JP2008098033A - Organic el display device - Google Patents

Organic el display device Download PDF

Info

Publication number
JP2008098033A
JP2008098033A JP2006279875A JP2006279875A JP2008098033A JP 2008098033 A JP2008098033 A JP 2008098033A JP 2006279875 A JP2006279875 A JP 2006279875A JP 2006279875 A JP2006279875 A JP 2006279875A JP 2008098033 A JP2008098033 A JP 2008098033A
Authority
JP
Japan
Prior art keywords
pixel
organic
element isolation
display device
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006279875A
Other languages
Japanese (ja)
Inventor
Hideki Yoshinaga
秀樹 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006279875A priority Critical patent/JP2008098033A/en
Publication of JP2008098033A publication Critical patent/JP2008098033A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL display device which can prevent short circuit at a tapered part and a tapered edge part of an element isolation film and has no unlit pixels. <P>SOLUTION: A plurality of organic EL elements composed of an organic light-emitting layer pinched between a pair of electrodes are provided on a substrate as pixels, and the plurality of the pixels, in an organic EL display device which is divided by an element isolation structure formed on one of the electrodes, have a curvature radius of a corner of each pixel divided by the element isolation structure to satisfy 0<r≤0.3×Ax, wherein r denotes a curvature radius of the corner of the pixel and Ax, a pixel aperture width of a pixel pitch on a widthwise side or a shorter side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はフラットパネルディスプレイ等に用いられる有機EL表示装置に関する。   The present invention relates to an organic EL display device used for a flat panel display or the like.

近年、フラットパネルディスプレイとして、自発光型デバイスである有機EL表示装置が注目されている。   In recent years, organic EL display devices, which are self-luminous devices, have attracted attention as flat panel displays.

有機EL表示装置は、基板(例えばガラスやフィルム)上に、対向する陽極と陰極から成る一対の電極の間に有機発光層が狭持された有機EL素子を有し、前記有機EL素子を搭載した有機EL素子基板の外表面に、封止層が設けられた構造である。前記有機発光層の光を外部に取り出せる様にする為、光取り出し側の電極にはITO(Indium Tin Oxide)等の透明電極が用いられ、外部駆動回路により電圧を印加して、電流を流すことにより発光する。   The organic EL display device has an organic EL element in which an organic light emitting layer is sandwiched between a pair of electrodes composed of an anode and a cathode facing each other on a substrate (for example, glass or film), and the organic EL element is mounted. The sealing layer is provided on the outer surface of the organic EL element substrate. In order to be able to extract the light from the organic light emitting layer to the outside, a transparent electrode such as ITO (Indium Tin Oxide) is used for the electrode on the light extraction side, and a current is applied by applying a voltage by an external drive circuit. Emits light.

ところで、有機EL素子は陰極と陽極との間に有機層が狭持された構造である為、前記陽極と陰極との間においてショートが発生する場合がある。その結果として、ショート個所に電流が集中し有機EL素子に十分な電流を流すことができなくなり、非点灯画素となる問題がある。   By the way, since the organic EL element has a structure in which an organic layer is sandwiched between the cathode and the anode, a short circuit may occur between the anode and the cathode. As a result, there is a problem that current is concentrated at the shorted portion and sufficient current cannot be supplied to the organic EL element, resulting in a non-lighted pixel.

例えば、陰極又は陽極のうち、素子分離膜の下部に配された電極との接触部にあたるテーパーのエッジ部分(以降、テーパーエッジ部と称す。)の膜厚が極端に薄くなることでショートが発生する。また、テーパーエッジ部の少なくとも一部が逆テーパーとなることで、有機層が十分に成膜されず、陰極と陽極との間においてショートが発生する。   For example, a short circuit occurs when the film thickness of the taper edge portion (hereinafter referred to as the taper edge portion) of the cathode or the anode, which is in contact with the electrode disposed under the element isolation film, is extremely thin. To do. Further, since at least a part of the tapered edge portion is inversely tapered, the organic layer is not sufficiently formed, and a short circuit occurs between the cathode and the anode.

テーパーエッジ部の膜厚が極端に薄くなることで生じるショートの対策としては、前述した有機層を厚くすることや、素子分離膜の側壁部のテーパー角度を管理する提案がなされている(特許文献1を参照)。   As countermeasures against a short circuit caused by an extremely thin film thickness of the taper edge portion, proposals have been made to increase the thickness of the organic layer described above and to control the taper angle of the side wall portion of the element isolation film (Patent Document). 1).

また、素子分離膜の逆テーパー化によるショートの対策としては、素子分離膜を2層構造とし、素子分離膜の下部に配された陽極又は陰極のいずれか一方の電極上に第一の素子分離膜を十分に薄く形成する提案がなされている(特許文献2を参照)。   In addition, as a countermeasure against a short circuit due to the reverse taper of the element isolation film, the element isolation film has a two-layer structure, and the first element isolation is provided on either the anode or the cathode disposed below the element isolation film. There has been a proposal to form a sufficiently thin film (see Patent Document 2).

特開2005−63870号公報JP 2005-63870 A 特開2004−319119号公報JP 2004-319119 A

本発明は、有機EL素子の非点灯画素という問題について鑑みてなされたもので、素子分離膜のテーパー部ならびにテーパーエッジ部でのショートを防止し、非点灯画素の無い有機EL表示装置を提供することを目的とする。   The present invention has been made in view of the problem of non-lighting pixels of an organic EL element, and provides an organic EL display device having no non-lighting pixels by preventing a short circuit at the taper portion and the taper edge portion of the element isolation film. For the purpose.

上記背景技術の課題を解決するための手段として、請求項1に記載した発明に係る有機EL表示装置は、
基板上に、一対の電極の間に有機発光層を挟んで成る有機EL素子を画素として複数有し、前記複数の画素は、一方の電極上に形成された素子分離構造によって区画された有機EL表示装置において、
素子分離構造によって区画される各画素の角部の曲率半径は、
<式1>
0<r≦0.3・Ax
(但し、r:画素の角部の曲率半径、Ax:横方向又は短辺側の画素ピッチの画素開口幅)
の関係を満たすことを特徴とする。
As means for solving the problems of the background art, an organic EL display device according to the invention described in claim 1 is:
An organic EL element having a plurality of organic EL elements each having an organic light emitting layer sandwiched between a pair of electrodes as a pixel on a substrate, the plurality of pixels being partitioned by an element isolation structure formed on one electrode In the display device,
The radius of curvature of the corner of each pixel partitioned by the element isolation structure is
<Formula 1>
0 <r ≦ 0.3 ・ Ax
(Where r is the radius of curvature of the corner of the pixel, Ax is the pixel aperture width of the pixel pitch in the horizontal direction or the short side)
It is characterized by satisfying the relationship.

本発明に係る有機EL表示装置は、各画素の角部の曲率半径rが上記<式1>の関係を満たす構成とされている。そのため、各画素の角部のテーパー部ならびにテーパーエッジでの電極間のショートを防止することができ、非点灯画素の発生を防止することができる。   The organic EL display device according to the present invention is configured such that the radius of curvature r of the corner of each pixel satisfies the relationship of the above <Expression 1>. Therefore, it is possible to prevent a short circuit between the electrodes at the tapered portion and the tapered edge of the corner of each pixel, and it is possible to prevent the occurrence of non-lighting pixels.

先ず、本発明者が発明に至った経緯を説明する。   First, the background of the inventor's achievement of the invention will be described.

素子分離膜(構造)のテーパー部で生じるショートは、素子分離膜によって形成される画素の辺にあたる領域で発生するのではなく、画素の角領域において発生する。この画素の角領域のショート箇所を詳細に観察した結果、図2に示すように画素の角部にあたる領域Bの素子分離膜のテーパーの角度B’が、画素の辺にあたる領域Aのテーパーの角度A’よりも急峻であることがわかった。このことから、画素の角部のテーパー角度が急峻であると、画素の角部に成膜される有機層の厚みが薄くなり、陰極と陽極との間でショートが発生すると考えられる。   A short circuit occurring in the taper portion of the element isolation film (structure) does not occur in a region corresponding to a side of the pixel formed by the element isolation film, but occurs in a corner region of the pixel. As a result of observing in detail the short portion of the corner region of the pixel, as shown in FIG. 2, the taper angle B ′ of the element isolation film in the region B corresponding to the corner portion of the pixel is equal to the taper angle of the region A corresponding to the pixel side. It was found to be steeper than A ′. From this, it is considered that when the taper angle of the corner portion of the pixel is steep, the thickness of the organic layer formed at the corner portion of the pixel becomes thin, and a short circuit occurs between the cathode and the anode.

従って、このような画素の角領域において発生するショートを防止するためには、画素の角部のテーパー角度を緩やかにする必要がある。そこで、テーパー角度と各画素の角部の曲率半径rとの関係を検討した結果、本発明に至った。   Therefore, in order to prevent such a short circuit occurring in the corner region of the pixel, it is necessary to make the taper angle of the corner portion of the pixel moderate. Thus, as a result of examining the relationship between the taper angle and the radius of curvature r of the corner of each pixel, the present invention has been achieved.

具体的に云うと、各画素の角部の曲率半径rが0<rの関係を満たす範囲であれば、画素の角部のテーパー角度は緩やかになり、画素の角領域において発生するショートを防止することができる。   More specifically, if the radius of curvature r of the corner of each pixel satisfies the relationship of 0 <r, the taper angle of the corner of the pixel becomes gradual and prevents a short circuit that occurs in the corner area of the pixel. can do.

しかし、各画素の角部の曲率半径rが0.3・Axを超える範囲であると、1画素領域における発光部が占める割合(いわゆる開口率)が低下するので好ましくない。   However, if the radius of curvature r of the corner of each pixel exceeds 0.3 · Ax, the ratio of the light emitting portion in one pixel region (so-called aperture ratio) decreases, which is not preferable.

以上のことから、本発明における各画素の角部の曲率半径rの範囲は、
<式1>
0<r≦0.3・Ax
で規定することにした。
From the above, the range of the radius of curvature r of the corner of each pixel in the present invention is
<Formula 1>
0 <r ≦ 0.3 ・ Ax
It was decided to stipulate.

また、R・G・B画素又はR・G・B・W画素への適用を考えた場合には、横方向又は短辺側の画素ピッチの画素開口幅Axと、縦方向又は長辺側の画素ピッチの画素開口幅Ayとの関係は、
<式2>
Ax≧1/4.5・Ay
の関係を満たすことが好ましい。
Also, when considering application to R, G, B pixels or R, G, B, W pixels, the pixel aperture width Ax of the pixel pitch on the horizontal direction or the short side and the vertical direction or the long side The relationship between the pixel pitch and the pixel aperture width Ay is
<Formula 2>
Ax ≧ 1 / 4.5 ・ Ay
It is preferable to satisfy the relationship.

更に、横方向又は短辺側の画素ピッチの画素開口幅が
<式3>
18μm≦Ax≦75μm
の範囲の場合、各画素の角部の曲率半径は、
<式4>
0.05・Ax≦r≦0.3・Ax
の関係を満たすことが好ましい。
Further, the pixel opening width of the pixel pitch in the horizontal direction or the short side is <Formula 3>
18 μm ≦ Ax ≦ 75 μm
In the case of the range, the radius of curvature of the corner of each pixel is
<Formula 4>
0.05 ・ Ax ≦ r ≦ 0.3 ・ Ax
It is preferable to satisfy the relationship.

有機EL素子をディスプレイ等の用途に用いる場合において、解像度を現状特に好ましく適用される約100ppi以上約300ppi以下の範囲内とするための画素開口幅は、
<式5>
8μm≦Ax≦75μm
である。
When the organic EL element is used for a display or the like, the pixel aperture width for setting the resolution within a range of about 100 ppi or more and about 300 ppi or less, which is particularly preferably applied at present,
<Formula 5>
8μm ≦ Ax ≦ 75μm
It is.

この画素開口幅の範囲においては、0.05・Axよりも小さい開口幅にしてしまうと、画素の角部のテーパー角が急峻になり過ぎてしまうため、ショートが発生しやすくなってしまう。そのため、各画素の角部の曲率半径を上記下限値以上にすることが好ましいのである。   In the range of the pixel opening width, if the opening width is smaller than 0.05 · Ax, the taper angle of the corner portion of the pixel becomes too steep and a short circuit is likely to occur. For this reason, it is preferable that the radius of curvature of the corner of each pixel be equal to or greater than the above lower limit value.

次に、本発明の実施形態を図面に基づいて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

<実施形態1>
図1(a)に本発明に係る有機EL表示装置の左辺の断面図を模式的に示し、図1(b)に本発明に係る有機EL表示装置内に配される画素の上面図を模式的に示す。ここで、図1(a)において、1はガラス基板、2はTFT(薄膜トランジスタ)、3は絶縁層、4は平坦化膜、5はアノード電極(陽極)を示す。更に、6は有機発光層、6’は電子輸送層および電子注入層、7はカソード電極(陰極)、8は吸湿材、9は不活性ガス、10は素子分離膜、11は封止ガラス、12は接着剤、aは一画素領域を示す。図1(b)において、10’は素子分離膜テーパー部を示す。
<Embodiment 1>
FIG. 1A schematically shows a cross-sectional view of the left side of the organic EL display device according to the present invention, and FIG. 1B schematically shows a top view of pixels arranged in the organic EL display device according to the present invention. Indicate. Here, in FIG. 1A, 1 is a glass substrate, 2 is a TFT (thin film transistor), 3 is an insulating layer, 4 is a planarizing film, and 5 is an anode electrode (anode). Furthermore, 6 is an organic light emitting layer, 6 ′ is an electron transport layer and an electron injection layer, 7 is a cathode electrode (cathode), 8 is a hygroscopic material, 9 is an inert gas, 10 is an element isolation film, 11 is a sealing glass, Reference numeral 12 denotes an adhesive, and a denotes one pixel region. In FIG. 1B, reference numeral 10 'denotes a device isolation film taper portion.

図示する有機EL表示装置は、通例の有機EL表示装置と略同様に、ガラス基板1上に、対向するアノード電極5とカソード電極7とから成る一対の電極と、前記一対の電極間に挟まれた有機発光層6とを有する有機EL素子を画素として複数備えている。そして、前記複数の画素は、アノード電極5上に形成された素子分離膜10によって区画された構成とされている。   The organic EL display device shown in the figure is sandwiched between a pair of electrodes consisting of an anode electrode 5 and a cathode electrode 7 facing each other on a glass substrate 1 in substantially the same manner as a conventional organic EL display device. A plurality of organic EL elements each having the organic light emitting layer 6 are provided as pixels. The plurality of pixels are configured to be partitioned by an element isolation film 10 formed on the anode electrode 5.

この有機EL表示装置の特徴とするところは、素子分離膜10によって区画される各画素の角部の曲率半径が、
<式1>
0<r≦0.3・Ax
The feature of this organic EL display device is that the radius of curvature of the corner of each pixel partitioned by the element isolation film 10 is
<Formula 1>
0 <r ≦ 0.3 ・ Ax

(但し、r:画素の角部の曲率半径、Ax(=Px−Wx):横方向又は短辺側の画素ピッチの画素開口幅、Px:各画素の横方向又は短辺側の画素ピッチ、Wx:画素ピッチ内において素子分離膜10が形成された領域の幅)
の関係を満たすことを特徴とする。上述したように、各画素の角部のテーパー部ならびにテーパーエッジでの電極間のショートを防止することでき、非点灯画素の発生を防止することができる。しかも、マスクパターン作製時におけるr形状の変更や、パターン形成時のプロセス条件変更により実現することが可能である為、簡便かつコスト増大を伴わずに作製することができる。
(Where r: radius of curvature of the corner of the pixel, Ax (= Px−Wx): pixel aperture width of the pixel pitch on the horizontal direction or short side, Px: pixel pitch on the horizontal direction or short side of each pixel, Wx: width of the region where the element isolation film 10 is formed within the pixel pitch)
It is characterized by satisfying the relationship. As described above, it is possible to prevent a short circuit between the electrodes at the tapered portion and the tapered edge of the corner portion of each pixel, and it is possible to prevent the occurrence of non-lighting pixels. Moreover, since it can be realized by changing the r shape at the time of mask pattern production or by changing the process conditions at the time of pattern formation, it can be produced simply and without increasing the cost.

特に、有機EL表示装置がR・G・B画素又はR・G・B・W画素の場合、横方向又は短辺側の画素ピッチの画素開口幅と、縦方向又は長辺側の画素ピッチの画素開口幅との関係は、
<式2>
Ax≧1/4.5・Ay
(但し、Ay:縦方向又は長辺側の画素ピッチの画素開口幅)
の関係を満たすことを特徴とする。
In particular, when the organic EL display device is an R / G / B pixel or an R / G / B / W pixel, the pixel aperture width in the horizontal or short side pixel pitch and the vertical or long side pixel pitch. The relationship with the pixel aperture width is
<Formula 2>
Ax ≧ 1 / 4.5 ・ Ay
(However, Ay: pixel opening width of the pixel pitch in the vertical direction or long side)
It is characterized by satisfying the relationship.

上記関係式を満たすことで、有機EL表示装置がR・G・B画素又はR・G・B・W画素の場合の、横方向又は短辺側の画素ピッチの画素開口幅と、縦方向又は長辺側の画素ピッチの画素開口幅が極端に変わることがない。これにより、各画素における各角部のテーパー部ならびにテーパーエッジ作製時のプロセス条件を一定にしても略同一の形状が得られる。   By satisfying the above relational expression, when the organic EL display device is an R / G / B pixel or an R / G / B / W pixel, the pixel aperture width of the pixel pitch on the horizontal direction or the short side, and the vertical direction or The pixel opening width of the pixel pitch on the long side does not change extremely. As a result, substantially the same shape can be obtained even if the taper portion at each corner and the taper edge process conditions in each pixel are constant.

更に、横方向又は短辺側の画素ピッチの画素開口幅が
<式3>
18μm≦Ax≦75μm
の範囲の場合、各画素の角部の曲率半径は、
<式4>
0.05・Ax≦r≦0.3・Ax
の関係を満たすことを特徴とする。上述したように、有機EL素子をディスプレイ等の用途に用いる場合、良好にショートの発生を防止することができる。
Further, the pixel opening width of the pixel pitch in the horizontal direction or the short side is <Formula 3>
18 μm ≦ Ax ≦ 75 μm
In the case of the range, the radius of curvature of the corner of each pixel is
<Formula 4>
0.05 ・ Ax ≦ r ≦ 0.3 ・ Ax
It is characterized by satisfying the relationship. As described above, when the organic EL element is used for a display or the like, it is possible to prevent occurrence of a short circuit.

上記有機EL表示装置の構成を製造方法に沿って説明する。   The configuration of the organic EL display device will be described along the manufacturing method.

ガラス基板1上に、TFT2を作成し、更に前記TFT2を保護するべく絶縁層3を形成した。このとき、TFTバックプレーンによって形成された各走査線側のピッチは126μmであり、信号線側のピッチは42μmである。   A TFT 2 was formed on the glass substrate 1 and an insulating layer 3 was formed to protect the TFT 2. At this time, the pitch on each scanning line side formed by the TFT backplane is 126 μm, and the pitch on the signal line side is 42 μm.

前記TFTバックプレーンの形成により生じた凹凸を平坦化するべく、有機平坦化層4を形成した。   An organic planarization layer 4 was formed in order to planarize the unevenness caused by the formation of the TFT backplane.

前記TFTバックプレーン内に形成された各ドレイン端子と電気的コンタクトを取るべく、絶縁層3及び有機平坦化層4にコンタクトホールを形成した後、Cr電極を100nmの厚さに成膜し、アノード電極5を形成した。   In order to make electrical contact with each drain terminal formed in the TFT backplane, a contact hole is formed in the insulating layer 3 and the organic planarization layer 4, and then a Cr electrode is formed to a thickness of 100 nm, and an anode is formed. An electrode 5 was formed.

アノード電極5を形成した後、基板洗浄を行った。そして、素子分離膜10としてPI(ポリイミド)材料をスピン塗布して、図3に示すように、画素の角部に曲率半径r=2μmを持たせたマスクを用いて素子分離膜10の露光を行い、その後現像処理を行い素子分離膜10を形成した。   After the anode electrode 5 was formed, the substrate was cleaned. Then, a PI (polyimide) material is spin-coated as the element isolation film 10, and the element isolation film 10 is exposed using a mask having a radius of curvature r = 2 μm at the corner of the pixel as shown in FIG. Thereafter, development processing was performed to form an element isolation film 10.

なお、図3において、短辺側にあたる横方向の画素ピッチPxは42μmであり、前記1画素a(図1を参照)内において短辺側に配される素子分離膜10の幅Wxにあたるマスク寸法Wx’は15μmである。   In FIG. 3, the horizontal pixel pitch Px corresponding to the short side is 42 μm, and the mask dimension corresponding to the width Wx of the element isolation film 10 disposed on the short side in the one pixel a (see FIG. 1). Wx ′ is 15 μm.

素子分離膜10のPI材料には、DL−1000(東レ(株)製)を用い、現像液には、マイクロポジットデベロッパーCD26(ロームアンドハース製)を用いた。   DL-1000 (manufactured by Toray Industries, Inc.) was used as the PI material of the element isolation film 10, and Microposit Developer CD26 (manufactured by Rohm and Haas) was used as the developer.

スピン条件は、500rpmから段階的に1000rpmまで上昇させた後10secキープし、その後、700rpm/10secとする。ポストペーク条件は、230℃/30minオーブンにて行った。   The spin condition is increased from 500 rpm to 1000 rpm stepwise, kept for 10 seconds, and then set to 700 rpm / 10 seconds. Post-pake conditions were performed in an oven at 230 ° C./30 min.

UV/オゾン洗浄した後、1×10-2Pa、50℃で7時間、真空ベークを行った。 After UV / ozone cleaning, vacuum baking was performed at 1 × 10 −2 Pa and 50 ° C. for 7 hours.

基板を有機EL蒸着装置へ移して真空排気し、前処理室に設けたリング状電極に50WのRF電力を投入し酸素プラズマ洗浄処理を行った。酸素圧力は、0.6Paで処理時間は40秒である。   The substrate was transferred to an organic EL vapor deposition apparatus and evacuated, and 50 W RF power was applied to a ring electrode provided in the pretreatment chamber to perform an oxygen plasma cleaning process. The oxygen pressure is 0.6 Pa and the treatment time is 40 seconds.

基板を前処理室から成膜室へ搬送し、成膜室の真空度が1×10-4Paまで排気した後、正孔輸送性を有するαNPDを抵抗加熱蒸着法により成膜した。成膜速度は0.2nm/secで、膜厚35nmの正孔輸送層を形成した。なお、正孔輸送層は全ての画素にそれぞれ蒸着されるよう、格子状のメタルマスクを用いて蒸着した。 The substrate was transferred from the pretreatment chamber to the film formation chamber, and after the vacuum degree in the film formation chamber was evacuated to 1 × 10 −4 Pa, αNPD having hole transportability was formed by resistance heating vapor deposition. The film formation rate was 0.2 nm / sec, and a hole transport layer having a thickness of 35 nm was formed. Note that the hole transport layer was deposited using a lattice-shaped metal mask so as to be deposited on all the pixels.

続いて正孔輸送層の上に、アルキレート錯体であるAlq3を抵抗加熱蒸着法により正孔輸送層と同様の成膜条件で膜厚15nmの厚さで成膜し、有機発光層6を形成した。   Subsequently, Alq3, which is an alkylate complex, is formed on the hole transport layer by a resistance heating vapor deposition method with a thickness of 15 nm under the same film formation conditions as the hole transport layer, thereby forming the organic light emitting layer 6. did.

なお、今回は有機発光層6を各R・G・Bに塗り分ける必要がないため、前記有機発光層6は、正孔輸送層と同様に全ての画素に蒸着するべく、格子状のメタルマスクを用いて蒸着した。このとき、図1に示すように、素子分離膜10が形成された領域まで、表示領域と同様のピッチでメタルマスクの開口を設けて蒸着した。   In addition, since it is not necessary to apply the organic light emitting layer 6 to each of R, G, and B at this time, the organic light emitting layer 6 is formed in a lattice-shaped metal mask so as to be deposited on all the pixels in the same manner as the hole transport layer. Vapor deposition was performed. At this time, as shown in FIG. 1, the metal mask openings were deposited at the same pitch as the display area up to the area where the element isolation film 10 was formed.

各R・G・Bに塗り分ける際には、各R・G・Bの配列に対応したメタルマスクを用いてそれぞれの有機発光層6を形成すればよい。   When coating each R, G, and B separately, each organic light emitting layer 6 may be formed using a metal mask corresponding to each R, G, and B arrangement.

有機発光層6の上に、抵抗過熱共蒸着法によりAlq3と炭酸セシウム(Cs2CO3)とが膜厚比9:1の割合で混合され、かつ、蒸着速度が0.3nm/secになるよう、夫々の蒸着速度を調整して、膜厚が35nmの電子注入層を形成した。 On the organic light emitting layer 6, Alq3 and cesium carbonate (Cs 2 CO 3 ) are mixed at a film thickness ratio of 9: 1 by a resistance overheating co-evaporation method, and the deposition rate becomes 0.3 nm / sec. As described above, an electron injection layer having a film thickness of 35 nm was formed by adjusting the respective vapor deposition rates.

陰極電極を形成するために電極形成用のスパッタ室に基板を搬送し、電子注入層の上に、ITOターゲットを用いてDCマグネトロンスパッタリング法により膜厚が130nmになるよう、メタルマスク成膜を用いて透明電極であるカソード電極7を形成した。   In order to form the cathode electrode, the substrate is transferred to a sputtering chamber for electrode formation, and a metal mask film is formed on the electron injection layer so that the film thickness becomes 130 nm by a DC magnetron sputtering method using an ITO target. Thus, a cathode electrode 7 as a transparent electrode was formed.

成膜条件としては、基板加熱無しの室温成膜で、成膜圧力を1.0Pa、Ar、H20及び、O2ガスを用いそれぞれの流量は500、1.5、5.0sccmとし、ターゲットに印加する投入パワーはITO:500Wで成膜した。透過率は85%(at.450nm)、比抵抗値は8×10-4Ω・cmである。 The film formation conditions are room temperature film formation without substrate heating, the film formation pressure is 1.0 Pa, Ar, H 2 O, and O 2 gas are used, and the respective flow rates are 500, 1.5, 5.0 sccm, The input power applied to the target was ITO: 500 W. The transmittance is 85% (at 450 nm), and the specific resistance value is 8 × 10 −4 Ω · cm.

上記したように、基板上にTFTバックプレーンを形成した後、陽極、正孔輸送層、有機発光層、電子注入層、及び陰極を設け、有機EL素子基板を作製した。   As described above, after forming a TFT backplane on the substrate, an anode, a hole transport layer, an organic light emitting layer, an electron injection layer, and a cathode were provided to produce an organic EL element substrate.

一方で、グローブボックス内において封止ガラス11に、吸湿材8を表示領域と干渉しない位置に貼り付けた。本実施形態では、封止ガラス11としてエッチングガラスを用い、Caが主体のシート状のゲッター材を、吸湿材8として用いた。なお、吸湿材8を用いる主な目的は、有機EL素子基板と封止ガラス11との接着部から進入する水分を除去することである。   On the other hand, the hygroscopic material 8 was affixed to the sealing glass 11 in the glove box at a position where it does not interfere with the display area. In the present embodiment, etching glass is used as the sealing glass 11, and a sheet-like getter material mainly composed of Ca is used as the hygroscopic material 8. The main purpose of using the hygroscopic material 8 is to remove moisture entering from the bonded portion between the organic EL element substrate and the sealing glass 11.

上記工程で得た封止ガラス11と有機EL素子基板とを封止するべく、前記封止ガラス11を有機EL素子基板の所定の位置に配置した後、グローブボックスに搬送し、前記封止ガラス11と有機EL素子基板とを接着剤12を介して封着した。具体的に云うと、接着剤12をディスペンサ用シリンジに注入し、注入後、封止ガラス11を所定の位置に配置した有機EL素子基板をグローブボックスに搬送した。そして、ディスペンスロボットを用いて接着剤12を封止ガラス11の周辺部に幅0.5mm、厚み35μm程度で塗布した。接着剤12としては、光カチオン重合系の液状樹脂(KR695/旭電化製)を用いた。   In order to seal the sealing glass 11 obtained in the above step and the organic EL element substrate, the sealing glass 11 is disposed at a predetermined position of the organic EL element substrate, and then conveyed to a glove box, and the sealing glass 11 and the organic EL element substrate were sealed with an adhesive 12. More specifically, the adhesive 12 was poured into a dispenser syringe, and after the injection, the organic EL element substrate having the sealing glass 11 disposed at a predetermined position was conveyed to a glove box. And the adhesive agent 12 was apply | coated to the peripheral part of the sealing glass 11 by width 0.5mm and thickness 35micrometer using the dispensing robot. As the adhesive 12, a photocationic polymerization type liquid resin (KR695 / Asahi Denka) was used.

なお、その際の紫外線照射強度は100mW/cm2で、光量は3,000mJ/cm2であり、以上に述べた封止工程は、グローブボックス内の水分濃度を10ppm以下に制御して行った。 The ultraviolet irradiation intensity at that time was 100 mW / cm 2 and the amount of light was 3,000 mJ / cm 2. The sealing process described above was performed by controlling the moisture concentration in the glove box to 10 ppm or less. .

上記工程で得た有機EL表示装置の素子評価を行った。   The element evaluation of the organic EL display device obtained in the above process was performed.

先ず、アノード電極と素子分離膜との接触部において形成される各画素の角部の曲率半径を測長機能付光学顕微鏡を用いて測定した結果、曲率半径は約6.5μmであった。   First, as a result of measuring the radius of curvature of the corner portion of each pixel formed at the contact portion between the anode electrode and the element isolation film using an optical microscope with a length measuring function, the radius of curvature was about 6.5 μm.

短辺側の画素ピッチPxは42μmであり、短辺側に配される素子分離膜の幅Wxの実測値は13μmであった為、Ax=29μmとなる。上記<式4>に代入すると、1.45≦r≦8.7であり、本発明を満たしていた。   Since the pixel pitch Px on the short side is 42 μm and the measured value of the width Wx of the element isolation film disposed on the short side is 13 μm, Ax = 29 μm. Substituting into the above <Formula 4>, 1.45 ≦ r ≦ 8.7, which satisfied the present invention.

また、長辺側の画素ピッチPyは126μmであり、長辺側に配される素子分離膜の幅Wyの実測値は30μmであった為、Ay(=Py−Wy)=96μmとなる。上記<式2>に代入すると、29≧21.3であり、本発明を満たしていた。   Further, since the pixel pitch Py on the long side is 126 μm and the actual measurement value of the width Wy of the element isolation film disposed on the long side is 30 μm, Ay (= Py−Wy) = 96 μm. Substituting into the above <Equation 2>, 29 ≧ 21.3, which satisfied the present invention.

次に、有機EL表示装置を発光させて、非点灯画素数をカウントし、更に前記非点灯画素内において異物又は明らかなパターンニング不良による非点灯画素を分類した。その結果、表示装置全体における非点灯画素数は96画素あったが、前記非点灯画素の全てにおいて異物があることが確認できた。   Next, the organic EL display device was caused to emit light, the number of non-lighted pixels was counted, and non-lighted pixels due to foreign matters or obvious patterning defects were classified in the non-lighted pixels. As a result, the number of non-illuminated pixels in the entire display device was 96 pixels, but it was confirmed that all the non-illuminated pixels had foreign matters.

つまり課題であった画素の角部における素子分離膜のテーパー部ならびにテーパーエッジ部で生じる電極間のショートは見られなかった。   That is, no short circuit between the electrodes at the tapered portion and the tapered edge portion of the element isolation film at the corner portion of the pixel, which was a problem, was observed.

<実施形態2>
本実施形態では、画素の角部の曲率半径rの調整を製造プロセス条件により実現する。
<Embodiment 2>
In the present embodiment, adjustment of the curvature radius r of the corner portion of the pixel is realized by manufacturing process conditions.

本実施形態においても、上記実施形態1と同様の手順でアノード電極5の形成まで行う為、アノード電極5が形成されるまでの詳細な説明は省く。   Also in the present embodiment, since the anode electrode 5 is formed in the same procedure as in the first embodiment, detailed description until the anode electrode 5 is formed is omitted.

アノード電極5を形成した後、基板洗浄を行い、素子分離膜10としてアクリル材料をスピン塗布して、画素の角部が特に曲率半径を持たない形状のマスクを用いて素子分離膜10の露光を行い、その後現像処理を行い素子分離膜10を形成した。   After the anode electrode 5 is formed, the substrate is cleaned, an acrylic material is spin-coated as the element isolation film 10, and the element isolation film 10 is exposed using a mask having a shape in which the corners of the pixels do not have a curvature radius in particular. Thereafter, development processing was performed to form an element isolation film 10.

なお、短辺側にあたる横方向の画素ピッチPxは42μmとし、短辺側に配される素子分離膜の幅Wxにあたるマスク寸法W’は15μmとした。   The horizontal pixel pitch Px corresponding to the short side was set to 42 μm, and the mask dimension W ′ corresponding to the width Wx of the element isolation film disposed on the short side was set to 15 μm.

素子分離膜10のアクリル材料には、Optmer PC415G (JSR(株)製)を用い、現像液には、NMD−3(東京応化工業(株)製)を用いた。   Optmer PC415G (manufactured by JSR Corporation) was used as the acrylic material of the element isolation film 10, and NMD-3 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used as the developer.

スピン条件は、1500rpmで20secキープし、その後、1100rpm/10secとした。プレベーク条件は、90°/2minとした。   Spin conditions were kept at 1500 rpm for 20 seconds, and then set to 1100 rpm / 10 seconds. The prebake condition was 90 ° / 2 min.

ポストペーク条件は220℃/60minとし、TABAI社製クリーンオーブンにて行った。   Post-pake conditions were set to 220 ° C./60 min, and performed in a clean oven manufactured by Tabai.

UV/オゾン洗浄した後、1×10-2Pa、50℃で7時間、真空ベークを行った。 After UV / ozone cleaning, vacuum baking was performed at 1 × 10 −2 Pa and 50 ° C. for 7 hours.

基板を有機EL蒸着装置へ移して真空排気し、前処理室に設けたリング状電極に50WのRF電力を投入し酸素プラズマ洗浄処理を行った。酸素圧力は0.6Paで、処理時間は40秒である。   The substrate was transferred to an organic EL vapor deposition apparatus and evacuated, and 50 W RF power was applied to a ring electrode provided in the pretreatment chamber to perform an oxygen plasma cleaning process. The oxygen pressure is 0.6 Pa and the treatment time is 40 seconds.

基板を前処理室から成膜室へ搬送し、成膜室の真空度を1×10-4Paまで排気した後、正孔輸送性を有するαNPDを抵抗加熱蒸着法により成膜した。成膜速度は0.2nm/secで、膜厚35nmの正孔輸送層を形成した。なお、正孔輸送層は全ての画素にそれぞれ蒸着されるよう、格子状のメタルマスクを用いて蒸着した。 The substrate was transferred from the pretreatment chamber to the film formation chamber, the degree of vacuum in the film formation chamber was evacuated to 1 × 10 −4 Pa, and αNPD having a hole transporting property was formed by resistance heating vapor deposition. The film formation rate was 0.2 nm / sec, and a hole transport layer having a thickness of 35 nm was formed. Note that the hole transport layer was deposited using a lattice-shaped metal mask so as to be deposited on all the pixels.

続いて正孔輸送層の上に、アルキレート錯体であるAlq3を抵抗加熱蒸着法により正孔輸送層と同様の成膜条件で膜厚15nmの厚さで形成し、有機発光層6を形成した。   Subsequently, Alq3, which is an alkylate complex, was formed on the hole transport layer by a resistance heating vapor deposition method with a thickness of 15 nm under the same film formation conditions as the hole transport layer, and the organic light emitting layer 6 was formed. .

最後に、上記実施形態1と同様の手順にて、電子注入層の形成、カソード電極7の形成を行った後に、封止工程を行った。   Finally, the sealing step was performed after forming the electron injection layer and the cathode electrode 7 in the same procedure as in the first embodiment.

上記工程で得た有機EL表示装置の素子評価を行った。   The element evaluation of the organic EL display device obtained in the above process was performed.

先ず、アノード電極5と素子分離膜10との接触部において形成される各画素の角部の曲率半径rを測長機能付光学顕微鏡を用いて測定した結果、曲率半径は約5.5μmであった。   First, as a result of measuring the radius of curvature r of the corner portion of each pixel formed at the contact portion between the anode electrode 5 and the element isolation film 10 using an optical microscope with a length measuring function, the radius of curvature was about 5.5 μm. It was.

短辺側の画素ピッチPxは42μmであり、短辺側に配される素子分離膜の幅Wxの実測値は12μmであった為、Ax=30μmとなる。上記<式4>に代入すると、1.5≦r≦9であり、本発明を満たしていた。   Since the pixel pitch Px on the short side is 42 μm and the measured value of the width Wx of the element isolation film disposed on the short side is 12 μm, Ax = 30 μm. When substituting into the above <Expression 4>, 1.5 ≦ r ≦ 9, which satisfied the present invention.

次に、本有機EL表示装置を発光させて、非点灯画素数をカウントし、更に前記非点灯画素内において異物又は明らかなパターンニング不良による非点灯画素を分類した。その結果、表示装置全体における非点灯画素数は28画素あったが、前記非点灯画素の全てにおいて異物があることが確認された。   Next, the organic EL display device was caused to emit light, the number of non-lighted pixels was counted, and non-lighted pixels due to foreign matters or obvious patterning defects were classified in the non-lighted pixels. As a result, the number of non-illuminated pixels in the entire display device was 28 pixels, but it was confirmed that all the non-illuminated pixels had foreign matters.

つまり本実施形態においても課題であった画素の角部における素子分離膜のテーパー部ならびにテーパーエッジ部で生じる電極間のショートは見られなかった。   In other words, the short circuit between the electrodes generated at the tapered portion and the tapered edge portion of the element isolation film at the corner portion of the pixel, which was a problem in this embodiment, was not observed.

なお、上記実施形態においては、曲率を持たせていないマスクパターンを用いた。しかし、マスクパターンにも曲率半径を持たせ、プロセス条件による調整と併用して、素子分離膜10により得られる画素の角部の曲率半径rを調整してもなんら問題は無い。   In the above embodiment, a mask pattern having no curvature is used. However, there is no problem even if the mask pattern has a radius of curvature and the curvature radius r of the corner of the pixel obtained by the element isolation film 10 is adjusted in combination with the adjustment according to the process conditions.

(a)は本発明の実施形態1に係る有機EL表示装置の左辺の断面を示す模式図である。(b)は画素領域の上面を示す模式図である。(A) is a schematic diagram which shows the cross section of the left side of the organic electroluminescence display which concerns on Embodiment 1 of this invention. (B) is a schematic diagram showing an upper surface of a pixel region. (a)は従来の有機EL表示装置の画素領域の上面を示す模式図である。(b)は断面を示す模式図である。(A) is a schematic diagram which shows the upper surface of the pixel area | region of the conventional organic electroluminescence display. (B) is a schematic diagram which shows a cross section. 素子分離膜の形成用のマスクを示す模式図である。It is a schematic diagram which shows the mask for formation of an element isolation film.

符号の説明Explanation of symbols

1 ガラス基板
2 TFT(薄膜トランジスタ)
3 絶縁膜
4 平坦化膜
5 アノード電極
6 有機発光層
7 カソード電極
8 吸湿材
9 不活性ガス
10 素子分離膜
11 封止ガラス
12 接着剤
1 Glass substrate 2 TFT (Thin Film Transistor)
3 Insulating film 4 Planarizing film 5 Anode electrode 6 Organic light emitting layer 7 Cathode electrode 8 Hygroscopic material 9 Inert gas 10 Element isolation film 11 Sealing glass 12 Adhesive

Claims (3)

基板上に、一対の電極の間に有機発光層を挟んで成る有機EL素子を画素として複数有し、前記複数の画素は、一方の電極上に形成された素子分離構造によって区画された有機EL表示装置において、
素子分離構造によって区画される各画素の角部の曲率半径は、
<式1>
0<r≦0.3・Ax
(但し、r:画素の角部の曲率半径、Ax:横方向又は短辺側の画素ピッチの画素開口幅)
の関係を満たすことを特徴とする、有機EL表示装置。
An organic EL element having a plurality of organic EL elements each having an organic light emitting layer sandwiched between a pair of electrodes as a pixel on a substrate, the plurality of pixels being partitioned by an element isolation structure formed on one electrode In the display device,
The radius of curvature of the corner of each pixel partitioned by the element isolation structure is
<Formula 1>
0 <r ≦ 0.3 ・ Ax
(Where r is the radius of curvature of the corner of the pixel, Ax is the pixel aperture width of the pixel pitch in the horizontal direction or the short side)
An organic EL display device satisfying the following relationship:
横方向又は短辺側の画素ピッチの画素開口幅と、縦方向又は長辺側の画素ピッチの画素開口幅とは、
<式2>
Ax≧1/4.5・Ay
(但し、Ay:縦方向又は長辺側の画素ピッチの画素開口幅)
の関係を満たすことを特徴とする、請求項1に記載の有機EL表示装置。
The pixel opening width of the pixel pitch in the horizontal direction or the short side and the pixel opening width of the pixel pitch in the vertical direction or the long side are:
<Formula 2>
Ax ≧ 1 / 4.5 ・ Ay
(However, Ay: pixel opening width of the pixel pitch in the vertical direction or long side)
The organic EL display device according to claim 1, wherein the relationship is satisfied.
横方向又は短辺側の画素ピッチの画素開口幅が、
<式3>
18μm≦Ax≦75μm
である場合、各画素の角部の曲率半径は、
<式4>
0.05・Ax≦r≦0.3・Ax
の関係を満たすことを特徴とする、請求項1又は2に記載の有機EL表示装置。
The pixel aperture width of the pixel pitch in the horizontal direction or the short side is
<Formula 3>
18 μm ≦ Ax ≦ 75 μm
The radius of curvature of the corner of each pixel is
<Formula 4>
0.05 ・ Ax ≦ r ≦ 0.3 ・ Ax
The organic EL display device according to claim 1, wherein the relationship is satisfied.
JP2006279875A 2006-10-13 2006-10-13 Organic el display device Withdrawn JP2008098033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279875A JP2008098033A (en) 2006-10-13 2006-10-13 Organic el display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279875A JP2008098033A (en) 2006-10-13 2006-10-13 Organic el display device

Publications (1)

Publication Number Publication Date
JP2008098033A true JP2008098033A (en) 2008-04-24

Family

ID=39380662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279875A Withdrawn JP2008098033A (en) 2006-10-13 2006-10-13 Organic el display device

Country Status (1)

Country Link
JP (1) JP2008098033A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026838A1 (en) 2008-09-04 2010-03-11 独立行政法人科学技術振興機構 Frame rate converting apparatus and corresponding point estimating apparatus, corresponding point estimating method and corresponding point estimating program
JP2010062120A (en) * 2008-08-06 2010-03-18 Mitsubishi Chemicals Corp Photosensitive composition for barrier rib of organic electroluminescent element, and organic electroluminescent display device
CN109994519A (en) * 2017-12-27 2019-07-09 乐金显示有限公司 El display device
CN111524932A (en) * 2019-02-01 2020-08-11 Oppo广东移动通信有限公司 Electronic equipment, pixel structure and display device
CN112687187A (en) * 2019-10-18 2021-04-20 Oppo广东移动通信有限公司 Display module and electronic equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062120A (en) * 2008-08-06 2010-03-18 Mitsubishi Chemicals Corp Photosensitive composition for barrier rib of organic electroluminescent element, and organic electroluminescent display device
WO2010026838A1 (en) 2008-09-04 2010-03-11 独立行政法人科学技術振興機構 Frame rate converting apparatus and corresponding point estimating apparatus, corresponding point estimating method and corresponding point estimating program
CN109994519A (en) * 2017-12-27 2019-07-09 乐金显示有限公司 El display device
CN109994519B (en) * 2017-12-27 2023-09-08 乐金显示有限公司 Electroluminescent display device
CN111524932A (en) * 2019-02-01 2020-08-11 Oppo广东移动通信有限公司 Electronic equipment, pixel structure and display device
CN112687187A (en) * 2019-10-18 2021-04-20 Oppo广东移动通信有限公司 Display module and electronic equipment
CN112687187B (en) * 2019-10-18 2022-12-20 Oppo广东移动通信有限公司 Display module and electronic equipment

Similar Documents

Publication Publication Date Title
US10854693B2 (en) Organic light emitting display device
JP6219685B2 (en) Luminescent display backplane, display device, and pixel definition layer manufacturing method
KR101172794B1 (en) Organic EL Device, EL Display Panel, Method for Manufacturing the Organic EL Device and Method for Manufacturing the EL Display Panel
JP4448148B2 (en) Organic light emitting device
JP5079851B2 (en) Manufacturing method of organic light emitting display device
US20160079334A1 (en) Organic light emitting display device and method of manufacturing the same
US8729538B2 (en) Organic light emitting diode device and method for fabricating the same
US7863814B2 (en) Organic electroluminescent device comprising a stack partition structure
CN107665903B (en) Organic light emitting display device
US20100110048A1 (en) Dual panel type organic electroluminescent display device and method of fabricating the same
JP2008098148A (en) Organic light-emitting device
JP2009164107A (en) Organic el display
US8093804B2 (en) Organic electroluminescent display device having a novel concept for luminous efficiency
KR20100004221A (en) Top emission type organic electro-luminescence device
JP2008108482A (en) Organic el display device
JP2008098033A (en) Organic el display device
US10319943B2 (en) Display device
JP2009283242A (en) Organic el display device
JP2007265764A (en) Organic el element
JP2005108678A (en) Organic el light emitting device and its manufacturing method
JP4617749B2 (en) Manufacturing method of display device
KR102132443B1 (en) Organic electro-luminescent device and method of fabricating the same
KR102177169B1 (en) Method of fabricating flexible organic light emitting diode display device
JP2000091244A (en) Plasma processing device and semiconductor device manufactured by the same, and active matrix substrate constituted by the semiconductor device and liquid crystal display device using the active matrix substrate
JP2010244866A (en) Organic el display device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105