WO2012094871A1 - 油气两用车燃料转换的同步控制方法 - Google Patents

油气两用车燃料转换的同步控制方法 Download PDF

Info

Publication number
WO2012094871A1
WO2012094871A1 PCT/CN2011/075945 CN2011075945W WO2012094871A1 WO 2012094871 A1 WO2012094871 A1 WO 2012094871A1 CN 2011075945 W CN2011075945 W CN 2011075945W WO 2012094871 A1 WO2012094871 A1 WO 2012094871A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
time
cylinder
jet
switching
Prior art date
Application number
PCT/CN2011/075945
Other languages
English (en)
French (fr)
Inventor
罗永国
Original Assignee
重庆力帆电喷软件有限公司
力帆实业(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆力帆电喷软件有限公司, 力帆实业(集团)股份有限公司 filed Critical 重庆力帆电喷软件有限公司
Priority to IL219917A priority Critical patent/IL219917A/en
Publication of WO2012094871A1 publication Critical patent/WO2012094871A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0628Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position
    • F02D19/0631Determining the fuel pressure, temperature or flow, the fuel tank fill level or a valve position by estimation, i.e. without using direct measurements of a corresponding sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to an automobile jet control method, in particular to a synchronous control method for a CNG (Compressed Natural Gas) air nozzle.
  • CNG Compressed Natural Gas
  • the injection drive signal of the EFI ECU is input to the electronic relay of the CNG controller, and the CNG controller controls the injection or jet.
  • the electronic relay inside the CNG controller directly sends the 1 to 4 cylinder injection drive signal from the EFI ECU controller to 1 to 4 cylinders.
  • the injector is directly turned on, and the 1 to 4 cylinder injectors are injected.
  • the 1 to 4 cylinder fuel injection signals from the EFI controller are disconnected from the 1 to 4 cylinder injectors by the internal electronic relay of the CNG controller, and the EFI ECU controller and CNG
  • the MCU inside the controller is connected, and the CNG air nozzle is driven by the synchronous calculation of the MCU to make the air nozzle jet.
  • An object of the present invention is to provide a synchronous control method for fuel conversion of an oil and gas vehicle, which can make the engine run smoothly when the vehicle is switched from the oil mode to the gas mode or the gas mode to the oil mode. , in turn, can prevent the engine from stalling.
  • the present invention provides a synchronous control method for fuel conversion of an oil and gas vehicle, comprising the following steps:
  • the CNG controller determines whether the switching condition is met, and if it is not satisfied, continues to judge Broken
  • the CNG controller sequentially switches the fuel in the order of 1 rainbow, 3 rainbow, 4 cylinders, and 2 cylinders, first switching the fuel of 1 cylinder for XI cycles, and then switching the 3 cylinder fuel. After switching 3 cylinders of fuel for X3 cycles, switching 4 cylinders of fuel, after switching 4 cylinders of fuel X4 cycles, finally switching 2 cylinders of fuel, wherein XI, X3, X4 are calibratable coefficients;
  • the method adopts a sequential switching mode to ensure stable engine operation and prevent the engine from stalling.
  • XI has a value of 4
  • X3 has a value of 2
  • X4 has a value of 1.
  • the step of switching the engine 1 cylinder from the fuel injection mode to the jet mode is:
  • the MCU of the CNG controller detects the 1-cylinder fuel injection drive signal
  • the MCU of the CNG controller determines whether the 1-cylinder injection drive signal changes from a high level to a low level, and if not, continues to judge;
  • the CNG controller system ECU measures the minimum time T1 of the one-cylinder injection drive signal, and simultaneously calculates the correction coefficient C1 of the gas relative to the fuel, and judges At the end of the T1 time, whether the 1-cylinder injection drive signal is still low, if not, return to step (32);
  • the MCU of the CNG controller detects whether the 1-cylinder injection drive signal changes from low level to high level, and if not, continues to detect;
  • the engine 1 cylinder is switched from the fuel injection mode to the jet mode, and the jet drive signal and the fuel injection drive signal can be synchronized well, thereby improving the driving performance of the vehicle and improving the emission performance of the vehicle.
  • the system cuts off the jet when the minimum time T1 is smaller than the minimum opening time Ts of the air nozzle.
  • the system when the jetting time T4 exceeds the maximum time Tlong allowed by the air nozzle, the system automatically cuts off the jet to prevent the mixture from being excessively rich.
  • the invention can realize the synchronous switching of the fuel supply mode, and the engine can be operated smoothly when the vehicle is switched from the oil mode to the gas mode or the gas mode to the oil mode, thereby preventing the engine from being extinguished and improving.
  • the performance and comfort of the car can realize the synchronous switching of the fuel supply mode, and the engine can be operated smoothly when the vehicle is switched from the oil mode to the gas mode or the gas mode to the oil mode, thereby preventing the engine from being extinguished and improving. The performance and comfort of the car.
  • Figure 1 is a schematic diagram of the injection-jet connection relationship of a separate CNG control system
  • FIG. 2 is a flow chart of a method for synchronously controlling fuel conversion of an oil and gas vehicle according to the present invention
  • FIG. 3 is a flow chart showing steps of switching from a fuel injection mode to a jet mode of an engine 1 cylinder
  • FIG. 4 is an engine 1 cylinder from a fuel injection mode to a jet mode. Synchronous timing diagram of jet drive and fuel injection drive during switching.
  • control method includes the following steps:
  • the CNG controller determines whether the switching condition is satisfied, and if not, continues to judge; wherein, the switching condition is that the CNG controller receives the request signal for the vehicle to use the gas, and The engine water temperature, engine speed, gas temperature, cylinder pressure reach the set value, and there is no fault inside the CNG controller.
  • the preferred switching condition is that the request signal of the vehicle using the gas received by the CNG controller is low effective, the engine water temperature is > 40 degrees, the engine speed is > 1200 rpm, the gas temperature is > 10 degrees, and the cylinder pressure is > 1.5. Bar, and the CNG controller is internally fault free;
  • Fig. 3 shows the flow of the step of switching the engine 1 cylinder from the fuel injection mode to the jet mode.
  • the steps of switching the engine 1 cylinder from the fuel injection mode to the jet mode are as follows:
  • the MCU of the CNG controller detects the 1-cylinder fuel injection drive signal
  • the MCU of the CNG controller determines whether the 1-cylinder injection drive signal changes from a high level to a low level, and if not, continues to judge;
  • the CNG controller system ECU measures the minimum time T1 of the one-cylinder injection drive signal, and simultaneously calculates the correction coefficient C1 of the gas relative to the fuel, and judges At the end of the T1 time, whether the 1-cylinder injection drive signal is still low, if not, return to step (32);
  • the MCU of the CNG controller detects whether the 1-cylinder injection drive signal changes from low level to high level, and if not, continues to detect;
  • the minimum time T1 of the one-cylinder injection drive signal, the correction coefficient C1 of the gas relative to the fuel, the time T2, the minimum opening time Ts of the air nozzle, and the maximum time Tlong of the air nozzle permit are all interpolated.
  • the specific functional relationship is:
  • the minimum time of the 1 cylinder injection drive signal Tl F2Bl (VOL), which is a two-dimensional function of the battery voltage VOL, which varies with the battery voltage VOL.
  • Correction coefficient of gas relative to fuel CI F3C (RUN, MAP) F2C (Tgas) F2C (MapDelt) F2C (MAPr) F2C (VALC) , where F3C (RUN, MAP) is engine speed RUN and engine intake pressure MAP
  • F2C (Tgas) is a two-dimensional function of the gas temperature Tgas
  • F2C (MapDelt) is a two-dimensional function of the engine intake pressure change amount MapDelt
  • F2C (VALC) is the two-dimensional engine intake manifold vacuum VALC function.
  • the delay time T2 starts from the T1 end time and the 1 jet drive signal is turned on.
  • the time T2 F3RP (RUN, MAP), which is the engine speed RUN.
  • MAP engine speed
  • MAP three-dimensional function of engine intake pressure MAP, which varies with engine speed RUN and engine intake pressure MAP.
  • the injection driving time of 1 cylinder is the time when the 1 cylinder injection signal measured by the MCU software of the CNG controller is low level.
  • Ts F2C21 (VOL) is a two-dimensional function of the battery voltage VOL, which varies as the battery voltage VOL changes.
  • Tlong F3MAX (RUN, MAP), which is a three-dimensional function of engine speed RUN and engine intake pressure MAP, which varies with engine speed RUN and engine intake pressure MAP.
  • Figure 4 is a timing chart showing the synchronization of the jet drive and the injection drive when the engine 1 cylinder is switched from the injection mode to the jet mode.
  • the MCU of the CNG controller detects that the 1-cylinder injection drive signal becomes At the low moment, that is, point A in Fig. 4
  • the CNG controller system ECU starts measuring the minimum time T1 of the one-cylinder injection driving signal, and the system calculates the correction coefficient Cl of the gas relative to the fuel. If the 1-cylinder injection drive signal is still low after the minimum time T1 is exceeded, then from the end of the minimum time T1, point B in Figure 4, delay time T2 turns on the jet of 1 cylinder
  • the drive signal that is, point C in Fig. 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

油气两用车燃料转换的同步控制方法 本申请要求于 2011 年 01 月 14 日提交中国专利局、 申请号为 201110007223.7、 发明名称为"油气两用车燃料转换的同步控制方法"的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种汽车喷气控制方法, 具体而言是涉及一种汽车 CNG ( Compressed Natural Gas , 压缩天然气 )喷气嘴的同步控制方法。
背景技术
在分离式 CNG控制系统中,如图 1所示,电喷 ECU( Electronic Control
Unit, 电子控制单元 ) 与 CNG控制系统完全独立, 电喷 ECU的喷油驱动 信号输入到 CNG控制器的电子继电器, 再由 CNG控制器来控制喷油或者 喷气。
利用这种分离式 CNG控制系统进行控制时, 当车辆在用油模式时, CNG控制器内部的电子继电器直接将电喷 ECU控制器发出的 1至 4缸的 喷油驱动信号与 1至 4缸的喷油器直接导通, 1至 4缸喷油器喷油。 当车 辆在用气模式时, 电喷 ECU控制器发出的 1至 4缸喷油信号通过 CNG控 制器内部的电子继电器与 1至 4缸的喷油器断开, 而电喷 ECU控制器与 CNG控制器内部的 MCU相连接,通过 MCU的同步计算来驱动 CNG喷气 嘴, 使喷气嘴喷气。 这种由用油模式直接向用气模式切换或由用气模式直 接向用油模式切换的方式,容易使发动机运转失稳,容易导致发动机熄火。 发明内容
本发明的目的是提供一种油气两用车燃料转换的同步控制方法, 这种 方法在车辆由用油模式向用气模式切换或由用气模式向用油模式切换时, 能够使发动机运转平稳, 进而能够很好地防止发动机熄火。
为实现本发明的目的, 本发明提供了一种油气两用车燃料转换的同步 控制方法, 包括如下步骤:
( 1 )车辆启动, 电喷系统开始工作;
( 2 ) CNG控制器判断是否满足切换条件, 如果不满足, 继续进行判 断;
( 3 )如果满足切换条件, 则 CNG控制器将发动机按照 1虹、 3虹、 4 缸、 2缸的顺序依次进行燃料切换, 先切换 1缸的燃料 XI个循环后, 再切 换 3缸燃料, 在切换 3缸燃料 X3个循环后, 再切换 4缸燃料, 在切换 4 缸燃料 X4个循环后, 最后才切换 2缸的燃料, 其中, XI、 X3、 X4为可 标定系数;
( 4 )结束。
该方法在车辆由用油模式向用气模式切换或由用气模式向用油模式切 换时, 采用依次切换的方式, 能够保证发动机运转平稳, 很好地防止发动 机熄火。
在根据本发明的一种优选实施方式中, XI取值为 4, X3取值为 2, X4取值为 1。
在根据本发明的一种优选实施方式中, 发动机 1缸由喷油模式向喷气 模式切换的步骤是:
( 31 ) CNG控制器的 MCU检测 1缸喷油驱动信号;
( 32 )CNG控制器的 MCU判断 1缸喷油驱动信号是否由高电平变为 低电平, 如果否, 继续进判断;
( 33 )如果喷油驱动信号由高电平变为低电平, 则 CNG控制器系统 ECU测量 1缸喷油驱动信号的最小值时间 T1 , 同时计算燃气相对于燃油 的修正系数 C1 , 并且判断在 T1时间结束时, 1缸喷油驱动信号是否还为 低, 如果否, 返回第 (32 ) 步;
( 34 )如果在最小值时间 T1时间结束时, 1缸喷油驱动信号还为低, 则从 T1结束时刻开始延时时间 T2开启 1缸的喷气驱动信号, 所述喷气驱 动信号是低电平有效;
( 35 ) CNG控制器的 MCU检测 1缸喷油驱动信号是否由低电平变为 高电平, 如果否, 继续进行检测;
( 36 )如果喷油驱动信号由低电平变为高电平, CNG控制器系统 ECU 测量 1虹的喷油驱动时间 TO, 计算总的喷气时间 T3 , 并测量出 1虹已喷 气时间 T4, 则剩余的 1虹喷气时间 T5=T3-T4; ( 37 ) 当 T5时间到时则关闭 1缸喷气;
( 38 )结束。
使用这种方法使发动机 1缸由喷油模式向喷气模式切换, 能够很好地 实现喷气驱动信号与喷油驱动信号的同步, 从而提高车辆的驾驶性能, 改 善车辆的排放性能。
在根据本发明的上述优选实施方式中, 总的喷气时间 Τ3 的计算公式 是 T3=T0 x Cl。
在根据本发明的上述优选实施方式中, 当最小值时间 T1 小于喷气嘴 的最小开启时间 Ts时, 系统切断喷气。
在根据本发明的上述优选实施方式中, 当已喷气时间 T4超过喷气嘴 许可的最大时间 Tlong时, 系统自动切断喷气以防止混合气过浓。
本发明具有的有益效果:
本发明能够实现燃料供应模式的同步切换, 使车辆由用油模式向用气 模式切换或由用气模式向用油模式切换时, 发动机都能够运转平稳, 进而 能够很好的防止发动机熄火, 提高了汽车的性能和舒适性。
附图说明
图 1是分离式 CNG控制系统喷油喷气连接关系示意图;
图 2是本发明油气两用车燃料转换同步控制方法的流程图; 图 3是发动机 1缸由喷油模式向喷气模式切换的步骤流程图; 图 4是发动机 1缸由喷油模式向喷气模式切换时喷气驱动与喷油驱动 的同步时序示意图。
具体实施方式
为使本发明的目的、 技术方案、 及优点更加清楚明白, 以下参照附图 对本发明进一步详细说明。
图 2是油气两用车燃料转换同步控制方法的流程图; 从图中可见, 该 控制方法包括如下步骤:
( 1 )车辆启动, 电喷系统开始工作;
( 2 ) CNG控制器判断是否满足切换条件, 如果不满足, 继续进行判 断; 其中, 切换条件是 CNG控制器接收到车辆使用燃气的请求信号, 并 且发动机水温、 发动机转速、 燃气温度、 气瓶压力达到设定值, 以及 CNG 控制器内部无故障。 在本实施方始中, 优选的切换条件是, CNG控制器接 收到的车辆使用燃气的请求信号低有效, 发动机水温 > 40度、 发动机转速 > 1200转、 燃气温度> 10度、 气瓶压力> 1.5 bar, 以及 CNG控制器内部无 故障;
( 3 )如果满足切换条件, 则 CNG控制器将发动机按照 1虹、 3虹、 4 缸、 2缸的顺序依次进行燃料切换, 先切换 1缸的燃料 XI个循环后, 再切 换 3缸燃料, 在切换 3缸燃料 X3个循环后, 再切换 4缸燃料, 在切换 4 缸燃料 X4个循环后, 最后才切换 2缸的燃料, 其中, XI、 X3、 X4为可 标定系数, 在本实施方式中, Xl=4, X3=2, X4=l ;
( 4 )结束。
图 3示出了发动机 1缸由喷油模式向喷气模式切换的步骤流程, 如图 所示, 发动机 1缸由喷油模式向喷气模式切换的步骤是:
( 31 ) CNG控制器的 MCU检测 1缸喷油驱动信号;
( 32 )CNG控制器的 MCU判断 1缸喷油驱动信号是否由高电平变为 低电平, 如果否, 继续进判断;
( 33 )如果喷油驱动信号由高电平变为低电平, 则 CNG控制器系统 ECU测量 1缸喷油驱动信号的最小值时间 T1 , 同时计算燃气相对于燃油 的修正系数 C1 , 并且判断在 T1时间结束时, 1缸喷油驱动信号是否还为 低, 如果否, 返回第 (32 ) 步;
( 34 )如果在最小值时间 T1时间结束时, 1缸喷油驱动信号还为低, 则从 T1结束时刻开始延时时间 T2开启 1缸的喷气驱动信号, 所述喷气驱 动信号是低电平有效;
( 35 ) CNG控制器的 MCU检测 1缸喷油驱动信号是否由低电平变为 高电平, 如果否, 继续进行检测;
( 36 )如果喷油驱动信号由低电平变为高电平, CNG控制器系统 ECU 测量 1虹的喷油驱动时间 TO, 计算总的喷气时间 T3 , 并测量出 1虹已喷 气时间 T4, 则剩余的 1虹喷气时间 T5=T3-T4;
( 37 ) 当 Τ5时间到时则关闭 1缸喷气; ( 38 )结束。
在本实施方式中, 1缸喷油驱动信号的最小值时间 Tl、 燃气相对于燃 油的修正系数 Cl、 时间 T2、 喷气嘴的最小开启时间 Ts和喷气嘴许可的最 大时间 Tlong均是通过插值运算得到。 具体的函数关系为: 1缸喷油驱动 信号的最小值时间 Tl=F2Bl(VOL), 其是电瓶电压 VOL的二维函数, 随电 瓶电压 VOL变化而变化。燃气相对于燃油的修正系数 CI =F3C(RUN, MAP) F2C(Tgas) F2C(MapDelt) F2C(MAPr) F2C(VALC) , 其中 , F3C(RUN, MAP)是发动机转速 RUN和发动机进气压力 MAP的三维函数, F2C(Tgas)是燃气温度 Tgas 的二维函数, F2C(MapDelt)是发动机进气压力 变化量 MapDelt的二维函数, F2C(VALC)是发动机进气歧管真空度 VALC 的二维函数。
如果在 T1时间结束时, 1缸喷油驱动信号还为低, 则从 T1结束时刻 开始延时时间 T2开启 1虹的喷气驱动信号, 时间 T2 =F3RP(RUN, MAP), 其是发动机转速 RUN和发动机进气压力 MAP的三维函数, 它随发动机的 转速 RUN和发动机的进气压力 MAP变化而变化。 1缸的喷油驱动时间 TO 是 CNG控制器的 MCU软件测量出的 1缸喷油信号低电平的时间, 总的 喷气时间 T3的计算公式是 T3=T0 x Cl。当最小值时间 T1小于喷气嘴的最 小开启时间 Ts时, 系统取消喷气。 当已喷气时间 T4超过喷气嘴许可的最 大时间 Tlong时, 系统自动切断喷气以防止混合气过浓。 在本实施方式中, Ts=F2C21(VOL) ,是电瓶电压 VOL的二维函数, 随电瓶电压 VOL变化而 变化。 Tlong=F3MAX(RUN, MAP), 是发动机转速 RUN和发动机进气压 力 MAP的三维函数, 随发动机转速 RUN和发动机的进气压力 MAP变化 而变化。
图 4示出了发动机 1缸由喷油模式向喷气模式切换时喷气驱动与喷油 驱动的同步时序图, 如图中所示, 当 CNG控制器的 MCU检测到 1缸喷油 驱动信号变为低的时刻, 即图 4中 A点, CNG控制器系统 ECU开始测 量 1缸喷油驱动信号的最小值时间 T1 , 同时系统计算燃气相对于燃油的修 正系数 Cl。 如果在超过最小值时间 T1后, 1缸喷油驱动信号还为低, 则 从最小值时间 T1结束开始, 图 4中的 B点, 延时时间 T2开启 1缸的喷气 驱动信号, 即图 4中的 C点。 当 1缸喷油驱动信号变为高时, 即图 4中的 D 点, 系统测量出 1 虹的喷油驱动时间为 TO , 则计算出总的喷气时间 T3=T0*C1 ,测量出 1虹已喷气时间 T4,则剩余的 1虹喷气时间 T5=T3-T4, 当 Τ5时间到时则关闭 1缸喷气, 喷气驱动信号变为高电平。
在本实施方式中,只描述了 1缸由喷油模式向喷气模式切换时的方法, 其余 2缸、 3缸、 4缸可以按照相同的方法进行切换。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质 变形, 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范 围。

Claims

权 利 要 求
1、 一种油气两用车燃料转换的同步控制方法, 其特征在于, 包括如下 步骤:
( 1 )车辆启动, 电喷系统开始工作;
( 2 ) CNG控制器判断是否满足切换条件, 如果不满足, 继续进行判 断;
( 3 )如果满足切换条件, 则 CNG控制器将发动机按照 1虹、 3虹、 4 缸、 2缸的顺序依次进行燃料切换, 先切换 1缸的燃料 XI个循环后, 再切 换 3缸燃料, 在切换 3缸燃料 X3个循环后, 再切换 4缸燃料, 在切换 4 缸燃料 X4个循环后, 最后才切换 2缸的燃料, 其中, XI、 X3、 X4为可 标定系数;
( 4 )结束。
2、如权利要求 1所述的油气两用车燃料转换的同步控制方法,其特征 在于, XI取值为 4, X3取值为 2, X4取值为 1。
3、如权利要求 1所述的油气两用车燃料转换的同步控制方法,其特征 在于, 发动机 1缸由喷油模式向喷气模式切换的步骤是:
( 31 ) CNG控制器的 MCU检测 1缸喷油驱动信号;
( 32 )CNG控制器的 MCU判断 1缸喷油驱动信号是否由高电平变为 低电平, 如果否, 继续进判断;
( 33 )如果喷油驱动信号由高电平变为低电平, 则 CNG控制器系统
ECU测量 1缸喷油驱动信号的最小值时间 T1 , 同时计算燃气相对于燃油 的修正系数 C1 , 并且判断在 T1时间结束时, 1缸喷油驱动信号是否还为 低, 如果否, 返回第 (32 ) 步;
( 34 )如果在最小值时间 T1时间结束时, 1缸喷油驱动信号还为低, 则从 T1结束时刻开始延时时间 T2开启 1缸的喷气驱动信号, 所述喷气驱 动信号是低电平有效;
( 35 ) CNG控制器的 MCU检测 1缸喷油驱动信号是否由低电平变为 高电平, 如果否, 继续进行检测;
( 36 )如果喷油驱动信号由低电平变为高电平, CNG控制器系统 ECU 测量 1虹的喷油驱动时间 TO, 计算总的喷气时间 T3 , 并测量出 1虹已喷 气时间 T4, 则剩余的 1虹喷气时间 T5=T3-T4;
( 37 ) 当 Τ5时间到时则关闭 1缸喷气;
( 38 )结束。
4、如权利要求 2所述的油气两用车燃料转换的同步控制方法,其特征 在于, 所述总的喷气时间 Τ3的计算公式是 T3=T0 x Cl。
5、如权利要求 2所述的油气两用车燃料转换的同步控制方法,其特征 在于, 当最小值时间 T1小于喷气嘴的最小开启时间 Ts时, 系统取消喷气。
6、如权利要求 2所述的油气两用车燃料转换的同步控制方法,其特征 在于, 当已喷气时间 T4超过喷气嘴许可的最大时间 Tlong时, 系统自动切 断喷气以防止混合气过浓。
PCT/CN2011/075945 2011-01-14 2011-06-20 油气两用车燃料转换的同步控制方法 WO2012094871A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IL219917A IL219917A (en) 2011-01-14 2012-05-21 A synchronized control method for replacing fuel with petrol-gas two-wheeled cars

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100072237A CN102108905B (zh) 2011-01-14 2011-01-14 油气两用车燃料转换的同步控制方法
CN201110007223.7 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012094871A1 true WO2012094871A1 (zh) 2012-07-19

Family

ID=44173172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075945 WO2012094871A1 (zh) 2011-01-14 2011-06-20 油气两用车燃料转换的同步控制方法

Country Status (5)

Country Link
CN (1) CN102108905B (zh)
IL (1) IL219917A (zh)
PE (1) PE20130467A1 (zh)
TR (1) TR201205305T1 (zh)
WO (1) WO2012094871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027138A1 (en) * 2012-08-17 2014-02-20 Wärtsilä Finland Oy Method of operating a multi-cylinder internal combustion piston engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102913335B (zh) * 2012-10-26 2015-03-25 中国北车集团大连机车车辆有限公司 大功率柴油机天然气电喷控制方法及装置
CN103291468A (zh) * 2013-05-23 2013-09-11 浙江吉利汽车研究院有限公司杭州分公司 一种双燃料汽车燃料切换控制方法
CN105888857A (zh) * 2016-06-22 2016-08-24 奇瑞汽车股份有限公司 一种汽油和cng双燃料车辆的燃料切换控制方法
CN109630291A (zh) * 2018-11-02 2019-04-16 浙江吉利新能源商用车有限公司 双燃料发动机燃料切换方法、装置及电子设备
CN111648869A (zh) * 2020-06-22 2020-09-11 东风商用车有限公司 一种纯甲醇发动机在启动时油醇切换的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270695A (zh) * 2007-03-22 2008-09-24 铃木株式会社 双燃料车的燃料供给控制装置
US20090024301A1 (en) * 2007-07-20 2009-01-22 Orlando Volpato Method and apparatus for synchronous switching of fuel injection control signals
CN101503979A (zh) * 2009-03-13 2009-08-12 东风汽车公司 汽油醇类灵活燃料发动机控制方法和装置
KR20100091422A (ko) * 2009-02-10 2010-08-19 콘티넨탈 오토모티브 시스템 주식회사 압축 천연가스-가솔린 겸용 차량의 연료 전환 시스템 및 그방법
JP2010196666A (ja) * 2009-02-27 2010-09-09 Honda Motor Co Ltd 内燃機関の制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202601A (en) * 1962-02-09 1965-08-24 Aquatron Engineering Corp Water conditioning apparatus
IT1296633B1 (it) * 1997-12-12 1999-07-14 Fiat Ricerche Sistema e procedimento di alimentazione per un motore a combustione interna atto ad operare selettivamente con benzina e con gas
CN2441984Y (zh) * 2000-07-17 2001-08-08 苏贵斌 双燃料汽车电子喷射供气及控制装置
CN101024406A (zh) * 2006-02-23 2007-08-29 罗达莱克斯阀门(上海)有限公司 用于摩托车或助动车的燃料切换装置及切换方法
CN201671715U (zh) * 2010-06-08 2010-12-15 刘联合 油气自动转换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101270695A (zh) * 2007-03-22 2008-09-24 铃木株式会社 双燃料车的燃料供给控制装置
US20090024301A1 (en) * 2007-07-20 2009-01-22 Orlando Volpato Method and apparatus for synchronous switching of fuel injection control signals
KR20100091422A (ko) * 2009-02-10 2010-08-19 콘티넨탈 오토모티브 시스템 주식회사 압축 천연가스-가솔린 겸용 차량의 연료 전환 시스템 및 그방법
JP2010196666A (ja) * 2009-02-27 2010-09-09 Honda Motor Co Ltd 内燃機関の制御装置
CN101503979A (zh) * 2009-03-13 2009-08-12 东风汽车公司 汽油醇类灵活燃料发动机控制方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027138A1 (en) * 2012-08-17 2014-02-20 Wärtsilä Finland Oy Method of operating a multi-cylinder internal combustion piston engine
KR20150041144A (ko) * 2012-08-17 2015-04-15 바르실라 핀랜드 오이 멀티-실린더 내연 피스톤 기관의 작동 방법
KR101986875B1 (ko) 2012-08-17 2019-06-07 바르실라 핀랜드 오이 멀티-실린더 내연 피스톤 기관의 작동 방법

Also Published As

Publication number Publication date
PE20130467A1 (es) 2013-04-25
IL219917A (en) 2016-06-30
TR201205305T1 (tr) 2013-01-21
CN102108905A (zh) 2011-06-29
IL219917A0 (en) 2012-07-31
CN102108905B (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
WO2012094871A1 (zh) 油气两用车燃料转换的同步控制方法
JP4557962B2 (ja) 内燃機関の制御装置
EP2420663B1 (en) Automatic stop/start control device for internal combustion engine
US20070215096A1 (en) Engine controller
WO2016088191A1 (ja) 内燃機関の制御装置
WO2013153769A1 (ja) エンジン制御装置
WO2016088649A1 (ja) エンジンの制御装置
JP5360500B2 (ja) エンジン自動停止始動制御装置
WO2013150729A1 (ja) 燃料噴射制御装置
CN104797800B (zh) 发动机
JP5835364B2 (ja) 内燃機関の燃料噴射装置
JP5703802B2 (ja) 内燃機関の燃料噴射装置
CN104279112A (zh) 内燃机的点火正时控制装置
JP2010163931A (ja) エンジンの制御装置
JP2006144725A (ja) ハイブリッド車両の燃料噴射制御装置
JP2010270713A (ja) アクチュエータ制御装置
JP5040588B2 (ja) 燃料噴射システム
JP2013072313A (ja) 内燃機関の触媒早期暖機制御装置
JP5373827B2 (ja) 車載用エンジンの制御装置
JP2014227836A (ja) 内燃機関の燃料噴射制御装置
JP3800082B2 (ja) 内燃機関の燃料カット制御装置
JP4325477B2 (ja) エンジンの始動装置
JP5223972B2 (ja) 車載ディーゼル機関の制御装置
JP2009024580A (ja) 内燃機関の制御装置
JPH0134294B2 (zh)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012/05305

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 219917

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 000728-2012

Country of ref document: PE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855863

Country of ref document: EP

Kind code of ref document: A1