WO2012094886A1 - 原子吸收分光光度计 - Google Patents

原子吸收分光光度计 Download PDF

Info

Publication number
WO2012094886A1
WO2012094886A1 PCT/CN2011/077860 CN2011077860W WO2012094886A1 WO 2012094886 A1 WO2012094886 A1 WO 2012094886A1 CN 2011077860 W CN2011077860 W CN 2011077860W WO 2012094886 A1 WO2012094886 A1 WO 2012094886A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
atomizer
hydride
atomic absorption
graphite furnace
Prior art date
Application number
PCT/CN2011/077860
Other languages
English (en)
French (fr)
Inventor
徐培实
Original Assignee
沈阳华光精密仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳华光精密仪器有限公司 filed Critical 沈阳华光精密仪器有限公司
Priority to JP2013548719A priority Critical patent/JP5689982B2/ja
Publication of WO2012094886A1 publication Critical patent/WO2012094886A1/zh
Priority to US13/940,234 priority patent/US9304041B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners

Definitions

  • the present invention relates to an elemental analysis instrument, and more particularly to an atomic absorption spectrophotometer.
  • the atomic absorption spectrophotometer can measure a plurality of metal elements by a flame atomization method (content is ug/1), and in the detection work, trace elements are often detected (content is ng/l).
  • the measurement was carried out by a graphite furnace atomization method.
  • Some elements are difficult to directly and effectively measure by flame atomization and graphite atomization, such as mercury and trace elements such as arsenic and selenium. This requires the use of a hydride generation device on an atomic absorption spectrophotometer. This can be achieved by using it as needed during use.
  • the existing atomic absorption spectrophotometer has a single function and integrated graphite furnace atomizer, and it is difficult to directly measure the mercury and the arsenic and selenium which are difficult to directly measure by the two methods.
  • elements such as ruthenium
  • the control process is troublesome, takes a lot of time, the device is bulky, and takes up laboratory space; at the same time, the structure of the hydride generator device is complicated, and the pipelines are numerous. There are many interfaces and the failure rate is very high.
  • the hydride former device is susceptible to damage during atomization method switching, increasing equipment costs and affecting work efficiency.
  • the hydride atomization device and the hydride generation device need manual manual switching, and the hydride generating device has many pipelines, large volume, easy damage, and the like.
  • the technical problem to be solved by the present invention is to provide a multifunctional atomic absorption spectrophotometer capable of realizing automatic conversion control of a plurality of atomization devices and integration of a hydride generation device pipeline.
  • the technical solution adopted by the present invention is:
  • the atomic absorption spectrophotometer of the present invention has a combined light source, a detection device, a flame atomization device, a hydride generation device, and a graphite furnace atomization device, an axis of a flame atomizer in a flame atomization device, and hydrogenation in a hydride generation device
  • the axis of the atomizer and the axis of the graphite furnace atomizer in the graphite furnace atomization device are respectively coincident with the optical axis of the combined light source by an adjustment mechanism.
  • the adjustment mechanism comprises two independently arranged flame atomizers and a hydride atomizer adjustment mechanism and a graphite furnace atomizer adjustment mechanism, wherein the flame atomizer and the hydride atomizer adjustment mechanism have horizontal adjustment devices and lifting The adjusting device, the lifting adjusting device is horizontally movably mounted on the horizontal adjusting device, and the flame atomizer is integrally connected with the hydride atomizer, and is disposed horizontally in parallel at the upper end of the lifting adjusting device.
  • the graphite furnace atomizer adjustment mechanism adopts a third screw drive mechanism for horizontal adjustment, and the graphite furnace atomizer is mounted on the graphite furnace atomizer adjustment mechanism, the axis and the optical axis of the graphite furnace atomizer high.
  • a separator is disposed between the flame atomizer and the hydride atomizer adjustment mechanism and the graphite furnace atomizer adjustment mechanism, and the flame atomizer and the hydride atomizer adjustment mechanism and the optical axis of the combined light source are disposed in the separator
  • the graphite furnace atomizer adjustment mechanism is on the other side of the separator, and the partition is provided with an opening through which the graphite furnace atomizer can pass.
  • the hydride generating device has two or more bonded and sealed substrates, and the two substrates are provided with grooves, and the grooves are functionally partitioned and connected to form an integrated hydride generating device.
  • the functional partition includes partitions for respectively positioning a doser, a reactor, a liquid carrying pump, a sample pump, a reducing agent pump, and an auxiliary gas pump, wherein the doser and the reactor are disposed on the first substrate in a groove form, the first A sample inlet, a reducing agent inlet, a liquid carrying inlet, a working gas port, and a pinch valve interface are also disposed on a substrate; the carrier liquid pump, the sample pump, the reducing agent pump, and the auxiliary gas pump are provided in a groove form On the second substrate, a gas-liquid separator, a waste liquid outlet, and a hydride gas guide port are further disposed on the second substrate; the first substrate is fastened to the second substrate, and the groove on the two substrates passes through the corresponding via hole Connected to each other; a sealing cover is disposed on the first substrate.
  • the first to third buffer pools are further provided at the inlets of the liquid carrier pump, the sample pump, and the reducing agent pump.
  • the liquid carrier pump, the sample pump, the reducing agent pump and the auxiliary gas pump have the same structure, and each adopts a self-priming pump.
  • the sample pump inlet bypass is provided with a valve for purging the sample tube.
  • a valve for preventing residual interference of the previous injection is provided between the doser and the waste port.
  • the carrier liquid pump, the reducing agent pump and the auxiliary gas pump have the same structure, and each adopts a self-priming pump; the sample pump uses a syringe pump.
  • the invention has the following beneficial effects and advantages:
  • the invention integrates three atomizers, and can realize direct detection of trace elements, trace element detection and elements of mercury, arsenic and selenium by using an atomic absorption spectrophotometer. Quick and effective detection, easy to operate.
  • the present invention comprises a graphite furnace atomization device and a hydride generator device, and is organically integrated with an atomic absorption spectrophotometer.
  • a convenient and convenient integrated, graphite furnace atomizer And the hydride atomizer and the original flame atomizer of the spectrophotometer can be easily switched automatically, the operation is simple, and the atomizer is not damaged; the integrated hydride generator has stable performance, reliable quality, and can pass various The way to achieve.
  • FIG. 1 is a schematic structural view of a portion of a spectrophotometer atomizer of the present invention
  • FIG. 2 is a first substrate structural view of a hydride generator according to a first embodiment of the present invention
  • Figure 3 is a second substrate structural view of a hydride generator according to a first embodiment of the present invention.
  • FIG. 4 is a structural view of a substrate of a hydride generator according to a second embodiment of the present invention.
  • Figure 5 is a schematic diagram of a second embodiment of the present invention.
  • Figure 6 is a structural view of a substrate of a hydride generator according to a third embodiment of the present invention.
  • Figure 7 is a schematic diagram of a third embodiment of the present invention.
  • the atomic absorption spectrophotometer of the present invention comprises a graphite furnace atomization device and a hydride generator device, and is organically integrated with an atomic absorption spectrophotometer, a convenient integrated whole, an integrated graphite furnace atomizer 8 and a hydride atomizer 6
  • the spectrophotometer and the original flame atomizer 5 can be easily switched automatically, and the operation is simple.
  • the spectrophotometer of the present invention has a combined light source, a detecting device, a flame atomization device, a hydride generating device, and a graphite furnace atomization device, and between the light output end of the combined light source and the light receiving end of the analog detecting device.
  • the wiring is the optical axis, the axis of the flame atomizer 5 in the flame atomization device, the axis of the hydride atomizer 6 in the hydride generating device, and the graphite furnace atomizer 8 in the graphite furnace atomization device.
  • the axes coincide with the optical axis 7 of the combined light source by an adjustment mechanism.
  • the adjustment mechanism comprises two independently arranged flame atomizers and a hydride atomizer adjustment mechanism and a graphite furnace atomizer adjustment mechanism, wherein the flame atomizer and the hydride atomizer adjustment mechanism have a horizontal adjustment device and a lifting adjustment device
  • the lifting and lowering device is horizontally movably mounted on the horizontal adjusting device, and the flame atomizer 5 is integrally connected with the hydride atomizer 6, and is disposed horizontally in parallel at the upper end of the lifting and lowering device.
  • the lift adjusting device vertically adjusts the driving of the first lead screw 4 via the first motor 2, and the horizontal adjusting device adjusts the horizontal direction by the transmission mechanism of the second lead screw 3 of the second motor 1.
  • the graphite furnace atomizer adjustment mechanism drives the third lead screw 10 to perform horizontal adjustment by the third motor 9, and the graphite furnace atomizer 8 is mounted on the graphite furnace atomizer adjustment mechanism, and the axis of the graphite furnace atomizer 8 It is the same height as the optical axis.
  • a flame separator is provided between the flame atomizer and the hydride atomizer adjustment mechanism and the graphite furnace atomizer adjustment mechanism, and the flame atomizer and the hydride atomizer adjustment mechanism and the optical axis 7 of the combined light source are disposed in the separator
  • a graphite furnace atomizer adjustment mechanism is disposed on the other side of the partition plate 12, and the partition plate 12 is provided with an opening through which the graphite furnace atomizer 8 can pass; the opening is provided with a door on the door A carriage is arranged, and a graphite furnace atomizer 8 is provided with a guide wheel, and the guide wheel is in rolling contact with the carriage.
  • the hydride generating device has two substrates that are fastened and sealed, and the two substrates are provided with grooves, and the grooves are pressed Functional partitioning and connection to form an integrated hydride generation device.
  • the functional partition includes partitions for the doser 105, the reactor 104, the liquid carrier pump 108, the sample pump 114, the reducing agent pump 113, and the auxiliary gas pump 106, respectively, for arranging pipes, wherein the quantitative partitioning is performed.
  • the device 105 and the reactor 104 are disposed on the first substrate in a groove form, and the first substrate is further provided with a sample inlet 100, a reducing agent inlet 101, a liquid carrying inlet 102, and a auxiliary gas inlet. 103.
  • the working gas port 117 and the pinch valve interface; the carrier liquid pump 108, the sample pump 114, the reducing agent pump 113, and the auxiliary gas pump 106 are disposed on the second substrate in a groove form, and the second substrate is further provided with gas-liquid separation.
  • the first substrate is fastened to the second substrate, and the grooves on the two substrates are communicated through the corresponding via holes; the first substrate is provided with a sealing cover.
  • the first to third buffer pools 107, 109, and 115 are further provided at the inlet of the sample pump 114, the carrier liquid pump 108, and the reducing agent pump 113.
  • a polymer material PMMA is used as a substrate, and a functional region such as a pipe, a doser 105, a reactor 104, and the like required for hydride generation and a sample pump 114 and a reducing agent pump 113 are disposed on the substrate.
  • the pipe width is 1mm and the depth is 1.5mm. It is processed by a ball cutter with a radius of lmm.
  • the section of the pipe after processing is semicircular, which is conducive to the flow of liquid.
  • the pump area has a width of 11mm and a depth of llmm. The length can be determined according to the specific requirements of each pump.
  • the first to third buffer pools 107, 109, and 115 are added in front of the pump.
  • the first and second substrates are bonded, and then another polymer material plate is bonded and sealed to the upper portion of the first substrate.
  • the individual plates are connected by a circular via.
  • the interface and valve are then installed and finally connected to the control circuit to form a compact, small hydride generator.
  • the working process of the hydride generation device is as follows:
  • each reagent enters the corresponding buffer pool from the sample inlet 100, the reducing agent inlet 101 and the carrier liquid inlet 102 through the respective pipes, and then reacts through the reactor 104 to enter the gas and liquid.
  • the separator 110 performs separation, and the separated gas is introduced into a hydride atomizer for detection, and the waste liquid is discharged.
  • the entire structure is machined, which guarantees good consistency, simplifies the structure, reduces the number of pipe connections and eliminates the point of failure.
  • the difference from Embodiment 1 is that: the carrier liquid pump 208, the sample pump 214, the reducing agent pump 207, and the auxiliary air pump 206 have the same structure, and each adopts a self-priming pump; the doser 210 and the waste liquid A switch valve 217 is provided between the ports 216.
  • the valve 217 is opened, the blow valve 205 is closed, and the sample is sucked through the sample pump 214 through the doser.
  • the sample pump 214 is stopped, the switching valve 217 is closed, and the other pumps are started to operate.
  • the carrier fluid pump 208 draws the carrier liquid and pushes the sample of the quantizer 210 to the interface 212 where it mixes with the aspirated reductant 202 and the aspirated auxiliary gas 204 at the interface 212.
  • the mixed liquid is completely mixed by the reaction tube 209, it is separated in a separator 213, and the separated gas is led out from the hydride gas port 215 to a hydride atomizer for measurement.
  • the waste liquid after the reaction is discharged through the waste port 216.
  • the blow valve 205 may be opened, and the blown air may be introduced to blow out the residual sample.
  • the suction speed of the self-priming pump can be changed by the control circuit, and different injection reaction speeds can be set according to different measurement objects, thereby improving the detection performance.
  • the liquid carrier pump 302, the reducing agent pump 307 and the auxiliary air pump 306 have the same structure, and each adopts a self-priming pump; the sample pump 314 uses a syringe pump, and the sample pump 314 inlet port bypass has a first switch. Valve 305.
  • the absorption of the sample is achieved using a syringe pump.
  • the switching valve 305 is opened, the second switching Valve 317 is closed and the sample is aspirated and quantified by doser 310.
  • the first switching valve 305 is closed, the second switching valve 317 is opened, the carrier liquid is sucked up and the quantitative sample is pushed from the second switching valve 317 to the interface 312, mixed with the reducing agent and the air, and carried out in the reaction tube 309. reaction.
  • the reacted solution is separated in the gas-liquid separator 313, and the separated gas is led out from the hydride gas port 315 to the hydride atomizer for detection, and the waste liquid is discharged through the waste liquid port 316.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

原子吸收分光光度计 技术领域
本发明涉及一种元素分析仪器, 具体的说是一种原子吸收分光光度计。
背景技术
原子吸收分光光度计能用火焰原子化法对多种金属元素进行微量 (含量为 ug/1) 测 定, 而在检测工作中经常要对元素进行痕量检测 (含量为 ng/l), 要用到石墨炉原子化 法进行测定。 有些元素用火焰原子化法和石墨原子化法都很难进行直接有效的测定, 如 汞和痕量的砷、 硒等元素, 这就需要在原子吸收分光光度计上用到氢化物发生装置, 在 使用中根据需要进行配套使用而达到这一目的。现有的原子吸收分光光度计有单一功能 的和集成了石墨炉原子化器的,对于无法用这两种方法直接测定的汞和用这两种方法很 难直接进行痕量测定的砷、 硒、 锗等元素, 则还需要配备氢化物发生装置和氢化物原子 化器。 在使用过程中, 需要人工手动对两种装置进行切换和调整, 控制过程麻烦, 占用 大量的时间, 装置体积很大, 占用实验室空间; 同时氢化物发生器装置的结构复杂, 管 路繁多, 接口多, 故障率很高。 在进行原子化方法切换时氢化物原化器件很容易受到损 坏, 增加设备成本, 影响了工作效率。
发明内容
针对现有技术中存在的原子吸收分光光度计在使用中, 氢化物原子化装置和氢化物 发生装置需要人工手动切换, 同时氢化物发生装置的管路繁多、 体积大, 容易损坏等上 述不足之处,本发明要解决的技术问题是提供一种可实现多种原子化装置可以自动转换 控制、 氢化物发生装置管路集成化的多功能原子吸收分光光度计。
为解决上述技术问题, 本发明采用的技术方案是:
本发明原子吸收分光光度计具有组合光源、 检测装置、 火焰原子化装置、 氢化物发 生装置以及石墨炉原子化装置, 火焰原子化装置中的火焰原子化器的轴线、 氢化物发生 装置中的氢化物原子化器的轴线以及石墨炉原子化装置中的石墨炉原子化器的轴线通 过调整机构分别与组合光源的光轴重合。
所述调整机构包括两个独立设置的火焰原子化器与氢化物原子化器调机构和石墨 炉原子化器调整机构,其中火焰原子化器与氢化物原子化器调整机构具有水平调整装置 及升降调整装置, 升降调整装置以水平可移动方式安装于水平调整装置上, 火焰原子化 器与氢化物原子化器固连为一体, 在升降调整装置上端水平平行设置。
所述石墨炉原子化器调整机构采用第三丝杠传动机构进行水平方向的调整,石墨炉 原子化器安装于该石墨炉原子化器调整机构上, 石墨炉原子化器的轴线与光轴等高。
所述火焰原子化器与氢化物原子化器调整机构和石墨炉原子化器调整机构之间设 有隔板, 火焰原子化器与氢化物原子化器调整机构和组合光源的光轴在隔板的一侧, 石 墨炉原子化器调整机构在隔板的另一侧, 隔板上设有可使石墨炉原子化器通过的开口。
所述氢化物发生装置具有两个或多个扣合、 密封连接的基板, 两基板上设有凹槽, 凹槽按功能分区并进行连接, 形成集成化氢化物发生装置。
所述功能分区包括分别用于安置定量器、 反应器、 载液泵、 样品泵、 还原剂泵以及 辅气泵的分区, 其中定量器和反应器以凹槽形式设于第一基板上, 该第一基板上还设有 样品进样口、 还原剂进样口、 载液进样口、 工作气体接口以及夹管阀接口; 载液泵、 样 品泵、还原剂泵以及辅气泵以凹槽形式设于第二基板上,第二基板上还设有气液分离器、 废液出口以及氢化物导气口; 第一基板扣合于第二基板上, 两基板上的凹槽通过位置对 应的过孔相连通; 第一基板上设有密封盖板。
所述载液泵、 样品泵以及还原剂泵的入口处还设有第 1~3缓冲池。 所述载液泵、 样品泵、 还原剂泵以及辅气泵结构相同, 均采用自吸泵。
所述样品泵进样口旁路设有用于吹洗进样管的阀。
所述定量器与废液口之间设有用于防止前次进样残留干扰的阀。
所述载液泵、 还原剂泵以及辅气泵结构相同, 均采用自吸泵; 样品泵采用注射泵。 本发明具有以下有益效果及优点:
1. 本发明与现有技术相比, 集成了三种原子化器, 可以实现用一台原子吸收分光 光度计实行现对微量元素检测、 痕量元素检测以及汞、 砷、 硒等元素的直接快速有效检 测, 操作简单方便。
2. 实现自动转换控制、 管路集成化, 本发明包括了石墨炉原子化装置和氢化物发 生器装置, 与原子吸收分光光度计有机集成一个使用方便的整体, 集成的的石墨炉原子 化器和氢化物原子化器以及分光光度计原来的火焰原子化器可以方便的进行自动切换, 操作简单, 不会损坏原子化器; 集成的氢化物发生器性能稳定, 质量可靠, 并可以通过 多种方式来实现。
附图说明
图 1为本发明分光光度计原子化器部分结构示意图;
图 2为本发明第一个实施例的氢化物发生器的第一基板结构图;
图 3为本发明第一个实施例的氢化物发生器的第二基板结构图;
图 4为本发明第二个实施例的氢化物发生器的基板结构图;
图 5为本发明第二个实施例的原理图;
图 6为本发明第三个实施例的氢化物发生器的基板结构图;
图 7为本发明第三个实施例的原理图。
具体实施方式
本发明原子吸收分光光度计包括石墨炉原子化装置和氢化物发生器装置,与原子吸 收分光光度计有机集成一个使用方便的整体,集成的石墨炉原子化器 8和氢化物原子化 器 6以及分光光度计与原来的火焰原子化器 5可以方便的进行自动切换, 操作简单。
实施例 1
如图 1所示, 本发明分光光度计具有组合光源、 检测装置、 火焰原子化装置、 氢化 物发生装置以及石墨炉原子化装置,组合光源的光输出端与模拟检测装置的光接收端之 间的连线即为光轴, 火焰原子化装置中的火焰原子化器 5的轴线、 氢化物发生装置中的 氢化物原子化器 6的轴线以及石墨炉原子化装置中的石墨炉原子化器 8的轴线通过调整 机构分别与组合光源的光轴 7重合。
调整机构包括两个独立设置的火焰原子化器与氢化物原子化器调机构和石墨炉原 子化器调整机构,其中火焰原子化器与氢化物原子化器调整机构具有水平调整装置及升 降调整装置, 升降调整装置以水平可移动方式安装于水平调整装置上, 火焰原子化器 5 与氢化物原子化器 6固连为一体, 在升降调整装置上端水平平行设置。 升降调整装置通 过第一电机 2对第一丝杠 4驱动进行垂直方向的调整,水平调整装置通过第二电机 1第 二丝杠 3的传动机构进行水平方向的调整。石墨炉原子化器调整机构通过第 3电机 9驱 动第三丝杠 10进行水平方向的调整, 石墨炉原子化器 8安装于该石墨炉原子化器调整 机构上, 石墨炉原子化器 8的轴线与光轴等高。 火焰原子化器与氢化物原子化器调机构 和石墨炉原子化器调整机构之间设有隔板 12,火焰原子化器与氢化物原子化器调机构和 组合光源的光轴 7在隔板 12的一侧, 石墨炉原子化器调整机构在隔板 12的另一侧, 隔 板 12上设有可使石墨炉原子化器 8通过的开口; 所述开口处设有门, 该门上设有滑架, 石墨炉原子化器 8上设有导轮, 导轮与滑架滚动接触。
所述氢化物发生装置具有两个扣合、 密封连接的基板, 两基板上设有凹槽, 凹槽按 功能分区并进行连接, 形成集成化氢化物发生装置。
如图 2、 3所示, 所述功能分区包括分别用于安置管道形式的定量器 105、 反应器 104、 载液泵 108、 样品泵 114、 还原剂泵 113以及辅气泵 106的分区, 其中定量器 105 和反应器 104以凹槽形式设于第一基板上, 该第一基板上还设有样品进样口 100、 还原 剂进样口 101、 载液进样口 102、 辅气进样口 103、 工作气体接口 117以及夹管阀接口; 载液泵 108、 样品泵 114、 还原剂泵 113以及辅气泵 106以凹槽形式设于第二基板上, 第二基板上还设有气液分离器 110、 废液出口 111 以及氢化物导气口 116; 第一基板扣 合于第二基板上, 两基板上的凹槽通过位置对应的过孔相连通; 第一基板上设有密封盖 板。样品泵 114、载液泵 108以及还原剂泵 113的入口处还设有第 1~3缓冲池 107、 109、 115。
本实施例中, 利用高分子材料 PMMA作为基板, 在基板上加工出氢化物发生时所 需要的管道、 定量器 105、 反应器 104等功能区和用来安置样品泵 114、 还原剂泵 113、 载液泵 108和辅气泵 106的功能区域(泵区)。 其中管道宽度 1mm,深度 1.5mm, 采用半 径为 lmm的球刀进行加工, 加工后的管道截面下方为半圆, 有利于液体的流动。 泵区 的宽度为 11mm,深度 llmm。 长度可以根据各个泵的具体要求确定。 为了防止使用过程 中的各种试剂与泵接触, 在泵前面还增加了第 1~3缓冲池 107、 109、 115。 安装好各种 功能部件后,把第一、二基板粘接好,再用另一高分子材料板粘接密封于第一基板上部。 各个板之间利用圆形的过孔相连接。 然后安装接口和阀, 最后与控制电路相连接, 形成 一个结构紧凑、 体积小的氢化物发生装置。
氢化物发生装置工作过程如下:
在泵的作用下, 各试剂从样品进样口 100, 还原剂进样口 101和载液进样口 102经 各管道进入各对应的缓冲池中, 然后经反应器 104反应后, 进入气液分离器 110进行分 离, 分离后的气体导入氢化物原子化器进行检测, 废液排出。 整个结构通过机械加工的 方式来实现, 可能保证良好的一致性, 简化了结构, 减少了大量的管路接口, 消除了故 障点。
实施例 2
如图 4、 5所示, 与实施例 1的不同之处在于: 载液泵 208、 样品泵 214、 还原剂泵 207以及辅气泵 206结构相同, 均采用自吸泵; 定量器 210与废液口 216之间设有用于 切换阀 217。
取样时, 阀 217打开, 吹气阀 205关闭, 样品通过样品泵 214吸取, 经过定量器
210定量, 此时样品只能通过打开的切换阀 217出去, 而不能上升到接口部分, 这样就 能通过定量器 210来进行样品的定量, 并把前一次测试的残留去除掉。 取样完成后, 样 品泵 214停止工作, 切换阀 217关闭, 其他的泵开始工作。 载液泵 208吸取载液, 把定 量器 210的样品推动到接口 212处,与吸取的还原剂 202以及吸取的辅气 204—起在接 口 212处混合反应。混合的液体经反应管 209完全混合反应后,在分离器 213进行分离, 分离后的气体从氢化物导气口 215导出到氢化物原子化器中进行测量。反应后的废液通 过废液口 216排出。取样完成后,为了除去样品接口 201和样品泵 214之间的残存样品, 防止对下一次测量造成污染, 可以打开吹气阀 205, 引入吹气, 把残留的样品吹出。 自 吸泵的吸样速度可以通过控制电路来改变,可以根据不同的测定对像设定不同的进样反 应速度, 提高了检测的性能。
实施例 3
如图 6、 7所示, 载液泵 302、还原剂泵 307以及辅气泵 306结构相同, 均采用自吸 泵; 样品泵 314采用注射泵, 样品泵 314进样口旁路设有第一切换阀 305。
利用注射泵来实现样品的吸收。 样品泵 314取样时, 切换阀 305打开, 第二切换 阀 317关闭, 样品被吸取过来, 由定量器 310定量。 反应时, 第一切换阀 305关闭, 第 二切换阀 317打开, 载液吸取过来并把定量的样品从第二切换阀 317推到接口 312, 与 还原剂和空气进行混合, 在反应管 309进行反应。 反应后的溶液在气液分离器 313进行 分离, 分离后的气体由氢化物导气口 315导出到氢化物原子化器进行检测, 废液经废液 口 316排出。

Claims

权 利 要 求 书
1. 一种原子吸收分光光度计, 其特征在于: 具有组合光源、 检测装置、 火焰原子 化装置、氢化物发生装置以及石墨炉原子化装置,火焰原子化装置中的火焰原子化器(5) 的轴线、 氢化物发生装置中的氢化物原子化器 (6) 的轴线以及石墨炉原子化装置中的 石墨炉原子化器 (8) 的轴线通过调整机构分别与组合光源的光轴 (7) 重合。
2. 按权利要求 1所述的原子吸收分光光度计, 其特征在于: 所述调整机构包括两 个独立设置的火焰原子化器与氢化物原子化器调机构和石墨炉原子化器调整机构,其中 火焰原子化器与氢化物原子化器调整机构具有水平调整装置及升降调整装置,升降调整 装置以水平可移动方式安装于水平调整装置上, 火焰原子化器 (5) 与氢化物原子化器 (6) 固连为一体, 在升降调整装置上端水平平行设置。
3. 按权利要求 2所述的原子吸收分光光度计, 其特征在于: 所述石墨炉原子化器 调整机构采用第三丝杠传动机构进行水平方向的调整, 石墨炉原子化器 (8) 安装于该 石墨炉原子化器调整机构上, 石墨炉原子化器 (8) 的轴线与光轴等高。
4. 按权利要求 2所述的原子吸收分光光度计, 其特征在于: 所述火焰原子化器与 氢化物原子化器调整机构和石墨炉原子化器调整机构之间设有隔板,火焰原子化器与氢 化物原子化器调整机构和组合光源的光轴 (7 ) 在隔板的一侧, 石墨炉原子化器调整机 构在隔板的另一侧, 隔板上设有可使石墨炉原子化器通过的开口。
5. 按权利要求 1所述的原子吸收分光光度计, 其特征在于: 所述氢化物发生装置 具有两个或多个扣合、 密封连接的基板, 两基板上设有凹槽, 凹槽按功能分区并进行连 接, 形成集成化氢化物发生装置。
6. 按权利要求 5所述的原子吸收分光光度计, 其特征在于: 所述功能分区包括分 别用于安置定量器、 反应器、 载液泵、 样品泵、 还原剂泵以及辅气泵的分区, 其中定量 器和反应器以凹槽形式设于第一基板上, 该第一基板上还设有样品进样口、 还原剂进样 口、 载液进样口、 工作气体接口以及夹管阀接口; 载液泵、 样品泵、 还原剂泵以及辅气 泵以凹槽形式设于第二基板上, 第二基板上还设有气液分离器、 废液出口以及氢化物导 气口; 第一基板扣合于第二基板上, 两基板上的凹槽通过位置对应的过孔相连通; 第一 基板上设有密封盖板。
7. 按权利要求 6所述的原子吸收分光光度计, 其特征在于: 所述载液泵、 样品泵 以及还原剂泵的入口处还设有第 1~3缓冲池。
8. 按权利要求 6所述的原子吸收分光光度计, 其特征在于: 所述载液泵、 样品泵、 还原剂泵以及辅气泵结构相同, 均采用自吸泵。
9. 按权利要求 6所述的原子吸收分光光度计, 其特征在于: 所述样品泵进样口旁 路设有用于吹洗进样管的阀。
10. 按权利要求 6所述的原子吸收分光光度计, 其特征在于: 所述定量器与废液口 之间设有用于防止前次进样残留干扰的阀。
11. 按权利要求 6所述的原子吸收分光光度计, 其特征在于: 所述载液泵、 还原剂 泵以及辅气泵结构相同, 均采用自吸泵, 样品泵采用注射泵。
PCT/CN2011/077860 2011-01-12 2011-08-01 原子吸收分光光度计 WO2012094886A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013548719A JP5689982B2 (ja) 2011-01-12 2011-08-01 原子吸光光度計
US13/940,234 US9304041B2 (en) 2011-01-12 2013-07-11 Atomic absorption spectrometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110005907.3 2011-01-12
CN201110005907.3A CN102590104B (zh) 2011-01-12 2011-01-12 原子吸收分光光度计

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/940,234 Continuation-In-Part US9304041B2 (en) 2011-01-12 2013-07-11 Atomic absorption spectrometer

Publications (1)

Publication Number Publication Date
WO2012094886A1 true WO2012094886A1 (zh) 2012-07-19

Family

ID=46479046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077860 WO2012094886A1 (zh) 2011-01-12 2011-08-01 原子吸收分光光度计

Country Status (4)

Country Link
US (1) US9304041B2 (zh)
JP (1) JP5689982B2 (zh)
CN (1) CN102590104B (zh)
WO (1) WO2012094886A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592243A (zh) * 2013-11-15 2014-02-19 上海仪电分析仪器有限公司 原子化器位置自动校正装置
CN113189003B (zh) * 2021-04-20 2022-11-22 中国大唐集团科学技术研究院有限公司中南电力试验研究院 原子吸收光谱仪光路与燃烧头缝隙准直测量器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056288A (ja) * 1999-08-20 2001-02-27 Shimadzu Corp フレームレス原子吸光分光光度計
US20040184034A1 (en) * 2003-01-30 2004-09-23 Hitachi Naka Instruments Co., Ltd. Atomic absorption spectrophotometer
CN2708302Y (zh) * 2004-02-12 2005-07-06 北京天方辰星科技有限公司 双灯双原子化器一体化原子吸收光谱仪
CN2909245Y (zh) * 2006-06-14 2007-06-06 徐培实 多功能原子吸收光谱仪
CN101097186A (zh) * 2006-06-30 2008-01-02 徐培实 板式氢化物发生器及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2950105C2 (de) * 1979-12-13 1982-05-19 Bodenseewerk Perkin-Elmer & Co GmbH, 7770 Überlingen Atomabsorptionsspektrometer mit verschiedenen, wahlweise einsetzbaren Atomisierungsvorrichtungen
JPS60102542A (ja) * 1983-11-09 1985-06-06 Hitachi Ltd 還元気化性元素の分析装置
JPS63145947A (ja) * 1986-12-09 1988-06-18 Shimadzu Corp 原子吸光分析装置
JPH04274736A (ja) * 1991-02-28 1992-09-30 Shimadzu Corp 原子吸光分光光度計
JPH05306996A (ja) * 1992-04-30 1993-11-19 Shimadzu Corp 原子吸光分光光度計
JPH0989763A (ja) * 1995-09-20 1997-04-04 Hitachi Ltd 原子吸光分光光度計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056288A (ja) * 1999-08-20 2001-02-27 Shimadzu Corp フレームレス原子吸光分光光度計
US20040184034A1 (en) * 2003-01-30 2004-09-23 Hitachi Naka Instruments Co., Ltd. Atomic absorption spectrophotometer
CN2708302Y (zh) * 2004-02-12 2005-07-06 北京天方辰星科技有限公司 双灯双原子化器一体化原子吸收光谱仪
CN2909245Y (zh) * 2006-06-14 2007-06-06 徐培实 多功能原子吸收光谱仪
CN101097186A (zh) * 2006-06-30 2008-01-02 徐培实 板式氢化物发生器及其制造方法

Also Published As

Publication number Publication date
US20130301045A1 (en) 2013-11-14
US9304041B2 (en) 2016-04-05
CN102590104B (zh) 2014-03-26
JP5689982B2 (ja) 2015-03-25
JP2014505872A (ja) 2014-03-06
CN102590104A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2019174524A1 (zh) 一种核酸提取系统
CN109675649A (zh) 一种液体转移设备
CN105699150A (zh) 用于便携变压器油光声光谱检测装置的真空超声脱气装置
WO2012094886A1 (zh) 原子吸收分光光度计
CN202837170U (zh) 一种用于与原子荧光联用的元素形态分析流路系统
CN103954785A (zh) 一种蛋白印迹分析仪的液体系统
CN109444099B (zh) 氢化反应一体装置
WO2024093480A1 (zh) 一种采集器、细胞分选设备及细胞采集方法
CN104297023A (zh) 细胞分析仪及其混匀装置及混匀方法
CN203216848U (zh) 一种原子荧光光谱仪进样装置
CN202033291U (zh) 能够实现恒压恒流蒸气发生反应的液体驱动进样装置
CN114705878A (zh) 一种多参数全自动尿液和唾液前处理及检测一体化仪器
CN202110138U (zh) 固体进样与原子荧光联用装置
CN202974872U (zh) 一种蒸气发生及气液分离系统
CN217450211U (zh) 一种液滴生成装置
CN202562846U (zh) 用于原子荧光光谱仪的气动流动进样装置
CN205538399U (zh) 用于便携变压器油光声光谱检测装置的真空超声脱气装置
CN103604936A (zh) 一种微流控芯片自动控制分析检测仪
CN203881786U (zh) 液体进样系统
CN202994806U (zh) 微流控芯片多样品顺序加载装置
CN116875425B (zh) 核酸提取纯化设备、试剂联、核酸提取纯化系统和方法
CN221156350U (zh) 一种纳米药物颗粒包封装置
CN116893083B (zh) 空气中纳米颗粒浓度检测装置
CN219518892U (zh) 一种微流控辅助仓及微流控控制装置
CN117384750A (zh) 一种全集成数字化核酸分析卡盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.09.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11855856

Country of ref document: EP

Kind code of ref document: A1