試料が結合したり吸着して誘電率に変化が生じると、入射光210Aの反射特性に変化が生じる。よって、金属薄膜層202から反射される反射光210Bの強度変化を検出器206によりモニターすることによって、被検出試料を検出することができる。
 このSPRセンサー200では、金属薄膜層202表面近傍での誘電率の変化を検出しているため、被検出物質の吸着のみならず、ある特定物質が金属表面に近づいてきたり(接近)、もともと金属表面に付着していた物質が離脱したり、又は、もともと金属表面に存在していたものの特性が変質したりしても、これらを検知することができる。
 しかしながら、金属薄膜層202表面における被検出物質の特性を検出するためには、光源204を含む光学系を駆動して、入射光210Aが金属薄膜層202に導入される角度θを変更し、その反射光210Bを検出器206にて適切にモニターする必要があるため、光学系の配置が複雑となり、検出装置が大型化するという問題がある。
 SPRセンサーにおいて、光学系を簡素化し小型化を実現した系として、波長分解型測定法が報告されている(例えば、非特許文献6、7参照)。図2に、非特許文献6で採用されている光学系からなるSPRセンサー300の概要を示す。入射光310Aは、光源301から光ファイバ302Aを介して光学プリズム303の手前まで導かれ、コリメートレンズ304によって平行光にされ、偏光板305にてp偏光にされた後に、光学プリズム303に入射される。この入射光310Aは、光学プリズム303上に密着する形で配されたガラス基板306上の金属薄膜層307に照射され、金属薄膜層307から反射される反射光310Bとして、集光レンズ308を通じて光ファイバ302Bにより検出器309まで導かれる。ここで光検出器309は、分光器309Aを備えており、反射光310Bの反射スペクトルを観測する。このSPRセンサー300は、前述のSPRセンサー200と同様に、金属薄膜層307表面近傍で誘電率の変化が生じると、反射スペクトルに変化が生じ、誘電率変化を検知できる一方で、前述のSPRセンサー200と異なり、光学系を駆動させて入射角310Aの金属薄膜層に対する入射角を変更することなく、反射光310Bを波長分解して測定に供し、つまりスペクトルを測定するため、光学系を簡素にし、装置を小型化できる利点を有する。
 しかしながら、表面プラズモン共鳴を利用するSPRセンサーでは、測定の安定性と感度に課題を有し、より安定性が高く、高感度の検出装置の提供が求められているのが現状である。
 SPRセンサーとよく似た構造を持ち、やはりセンサーの検出面における、物質の吸着や誘電率の変化を検出するセンサーとして、光導波モードセンサーがある(非特許文献1、2、8~19、及び特許文献1~5参照)。
 光導波モードセンサーは、SPRセンサーで用いることができる全ての光学系と同等の光学系を使用することが可能であることが知られている。図3に、クレッチマン配置と類似の配置を用いた光導波モードセンサー400を示す。光導波モードセンサー400は、透明基板401a(板ガラスなど)と、その上に被覆した金属層または半導体層で構成される反射膜層401bと、更にこの反射膜層401b上に形成される透明光導波路層401cとからなる検出板401を用いる。この検出板401の透明光導波路層401cが形成されている面とは反対側の面に屈折率調節オイルを介して光学プリズム402が密着される。光源403から照射され、偏光板404にて偏光された光は、光学プリズム402を通して検出板401に照射される。入射光410Aは、検出板401に対して全反射となる条件で入射する。ある特定の入射角において、入射光410Aが光導波路内を伝搬する光導波モード(漏洩モード、またはリーキーモードとも呼ばれる)と結合すると、光導波モードが励起され、この光入射角度近傍で光の反射光強度が大きく変化する。このような光導波モードの励起条件は、透明光導波路層401c表面近傍の誘電率によって変化することから、透明光導波路層401cの表面において物質の吸着や接近、離脱、変質が生じると、反射光410Bの強度に変化が現れる。この変化を検出器405により観測することにより、透明光導波路層401c表面における物質の吸着や接近、離脱、変質といった現象を検出することができる。
 非特許文献13や特許文献5に開示されているように、光導波モードセンサーでは、基板にシリカガラス(SiOガラス、シリカ、石英ガラスなどとも呼ばれる)を用い、この上に、シリコン(Si)層を持ち、その上に、酸化シリコン(熱酸化SiOやシリカガラスも含む)の層を持つ検出板(SiO/Si/SiO検出板)が考案され、高感度かつ高安定なセンサーが開発されている。
特許第4581135号公報 特許第4595072号公報 特開2007-271596号公報 特開2008- 46093号公報 特開2009- 85714号公報
W.Knoll,MRS Bulletin 16,pp.29-39(1991年) W.Knoll,Annu.Rev.Phys.Chem.49,pp.569-638(1998年) H.Kano and S.Kawata,Appl.Opt.33,pp.5166-5170(1994年) C.Nylander,B.Liedberg,and T.Lind,Sensor.Actuat.3,pp.79-88(1982/83年) K.Kambhampati,T.A.M.Jakob,J.W.Robertson,M.Cai,J.E.Pemberton,and W.Knoll,Langmuir 17,pp.1169-1175(2001年) O.R.Bolduc,L.S.Live,and J.F.Masson,Talanta 77,pp.1680-1687(2009年) I.Stammler,A.Brecht,and G.Gauglitz,Sensor.Actuat.B54,pp98-105(1999年) M.Osterfeld,H.Franke,and C.Feger,Appl.Phys.Lett.62,pp.2310-2312(1993年) E.F.Aust and W.Knoll,J.Appl.Phys.73,p.2705(1993年) M.Fujimaki,C.Rockstuhl,X.Wang,K.Awazu,J.Tominaga,T.Ikeda,Y.Ohki,and T.Komatsubara,Microelectronic Engineering 84,pp.1685-1689(2007年) K.Awazu,C.Rockstuhl,M.Fujimaki,N.Fukuda,J.Tominaga,T.Komatsubara,T.Ikeda,and Y.Ohki,Optics Express 15,pp.2592-2597(2007年) K.H.A.Lau,L.S.Tan,K.Tamada,M.S.Sander,and W.Knoll,J.Phys.Chem.B108,pp.10812(2004年) M.Fujimaki,C.Rockstuhl,X.Wang,K.Awazu,J.Tominaga,Y.Koganezawa,Y.Ohki,and T.Komatsubara,Optics Express 16,pp.6408-6416(2008年) M.Fujimaki,C.Rockstuhl,X.Wang,K.Awazu,J.Tominaga,N.Fukuda,Y.Koganezawa,and Y.Ohki,Nanotechnology 19,pp.095503-1-095503-7(2008年) M.Fujimaki,C.Rockstuhl,X.Wang,K.Awazu,J.Tominaga,T.Ikeda,Y.Koganezawa,and Y.Ohki,J.Microscopy 229,pp.320-326(2008年) M.Fujimaki,K.Nomura,K.Sato,T.Kato,S.C.B.Gopinath,X.Wang,K.Awazu,andY.Ohki,Optics Express 18,pp.15732-15740(2010年) R.P.Podgorsek,H.Franke,J.Woods,and S.Morrill,Sensor.Actuat.B51 pp.146-151(1998年) J.J.Saarinen,S.M.Weiss,P.M.Fauchet,and J.E.Sipe,Opt.Express 13,pp.3754-3764(2005年) G.Rong,A.Najmaie,J.E.Sipe,and S.M.Weiss,Biosens.Bioelectron.23,pp.1572-1576(2008年)
 前記光導波モードセンサーにおいて、上述のSPRセンサーにおいて報告されている波長分解型測定法を適応することができれば、高性能で小型なセンサーの実現が期待できる。
 しかしながら、前記SPRセンサーと前記光導波モードセンサーとは、光学的なセットアップが似ているものの、SPR励起条件と光導波モード励起条件が全く異なるため、前記SPRセンサーにおけるSPR励起条件と、前記光導波モードセンサーにおける光導波モード励起条件との差異を補完する必要がある。
 この点、前記SPRセンサーの場合、前記SPRを励起できる光の波長は、使用する金属材料により、ある特定の波長帯域に限定される。また、前記SPR励起条件は、使用する金属材料、基板材料、及び光学プリズムの材料における、それぞれの材料の複素屈折率によって決まり、例えば、入射された光が基板を通過し金属材料面に入射される際の入射角度の最適値は、これら使用する材料によって一意的に決定される。
 一方、前記SiO/Si/SiO検出板を用いた光導波モードセンサーの光導波モードの励起波長は、シリコン層の厚さや酸化シリコン層の厚さに大きく依存する。この特性を利用すれば、これらの層の厚さを制御することによって、前記光導波モードの励起波長帯を、紫外から近赤外領域内であれば、自由に設定可能である。また、前記SPRセンサーと異なり、前記光導波モードセンサーの場合、基板から検出板表面の光導波路層に対する入射角の最適値は、シリコン層及び酸化シリコン層の厚さ、更には入射光の波長に依存する。したがって、検出装置としては、設計上大きな自由度を持つ前記光導波モードセンサーの方が有利である。
 そして、前記SiO/Si/SiO検出板を用いた光導波モードセンサーを用いて、波長分解型測定法を適応させるためには、光源からの光が入射される光学プリズムの角を特定の角度に設定して、光導波モードの励起に最適な光が入射されるようにすれば、前記SPRセンサーにおけるSPR励起条件と、前記光導波モードセンサーにおける光導波モード励起条件との差異を補完することができる。
 本発明は、従来技術における前記諸問題と、前記光導波モードセンサーを用いて前記波長分解型測定法を適応させた検出装置を提供するために生じた新たな技術的課題とを解決し、以下の目的を達成することを課題とする。即ち、光導波モードセンサーを用いて波長分解型測定法を適応させた検出装置を実現するに際して、SPRセンサーにおけるSPR励起条件と、光導波モードセンサーにおける光導波モード励起条件との差異を補完し、小型で、安定的かつ高感度な検出装置を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> シリカガラス基板上にシリコン層と酸化シリコン層とがこの順で配される検出板と、前記検出板の前記シリカガラス基板側に光学的に密着される光学プリズムと、前記光学プリズムを介して前記検出板に光を照射し、前記光学プリズムに対して光の入射角が固定されて配される光照射手段と、前記検出板から反射される反射光の強度を検出する光検出手段とを有し、前記反射光の特性変化を検出することにより、前記検出板の前記酸化シリコン層の表面近傍における誘電率の変化を検出する検出装置であって、前記光学プリズムは、前記光照射手段から照射される光が入射される入射面と、前記検出板に密着される密着面とのなす角の角度が43°以下であることを特徴とする検出装置。
 <2> 光照射手段が、密着面の面内方向に対して平行に光を照射する前記<1>に記載の検出装置。
 <3> シリコン層が、単結晶シリコンにより形成される前記<1>及び<2>のいずれかに記載の検出装置。
 <4> シリコン層と酸化シリコン層との界面における界面粗さが、RMS換算で0.5nm以下である前記<1>から<3>のいずれかに記載の検出装置。
 <5> 光照射手段が、光源と、前記光源から照射される光をコリメート光とするコリメータと、前記コリメート光を偏光してs偏光とする偏光板とを有し、光学プリズムを介して前記s偏光を検出板に照射する前記<1>から<4>のいずれかに記載の検出装置。
 <6> 光検出手段が、少なくとも反射光を分光して検出する分光器を有する前記<1>から<5>のいずれかに記載の検出装置。
 <7> 光学プリズムが、密着面に対して入射面と同一角度をなす出射面を有する前記<1>から<6>のいずれかに記載の検出装置。
 <8> 光学プリズムが、シリカガラス基板と同じ屈折率のシリカガラスで形成される前記<1>から<7>のいずれかに記載の検出装置。
 <9> 光学プリズムと検出板とが一体的に形成される前記<1>から<8>のいずれかに記載の検出装置。
 <10> 酸化シリコン層表面近傍における、物質の吸着、離脱、接近、及び変質のいずれかの状態を誘電率の変化として検出する前記<1>から<9>のいずれかに記載の検出装置。
 本発明によれば、従来技術における前記諸問題と、前記光導波モードセンサーを用いて前記波長分解型測定法を適応させた検出装置を提供するために生じた新たな技術的課題とを解決することができ、光導波モードセンサーを用いて波長分解型測定法を適応させた検出装置を実現するに際して、SPRセンサーにおけるSPR励起条件と、光導波モードセンサーにおける光導波モード励起条件との差異を補完し、小型で、安定的かつ高感度な検出装置を提供することができる。
従来技術である表面プラズモン共鳴を用いたSPRセンサー200の光学配置の例を示す説明図である。 従来技術である表面プラズモン共鳴を用いたSPRセンサー300の光学配置の例を示す説明図である。 従来技術である光導波モードセンサー400の光学配置の例を示す説明図である。 本発明の検出装置に用いられる検出板の断面構造を説明する図である。 本発明の検出装置に用いられる光学プリズムの形状を説明する図である。 本発明の検出装置に用いられる光学プリズムの形状を説明する他の図である。 本発明の検出装置に用いられる光学プリズム及び検出板を一体的に形成した例の断面構造を説明する図である。 本発明の実施形態に係る検出装置の概要を示す説明図である。 本発明の実施例に係る検出装置の概要を示す説明図である。 本発明の実施例に係る検出装置を用いて観測した反射光のスペクトルを示す図である。 本発明の実施例に係る検出装置の構成条件を設定して計算したプリズムの角度と反射光スペクトルにおけるディップ位置のシフト量の関係を示す図である。 本発明の実施例に係る検出装置の構成条件を設定して計算したプリズムの角度と反射光スペクトルにおけるディップ位置のシフト量の関係を示す図である。
(検出装置)
 本発明の検出装置は、検出板と、光学プリズムと、光照射手段と、光検出手段とを有する。
<検出板>
 前記検出板は、シリカガラス基板上にシリコン層と酸化シリコン層とがこの順で配されてなる。
 前記シリカガラス基板としては、シリカガラスで形成されるガラス材料であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、SiOガラス、シリカ、石英ガラスなどと呼ばれるガラス材料から適宜選択することができる。
 前記シリコン層の形成材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単結晶シリコン、アモルファスシリコン、ポリシリコンなど、シリコンを主たる構成物質とした材料が挙げられるが、中でも、光学的及び構造的均一性の観点から、単結晶シリコンが好ましい。
 前記酸化シリコン層としては、光導波路層として機能するものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、熱酸化シリコン(SiO)、シリカガラスなどシリコンの酸化物が挙げられる。
 前記シリカガラス基板の厚さとしては、特に制限はなく、目的に応じて適宜選択することができるが、ハンドリングが容易である観点から、0.5mm~3mmが好ましい。
 前記シリコン層の厚さとしては、光導波モードを励起することができれば特に制限はなく、目的に応じて適宜選択することができるが、近紫外域から近赤外域の間の波長領域で光導波モードを励起することができる観点から、10nm~1μmであることが好ましく、更に製造が容易である観点から、その上限としては500nm以下がより好ましい。
 前記酸化シリコン層の厚さとしては、特に制限はなく、目的に応じて適宜選択することができるが、光導波路として機能させ、また、製造が容易である観点から、200nm~800nmが好ましい。
 前記シリコン層と前記酸化シリコン層との界面粗さとしては、特に制限はなく、目的に応じて適宜選択することができるが、光の散乱を抑制する観点から、RMS(Root Mean Square;二乗平均平方根)換算で0.5nm以下が好ましく、理想的には0nmである。
 また、前記酸化シリコン層の表面にナノ孔を形成することによって、検出感度を向上させることができる。
 前記検出板の断面構造を図4に示す。該図4に示すように、検出板6は、シリカガラス基板6a上にシリコン層6bと酸化シリコン層6cとがこの順で配されてなり、このシリカガラス基板6aの酸化シリコン層6cが形成されている面と反対の面に後述の光学プリズムを密着させる。
<光学プリズム>
 前記光学プリズムは、前記検出板の前記シリカガラス基板側に光学的に密着されてなる。
 前記光学プリズムの形成材料としては、特に制限はなく、目的に応じて適宜選択することができるが、前記検出板との界面における光の反射や屈折を抑える観点から、前記シリカガラス基板と同じ屈折率のシリカガラスで形成されることが好ましい。
 本発明の検出装置においては、前記光照射手段から照射される光が入射される入射面と、前記検出板に密着される密着面とのなす角の角度、即ち、図中にαで示される角度が43°以下であることを技術の核とする。このようにすることで、従来のSPRセンサーにおけるSPR励起条件と、光導波モードセンサーにおける光導波モード励起条件との差異を補完することができる。
 したがって、前記光学プリズムの形状としては、前記角度を有する限り特に制限はなく、目的に応じて適宜選択することができ、例えば、図5に示すような任意の形状とすることができる。また、前記角の先端としては、研磨の関係上、丸まっていてもよい。
 前記光学プリズムの好ましい態様としては、図6に示すような断面視台形のプリズム及び二等辺三角形のプリズムが挙げられる。これらの光学プリズムにおいては、前記検出板との密着面に対し、前記光照射手段から照射される光が入射される入射面と同一角度(図6における角度α)をなす出射面を有するので、前記光学プリズムを中心として、光照射手段と光検出手段とを対称的に光学配置することができ、検出装置をより小型でかつ簡便な配置設計にすることができる。
 前記検出板及び前記光学プリズムの密着方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記検出板と前記光学プリズムの間に、屈折率調節オイルや屈折率調節ポリマーシートで満たし、光学的に連続となるように密着されていることが好ましい。
 また、前記検出板と前記光学プリズムとは、より簡便に光学的な連続性が得られる観点から、一体的に形成されていてもよい。
 この場合、前記検出板のシリカガラス基板部分を研磨して、プリズム形状にして用いても同様の効果を得ることができる。
 前記検出板と前記光学プリズムとが一体的に形成される例を図7に示す。この例では、シリカガラス基板を光学プリズム状に加工して形成されたプリズム状のシリカガラス基板16a上に、シリコン層16bと、酸化シリコン層16cとをこの順で配したチップを検出板及び光学プリズムとして用いる。この場合、プリズム状のシリカガラス基板16aの光入射面と、前記検出板(ここでは、シリコン層16b)との密着面とのなす角(図中のα)の角度を43°以下とする。
<光照射手段>
 前記光照射手段は、前記光学プリズムを介して前記検出板に光を照射し、前記光学プリズムに対して光の入射角が固定されて配される。
 前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができるが、密着面の面内方向に対して平行に光を照射することが好ましい。このように前記光照射手段の光学系を配することで、より小型で簡便な光学系とすることができる。
 前記光照射手段の好ましい構成例としては、光源と、前記光源から照射される光をコリメート光とするコリメータと、前記コリメート光を偏光してs偏光とする偏光板とを有し、光学プリズムを介して前記s偏光を検出板に照射する構成が挙げられる。このように前記光照射手段を構成することで、適切な入射角で前記光学プリズムに対し光を照射することができるとともに、より高感度の検出が可能な光学系を得ることができる。
 前記光源としては、波長分解型の測定を行う観点から、白色ランプやLEDやLDなどが好ましい。また、前記s偏光板に代えてp偏光板を用いることができるが、前記s偏光板を用いる方が高い感度を得ることができる。
 なお、前記光照射手段のこのほかの部材として、前記光源から照射される光をコリメータに導くための光ファイバーなどの光学部材を配することができる。
<光検出手段>
 前記光検出手段は、前記検出板から反射される反射光の強度を検出する機能を有する。本発明の検出装置は、前記反射光の特性変化を検出することにより、前記検出板の前記酸化シリコン層の表面近傍における誘電率の変化を検出する。
 前記光検出手段としては、前記機能を有するものであれば特に制限はなく、例えば、少なくとも分光器と光検出器により構成することができ、必要に応じて、集光レンズ、光ファイバ等を付加して構成することができる。前記集光レンズ及び前記光ファイバを用いることで、光学配置に自由度を与えることができる。
 前記光検出器としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CCDアレイ、フォトダイオードアレイ、フォトマルチプライアなど、前記光学プリズムから出射される反射光の強度を測定する装置が挙げられ、前記分光器から取得される波長ごとの反射光強度から特定波長帯域における反射光の強度または反射スペクトルを検出可能とする。
 本発明の一実施形態に係る検出装置50を図8に示す。該図8に示すように、光照射手段は、光源1と、光ファイバ2Aと、コリメータレンズ3と偏光板4で構成されている。光源1からの光は、光ファイバ2Aに入射され、光学プリズム5に入射しやすい位置に導かれる。光ファイバ2Aの先に配置されたコリメータレンズ3により、光ファイバ2Aからの出射光は、平行光となるように設定される。また、この出射光は、偏光板4にて所望の偏光状態に偏光された後に、光学プリズム5に入射される。
 光学プリズム5に入射された光は、検出板6で反射され、反射光として光学プリズム5から出射された後、集光レンズ7により集光されて光ファイバ2Bに取り込まれ、分光器8及び光検出器9にて、反射強度または反射スペクトルを観測可能とされる。検出板6は、シリカガラス基板6a上に、シリコン層6bと、酸化シリコン層6cとがこの順で配されたもので構成され、シリカガラス基板6aの酸化シリコン層6cが配される面と反対側の面に光学プリズム5が光学的に密着されて配される。
 ここで、光学プリズム5は、偏光板4を通じて光が入射される入射面と、検出板6に密着される密着面とのなす角の角度(図中のα)が43°以下に設定される。このように角度を設定することで、従来のSPRセンサーにおけるSPR励起条件と、光導波モードセンサーにおける光導波モード励起条件との差異を補完して、小型で高感度の検出装置を実現することができる。
 このような構造を有する検出装置50により、入射光が検出板6で反射された後の特性、例えば反射光スペクトルを観測すると、入射光のある特定波長帯域の光が、検出板6の表面に形成された酸化シリコン層6c内及びその近傍を局在的に伝搬する光導波モードを励起する条件を満たし、この波長帯域で反射強度が著しく弱まる現象が生じる。この光導波モード励起条件は、検出板6の酸化シリコン層6c表面近傍の誘電率によって変化するため、酸化シリコン層6c表面近傍の誘電率に変化があると、反射スペクトルが変化する。これにより、反射スペクトルの変化又はある特定波長帯域の反射光強度の変化を観測することで、酸化シリコン層6c表面近傍において誘電率変化を引き起こしている原因、例えば、物質の吸着や接近、離脱、変質を光検出器9で検出することができる。
 図9に、本発明の一実施例として作製した検出装置100の概要を示す。この検出装置100おいては、タングステンハロゲンランプ光101から照射される光を光ファイバ102Aを介してコリメータレンズ103、偏光板104の順で導入し、s偏光の平行光にした後、プリズム105に照射する。プリズム105には、検出板106を光学的に密着させた。ここで、プリズム105としては、2つの底角の角度αがいずれも38°の台形プリズムを用いた。また、検出板106としては、厚さ1.2mmのシリカガラス基板106a上に、厚さ220nmの単結晶Si層106bと、厚さ448nmの熱酸化シリコン層106cとがこの順で配されたものを用いた。
 また、検出装置100は、プリズム105の光入射面Aを介して検出板106に照射された光を検出板で反射させプリズム105の光出射面Bから出射させた後、集光レンズ107及び光ファイバ102Bを介して、CCDアレイ付きの分光器108に導き、光検出器109によりスペクトルが観測されるように作製した。
 この実施例に係る検出装置100を用いて、ビオチン110とストレプトアビジン111の特異吸着の検出試験を以下に記載の通り行った。
 まず、検出板106を弱アルカリ水溶液に10時間浸漬後乾燥し、次いで0.2質量%の3-アミノプロピルトリエトキシシランのエタノール溶液に10時間浸漬し、酸化シリコン層106cの表面に反応活性なアミノ基を修飾した。
 エタノールでリンスし乾燥させた後、0.1mMのスルホスクシンイミジル-N-(D-ビオチニル)-6-アミノヘキサネート(スクシンイミド基含有化合物)を含む1/15Mリン酸緩衝液に浸した。そのまま5時間放置し、アミノ基とスクシンイミド基含有化合物のスクシンイミド基とを反応させ、酸化シリコン層106cの表面にビオチニル基を導入した。こうすることによって、ビオチニル基へのストレプトアビジンの特異吸着を観測できるようになる。
 具体的な観察方法としては、前述の方法で酸化シリコン表面106cにビオチニル基を導入させた後、酸化シリコン表面106cの部分に液セルを外装し、1/15Mリン酸緩衝液を液セル内に満たし、検出装置100を駆動させ、光検出器109から反射スペクトルを観測することにより行った。この観測結果を図10中の実線で示す。
 その後、1/15Mリン酸緩衝液を取り除き、次に液セル内にストレプトアビジンを0.5μM含有する1/15Mリン酸緩衝液を注入し、再度反射スペクトルを観測した。この観測結果を図10中の破線で示す。
 該図10から確認されるように、ストレプトアビジンを含有する溶液の注入によって、ビオチン110とストレプトアビジン111の吸着反応が生じて、反射スペクトル中に見られるディップの位置が長波長側へシフトする。
 検出板106の表面近傍で誘電率の変化が生じた際、図10に見られるようなディップ位置の波長シフト量がより大きくなるように拡大設定できれば、誘電率の変化をより高感度に検出できることになり、誘電率の変化を引き起こしている反応をより正確に捉えられることとなる。そこで、プリズムの角αの角度とディップ位置の波長シフト量の関係をシミュレーション計算にて計算した。シミュレーション計算には、フレネルの式を用いた計算プログラム及びフリーウエアである計算プログラムWinspall(Wolfgang Knollグループ, MPI-P)を用いた。
 計算に用いた条件としては、(1)検出板におけるシリコン層の厚さが45nmで入射波長600nmの位置にディップの底がある場合、(2)検出板におけるシリコン層の厚さが80nmで入射波長470nmの位置にディップの底がある場合、(3)検出板におけるシリコン層の厚さが160nmで入射波長520nmの位置にディップの底がある場合、(4)検出板におけるシリコン層の厚さが220nmで入射波長650nmの位置にディップの底がある場合、の4通りの条件を用いた。いずれの場合も、シリコン層は単結晶シリコンであるとして計算した。
 また、検出板106の表面が水と同等の屈折率を持った液に浸っているとして計算を行った。酸化シリコン層106cとしては、シリカガラスであるとして計算した。酸化シリコン層106cの厚さとしては、ディップの現れる波長位置に影響を与えることから、計算を行う際、検出板表面が液に浸っている状態で、ディップ位置が上述のそれぞれの波長になるように酸化シリコン層の厚さを設定した。ディップ位置のシフト量としては、検出板106の表面に厚さが5nmで屈折率1.45の物質が吸着した場合を想定して計算した。
 計算で得られた、波長シフト量のプリズムの角αに対する角度依存性を示す結果を図11に示す。また、プリズムの角αの角度が31°の時の値で規格化したシフト量を図12に示す。
 図11、図12に示す通り、計算で用いた条件では、検出板106を構成するシリコン層の厚さや、励起波長帯域が異なるにも拘わらず、いずれの場合も、プリズムの角αが小さいほうが、シフト量が大きい、つまり感度が高いことが分かる。
 ただし、プリズムの角αの角度が30°より小さくなると、入射光が検出板106の表面で全反射条件を満たさなくなる、つまり、検出板106表面への光の入射角が臨界角より小さくなってしまう場合がある。検出板106に用いられている各材料の屈折率に波長依存性があるため、ここで一意的に、検出板表面への光の入射角が臨界角より小さくなってしまうようなプリズムの角αの角度を定められないが、光の入射角が臨界角より小さくなると、光導波モードは励起されないことに留意する必要がある。
 プリズムの角αの角度が31°の時の値で規格化したシフト量を理想的な値として、プリズムの角αをこれ以外に変更して得られたシフト量と比較検討すると、プリズムの角αの角度が43°以下であれば、計算を行った全ての条件下で、プリズムの角αの角度が31°の時のディップ位置のシフト量に対して、60%以上のディップ位置のシフト量が得られている(図12参照)。したがって、プリズムの角αの角度を43°以下にすると、SiO/Si/SiO検出板を用い、かつ、波長分解型測定法を適応するに際し、高い感度を得ることができる。
 また、プリズムの角αの角度が41°以下であれば、計算を行った全ての条件下で、プリズムの角αの角度が31°の時のディップ位置のシフト量に対して、70%前後またはそれ以上のディップ位置のシフト量が得られることから(図12参照)、より好ましい。
 本発明の検出装置は、小型で、高安定で、かつ高感度であることから、DNA、抗原-抗体などのたんぱく質、糖鎖などのバイオセンサー及び金属イオン、有機分子などの化学物質センサー、温度計などに適用でき、医療、創薬、食品、環境等の分野において広く利用することができる。
   1、101、204、301、403  光源
   2A、2B、102A、102B、302A、302B  光ファイバ
   3、103、304  コリメータレンズ
   4、104、205、305、404  偏光板
   5、105、203、303、402  光学プリズム
   6、106、401  検出板
   6a、106a  シリカガラス基板
   6b、16b、106b  シリコン層
   6c、16c、106c  酸化シリコン層
   7、107、308  集光レンズ
   8、108、309A  分光器
   9、109、206、309、405  光検出器
   16a  光学プリズム状のシリカガラス基板
   110  ビオチン
   111  ストレプトアビジン
   50、100  検出装置
   200、300  SPRセンサー
   400  光導波モードセンサー
   201、306  ガラス基板
   202、307  金属薄膜層
   210A、310A、410A  入射光
   210B、310B、410B  出射光
   401a  透明基板
   401b  反射膜層
   401c  透明光導波路層

Claims (10)

  1.  シリカガラス基板上にシリコン層と酸化シリコン層とがこの順で配される検出板と、前記検出板の前記シリカガラス基板側に光学的に密着される光学プリズムと、前記光学プリズムを介して前記検出板に光を照射し、前記光学プリズムに対して光の入射角が固定されて配される光照射手段と、前記検出板から反射される反射光の強度を検出する光検出手段とを有し、前記反射光の特性変化を検出することにより、前記検出板の前記酸化シリコン層の表面近傍における誘電率の変化を検出する検出装置であって、
     前記光学プリズムは、前記光照射手段から照射される光が入射される入射面と、前記検出板に密着される密着面とのなす角の角度が43°以下であることを特徴とする検出装置。
  2.  光照射手段が、密着面の面内方向に対して平行に光を照射する請求項1に記載の検出装置。
  3.  シリコン層が、単結晶シリコンにより形成される請求項1及び2のいずれかに記載の検出装置。
  4.  シリコン層と酸化シリコン層との界面における界面粗さが、RMS換算で0.5nm以下である請求項1から3のいずれかに記載の検出装置。
  5.  光照射手段が、光源と、前記光源から照射される光をコリメート光とするコリメータと、前記コリメート光を偏光してs偏光とする偏光板とを有し、光学プリズムを介して前記s偏光を検出板に照射する請求項1から4のいずれかに記載の検出装置。
  6.  光検出手段が、少なくとも反射光を分光して検出する分光器を有する請求項1から5のいずれかに記載の検出装置。
  7.  光学プリズムが、密着面に対して入射面と同一角度をなす出射面を有する請求項1から6のいずれかに記載の検出装置。
  8.  光学プリズムが、シリカガラス基板と同じ屈折率のシリカガラスで形成される請求項1から7のいずれかに記載の検出装置。
  9.  光学プリズムと検出板とが一体的に形成される請求項1から8のいずれかに記載の検出装置。
  10.  酸化シリコン層表面近傍における、物質の吸着、離脱、接近、及び変質のいずれかの状態を誘電率の変化として検出する請求項1から9のいずれかに記載の検出装置。
PCT/JP2011/076229 2011-01-20 2011-11-15 検出装置 WO2012098758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012553566A JP5885350B2 (ja) 2011-01-20 2011-11-15 検出装置
US13/980,373 US8937721B2 (en) 2011-01-20 2011-11-15 Sensing device
EP11856595.1A EP2667181A4 (en) 2011-01-20 2011-11-15 SENSOR DEVICE
CN201180065674.4A CN103328952B (zh) 2011-01-20 2011-11-15 感测装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009775 2011-01-20
JP2011009775 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012098758A1 true WO2012098758A1 (ja) 2012-07-26

Family

ID=46515397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076229 WO2012098758A1 (ja) 2011-01-20 2011-11-15 検出装置

Country Status (5)

Country Link
US (1) US8937721B2 (ja)
EP (1) EP2667181A4 (ja)
JP (1) JP5885350B2 (ja)
CN (1) CN103328952B (ja)
WO (1) WO2012098758A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077672A (ja) * 2012-10-09 2014-05-01 Univ Of Tokyo テラヘルツ波測定装置及び方法
JP2016151417A (ja) * 2015-02-16 2016-08-22 国立研究開発法人産業技術総合研究所 赤血球凝集検出装置および検出方法
US10768112B2 (en) 2016-07-12 2020-09-08 National Institute Of Advanced Industrial Science And Technology Optical detection device and optical detection method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110312103A1 (en) * 2009-01-30 2011-12-22 National Institute Of Advanced Industrial Science And Technology Sample detection sensor and sample detection method
US9599569B2 (en) * 2013-05-28 2017-03-21 J.A. Woollam Co., Inc. Method to enhance sensitivity to surface normal optical functions of anisotropic films using attenuated total reflection
US9983064B2 (en) * 2013-10-30 2018-05-29 Corning Incorporated Apparatus and methods for measuring mode spectra for ion-exchanged glasses having steep index region
US9919958B2 (en) 2014-07-17 2018-03-20 Corning Incorporated Glass sheet and system and method for making glass sheet
CN105158208B (zh) * 2015-06-23 2018-03-02 中北大学 一种古斯汉欣位移spr高灵敏度介质折射率检测方法
CN108474741A (zh) * 2015-12-23 2018-08-31 皇家飞利浦有限公司 流体中粒子的光学检测
CN105486665B (zh) * 2016-01-26 2018-07-31 深圳大学 一种spr检测方法
CN107807108B (zh) * 2017-09-30 2020-02-04 复拓科学仪器(苏州)有限公司 一种大量程高分辨率的气液折射率检测方法及装置
TWI644800B (zh) * 2018-01-15 2018-12-21 國立臺灣師範大學 含有二硫化鉬之生物感測晶片以及應用該生物感測晶片之檢測裝置
CN110133066A (zh) * 2019-05-24 2019-08-16 暨南大学 电化学等离子体光纤重金属检测系统及方法
US11231365B2 (en) * 2019-07-08 2022-01-25 Hanwha Systems Co., Ltd. Apparatus and method for infrared imaging

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502382A (ja) * 2002-10-07 2006-01-19 イギリス国 導波管構造
JP2006017648A (ja) * 2004-07-05 2006-01-19 Fuji Photo Film Co Ltd 測定装置
JP2006275568A (ja) * 2005-03-28 2006-10-12 Institute Of Physical & Chemical Research フォトニック結晶導波路のフォトニックバンド構造の測定方法およびその装置
JP2007271596A (ja) 2006-03-08 2007-10-18 National Institute Of Advanced Industrial & Technology 光導波モードセンサー
JP2008046093A (ja) 2006-08-21 2008-02-28 National Institute Of Advanced Industrial & Technology 細孔付き光導波モードセンサー
JP2009085714A (ja) 2007-09-28 2009-04-23 National Institute Of Advanced Industrial & Technology 酸化膜を用いた光導波モードセンサー及びその製造方法
JP4581135B2 (ja) 2005-09-06 2010-11-17 独立行政法人産業技術総合研究所 光導波モードセンサー用のチップ
JP4595072B2 (ja) 2006-03-09 2010-12-08 独立行政法人産業技術総合研究所 光導波モードセンサー

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9700384D0 (sv) * 1997-02-04 1997-02-04 Biacore Ab Analytical method and apparatus
JP2007029414A (ja) * 2005-07-27 2007-02-08 Noboru Ichikawa 介護用マット
CN101109747B (zh) * 2007-08-09 2011-04-20 中国科学院长春光学精密机械与物理研究所 表面等离子体共振与柔性平板波联合探测生物传感器
WO2009021309A1 (en) * 2007-08-15 2009-02-19 National Research Council Of Canada Prism coupled silicon on insulator sensor
WO2010035232A1 (en) * 2008-09-24 2010-04-01 Koninklijke Philips Electronics N.V. Assembly with absorbing sensor layer
CN102227626A (zh) * 2008-09-30 2011-10-26 蒙特利尔大学 使用道威棱镜的高分辨率表面等离子体共振仪器
CN101419167B (zh) * 2008-12-04 2010-12-29 浙江大学 高俘获率高灵敏度的微流控spr生物传感方法和装置
US8860943B2 (en) * 2009-05-12 2014-10-14 Valorisation-Recherche, Limited Partnership High sensitivity plasmonic structures for use in surface plasmon resonance sensors and method of fabrication thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502382A (ja) * 2002-10-07 2006-01-19 イギリス国 導波管構造
JP2006017648A (ja) * 2004-07-05 2006-01-19 Fuji Photo Film Co Ltd 測定装置
JP2006275568A (ja) * 2005-03-28 2006-10-12 Institute Of Physical & Chemical Research フォトニック結晶導波路のフォトニックバンド構造の測定方法およびその装置
JP4581135B2 (ja) 2005-09-06 2010-11-17 独立行政法人産業技術総合研究所 光導波モードセンサー用のチップ
JP2007271596A (ja) 2006-03-08 2007-10-18 National Institute Of Advanced Industrial & Technology 光導波モードセンサー
JP4595072B2 (ja) 2006-03-09 2010-12-08 独立行政法人産業技術総合研究所 光導波モードセンサー
JP2008046093A (ja) 2006-08-21 2008-02-28 National Institute Of Advanced Industrial & Technology 細孔付き光導波モードセンサー
JP2009085714A (ja) 2007-09-28 2009-04-23 National Institute Of Advanced Industrial & Technology 酸化膜を用いた光導波モードセンサー及びその製造方法

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
C. NYLANDER; B. LIEDBERG; T. LIND, SENSOR. ACTUAT., vol. 3, 1982, pages 79 - 88
E. F. AUST; W. KNOLL, J. APPL. PHYS., vol. 73, 1993, pages 2705
G. RONG; A. NAJMAIE; J. E. SIPE; S. M. WEISS, BIOSENS. BIOELECTRON., vol. 23, 2008, pages 1572 - 1576
H. KANO; S. KAWATA, APPL. OPT., vol. 33, 1994, pages 5166 - 5170
J. J. SAARINEN; S. M. WEISS; P. M. FAUCHET; J. E. SIPE, OPT. EXPRESS, vol. 13, 2005, pages 3754 - 3764
K. AWAZU; C. ROCKSTUHL; M. FUJIMAKI; N. FUKUDA; J. TOMINAGA; T. KOMATSUBARA; T. IKEDA; Y. OHKI, OPTICS EXPRESS, vol. 15, 2007, pages 2592 - 2597
K. H. A. LAU; L. S. TAN; K. TAMADA; M. S. SANDER; W. KNOLL, J. PHYS. CHEM., vol. B108, 2004, pages 10812
K. KAMBHAMPATI; T. A. M. JAKOB; J. W. ROBERTSON; M. CAI; J. E. PEMBERTON; W. KNOLL, LANGMUIR, vol. 17, 2001, pages 1169 - 1175
M. FUJIMAKI; C. ROCKSTUHL; X. WANG; K. AWAZU; J. TOMINAGA; N. FUKUDA; Y. KOGANEZAWA; Y. OHKI, NANOTECHNOLOGY, vol. 19, 2008, pages 095503 - 1,095503-7
M. FUJIMAKI; C. ROCKSTUHL; X. WANG; K. AWAZU; J. TOMINAGA; T. IKEDA; Y. KOGANEZAWA; Y. OHKI, J. MICROSCOPY, vol. 229, 2008, pages 320 - 326
M. FUJIMAKI; C. ROCKSTUHL; X. WANG; K. AWAZU; J. TOMINAGA; T. IKEDA; Y. OHKI; T. KOMATSUBARA, MICROELECTRONIC ENGINEERING, vol. 84, 2007, pages 1685 - 1689
M. FUJIMAKI; C. ROCKSTUHL; X. WANG; K. AWAZU; J. TOMINAGA; Y. KOGANEZAWA; Y. OHKI; T. KOMATSUBARA, OPTICS EXPRESS, vol. 16, 2008, pages 6408 - 6416
M. FUJIMAKI; K. NOMURA; K. SATO; T. KATO; S. C. B. GOPINATH; X. WANG; K. AWAZU; Y. OHKI, OPTICS EXPRESS, vol. 18, 2010, pages 15732 - 15740
M. OSTERFELD; H. FRANKE; C. FEGER, APPL. PHYS. LETT., vol. 62, 1993, pages 2310 - 2312
O. R. BOLDUC; L. S. LIVE; J. F. MASSON, TALANTA, vol. 77, 2009, pages 1680 - 1687
R. P. PODGORSEK; H. FRANKE; J. WOODS; S. MORRILL, SENSOR. ACTUAT., vol. B51, 1998, pages 146 - 151
See also references of EP2667181A4 *
STAMMLER, A. BRECHT; G. GAUGLITZ, SENSOR. ACTUAT., vol. B54, 1999, pages 98 - 105
W. KNOLL, ANNU. REV. PHYS. CHEM., vol. 49, 1998, pages 569 - 638
W. KNOLL, MRS BULLETIN, vol. 16, 1991, pages 29 - 39

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077672A (ja) * 2012-10-09 2014-05-01 Univ Of Tokyo テラヘルツ波測定装置及び方法
JP2016151417A (ja) * 2015-02-16 2016-08-22 国立研究開発法人産業技術総合研究所 赤血球凝集検出装置および検出方法
US10768112B2 (en) 2016-07-12 2020-09-08 National Institute Of Advanced Industrial Science And Technology Optical detection device and optical detection method

Also Published As

Publication number Publication date
US20130293896A1 (en) 2013-11-07
JPWO2012098758A1 (ja) 2014-06-09
CN103328952A (zh) 2013-09-25
EP2667181A4 (en) 2015-12-23
US8937721B2 (en) 2015-01-20
CN103328952B (zh) 2016-03-30
JP5885350B2 (ja) 2016-03-15
EP2667181A1 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5885350B2 (ja) 検出装置
US20170370924A1 (en) Target substance detection chip, target substance detection plate, target substance detection device and target substance detection method
WO2009078511A1 (en) Fluorescence microscope using surface plasmon resonance
Goddard et al. Real-time biomolecular interaction analysis using the resonant mirror sensor
Fukuyama et al. Selective detection of antigen-antibody reaction using Si ring optical resonators
JP2005257455A (ja) 測定装置および測定ユニット
JP5920692B2 (ja) 目的物質検出チップ、目的物質検出装置及び目的物質検出方法
Wang et al. Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation
WO2018012436A1 (ja) 光学的検出装置及び光学的検出方法
US20130063717A1 (en) Laminated structure for measuring reflected light intensity, device containing laminated structure for measuring reflected light intensity, and method for measuring film thickness and/or mass and/or viscosity of thin film
JP2004163257A (ja) 光導波路への光導入方法及びそれを用いた光導波路分光測定装置
JP4382339B2 (ja) 測定チップ
JP7177913B2 (ja) 高消光係数標識子と誘電体基板を用いた高感度バイオセンサチップ、測定システム、及び測定方法
JP3903432B2 (ja) 測定装置
US20190056389A1 (en) System and method for determining the presence or absence of adsorbed biomolecules or biomolecular structures on a surface
JP2013024607A (ja) 目的物質検出プレート、目的物質検出装置及び目的物質検出方法
JP4173725B2 (ja) エバネッセント波を利用したセンサー
Danz et al. Biosensing platform combining label-free and labelled analysis using Bloch surface waves
Gupta et al. A polymeric waveguide resonant mirror (RM) device for detection in microfluidic flow cells
JP2004245638A (ja) 測定装置
JP4064169B2 (ja) 特定物質の回収方法および全反射減衰を利用したセンサー
US8965737B2 (en) Ultrasensitive biological and chemical detection using surface plasmon resonance
Beam et al. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films
JP2012163342A (ja) 金属検出装置、検出板及び金属検出方法
Kanger et al. A fast and sensitive integrated young interferometer biosensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180065674.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553566

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980373

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011856595

Country of ref document: EP