WO2012096006A1 - Organic el elements for lighting and method for manufacturing same - Google Patents

Organic el elements for lighting and method for manufacturing same Download PDF

Info

Publication number
WO2012096006A1
WO2012096006A1 PCT/JP2011/060773 JP2011060773W WO2012096006A1 WO 2012096006 A1 WO2012096006 A1 WO 2012096006A1 JP 2011060773 W JP2011060773 W JP 2011060773W WO 2012096006 A1 WO2012096006 A1 WO 2012096006A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic
light emitting
emitting layer
organic light
Prior art date
Application number
PCT/JP2011/060773
Other languages
French (fr)
Japanese (ja)
Inventor
柳 雄二
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2012096006A1 publication Critical patent/WO2012096006A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Definitions

  • the present invention relates to a large-area organic EL element suitable for illumination and a method for manufacturing the same, and more particularly to an organic EL element having an insulating film formed by patterning and a manufacturing method for simply patterning.
  • An organic light emitting element emits light from an organic light emitting layer sandwiched between a first electrode and a second electrode by applying a voltage between the first electrode and the second electrode.
  • an organic light emitting element an organic EL (electroluminescence) element has already been used for a flat panel display represented by a liquid crystal display. Since a flat panel display has a large number of pixels, one pixel is fine. Similarly, a display using an organic EL element has fine pixels, and the organic EL element is patterned using a fine vapor deposition mask. In recent years, organic EL elements are being used for solid-state lighting.
  • Solid-state lighting is a product that requires higher brightness than a display.
  • the luminance required for the display is about 1,000 cd / m 2
  • the solid state lighting requires a luminance of about 3,000 cd / m 2 to 5,000 cd / m 2 . Therefore, it is necessary to flow a large current value per unit area to each electrode.
  • the size of one light emitting element is less than 1 mm square.
  • solid state illumination using organic EL elements requires a larger luminous flux than the display, and therefore one light emitting element is required to have a size of 100 mm square or more.
  • FIG. 7 shows a plan view of one light emitting element of a general organic EL element.
  • a sealing member is necessary to protect the organic EL element from the environment, but it is omitted in FIG.
  • One light emitting element of the organic EL element is formed by laminating a first electrode 2, an organic light emitting layer 3, and a second electrode 4 on a substrate 1.
  • the first electrode (anode) 2 is patterned on the substrate 1 by photolithography.
  • the organic light emitting layer 3 is laminated so as to intersect the first electrode 2.
  • the second electrode 4 is stacked so as to intersect the organic light emitting layer 3 and the first electrode 2, and by applying a voltage between the first electrode 2 and the second electrode 4, the organic in the portion where the electrode intersects Only the light emitting layer 3 emits light.
  • the first electrode 2 is a transparent conductive film.
  • the transparent conductive film As a material for the transparent conductive film, indium tin oxide (ITO) or the like is used. ITO has the smallest volume resistivity among the materials of the transparent conductive film, but the volume resistivity of ITO is significantly higher than that of metal.
  • the organic light emitting layer 3 is an organic multilayer film made of an organic light emitting material.
  • the organic light emitting layer 3 is usually formed by continuously depositing a vapor deposition mask having an opening on the substrate on which the first electrode 2 is formed, and then continuously depositing in a vacuum vapor deposition apparatus.
  • the second electrode 4 is a metal film or the like, and is formed using a vacuum evaporation apparatus or a sputtering apparatus.
  • the second electrode 4 is usually formed on the organic light emitting layer 3 after disposing a vapor deposition mask having an opening different from the vapor deposition mask used in the organic light emitting layer 3.
  • an organic EL element having the above configuration When an organic EL element having the above configuration is formed in a single large area and a large current is passed, it becomes dark due to a voltage drop.
  • a phenomenon (brightness unevenness) occurs in which the peripheral part of the element becomes bright and the central part becomes dark. This is because the resistance value of the transparent conductive film is high and a voltage drop occurs due to a large current.
  • FIG. 8 is a sectional view taken along line (a) of FIG.
  • the organic light emitting layer 3 film thickness: about 100 nm to about 300 nm
  • the organic light emitting layer 3 in a portion overlapping the edge of the first electrode 2 is thinned, pinholes, and Defects such as cracks are likely to occur.
  • a leak current or a short circuit is likely to occur between the first electrode 2 and the second electrode 4, which causes a decrease in the quality and yield of the organic EL element.
  • Patent Document 1 In order to solve the above problems, organic EL elements such as Patent Document 1 and Patent Document 2 have been proposed.
  • Patent Document 1 in order to obtain a light emitting region with high accuracy, an insulating layer is provided using a photolithography technique, and a pattern is formed with high accuracy.
  • FIG. 9 shows an insulating layer patterning process. First, the substrate on which the transparent conductive film as the first electrode is patterned is washed and dried. Next, a photosensitive agent (photoresist) is applied onto the entire surface of the substrate by spin coating. The resist is semi-dried by prebaking, then patterned using an exposure mask, and exposed to ultraviolet rays by an exposure device to be exposed. Thereafter, development (etching and cleaning) is performed, and a high-precision insulating layer is patterned through post-baking.
  • Patent Document 2 discloses a method of forming an insulating layer by a roll printing method.
  • JP-A-3-250583 (Claim 1) JP 2005-310404 A (paragraphs [0013] and [0014])
  • Patent Document 1 The patterning processing method described in Patent Document 1 is a high-precision processing technique generally used in semiconductors and flat panel displays, but requires a large-scale and expensive manufacturing facility. Further, in the method described in Patent Document 1, a photoresist is once applied to the entire surface and then patterned, so that a large amount of unnecessary resist material is consumed. The resist material and the exposure device are expensive, and the disposal of the developer is costly and troublesome. Therefore, there exists a problem that manufacturing cost becomes high. The above cost increase is acceptable for high value-added products such as displays, but is a very big problem for lighting products.
  • FIG. 10 is a sectional view taken along line (b) of FIG.
  • the organic light emitting layer 3 is laminated on the flat portion of the first electrode 2 in the cross section of the line (b).
  • the second electrode deposition mask 8 is used on the organic light emitting layer 3 at the time of film formation.
  • the organic light emitting layer 3 is damaged and a defect is generated. Therefore, even when the organic light emitting layer 3 is laminated on the flat portion of the first electrode 2, a leakage current or a short circuit is likely to occur between the first electrode 2 and the second electrode 4, and the organic EL This causes a decrease in device quality and yield.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an organic EL element for illumination at a low cost, which does not require expensive manufacturing equipment and can be applied to a wide variety of products. .
  • the present invention is configured such that a first electrode, an organic light emitting layer, and a second electrode are sequentially stacked on a substrate, and the second electrode intersects the first electrode when viewed in plan.
  • an insulating film can be formed only in a necessary portion. Accordingly, it is not necessary to apply an extra insulating material, so that the material cost can be suppressed. Since there is no process for removing the excessively applied insulating material such as pre-baking, exposure and development, which has been conventionally performed in photolithography, a cleaning agent, a waste liquid treatment, and an expensive exposure mask corresponding to the pattern become unnecessary. Since there is no step of removing the insulating material, after applying the insulating material, the insulating film can be formed by performing only the step of curing the insulating material. According to the above invention, by providing the insulating film in the predetermined portion, it is possible to prevent the organic light emitting layer from being damaged during the manufacturing process and to provide an organic EL device for illumination including the organic light emitting layer with few defects.
  • the said insulating film formation process arrange
  • the method includes intermittently discharging the insulating material toward the surface, and relatively moving the substrate or the single nozzle to form a continuous insulating film on the predetermined portion.
  • an insulating film can be formed only in a predetermined position without requiring expensive manufacturing equipment. Even if the element size is changed, the setup can be changed instantaneously by selecting and changing only the application position control program.
  • the predetermined portion is a portion corresponding to a region where the edge of the first electrode and the surface of the second electrode intersect
  • the organic light-emitting layer formed on the edge of the first electrode is thinned and defects such as pinholes and cracks Occurrence can be suppressed. This makes it difficult for leakage currents and short circuits between the electrodes to occur, and further suppresses quality deterioration and yield reduction.
  • the predetermined portion corresponds to the region where the surface of the first electrode and the edge of the second electrode intersect, the end of the vapor deposition mask used when forming the second electrode overlaps the non-light emitting device portion. The organic light emitting layer can be prevented from being damaged. This makes it difficult for leakage currents or short circuits between the electrodes to occur, so that deterioration in quality and yield are suppressed.
  • the present invention also includes a light emitting device in which a first electrode, an organic light emitting layer, and a second electrode are sequentially stacked on a substrate, and the second electrode intersects the first electrode when viewed in plan.
  • An organic insulating material is formed in a non-contact manner only on a predetermined portion corresponding to a region where the first electrode and the second electrode intersect on the substrate on which the first electrode is formed.
  • an organic EL element for illumination comprising an organic insulating film formed by coating without patterning.
  • the insulating film is formed only in a necessary portion by a non-contact method, the patterning process and equipment are not required, and the manufacturing cost can be suppressed. Moreover, it can be set as the organic EL element for illumination provided with the organic light emitting layer with few defects in which the damage of the organic light emitting layer produced in the manufacturing process provided with an insulating film in a predetermined part was reduced.
  • the predetermined portion is a portion corresponding to a region where the edge of the first electrode and the surface of the second electrode intersect, an organic light emitting layer with a reduced thickness and fewer defects such as pinholes and cracks can be obtained.
  • an organic EL element in which a leak current or a short circuit between the electrodes hardly occurs.
  • the predetermined portion is a portion corresponding to a region where the surface of the first electrode and the edge of the second electrode intersect, the end portion of the vapor deposition mask used when forming the second electrode overlaps the non-light emitting element portion. Therefore, it can be set as an organic light emitting layer with little damage in a light emitting element part. Thereby, the organic EL element for illumination is less likely to cause a leak current or a short circuit between the electrodes.
  • the insulating film is formed in a non-contact manner, the material cost of the insulating film can be suppressed.
  • the cleaning agent and the waste liquid treatment are unnecessary, and the change of the element size can be instantaneously changed.
  • FIG. 1 shows a schematic plan view of an example of one light emitting element of the organic EL element for illumination according to the present embodiment.
  • the organic EL element for illumination according to the present embodiment includes a light emitting element in which a first electrode 2, an organic light emitting layer 3, and a second electrode 4 are sequentially stacked on a substrate 1.
  • a first electrode 2 an organic light emitting layer 3
  • a second electrode 4 are sequentially stacked on a substrate 1.
  • the outer periphery of the surface of the first electrode 2 and the outer periphery of the surface of the second electrode 4 do not completely overlap, and the second electrode 4 and the first electrode 2 intersect.
  • An insulating film 5 is provided at a predetermined portion between the first electrode 2 and the organic light emitting layer 3 or between the substrate 1 and the organic light emitting layer 3.
  • the predetermined portion is a portion corresponding to a region where the first electrode 2 and the second electrode 4 intersect.
  • the intersecting region is a region where the edge of the first electrode 2 and the surface of the second electrode 4 intersect when the organic EL element is viewed in plan, or the surface of the first electrode 2 and the edge of the second electrode 4. May be the region where In the present embodiment, the predetermined portion is a portion corresponding to a region where the edge of the first electrode 2 and the surface of the second electrode 4 intersect. That is, the insulating film 5 is provided only on the patterning step portion of the first electrode 2 on which the organic light emitting layer 3 / second electrode 4 is laminated. Therefore, there are very few regions that require an insulating film, and the insulating film can be formed simply.
  • a portion laminated in the order of the first electrode 2 / organic light emitting layer 3 / second electrode 4 on the substrate 1 functions as a light emitting element. That is, by applying a voltage between the first electrode 2 and the second electrode 4, the organic light emitting layer 3 of the light emitting element emits light, and light is emitted to the outside through the substrate 1.
  • the light emitting element has a size of 50 mm square to 300 mm square.
  • the portion laminated on the substrate 1 in the order of the first electrode 2 / insulating film 5 / organic light emitting layer 3 / second electrode 4 or insulating film 5 / organic light emitting layer 3 / second electrode 4 is a non-light emitting element portion. Is done.
  • the substrate 1 is a translucent substrate.
  • the first electrode 2 is a transparent film having conductivity.
  • a metal oxide film such as indium tin oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (ZnO) can be used.
  • the thickness of the first electrode 2 is about 100 nm to 500 nm.
  • the first electrode 2 may have a sharp cross section at the edge.
  • the organic light emitting layer 3 is an organic multilayer film made of an organic light emitting material.
  • the structure of the organic multilayer film is a hole injection layer / a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer.
  • the total thickness of the organic light emitting layer 3 is about 100 nm to 300 nm.
  • the second electrode 4 is a conductive film.
  • the second electrode 4 is made of a metal film or metal oxide film of aluminum (Al) or silver (Ag).
  • the insulating film 5 is an electrically insulating film.
  • a positive resist, a negative resist, or other curable resin can be used.
  • the thickness of the insulating film 5 is sufficient if it has a withstand voltage against the applied voltage between the first electrode 2 and the second electrode 4, but the thickness of the first electrode 2 or more is desirable, and the range of 100 nm to 10 ⁇ m is desirable. good.
  • the width of the insulating film 5 is required to be very narrow in the case of a display, but is not required for organic EL lighting of 100 mm square size or more, and accuracy is not required. preferable.
  • FIG. 2 is a view for explaining an example of a method for manufacturing an organic EL element according to this embodiment.
  • FIG. 2A to FIG. 2D are views of a cross section taken along line (a) of FIG.
  • FIG. 2 (a) The first electrode 2 is patterned on the substrate 1.
  • FIG. 2B Insulating Film Forming Step
  • the insulating film forming step first, the surface of the substrate 1 on which the first electrode 2 is formed is cleaned. Thereafter, an insulating material is applied to a predetermined portion on the substrate 1 on which the first electrode 2 is formed and cured.
  • the curing method is appropriately selected according to the insulating material to be used.
  • FIG. 3 illustrates a process diagram for forming an insulating film when a positive resist is used as an insulating material.
  • the insulating film 5 can be formed by the steps of cleaning, resist drawing (coating), and post-baking. After the positive resist is applied, it is cured only by heating (post-bake) to form the insulating film 5. Since the insulating material is applied only to a predetermined portion, the pre-baking, exposure, and development steps necessary for forming an insulating film by conventional photolithography are not required.
  • ⁇ ⁇ Insulating material is applied in a non-contact manner.
  • a dot discharge type dispenser is optimal.
  • JET MASTER registered trademark 2 manufactured by Asymtec Corporation can be used.
  • the insulating material is applied by using a single nozzle 6 for one light emitting element.
  • the size of the discharge port of the nozzle 6 is appropriately set according to the type of insulating material to be used and the size of the target light emitting element.
  • An organic material that can be cured at a low temperature is desirable for the insulating material, and a head with a plurality of nozzles, such as an inkjet, can be seen more efficiently for discharging the insulating material (resist).
  • a highly viscous liquid (resist liquid) used as the insulating material of this embodiment cannot be printed using the inkjet.
  • Ink jets are not suitable for forming a film having a thickness of about 1 ⁇ m because the discharge amount per nozzle is very small.
  • ink jet is suitable for patterning on the entire surface of the substrate, it is not suitable for applying to a small number of vertical and horizontal lines.
  • the tip of the single nozzle 6 is directed toward the substrate 1 on which the first electrode 2 is formed, and the single nozzle 6 is spaced so that the tip does not contact the first electrode 2.
  • the single nozzle 6 may be disposed at an interval of 0.1 mm to 1.0 mm from the surface of the first electrode 2 with respect to the edge portion (patterning step portion) of the first electrode 2.
  • the insulating material is intermittently discharged from the single nozzle 6 toward a predetermined portion on the substrate 1 on which the first electrode 2 is formed.
  • the linear insulating film 5 continuous to a predetermined portion is formed by relatively moving the substrate 1 or the single nozzle 6 while discharging the insulating material.
  • the discharge amount of the insulating material and the moving speed of the substrate 1 or the single nozzle 6 are determined so that the insulating film 5 has a desired thickness and width in consideration of the wettability of the surface to be coated, the type and viscosity of the insulating material. Set as appropriate.
  • FIG. 4 shows a schematic diagram of an example of insulating film formation.
  • FIG. 4A shows ejected particles of the insulating material ejected from the nozzle.
  • the discharge amount corresponds to 5 nL and the discharge particle diameter corresponds to 0.2 mm.
  • the discharge repetition rate is 200 dots / sec and the moving speed is 100 mm / sec.
  • the discharged particles are applied on the substrate at intervals of 0.5 mm.
  • 4B and 4C show the state of the insulating material after landing on the substrate. After the landing, the discharged insulating material spreads as shown in FIG. 4B, and finally is connected in a linear shape as shown in FIG.
  • This width is sufficiently acceptable for an organic EL element for illumination of 100 mm square or more, but it is easy to change the width by changing the discharge amount and the interval.
  • substrate 1 which passed through the insulating film formation process is carried in in a vacuum evaporation system.
  • An organic vapor deposition mask 7 is put on the substrate 1, and an organic material is laminated and deposited to form the organic light emitting layer 3.
  • the organic vapor deposition mask 7 has, for example, an opening that is equal to or larger than the surface of the first electrode 2 in the direction of the line (a) in FIG. When the organic vapor deposition mask 7 is applied, the opening is applied to the first electrode 2.
  • the vapor deposition conditions for other organic materials are arbitrary.
  • substrate 1 which passed the organic light emitting layer formation process is carried in another vacuum evaporation system.
  • a second electrode deposition mask 8 is placed on the substrate 1, and a conductive material is stacked and deposited to form the second electrode 4.
  • the second electrode deposition mask 8 has, for example, an opening larger than the first electrode 2 in the direction of the line (a) in FIG. 1 and smaller than the first electrode 2 in the direction of the line (b) in FIG. Use things.
  • the deposition conditions for other conductive materials are arbitrary.
  • a sealing member is appropriately formed (not shown).
  • the 2nd electrode was formed into a film by vacuum deposition, it is not limited to this, You may form into a film by sputtering method.
  • the organic EL element for illumination according to the present embodiment has the same configuration as that of the first embodiment except that a predetermined portion for forming the insulating film is different.
  • FIG. 5 shows a schematic plan view of an example of one light emitting element of the organic EL element for illumination according to the present embodiment.
  • the insulating film 5 of the present embodiment includes a region where the edge of the first electrode 2 and the surface of the second electrode 4 intersect when the organic EL element is viewed in plan, and the surface of the first electrode 2 and the second electrode 4. Provided in the region where the edges of the crossing.
  • the second electrode deposition mask 8 contacts the organic light emitting layer 3 when the second electrode 4 is formed.
  • An insulating film 5 is formed in a portion corresponding to the certain portion.
  • FIG. 6 is a sectional view taken along line (b) of FIG.
  • the insulating film 5 is provided on a flat portion on the first electrode 2.
  • the second electrode vapor deposition mask 8 is configured such that the end of the opening covers the insulating film 5. By doing so, the portion where the second electrode vapor deposition mask 8 is in contact with the organic light emitting layer 3 becomes a non-light emitting element portion, so that it is not necessary to damage the organic light emitting layer 3 in the light emitting element.
  • the insulating film 5 is continuously formed vertically and horizontally. If the coating conditions of the insulating film 5 are the conditions shown in FIG. 4, in the case of a 100 mm square light emitting device, the insulating film 5 can be drawn in 4 seconds, and even a 15-chamfer master substrate can be drawn in 1 minute. It is.
  • a plurality of single nozzles 6 are arranged on the substrate 1 so that a single nozzle 6 is arranged for one light emitting element, so that the insulating film 5 is simultaneously formed on the plurality of light emitting elements. May be drawn. As a result, the processing speed can be further improved easily.
  • the insulating film 5 can be formed only by directly coating and drawing only on the portion where the photoresist is desired to be formed and baking, without using photolithography. . Therefore, the amount of the insulating material used can be reduced as compared with the conventional photolithography technique, and only a conventional baking furnace is used and no new equipment is required.
  • manufacturing can be performed without any influence on the cause of defects such as unevenness, waviness and distortion of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a method for manufacturing organic EL elements, which can be applied to a wide variety of products, at low cost and without the need for expensive manufacturing equipment. This method for manufacturing organic EL elements for lighting is provided with: an insulation film forming step for forming an insulation film (5) by applying an insulation material using a non-contact method, only in prescribed areas corresponding to regions where a first electrode (2) and a second electrode (4) intersect on a substrate (1) upon which the first electrode (2) is formed; an organic light-emitting layer forming step for forming, after the insulation film forming step, an organic light-emitting layer (3) by vacuum deposition on the first electrode (2) positioned in an intersecting region, by using an evaporation mask (7) having an opening; and a second electrode forming step for forming, after the organic light-emitting layer forming step, the second electrode (4) on the organic light-emitting layer (3), by using a separate evaporation mask (8) having an opening, said separate evaporation mask (8) differing from the evaporation mask (7).

Description

照明用有機EL素子およびその製造方法Organic EL element for illumination and manufacturing method thereof
 本発明は、照明に適した大面積の有機EL素子およびその製造方法に関し、特に、絶縁膜をパターニング形成した有機EL素子及び簡素にパターニング形成する製造方法に関する。 The present invention relates to a large-area organic EL element suitable for illumination and a method for manufacturing the same, and more particularly to an organic EL element having an insulating film formed by patterning and a manufacturing method for simply patterning.
 有機発光素子は、第1電極と第2電極との間に電圧を印加することにより、第1電極と第2電極とに挟まれた有機発光層が発光するものである。有機発光素子として、既に、有機EL(エレクトロルミネセンス)素子が、液晶ディスプレイに代表されるフラットパネルディスプレイに用いられている。フラットパネルディスプレイは、画素数多いことから一つの画素が微細である。有機EL素子を用いたディスプレイも同様に画素が微細であり、微細な蒸着マスクを利用して有機EL素子をパターニングしている。また、近年、有機EL素子は、固体照明に用いられようとしている。 An organic light emitting element emits light from an organic light emitting layer sandwiched between a first electrode and a second electrode by applying a voltage between the first electrode and the second electrode. As an organic light emitting element, an organic EL (electroluminescence) element has already been used for a flat panel display represented by a liquid crystal display. Since a flat panel display has a large number of pixels, one pixel is fine. Similarly, a display using an organic EL element has fine pixels, and the organic EL element is patterned using a fine vapor deposition mask. In recent years, organic EL elements are being used for solid-state lighting.
 固体照明は、ディスプレイよりも高輝度が要求される製品である。例えば、ディスプレイで要求される輝度が1,000cd/m程度であるのに対し、固体照明では3,000cd/mから5,000cd/m程度の輝度が要求される。そのため、単位面積当たりの大きな電流値を各電極に流す必要がある。
 有機EL素子を用いたディスプレイにおいて、一つの発光素子の大きさは1mm角未満である。一方、有機EL素子を用いた固体照明では、ディスプレイよりも大きな光束が必要とされるため、一つの発光素子は100mm角以上の大きさが要求される。
Solid-state lighting is a product that requires higher brightness than a display. For example, the luminance required for the display is about 1,000 cd / m 2 , whereas the solid state lighting requires a luminance of about 3,000 cd / m 2 to 5,000 cd / m 2 . Therefore, it is necessary to flow a large current value per unit area to each electrode.
In a display using an organic EL element, the size of one light emitting element is less than 1 mm square. On the other hand, solid state illumination using organic EL elements requires a larger luminous flux than the display, and therefore one light emitting element is required to have a size of 100 mm square or more.
 図7に、一般的な有機EL素子の一つの発光素子の平面図を示す。なお、最終製品ではこの有機EL素子を環境から保護するために封止部材が必要であるが、図7では省略する。
 有機EL素子の一つの発光素子は、基板1上に、第1電極2、有機発光層3及び第2電極4が積層されてなる。第1電極(陽極)2は、基板1上にフォトリソグラフィによってパターニング形成される。有機発光層3は第1電極2と交差するように積層されている。第2電極4は、有機発光層3及び第1電極2と交差するよう積層され、第1電極2と第2電極4の間に電圧を印加することにより、この電極が交差した部分にある有機発光層3のみが発光する。
FIG. 7 shows a plan view of one light emitting element of a general organic EL element. In the final product, a sealing member is necessary to protect the organic EL element from the environment, but it is omitted in FIG.
One light emitting element of the organic EL element is formed by laminating a first electrode 2, an organic light emitting layer 3, and a second electrode 4 on a substrate 1. The first electrode (anode) 2 is patterned on the substrate 1 by photolithography. The organic light emitting layer 3 is laminated so as to intersect the first electrode 2. The second electrode 4 is stacked so as to intersect the organic light emitting layer 3 and the first electrode 2, and by applying a voltage between the first electrode 2 and the second electrode 4, the organic in the portion where the electrode intersects Only the light emitting layer 3 emits light.
 有機EL素子では、光を取り出すために第1電極2及び第2電極4のいずれかに透明導電膜が必要となる。一般に、第1電極2が透明導電膜とされる。透明導電膜の材料としては酸化インジウムスズ(ITO)などが用いられる。ITOは透明導電膜の材料の中で最も体積抵抗率が小さいとされるが、金属に比べるとITOの体積抵抗率は著しく高い。 In the organic EL element, a transparent conductive film is required for either the first electrode 2 or the second electrode 4 in order to extract light. In general, the first electrode 2 is a transparent conductive film. As a material for the transparent conductive film, indium tin oxide (ITO) or the like is used. ITO has the smallest volume resistivity among the materials of the transparent conductive film, but the volume resistivity of ITO is significantly higher than that of metal.
 有機発光層3は、有機発光材料からなる有機多層膜とされる。有機発光層3は、通常、開口部を有する蒸着マスクを、第1電極2が形成された基板上に配置した後、真空蒸着装置内で連続的に蒸着することにより形成される。 The organic light emitting layer 3 is an organic multilayer film made of an organic light emitting material. The organic light emitting layer 3 is usually formed by continuously depositing a vapor deposition mask having an opening on the substrate on which the first electrode 2 is formed, and then continuously depositing in a vacuum vapor deposition apparatus.
 第2電極4は金属膜などとされ、真空蒸着装置やスパッタリング装置を用いて製膜される。第2電極4は、通常、有機発光層3で用いた蒸着マスクとは別の開口部を有する蒸着マスクを配置した後、有機発光層3上に形成される。 The second electrode 4 is a metal film or the like, and is formed using a vacuum evaporation apparatus or a sputtering apparatus. The second electrode 4 is usually formed on the organic light emitting layer 3 after disposing a vapor deposition mask having an opening different from the vapor deposition mask used in the organic light emitting layer 3.
 上記構成の有機EL素子を単一大面積に形成して大電流を流すと、電圧降下により、暗くなってしまう。また、大電流密度かつ大面積の有機EL素子の場合、素子周辺部が明るくなり、中央部が暗くなる現象(輝度ムラ)が生じる。これは、透明導電膜の抵抗値が高いことと、大電流により電圧降下が生じることに起因する。
 電圧降下を小さくして明るさを均一に改善するためには、透明導電膜の膜厚を100nmから500nm程度に厚くしてシート抵抗値を下げると良い。そうすることで、輝度ムラを抑制することができる。
When an organic EL element having the above configuration is formed in a single large area and a large current is passed, it becomes dark due to a voltage drop. In the case of an organic EL element having a large current density and a large area, a phenomenon (brightness unevenness) occurs in which the peripheral part of the element becomes bright and the central part becomes dark. This is because the resistance value of the transparent conductive film is high and a voltage drop occurs due to a large current.
In order to reduce the voltage drop and improve the brightness uniformly, it is preferable to reduce the sheet resistance value by increasing the thickness of the transparent conductive film from about 100 nm to about 500 nm. By doing so, luminance unevenness can be suppressed.
 しかしながら、フォトリソグラフィによって厚い透明導電膜(第1電極)を形成すると、第1電極2の縁部が急峻な断面となる。図8に、図7の(a)ラインの断面図を示す。断面が急峻な第1電極2上に有機発光層3(膜厚:100nmから300nm程度)を積層すると、第1電極2の縁部に重なる部分の有機発光層3で薄膜化、ピンホール、及びクラックなどの欠陥が発生し易くなる。それによって、第1電極2と第2電極4との間ではリーク電流や短絡が生じ易くなり、有機EL素子の品質低下と歩留低下を招く原因になっている。 However, when a thick transparent conductive film (first electrode) is formed by photolithography, the edge of the first electrode 2 has a steep cross section. FIG. 8 is a sectional view taken along line (a) of FIG. When the organic light emitting layer 3 (film thickness: about 100 nm to about 300 nm) is laminated on the first electrode 2 having a sharp cross section, the organic light emitting layer 3 in a portion overlapping the edge of the first electrode 2 is thinned, pinholes, and Defects such as cracks are likely to occur. As a result, a leak current or a short circuit is likely to occur between the first electrode 2 and the second electrode 4, which causes a decrease in the quality and yield of the organic EL element.
 上記問題を解決するため、特許文献1や特許文献2のような有機EL素子が提案されている。
 特許文献1では、精度の高い発光領域を得るために、フォトリソグラフィ技術を用いて絶縁層を設け、高精度でパターンを形成している。図9に、絶縁層のパターニング加工工程を示す。まず、第1電極である透明導電膜がパターニングされている基板を洗浄し、乾燥させる。次に上記基板上に、感光剤(フォトレジスト)をスピンコートで全面塗布する。レジストをプリベークにより半乾燥後、露光マスクを用いてパターニングし露光器によって紫外線を照射し感光させる。その後、現像(エッチング及び洗浄)し、ポストベークを経て高精度な絶縁層をパターニング加工している。
 特許文献2では、ロール印刷法により、絶縁層を形成する方法が開示されている。
In order to solve the above problems, organic EL elements such as Patent Document 1 and Patent Document 2 have been proposed.
In Patent Document 1, in order to obtain a light emitting region with high accuracy, an insulating layer is provided using a photolithography technique, and a pattern is formed with high accuracy. FIG. 9 shows an insulating layer patterning process. First, the substrate on which the transparent conductive film as the first electrode is patterned is washed and dried. Next, a photosensitive agent (photoresist) is applied onto the entire surface of the substrate by spin coating. The resist is semi-dried by prebaking, then patterned using an exposure mask, and exposed to ultraviolet rays by an exposure device to be exposed. Thereafter, development (etching and cleaning) is performed, and a high-precision insulating layer is patterned through post-baking.
Patent Document 2 discloses a method of forming an insulating layer by a roll printing method.
特開平3-250583号公報(請求項1)JP-A-3-250583 (Claim 1) 特開2005-310404号公報(段落[0013]及び[0014])JP 2005-310404 A (paragraphs [0013] and [0014])
 特許文献1に記載のパターニング加工方法は、半導体やフラットパネルディスプレイにおいて一般に用いられている高精度な加工技術であるが、大規模かつ高価な製造設備が必要である。また、特許文献1に記載の方法では、フォトレジストを一旦全面に塗布し、その後にパターニング加工するため、不要なレジスト材料を大量に消費することになる。レジスト材料及び露光器は高価であり、現像液の廃棄処理にも費用と手間がかかる。そのため、製造コストが高くなるという問題がある。上記コストアップは、ディスプレイのような高付加価値製品では許容されるが、照明用製品では非常に大きな問題である。 The patterning processing method described in Patent Document 1 is a high-precision processing technique generally used in semiconductors and flat panel displays, but requires a large-scale and expensive manufacturing facility. Further, in the method described in Patent Document 1, a photoresist is once applied to the entire surface and then patterned, so that a large amount of unnecessary resist material is consumed. The resist material and the exposure device are expensive, and the disposal of the developer is costly and troublesome. Therefore, there exists a problem that manufacturing cost becomes high. The above cost increase is acceptable for high value-added products such as displays, but is a very big problem for lighting products.
 照明製品では、基板サイズは同一であっても、素子パネルの寸法は様々であり、多品種に適した製造方法が要求される。フォトリソグラフィ技術を用いた方法では、露光マスクの交換及び調整が必要となる。ロール印刷法式では、ロール版の交換及び調整が必要となる。そのため、素子サイズが異なる品種変更に対する段取りに時間がかかり、生産性を低下させる問題がある。 In lighting products, even if the substrate size is the same, the dimensions of the element panel are various, and a manufacturing method suitable for a variety of products is required. In the method using the photolithography technique, it is necessary to replace and adjust the exposure mask. The roll printing method requires replacement and adjustment of the roll plate. For this reason, there is a problem in that it takes time to set up the product types with different element sizes and the productivity is lowered.
 図10に、図7の(b)ラインの断面図を示す。図10に示されるように、(b)ラインの断面では、第1電極2の平坦な部分上に有機発光層3が積層されている。有機EL素子では、第2電極4は必要部分にのみ製膜されるため、製膜時には、有機発光層3の上に第2電極用蒸着マスク8を用いる。第2電極用蒸着マスク8で覆う際に、端部に僅かでも変形やねじれが生じると、有機発光層3を傷つけて欠陥を生じさせることになる。よって、第1電極2の平坦な部分上に有機発光層3を積層した場合であっても、第1電極2及び第2電極4の間でのリーク電流や短絡が生じやすい状態となり、有機EL素子の品質低下と歩留低下を招く原因となる。 FIG. 10 is a sectional view taken along line (b) of FIG. As shown in FIG. 10, the organic light emitting layer 3 is laminated on the flat portion of the first electrode 2 in the cross section of the line (b). In the organic EL element, since the second electrode 4 is formed only on a necessary portion, the second electrode deposition mask 8 is used on the organic light emitting layer 3 at the time of film formation. When the second electrode deposition mask 8 is covered, if the end portion is slightly deformed or twisted, the organic light emitting layer 3 is damaged and a defect is generated. Therefore, even when the organic light emitting layer 3 is laminated on the flat portion of the first electrode 2, a leakage current or a short circuit is likely to occur between the first electrode 2 and the second electrode 4, and the organic EL This causes a decrease in device quality and yield.
 本発明は上記課題に鑑みなされたもので、高価な製造設備を必要とせず、多品種の製品に適用可能な、低コストで照明用有機EL素子を製造する方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an organic EL element for illumination at a low cost, which does not require expensive manufacturing equipment and can be applied to a wide variety of products. .
 上記課題を解決するために、本発明は、基板上に第1電極と有機発光層と第2電極とが順に積層され、平面視した場合に前記第2電極が前記第1電極と交差するよう配置された有機EL素子を製造する方法であって、第1電極が形成された基板上の、前記第1電極と前記第2電極とが交差する領域に対応する所定部分にのみ、非接触方式で絶縁材料をパターニング加工することなく塗布して絶縁膜を形成する絶縁膜形成工程と、該絶縁膜形成工程の後、開口部を有する蒸着マスクを用いて、前記交差する領域内に位置する前記第1電極上に、有機発光層を真空蒸着により形成する有機発光層形成工程と、該有機発光層形成工程の後、前記蒸着マスクとは異なる開口部を有する別の蒸着マスクを用いて、前記有機発光層上に第2電極を形成する第2電極形成工程と、を備える照明用有機EL素子の製造方法を提供する。 In order to solve the above-described problems, the present invention is configured such that a first electrode, an organic light emitting layer, and a second electrode are sequentially stacked on a substrate, and the second electrode intersects the first electrode when viewed in plan. A method of manufacturing an arranged organic EL element, wherein the non-contact method is applied only to a predetermined portion corresponding to a region where the first electrode and the second electrode intersect on the substrate on which the first electrode is formed. An insulating film forming step of applying an insulating material without patterning to form an insulating film, and after the insulating film forming step, using an evaporation mask having an opening, the insulating film is positioned in the intersecting region An organic light emitting layer forming step of forming an organic light emitting layer on the first electrode by vacuum vapor deposition, and after the organic light emitting layer forming step, using another vapor deposition mask having an opening different from the vapor deposition mask, A second electrode is formed on the organic light emitting layer To provide a method of manufacturing a lighting organic EL element comprising a second electrode forming step.
 上記発明によれば、必要な部分にのみ絶縁膜を形成することができる。それによって、絶縁材料を余分に塗布しなくて良いため、材料コストを抑制することができる。従来フォトリソグラフィで行われていたプリベーク、露光及び現像などの余分に塗布した絶縁材料を除去するための工程がないため、洗浄剤、廃液処理及びパターンに合わせた高価な露光マスクも不要となる。絶縁材料を除去する工程がないため、絶縁材料を塗布した後は、これを硬化する工程のみを行うことで絶縁膜を形成することができる。上記発明によれば、所定部分に絶縁膜を設けることで、製造過程で生ずる有機発光層の損傷を防止し、欠陥の少ない有機発光層を備えた照明用有機EL素子とすることができる。 According to the above invention, an insulating film can be formed only in a necessary portion. Accordingly, it is not necessary to apply an extra insulating material, so that the material cost can be suppressed. Since there is no process for removing the excessively applied insulating material such as pre-baking, exposure and development, which has been conventionally performed in photolithography, a cleaning agent, a waste liquid treatment, and an expensive exposure mask corresponding to the pattern become unnecessary. Since there is no step of removing the insulating material, after applying the insulating material, the insulating film can be formed by performing only the step of curing the insulating material. According to the above invention, by providing the insulating film in the predetermined portion, it is possible to prevent the organic light emitting layer from being damaged during the manufacturing process and to provide an organic EL device for illumination including the organic light emitting layer with few defects.
 上記発明の一態様において、前記絶縁膜形成工程が、単一ノズルを前記第1電極に対して間隔をあけて配置し、前記単一ノズルから前記第1電極が形成された基板の前記所定部分に向けて前記絶縁材料を断続的に吐出するステップと、前記基板または前記単一ノズルを相対的に移動させて、前記所定部分に連続した絶縁膜を形成するステップと、を含むことが好ましい。 1 aspect of the said invention WHEREIN: The said insulating film formation process arrange | positions a single nozzle at intervals with respect to the said 1st electrode, The said predetermined part of the board | substrate with which the said 1st electrode was formed from the said single nozzle It is preferable that the method includes intermittently discharging the insulating material toward the surface, and relatively moving the substrate or the single nozzle to form a continuous insulating film on the predetermined portion.
 上記発明の一態様によれば、高価な製造設備を必要とせずに絶縁膜を必要とする所定の位置のみに形成することができる。また、素子サイズが変更された場合であっても、塗布位置制御プログラムのみを選択変更することにより、瞬時に段取り変えをすることが可能となる。 According to one embodiment of the present invention, an insulating film can be formed only in a predetermined position without requiring expensive manufacturing equipment. Even if the element size is changed, the setup can be changed instantaneously by selecting and changing only the application position control program.
 上記発明の一態様において、前記所定部分を、平面視した場合に前記第1電極の縁部と前記第2電極の面が交差する領域、または前記第1電極の面と前記第2電極の縁部が交差する領域の少なくとも一方に対応する部分とすると良い。 1 aspect of the said invention WHEREIN: When the said predetermined part is planarly viewed, the area | region where the edge of the said 1st electrode and the surface of the said 2nd electrode cross, or the edge of the said 1st electrode, and the edge of the said 2nd electrode A portion corresponding to at least one of the regions where the portions intersect may be used.
 所定部分を第1電極の縁部と第2電極の面が交差する領域に対応する部分とすると、第1電極の縁部上に形成される有機発光層の薄膜化及びピンホールやクラックなど欠陥発生を抑制することができる。それにより、電極間でのリーク電流や短絡などが発生しにくくなるため、更に品質低下や歩留低下を抑制される。
 所定部分を第1電極の面と第2電極の縁部が交差する領域と対応する部分すると、第2電極形成時に使用する蒸着マスクの端部が非発光素子部分に重なるため、発光素子部分の有機発光層を傷つけることを防止できる。それにより、電極間でのリーク電流や短絡などが発生しにくくなるため、品質低下や歩留低下を抑制される。
When the predetermined portion is a portion corresponding to a region where the edge of the first electrode and the surface of the second electrode intersect, the organic light-emitting layer formed on the edge of the first electrode is thinned and defects such as pinholes and cracks Occurrence can be suppressed. This makes it difficult for leakage currents and short circuits between the electrodes to occur, and further suppresses quality deterioration and yield reduction.
If the predetermined portion corresponds to the region where the surface of the first electrode and the edge of the second electrode intersect, the end of the vapor deposition mask used when forming the second electrode overlaps the non-light emitting device portion. The organic light emitting layer can be prevented from being damaged. This makes it difficult for leakage currents or short circuits between the electrodes to occur, so that deterioration in quality and yield are suppressed.
 また、本発明は、基板上に第1電極と有機発光層と第2電極とが順に積層された発光素子を備え、平面視した場合に前記第2電極が前記第1電極と交差するよう配置された有機EL素子であって、第1電極が形成された基板上の、前記第1電極と前記第2電極とが交差する領域に対応する所定部分にのみ、非接触方式で有機絶縁材料をパターニング加工することなく塗布して形成された有機絶縁膜を備える照明用有機EL素子を提供する。 The present invention also includes a light emitting device in which a first electrode, an organic light emitting layer, and a second electrode are sequentially stacked on a substrate, and the second electrode intersects the first electrode when viewed in plan. An organic insulating material is formed in a non-contact manner only on a predetermined portion corresponding to a region where the first electrode and the second electrode intersect on the substrate on which the first electrode is formed. Provided is an organic EL element for illumination comprising an organic insulating film formed by coating without patterning.
 上記発明によれば、非接触方式で絶縁膜を必要な部分にのみ形成するため、パターニング加工の工程および設備が不要となり、製造コストを抑制することができる。また、所定部分に絶縁膜を備える製造過程で生ずる有機発光層の損傷が低減された欠陥の少ない有機発光層を備えた照明用有機EL素子とすることができる。 According to the above invention, since the insulating film is formed only in a necessary portion by a non-contact method, the patterning process and equipment are not required, and the manufacturing cost can be suppressed. Moreover, it can be set as the organic EL element for illumination provided with the organic light emitting layer with few defects in which the damage of the organic light emitting layer produced in the manufacturing process provided with an insulating film in a predetermined part was reduced.
 上記発明の一態様において、前記所定部分が、前記第1電極の縁部と前記第2電極の面が交差する領域、または前記第1電極の面と前記第2電極の縁部が交差する領域の少なくとも一方とすると良い。 1 aspect of the said invention WHEREIN: The area | region where the edge of the said 1st electrode and the surface of the said 2nd electrode cross | intersect or the area | region where the surface of the said 1st electrode and the edge of the said 2nd electrode cross | intersect the said predetermined part It should be at least one of these.
 所定部分を第1電極の縁部と第2電極の面が交差する領域に対応する部分とすると、薄膜化及びピンホールやクラックなどの欠陥が少ない有機発光層とすることができる。それにより、電極間でのリーク電流や短絡などが発生しにくい有機EL素子となる。
 所定部分を第1電極の面と第2電極の縁部が交差する領域と対応する部分すると、第2電極形成時に使用する蒸着マスクの端部が非発光素子部分に重なる。そのため、発光素子部分において損傷の少ない有機発光層とすることができる。それにより、電極間でのリーク電流や短絡などが発生しにくい照明用有機EL素子となる。
When the predetermined portion is a portion corresponding to a region where the edge of the first electrode and the surface of the second electrode intersect, an organic light emitting layer with a reduced thickness and fewer defects such as pinholes and cracks can be obtained. As a result, an organic EL element in which a leak current or a short circuit between the electrodes hardly occurs.
When the predetermined portion is a portion corresponding to a region where the surface of the first electrode and the edge of the second electrode intersect, the end portion of the vapor deposition mask used when forming the second electrode overlaps the non-light emitting element portion. Therefore, it can be set as an organic light emitting layer with little damage in a light emitting element part. Thereby, the organic EL element for illumination is less likely to cause a leak current or a short circuit between the electrodes.
 本発明によれば、非接触方式で絶縁膜を形成するため、絶縁膜の材料コストを抑制することができる。また、洗浄剤及び廃液処理を不要とし、素子サイズの変更を瞬時に段取り変えを可能とする。また、高価な製造設備を用いる必要もない。これによって、より安く欠陥の少ない照明用有機EL素子を製造することができる。 According to the present invention, since the insulating film is formed in a non-contact manner, the material cost of the insulating film can be suppressed. In addition, the cleaning agent and the waste liquid treatment are unnecessary, and the change of the element size can be instantaneously changed. Moreover, it is not necessary to use expensive manufacturing equipment. This makes it possible to manufacture an organic EL element for illumination that is cheaper and has fewer defects.
第1実施形態に係る照明用有機EL素子の一つの発光素子の一例を示す概略平面図である。It is a schematic plan view which shows an example of one light emitting element of the organic EL element for illumination which concerns on 1st Embodiment. 第1実施形態に係る照明用有機EL素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the organic EL element for illumination which concerns on 1st Embodiment. 絶縁膜形成の一例を示す工程図である。It is process drawing which shows an example of insulating film formation. 絶縁膜形成の一例を示す模式図である。It is a schematic diagram which shows an example of insulating film formation. 第2実施形態に係る照明用有機EL素子の一つの発光素子の一例を示す概略平面図である。It is a schematic plan view which shows an example of one light emitting element of the organic EL element for illumination which concerns on 2nd Embodiment. 図5の(b)ラインにおける断面図である。It is sectional drawing in the (b) line of FIG. 一般的な有機EL素子の一つの発光素子の概略平面図である。It is a schematic plan view of one light emitting element of a general organic EL element. 図7の(a)ラインにおける断面図である。It is sectional drawing in the (a) line of FIG. 従来のパターニング加工の工程図である。It is process drawing of the conventional patterning process. 図7の(b)ラインにおける断面図である。It is sectional drawing in the (b) line of FIG.
 以下に、本発明に係る照明用有機EL素子及びその製造方法の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of an organic EL element for illumination and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
〈第1実施形態〉
 図1に、本実施形態に係る照明用有機EL素子の一つの発光素子の一例の概略平面図を示す。
 本実施形態に係る照明用有機EL素子は、基板1上に第1電極2、有機発光層3、及び第2電極4が順に積層された発光素子を備える。有機EL素子を平面視した場合に、第1電極2の面の外周と第2電極4の面の外周とは、完全に重なってはおらず、第2電極4と第1電極2とが交差する配置とされる。第1電極2と有機発光層3との間または基板1と有機発光層3との間の所定部分には、絶縁膜5が設けられている。所定部分とは、第1電極2と第2電極4とが交差する領域に対応する部分とされる。上記交差する領域は、有機EL素子を平面視した場合に、第1電極2の縁部と第2電極4の面が交差する領域、または第1電極2の面と第2電極4の縁部が交差する領域とされ得る。本実施形態では所定部分を第1電極2の縁部と第2電極4の面が交差する領域に対応する部分とする。すなわち、上に有機発光層3/第2電極4が積層される第1電極2のパターニング段差部分にのみに絶縁膜5が設けられる。そのため、絶縁膜が必要な領域が非常に少なく、簡素に絶縁膜を形成することができる。
<First Embodiment>
FIG. 1 shows a schematic plan view of an example of one light emitting element of the organic EL element for illumination according to the present embodiment.
The organic EL element for illumination according to the present embodiment includes a light emitting element in which a first electrode 2, an organic light emitting layer 3, and a second electrode 4 are sequentially stacked on a substrate 1. When the organic EL element is viewed in plan, the outer periphery of the surface of the first electrode 2 and the outer periphery of the surface of the second electrode 4 do not completely overlap, and the second electrode 4 and the first electrode 2 intersect. Arranged. An insulating film 5 is provided at a predetermined portion between the first electrode 2 and the organic light emitting layer 3 or between the substrate 1 and the organic light emitting layer 3. The predetermined portion is a portion corresponding to a region where the first electrode 2 and the second electrode 4 intersect. The intersecting region is a region where the edge of the first electrode 2 and the surface of the second electrode 4 intersect when the organic EL element is viewed in plan, or the surface of the first electrode 2 and the edge of the second electrode 4. May be the region where In the present embodiment, the predetermined portion is a portion corresponding to a region where the edge of the first electrode 2 and the surface of the second electrode 4 intersect. That is, the insulating film 5 is provided only on the patterning step portion of the first electrode 2 on which the organic light emitting layer 3 / second electrode 4 is laminated. Therefore, there are very few regions that require an insulating film, and the insulating film can be formed simply.
 基板1上に第1電極2/有機発光層3/第2電極4の順で積層された部分が発光素子として作用する。すなわち、第1電極2と第2電極4との間に電圧を印加することにより、発光素子の有機発光層3が発光し、基板1を通って光が外部に放射される。本実施形態において、この発光素子は50mm角から300mm角の大きさとされる。
 基板1上に第1電極2/絶縁膜5/有機発光層3/第2電極4または絶縁膜5/有機発光層3/第2電極4の順で積層された部分は、非発光素子部分とされる。
A portion laminated in the order of the first electrode 2 / organic light emitting layer 3 / second electrode 4 on the substrate 1 functions as a light emitting element. That is, by applying a voltage between the first electrode 2 and the second electrode 4, the organic light emitting layer 3 of the light emitting element emits light, and light is emitted to the outside through the substrate 1. In the present embodiment, the light emitting element has a size of 50 mm square to 300 mm square.
The portion laminated on the substrate 1 in the order of the first electrode 2 / insulating film 5 / organic light emitting layer 3 / second electrode 4 or insulating film 5 / organic light emitting layer 3 / second electrode 4 is a non-light emitting element portion. Is done.
 基板1は、透光性基板とされる。
 第1電極2は、導電性を有する透明な膜とされる。例えば、酸化インジウムスズ(ITO)、酸化錫(SnO)、酸化亜鉛(ZnO)などの金属酸化膜などを用いることができる。第1電極2の厚さは、100nmから500nm程度とされる。第1電極2は、縁部に急峻な断面を有していても良い。
 有機発光層3は、有機発光材料からなる有機多層膜とされる。例えば、有機多層膜の構成は、正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などとされる。有機発光層3の総厚さは、100nmから300nm程度とされる。
 第2電極4は、導電性を有する膜とされる。例えば、第2電極4は、アルミニウム(Al)や銀(Ag)の金属膜あるいは金属酸化膜などからなる。
The substrate 1 is a translucent substrate.
The first electrode 2 is a transparent film having conductivity. For example, a metal oxide film such as indium tin oxide (ITO), tin oxide (SnO 2 ), or zinc oxide (ZnO) can be used. The thickness of the first electrode 2 is about 100 nm to 500 nm. The first electrode 2 may have a sharp cross section at the edge.
The organic light emitting layer 3 is an organic multilayer film made of an organic light emitting material. For example, the structure of the organic multilayer film is a hole injection layer / a hole transport layer / a light emitting layer / an electron transport layer / an electron injection layer. The total thickness of the organic light emitting layer 3 is about 100 nm to 300 nm.
The second electrode 4 is a conductive film. For example, the second electrode 4 is made of a metal film or metal oxide film of aluminum (Al) or silver (Ag).
 絶縁膜5は、電気的に絶縁な膜とされる。例えば、ポジ型レジスト、ネガ型レジスト、または他の硬化型樹脂などを用いることができる。絶縁膜5の厚さは、第1電極2と第2電極4との間の印加電圧に対する耐圧があれば十分であるが、第1電極2の厚さ以上が望ましく、100nmから10μmの範囲が良い。絶縁膜5の幅は、ディスプレイの場合は非常に狭い幅が要求されるが、100mm角サイズ以上の有機EL照明では幅狭は要求されず、精度も要求されないことから、0.05mmから2mmが好ましい。 The insulating film 5 is an electrically insulating film. For example, a positive resist, a negative resist, or other curable resin can be used. The thickness of the insulating film 5 is sufficient if it has a withstand voltage against the applied voltage between the first electrode 2 and the second electrode 4, but the thickness of the first electrode 2 or more is desirable, and the range of 100 nm to 10 μm is desirable. good. The width of the insulating film 5 is required to be very narrow in the case of a display, but is not required for organic EL lighting of 100 mm square size or more, and accuracy is not required. preferable.
 次に、本実施形態に係る有機EL素子の製造方法を説明する。本実施形態に係る有機ELの製造方法は、絶縁膜形成工程、有機発光層形成工程、第2電極形成工程を含む。
 図2に、本実施形態に係る有機EL素子の製造方法の一例を説明する図を示す。図2(a)から図2(d)は、図1の(a)ラインにおける断面を見た図である。
Next, a method for manufacturing the organic EL element according to this embodiment will be described. The manufacturing method of the organic EL according to this embodiment includes an insulating film forming step, an organic light emitting layer forming step, and a second electrode forming step.
FIG. 2 is a view for explaining an example of a method for manufacturing an organic EL element according to this embodiment. FIG. 2A to FIG. 2D are views of a cross section taken along line (a) of FIG.
(1)図2(a)
 基板1上に、第1電極2をパターニングする。
(1) FIG. 2 (a)
The first electrode 2 is patterned on the substrate 1.
(2)図2(b):絶縁膜形成工程
 絶縁膜形成工程では、まず、第1電極2が形成された基板1の表面を洗浄する。その後、第1電極2が形成された基板1上の所定部分に絶縁材料を塗布し、硬化させる。硬化方法は、使用する絶縁材料に応じて適宜選択する。図3に、絶縁材料としてポジ型のレジストを使用した場合の絶縁膜形成の工程図を例示する。図3によれば、洗浄、レジスト描画(塗布)及びポスベークの工程によって絶縁膜5を形成することができる。ポジ型レジストは塗布した後に、加熱する(ポストベーク)のみで硬化し、絶縁膜5となる。絶縁材料は所定部分にのみ塗布されているため、従来のフォトリソグラフィによる絶縁膜の形成で必要であったプリベーク、露光、及び現像の工程が不要となる。
(2) FIG. 2B: Insulating Film Forming Step In the insulating film forming step, first, the surface of the substrate 1 on which the first electrode 2 is formed is cleaned. Thereafter, an insulating material is applied to a predetermined portion on the substrate 1 on which the first electrode 2 is formed and cured. The curing method is appropriately selected according to the insulating material to be used. FIG. 3 illustrates a process diagram for forming an insulating film when a positive resist is used as an insulating material. According to FIG. 3, the insulating film 5 can be formed by the steps of cleaning, resist drawing (coating), and post-baking. After the positive resist is applied, it is cured only by heating (post-bake) to form the insulating film 5. Since the insulating material is applied only to a predetermined portion, the pre-baking, exposure, and development steps necessary for forming an insulating film by conventional photolithography are not required.
 絶縁材料は、非接触方式にて塗布する。非接触方式で絶縁膜5を塗布する方法としては、ドット吐出型のディスペンサーが最適である。ドット吐出型のディスペンサーとしては、例えば、アシムテック社製のJET MASTER(登録商標)2などを用いることができる。絶縁材料の塗布は、1つの発光素子に対して単一のノズル6を用いて行う。ノズル6の吐出口の大きさなどは、使用する絶縁材料の種類や、対象とする発光素子の大きさに応じて適宜設定される。 絶 縁 Insulating material is applied in a non-contact manner. As a method for applying the insulating film 5 in a non-contact manner, a dot discharge type dispenser is optimal. As a dot discharge type dispenser, for example, JET MASTER (registered trademark) 2 manufactured by Asymtec Corporation can be used. The insulating material is applied by using a single nozzle 6 for one light emitting element. The size of the discharge port of the nozzle 6 is appropriately set according to the type of insulating material to be used and the size of the target light emitting element.
 絶縁材料には低温で硬化が可能な有機材料が望ましく、絶縁材料(レジスト)の吐出には、インクジェットのようにノズルを複数配置したヘッドの方が効率的にみえる。しかし、インクジェットは低粘度のインクを吐出するためのものであるため、本実施形態の絶縁材料として用いる粘性の高い液体(レジスト液)は、インクジェットを用いて印刷することができない。また、インクジェットはノズル当りの吐出量が微小で少ないため、1μm前後の厚さの膜の形成には向いていない。更に、インクジェットは基板面全面にパターニングすることには適しているが、少ない縦横のラインに塗布するには適していない。 An organic material that can be cured at a low temperature is desirable for the insulating material, and a head with a plurality of nozzles, such as an inkjet, can be seen more efficiently for discharging the insulating material (resist). However, since the inkjet is for discharging low-viscosity ink, a highly viscous liquid (resist liquid) used as the insulating material of this embodiment cannot be printed using the inkjet. Ink jets are not suitable for forming a film having a thickness of about 1 μm because the discharge amount per nozzle is very small. Furthermore, although ink jet is suitable for patterning on the entire surface of the substrate, it is not suitable for applying to a small number of vertical and horizontal lines.
 ドット吐出型のディスペンサーを用いる場合、まず、単一ノズル6の先端を第1電極2が形成された基板1上に向け、先端が第1電極2と接触しないよう間隔をあけて単一ノズル6を配置する。例えば、第1電極2の縁部(パターニング段差部分)に対し、第1電極2の表面から0.1mmから1.0mmの間隔をあけて単一ノズル6を配置すると良い。
 次に、単一ノズル6から第1電極2が形成された基板1上の所定部分に向けて絶縁材料を断続的に吐出する。また、絶縁材料を吐出しながら、基板1または単一ノズル6を相対的に移動させることで、所定部分に連続した線形の絶縁膜5を形成する。絶縁材料の吐出量や、基板1または単一ノズル6の移動速度などは、塗布対象表面の濡れ性、絶縁材料の種類及び粘度を考慮し、絶縁膜5が所望の厚さ及び幅となるよう適宜設定される。
When a dot discharge type dispenser is used, first, the tip of the single nozzle 6 is directed toward the substrate 1 on which the first electrode 2 is formed, and the single nozzle 6 is spaced so that the tip does not contact the first electrode 2. Place. For example, the single nozzle 6 may be disposed at an interval of 0.1 mm to 1.0 mm from the surface of the first electrode 2 with respect to the edge portion (patterning step portion) of the first electrode 2.
Next, the insulating material is intermittently discharged from the single nozzle 6 toward a predetermined portion on the substrate 1 on which the first electrode 2 is formed. Further, the linear insulating film 5 continuous to a predetermined portion is formed by relatively moving the substrate 1 or the single nozzle 6 while discharging the insulating material. The discharge amount of the insulating material and the moving speed of the substrate 1 or the single nozzle 6 are determined so that the insulating film 5 has a desired thickness and width in consideration of the wettability of the surface to be coated, the type and viscosity of the insulating material. Set as appropriate.
 図4に、絶縁膜形成の一例の模式図を示す。図4(a)は、ノズルから吐出された絶縁材料の吐出粒である。吐出量は5nL、吐出粒直径は0.2mmに相当する。吐出繰返し速度を200dot/sec、移動速度を100mm/secとした条件では、吐出粒子は0.5mm間隔で基板上に塗布される。図4(b)及び図4(c)は、基板に着弾後の絶縁材料の様子を示す。吐出された絶縁材料は着弾後、図4(b)に示すように広がり、最終的には図4(c)のように線状に繋がり、厚さ5μm、幅2.0mmの絶縁膜5となる。この幅は、100mm角以上の照明用有機EL素子では十分許容可能であるが、吐出量と間隔を変えることにより幅を変えることは容易である。 FIG. 4 shows a schematic diagram of an example of insulating film formation. FIG. 4A shows ejected particles of the insulating material ejected from the nozzle. The discharge amount corresponds to 5 nL and the discharge particle diameter corresponds to 0.2 mm. Under the conditions where the discharge repetition rate is 200 dots / sec and the moving speed is 100 mm / sec, the discharged particles are applied on the substrate at intervals of 0.5 mm. 4B and 4C show the state of the insulating material after landing on the substrate. After the landing, the discharged insulating material spreads as shown in FIG. 4B, and finally is connected in a linear shape as shown in FIG. 4C, and the insulating film 5 having a thickness of 5 μm and a width of 2.0 mm Become. This width is sufficiently acceptable for an organic EL element for illumination of 100 mm square or more, but it is easy to change the width by changing the discharge amount and the interval.
(3)図2(c):有機発光層形成工程
 絶縁膜形成工程を経た基板1を真空蒸着装置内に搬入する。基板1上に有機用蒸着マスク7をかけ、有機材料を積層蒸着して有機発光層3を形成する。有機用蒸着マスク7は、例えば、図1の(a)ラインの向きでは第1電極2の面と同等または第1電極の面よりも大きい開口部を有する。有機用蒸着マスク7をかけるときには、この開口部が第1電極2にかかるようにする。他の有機材料の蒸着条件は、任意とする。
(3) FIG.2 (c): Organic light emitting layer formation process The board | substrate 1 which passed through the insulating film formation process is carried in in a vacuum evaporation system. An organic vapor deposition mask 7 is put on the substrate 1, and an organic material is laminated and deposited to form the organic light emitting layer 3. The organic vapor deposition mask 7 has, for example, an opening that is equal to or larger than the surface of the first electrode 2 in the direction of the line (a) in FIG. When the organic vapor deposition mask 7 is applied, the opening is applied to the first electrode 2. The vapor deposition conditions for other organic materials are arbitrary.
(4)図2(d):第2電極形成工程
 有機発光層形成工程を経た基板1を別の真空蒸着装置に搬入する。基板1上に第2電極用蒸着マスク8をかけ、導電性材料を積層蒸着して第2電極4を形成する。第2電極用蒸着マスク8は、例えば、図1の(a)ラインの向きでは第1電極2よりも大きく、図1の(b)ラインの向きでは第1電極2よりも小さい開口部を有するものを使用する。他の導電性材料の蒸着条件は、任意とする。第2電極形成工程後は、適宜封止部材を形成する(不図示)。
(4) FIG.2 (d): 2nd electrode formation process The board | substrate 1 which passed the organic light emitting layer formation process is carried in another vacuum evaporation system. A second electrode deposition mask 8 is placed on the substrate 1, and a conductive material is stacked and deposited to form the second electrode 4. The second electrode deposition mask 8 has, for example, an opening larger than the first electrode 2 in the direction of the line (a) in FIG. 1 and smaller than the first electrode 2 in the direction of the line (b) in FIG. Use things. The deposition conditions for other conductive materials are arbitrary. After the second electrode forming step, a sealing member is appropriately formed (not shown).
 なお、本実施形態において第2電極を真空蒸着により製膜したが、これに限定されず、スパッタリング法によって製膜しても良い。 In addition, in this embodiment, although the 2nd electrode was formed into a film by vacuum deposition, it is not limited to this, You may form into a film by sputtering method.
〈第2実施形態〉
 本実施形態にかかる照明用有機EL素子は、絶縁膜を形成する所定部分が異なる以外は、第1実施形態と同様の構成とした。
 図5に、本実施形態に係る照明用有機EL素子の一つの発光素子の一例の概略平面図を示す。本実施形態の絶縁膜5は、有機EL素子を平面視した場合に、第1電極2の縁部と第2電極4の面が交差する領域、及び第1電極2の面と第2電極4の縁部が交差する領域に設けられる。すなわち、有機発光層3/第2電極4が積層される第1電極2のパターニング段差部分に加え、第2電極4形成時に、有機発光層3に第2電極用蒸着マスク8が接触する可能性のある箇所に対応する部分に絶縁膜5を形成する。
Second Embodiment
The organic EL element for illumination according to the present embodiment has the same configuration as that of the first embodiment except that a predetermined portion for forming the insulating film is different.
FIG. 5 shows a schematic plan view of an example of one light emitting element of the organic EL element for illumination according to the present embodiment. The insulating film 5 of the present embodiment includes a region where the edge of the first electrode 2 and the surface of the second electrode 4 intersect when the organic EL element is viewed in plan, and the surface of the first electrode 2 and the second electrode 4. Provided in the region where the edges of the crossing. That is, in addition to the patterning step portion of the first electrode 2 on which the organic light emitting layer 3 / second electrode 4 is laminated, there is a possibility that the second electrode deposition mask 8 contacts the organic light emitting layer 3 when the second electrode 4 is formed. An insulating film 5 is formed in a portion corresponding to the certain portion.
 図6に、図5の(b)ラインにおける断面図を示す。図6では、絶縁膜5が第1電極2上の平坦な部分に設けられている。第2電極蒸着マスク8は、開口部の端部が絶縁膜5上にかかるようにする。そうすることで、第2電極用蒸着マスク8が有機発光層3に接触する部分が非発光素子部分となるため、発光素子にある有機発光層3を傷つけなくて済む。 FIG. 6 is a sectional view taken along line (b) of FIG. In FIG. 6, the insulating film 5 is provided on a flat portion on the first electrode 2. The second electrode vapor deposition mask 8 is configured such that the end of the opening covers the insulating film 5. By doing so, the portion where the second electrode vapor deposition mask 8 is in contact with the organic light emitting layer 3 becomes a non-light emitting element portion, so that it is not necessary to damage the organic light emitting layer 3 in the light emitting element.
 本実施形態において、絶縁膜5は縦横に連続的に形成する。絶縁膜5の塗布条件を図4で示した条件とすると、100mm角の発光素子の場合、4秒で絶縁膜5の描画が可能であり、15面取りのマスタ-基板でも1分間で描画が可能である。 In the present embodiment, the insulating film 5 is continuously formed vertically and horizontally. If the coating conditions of the insulating film 5 are the conditions shown in FIG. 4, in the case of a 100 mm square light emitting device, the insulating film 5 can be drawn in 4 seconds, and even a 15-chamfer master substrate can be drawn in 1 minute. It is.
 更に大型の基板を用いる場合は、1つの発光素子に対して単一ノズル6が配置されるよう基板1上に複数の単一ノズル6を配置することにより、複数の発光素子に同時に絶縁膜5を描画しても良い。それにより、更なる処理速度の向上も容易に可能となる。 When a larger substrate is used, a plurality of single nozzles 6 are arranged on the substrate 1 so that a single nozzle 6 is arranged for one light emitting element, so that the insulating film 5 is simultaneously formed on the plurality of light emitting elements. May be drawn. As a result, the processing speed can be further improved easily.
 上記第1実施形態及び第2実施形態によれば、フォトリソグラフフィを用いることなく、フォトレジストを直接形成したい部分にのみ、直接塗布描画し、ベークするのみで絶縁膜5を形成することができる。そのため、従来のフォトリソグラフィ技術と比較して、絶縁材料の使用量を低減することができる上、従来のベーク炉を使用するのみで新たな設備は必要としない。 According to the first embodiment and the second embodiment, the insulating film 5 can be formed only by directly coating and drawing only on the portion where the photoresist is desired to be formed and baking, without using photolithography. . Therefore, the amount of the insulating material used can be reduced as compared with the conventional photolithography technique, and only a conventional baking furnace is used and no new equipment is required.
 また、ノズルを一軸で、更に基板を一軸で、プログラム可動させることにより、多種多様の素子サイズの変更に瞬時に対応可能となる。 Also, by moving the program with the nozzle on one axis and the substrate on one axis, it is possible to instantly respond to various element size changes.
 また、ロール印刷のように直接基板に接触して転写する必要が無いため、基板の凹凸やうねりや歪のような不良発生要因に対しても全く影響なく製造が行える。 In addition, since there is no need to directly contact and transfer the substrate as in roll printing, manufacturing can be performed without any influence on the cause of defects such as unevenness, waviness and distortion of the substrate.
1 基板
2 第1電極
3 有機発光層
4 第2電極
5 絶縁膜
6 単一ノズル
7 有機用蒸着マスク
8 第2電極用蒸着マスク
DESCRIPTION OF SYMBOLS 1 Substrate 2 1st electrode 3 Organic light emitting layer 4 2nd electrode 5 Insulating film 6 Single nozzle 7 Organic vapor deposition mask 8 Second electrode vapor deposition mask

Claims (5)

  1.  基板上に第1電極と有機発光層と第2電極とが順に積層され、平面視した場合に前記第2電極が前記第1電極と交差するよう配置された有機EL素子を製造する方法であって、
     第1電極が形成された基板上の、前記第1電極と前記第2電極とが交差する領域に対応する所定部分にのみ、非接触方式で絶縁材料をパターン加工することなく塗布して絶縁膜を形成する絶縁膜形成工程と、
     該絶縁膜形成工程の後、開口部を有する蒸着マスクを用いて、前記交差する領域内に位置する前記第1電極上に、有機発光層を真空蒸着により形成する有機発光層形成工程と、
     該有機発光層形成工程の後、前記蒸着マスクとは異なる開口部を有する別の蒸着マスクを用いて、前記有機発光層上に第2電極を形成する第2電極形成工程と、
    を備える照明用有機EL素子の製造方法。
    A method of manufacturing an organic EL element in which a first electrode, an organic light emitting layer, and a second electrode are sequentially laminated on a substrate, and the second electrode is arranged to intersect the first electrode when viewed in plan. And
    An insulating material is applied to a predetermined portion corresponding to a region where the first electrode and the second electrode intersect with each other on the substrate on which the first electrode is formed without patterning the insulating material in a non-contact manner. An insulating film forming step of forming
    After the insulating film forming step, an organic light emitting layer forming step of forming an organic light emitting layer by vacuum vapor deposition on the first electrode located in the intersecting region using a vapor deposition mask having an opening;
    After the organic light emitting layer forming step, a second electrode forming step of forming a second electrode on the organic light emitting layer using another vapor deposition mask having an opening different from the vapor deposition mask;
    The manufacturing method of the organic EL element for illumination provided with.
  2.  前記絶縁膜形成工程が、
     単一ノズルを前記第1電極に対して間隔をあけて配置し、前記単一ノズルから前記第1電極が形成された基板の前記所定部分に向けて前記絶縁材料を断続的に吐出するステップと、
     前記基板または前記単一ノズルを相対的に移動させて、前記所定部分に連続した絶縁膜を形成するステップと、
    を含む請求項1に記載の照明用有機EL素子の製造方法。
    The insulating film forming step includes
    Disposing a single nozzle at an interval from the first electrode, and intermittently discharging the insulating material from the single nozzle toward the predetermined portion of the substrate on which the first electrode is formed; ,
    Relatively moving the substrate or the single nozzle to form a continuous insulating film on the predetermined portion;
    The manufacturing method of the organic EL element for illumination of Claim 1 containing this.
  3.  前記所定部分を、平面視した場合に前記第1電極の縁部と前記第2電極の面が交差する領域、または前記第1電極の面と前記第2電極の縁部が交差する領域の少なくとも一方に対応する部分とする請求項1または請求項2に記載の照明用有機EL素子の製造方法。 At least the region where the edge of the first electrode and the surface of the second electrode intersect when the predetermined portion is viewed in plan, or the region where the surface of the first electrode and the edge of the second electrode intersect The manufacturing method of the organic EL element for illumination of Claim 1 or Claim 2 made into the part corresponding to one side.
  4.  基板上に第1電極と有機発光層と第2電極とが順に積層された発光素子を備え、平面視した場合に前記第2電極が前記第1電極と交差するよう配置された有機EL素子であって、
     第1電極が形成された基板上の、前記第1電極と前記第2電極とが交差する領域に対応する所定部分にのみ、非接触方式で有機絶縁材料をパターン加工することなく塗布して形成された有機絶縁膜を備える照明用有機EL素子。
    An organic EL device comprising a light emitting device in which a first electrode, an organic light emitting layer, and a second electrode are sequentially laminated on a substrate, and the second electrode is disposed so as to intersect the first electrode when viewed in plan. There,
    Formed by applying an organic insulating material in a non-contact manner without patterning only on a predetermined portion corresponding to a region where the first electrode and the second electrode intersect on the substrate on which the first electrode is formed. Organic EL element for illumination provided with the made organic insulating film.
  5.  前記所定部分が、前記第1電極の縁部と前記第2電極の面が交差する領域、または前記第1電極の面と前記第2電極の縁部が交差する領域の少なくとも一方とする請求項4に記載の照明用有機EL素子。 The predetermined portion is at least one of a region where an edge of the first electrode and a surface of the second electrode intersect, or a region where a surface of the first electrode and an edge of the second electrode intersect. 4. The organic EL element for illumination according to 4.
PCT/JP2011/060773 2011-01-14 2011-05-10 Organic el elements for lighting and method for manufacturing same WO2012096006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-006024 2011-01-14
JP2011006024A JP5818441B2 (en) 2011-01-14 2011-01-14 Manufacturing method of organic EL element for illumination

Publications (1)

Publication Number Publication Date
WO2012096006A1 true WO2012096006A1 (en) 2012-07-19

Family

ID=46506925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060773 WO2012096006A1 (en) 2011-01-14 2011-05-10 Organic el elements for lighting and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP5818441B2 (en)
TW (1) TWI493766B (en)
WO (1) WO2012096006A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012350A (en) * 2021-11-11 2022-02-08 云谷(固安)科技有限公司 Evaporation mask plate maintenance device, system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109326730B (en) * 2017-08-01 2024-02-13 拓旷(上海)光电科技有限公司 Manufacturing apparatus for organic light emitting diode display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085158A (en) * 1999-09-10 2001-03-30 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2001290441A (en) * 1999-02-26 2001-10-19 Sanyo Electric Co Ltd Color display device
JP2003249348A (en) * 2002-02-26 2003-09-05 Toyota Industries Corp Electro-optic panel
JP2004119226A (en) * 2002-09-27 2004-04-15 Nippon Seiki Co Ltd Organic el panel
JP2007059925A (en) * 2005-01-28 2007-03-08 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009295601A (en) * 2009-09-25 2009-12-17 Casio Comput Co Ltd Sealing structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200680A (en) * 1999-01-07 2000-07-18 Toray Ind Inc Manufacture of organic electric field light emitting element
JP2002208484A (en) * 2001-01-12 2002-07-26 Tohoku Pioneer Corp Organic el display, and manufacturing method of the same
JP2003100466A (en) * 2001-09-15 2003-04-04 Cld Kk Organic electroluminescence element and its manufacturing method
TW521444B (en) * 2001-12-21 2003-02-21 Ritdisplay Corp Manufacturing method of organic planar light-emitting device
KR20050117615A (en) * 2003-09-16 2005-12-15 씨엘디 주식회사 Organic electroluminescence display and method of making the same
JP2006171365A (en) * 2004-12-16 2006-06-29 Seiko Epson Corp Bank generation method, and methods of manufacturing color filter, liquid crystal panel, organic el device and display panel
JP2007012411A (en) * 2005-06-30 2007-01-18 Canon Inc Organic el display and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290441A (en) * 1999-02-26 2001-10-19 Sanyo Electric Co Ltd Color display device
JP2001085158A (en) * 1999-09-10 2001-03-30 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2003249348A (en) * 2002-02-26 2003-09-05 Toyota Industries Corp Electro-optic panel
JP2004119226A (en) * 2002-09-27 2004-04-15 Nippon Seiki Co Ltd Organic el panel
JP2007059925A (en) * 2005-01-28 2007-03-08 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009295601A (en) * 2009-09-25 2009-12-17 Casio Comput Co Ltd Sealing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114012350A (en) * 2021-11-11 2022-02-08 云谷(固安)科技有限公司 Evaporation mask plate maintenance device, system and method

Also Published As

Publication number Publication date
TW201230436A (en) 2012-07-16
JP2012146606A (en) 2012-08-02
TWI493766B (en) 2015-07-21
JP5818441B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6219685B2 (en) Luminescent display backplane, display device, and pixel definition layer manufacturing method
JP5857051B2 (en) Self-aligned coating of opaque conductive regions
CN103928497A (en) OLED displayer, manufacturing method of OLED displayer and display device
US20060273716A1 (en) Flat panel display and method of manufacturing the same
US20050142975A1 (en) Method of manufacturing light emitting element and method of manufacturing display apparatus having the same
JP2008108482A (en) Organic el display device
KR20140110497A (en) Organic electro-luminescent device
TWI482326B (en) Method for manufacturing organic EL element
JP5818441B2 (en) Manufacturing method of organic EL element for illumination
US11456342B2 (en) Organic light emitting diode back plate and method of manufacturing same
WO2020233596A1 (en) Organic electroluminescent device, method for manufacture thereof, and display apparatus
JP2012099328A (en) Organic el display manufacturing method
JP2008098033A (en) Organic el display device
CN103190201B (en) Organic EL panel and manufacture method thereof
JP5656659B2 (en) Manufacturing method of organic EL element
JP6057052B2 (en) Display element and method of manufacturing display element
JP2015170416A (en) Method of producing thin film transistor substrate, thin film transistor substrate
KR20150075135A (en) Organic light emitting diode display device and fabricating method of the same
JP2015079618A (en) Thin film transistor substrate, manufacturing method of the same, organic el element using the same, and manufacturing method of organic el element
JP2011212933A (en) Letterpress printing apparatus, manufacturing method for printed matter, and manufacturing method for organic el element
KR100766092B1 (en) Organic Light-Emitting Device and Manufacturing method thereof
US20060209107A1 (en) Liquid droplet spraying apparatus, method of forming a pixel pattern using the same and display substrate having the pixel pattern
JP6375615B2 (en) Letterpress for printing and method for producing printed matter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855284

Country of ref document: EP

Kind code of ref document: A1