WO2012090850A1 - 外気利用空調システム、その内気ユニット、外気ユニット、積層体 - Google Patents

外気利用空調システム、その内気ユニット、外気ユニット、積層体 Download PDF

Info

Publication number
WO2012090850A1
WO2012090850A1 PCT/JP2011/079778 JP2011079778W WO2012090850A1 WO 2012090850 A1 WO2012090850 A1 WO 2012090850A1 JP 2011079778 W JP2011079778 W JP 2011079778W WO 2012090850 A1 WO2012090850 A1 WO 2012090850A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
refrigerant
heat exchanger
outside air
condenser
Prior art date
Application number
PCT/JP2011/079778
Other languages
English (en)
French (fr)
Inventor
高橋 正樹
裕一郎 峰岸
大賀 俊輔
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201180060473.5A priority Critical patent/CN103261801B/zh
Priority to US13/977,325 priority patent/US20130283837A1/en
Priority to JP2012550897A priority patent/JP5626365B2/ja
Publication of WO2012090850A1 publication Critical patent/WO2012090850A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/022Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing comprising a compressor cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0006Control or safety arrangements for ventilation using low temperature external supply air to assist cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Definitions

  • the present invention relates to an air conditioning system using outside air.
  • a large number of servers and the like are installed in a data center or a server room of a company.
  • the room temperature rises due to the heat generated by a large number of servers.
  • an air conditioning system that keeps the temperature of the entire room constant is adopted for the server room.
  • such an air conditioning system is almost always operated, and is operated even in winter.
  • Patent Documents 1 and 2 there are conventional techniques described in Patent Documents 1 and 2, for example.
  • Patent Document 1 provides an air conditioner capable of performing an operation that prioritizes energy saving and an operation that prioritizes temperature / humidity control while ensuring sufficient countermeasures against harmonics.
  • Patent Document 2 can obtain a good temperature controllability by suppressing the indoor temperature fluctuation accompanying the change in the number of operating units while ensuring a sufficient countermeasure against harmonics, and also sufficiently considers energy saving.
  • An air conditioner capable of optimal operation is provided.
  • FIG. 14 shows an example of a conventional indirect outdoor air cooling system.
  • the indirect outdoor air cooling system is a cooling system that cools an arbitrary indoor space, and is a system that uses the outdoor air for cooling without flowing the outdoor air into the indoor space.
  • This indoor space is, for example, a server room in which a large number of server racks 202 mounted with heating elements 201 such as server devices (computer devices) are installed.
  • Such an indoor space has a large amount of heat generated by the large number of heating elements 201 and needs to be cooled even in winter.
  • the indoor space is divided into a server installation space, an underfloor space, and a ceiling space.
  • the server installation space is a space in which the server rack 202 on which the heating element 201 is mounted is installed.
  • the upper side of the server installation space has a ceiling and the lower side has a floor.
  • the space above the ceiling is the above-described ceiling space, and the space below the floor is the below-floor space.
  • holes are opened in the floor and ceiling, and cold air and warm air flow into and out of the server installation space through the holes.
  • the indirect outside air cooling system shown in the figure cools return air (warm air) from, for example, a server room by a general air conditioner 210, but energy is saved by lowering the temperature of the return air using outside air at the preceding stage. It aims to make it easier.
  • the air conditioner 210 including the illustrated refrigerator 211, air handling unit 212, expansion valve 213, refrigerant pipe 214, etc. is an existing general air conditioner. That is, this air conditioner 210 performs cooling with a general compression refrigeration cycle (vapor compression refrigeration cycle or the like) of “evaporator ⁇ compressor ⁇ condenser ⁇ expansion valve ⁇ evaporator” using a refrigerant. Air conditioner (air conditioner etc.).
  • the refrigerant circulates through the refrigerant pipe 214, the refrigerator 211, the air handling unit 212, the expansion valve 213, and the like.
  • the refrigerator 211 has a compressor, a condenser, a fan (blower), and the like.
  • the air handling unit 212 includes an evaporator, a fan (blower), and the like.
  • the air handling unit 212 sends cold air to the underfloor space in the indoor space and supplies the cold air to the server installation space via the underfloor space. This cool air becomes warm air by cooling the heating element 201, and this warm air flows from the server installation space into the ceiling space. In the case of a normal cooling system, this warm air flows from the ceiling space into the air handling unit 212 through a duct or the like. The air handling unit 212 generates the cold air by cooling the incoming warm air with the evaporator.
  • the air handling unit 212 cools the inflowing warm air so that the temperature of the cool air becomes a predetermined value (set value).
  • a predetermined value set value
  • the illustrated indirect outdoor air cooler 220 is provided in order to lower the temperature of the warm air flowing into the air handling unit 212.
  • the wall 1 shown in the figure is a wall of an arbitrary building, and the wall 1 is divided into the inside and outside of the building with the wall 1 as a boundary.
  • the air handling unit 212 or the like in the illustrated example, a space adjacent to the indoor space, for example, sometimes called a machine room
  • the air (inside air) in the building circulates in the building while repeating the cold and warm air states. If the temperature of the air outside the building (outside air) is a season other than summer, for example, it may be considered that it is lower than the temperature of the warm air inside air.
  • the indirect outside air cooler 220 includes a heat exchanger 221, a blower 222, a blower 223, an inside air duct 224, an outside air duct 225, and the like.
  • One end of the inside air duct 224 is provided on the ceiling space side and the other end is provided on the air handling unit 212 side, and is connected to the heat exchanger 221 on the way.
  • the warm air on the ceiling space side is caused to flow into the inside air duct 224 by the blower 222 and to the air handling unit 212 side, but passes through the heat exchanger 221 on the way.
  • holes are made at two arbitrary locations on the wall 1 (one is called the outside air inflow hole 226 and the other is called the outside air discharge hole 227), and one end of the outside air duct 225 is connected to the outside air inflow hole 226, The other end is connected to the outside air discharge hole 227.
  • the outside air duct 225 is connected to the heat exchanger 221 on the way. The outside air is passed through the outside air duct 225 by the blower 223. That is, outside air flows in from the outside air inflow hole 226 and is discharged from the outside air discharge hole 227, but the outside air passes through the heat exchanger 221 on the way.
  • the indirect outside air cooler 220 is newly added to the existing general air conditioner 210, and the installation space is increased accordingly. Furthermore, although simplified in the figure, the ducts (the inside air duct 224 and the outside air duct 225) actually take a large installation space. Moreover, although it is comparatively small, the electric power consumption by the air blower 222 and the air blower 223 is added. In addition, the indirect outside air cooler 220 as shown in FIG. 14 takes time and costs for installation work.
  • the inside air (warm air) and the outside air pass through the heat exchanger 221, and heat exchange between the inside air (warm air) and the outside air is performed in the heat exchanger 221.
  • the heat exchanger 221 since the outside air is shut off from the inside air to perform heat exchange, the outside air humidity, dust, and corrosive gas contained in the outside air are not taken into the indoor space. Reliability is maintained.
  • such a heat exchanger 221 is an existing one, and a detailed configuration is not particularly shown.
  • the temperature of the inside air is lowered by heat exchange in the heat exchanger 221, the temperature of the warm air flowing into the air handling unit 212 is lowered, and the power consumption of the air conditioner 210 is reduced (the energy saving effect is reduced). can get). In addition, you may consider that the electric power consumption by the air blower 222 and the air blower 223 is comparatively small.
  • an air conditioning system that cools a space with a heating element such as a server room and the like, and particularly for an air conditioning system that saves energy by using outside air, the outside air can be discharged even when the outside air temperature is high.
  • the main issue is to make it possible to cool indoor spaces and achieve energy savings.
  • there are other problems such as further energy saving, downsizing, and cost reduction.
  • An object of the present invention relates to an air conditioning system that uses indoor air to cool an indoor space in an energy-saving manner, and is capable of functioning inside air cooling that uses outside air even when the outside air temperature is high. It is to provide an air-conditioning system using outside air, its inside air unit, outside air unit, etc. that can save energy.
  • the outdoor air-conditioning air-conditioning system of the present invention comprises a configuration provided on the indoor side (inside the building) and a configuration provided on the outdoor side (outside the building). Return air (warm air) from the space to be cooled, which is indoor air, is used as inside air.
  • the outdoor air is outside air.
  • a first heat exchanger for passing the inside air through the first heat exchanger, the evaporator and the condenser, Is provided.
  • a second heat exchanger and a second blower for allowing the outside air to pass through the second heat exchanger are provided on the outdoor side.
  • an expansion valve and a compressor are provided.
  • the expansion valve and the compressor are provided on either the outdoor side or the indoor side, respectively.
  • the condenser, the first heat exchanger, and the evaporator are provided in this order from the upstream side of the flow of the inside air formed by the first blower.
  • the inside air first passes through the condenser, then passes through the first heat exchanger, and finally passes through the evaporator.
  • a first pipe connected to the evaporator, the condenser, the expansion valve, and the compressor is provided.
  • the first refrigerant is circulated through the evaporator, the condenser, the expansion valve, and the compressor through a first pipe to constitute an air conditioner using a compression refrigeration cycle.
  • a second pipe connected to the first heat exchanger and the second heat exchanger is provided.
  • a second refrigerant for example, a coolant such as water
  • a coolant such as water
  • an indirect outside air cooling system is configured by the first heat exchanger, the second heat exchanger, and the second refrigerant. That is, in the first heat exchanger, heat exchange is performed between the second refrigerant and the inside air after passing through the condenser, thereby cooling the inside air with the second refrigerant. In the second heat exchanger, the second refrigerant is cooled by the outside air by exchanging heat between the second refrigerant after cooling the inside air and the outside air.
  • the condenser radiates the heat taken by the evaporator from the surroundings (inside air), and is usually installed outside the building (outside the building) and radiates heat to the outside air.
  • the condenser is installed in the indoor side (inside a building). For this reason, the temperature of the inside air greatly increases as it passes through the condenser. Then, the inside air after the temperature rise is indirectly heat-exchanged with the outside air via the second refrigerant. Therefore, even when the outside air temperature is very high, the inside air can be cooled by the outside air.
  • the refrigerant is cooled by the inside air. Therefore, especially in an environment where the outside air temperature is higher than the inside air temperature (the temperature before passing through the condenser), the cooling effect of the first refrigerant in the condenser is relatively high. That is, when the outside air is passed through the condenser and the first refrigerant is cooled by the outside air as in a normal case, the cooling effect of the first refrigerant is reduced in an environment where the outside air temperature is very high. In particular, if the environment is “outside air temperature> inside air temperature”, the cooling effect of the first refrigerant is enhanced by using the inside air.
  • the power consumption of the air conditioner by the compression refrigeration cycle is suppressed to be lower than the conventional one.
  • FIG. 1 is a configuration diagram of an air conditioning system of Example 1.
  • FIG. It is a block diagram of the air conditioning system of Example 2.
  • FIG. 3 is an enlarged view of a part of the configuration of FIG. 2.
  • FIG. It is a block diagram of the 2nd example of the air conditioning system (the 2) of Example 3.
  • FIG. 5 is a modification of the configuration of FIG. It is a modification of the structure of FIG. 5A.
  • FIG. 5 is an overall schematic configuration diagram including an air conditioning system according to a third embodiment. It is a block diagram of the air conditioning system (the 1) of Example 4. It is a block diagram of the air conditioning system (the 2) of Example 4. It is a figure which shows the operation
  • the “indoor side” includes not only “indoor space to be cooled” but also a machine room and the like. In other words, the “indoor side” can be said to be a space in which the “inside air” (air in the building) exists. Similarly, “outside” in this description means “outside the building”. In other words, the “outdoor” can be said to be a space where the “outside air” (air outside the building) exists.
  • the “indoor space” has a slightly different meaning from the above “indoor side”, and the following “cooling target space by the indirect outdoor air cooling system (cooling target indoor space): in a narrow sense, the server installation space in the narrower sense. ". Therefore, the “indoor space” does not include a machine room or the like.
  • FIG. 1 is a configuration diagram of an air conditioning system (indirect outside air cooling system) according to the first embodiment.
  • the space to be cooled by the indirect outside air cooling system is assumed to be the same as the conventional example shown in FIG. That is, the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed.
  • the indoor space is divided into a server installation space, an underfloor space, and a ceiling space as shown in FIG.
  • the cooling target can be regarded as a server installation space in a narrow sense.
  • the wall 1 separates the inside of the building from the outside of the building, and the air inside the building (inside air) circulates while repeating a cold air state and a warm air state.
  • the temperature of the air outside the building (outside air) is assumed to be lower than the temperature of the warm air inside air.
  • the machine room is a space adjacent to the indoor space, for example, and is connected to the under-floor space and the ceiling space.
  • an air handling unit 12 and an inside air unit 30 which will be described later are installed.
  • a general air conditioner 10 or the like supplies cool air to the indoor space, cools return air (warm air) from the indoor space, and generates cool air again.
  • the temperature of the return air (warm air) is lowered using the outside air.
  • the general air conditioner 10 sends cold air to the underfloor space, supplies cold air to the server installation space via the underfloor space, and cools each heating element 101 by this cold air. As a result, the cool air becomes warm air, and after this warm air flows into the ceiling space, it is returned to the air conditioner 10 as return air. In the preceding stage, the indirect outdoor air cooler 20 uses the outside air to lower the temperature.
  • the air conditioner 10 may be the same as the conventional general air conditioner 210 described above.
  • the temperature of the outside air is low.
  • “the temperature of the outside air is low” does not specifically mean what temperature or lower or the like, but depends on the temperature of the inside air (warm air) or the like. This is the same as before.
  • indirect outside air cooling is intended to lower the temperature of the inside air (warm air) using outside air, and as a result, the temperature of the return air (warm air) can be lowered. It can be said that when the temperature of is low.
  • the present invention is not limited to this example.
  • the configuration for sending the cold air to the underfloor space is the general air conditioner 10 shown in the figure.
  • the general air conditioner 10 includes a refrigerator 11, an air handling unit 12, an expansion valve 13, a refrigerant pipe 14, and the like.
  • the refrigerator 11, the air handling unit 12, the expansion valve 13, and the refrigerant pipe 14 may be the same as the conventional refrigerator 211, the air handling unit 212, the expansion valve 213, and the refrigerant pipe 214 shown in FIG.
  • the general air conditioner 10 may be the same as an existing general air conditioner (such as an air conditioner) such as the conventional air conditioner 210 described above. Therefore, although not shown or described in detail, the air handling unit 12 includes an evaporator 12a and a blower (fan) 12b as shown.
  • the refrigerator 11 has not only a blower (fan) 11a shown but also a compressor and a condenser (not shown).
  • the general air conditioner 10 includes the evaporator 12a, which is a general air conditioner configuration, a compressor and a condenser (not shown), an expansion valve 13, and the like.
  • the refrigerant circulates through. That is, the refrigerant circulates in a general compression refrigeration cycle (vapor compression refrigeration cycle or the like) of “evaporator ⁇ compressor ⁇ condenser ⁇ expansion valve ⁇ evaporator”.
  • a general compression refrigeration cycle vapor compression refrigeration cycle or the like
  • the refrigerant evaporates in the evaporator 12a, the surrounding heat is taken away, thereby cooling the surrounding air (inflowing warm air). The deprived heat is radiated to the outside air or the like in the condenser.
  • the wall 1 shown in the figure is a wall of an arbitrary building, and the indoor space and a space adjacent to the indoor space (machine room) exist in the building.
  • the air handling unit 12, the inside air unit 30 and the like which will be described later are installed in the machine room, and the refrigerator 11 and the outside air unit 40 and the like which will be described later are installed outside the building.
  • Inside air (indoor space and machine room) circulates while the inside air repeats a warm and cold state, and outside air exists outside the building.
  • the general air conditioner 10 is only described above, but as in the case of the conventional air conditioner 210, the temperature of the return air (warm air) that flows into the air handling unit 12 of the general air conditioner 10 is reduced. It is desired to reduce the power consumption of the general air conditioner 10. However, naturally, even if the power consumption of the general air conditioner 10 is reduced, it does not make sense if the overall power consumption increases. Thus, it is conceivable to reduce the temperature of the inside air (warm air) using outside air, and the indirect outside air cooler 220 is conventionally provided.
  • the illustrated indirect outside air cooler 20 is provided.
  • the indirect outside air cooler 20 includes an inside air unit 30 and an outside air unit 40.
  • the inside air unit 30 and the outside air unit 40 are, for example, individually manufactured in a factory or the like, and then installed so as to be in close contact with the wall 1 (inner wall and outer wall, respectively) as illustrated.
  • the wall 1 is used as a boundary, and it is divided into an outdoor side (outside the building) and an indoor side (inside the building).
  • the outdoor air unit 40 is installed on the outdoor side
  • the indoor air unit 30 is installed on the indoor side. That is, the outside air unit 40 is installed in close contact with the wall surface on the outdoor side of the wall 1.
  • the inside air unit 30 is installed so as to be in close contact with the wall surface of the wall 1 on the indoor side.
  • the inside air unit 30 includes, for example, the illustrated liquid-gas heat exchanger 31, a blower (fan) 32, a pipe 21 (part thereof: about half), and a circulation pump 22.
  • the outdoor air unit 40 includes, for example, the illustrated liquid-gas heat exchanger 41, a blower (fan) 42, and a pipe 21 (part thereof: about half).
  • a liquid-gas heat exchanger 31 and a blower shown in a box-shaped housing whose one surface is open (open; no state). (Fan) 32 etc. are provided.
  • two holes (inner air inlet 33 and inner air outlet 34) shown in the figure are opened in the casing.
  • the illustrated pipe 21 pipe 21 to which the circulation pump 22 is connected in the middle
  • the illustrated pipe 21 may already be connected to the liquid-gas heat exchanger 31 at the time of manufacture in a factory or the like, or the liquid-gas heat at the time of installation. You may connect to the exchanger 31.
  • only the pipe 21 may be connected in the factory, and the circulation pump 22 may be connected to the pipe 21 at the time of installation.
  • both the inside air unit 30 and the outside air unit 40 are installed so that the open surface matches the wall surface of the wall 1.
  • the housing of the outside air unit 40 has two holes (the outside air inlet 43 and the outside air outlet 44) shown in the figure.
  • the illustrated pipe 21 may be already connected to the liquid-gas heat exchanger 41 at the time of manufacture in a factory or the like, or may be connected to the liquid-gas heat exchanger 41 at the time of installation.
  • the indirect outside air cooler 20 is configured by installing the inside air unit 30 and the outside air unit 40 as described above.
  • the indirect outside air cooler 20 is included in the outside air because the outside air and the inside air are cut off from each other as in the conventional case shown in FIG. Since outside air humidity, dust, and corrosive gas are not taken into the indoor space, the reliability of electronic devices such as servers is maintained.
  • the two pipes 21 there are two pipes 21, one for flowing the refrigerant from the outside air unit to the inside air unit and the other for flowing the refrigerant from the inside air unit to the outside air unit, and two through holes in the wall 1 are opened.
  • the two pipes 21 may have one large through hole opened and passed through this hole.
  • the inside air unit 30 and the outside air unit 40 are both installed so that the open surface matches the wall surface of the wall 1, but the embodiment of the invention is not limited to this example.
  • the inside air unit 30 and the outside air unit 40 are manufactured as an integrated inside / outside air unit after welding the pipe 21 and the like, and the wall 1 is provided with a hole having the same shape as the integrated inside / outside air unit.
  • Qi units may be embedded in the wall.
  • the blower (fan) 32 causes the warm air in the ceiling space to flow from the inside air inlet 33 and pass through the inside air unit 30 (particularly, the liquid-gas heat exchanger 31). After that, a flow of air that is discharged from the inside air discharge port 34 (shown by a one-dot chain line arrow in the figure) is created. Basically, the temperature of the warm air discharged from the inside air discharge port 34 is set lower than the temperature of the warm air flowing from the inside air flow inlet 33.
  • the warm air discharged from the inside air discharge port 34 flows into the air handling unit 12 and is cooled by the evaporator 12a or the like in the air handling unit 12 to become cool air, and this cool air is sent to the underfloor space by the blower (fan) 12b. Will be.
  • the power consumption of the general air conditioner 10 is reduced as compared with the case where the warm air in the ceiling space flows into the air handling unit 12 as it is.
  • the blower (fan) 42 allows the outside air to flow in from the outside air flow inlet 43 and passes through the outside air unit 40 (particularly in the liquid-gas heat exchanger 41), and then the outside air discharge port.
  • An air flow (indicated by a dotted arrow in the figure) is generated so as to be discharged from 44.
  • the piping 21 is connected to the circulation pump 22 at an arbitrary position, and a refrigerant such as a liquid (for example, water) is sealed in the piping. Accordingly, by operating the circulation pump 22, this liquid (for example, water) circulates through the liquid-gas heat exchanger 31 and the liquid-gas heat exchanger 41 via the pipe 21.
  • a refrigerant such as a liquid (for example, water)
  • this liquid for example, water
  • the liquid-gas heat exchanger 31 and the liquid-gas heat exchanger 41 may be the same.
  • the liquid-gas heat exchangers 31 and 41 have an existing configuration and will be described briefly, although they will not be described in detail.
  • the conventional heat exchanger 221 passes two types of gas (both are air, inside air (warm air) and outside air) inside and exchanges heat between the two types of gases, so that the outside air is particularly good.
  • the inside air (warm air) was cooled by the outside air.
  • the liquid-gas heat exchangers 31 and 41 allow liquid (for example, water) and gas (in this case, air) to pass therethrough and exchange heat between the liquid and gas to cool the higher temperature. Is.
  • the gas (air) is the inside air (warm air) in the liquid-gas heat exchanger 31 and the outside air in the liquid-gas heat exchanger 41.
  • the liquid is water or the like circulated by the pipe 21 and the circulation pump 22.
  • the temperature of the liquid (such as water) decreases and the temperature of the outside air increases due to heat exchange between the liquid (such as water) and the outside air.
  • a relatively cooler liquid (such as water) flows into the liquid-gas heat exchanger 31 via the pipe 21. Therefore, in the liquid-gas heat exchanger 31, heat exchange between the relatively low temperature liquid (water or the like) and the inside air (warm air) is performed. As a result, the temperature of the inside air (warm air) decreases and the temperature of the liquid (water, etc.) increases. As a result, the liquid (water or the like) having a relatively high temperature flows into the liquid-gas heat exchanger 41 via the pipe 21 and is cooled again by the outside air as described above. The outside air whose temperature has risen due to this is discharged from the outside air outlet 44.
  • the air flow in the inside air unit 30 is directed downward (in the direction from the top to the bottom) in FIG. You can also.
  • the air flow in the outside air unit 40 is directed upward in FIG. 1 by the blower 42, but may be downward.
  • the air flow in the inside air unit 30 be downward as shown in FIG.
  • the warm air warmed by the heating element 101 is on the upper side, and the air cooled by the liquid-gas heat exchanger 31 flows downward, so that the air flow in the inside air unit 30 is natural. It will be in line with natural phenomena without countering convection.
  • the outside air unit 40 and the inside air unit 30 have substantially the same shape and size of the casing (and therefore the mounting area on the wall is also substantially the same), and the wall 1 is the center. Therefore, the indirect outside air cooler 20 is formed by arranging and integrating them so as to be substantially symmetrical.
  • the left and right are the stories on the figure.
  • each of the outside air unit 40 and the inside air unit 30 is placed at a position where the frame of the casing is symmetrical with respect to the wall 1 (that is, approximately the same position with the wall 1 interposed therebetween as shown in FIG. 1).
  • the outside air unit 40 and the inside air unit 30 are fixed with bolts / nuts or the like at the positions of the plurality of through holes through the plurality of through holes formed in the wall 1.
  • the pipe 21 is connected through another through hole.
  • the outside air unit 40 and the inside air unit 30 are not only the housing but also the internal configuration is substantially the same (substantially symmetrical as shown), and the difference is the presence or absence of the circulation pump 22. Etc. Therefore, for example, in a factory or the like, a unit is manufactured without the circulation pump 22 without distinguishing between outside air and inside air, and this unit can be used as both the outside air unit 40 and the inside air unit 30 during installation. However, when the inside air unit 30 is used, it is necessary to connect the circulation pump 22 at the time of installation. However, the manufacturing efficiency in the factory is improved, so that the effect of cost reduction can be expected.
  • the indirect outside air cooler 20 described above has the following effects.
  • the indirect outside air cooler 20 has a pair of liquid-gas heat exchangers 31 and 41, in which the internal fluid is liquid and the external fluid is gas, arranged via the wall 1 separating the inside and outside of the building, and one liquid-gas External air is passed through the external fluid of the heat exchanger 41, internal air is passed through the external fluid of the other liquid-gas heat exchanger 31, and the internal fluid (liquid) of both liquid-gas heat exchangers is pipe 21. Circulate through. Thereby, heat exchange between the outside air and the inside air is performed.
  • the indirect outside air cooler 20 has the following effects due to the characteristics described above.
  • the outside air unit 40 having the liquid-gas heat exchanger 41 for allowing the outside air to flow and the inside air unit 30 having the liquid-gas heat exchanger 31 for allowing the inside air to flow are symmetrical about the wall 1. Since these units 30 and 40 can be integrated with each other, it is possible to use a skeleton housing having almost the same structure, thereby reducing the manufacturing cost.
  • the outside air unit 40 and the inside air unit 30 are connected with bolts and nuts at the positions of the plurality of through holes through the plurality of through holes formed in the wall 1. Since it is fixed, the construction cost can be reduced and the installation work can be facilitated.
  • the duct portion can be reduced, and the pressure loss due to the duct resistance can be reduced.
  • Example 2 Next, the air conditioning system (integrated air conditioning system) of Example 2 will be described.
  • Example 2 can also be said to be a kind of indirect outside air cooling system, it is integrated and has a compact configuration.
  • the indirect outside air cooling system of the first embodiment has proposed a ductless, compact and easy installation configuration for the indirect outside air cooling device 20, but the general air conditioner 10 is substantially the same as the conventional one.
  • Example 2 an integrated indirect outside air cooling system in which the function of the indirect outside air cooler 20 and the function of the general air conditioner 10 are integrated is proposed.
  • FIG. 2 is a configuration diagram of the air conditioning system (integrated air conditioning system) of the second embodiment.
  • FIG. 3 is an enlarged view of a part of the configuration of FIG.
  • the space to be cooled by the integrated indirect outside air cooling system is the same as the example shown in FIGS. That is, the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed. Then, the cool air is sent out to the underfloor space, the cool air is supplied to the server installation space via the underfloor space, and each heating element 101 is cooled by this cool air. As a result, the cold air becomes warm air, and this warm air flows into the ceiling space.
  • the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed are installed. Then, the cool air is sent out to the underfloor space, the cool air is supplied to the server installation space via the underfloor space, and each heating element 101 is cooled by this cool air. As a result, the cold air becomes warm air, and this warm air flows into the ceiling
  • the configuration for sending the cool air to the underfloor space is the integrated indirect outdoor air cooling system 50 shown in the figure.
  • the integrated indirect outside air cooling system 50 has a configuration in which the function of the indirect outside air cooler and the function of the general air conditioner are integrated.
  • the integrated indirect outside air cooling system 50 allows the warm air in the ceiling space to flow in, first lowers the temperature of the warm air by the function of the indirect outside air cooler, and then generates cool air at a predetermined temperature by the function of the general air conditioner. .
  • the integrated indirect outside air cooling system 50 includes an inside air unit 60 and an outside air unit 70 shown in FIGS.
  • the outside air and the inside air are mutually cut off and heat exchange is performed as in the conventional example shown in FIG. 14 and the configuration shown in FIG. Therefore, the reliability of electronic devices such as servers is maintained because the outside air humidity, dust, and corrosive gas contained in are not taken into the indoor space.
  • the inside air unit 60 and the outside air unit 70 are, for example, individually manufactured in a factory or the like, and then installed so as to be in close contact with the wall surface of the wall 1 as illustrated.
  • the integrated indirect outside air cooling system 50 is configured by installing the illustrated pipe 51, the refrigerant pipe 52, etc. (or connecting (welding, etc.) one that has been made approximately half by two).
  • tube 52 this through-hole becomes four places like the structure of FIG.1 and FIG.14.
  • the production and installation of the inside air unit 60 and the outside air unit 70 may be substantially the same as the inside air unit 30 and the outside air unit 40 of the first embodiment, and will not be described in detail here.
  • the wall 1 is used as a boundary, and it is divided into an outdoor side (outside the building) and an indoor side (inside the building), but the outdoor air unit 70 is installed on the outdoor side, and the indoor air unit 60 is installed on the indoor side. That is, the outside air unit 70 is installed so as to be in close contact with the wall surface on the outdoor side of the wall 1.
  • the inside air unit 60 is installed in close contact with the wall surface of the wall 1 on the indoor side.
  • the outside air unit 70 and the inside air unit 60 are provided at positions corresponding to each other across the wall 1.
  • the positions corresponding to each other across the wall 1 are positions as illustrated in FIGS. 2 and 3, for example.
  • the inside air unit 60 exists on the back side of the wall 1. It is such a position.
  • the casing of the outside air unit 70 and the casing of the inside air unit 60 are substantially the same shape and size as shown in the figure, these two casings are as shown in the figure. They are arranged so as to have a substantially symmetrical relationship (almost symmetrical in the drawing) on the wall 1.
  • the present invention is not limited to such an example, but basically, it is desirable to install so that the piping is shortened so as to facilitate installation.
  • the inside air unit 60 has a laminated body 61 and the like.
  • the laminated body 61 has an evaporator 61a, a liquid-gas heat exchanger 61b, a blower (fan) 61c, etc., and these are laminated and integrated as shown in the figure.
  • the configuration in which the evaporator, the liquid-gas heat exchanger, and the air blower (fan) are integrated as a laminated body has a number of advantages, but is not limited to this configuration example.
  • the inside air unit 60 needs to be provided with an evaporator, a liquid-gas heat exchanger, and a blower (fan).
  • the housing of the inside air unit 60 (for example, a box shape with one open surface) has holes such as the inside air inlet 62 and the inside air outlet 63 shown in the figure.
  • the blower (fan) 61 c allows the warm air in the ceiling space to flow into the unit 60 from the internal air flow inlet 62 and pass through the inside air unit 60 (particularly, the laminated body 61), and then from the inside air discharge port 63. Create a flow of air that can be discharged (indicated by the dashed-dotted arrows in the figure).
  • the laminate 61 is configured such that the liquid-gas heat exchanger 61b is provided on the upstream side of such an air flow and the evaporator 61a is provided on the downstream side. Accordingly, the present invention is not limited to the illustrated configuration example, and any configuration that satisfies this condition may be used.
  • a liquid-gas heat exchanger is provided on the upstream side of the air flow and an evaporator is provided on the downstream side even when the laminate (integrated type) is not used. That is, it is necessary to adjust the internal air (warm air) to a predetermined temperature (set temperature) in the evaporator after the temperature is lowered by the liquid-gas heat exchanger.
  • the above is a description of the relative positional relationship between the liquid-gas heat exchanger 61b and the evaporator 61a, and the position of the blower (fan) 61c (arrangement order with respect to the air flow) in the laminate 61.
  • the outside air unit 70 has a laminated body 71 and the like.
  • the laminated body 71 includes a condenser 71a, a liquid-gas heat exchanger 71b, a blower (fan) 71c, etc., and these are laminated and integrated as shown in the figure.
  • the inside air unit 60 it is not necessarily limited to the example of the laminated body.
  • the outside air unit 70 needs to be provided with a condenser, a liquid-gas heat exchanger, and a blower (fan).
  • the outside air unit 70 is provided with holes such as the outside air inlet 72 and the outside air outlet 73 shown in the figure.
  • the blower (fan) 71c allows the outside air to flow into the unit 70 from the outside air flow inlet 72, passes through the inside of the outside air unit 70 (particularly within the laminated body 71), and then is discharged from the outside air discharge port 73. Create a flow (indicated by dotted arrows on the diagram).
  • the laminate 71 is configured such that the liquid-gas heat exchanger 71b is provided on the upstream side of such an air flow, and the condenser 71a is provided on the downstream side.
  • the position of the blower (fan) 71c (arrangement order with respect to the air flow) may be anywhere with respect to the layered body 71 as well, as in the case of the layered body 61 (therefore limited to the illustrated configuration example). Any configuration that satisfies the above conditions is acceptable. This is the same even when the laminate is not used.
  • both the inside air unit 60 and the outside air unit 70 are examples of the configurations shown in FIGS. 2 and 3, and are not limited to this example. This is substantially the same with respect to configurations shown in other drawings after FIG.
  • the configuration and manufacturing method of the laminates 61 and 71 may be various. Although not described in detail here, the configuration and the manufacturing method are as easy to manufacture and / or as compact as possible. Is desirable. For example, taking the laminated body 61 as an example, the evaporator 61a, the liquid-gas heat exchanger 61b, and the blower (fan) 61c are all housed (unitized) in an arbitrary housing, and the size of the housing is also described. It is conceivable that the shapes are substantially the same. Further, as an example, the shape of the casing may be a substantially rectangular parallelepiped, for example, and the shape of the stacked body 61 may be a substantially rectangular parallelepiped by stacking these three rectangular parallelepipeds.
  • the evaporator 61a, the liquid-gas heat exchanger 61b, and the blower (fan) 61c are stacked and integrated (formation of the stacked body 61). This is done by connecting each other.
  • the connection between the housings may be a general method, for example, fixing a nut or the like through a rod or a bolt in a hole provided in a corner of each housing.
  • the casing is provided with a number of holes for allowing the inside air to pass therethrough and holes for passing various pipes.
  • liquid-gas heat exchangers 61 b and 71 b are connected to each other via a pipe 51 in substantially the same manner as the liquid-gas heat exchangers 31 and 41 of the first embodiment.
  • the liquid (such as water) in the liquid circulates in the liquid-gas heat exchangers 61 b and 71 b and the pipe 51.
  • the liquid-gas heat exchangers 61b and 71b may have the same configuration as the liquid-gas heat exchangers 31 and 41, and are existing configurations and will not be described in detail.
  • the liquid (such as water) passes and the inside air (warm air) passes.
  • heat exchange between the liquid (such as water) and the warm air is performed in the liquid-gas heat exchanger 61b, and the warm air is basically cooled (the heat of the warm air moves to the liquid).
  • the temperature will drop. However, this depends on the temperature of the outside air and the warm air, and it is not guaranteed that the temperature of the warm air decreases. However, when the temperature of the outside air is high, it can be considered that the circulation pump 53 is stopped.
  • a refrigerant pipe 52, an expansion valve 54, and a compressor 55 are provided for the evaporator 61a and the condenser 71a.
  • Each of these components is substantially the same as each component of the general air conditioner 10. That is, in the general air conditioner 10, the air handling unit 12 includes the evaporator 12a and the fan 12b, and the evaporator 61a has a configuration corresponding to the evaporator 12a. Further, as described above, the refrigerator 11 is provided with a compressor and a condenser (not shown). The compressor 55 and the condenser 71a correspond to these components.
  • the expansion valve 54 has a configuration corresponding to the expansion valve 13.
  • the evaporator 61a, the condenser 71a, the expansion valve 54, and the compressor 55 are connected to the refrigerant pipe 52.
  • the refrigerant circulates through the evaporator 61 a, the condenser 71 a, the expansion valve 54, and the compressor 55 through the refrigerant pipe 52. That is, the refrigerant circulates in a general compression refrigeration cycle (such as a vapor compression refrigeration cycle) of “evaporator 61a ⁇ compressor 55 ⁇ condenser 71a ⁇ expansion valve 54 ⁇ evaporator 61a”.
  • a general compression refrigeration cycle such as a vapor compression refrigeration cycle
  • the expansion valve 54 is provided in the inside air unit 60, but may be provided in the outside air unit 70.
  • the compressor 55 is provided in the outside air unit 70, but may be provided in the inside air unit 60. That is, the configuration in which the expansion valve 54 is provided in the inside air unit 60 and the compressor 55 is provided in the outside air unit 70, and the expansion valve 54 is provided in the outside air unit 70, and the compressor 55 is provided in the inside air unit 60. There may be a configuration in which both the expansion valve 54 and the compressor 55 are provided in the inside air unit 60, and a configuration in which both the expansion valve 54 and the compressor 55 are provided in the outside air unit 70.
  • the circulation pump 53 is provided in the inside air unit 60 in the illustrated example, but may be provided in the outside air unit 70.
  • the liquid-gas heat exchanger 61b and the liquid-gas heat exchanger 71b are heat exchangers that perform heat exchange between liquid and gas, but are not limited to this example. Instead of these liquid-gas heat exchangers, a heat exchanger (referred to as a gas-gas heat exchanger) that performs heat exchange between gases may be provided. Of course, in this case, some gas is used instead of the liquid.
  • liquid-gas heat exchanger or gas-gas heat exchanger is generically called a fluid-gas heat exchanger or It may be called a fluid-fluid heat exchanger.
  • fluid-gas heat exchanger or It may be called a fluid-fluid heat exchanger.
  • some “fluid” flows through the pipe 51.
  • two heat exchangers liquid-gas heat exchanger 61b and liquid-gas heat exchanger 71b in the illustrated example, but not limited to this example as described above
  • the “fluid” is circulated. This is substantially the same for other configurations described later.
  • liquid-gas heat exchangers 81b and 91c and the pipe 96, the liquid-gas heat exchangers 111b and 121c and the pipe 126, the liquid-gas heat exchangers 111b and 171c, and the pipe 162, which will be described later, are provided.
  • the liquid-gas heat exchanger may be replaced with a gas-gas heat exchanger or the like, and it may be said that some “fluid” is circulated.
  • the inside air (warm air) in the ceiling space flows into the inside air unit 60 through the inside air flow inlet 62, first, the warm air passes through the liquid-gas heat exchanger 61b, so that the warm air and Heat exchange is performed with a liquid (such as water), and the temperature of the warm air decreases.
  • the degree of the reduction depends on the outside air temperature (liquid temperature) and the warm air temperature.
  • the warm air whose temperature has been lowered passes through the evaporator 61a.
  • the warm air whose temperature has been lowered is cooled by the evaporator 61a, and the temperature is further lowered to become cold air.
  • This cold air is controlled to be a predetermined temperature (set temperature).
  • the controller 74 controls the entire integrated indirect outdoor air cooling system 50, and performs various controls such as control of the rotational speed of each fan and control of the circulation pump 53, but is not particularly described here.
  • the controller 74 has a calculation device such as a CPU and a storage device such as a memory.
  • the controller 74 executes a program stored in advance in the memory or the like, and inputs measurement values from various sensors (not shown) as needed. By doing so, the integrated indirect outdoor air cooling system is controlled.
  • the controller 74 may be provided in the inside air unit case or in the outside air unit case, or may be provided outside these units (in the vicinity of the unit, etc.).
  • various signal lines and the like related to the controller 74 are not shown, but actually exist, and these controllers 74 have various configurations such as the integrated indirect outdoor air cooling system 50 and the like via the signal lines.
  • a temperature sensor (not shown) is provided in the vicinity of the air outlet of the blower 61c, and the controller 74 acquires a temperature measured by the temperature sensor via a signal line (not shown).
  • the controller 74 controls each structure which concerns on the said general compression-type refrigerating cycle via a signal line not shown so that this measured temperature may become preset temperature.
  • the liquid-gas heat exchanger 61b is disposed upstream of the warm air flow, and the evaporator 61a is disposed downstream.
  • the cold air generated by the evaporator 61a is discharged from the inside air outlet 63 (passes through the blower 61c).
  • the inside air outlet 63 is disposed so as to be connected to the underfloor space.
  • the integrated indirect outdoor air cooling system 50 is installed so that a part thereof enters under the floor as shown in FIG.
  • the cold air discharged from the inside air discharge port 63 flows into the underfloor space, flows into the server installation space via the underfloor space, and cools the heating element 101.
  • the cool air becomes warm air by cooling the heating element 101, and this warm air flows into the space behind the ceiling and again flows into the internal air unit 60 from the internal air flow inlet 62.
  • outside air that has flowed into the outside air unit 70 through the outside air inlet 72 first passes through the liquid-gas heat exchanger 71b, so that the outside air and liquid (such as water) are exchanged.
  • Heat exchange between the two The temperature of the liquid (water or the like) is increased by exchanging heat with warm air in the liquid-gas heat exchanger 61b. In this way, heat exchange is performed between the liquid (water or the like) whose temperature is high and the outside air, so that the temperature of the liquid (water or the like) decreases.
  • the liquid (such as water) whose temperature has decreased is supplied again to the liquid-gas heat exchanger 61b side by the circulation pump 53 and the pipe 51.
  • the temperature of the outside air rises due to heat exchange with the liquid (such as water) when passing through the liquid-gas heat exchanger 71b.
  • the outside air whose temperature has risen continues to pass through the condenser 71a, and the condenser 71a is further radiating heat as described above, so that the temperature rises further, and is then discharged from the outside air outlet 73. It will be.
  • Example 1 Downsizing In the past and in Example 1, there were two devices, a general air conditioner and an indirect outside air cooler. However, by integrating these two devices, the size can be reduced. Thus, the installation space can be reduced. For example, even when the machine room is small, it is easy to install (or it is possible to install a machine room that is too narrow to be installed in the past).
  • Example 1 Downsizing and improvement of manufacturability by the laminated body
  • Example 1 for example, regarding the configuration in the building, there are various evaporators, liquid-gas heat exchangers, fans, etc. Manufacturing was done individually).
  • miniaturization can be achieved by forming a laminated body in which an evaporator, a liquid-gas heat exchanger, and a fan are laminated and integrated.
  • FIGS. 2 and 3 it can be expected that the manufacturability is further improved by aligning the shapes and sizes so as to be substantially the same.
  • the effect of being easy to carry and easy to install can be expected.
  • the number of fans can be reduced as compared with the prior art and the first embodiment. Lower prices can be achieved.
  • the fans are provided with four fans: a fan 11 a, a fan 12 b, a fan 32, and a fan 42.
  • only two fans 71c and 71c are required. That is, the number of fans can be halved.
  • the cost of purchasing a fan can be halved.
  • power is required to operate the fan, but this power can be less for two compared to four.
  • the air conditioning system of Example 3 solves the above main problem. That is, an air conditioning system is provided in which outside air can be used for cooling indoor spaces even when the outside air temperature is high.
  • FIG. 4 is a configuration diagram of the air conditioning system (part 1) of the third embodiment.
  • 5A and 5B are configuration diagrams of the air conditioning system (part 2) of the third embodiment.
  • FIG. 6 is a diagram illustrating an operation model and the like of the air conditioning system according to the third embodiment.
  • the air conditioning system of the third embodiment is an air conditioning system that uses outside air to cool the indoor space, such as the indirect outside air cooling system, and thus may be referred to as an “outside air using air conditioning system”. .
  • the air conditioning system (part 1) of the illustrated third embodiment includes an outside air unit 80 provided outside the building with the wall 1 as a boundary and an inside air unit 90 provided inside the building, for example, as in the first and second embodiments. Consists of. However, the present invention is not limited to this example. For example, a configuration as shown in FIG. 10 may be used later.
  • the outside air unit 80 has a laminated body 81, and further, a part of a pipe 96 for circulating the second refrigerant is provided.
  • the second refrigerant include coolant such as “water”, chlorofluorocarbon, and the like.
  • the laminate 81 includes a liquid-gas heat exchanger 81b, a blower (fan) 81a, etc., which are examples of a configuration for exchanging heat between the second refrigerant and the outside air, and these are laminated as shown in the figure. It is an integrated structure.
  • the shape, structure, manufacturing method, and the like of such a laminated body have already been described with respect to the laminated bodies 61 and 71 in Example 2, and description thereof is omitted here.
  • liquid-gas heat exchanger 81b and the blower (fan) 81a are not necessarily a laminate. Although simplified in FIG. 4, in actuality, like the outside air unit 70 and the like, holes corresponding to the outside air inlet 72 and the outside air outlet 73 are provided in the casing of the outside air unit 80. Yes.
  • the installation location and installation method of the outside air unit 80 may be substantially the same as the outside air units 40, 70, etc., but are not limited to this example.
  • the installation location and installation method (including manufacturing in a factory, etc.) of the inside air unit 90 may be substantially the same as the outside air units 30, 60, etc., but are not limited to this example.
  • the inside air unit 90 has a laminated body 91, and further a part of a pipe 96 for circulating a second refrigerant (for example, a coolant such as “water”) and a refrigerant for circulating the first refrigerant (for example, chlorofluorocarbon). It has a pipe 95 (all but a part in the drawing), a pump 94 provided in the middle of the pipe 96, a compressor 92 and an expansion valve 93 provided in the middle of the refrigerant pipe 95.
  • a second refrigerant for example, a coolant such as “water”
  • a refrigerant for circulating the first refrigerant (for example, chlorofluorocarbon).
  • a pipe 95 all but a part in the drawing
  • a pump 94 provided in the middle of the pipe 96
  • a compressor 92 and an expansion valve 93 provided in the middle of the refrigerant pipe 95.
  • this is only an example, and the present invention is not limited to this example.
  • any one, two, or all of the pump 94, the compressor 92, and the expansion valve 93 may be connected to the outside air unit 80 side or outside the inside air unit 90 (however, Or in the building). If any one of the compressor 92 and the expansion valve 93 is provided on the outside air unit 80 side, a part of the refrigerant pipe 95 is also provided on the outside air unit 80 side.
  • the laminated body 91 of the inside air unit 90 includes a blower (fan) 91a, a condenser 91b, a liquid-gas heat exchanger 91c and an evaporator 91d which are examples of a configuration for exchanging heat between the second refrigerant and the inside air. These are laminated and integrated as shown in the figure. It is not always necessary to stack all of the blower (fan) 91a, the condenser 91b, the liquid-gas heat exchanger 91c, and the evaporator 91d.
  • the blower (fan) 91a may be provided separately. Alternatively, all these configurations may be provided separately. However, as already described in Example 2, there is a considerable merit in using a laminated body.
  • the positional relationship among the condenser 91b, the liquid-gas heat exchanger 91c, and the evaporator 91d in the inside air unit 90 is defined as follows.
  • the condenser 91b, the liquid-gas heat exchanger 91c, and the evaporator 91d are arranged in this order from the upstream side of the flow of air (inside air) passing through the inside air unit 90. That is, the air (inside air) flow is arranged such that the most upstream is the condenser 91b, the next is the liquid-gas heat exchanger 91c, and the most downstream is the evaporator 91d.
  • the evaporator 91d, the condenser 91b, the expansion valve 93, and the compressor 92 are connected to a refrigerant pipe 95.
  • the first refrigerant circulates through the evaporator 91d, the condenser 91b, the expansion valve 93, and the compressor 92 via the refrigerant pipe 95. That is, the first refrigerant circulates in a general compression refrigeration cycle (vapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression refrigeration cycle or the like) of “evapor compression
  • the surrounding heat is taken away, thereby cooling the surrounding air (inside air).
  • the deprived heat is radiated to the surroundings in the condenser 91b.
  • the functions of the expansion valve 93 and the compressor 92 are also conventional and are not specifically described here.
  • the condenser is usually installed outside the building (outside the building) and radiates heat to the outside air.
  • a condenser is provided on the indoor side (for example, inside the inside air unit 90, but not limited to this example). This is one of the features of the third embodiment, which will be described in detail later.
  • the inside air as return air (warm air) flowing into the inside air unit 90 from the indoor space (the space behind the ceiling) first passes through the condenser 91b and then passes through the liquid-gas heat exchanger 91c. Finally, it passes through the evaporator 91d.
  • the return air rises in temperature due to heat radiation from the condenser 91b when passing through the condenser 91b, and then exchanges heat with the second refrigerant (such as water) when passing through the liquid-gas heat exchanger 91c.
  • the second refrigerant such as water
  • liquid-gas heat exchanger 81b and the liquid-gas heat exchanger 91c are connected to each other via a pipe 96 in substantially the same manner as the liquid-gas heat exchangers 61b and 71b of the second embodiment.
  • the second refrigerant (water or the like) in the pipe 96 is circulated in the liquid-gas heat exchangers 81 b and 91 c and the pipe 96 by the pump 94.
  • the liquid-gas heat exchangers 81b and 91c may have substantially the same configuration as the liquid-gas heat exchangers 31 and 41, the liquid-gas heat exchangers 61b and 71b, etc., and are not particularly described here.
  • the second refrigerant such as water
  • the inside air warm air
  • heat exchange between the second refrigerant (water or the like) and the warm air is performed in the liquid-gas heat exchanger 91c, and the warm air is basically cooled (the heat of the warm air moves to the liquid).
  • the temperature of the warm air will decrease.
  • the temperature depends on the temperature of the outside air and the inside air, and it is not guaranteed that the temperature of the warm air decreases.
  • the temperature of the inside air (warm air) rises because heat is radiated by the condenser 91b at the upstream side (upstream side) of the liquid-gas heat exchanger 91c.
  • the temperature of the return air (warm air) from the indoor space is 30 ° C. and the outside air temperature is 35 ° C.
  • the temperature of the inside air after passing through the condenser 91b is 45 ° C.
  • the temperature of the inside air will be lowered in the gas heat exchanger 91c (eg 45 ° C. ⁇ 36 ° C., etc.)
  • the inside air can be cooled by outside air even in an environment where the outside air temperature is high, but 36 ° C. is higher than the original inside air temperature (30 ° C.).
  • the cooling of the first refrigerant in the condenser 91b conventionally uses the 35 ° C. outside air, but in this example, the 30 ° C. inside air is used. That is, in the situation where the outside air temperature is higher than the temperature of the return air (inside air), the configuration of the third embodiment shown in FIG. 4 and the like has a higher cooling effect of the first refrigerant in the condenser 91b than the conventional configuration. become.
  • FIG. 4 and FIG. 8 can obtain the following merits when compared with the configuration shown in FIG. 3, for example.
  • FIGS. 5A and 5B are first examples
  • FIG. 5B is a second example.
  • 5A and 5B is based on the configuration of FIG. 4 described above, and a condenser is also provided on the outside air unit side to perform switching control using the illustrated three-way valve 112 (switching device).
  • An operation substantially similar to that of the second embodiment (FIG. 3) can be performed.
  • the space to be cooled by the air conditioning system (part 1) (part 2) shown in FIG. 4, FIG. 5A, and FIG. 5B is the same as the example shown in FIG. That is, the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as server devices (computer devices) are mounted are installed. Then, the cool air is sent out to the underfloor space, the cool air is supplied to the server installation space via the underfloor space, and each heating element 101 is cooled by this cool air. As a result, the cold air becomes warm air, and this warm air flows into the ceiling space. The return air (warm air) from the ceiling space flows into the inside air unit 90 in FIG. 4 and the inside air unit 120 in FIGS. 5A and 5B, and the cold air is generated in these inside air units and sent to the underfloor space. Will be.
  • the indoor space to be cooled is, for example, a server room in which a large number of server racks 102 on which heating elements 101 such as
  • FIG. 5A will be described.
  • the air conditioning system (part 2) of the third embodiment shown in FIG. 5A includes an inside air unit 120 and an outside air unit 110.
  • the casing of the inside air unit 120 and the outside air unit 110, the manufacturing / installation method, the positional relationship between the inside and outside units, and the like may be substantially the same as the inside air unit 60 and the outside air unit 70 and the like, and will not be particularly described here. .
  • the inside air unit 120 has a laminated body 121 and the like.
  • the laminated body 121 includes a blower (fan) 121a, a condenser 121b, a liquid-gas heat exchanger 121c, an evaporator 121d, and the like, which are laminated and integrated as illustrated. .
  • the laminate 121 may be the same as the laminate 91 shown in FIG. Therefore, the same conditions as those for the laminate 91 are imposed. That is, the condenser 121b, the liquid-gas heat exchanger 121c, and the evaporator 121d are arranged in this order from the upstream side of the flow of air (inside air) passing through the inside air unit 120.
  • the configuration in which the evaporator, the liquid-gas heat exchanger, the condenser, and the blower (fan) are integrated as a laminated body as described above has many advantages as described above. It is not limited to. For example, any two or more of these four components may be laminated, or all four components may be provided separately (however, even in this case, in FIG. As explained, the condenser, the liquid-gas heat exchanger, and the evaporator are arranged in this order from the upstream side of the inside air flow).
  • the casing of the inside air unit 120 is provided with holes such as the illustrated inside air inlet 128 and the inside air outlet 127.
  • the blower (fan) 121a forms an air flow indicated by a one-dot chain arrow in the figure. That is, warm air in the ceiling space flows into the inside air unit 120 from the inside air flow inlet 128 and passes through the inside air unit 120 (particularly, the laminated body 121) to form cold air.
  • the blower (fan) 121a creates an air flow (shown by a one-dot chain line arrow in the figure) that is discharged from the air.
  • the cold air discharged from the inside air discharge port 127 flows into the server room or the like via the underfloor space or the like.
  • the air flow is such that the hole as the illustrated internal air discharge port 127 is the internal air flow inlet and the hole as the internal air flow inlet 128 is the internal air discharge port (on the figure, You may make it make the air blower (fan) 121a form the flow of the direction opposite to the flow shown with a dashed-dotted arrow.
  • An example of such a configuration is shown in FIG.
  • an internal air flow inlet 127 ' is provided on the upper side of the housing, and an internal air discharge port 128' is provided on the lower side of the housing.
  • the structure of the laminated body 121 will change. That is, as described above, the condenser is arranged in the order of the condenser, the liquid-gas heat exchanger, and the evaporator from the upstream side of the air (inside air) flow in the inside air unit. And the evaporator 121d are exchanged. That is, it becomes a structure like the laminated body 121 'shown in FIG.
  • the laminate 121 ' is arranged in the order of the condenser 121b, the liquid-gas heat exchanger 121c, and the evaporator 121d from the right side in the figure.
  • the flow of the internal air formed by the blower (fan) 121a flows into the housing from the internal air flow inlet 127 'and is discharged from the internal air discharge port 128' as shown by a one-dot chain line arrow in FIG. Therefore, the condenser 121b, the liquid-gas heat exchanger 121c, and the evaporator 121d are arranged in this order from the upstream side of such an air flow.
  • the outside air unit 110 has a laminated body 111.
  • the laminated body 111 includes a blower (fan) 111a, a liquid-gas heat exchanger 111b, a condenser 111c, and the like, and these are laminated and integrated as illustrated. Note that it is not always necessary that all of these three components be a laminate.
  • the outside air unit 110 (same as the outside air unit 70 and the like) has holes such as the outside air inlet 114 and the outside air outlet 115 shown in the housing. Yes.
  • the air blower (fan) 111a flows outdoor air (outside air) into the outside air unit 110 from the outside air flow inlet 114, passes through the laminated body 111, and then is discharged from the outside air outlet 115. (Indicated by dotted arrows in the figure).
  • the laminate 111 itself may be the same as the laminate 71 described above.
  • the laminate 111 is provided with the liquid-gas heat exchanger 111b on the upstream side of the air flow as described above (indicated by a dotted arrow in the figure), and on the downstream side of the above-described liquid-gas heat exchanger 111b.
  • a condenser 111c is provided. This is the same even when the laminate is not used.
  • the expansion valve 123 and the compressor 113 are provided in either the outside air unit 110 or the inside air unit 120, respectively.
  • the expansion valve 123 is provided in the inside air unit 120
  • the compressor 113 is provided in the outside air unit 110.
  • the present invention is not limited to this example. Will be omitted).
  • the evaporator 121d, the expansion valve 123, and the compressor 113 are connected to a refrigerant pipe 125.
  • the refrigerant pipe 125 is provided with a three-way valve 112 as an example of a switching device in the middle of the refrigerant pipe 125, and the three-way valve 112 is branched into a refrigerant pipe 125a and a refrigerant pipe 125b shown in the figure.
  • the refrigerant pipe 125a is connected to the condenser 121b of the laminate 121.
  • the refrigerant pipe 125b is connected to the condenser 111c of the laminated body 111, and further joins the refrigerant pipe 125a at the tip.
  • the first refrigerant can be flowed to either the refrigerant pipe 125a or the refrigerant pipe 125b by switching the opening and closing of the three-way valve 112.
  • the first refrigerant can flow through either the condenser 111c or the condenser 121b.
  • the first refrigerant circulates through the refrigerant pipe 125 (including the refrigerant pipe 125a or the refrigerant pipe 125b), the evaporator 121d, the condenser 111c or the condenser 121b, the expansion valve 123, and the compressor 113.
  • the first refrigerant circulates in a compression refrigeration cycle (such as a vapor compression refrigeration cycle) of “evaporator 121d ⁇ compressor 113 ⁇ condenser 111c or condenser 121b ⁇ expansion valve 123 ⁇ evaporator 121d”.
  • the surrounding air is deprived, thereby cooling the surrounding air.
  • the deprived heat is radiated to the surroundings in the condenser 111c or the condenser 121b.
  • the functions of the expansion valve 123 and the compressor 113 are also conventional and will not be described in particular.
  • the refrigerant switching control by the three-way valve 112 is determined by, for example, the outside air temperature or the inside air temperature. Or you may determine based on power consumption.
  • the controller 130 shown in the figure is, for example, the outside air temperature is equal to or higher than a predetermined temperature, or when “outside air temperature> inside air temperature” and the temperature difference between the outside air temperature and the inside air temperature is equal to or more than a predetermined value, Valve switching control of the three-way valve 112 is performed, and the first refrigerant flows into the refrigerant pipe 125a (condenser 121b).
  • the operation and effect in this case are substantially the same as in FIG. That is, when the first refrigerant enters the refrigerant pipe 125a (condenser 121b), heat is released from the condenser 121b to the inside air. Therefore, the function of the multilayer body 121 is the above-described multilayer body 91. And substantially the same.
  • the inside air temperature is, for example, the temperature of return air from the ceiling space).
  • return air (warm air) flowing into the inside air unit 120 from the indoor space (the space behind the ceiling) through the inside air flow inlet 128 first passes through the condenser 121b, and then passes through the liquid-gas heat exchanger 121c. And finally passes through the evaporator 121d.
  • the return air rises in temperature due to heat radiation from the condenser 121b when passing through the condenser 121b, and then exchanges heat with the second refrigerant (such as water) when passing through the liquid-gas heat exchanger 121c. After the temperature is lowered by the above, it is cooled by passing through the evaporator 121d and becomes cool air.
  • the power consumption before and after the valve opening / closing switching control of the three-way valve 112 is measured. If the power consumption decreases, the power consumption is left as it is. If the power consumption increases, the valve opening / closing switching of the three-way valve 112 is performed again. You may make it return to the original state (state in which a 1st refrigerant
  • the valve opening / closing switching control of the three-way valve 112 is performed again to return to the original state (the state where the first refrigerant flows into the refrigerant pipe 125b (condenser 111c)). You may make it return.
  • valve opening / closing switching control of the three-way valve 112 is performed, and the first refrigerant is caused to flow into the refrigerant pipe 125b (condenser 111c).
  • the operation in this case may be the same as in FIGS.
  • the return air (warm air) flowing into the inside air unit 120 from the indoor space (the space behind the ceiling) through the inside air flow inlet 128 passes through the condenser 121b without any particular passage, and then the liquid-gas heat exchange.
  • the temperature drops due to heat exchange with the second refrigerant such as water
  • the heat taken by the evaporator 121d from the surroundings is radiated to the outside air in the condenser 111c.
  • the second refrigerant is circulated in the pipe 126 by the circulation pump 124.
  • the pipe 126 is connected to the liquid-gas heat exchangers 111b and 121c similarly to the pipe 51 and the like.
  • valve opening / closing switching control of the three-way valve 112 is performed by, for example, the controller 130 shown in the figure, but will not be described in detail here.
  • the controller 130 includes a CPU / MPU, a memory, and the like, and performs control such as adjusting the temperature of the cold air by inputting temperature data from a temperature sensor (not shown) or the like. It is.
  • the installation location of the controller 130 may be arbitrary.
  • check valves 122a and 122b are provided as shown. That is, first, as shown in the figure, the refrigerant pipe 125a and the refrigerant pipe 125b, which are two refrigerant pipes 125, merge at a junction R shown in the figure to form one refrigerant pipe 125 again.
  • a check valve 122a is provided in front of the junction R.
  • a check valve 122b is provided in front of the junction R.
  • the condenser 111c does not exist, and therefore the three-way valve 112, the refrigerant pipe 125b, and the check valves 122a and 122b do not exist.
  • the refrigerant pipe 125a can be regarded as the refrigerant pipe 125).
  • FIG. 5A if the configuration of FIG. 5A is described based on the configuration of FIG. 4, first, a condenser 111c is added to the configuration of FIG. 4, and the refrigerant pipe 125 is branched halfway.
  • the refrigerant pipe 125b which is a branch pipe is connected to the condenser 111c.
  • a three-way valve 112 which is an example of a switching device, is provided at the branch point of the refrigerant pipe 125, and the first refrigerant is circulated to either the condenser 121b or the condenser 111c by this switching device.
  • the check valves 122a and 122b are also added.
  • FIG. 5B The configuration of FIG. 5B is almost the same as the configuration of FIG. 5A described above, and only a part thereof is different. Therefore, regarding FIG. 5B, only a different point from FIG. 5A is demonstrated, and description is abbreviate
  • the illustrated three-way valve 112 ' is provided instead of the three-way valve 112 in FIG. 5A.
  • the three-way valve 112 of FIG. 5A was provided in the front stage (inflow side) of the condenser 111c.
  • the three-way valve 112 ′ in FIG. 5B is provided at the rear stage (outflow side) of the condenser 111 c. From the three-way valve 112 ', the point that the refrigerant pipe 125 branches into the refrigerant pipe 125a and the refrigerant pipe 125b is substantially the same as that in FIG. 5A. Further, the refrigerant pipe 125b is connected to the expansion valve 123, and the refrigerant pipe 125a is connected to the condenser 121b, which is substantially the same as FIG. 5A.
  • the refrigerant is caused to flow to either the condenser 111 c or the condenser 121 b by the valve switching control of the three-way valve 112.
  • the refrigerant always flows to the condenser 111c, and whether or not the refrigerant further flows to the condenser 121b is controlled by switching the valve of the three-way valve 112 ′. It is.
  • the refrigerant temperature can be expected to be lowered by always allowing the refrigerant to flow through the condenser 111c. Further, when “outside air temperature> inside air temperature”, the refrigerant is caused to flow to the refrigerant pipe 125a by the valve switching control of the three-way valve 112 '(the refrigerant is also caused to flow to the condenser 121b). As a result, the refrigerant temperature can be temporarily lowered by the condenser 111c, and further the refrigerant temperature can be lowered to the vicinity of the inside air temperature by the condenser 121b.
  • outside temperature is synonymous with outside temperature.
  • the condenser 121b can be downsized. Further, since the amount of heat that must be removed by the heat exchanger 121c is reduced, an improvement in efficiency can be expected (for example, a reduction in the air volume of the blower 111a or a reduction in the flow rate of the circulating refrigerant by the pump 124).
  • FIG. 5B Note that the configuration of FIG. 5B can be described as follows.
  • the outside air unit 110 is also provided with a condenser 111c, the refrigerant pipe 125 is connected to the condenser 111c, the refrigerant pipe 125 is further branched on the refrigerant outflow side of the condenser 111c, and a switching device (three-way valve) is connected to the branch point. 112 ′). Then, by this switching device, the first refrigerant is circulated to the condenser 121b in the inside air unit 120 and then circulated to the expansion valve 123, and the first refrigerant is fed to the condenser 121b in the inside air unit 120. The route is switched to one of the second routes to be circulated to the expansion valve 123 without being circulated.
  • the route switching control by the switching device is executed by the controller 130, for example.
  • FIG. 6 shows an operation model and a simulation result of the air conditioning system of the third embodiment.
  • the thick arrow indicates the flow of air (inside air).
  • a configuration along the flow of this air (inside air), that is, a configuration through which the inside air passes, is a heating element 140, a condenser 141, a liquid-gas heat exchanger 142, and an evaporator 143 shown in the figure.
  • the heating element 140 corresponds to the heating element 101 (server device or the like) in the indoor space to be cooled.
  • the condenser 141 corresponds to the condenser 91b
  • the liquid-gas heat exchanger 142 corresponds to the liquid-gas heat exchanger 91c in the inside air unit 90
  • the evaporator 143 corresponds to the evaporator 91d.
  • the illustrated compressor 144 corresponds to the compressor 92
  • the illustrated expansion valve 145 corresponds to the expansion valve 93.
  • the thin line arrows in the figure connecting between the condenser 141, the evaporator 143, the compressor 144, and the expansion valve 145 indicate the flow of the first refrigerant. That is, the first refrigerant circulates in a compression refrigeration cycle (vapor compression refrigeration cycle or the like) of “evaporator 143 ⁇ compressor 144 ⁇ condenser 141 ⁇ expansion valve 145 ⁇ evaporator 143”.
  • the illustrated pump 146 corresponds to the pump 94
  • the illustrated liquid-gas heat exchanger 147 corresponds to the liquid-gas heat exchanger 81b on the outside air unit 80 side.
  • the illustrated thin line arrows connecting the pump 146, the liquid-gas heat exchanger 147, and the liquid-gas heat exchanger 142 indicate the flow of the second refrigerant (water, etc.).
  • the liquid-gas heat exchanger 142 exchanges heat between the inside air and the second refrigerant
  • the liquid-gas heat exchanger 147 exchanges heat between the outside air and the second refrigerant. Therefore, when the outside air temperature is low, an indirect outside air cooling function is realized in which the inside air is indirectly cooled by the outside air via the second refrigerant.
  • FIG. 6A shows an example of the temperature of the inside air and the first refrigerant in each stage of the cycle. This is just an example. Moreover, this shows an ideal temperature as a simulation, and this is not the case in reality. For example, although the temperature of the first refrigerant in the condenser 141 greatly decreases, it does not decrease to the same temperature (32 ° C.) as the inside air as shown in the figure, and becomes a slightly higher temperature (such as 33 ° C.).
  • the inside air is cooled by the evaporator 143 to become cold air of 18 ° C.
  • This cool air cools the heating element 140, which is a server device, and the inside air becomes warm air of 32 ° C.
  • This warm air of 32 ° C. passes through the condenser 141.
  • the high-temperature (66 ° C.) first refrigerant generated by the compressor 144 flows into the condenser 141 and dissipates heat to the surroundings.
  • the first refrigerant having a high temperature (66 ° C.) is cooled by the warm air of 32 ° C.
  • the temperature of the first refrigerant is lowered to 32 ° C., while the temperature of warm air (inside air) is raised to 55 ° C.
  • the first refrigerant at 32 ° C. further flows into the evaporator 143 as the first refrigerant at 10 ° C. in the expansion valve 145 at the next stage, whereby the evaporator 143 cools the inside air as described above and 18 It will produce a cool air of ° C.
  • the warm air having reached 55 ° C. passes through the liquid-gas heat exchanger 142, the temperature is lowered by exchanging heat with the second refrigerant and becomes warm air of 36 ° C. Then, the warm air of 36 ° C. passes through the evaporator 143 and becomes cool air of 18 ° C. as described above.
  • the return air from the indoor space is 32 ° C.
  • the warm air flowing into the evaporator 143 is 36 ° C., although the indirect outside air cooling function is used. On the contrary, the temperature is rising.
  • the warm air at 55 ° C. is heated to 36 ° C., and the cooling function is achieved. Also, since the temperature difference is large, the cooling efficiency of the warm air (inside air) is good. This is because even if the outside air temperature is very high (for example, 36 ° C.), it is very low compared to 55 ° C. If the warm air passing through the liquid-gas heat exchanger 142 is the return air of 32 ° C., if the outside air temperature is 36 ° C., the temperature may not be lowered but may also rise. is there. On the other hand, in Example 3, even if the outside air temperature is very high, there is a high possibility that the indirect outside air cooling functions.
  • the reason why the inside air becomes a high temperature of 55 ° C. as described above is that a condenser 141 is provided on the inside air unit side (indoor side) and the inside air passes therethrough. As shown in FIG. 14, FIG. 1 to FIG. 3, etc., the condenser is usually provided outside the room and radiates heat to the outside air. This is not a problem when the outside air temperature is low, and the first refrigerant is sufficiently cooled by the outside air in the condenser.
  • the first refrigerant is not sufficiently cooled by the outside air in the condenser, and even if the room temperature is kept at the set value, the power consumption increases. become.
  • the air conditioning system of the third embodiment the first refrigerant is cooled by the 32 ° C. internal air having a temperature lower than that of the external air in the condenser 141 as described above. In comparison, the temperature of the first refrigerant can be further reduced, leading to a reduction in power consumption.
  • FIG. 6B shows a simulation result related to the power consumption reduction.
  • the horizontal axis represents the outside air temperature (° C.), and the vertical axis represents the power consumption (kW).
  • the data indicated by triangles ( ⁇ ) in the graph is the power consumption of the indirect outside air cooling function (mainly the power consumption of the fan and the pump 146), and the data indicated by squares ( ⁇ ) is the power consumption of the refrigeration cycle (mainly the compressor). (Power consumption of 144), circle ( ⁇ ) indicates the total of these (total power consumption).
  • those with blanks in each symbol (white triangle ⁇ , white square ⁇ , white circle ⁇ ) are conventional air conditioning systems, and those within each symbol are black (black triangle ⁇ , black square ⁇ , black circle ⁇ ) are examples 3 is data corresponding to the air conditioning system 3.
  • the conventional air conditioning system is the air conditioning system of the said FIG. 14, for example, you may think that not only this example but the air conditioning system of the said Example 1 or Example 2 may be sufficient, for example.
  • the indirect outside air cooling does not substantially function in the conventional air conditioning system, so the fan and the pump 146 are stopped.
  • the power consumption (white triangle ⁇ ) related to the indirect outside air cooling function is zero.
  • the inside air becomes very hot (55 ° C, etc.), so that the indirect outside air cooling functions even if the outside air temperature exceeds 30 ° C or further exceeds 35 ° C.
  • the fan and the pump 146 are not stopped, and there is constant power consumption (black triangle ⁇ ) as shown in the figure.
  • the air conditioning system of the third embodiment requires less power consumption than the conventional air conditioning system, and this energy saving effect increases as the outside air temperature increases. .
  • the air conditioning system of the third embodiment may have an adverse effect on the energy saving effect. Therefore, the configuration shown in FIG.
  • the air conditioning system of the third embodiment (part 1) and the conventional air conditioning system can be switched at any time. However, this depends on the installation environment. For example, if the installation location belongs to the tropics, there is no problem with the configuration of FIG.
  • the greater the degree of cooling of the first refrigerant the lower the refrigerant temperature; the greater the degree of supercooling
  • the refrigeration effect the amount of change in the specific enthalpy of the refrigerant in the evaporator
  • the degree of supercooling of the first refrigerant It is disclosed to be smaller.
  • the temperature of the server room which is the space to be cooled, needs to be maintained substantially at the set temperature.
  • the evaporator needs to continue to generate cool air of approximately 18 ° C.
  • the degree of supercooling of the refrigerant is reduced, in order to generate cold air of approximately 18 ° C., for example, it is necessary to increase the amount of refrigerant circulation, which increases power consumption.
  • the degree of supercooling of the first refrigerant does not need to be smaller than that of the conventional air conditioning system (cooling of the refrigerant using the outside air). Increase in power consumption can be suppressed.
  • a high energy saving effect can be obtained in an environment where the outside air temperature is high as compared with the conventional air conditioning system.
  • the third embodiment when the unit configuration, manufacturing, installation, etc. shown in FIGS. 4 and 5A and the like are performed, substantially the same effect as the second embodiment can be obtained. That is, as the effects of the second embodiment, (a) downsizing, (b) ductless, reduction of construction cost by wall mounting, (c) downsizing and improvement of manufacturability by the laminated body, (d) ventilation by fan commonization The effects of reducing the power (fan power) and reducing the price can also be obtained in the third embodiment.
  • the third embodiment will be compared with the conventional example.
  • FIG. 7A is a diagram illustrating an operation model of the air conditioning system according to the third embodiment. This is substantially the same drawing as FIG. 6A and is partially omitted. Accordingly, the same reference numerals as those in FIG. 6A are attached to the respective components, and detailed description thereof is omitted.
  • a refrigeration cycle such as a vapor compression refrigeration cycle is realized by the illustrated condenser 141, evaporator 143, compressor 144, and expansion valve 145. Further, the illustrated pump 146, liquid-gas heat exchanger 147, and liquid-gas heat exchanger 142 realize an indirect outdoor air cooling function.
  • the liquid-gas heat exchanger 147 configured to allow outside air to pass is installed outside the building (outside the building), and the condenser 141, the liquid-gas heat exchanger 142, and the evaporator 143 configured to allow the inside air to pass through are indoors. Install in the building. There are no particular limitations on the installation location of the configuration other than these.
  • FIG. 7C shows an operation model of a conventional air conditioning system for comparison with FIG. 7A.
  • FIGS. 7A and 7C has almost no structural difference between the third embodiment and the conventional example, and only the condenser installation position is different. Since the installation positions are different, FIG. 7A shows the condenser 141, and FIG. 7C shows the condenser 141 'with different signs.
  • the condenser 141 is installed at a position where the inside air after passing through the heating element 140 (server or the like) passes.
  • the condenser 141 'in the conventional air conditioning system is installed in the position where external air passes.
  • the condenser 141 ′ allows the outside air that has passed through the liquid-gas heat exchanger 147 to pass therethrough.
  • the indirect outside air cooling function is stopped (for example, the pump 146 is stopped) because, for example, the outside air temperature is very high.
  • FIG. 7B is a temperature schematic diagram corresponding to the air conditioning system of Example 3 in FIG.
  • FIG. 7 (d) is a temperature schematic diagram corresponding to the conventional air conditioning system of FIG. 7 (c).
  • an arrow that is connected to the heating element 140 (server or the like) and circles indicates a temperature change related to the inside air.
  • An arrow connected to the compressor 144 and the expansion valve 145 indicates a temperature change or the like related to the first refrigerant.
  • Q (Q1a etc.) means heat quantity
  • L (Lpa etc.) means motive power (electric power consumption).
  • a portion surrounded by a dotted line and denoted by reference numeral 141a indicates a change in the temperature of the inside air or the refrigerant in the condenser 141.
  • a portion surrounded by a dotted line and denoted by reference numeral 141b indicates a temperature change of the refrigerant in the condenser 141 '.
  • a portion surrounded by a dotted line and denoted by reference numeral 142a indicates a change in the temperature of the inside air in the liquid-gas heat exchanger 142.
  • a portion surrounded by a dotted line and denoted by reference numeral 142b is a temperature change of the inside air in the liquid-gas heat exchanger 142 (however, the temperature of the inside air does not change as shown). Is shown.
  • a portion surrounded by a dotted line and denoted by reference numeral 143a indicates a temperature change of the inside air or the refrigerant in the evaporator 143.
  • a portion surrounded by a dotted line and denoted by reference numeral 143b indicates a change in temperature of the inside air or the refrigerant in the evaporator 143.
  • the heat quantity Q1a is exchanged between the inside air and the first refrigerant in the condenser 141.
  • the temperature of the inside air rises as shown in 141a in the figure, The temperature of the first refrigerant falls to the temperature level of the return air (RA) shown.
  • the return air (RA) is inside air as return air from the heating element 140 (server or the like).
  • this shows an ideal temperature schematic diagram as a simulation, and this is not the case in reality.
  • the temperature of the first refrigerant greatly decreases, it does not decrease to the temperature level of the return air (RA) as shown in the figure, and becomes a temperature slightly higher than that.
  • the inside air then passes through the liquid-gas heat exchanger 142, so that the heat quantity Q2a is taken away by the indirect outside air cooling function (indirect heat exchange with the outside air, and the heat goes outside the building (outside the building).
  • the temperature of the inside air will drop to an outside air (OA) temperature level, for example as shown at 142a in the figure.
  • OA outside air
  • the inside air is deprived of the heat Q3a by the evaporator 143 and falls to the temperature level of the air supply (SA) shown in the figure.
  • SA air supply
  • the air supply (SA) is the inside air (cold air) supplied to the heating element 140 (server or the like).
  • the temperature of the refrigerant in the evaporator 143 is lowered to the “J” level shown in the figure.
  • the temperature of the first refrigerant decreases to the temperature level of the illustrated outside air (OA) by exchanging the amount of heat Q1b with the outside air in the condenser 141 'installed outside the building (outside the building). Thereafter, the first refrigerant is supplied to the evaporator 143 after the temperature is lowered to the temperature level of “J” shown in the drawing through the expansion valve 145.
  • OA illustrated outside air
  • the temperature of the first refrigerant before entering the expansion valve 145 is RA in FIG. 7B and OA in FIG. 7D.
  • RA ⁇ OA. That is, in Example 3, the temperature of the first refrigerant before the expansion valve 145 is lower than that of the conventional example.
  • the power consumption of the refrigeration cycle is less in Example 3. That is, as shown in the figure, the refrigeration cycle power (power consumption) (mainly compressor 144 power (power consumption)) in Example 3 is Lca, and the conventional refrigeration cycle power (power consumption) (mainly compressor 144).
  • the power (power consumption) is Lcb, Lcb> Lca. This is a case where the temperature of the return air (RA) is lower than the temperature of the outside air (OA) as in the illustrated example.
  • the power of the indirect outside air cooling function is conventionally “0” because the power of the indirect outside air cooling function is stopped. Electric power) Lpa is added. Therefore, in this example, when the condition “Lcb> Lca + Lpa” is satisfied, the air conditioning system of the third embodiment consumes less power than the conventional air conditioning system.
  • FIG. 10 is an overall schematic diagram including the air conditioning system of the third embodiment.
  • the air conditioning system according to the third embodiment is not limited to the above-described example, and can be regarded as the configuration illustrated in FIG. In FIG. 10, the example shown in FIG. 4 is used as each component, and the same reference numerals as those in FIG. 4 are given. As described above, the present invention is not limited to the example of integration and lamination, and therefore, for example, a configuration as shown in FIG. 10 may be used.
  • the air conditioning system of the third embodiment is assumed to include the illustrated heat pump 151 and heat exchanger 152.
  • the heat pump 151 includes the evaporator 91d, the compressor 92, the condenser 91b, the expansion valve 93, and the like, and the refrigerant passes through the refrigerant pipe 95 connected to the evaporator 91d ⁇ the compressor 92 ⁇ the condenser 91b ⁇ It circulates in the order of “expansion valve 93 ⁇ evaporator 91d”.
  • the heat exchanger 152 includes the liquid-gas heat exchangers 91c and 81b and a pipe 96 connecting these, although not particularly shown.
  • the cool air (inside air) sent from the heat pump 151 enters the server room via the underfloor space and becomes warm by cooling the server device and the like.
  • This warm air (inside air) flows into the heat pump 151 via the ceiling space, rises in temperature by passing through the condenser 91b, and then flows into the heat exchanger 152.
  • indirect heat exchange with inside air and outside air is performed in heat exchanger 152, and the temperature of inside air falls.
  • the inside air whose temperature has decreased flows into the heat pump 151 passes through the evaporator 91d, is cooled to become the cold air, and is sent to the underfloor space as described above.
  • FIG. 11 is a configuration diagram of an air conditioning system (part 1) according to the fourth embodiment.
  • FIG. 12 is a configuration diagram of the air conditioning system (part 2) of the fourth embodiment.
  • FIG. 13 is a diagram illustrating an operation model and the like of the air conditioning system according to the fourth embodiment.
  • FIG. 11 an air conditioning system of the fourth embodiment (part 1) will be described.
  • the same reference numerals as those shown in FIG. 5B denote the same parts as those shown in FIG. 5B, and a description thereof will be omitted or simplified.
  • the air conditioning system of the fourth embodiment shown in FIG. 11 includes an outside air unit 160 and an inside air unit 170.
  • the outside air unit 160 and the inside air unit 170 are provided on the outdoor side (outside of the building) and the indoor side (inside the building) with the wall 1 interposed therebetween, as in the case of the outside air unit 110 and the inside air unit 120 shown in FIG. 5B. It is done.
  • the manufacturing and installation methods of the outside air unit 160 and the inside air unit 170 may be substantially the same as the manufacturing and installation methods of the outside air unit 110 and the inside air unit 120 shown in FIGS. 5A and 5B.
  • the air conditioning system of the fourth embodiment can obtain substantially the same effect as the air conditioning system of the third embodiment. Further, an effect peculiar to Example 4 described later can also be obtained.
  • the outside air unit 160 has a stacked body 111.
  • the laminated body 111 includes a blower (fan) 111a, a liquid-gas heat exchanger 111b, a condenser 111c, and the like, and these are laminated and integrated as illustrated. In addition, these are attached
  • the expansion valve 123 and the compressor 113 are provided in either the outside air unit 160 or the inside air unit 170, respectively.
  • the expansion valve 123 is provided in the inside air unit 170 and the compressor 113 is provided in the outside air unit 160, but this is not a limitation.
  • the said expansion valve 123, the compressor 113, the condenser 111c, the condenser 171b, etc. are provided on the refrigerant
  • coolant coolant
  • a three-way valve 112 ′ which is an example of a switching device, is provided on the refrigerant pipe 125 in the middle thereof.
  • the refrigerant pipe 125 branches from the three-way valve 112 'into a refrigerant pipe 125a and a refrigerant pipe 125b shown in the figure.
  • the three-way valve 112 ' is provided at the rear stage (downstream side) of the condenser 111c.
  • the refrigerant pipe (branch pipe) 125a is connected to the condenser 171b in the inside air unit 170 and merges with the refrigerant pipe (branch pipe) 125b on the downstream side of the condenser 171b (merges at the junction R shown in the figure). Thus, it becomes one refrigerant pipe 125 again).
  • the refrigerant pipe 125 after joining at the joining point R is connected to the expansion valve 123.
  • the refrigerant pipe 125a and the refrigerant pipe 125b are provided with counter-support valves 122a and 122b near the junction R, respectively. This prevents the back flow of the first refrigerant.
  • FIG. 11 has been briefly described mainly with respect to the configuration that is substantially the same as the configuration shown in FIG.
  • the illustrated laminate 171 is provided on the inside air unit 170 side.
  • the laminated body 171 includes a blower (fan) 171a, a condenser 171b, and a liquid-gas heat exchanger 171c.
  • the difference between the stacked body 171 and the stacked body 121 is that the stacked body 171 does not have the evaporator 121d. Therefore, the illustrated blower (fan) 171a, condenser 171b, and liquid-gas heat exchanger 171c are substantially the same as the blower (fan) 121a, condenser 121b, and liquid-gas heat exchanger 121c in the laminate 121. It's okay.
  • the inside air Due to the flow of the inside air formed by the blower (fan) 121a (indicated by a dashed line arrow in the figure), the inside air passes through the condenser 171b and the liquid-gas heat exchanger 171c in this order.
  • the illustrated configuration is an example, and the present invention is not limited to this example.
  • the laminated body 171 is provided in the inside air unit 170
  • the laminated body 111 is provided in the outside air unit 160
  • other configurations may be provided in either the inside air unit 170 or the outside air unit 160. Therefore, for example, the evaporator 172 may be provided on the outside air unit 160 side.
  • the evaporator 172 is provided like illustration instead of not having the evaporator 121d as mentioned above. That is, in FIG. 5B, the evaporator 121d is provided between the expansion valve 123 and the compressor 113 (of course, it is needless to say that it is on the refrigerant pipe 125). On the other hand, in this configuration, an evaporator 172 is provided between the expansion valve 123 and the compressor 113 (on the refrigerant pipe 125).
  • the evaporator 121d and the evaporator 172 have different configurations.
  • the evaporator 121d can be regarded as a liquid-gas heat exchanger, and performs heat exchange between an arbitrary refrigerant and air (inside air) in a form involving evaporation of the refrigerant. That is, it is a general evaporator used in a general air conditioner (such as an air conditioner).
  • the evaporator 172 is an existing one but can be regarded as a liquid-liquid heat exchanger, not the liquid-gas heat exchanger. Therefore, the evaporator 172 does not perform heat exchange with air (inside air) that is a gas.
  • the evaporator 172 basically does not constitute a part of the stacked body 171 through which the inside air passes.
  • the installation position of the evaporator 172 is not particularly defined, but is basically provided in the internal unit 170 or the external unit 160.
  • the evaporator 172 is provided on the refrigerant pipe 125 as described above, and therefore the first refrigerant passes through the inside of the evaporator 172 although not particularly shown. Further, as shown in the figure, the evaporator 172 is connected not only to the refrigerant pipe 125 but also to the pipe 162. As with the pipe 126 in FIG. 5B, the pipe 162 itself is supplied with the second refrigerant (for example, water) from the liquid-gas heat exchanger 111b of the outside air unit 160 and the liquid-gas heat exchanger 171c of the inside air unit 170. It is the structure for circulating between. As in the configuration of FIG. 5B, a circulation pump 124 for circulating the second refrigerant is provided at an arbitrary location on the pipe 162.
  • the second refrigerant for example, water
  • the evaporator 172 is further connected to the piping 162 as above-mentioned. Therefore, not only the first refrigerant but also the second refrigerant passes through the evaporator 172.
  • an evaporator 172 is provided in front (upstream side) of the liquid-gas heat exchanger 171c. As a result, as described later, the second refrigerant cooled by the first refrigerant in the evaporator 172 flows into the liquid-gas heat exchanger 171c on the downstream side.
  • a three-way valve 161 or the like is further provided.
  • the three-way valve 161 or the like is not necessarily required. Therefore, the three-way valve 161 and the like will be described later.
  • the first refrigerant and the second refrigerant pass through the evaporator 172. Then, as in the case of the evaporator 121d, the first refrigerant evaporates in the evaporator 172, and at that time, the surrounding heat is taken away (the surrounding is cooled). In the case of the evaporator 121d, air (inside air) passes through the inside thereof, and thus the air (inside air) is cooled. On the other hand, in the case of the evaporator 172, the second refrigerant passes through the inside as described above, and therefore, the second refrigerant is cooled by the first refrigerant.
  • the second refrigerant is basically cooled by heat exchange with the outside air in the liquid-gas heat exchanger 111b of the outside air unit 110, and the second refrigerant after being cooled by the outside air. Is supplied to the liquid-gas heat exchanger 121c of the inside air unit 120. Thereby, heat exchange between the second refrigerant and the inside air is performed in the liquid-gas heat exchanger 121c, and the inside air is cooled by the second refrigerant.
  • the second refrigerant is further cooled in the evaporator 172 as described above before being supplied to the liquid-gas heat exchanger 171c.
  • the air (inside air) is directly cooled by the first refrigerant, whereas in the case of FIG. It can be considered that the air (inside air) is indirectly cooled.
  • the inside air (return air; warm air) flowing into the inside air unit 170 from the ceiling space shown in FIG. 1 through the inside air flow inlet 128 first passes through the condenser 171 b to increase in temperature. Thereafter, it is cooled by passing through the liquid-gas heat exchanger 171c.
  • the cooled inside air (cold air) is discharged from the inside air discharge port 127 and sent out to, for example, the underfloor space shown in FIG. Thereby, cold air is supplied to the space to be cooled (server installation space).
  • the controller 130 controls the compressor 113, the circulation pump 124, and the like so that the temperature of the cold air discharged from the inside air discharge port 127 is substantially the same as a predetermined set temperature (for example, 18 ° C.).
  • the flow rate of the first refrigerant and the second refrigerant is controlled.
  • the controller 130 controls, for example, the compressor 113 and the circulation pump 124 via a signal line 131 shown in FIG.
  • the evaporator 172 is a “liquid-liquid heat exchanger” that performs heat exchange between a relatively low temperature liquid (first refrigerant) and a relatively high temperature liquid (second refrigerant).
  • first refrigerant a relatively low temperature liquid
  • second refrigerant a relatively high temperature liquid
  • a so-called “liquid-liquid plate heat exchanger” or the like a so-called “liquid-liquid plate heat exchanger” or the like.
  • the second refrigerant always flows into the liquid-gas heat exchanger 111b to exchange heat with the outside air.
  • the configuration of FIG. 11 is configured such that the use of the three-way valve 161 or the like may prevent the second refrigerant from flowing (bypassed) into the liquid-gas heat exchanger 111b.
  • the second refrigerant is cooled by the first refrigerant in the evaporator 172 even when heat exchange with the outside air is not performed.
  • the three-way valve 161 is a three-way valve for dividing the flow path of the pipe into two, and has three pipe connection ports, one of which is for inflow (called an inflow port) and two for outflow ( Called the outlet).
  • the three-way valve 161 is connected to the pipe 162, allows the second refrigerant circulating in the pipe 162 by the circulation pump 124 to flow in from the inlet, and to flow out from one of the two outlets. Let Here, it can be considered that the pipe 162 branches into two by the three-way valve 161, and it is assumed that the pipe 162 branches into the branch pipe 162a and the branch pipe 162b shown in the figure.
  • branch pipe 162a One of the two outlets of the three-way valve 161 is connected to the branch pipe 162a, and the other is connected to the branch pipe 162b.
  • the branch pipe 162a After the branch pipe 162a passes through the liquid-gas heat exchanger 111b, the branch pipe 162a joins with the branch pipe 162b at the junction point Q shown in the figure to become one pipe 162 again.
  • This pipe 162 is connected to the evaporator 172 in the subsequent stage. ing.
  • the branch pipe 162b is directly connected and joined to the branch pipe 162a at the junction point Q.
  • the second refrigerant flows out from the three-way valve 161 onto the branch pipe 162a, the second refrigerant passes through the liquid-gas heat exchanger 111b and then flows into the evaporator 172.
  • the second refrigerant flows out from the three-way valve 161 onto the branch pipe 162b, the second refrigerant flows into the evaporator 172 as it is without passing through the liquid-gas heat exchanger 111b. become.
  • the second refrigerant in a situation where the second refrigerant can be cooled by outside air in the liquid-gas heat exchanger 111b, the second refrigerant is allowed to pass through the liquid-gas heat exchanger 111b.
  • the second refrigerant flows out from the three-way valve 161 onto the branch pipe 162b.
  • the liquid-gas heat exchanger 111b is bypassed.
  • the present invention is not limited to this example, and the three-way valve 161 may not be provided (therefore, the pipe 162 may not be branched into two). That is, regarding the configuration relating to the second refrigerant, the second refrigerant may necessarily flow to the liquid-gas heat exchanger 111b by the same configuration as in FIG. 5B.
  • a check valve may be provided in the branch pipe 162a before the junction Q with the branch pipe 162b.
  • FIG. 12 can also be regarded as a modified example of the configuration shown in FIG. 11, and is partially the same as FIG. Therefore, regarding FIG. 12, the description of the substantially same configuration as that of FIG. 11 will be omitted or simplified. Note that the relationship (difference) between FIG. 11 and FIG. 12 may be considered to be the same as the relationship (difference) between 5A and 5B.
  • the configuration of FIG. 12 is different from FIG. 11 in the arrangement of the three-way valve on the refrigerant pipe 125.
  • the configuration of FIG. 12 includes an outside air unit 160 ′ and an inside air unit 170.
  • the inside air unit may be the same as the inside air unit 170 of FIG. 11, and is therefore denoted by the same reference numeral “170”.
  • the outside air unit is partly different from the outside air unit 160 of FIG.
  • the three-way valve 112 ' is provided on the outflow side (downstream side) of the condenser 111c, as in FIG. 5B, and the first refrigerant always passes through the condenser 111c.
  • the three-way valve 112 ' controls whether or not the first refrigerant is allowed to pass through the condenser 171b.
  • the three-way valve 112 is provided on the inflow side (upstream side) of the condenser 111c, as in FIG. 5A. Then, the three-way valve 112 causes the first refrigerant to be either “a state where the condenser 111c is allowed to pass but the condenser 121b is not allowed to pass” or “a state where the condenser 111c is not allowed to pass but the condenser 121b is allowed to pass”. Switch to the state.
  • FIG. 13 will be described below.
  • FIG. 13A shows an operation model of the air conditioning system of Example 4 as described above.
  • FIG. 13B shows a simulation result related to power consumption reduction of the fourth embodiment.
  • FIG. 13 (a) will be described.
  • each temperature shown to Fig.13 (a) shows an example based on a simulation result etc. similarly to Fig.6 (a), and is not restricted to this example.
  • FIG. 13A corresponds to the configuration example of FIG. 12, and the reference numerals of the components shown in FIG. 12 are given.
  • the illustrated heating element 140 is the heating element 140 shown in FIG. 6A, and corresponds to, for example, the heating element 101 (server device or the like) shown in FIG.
  • FIG. 13A corresponds to the case where the first refrigerant does not pass the condenser 111c side by the three-way valve 112 in FIG. Therefore, the condenser 111c is not shown in FIG. 13A, and the condenser 171b is shown downstream of the compressor 113.
  • indoor air (inside air) circulates through the heating element 140, the condenser 171b, and the liquid-gas heat exchanger 171c.
  • the first refrigerant circulates in the configuration on the refrigerant pipe 125 shown in the figure. That is, the first refrigerant circulates through the compressor 113, the condenser 171b, the expansion valve 123, and the evaporator (liquid-liquid heat exchanger) 172, as indicated by thin arrows in the drawing.
  • the second refrigerant circulates in the configuration on the illustrated pipe 162. That is, the second refrigerant includes a circulation pump 124, a liquid-gas heat exchanger 171c, a liquid-gas heat exchanger 111b, and an evaporator (liquid-liquid heat exchanger) as indicated by thin dotted arrows in the figure. 172 is circulating.
  • the inside air that has become 32 ° C. by cooling the heating element 140 rises to 55 ° C. by passing through the condenser 171b.
  • the inside air at 55 ° C. passes through the liquid-gas heat exchanger 171c, it is cooled by heat exchange with the second refrigerant and decreases in temperature (in the example shown, it becomes 18 ° C.).
  • the internal air at 18 ° C. is sent to, for example, the underfloor space shown in FIG. 1, thereby cooling the heating element 140.
  • the inside air at 55 ° C. is cooled by heat exchange with the second refrigerant and decreases in temperature when passing through the liquid-gas heat exchanger 142. Is affected by the outside air temperature (36 ° C. in the example), the inside air temperature cannot be lowered to the set temperature (18 ° C. or the like). The temperature of the inside air is lowered to the set temperature (18 ° C. or the like) by the subsequent evaporator 143.
  • the temperature of the second refrigerant is made lower than the outside air temperature (below the set temperature; 18 ° C. in this example) by the evaporator (liquid-liquid heat exchanger) 172. Therefore, the temperature of the inside air can be lowered to the set temperature (18 ° C. or the like) in the liquid-gas heat exchanger 171c.
  • both the first refrigerant and the second refrigerant pass through the evaporator (liquid-liquid heat exchanger) 172, In the evaporator 172, heat exchange is performed between the first refrigerant and the second refrigerant.
  • the temperature of the first refrigerant flowing into the evaporator 172 is 10 ° C.
  • the temperature of the second refrigerant flowing out of the evaporator 172 is 18 ° C.
  • the temperature of the second refrigerant flowing into the evaporator 172 is not shown, but the second refrigerant exchanges heat with the outside air (36 ° C.) in the liquid-gas heat exchanger 111b, and then enters the evaporator 172. Inflow. Therefore, basically, the temperature of the second refrigerant flowing into the evaporator 172 does not become lower than the outside air temperature (36 ° C.). That is, in the illustrated example, heat exchange is performed between the first refrigerant at 10 ° C. and the second refrigerant at 36 ° C. or higher in the evaporator 172. Therefore, naturally, the second refrigerant is cooled by the first refrigerant, and is cooled to 18 ° C. in the illustrated example as described above.
  • the temperature of the second refrigerant flowing out from the liquid-gas heat exchanger 171c (referred to as temperature Ta) is not shown, but this varies depending on the flow rate of the second refrigerant. That is, when the flow rate of the second refrigerant is small, the temperature Ta can be a temperature close to the inside air temperature (55 ° C.) (eg, 50 ° C. or higher). On the other hand, when the flow rate of the second refrigerant is large, the temperature Ta can be lower than the outside air temperature (36 ° C.), for example.
  • a configuration example in which the three-way valve 161 or the like is provided is also proposed. That is, for example, when “Ta ⁇ outside air temperature” is satisfied, the controller 130 controls the three-way valve 161 so that the second refrigerant bypasses (does not pass) the liquid-gas heat exchanger 111b. It may be.
  • a “mixing / stirring unit” may be provided downstream of the liquid-gas heat exchanger 171c (on the downstream side with respect to the inside air).
  • this “mixing / stirring unit” has an existing configuration and is not particularly illustrated / explained, it is a configuration for making the temperature distribution substantially uniform by mixing / stirring a gas such as air inside. That is, the temperature of the inside air (cold air) flowing out from the liquid-gas heat exchanger 171c as described above is 18 ° C., which means the temperature when the temperature distribution is made substantially uniform. In this case, the temperature distribution may not be substantially uniform, and there may be a state in which there are a part with a low temperature and a part with a high temperature (compared to 18 ° C.). For this reason, it is good also as a structure which makes temperature distribution substantially uniform by providing the said "mixing / stirring unit” not shown.
  • the temperature distribution may be substantially uniform when it reaches the heating element 140. Therefore, the “mixing / stirring unit” (not shown) is used. May not necessarily be provided.
  • the configuration relating to the refrigeration cycle in which the first refrigerant is circulated (the refrigerant tube 125 and various configurations on the refrigerant tube 125) includes an evaporator (liquid-gas heat exchanger) 143 and an evaporator (liquid-liquid). Except for the fact that it is replaced with the (heat exchanger) 172, it may be assumed that it is substantially the same as FIG. Therefore, in a simple description, the first refrigerant is compressed by the compressor 113 after reaching 25 ° C. by heat exchange with the second refrigerant in the evaporator (liquid-liquid heat exchanger) 172. To 66 ° C. The temperature of the first refrigerant at 66 ° C.
  • the horizontal axis is the outside air temperature (° C.) and the vertical axis is the power consumption (kW), as in the graph shown in FIG. System data, black circles ( ⁇ ) are data of the air conditioning system of Example 4. These data correspond to “total power consumption” in FIG.
  • the conventional air conditioning system is, for example, the air conditioning system of FIG. 14 described above, but is not limited to this example.
  • the air conditioning system of the first embodiment or the second embodiment may be considered.
  • the air conditioning system of the fourth embodiment requires less power consumption than the conventional air conditioning system, and this energy saving effect becomes greater as the outside air temperature increases. .
  • FIGS. 11 and 12 are examples, and the present invention is not limited to this example.
  • the modification of FIG. 9 was shown with respect to FIG. 5A, there may be a modification similar to this with respect to FIGS. Although this modification is not particularly illustrated, it is considered that it can be clearly understood from the relationship between FIG. 5A and FIG.
  • the evaporators (evaporator 121d, etc.) of the other embodiments are liquid-gas heat exchangers that exchange heat between air (inside air) and liquid (first refrigerant),
  • the evaporator 172 is a liquid-liquid heat exchanger as described above. In general, a liquid-liquid heat exchanger has higher heat exchange efficiency than a liquid-gas heat exchanger.
  • the liquid-liquid heat exchanger can be made smaller than the liquid-gas heat exchanger (for example, the volume of the evaporator 172 is equal to the evaporator 121d. About 5% to 10%).
  • the liquid-gas heat exchanger 121c and the evaporator 121d in FIGS. 5A and 5B there are two heat exchangers (for example, the liquid-gas heat exchanger 121c and the evaporator 121d in FIGS. 5A and 5B) on the path through which the inside air flows.
  • the evaporator 121d is omitted, and the evaporator 172 is not provided on the path through which the inside air flows.
  • the blowing pressure loss of the inside air is reduced, and the blowing efficiency is improved.
  • Both the evaporator 121d and the evaporator 172 are cooled by the first refrigerant, but the evaporator 121d cools the air, whereas the evaporator 172 cools the liquid (second refrigerant). Since the medium to be cooled is a liquid having a larger heat capacity than air, the temperature change becomes gradual and the temperature control is stabilized.
  • the temperature of the first refrigerant fluctuates greatly for some reason.
  • the temperature of the air (inside air) directly cooled by the first refrigerant also varies greatly.
  • the temperature of the second refrigerant also fluctuates, but the temperature change is gentle (compared to the case of air), and therefore the air (inside air) cooled by the second refrigerant. ) Also changes gradually. Therefore, it becomes easy to perform temperature control for maintaining the inside air temperature near a set value (for example, 18 ° C.).
  • the three-way valve 161 supplies the second refrigerant to the liquid-gas heat exchanger 111b.
  • the three-way valve 161 supplies the second refrigerant to the liquid-gas heat exchanger 111b.
  • the inside air unit, the outside air unit, etc. relates to an air conditioning system that cools the indoor space by using the outside air to save energy, and functions to cool the inside air using the outside air even when the outside temperature is high. Energy saving of the air conditioning system of the compression refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 内気ユニット90は、送風機(ファン)91a、凝縮器91b、液-ガス熱交換器91c、蒸発器91d等から成る積層体91を有する。通常のシステムでは建物外に設置して外気を通過させる凝縮器を、本システムでは建物内に設置して内気を通過させる。外気温度が内気温度よりも高い場合には、本システムの方が凝縮器における冷媒の冷却効果が高い。更に凝縮器91bを通過することで内気が温度上昇するので、液-ガス熱交換器91c等による間接外気冷房も機能し、その効率もよいものとなる。

Description

外気利用空調システム、その内気ユニット、外気ユニット、積層体
 本発明は、外気を利用する空調システムに関する。
 従来、例えば、データセンターや企業のサーバ室等には、多数のサーバ等が設置されている。このようなサーバ室等は多数のサーバの発熱によって室温が上昇し、この室温上昇によってサーバが暴走または故障する可能性がある。このため、サーバ室には部屋全体の温度を一定に維持しておく空調システムが採用されている。また、このような空調システムは、ほぼ常時稼動され、冬季であっても稼動される。
 このようなサーバ室等に対する従来の空調システムは、サーバ室の室温の安定を図るために、空調装置から吹き出されてサーバ室内に供給された低温空気(冷気)が、サーバラック内のサーバに接触しながら流れて該サーバを冷却する。それによってサーバの熱で温められた空気(暖気)は、該サーバ室から上記空調装置内に戻され、該空調装置で冷却されて再び上記冷気となって吹出されてサーバ室内に再び冷気が供給される、等という循環方式が取られている。
 ここで、例えば、特許文献1,2等に記載の従来技術がある。
 特許文献1の発明は、十分な高調波対策を確保しながら、省エネルギー性を優先する運転及び温湿度制御性を優先する運転が可能な空気調和機を提供するものである。
 また、特許文献2の発明は、十分な高調波対策を確保しながら、運転台数の変化に伴う室内温度変動を押さえて良好な温度制御性を得ることが出来、しかも省エネルギー性についても十分に考慮した最適な運転が可能な空気調和機を提供するものである。
特許第3361458号公報 特許第3320360号公報
 ここで、図14に従来の間接外気冷房システムの一例を示す。
 図14において、間接外気冷房システムは、任意の室内空間を冷却する冷房システムであり、外気を室内空間に流入させることなく外気を冷房に利用するシステムである。この室内空間は、例えば、サーバ装置(コンピュータ装置)等の発熱体201を搭載したサーバラック202が多数設置されたサーバルーム等である。この様な室内空間は、多数の発熱体201による発熱量が多く、冬季であっても冷房が必要である。
 尚、上記室内空間は、本例では図示のサーバ設置空間と床下空間と天井裏空間に分けられている。このうち、サーバ設置空間が、上記発熱体201を搭載したサーバラック202が設置されている空間である。サーバ設置空間の上側には天井、下側には床があり、天井の上の空間が上記天井裏空間、床の下側の空間が上記床下空間である。尚、当然、床や天井には孔が開いており、この孔を介して冷気や暖気がサーバ設置空間に流入/流出する。
 図示の間接外気冷房システムは、例えばサーバルーム等からのリターン空気(暖気)を、一般的な空調装置210で冷却するが、その前段で外気を利用してリターン空気の温度を下げることで、省エネ化を図るものである。
 ここで、図示の冷凍機211、エアハンドリングユニット212、膨張弁213、冷媒管214等から成る空調機210は、既存の一般的な空調機である。つまり、この空調機210は、冷媒を用いて「蒸発器→圧縮機→凝縮器→膨張弁→蒸発器」という一般的な圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で冷房を行う、一般的な空調機(エアコン等)である。
 冷媒が、冷媒管214を介して冷凍機211、エアハンドリングユニット212、膨張弁213等を循環する。冷凍機211は、圧縮機、凝縮器、ファン(送風機)等を有している。エアハンドリングユニット212は蒸発器、ファン(送風機)等を有している。
 エアハンドリングユニット212は、上記室内空間における床下空間に冷気を送出し、床下空間を介して冷気をサーバ設置空間に供給する。この冷気は上記発熱体201を冷却することで暖気となり、この暖気はサーバ設置空間から天井裏空間へと流入する。そして、通常の冷房システムであれば、この暖気は天井裏空間からダクト等を介してエアハンドリングユニット212に流入させる。エアハンドリングユニット212は、この流入暖気を上記蒸発器で冷却して上記冷気を生成する。
 ここで、エアハンドリングユニット212は、冷気の温度が所定値(設定値)となるように流入暖気の冷却を行うが、当然、流入暖気の温度が高ければ高いほど、冷却に要する負荷が増大し、消費電力が増大することになる。そこで、省エネの目的で、上記エアハンドリングユニット212への流入暖気の温度を下げる為に、図示の間接外気冷房機220を設けている。
 尚、図示の壁1は、任意の建物の壁であり、この壁1を境にして建物内と建物外とに分けられる。建物内には、上記サーバ等が設置される室内空間だけでなく上記エアハンドリングユニット212等が設けられる空間(図示の例では、室内空間の隣接空間であり、例えば機械室等と呼ばれる場合もある)がある。建物内の空気(内気)が、上記冷気と暖気の状態を繰り返しながら、建物内を循環している。建物外の空気(外気)の温度は、例えば夏季以外の季節であれば、暖気状態の内気の温度よりも低いと考えてもよい。
 間接外気冷房機220は、熱交換器221、送風機222、送風機223、内気ダクト224、外気ダクト225等を有する。内気ダクト224は、その一端が上記天井裏空間側、その他端が上記エアハンドリングユニット212側に設けられると共に、途中で熱交換器221に接続している。上記天井裏空間側の暖気は、送風機222によって内気ダクト224内に流入させると共にエアハンドリングユニット212側へ排出させるが、途中で熱交換器221内を通過することになる。
 また、壁1の任意の2箇所に孔を空けて(一方を外気流入孔226、他方を外気排出孔227と言うものとする)、上記外気ダクト225の一端を外気流入孔226に接続し、他端を外気排出孔227に接続している。また、外気ダクト225は途中で熱交換器221に接続している。送風機223によって外気ダクト225に外気を通過させる。すなわち、外気を外気流入孔226から流入させると共に外気排出孔227から排出させるが、外気は途中で熱交換器221内を通過することになる。
 上述したように、従来の間接外気冷房システムは、既存の一般的な空調機210に対して、間接外気冷房機220を新たに追加する形となり、その分、設置スペースが増大することになる。更に、図では簡略化して示したが、ダクト(内気ダクト224、外気ダクト225)は実際には大きな設置スペースをとるものである。また、比較的小さいとはいえ、送風機222と送風機223による電力消費量が加わることになる。また、図14に示すような間接外気冷房機220は、設置工事に関して手間が掛かりコストも掛かることになる。
 上述したように、熱交換器221内を内気(暖気)と外気が通過することになり、熱交換器221内において内気(暖気)と外気との熱交換が行われることになる。尚、この熱交換器221によれば、外気を内気と遮断して熱交換を行うので、外気に含まれる外気湿度や塵埃、腐食性ガスを室内空間に取り入れないため、サーバ等の電子機器の信頼性が維持される。尚、この様な熱交換器221は、既存のものであり、詳細な構成は特に示さない。
 上記熱交換器221における熱交換によって内気の温度が下がれば、上記エアハンドリングユニット212への流入暖気の温度が下がることになり、空調機210の電力消費量が低減することになる(省エネ効果が得られる)。尚、送風機222と送風機223による電力消費量は、比較的小さいものと考えてよい。
 基本的には「内気(暖気)の温度>外気の温度」の場合のみ、内気が外気によって冷却されて、内気(暖気)の温度が下がることになる。よって、冬季のように外気温度が低い状況では、熱交換器221による内気(暖気)冷却の効果が高いことになり、それによって空調機210の省エネ効果が高いことになる。一方、夏季の場合には、熱交換器221による内気冷却の効果が小さい、または効果が無い、あるいは逆効果となる可能性もある。あるいは、この様な季節的な要因に限らず、例えば熱帯地方のように、ほぼ1年中外気温が非常に高い地域も有り得る。
 このように、サーバ室等のように発熱体がある空間を冷却する空調システムであって、特に外気を利用することで省エネ化を図る空調システムに関して、外気温が高い状態であっても外気を室内空間の冷房に利用でき省エネ化を実現できるようにすることが、メインの課題となる。尚、メインの課題以外にも、更なる省エネ化を図ることやコンパクト化、低コスト化を図ること等の他の課題もある。
 本発明の課題は、外気を利用して省エネで室内空間を冷却する空調システムに関わり、外気温が高い場合でも外気を利用する内気冷却を機能させることができると共に圧縮式冷凍サイクルの空調システムの省エネ化を図ることができる外気利用空調システム、その内気ユニット、外気ユニット等を提供することである。
 本発明の外気利用空調システムは、室内側(建物内)に設けられる構成と、室外側(建物外)に設けられる構成とから成る。室内側の空気であって特に冷却対象空間からのリターン空気(暖気)を内気とする。尚、室外側の空気は外気である。
 そして、室内側には、第1の熱交換器と、蒸発器と、凝縮器と、該第1の熱交換器と蒸発器と凝縮器とに前記内気を通過させる為の第1の送風機とを設けている。
 また、室外側には、第2の熱交換器と、該第2の熱交換器に前記外気を通過させるための第2の送風機とを設けている。
 更に、膨張弁と圧縮機が設けられている。これら膨張弁、圧縮機は、それぞれ、室外側、室内側の何れかに設けられている。
 そして、上記第1の送風機によって形成される内気の流れの上流側から前記凝縮器、前記第1の熱交換器、前記蒸発器の順に設けられる構成となっている。よって、内気は、まず最初に凝縮器を通過し、続いて第1の熱交換器を通過し、最後に蒸発器を通過することになる。
 更に、前記蒸発器と、前記凝縮器と、前記膨張弁と、前記圧縮機とに接続する第1配管を設けている。そして、第1配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に第1の冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成している。
 更に、前記第1の熱交換器と前記第2の熱交換器とに接続する第2配管を設けている。この第2配管を介して前記第1の熱交換器、第2の熱交換器に第2の冷媒(たとえば水などの冷却液)を循環させる。
 そして、これら第1の熱交換器と第2の熱交換器と第2の冷媒とによって、間接外気冷房システムを構成する。すなわち、前記第1の熱交換器において、上記第2の冷媒と前記凝縮器を通過後の前記内気とを、熱交換させることで、該内気を該第2の冷媒によって冷却する。前記第2の熱交換器において前記内気を冷却後の第2の冷媒と前記外気とを熱交換させることで該第2の冷媒を該外気によって冷却する。
 ここで、上記凝縮器は、上記蒸発器が周囲(内気)から奪った熱を放熱するものであり、通常、室外側(建物外)に設置されて、外気に対して放熱するものである。これに対して、上記構成では、凝縮器は室内側(建物内)に設置している。この為、内気は、凝縮器を通過することで大きく温度上昇することになる。そして、温度上昇後の内気が、上記第2の冷媒を介して間接的に、外気と熱交換されることになる。よって、外気温度が非常に高い場合でも、外気によって内気を冷却することが可能となる。
 更に、上記凝縮器においては、上記冷媒は上記内気によって冷却されることになる。よって、特に、外気温度が、内気温度(凝縮器通過前の温度)よりも高い環境下では、凝縮器における第1の冷媒の冷却効果が、比較的高いことになる。つまり、通常の場合の様に外気を凝縮器に通過させて外気によって第1の冷媒を冷却する場合、外気温度が非常に高い環境下では第1の冷媒の冷却効果が低くなる。そして、特に「外気温度>内気温度」の環境下であれば、内気を用いた方が第1の冷媒の冷却効果が高くなる。これより、上記本発明の構成では、少なくともこの様な環境下においては、圧縮式冷凍サイクルによる空調機の消費電力が、従来に比べて低く抑えられる。
実施例1の空調システムの構成図である。 実施例2の空調システムの構成図である。 図2の構成の一部の拡大図である。 実施例3の空調システム(その1)の構成図である。 実施例3の空調システム(その2)の第1の例の構成図である。 実施例3の空調システム(その2)の第2の例の構成図である。 実施例3の空調システムの動作モデルを示す図である。 (a)~(d)は、従来と実施例3とを比較して説明する為の図である。 図4の構成の変形例である。 図5Aの構成の変形例である。 実施例3の空調システムを含む全体の概略構成図である。 実施例4の空調システム(その1)の構成図である。 実施例4の空調システム(その2)の構成図である。 実施例4の空調システムの動作モデルを示す図である。 従来の間接外気冷房システムの一例を示す図である。
 以下、図面を参照して本発明の実施の形態について説明する。
 尚、本説明における“室内側”は、“建物内”を意味するものとする。従って、“室内側”には、「冷却対象となる室内空間」だけでなく、機械室等も含まれることになる。換言すれば、“室内側”とは上記“内気”(建物内の空気)が存在する空間であると言うこともできる。同様に、本説明における“室外側”は、上記“建物外”を意味するものとする。換言すれば、“室外側”とは、上記“外気”(建物外の空気)が存在する空間であると言うこともできる。尚、“室内空間”は、上記“室内側”とは多少異なる意味となり、下記の「間接外気冷房システムによる冷却対象空間(冷却対象となる室内空間):狭義には更にそのなかのサーバ設置空間」を意味するものとする。従って、“室内空間”には機械室等は含まれない。
 図1は、実施例1の空調システム(間接外気冷房システム)の構成図である。
 尚、図1では、間接外気冷房システムによる冷却対象空間は、図14に示す従来例と同じであるものとする。すなわち、冷却対象となる室内空間は、例えば、サーバ装置(コンピュータ装置)等の発熱体101を搭載したサーバラック102が多数設置されたサーバルーム等である。尚、上記室内空間は、本例では図14と同様に図示のサーバ設置空間と床下空間と天井裏空間に分けられている。勿論、この例に限らないが、本説明ではこの例を用いる。尚、この例では、冷却対象は狭義にはサーバ設置空間であると見做すこともできる。
 また、図14の例と同様、壁1によって建物内と建物外とに区分され、建物内の空気(内気)は、冷気状態と暖気状態とを繰り返しながら循環している。また、本説明では基本的には建物外の空気(外気)の温度は、暖気状態の内気の温度よりも低いものと見做すものとする。
 建物内には上記室内空間だけでなく上記機械室等も存在する。上述した通り、機械室は、例えば上記室内空間に隣接する空間であり、上記床下空間、天井裏空間に繋がっている。機械室には、後述するエアハンドリングユニット12、内気ユニット30等が設置される。
 概略的には、一般的な空調機10等が、上記室内空間に冷気を供給し、室内空間からのリターン空気(暖気)を冷却して再び冷気を生成する。但し、本システムでは、その前に、リターン空気(暖気)は、外気を利用して温度低下させている。
 図示の例では、一般的な空調機10は、床下空間に冷気を送出し、床下空間を介しサーバ設置空間に冷気を供給し、この冷気によって各発熱体101を冷却する。これによって冷気は暖気となり、この暖気は天井裏空間に流入した後、リターン空気として空調機10に戻されるが、その前段で間接外気冷房機20において外気を利用して温度低下させている。尚、空調機10は、上記従来の一般的な空調機210と同じであってよい。
 また、尚、以下の説明では、外気の温度が低いことを前提とする。尚、「外気の温度が低い」とは、具体的に何℃以下等と言えるものではなく、内気(暖気)の温度等に依存するものである。この事自体は、従来と同じである。ひとつの考え方としては、間接外気冷房は、外気を利用して内気(暖気)の温度を下げる為のものであるので、結果として上記リターン空気(暖気)の温度を下げることができる場合が、外気の温度が低いときと言えるものである。1例としては、上記の通り、外気の温度が、内気(暖気)の温度よりも低いときが、「外気の温度が低い」場合と見做せるが、この例に限るものではない。
 ここで、上記床下空間に冷気を送出する構成は、図示の一般空調機10である。この一般空調機10は、冷凍機11、エアハンドリングユニット12、膨張弁13、冷媒管14等から成る。これら冷凍機11、エアハンドリングユニット12、膨張弁13、冷媒管14は、上記図14に示す従来の冷凍機211、エアハンドリングユニット212、膨張弁213、冷媒管214と同じであってよい。
 つまり、一般空調機10は、上記従来の空調機210等の既存の一般的な空調装置(エアコン等)と同じであってよい。よって、特に詳細には図示・説明しないが、エアハンドリングユニット12は、図示の蒸発器12a、送風機(ファン)12bを有している。また、冷凍機11は、図示の送風機(ファン)11aだけでなく不図示の圧縮機、凝縮器を有している。
 このように、一般空調機10は、一般的な空調機の構成である上記蒸発器12a、不図示の圧縮機と凝縮器、膨張弁13等を有しており、これら各構成を冷媒管14を介して冷媒が循環している。すなわち、冷媒が「蒸発器→圧縮機→凝縮器→膨張弁→蒸発器」という一般的な圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で循環している。蒸発器12aにおいて冷媒が蒸発する際に周囲の熱を奪い、以って周囲の空気(流入暖気)を冷却する。奪った熱は、凝縮器において外気等へ放熱される。送風機(ファン)11aによって外気を不図示の凝縮器へと送り込み、上記のように不図示の凝縮器が外気へ放熱する。勿論、その後、この外気は冷凍機11の外へと排出される。
 尚、図示の壁1は、任意の建物の壁であり、この建物内には上記室内空間やこの室内空間の隣接空間(機械室)が存在する。上記エアハンドリングユニット12や後述する内気ユニット30等は機械室内に設置され、上記冷凍機11や後述する外気ユニット40等は建物外に設置される。建物内(室内空間と機械室)を内気が暖気状態と冷気状態を繰り返しながら循環し、建物外には外気が存在する。
 一般空調機10については上述した簡単な説明のみとするが、上記従来の空調機210の場合と同様、一般空調機10のエアハンドリングユニット12に流入させるリターン空気(暖気)の温度を下げることで、一般空調機10の消費電力量を低減することが望まれる。但し、当然、一般空調機10の消費電力量を低減させても、全体としての消費電力量が増えてしまっては意味がない。これより、外気を利用して内気(暖気)の温度を下げることが考えられ、従来では間接外気冷房機220を設けている。
 これに対して、本例では、図示の間接外気冷房機20を設けている。
 以下、間接外気冷房機20について詳細に説明する。
 まず、間接外気冷房機20は、内気ユニット30と外気ユニット40とから成る。
 内気ユニット30と外気ユニット40は、例えば、それぞれ工場等で個別に製造された後、図示のように壁1(内壁、外壁それぞれ)に密着するように設置される。
 尚、壁1を境にして、室外側(建物外)と室内側(建物内)とに分けられるが、外気ユニット40は室外側に設置され、内気ユニット30は室内側に設置される。つまり、外気ユニット40は、壁1の室外側の壁面に密着するようにして設置される。内気ユニット30は、壁1の室内側の壁面に密着するようにして設置される。
 内気ユニット30は、例えば、図示の液-ガス熱交換器31、送風機(ファン)32、配管21(その一部;半分程度)、循環ポンプ22を有する。
 外気ユニット40は、例えば、図示の液-ガス熱交換器41、送風機(ファン)42、配管21(その一部;半分程度)を有する。
 内気ユニット30は、工場等での製造時に、例えば1面がオープン(開いている;何も無い状態)となった箱型の筐体の中に、図示の液-ガス熱交換器31、送風機(ファン)32等が設けられる。また筐体には図示の2つの孔(内気流入口33、内気排出口34)が空けられている。尚、図示の配管21(途中に循環ポンプ22が接続された配管21)は、工場等での製造時に既に液-ガス熱交換器31に接続されていてもよいし、設置時に液-ガス熱交換器31に接続してもよい。あるいは、工場では配管21のみを接続しておき、設置時に循環ポンプ22を配管21に接続するようにしてもよい。
 外気ユニット40は、工場等での製造時に、例えば1面がオープン(開いている;何も無い状態)となった箱型の筐体の中に、図示の液-ガス熱交換器41、送風機(ファン)42等が設けられる。
 尚、内気ユニット30、外気ユニット40は、何れも、上記オープンとなっている面を、壁1の壁面に合わせるようにして設置される。
 また外気ユニット40の筐体には図示の2つの孔(外気流入口43、外気排出口44)が空けられている。尚、図示の配管21は、工場等での製造時に既に液-ガス熱交換器41に接続されていてもよいし、設置時に液-ガス熱交換器41に接続してもよい。
 尚、設置時には壁1に上記配管21を通す為の貫通孔を2箇所開ける必要がある。また、工場での製造時に既に内気ユニット30と外気ユニット40それぞれに配管21(その一部;半分程度)を設けた場合には、この配管21同士を溶接する等して(更に、その際、循環ポンプ22も接続する)、図示の“途中に循環ポンプ22が接続された配管21”を形成するようにしてもよい。
 上記のようにして内気ユニット30、外気ユニット40を設置することで、上記間接外気冷房機20が構成されることになる。
 外気を内気と遮断して熱交換を行うので、上記間接外気冷房機20では、図14に示す従来と同様、外気と内気とは相互に遮断されて熱交換が行われるので、外気に含まれる外気湿度や塵埃、腐食性ガスを室内空間に取り入れないため、サーバ等の電子機器の信頼性が維持される。
 また、上記の通り、配管21を通す為の穴を壁1に空ける必要があるが、従来のように外気を流入・排出する為の孔226,227を設ける場合に比べれば、小さな孔で済み、設置工事が容易となる。
 上述の例では、配管21が、外気ユニットから内気ユニットへ冷媒を流すものと、内気ユニットから外気ユニットへ冷媒を流すものとの、計2本あるものとし、壁1の貫通孔を2箇所開けることとしたが、発明の実施形態はこの例に限定されない。たとえば、2本の配管21は、大きめの貫通孔を1箇所開けて、この穴に通してもよい。
 上述の例では、内気ユニット30・外気ユニット40は、何れも、オープンとなっている面を、壁1の壁面に合わせるようにして設置するが、発明の実施形態はこの例に限定されない。たとえば工場において、内気ユニット30・外気ユニット40を配管21などの溶接を行った上で一体化した内外気ユニットとして製造し、壁1には一体化した内外気ユニットと同形の穴を設け、内外気ユニットを壁に埋め込んでもよい。
 上記設置後の内気ユニット30において、送風機(ファン)32は、上記天井裏空間の暖気を、内気流入口33から流入させ、内気ユニット30内(特に液-ガス熱交換器31内)を通過させた後、内気排出口34から排出させるような空気の流れ(図上、一点鎖線矢印で示す)を作り出す。基本的には、内気排出口34から排出する暖気の温度は、内気流入口33から流入する暖気の温度よりも低くなるようになっている。
 内気排出口34から排出される暖気は、エアハンドリングユニット12内に流入し、エアハンドリングユニット12内の蒸発器12a等によって冷却されて冷気となり、この冷気が送風機(ファン)12bによって床下空間に送出されることになる。上記のように暖気温度を下げていることで、天井裏空間の暖気がそのままエアハンドリングユニット12内に流入する場合に比べれば、一般空調機10の消費電力量が低減することになる。
 上記設置後の外気ユニット40において、送風機(ファン)42は、外気を外気流入口43から流入させ、外気ユニット40内(特に液-ガス熱交換器41内)を通過させた後、外気排出口44から排出させるような空気の流れ(図上、点線矢印で示す)を作り出す。
 ここで、上記配管21は、その任意の箇所に上記循環ポンプ22が接続されると共に、配管内に液体などの冷媒(例えば水)が封入されている。これより、上記循環ポンプ22を運転することで、この液体(例えば水)が配管21を介して、液-ガス熱交換器31、液-ガス熱交換器41を循環して流れることになる。液-ガス熱交換器31と液-ガス熱交換器41とは、同じものであってよい。
 ここで、液-ガス熱交換器31、41は、既存の構成であり、特に詳しくは説明しないが、簡単に説明する。上記従来の熱交換器221は、その内部に2種類の気体(何れも空気であり、内気(暖気)と外気)を通過させて、この2種類の気体間で熱交換させることで、特に外気温度が低い場合には外気によって内気(暖気)を冷却していた。液-ガス熱交換器31、41は、その内部に液体(例えば水)と気体(ここでは空気)を通過させて、液体-気体間で熱交換させることで、より温度が高い方を冷却させるものである。
 尚、上記気体(空気)は、液-ガス熱交換器31では内気(暖気)であり、液-ガス熱交換器41では外気となる。また、上記液体は、上記配管21、循環ポンプ22によって循環させる水等である。
 外気温度が低い場合、液-ガス熱交換器41では上記液体(水など)と外気との熱交換によって、液体(水など)の温度が下がり、外気の温度は上がる。これより比較的低温の液体(水など)は、配管21を介して液-ガス熱交換器31内に流入する。よって、液-ガス熱交換器31では、この比較的低温の液体(水など)と内気(暖気)との熱交換が行われることになる。これによって、内気(暖気)の温度は下がり、液体(水など)の温度は上がることになる。これによって比較的高温となった液体(水など)は、配管21を介して液-ガス熱交換器41内に流入し、再び上記のように外気によって冷却されることになる。尚、これによって温度上昇した外気は、外気排出口44から排出されることになる。
 尚、内気ユニット30内の空気の流れは、送風機32によって、図1では風向きは下方向(上から下へ向かう方向)となっているが、上方向(下から上へ向かう方向)にすることもできる。同様に、外気ユニット40内の空気の流れは、送風機42によって、図1では風向きは上方向となっているが、下方向にすることもできる。
 但し、内気ユニット30内の空気の流れは、図1に示すように下方向とすることが望ましい。このようにすると、発熱体101で暖められた暖かい空気が上方にあり、液―ガス熱交換器31で冷却された空気が下方に流れるので、内気ユニット30内での空気の通流が、自然対流に逆らうことなく自然現象に沿ったものになる。
 ここで、上記間接外気冷房機20の製造、及び設置工事について説明する。
 図1に示す例では、外気ユニット40と内気ユニット30とは、その筐体の形状・大きさをほぼ同じにして(よって、壁への取付面積もほぼ同じとなる)、壁1を中心にしてほぼ左右対称となるように配置して一体化することで、上記間接外気冷房機20を形成している。尚、左右とは図上における話である。
 これらユニットの設置時には、例えば、まず、壁1に複数の貫通孔を空ける。次に、外気ユニット40、内気ユニット30それぞれを、その筐体の骨格が壁1を挟んで左右対称となるような位置(つまり、図1に示すように壁1を挟んでほぼ同じ位置)に配置し、上記壁1に穿かれた複数の貫通孔を介して該複数の貫通孔の位置で外気ユニット40及び内気ユニット30をボルト・ナット等で固定する。更に、別の貫通孔を介して配管21を接続する。
 また、図1に示す例では、外気ユニット40と内気ユニット30とは、筐体だけでなくその内部構成もほぼ同じであり(図示の通り、ほぼ左右対称)、異なるのは循環ポンプ22の有無等である。よって、例えば工場等では外気と内気の区別なく循環ポンプ22無しの構成としてユニットを製造し、設置の際にこのユニットを外気ユニット40、内気ユニット30のどちらとしても使えるようにする。但し、内気ユニット30にする場合には設置の際に循環ポンプ22を接続する作業が必要である。しかし、工場における製造効率が向上し、以ってコストダウンの効果も期待できる。
 上述した間接外気冷房機20によれば、以下の効果を奏する。
 すなわち、間接外気冷房機20は、内部流体が液体で外部流体がガスである一対の液-ガス熱交換器31,41を、建物内外を隔てる壁1を介して配置し、一方の液-ガス熱交換器41の外部流体に外気を通流させ、他方の液-ガス熱交換器31の外部流体に内気を通流させ、両方の液-ガス熱交換器の内部流体(液体)を配管21を介して循環させる。これによって、外気と内気の熱交換を行う。
 上記間接外気冷房機20は、上述した特徴により以下の効果を奏する。
 (1)外気を通流させる液-ガス熱交換器41を有する外気ユニット40と、内気を通流させる液-ガス熱交換器31を有する内気ユニット30とを、壁1を中心にして左右対称に配置し一体化したことにより、これらユニット30,40でほぼ同一構造の骨格の筐体を用いることができ、製造コストを軽減できる。
 (2)また、間接外気冷房機20の設置の際に、壁1に穿かれた複数の貫通孔を介して該複数の貫通孔の位置で外気ユニット40及び内気ユニット30をボルト・ナット等で固定したため、施工費を少なくして、かつ、設置工事を容易にすることができる。
 (3)図14等の従来システムと比較して、ダクト部分を減らすことができ、ダクト抵抗による圧力損失を低減することが可能になる。
 次に、実施例2の空調システム(一体型空調システム)について説明する。
 尚、実施例2の空調システムも、間接外気冷房システムの一種であるといえるが、一体型となっており、コンパクトな構成となっている。
 上記実施例1の間接外気冷房システムは、間接外気冷房機20に関しては、ダクトレスでコンパクトで設置が容易な構成を提案したが、一般空調機10に関しては従来と略同様である。
 実施例2においては、間接外気冷房機20の機能と一般空調機10の機能とが一体となった、一体型間接外気冷房システムを提案する。
 これによって、装置構成全体の簡略化を図ることができ、装置をよりコンパクトにでき、コスト低減でき、全体としての消費電力の低減も期待できる。
 図2は、実施例2の空調システム(一体型空調システム)の構成図である。
 また、図3は、図2の構成の一部の拡大図である。
 尚、図2において、一体型間接外気冷房システムによる冷却対象空間は、図1や図14に示す例と同じであるものとする。すなわち、冷却対象となる室内空間は、例えば、サーバ装置(コンピュータ装置)等の発熱体101を搭載したサーバラック102が多数設置されたサーバルーム等である。そして、床下空間に冷気を送出し、床下空間を介してサーバ設置空間に冷気を供給し、この冷気によって各発熱体101を冷却する。これによって冷気は暖気となり、この暖気は天井裏空間に流入する。
 ここで、上記床下空間に冷気を送出する構成は、図示の一体型間接外気冷房システム50である。一体型間接外気冷房システム50は、間接外気冷房機の機能と一般空調機の機能とが一体となった構成を有する。一体型間接外気冷房システム50は、上記天井裏空間の暖気を流入させて、まず間接外気冷房機の機能によって暖気の温度を下げ、続いて、一般空調機の機能によって所定温度の冷気を生成する。以下、図2、図3を参照して詳しく説明する。
 一体型間接外気冷房システム50は、図2、図3に示す内気ユニット60と外気ユニット70とから成る。
 尚、上記間接外気冷房機50の間接外気冷房機の機能では、図14に示す従来例や図1に示す構成と同様、外気と内気とは相互に遮断され、熱交換が行われるので、外気に含まれる外気湿度や塵埃、腐食性ガスを室内空間に取り入れないため、サーバ等の電子機器の信頼性が維持される。
 内気ユニット60と外気ユニット70は、例えば、それぞれ工場等で個別に製造された後、図示のように壁1の壁面に密着するように設置される。その際、更に、図示の配管51、冷媒管52等を設置することで(あるいは、略半分ずつ作っておいたもの同士を接続(溶接等)する)、一体型間接外気冷房システム50が構成される。尚、配管51、冷媒管52を設置する為に壁1に貫通孔を設ける必要があるが、この貫通孔は図1や図14の構成と同じく、4箇所となる。尚、内気ユニット60と外気ユニット70の製造・設置については、上記実施例1の内気ユニット30と外気ユニット40等と略同様であってもよく、ここではこれ以上詳細には説明しない。
 尚、壁1を境にして、室外側(建物外)と室内側(建物内)とに分けられるが、外気ユニット70は室外側に設置され、内気ユニット60は室内側に設置される。つまり、外気ユニット70は、壁1の室外側の壁面に密着するようにして設置される。内気ユニット60は、壁1の室内側の壁面に密着するようにして設置される。
 外気ユニット70と内気ユニット60とは、壁1を挟んで相互に対応する位置に設けられることが望ましい。壁1を挟んで相互に対応する位置とは、例えば図2や図3等に図示するような位置であり、例えば外気ユニット70側から見た場合、壁1の裏側に内気ユニット60が存在するような位置である。別の言い方をするならば、仮に図示のように外気ユニット70の筐体と内気ユニット60の筐体とがほぼ同じ形状・大きさであったならば、これら2つの筐体が図示のように壁1でほぼ対称(図上では、ほぼ左右対称)の関係となるように配置されている。勿論、この様な例に限らないが、基本的には、設置し易くなるように、配管が短くなるように、設置することが望ましい。
 内気ユニット60は、積層体61等を有する。積層体61は、蒸発器61a、液-ガス熱交換器61b、送風機(ファン)61c等を有し、これらが図示のように積層されて一体となった構成となっている。尚、この様に、蒸発器、液-ガス熱交換器、送風機(ファン)を積層体として一体型とする構成には、少なからずメリットがあるが、この構成例に限定されるわけではない。但し、実施例2の特徴は“一体型”ユニットであるので、内気ユニット60内には蒸発器、液-ガス熱交換器、送風機(ファン)が設けられている必要がある。
 また、内気ユニット60の筐体(例えば1面がオープンの箱型等)には、図示の内気流入口62、内気排出口63等の孔が開けられている。送風機(ファン)61cは、上記天井裏空間の暖気を、内気流入口62から当該ユニット60内に流入させ、内気ユニット60内(特に積層体61内)を通過させた後、内気排出口63から排出させるような空気の流れ(図上、一点鎖線矢印で示す)を作り出す。
 上記積層体61は、この様な空気の流れの上流側に上記液-ガス熱交換器61bが設けられ、下流側に上記蒸発器61aが設けられるように構成する。従って、図示の構成例に限るものではなく、この条件を満たす構成であればなんでもよい。
 また、特に図示しないが、積層体(一体型)としない場合でも、空気の流れの上流側に液-ガス熱交換器が設けられ、下流側に蒸発器が設けられるように構成する必要がある。つまり、内気(暖気)に対して、液-ガス熱交換器で温度を下げた後に、蒸発器において所定温度(設定温度)となるように調整する構成とする必要がある。
 尚、上記のことは、液-ガス熱交換器61bと蒸発器61aとの相対的な位置関係の話であり、上記積層体61において送風機(ファン)61cの位置(空気の流れに対する配置順番)はどこでもよい。つまり、送風機61cは、上記空気の流れの最上流の位置、最下流の位置、中間の位置(液-ガス熱交換器61bと蒸発器61aとの間)の何れの位置であってもよい。これは、積層体としない場合でも同様である。また、これは後述する他の積層体71、81、91、91’、111、121、121’等に関しても略同様である。
 外気ユニット70は、積層体71等を有する。積層体71は、凝縮器71a、液-ガス熱交換器71b、送風機(ファン)71c等を有し、これらが図示のように積層されて一体となった構成となっている。但し、内気ユニット60と同様、必ずしも積層体とする例に限るものではない。しかし、内気ユニット60と同様、外気ユニット70内には凝縮器、液-ガス熱交換器、送風機(ファン)が設けられている必要がある。
 また、外気ユニット70の筐体等には、図示の外気流入口72、外気排出口73等の孔が開けられている。送風機(ファン)71cは、外気を外気流入口72から当該ユニット70内に流入させ、外気ユニット70内(特に積層体71内)を通過させた後、外気排出口73から排出させるような空気の流れ(図上、点線矢印で示す)を作り出す。上記積層体71は、この様な空気の流れの上流側に上記液-ガス熱交換器71bが設けられ、下流側に上記凝縮器71aが設けられるように構成する。また、既に述べたように、積層体71に関しても上記積層体61と略同様に、送風機(ファン)71cの位置(空気の流れに対する配置順番)は、どこでもよい(従って、図示の構成例に限るものではなく、上記の条件を満たす構成であればなんでもよい)。これは、積層体としない場合でも同様である。
 上述したように、内気ユニット60、外気ユニット70は、何れも、図2、図3に示す構成は、一例を示すものであり、この例に限らない。これは、図4以降の他の図面に示す構成に関しても略同様である。
 上記積層体61,71の構成、製造方法は、様々であってよく、ここでは詳細には説明しないが、製造し易く、または/及び、出来るだけコンパクトとなるような構成、製造方法とすることが望ましい。例えば、積層体61を例にすると、上記蒸発器61a、液-ガス熱交換器61b、送風機(ファン)61cの全てを、任意の筐体内に収める(ユニット化する)と共に、この筐体の大きさ、形状を略同一にすること等が考えられる。更に、例えば一例として、この筐体の形状を、例えばほぼ直方体とし、これら3つの直方体を積層することで、積層体61の形状をほぼ直方体とすること等も考えられる。
 また、この例では、上記蒸発器61a、液-ガス熱交換器61b、送風機(ファン)61cの積層化・一体化(積層体61の形成)は、例えば一例としては、上記の筐体同士を相互に接続することで行われる。筐体同士の接続は、例えば、各筐体の隅に設けられた穴に棒やボルトを通してナット等で固定する等、一般的な方法であってよい。
 尚、勿論、上記筐体には、内気を通過させる為の多数の孔や各種配管を通す為の穴等が設けられている。
 ここで、液-ガス熱交換器61bと71bは、実施例1の液-ガス熱交換器31,41と略同様に、配管51を介して相互に接続されており、循環ポンプ53によって配管51内の液体(水など)が、液-ガス熱交換器61b、71b及び配管51内を循環している。また、液-ガス熱交換器61b、71bは、上記液-ガス熱交換器31,41と同様の構成であってよく、既存の構成であり特に詳細には説明しない。
 液-ガス熱交換器61b内には、上記液体(水など)が通過すると共に上記内気(暖気)が通過する。これより、液-ガス熱交換器61b内で液体(水など)と暖気との熱交換が行われ、基本的には暖気が冷却されて(暖気の熱が液体に移動して)、暖気の温度が低下することになる。但し、これは、外気と暖気の温度次第であり、暖気の温度が下がることが保証されるものではない。但し、外気の温度が高いときには、循環ポンプ53を停止すること等で対応することが考えられる。
 また、蒸発器61aと凝縮器71aに対して、冷媒管52、膨張弁54、圧縮機55が設けられている。これら各構成自体は、一般空調機10の各構成と略同様である。すなわち、一般空調機10において、エアハンドリングユニット12には上記蒸発器12aやファン12bが備えられており、蒸発器61aは蒸発器12aに相当する構成である。また、上述したように冷凍機11には不図示の圧縮機、凝縮器が備えられているが、これらに相当する構成が上記圧縮機55、凝縮器71aである。また、膨張弁54は、膨張弁13に相当する構成である。
 図示の通り、蒸発器61a、凝縮器71a、膨張弁54、及び圧縮機55は、冷媒管52に接続されている。冷媒管52を介して冷媒が蒸発器61a、凝縮器71a、膨張弁54、及び圧縮機55を循環する。すなわち、冷媒が「蒸発器61a→圧縮機55→凝縮器71a→膨張弁54→蒸発器61a」という一般的な圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で循環している。蒸発器61aにおいて冷媒が蒸発する際に周囲の熱を奪い、以って周囲の空気を冷却する。奪った熱は、凝縮器71aにおいて外気等へ放熱される。膨張弁54、及び圧縮機55の機能は、従来通りであり、特に説明しない。
 尚、図示の通り、膨張弁54は内気ユニット60に設けられているが、外気ユニット70内に設けてもよい。圧縮機55は外気ユニット70内に設けられているが、内気ユニット60に設けてもよい。つまり、膨張弁54が内気ユニット60内に設けられ、圧縮機55が外気ユニット70内に設けられる構成と、膨張弁54が外気ユニット70内に設けられ、圧縮機55が内気ユニット60内に設けられる構成と、膨張弁54と圧縮機55の両方が内気ユニット60内に設けられる構成と、膨張弁54と圧縮機55の両方が外気ユニット70内に設けられる構成と、が有り得る。
 また、循環ポンプ53は、図示の例では内気ユニット60に設けられているが、外気ユニット70に設けるようにしてもよい。
 尚、上記液-ガス熱交換器61b、液-ガス熱交換器71bは、液体と気体との間の熱交換を行う熱交換器であるが、この例に限らない。これらの液-ガス熱交換器の代わりに、気体と気体との間の熱交換を行う熱交換器(ガス-ガス熱交換器と呼ぶものとする)を設けてもよい。当然、この場合には、液体の代わりに何らかの気体を用いることになる。
 ここで、このような液体や気体を総称して“流体”と呼ぶものとするならば、上記液-ガス熱交換器やガス-ガス熱交換器を総称して、流体-気体熱交換器あるいは流体-流体熱交換器などとよんでもよい。この場合、配管51には何らかの“流体”が流れるものと言えることになる。つまり、配管51を介して2つの熱交換器(図示の例では液-ガス熱交換器61bと液-ガス熱交換器71bであるが、上記の通り、この例に限らない)に、任意の“流体”を循環させるものと言えることになる。これは、後述する他の構成に関しても略同様である。すなわち、後述する、液-ガス熱交換器81b、91c、及び配管96や、液-ガス熱交換器111b、121c、及び配管126や、液-ガス熱交換器111b、171c、及び配管162等の構成についても、、液-ガス熱交換器をガス-ガス熱交換器等に置き換えてもよく、何らかの“流体”を循環させるものと言っても良い。
 以上、一体型間接外気冷房システム50の各構成について説明した。
 以下、上記各構成による一体型間接外気冷房システム50の動作について、図3を参照して説明する。
 すなわち、上記天井裏空間の内気(暖気)が、内気流入口62を介して内気ユニット60内に流入すると、まず、この暖気が液-ガス熱交換器61b内を通過することで、当該暖気と液体(水など)との間で熱交換が行われ、暖気の温度が低下する。どの程度低下するのかは、外気温度(液体の温度)や暖気の温度に依ることになる。
 上記温度低下した暖気は、続いて、蒸発器61aを通過する。これによって、温度低下した暖気は、蒸発器61aで冷却されて更に温度低下し冷気となる。この冷気は、所定温度(設定温度)となるようにコントロールされる。その為に、当然、不図示の(図3では一応示す)コントローラ74も存在している。このコントローラ74は、一体型間接外気冷房システム50全体を制御するものであり、例えば各ファンの回転数制御や循環ポンプ53の制御等の各種制御も行っているが、ここでは特に説明しない。尚、コントローラ74は、CPU等の演算装置やメモリ等の記憶装置を有しており、メモリ等に予め記憶されているプログラムを実行することで、また不図示の各種センサによる計測値を随時入力することで、一体型間接外気冷房システムの制御を行うことになる。
 また、このコントローラ74は、内気ユニットの筐体内もしくは外気ユニットの筐体内に設けられて良いし、これらユニットの外(ユニットの近傍等)に設けられても良い。尚、図3では、コントローラ74に係る各種信号線等は図示していないが、実際には存在し、これらコントローラ74は、信号線を介して、上記一体型間接外気冷房システム50等の各種構成を制御する。例えば、送風機61cの吹出口付近には不図示の温度センサが設けられており、コントローラ74は、この温度センサによる計測温度を不図示の信号線を介して取得する。そして、コントローラ74は、この計測温度が設定温度となるように、不図示の信号線を介して、上記一般的な圧縮式冷凍サイクルに係る各構成を制御する。
 尚、既に述べた通り本例では、暖気の流れの上流側に液-ガス熱交換器61bを配置し、下流側に蒸発器61aを配置している。
 上記蒸発器61aで生成された冷気は、(送風機61cを通過し)内気排出口63から排出される。ここで、図2に示すように、内気排出口63は床下空間に繋がるように配置されている。尚、この為、一体型間接外気冷房システム50は、上記図1の間接外気冷房機20とは異なり、図2に示すように一部が床下まで入り込むようにして設置することになる。これより、内気排出口63から排出された冷気は、床下空間に流入し、床下空間を介してサーバ設置空間に流入し、発熱体101を冷却することになる。冷気は、発熱体101を冷却することで暖気となり、この暖気は天井裏空間に流入し、再び上記内気流入口62から内気ユニット60内に流入することになる。
 一方、外気ユニット70に関しては、外気流入口72を介して外気ユニット70内に流入した外気は、まず、液-ガス熱交換器71b内を通過することで、当該外気と液体(水など)との間で熱交換が行われる。この液体(水など)は、上記液-ガス熱交換器61bにおいて暖気と熱交換することで温度上昇している。この様に温度が高くなっている液体(水など)と外気との間で熱交換が行われることで、液体(水など)の温度が低下する。温度低下した液体(水など)は、循環ポンプ53と配管51により、再び液-ガス熱交換器61b側に供給されることになる。
 一方、外気は、液-ガス熱交換器71b内を通過する際の上記液体(水など)との熱交換によって、温度上昇することになる。この温度上昇した外気は、続いて、凝縮器71aを通過することになり、凝縮器71aは上記の様に放熱を行っていることから更に温度上昇し、その後、外気排出口73から排出されることになる。
 以上説明した一体型間接外気冷房システム50によれば、主に下記の効果が得られる。
 (a)コンパクト化
 従来や実施例1では、一般空調機と間接外気冷房機の2つの機器があったが、これら2つの機器を一体化したことで、小型化を図ることができ、以って設置スペースを削減することができ、例えば機械室等が狭い場合でも設置し易くなる(あるいは、従来では設置できないほど狭かったものを設置可能とする)。
 (b)ダクトレス、壁面取り付けによる施工費低減
 この効果は、上記実施例1でも同様であり、従来のようにダクトを設ける必要はなくなる。内気ユニット、外気ユニットを予め例えば工場等で製造しておき、施工時にはこれらユニットを壁面に取り付けるだけなので(配管用の孔もしくは一体化した内外気ユニットを埋め込むための孔を空ける等の作業は必要であるが)施工の手間が軽減でき、以って施工費を低減することができる。
 (c)積層体によるコンパクト化と製作性の向上
 従来や実施例1等では、例えば建物内の構成に関しては、蒸発器、液-ガス熱交換器、ファン等がバラバラに存在していた(当然、製造も個別に行っていた)。これに対して、実施例2では、蒸発器、液-ガス熱交換器、ファンを積層させて一体化した積層体としたことにより、小型化を図ることができる。また、個別に製造せずにまとまって製造するので、製造し易くなる。特に、図2や図3に示すように形や大きさが略同一となるように揃えることで、製作性が更に向上することが期待できる。また、持ち運びに便利で設置し易いという効果も期待できる。
 (d)ファン共通化による送風動力(送風電力)低減と低価格化
 実施例2の構成では、従来や実施例1に比べてファン数を削減でき、以って送風動力(送風電力)低減と低価格化を図ることができる。例えば図1に示す実施例1の構成では、ファンは、ファン11a、ファン12b、ファン32、ファン42の4つのファンが設けられていた。これに対して、図2、図3に示す実施例2の構成では、ファン71c、71cという2つのファンのみで済む。つまり、ファン数を半減できる。よって、例えばファンの購入費を半減できる。また、ファンを動作させるには電力が必要であるが、この電力も4つの場合に比べれば2つの方が少なくて済む。
 次に、実施例3の空調システムについて説明する。
 実施例3の空調システムが、上記メインの課題を解決するものである。すなわち、外気温が高い状態であっても外気を室内空間の冷房に利用できるような空調システムを提供する。
 図4は、実施例3の空調システム(その1)の構成図である。
 図5A、図5Bは、実施例3の空調システム(その2)の構成図である。
 図6は、実施例3の空調システムの動作モデル等を示す図である。
 尚、実施例3の空調システムは、上記間接外気冷房システム等にように、室内空間の冷房に外気を利用する空調システムであり、よって「外気利用空調システム」等と呼ぶ場合もあるものとする。
 以下、まず、図4を参照して説明する。
 図示の実施例3の空調システム(その1)は、例えば上記実施例1、2等と同様に、壁1を境にして建物外に設けられる外気ユニット80と建物内に設けられる内気ユニット90とから成る。但し、この例に限らない。例えば後に図10に示すような構成であってもよい。
 図4において、まず、外気ユニット80は、積層体81を有し、更に第2の冷媒を循環させる配管96の一部が設けられる。第2の冷媒としては、“水”等の冷却液やフロン等を具体例として挙げることができる。積層体81は、第2の冷媒と外気とを熱交換するための構成の一例である液-ガス熱交換器81b、送風機(ファン)81a等を有し、これらが図示のように積層されて一体となった構成となっている。尚、この様な積層体の形状・構造や製造方法等は、既に実施例2で積層体61,71に関して説明しており、ここでの説明は省略する。
 尚、液-ガス熱交換器81bと送風機(ファン)81aは、必ずしも積層体とする必要はない。尚、図4では簡略化して示しているが、実際には上記外気ユニット70等と同様、外気ユニット80の筐体には上記外気流入口72、外気排出口73に相当する孔が設けられている。
 また、外気ユニット80の設置場所や設置方法(工場等での製造も含む)も、上記外気ユニット40、70等と略同様であってよいが、この例に限らない。これは、図示の内気ユニット90に関しても略同様である。すなわち、内気ユニット90も、その筐体には上記内気流入口62、内気排出口63に相当する不図示の孔が設けられている。また、内気ユニット90の設置場所や設置方法(工場等での製造も含む)も、上記外気ユニット30、60等と略同様であってよいが、この例に限らない。
 内気ユニット90は、積層体91を有し、更に第2の冷媒(たとえば“水”等の冷却液)を循環させる配管96の一部と、第1の冷媒(たとえばフロンなど)を循環させる冷媒管95(図では全てであるが、一部であってもよい)と、配管96の途中に設けられるポンプ94と、冷媒管95の途中に設けられる圧縮機92及び膨張弁93を有する。但し、これは一例であり、この例に限らず、例えば、ポンプ94、圧縮機92、膨張弁93の何れか1つまたは2つあるいは全てが、外気ユニット80側あるいは内気ユニット90の外側(但し、建物内)に設けられていてもよい。圧縮機92と膨張弁93の何れか1つでも外気ユニット80側に設けられるならば、冷媒管95もその一部が外気ユニット80側に配設されることになる。
 内気ユニット90の上記積層体91は、送風機(ファン)91a、凝縮器91b、第2の冷媒と内気とを熱交換するための構成の一例である液-ガス熱交換器91c、蒸発器91dを有し、これらが図示のように積層されて一体となった構成となっている。尚、必ずしも送風機(ファン)91a、凝縮器91b、液-ガス熱交換器91c、蒸発器91dの全てを積層化する必要性はない。例えば、送風機(ファン)91aは別途設けるようにしてもよい。あるいは、これら構成全てがバラバラに設けられていても良い。但し、既に実施例2で述べたように、積層体とすることには少なからずメリットがある。
 ここで、積層体とするか否かに係らず、内気ユニット90における凝縮器91bと液-ガス熱交換器91cと蒸発器91dの位置関係は、以下の通りと規定される。
 すなわち、内気ユニット90内を通過する空気(内気)の流れの上流側から順に、凝縮器91b→液-ガス熱交換器91c→蒸発器91dと成るように配置する。つまり、空気(内気)の流れの最上流が凝縮器91b、次が液-ガス熱交換器91c、最下流が蒸発器91dとなるように配置する。よって、図上一点鎖線矢印で示す空気(内気)の流れの場合は、例えば図示のように、図上左側から凝縮器91b→液-ガス熱交換器91c→蒸発器91dという順に配置される。
 尚、これに対して、図8に示すように送風機(ファン)91aによって形成される空気の流れが逆になった場合には、図8の積層体91’に示す通り、図上左側から蒸発器91d→液-ガス熱交換器91c→凝縮器91bという順に配置されることになる。つまり、図4と同様に、内気ユニット90内を通過する空気(内気)の流れの上流側から順に、凝縮器91b→液-ガス熱交換器91c→蒸発器91dとなるように配置されることになる。尚、図8に示すように配置が変わっても第1の冷媒の流れる順番は変わらない。すなわち、第1の冷媒は「蒸発器91d→圧縮機92→凝縮器91b→膨張弁93→蒸発器91d」の順番で循環している。
 尚、図14や図1や図2に示すような環境の場合には、上記図2、図3に示す内気ユニット60と同様の空気の流れとすることが望ましい。つまり、図4よりは図8のような空気の流れとすることが望ましい(勿論、その場合、図8に示す構成となる)。その理由は、既に実施例2で述べた通りである。
 すなわち、例えば図2において、上記外気ユニット70、内気ユニット60の代わりに、上記外気ユニット80、内気ユニット90を設置することを考える。この場合、図4では、蒸発器91dによって生成される冷気が、内気ユニット90の筐体の上側の孔(不図示)から送出されることになる。しかし、図2に示すように、冷気の送出先は下側の床下空間である。この為、図8に示すように、蒸発器91dによって生成される冷気が、内気ユニット90の筐体の下側の孔(不図示)から送出されるように構成することが望ましい。尚、理由としては、天井裏空間からのリターン空気(暖気)の流入に関する点もある(既に述べた通りであり省略する)。
 図4の説明に戻る。
 図示の通り、蒸発器91d、凝縮器91b、膨張弁93、及び圧縮機92は、冷媒管95に接続されている。冷媒管95を介して第1の冷媒が、蒸発器91d、凝縮器91b、膨張弁93、及び圧縮機92を循環する。すなわち、第1の冷媒が「蒸発器91d→圧縮機92→凝縮器91b→膨張弁93→蒸発器91d」という一般的な圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で循環している。従来通り、蒸発器91dにおいて第1の冷媒が蒸発する際に周囲の熱を奪い、以って周囲の空気(内気)を冷却する。奪った熱は、凝縮器91bにおいて周囲に放熱される。膨張弁93、及び圧縮機92の機能も、従来通りであり、ここでは特に説明しない。
 ここで、図14や図1や図2、図3に示すように、通常、凝縮器は室外側(建物外)に設置されて外気に対して放熱するものである。一方、図4等に示すように、実施例3においては、室内側(例えば内気ユニット90内であるが、この例に限らない)に凝縮器を設けている。これが実施例3の特徴の1つであり、後に詳しく説明する。
 室内空間(その天井裏空間)から内気ユニット90内に流入するリターン空気(暖気)としての内気は、上記の通り、まず凝縮器91bを通過し、次に液-ガス熱交換器91cを通過し、最後に蒸発器91dを通過することになる。リターン空気は、凝縮器91bを通過する際に凝縮器91bからの放熱によって温度上昇し、次に液-ガス熱交換器91cを通過する際に上記第2の冷媒(水など)との熱交換によって温度下降した後、蒸発器91dを通過することで冷却されて冷気となる。この冷気は、例えば冷却対象空間であるサーバルーム等へ、例えば床下空間等を介して供給されることになる。
 ここで、上記液-ガス熱交換器81bと液-ガス熱交換器91cは、実施例2の液-ガス熱交換器61b,71b等と略同様に、配管96を介して相互に接続されており、ポンプ94によって配管96内の第2の冷媒(水など)が、液-ガス熱交換器81b、91c及び配管96内を循環している。また、液-ガス熱交換器81b、91cは、上記液-ガス熱交換器31,41や液-ガス熱交換器61b,71b等と略同様の構成であってよく、ここでは特に説明しない。
 液-ガス熱交換器91c内には、上記第2の冷媒(水など)が通過すると共に上記内気(暖気)が通過する。これより、液-ガス熱交換器91c内で第2の冷媒(水など)と暖気との熱交換が行われ、基本的には暖気が冷却されて(暖気の熱が液体に移動して)、暖気の温度が低下することになる。但し、従来では、外気と内気の温度次第であり、暖気の温度が下がることが保証されるものではない。
 しかし、図4等に示す実施例3の構成では、液-ガス熱交換器91cの前段(上流側)で凝縮器91bによる放熱がある為、内気(暖気)の温度が上昇する。例えば、室内空間からのリターン空気(暖気)の温度が30℃であり、外気温度が35℃であっても、凝縮器91bを通過後の内気の温度が45℃になっているならば、液-ガス熱交換器91cにおいて内気の温度は下げられることになる(例えば、45℃→36℃など)。
 つまり、従来であれば外気利用冷房(間接外気冷房)機能が機能不全となるような環境下であっても、機能することになる。また、内気と外気の温度差が大きくなることで、内気の冷却効率が向上することになる。
 ここで、例えばこの例のように、外気温が高い環境であっても実質的に外気によって内気冷却を図ることはできるが、36℃は元々の内気の温度(30℃)よりも高い。しかし、凝縮器91bにおける第1の冷媒の冷却は、従来であれば上記35℃の外気が用いられるが、本例では上記30℃の内気が用いられることになる。つまり、外気温がリターン空気(内気)の温度よりも高い状況では、従来構成よりも図4等に示す実施例3の構成の方が、凝縮器91bにおける第1の冷媒の冷却効果が高いことになる。
 これより、後にシミュレーションで示すように、この様な外気温が高い状況下では、従来に比べて消費電力が少なくて済む(省エネ効果が高いものとなる)。詳しくは後に説明する。
 尚、図4や後述する図8の構成は、例えば図3に示す構成と比較した場合、下記のメリットも得られる。
 すなわち、図4、図8の構成では、凝縮器を室内側(内気ユニット)に設置するので、配管取り回しが短くなる箇所がある(配管96は、冷媒管52に比べて、短くて済む)点や、壁1への貫通孔が減る(‘4’→‘2’)等のメリットが得られる。また、図4、図8の構成は、後述する図5A,図5B、図9、図11、図12の構成に対しても、壁1への貫通孔が少なくて済む(‘5’→‘2’)等のメリットが得られる。
 次に、図5A、図5Bを参照して、実施例3の空調システム(その2)の構成例について説明する。尚、図5Aは第1の例、図5Bは第2の例である。
 図5A、図5Bに示す構成は、上記図4の構成をベースにして、外気ユニット側にも凝縮器を設けて図示の三方弁112(切換装置)を用いた切換え制御を行うことで、更に上記実施例2(図3)と略同様の動作も行えるようにするものである。
 尚、図4や図5A、図5Bに示す空調システム(その1)(その2)による冷却対象空間は、例えば図1や図2に示す例と同じであるものとする。すなわち、冷却対象となる室内空間は、例えば、サーバ装置(コンピュータ装置)等の発熱体101を搭載したサーバラック102が多数設置されたサーバルーム等である。そして、床下空間に冷気を送出し、床下空間を介してサーバ設置空間に冷気を供給し、この冷気によって各発熱体101を冷却する。これによって冷気は暖気となり、この暖気は天井裏空間に流入する。この天井裏空間からのリターン空気(暖気)が、図4の内気ユニット90や図5A、図5Bの内気ユニット120内に流入して、これら内気ユニット内で上記冷気が生成されて床下空間に送出されることになる。
 以下、まず、図5Aについて説明する。
 図5Aに示す実施例3の空調システム(その2)は、内気ユニット120と外気ユニット110とから成る。これら内気ユニット120と外気ユニット110の筐体、製造/設置方法や、内外ユニット相互の位置関係などに関しては、上記内気ユニット60と外気ユニット70等と略同様であってよく、ここでは特に説明しない。
 以下、まず、内気ユニット120について説明する。
 内気ユニット120は、積層体121等を有する。この積層体121は、送風機(ファン)121a、凝縮器121b、液-ガス熱交換器121c、蒸発器121d等を有し、これらが図示のように積層されて一体となった構成となっている。
 ここで、上記積層体121は、上記図4に示す積層体91と同じものであってもよい。よって、上記積層体91と同じ条件が課される。すなわち、内気ユニット120内を通過する空気(内気)の流れの上流側から順に、凝縮器121b→液-ガス熱交換器121c→蒸発器121dと成るように配置する。
 尚、この様に、蒸発器、液-ガス熱交換器、凝縮器、送風機(ファン)を積層体として一体型とする構成には、既に述べたように少なからずメリットがあるが、この構成例に限定されるわけではない。例えば、これら4つの構成要素の任意の2つ以上のみが積層体となっていてもよいし、4つの構成要素の全てがバラバラに設けられていても良い(但し、この場合でも、図4で説明したように、内気の流れの上流側から順に、凝縮器→液-ガス熱交換器→蒸発器と成るように配置する)。
 また、図4では省略したが、実施例3においても実施例2等と同様に、内気ユニット120の筐体には、図示の内気流入口128、内気排出口127等の孔が開けられている。本例では、送風機(ファン)121aは、図上一点鎖線矢印で示す空気の流れを形成する。すなわち、上記天井裏空間の暖気を、内気流入口128から当該内気ユニット120内に流入させ、内気ユニット120内(特に積層体121)を通過させて冷気とした後、この冷気を内気排出口127から排出させるような空気の流れ(図上、一点鎖線矢印で示す)を、送風機(ファン)121aが作り出す。尚、内気排出口127から排出した冷気は、床下空間等を介してサーバルーム等に流入することになる。
 尚、図2、図3と同様に、図示の内気排出口127としての孔を内気流入口とし、図示の内気流入口128としての孔を内気排出口とするような空気の流れ(図上、一点鎖線矢印で示す流れとは逆向きの流れ)を、送風機(ファン)121aに形成させるようにしてもよい。この様な構成例を図9に示す。図9に示すように、筐体の上側に内気流入口127’が設けられ、筐体の下側に内気排出口128’が設けられる。
 そして、この場合には、図9に示す通り、積層体121の構成が変わることになる。すなわち、上記の通り、内気ユニット内における空気(内気)の流れの上流側から順に、凝縮器→液-ガス熱交換器→蒸発器と成るように配置するのであるから、図5Aの凝縮器121bと蒸発器121dとを交換するような形となる。すなわち、図9に示す積層体121’のような構成となる。
 図示の通り、積層体121’は、図上右側から、凝縮器121b、液-ガス熱交換器121c、蒸発器121dの順に配置されている。送風機(ファン)121aによって形成される内気の流れは、図9において一点鎖線矢印で示す通り、内気流入口127’から筐体内に流入して内気排出口128’から排出されるものとなる。よって、この様な空気の流れの上流側から凝縮器121b→液-ガス熱交換器121c→蒸発器121dの順に、配置されていることになる。
 図5Aの説明に戻る。
 外気ユニット110は、積層体111を有する。
 積層体111は、送風機(ファン)111a、液-ガス熱交換器111b、凝縮器111c等を有し、これらが図示のように積層されて一体となった構成となっている。尚、これらの3つの構成要素は、必ずしも全てを積層体とする必要はない。尚、図4では簡略化して示したが、外気ユニット110は(上記外気ユニット70等も同様)、その筐体には図示の外気流入口114、外気排出口115のような孔が設けられている。送風機(ファン)111aは、屋外の空気(外気)を、外気流入口114から外気ユニット110内に流入させ、当該積層体111を通過させた後、外気排出口115から排出させるような空気の流れ(図上、点線矢印で示す)を作り出す。
 尚、積層体111自体は、上記積層体71と同じであってよい。そして、積層体71と同様、上記積層体111は、上記の様な空気の流れ(図上、点線矢印で示す)の上流側に上記液-ガス熱交換器111bが設けられ、下流側に上記凝縮器111cが設けられるように構成する。これは、積層体としない場合でも同様である。
 また、膨張弁123、圧縮機113が、それぞれ、外気ユニット110、内気ユニット120のどちらかに設けられている。図示の例では、膨張弁123は内気ユニット120内に設けられ、圧縮機113は外気ユニット110に設けられるが、この例に限らない(変形例は、既に実施例2で説明しており、ここでは省略する)。
 そして、図示の通り、蒸発器121d、膨張弁123、及び圧縮機113は、冷媒管125に接続されている。更に、冷媒管125には、その途中に切換装置の一例である三方弁112が設けられており、三方弁112から先は図示の冷媒管125aと冷媒管125bとに分岐している。冷媒管125aは上記積層体121の凝縮器121bに接続している。冷媒管125bは、上記積層体111の凝縮器111cに接続し、更にその先で冷媒管125aに合流している。これより、三方弁112の弁開閉切り替えを行うことで、第1の冷媒を、冷媒管125aと冷媒管125bのどちらか一方に流すことができる。これは、換言すれば、第1の冷媒を、凝縮器111cと凝縮器121bのどちらか一方に流すことができる。
 このように、第1の冷媒は、冷媒管125(冷媒管125aまたは冷媒管125bを含む)を介して、蒸発器121d、凝縮器111cまたは凝縮器121b、膨張弁123、及び圧縮機113を循環する。すなわち、第1の冷媒が「蒸発器121d→圧縮機113→凝縮器111cまたは凝縮器121b→膨張弁123→蒸発器121d」という圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で循環する。
 従来と同様に、蒸発器121dにおいて第1の冷媒が蒸発する際に周囲の熱を奪い、以って周囲の空気を冷却する。奪った熱は、凝縮器111cまたは凝縮器121bにおいて周囲へ放熱される。膨張弁123、及び圧縮機113の機能も、従来通りであり、特に説明しない。
 上記三方弁112による冷媒切換制御は、例えば外気温や内気温度によって決定する。あるいは消費電力量に基づいて決定してもよい。
 すなわち、図4の構成では、特に外気温が高い場合(例えば30℃以上等)に、従来の空調システムに比べて顕著な効果を奏する一方で、外気温が低い場合にはかえって逆効果となる場合も有り得る。
 これより、例えば図示のコントローラ130が、例えば外気温が所定温度以上の場合には、あるいは「外気温>内気温度」で且つ外気温と内気温度との温度差が所定値以上の場合には、上記三方弁112の弁開閉切換制御を行って、第1の冷媒を冷媒管125a(凝縮器121b)へ流入させる。この場合の動作、効果は、図4と略同様となる。すなわち、第1の冷媒が冷媒管125a(凝縮器121b)へ流入する状態となった場合、凝縮器121bから内気への放熱が行われることになり、従って積層体121の機能は上記積層体91と略同様となる。(尚、内気温度とは、例えば上記天井裏空間からのリターン空気の温度である)。
 すなわち、室内空間(その天井裏空間)から内気流入口128を介して内気ユニット120内に流入するリターン空気(暖気)は、まず凝縮器121bを通過し、次に液-ガス熱交換器121cを通過し、最後に蒸発器121dを通過することになる。リターン空気は、凝縮器121bを通過する際に凝縮器121bからの放熱によって温度上昇し、次に液-ガス熱交換器121cを通過する際に上記第2の冷媒(水など)との熱交換によって温度下降した後、最後に蒸発器121dを通過することで冷却されて冷気となる。
 尚、上記三方弁112の弁開閉切換制御を行う前後の消費電力量を計測し、消費電力量が減少したならばそのままとし、消費電力量が増加したならば再び上記三方弁112の弁開閉切換制御を行って元の状態(第1の冷媒が冷媒管125b(凝縮器111c)へ流入する状態)に戻すようにしてもよい。あるいは、上記切換後、例えば外気温が所定温度未満となった場合には、あるいは「外気温≦内気温度」となった場合、あるいは「外気温>内気温度」であるが外気温と内気温度との温度差が所定値未満となった場合には、再び上記三方弁112の弁開閉切換制御を行って元の状態(第1の冷媒が冷媒管125b(凝縮器111c)へ流入する状態)に戻すようにしてもよい。
 例えば外気温が所定温度未満の場合等には、上記三方弁112の弁開閉切換制御を行って、第1の冷媒を冷媒管125b(凝縮器111c)へ流入させる。この場合の動作は、図2、図3と同じであってよい。
 すなわち、室内空間(その天井裏空間)から内気流入口128を介して内気ユニット120内に流入するリターン空気(暖気)は、凝縮器121bを特に何もなく通過し、次に液-ガス熱交換器121cを通過する際に上記第2の冷媒(水など)との熱交換によって温度下降した後、最後に蒸発器121dを通過することで冷却されて冷気となる。一方、蒸発器121dが周囲から奪った熱は、凝縮器111cにおいて外気へと放熱されることになる。尚、上記第2の冷媒は、配管126内を循環ポンプ124によって循環している。配管126は、上記配管51等と同様、液-ガス熱交換器111b、121cに接続している。
 尚、この様な三方弁112の弁開閉切換制御は、例えば図示のコントローラ130が行うが、ここでは特に詳細には説明しない。尚、コントローラ130は、CPU/MPU、メモリ等を有し、不図示の温度センサなどから温度データを入力する等して冷気の温度を調整する等の制御を行う、本空調システム全体の制御装置である。コントローラ130の設置場所は、任意であってよい。
 尚、図5Aの例では、冷媒管125aへ流した第1の冷媒が冷媒管125bに流入しないようにするために(その逆に、冷媒管125bへ流した第1の冷媒が冷媒管125aに流入しないようにするために)、図示のように逆止弁122a、122bを設けている。すなわち、まず、図示のように、2つに分岐した冷媒管125である上記冷媒管125aと冷媒管125bとが図示の合流点Rで合流して再び1本の冷媒管125となる。冷媒管125aにおいて、図示の通り、この合流点Rの手前で逆止弁122aを設けている。冷媒管125bにおいても同様に、この合流点Rの手前で逆止弁122bを設けている。
 尚、図5Aを用いて図4の構成を説明するならば、まず、凝縮器111cは存在せず、それ故に、三方弁112と冷媒管125b及び逆止弁122a、122bも存在しないことになる(また、冷媒管125aは冷媒管125と見做せる)。
 尚、その逆に、図4の構成をベースにして図5Aの構成を説明するならば、図4の構成に対して、まず、凝縮器111cを追加するとともに、冷媒管125を途中で分岐して成る分岐管である上記冷媒管125bを凝縮器111cに接続する。更に、上記冷媒管125の分岐点に切換装置の一例である三方弁112を設け、この切換装置によって第1の冷媒を、凝縮器121bと凝縮器111cの何れか一方に循環させることになる。また、上記逆止弁122a、122bも追加することになる。
 次に、図5Bに示す構成例について説明する。
 図5Bの構成は、上記図5Aの構成とほぼ同じであり、一部が異なるだけである。よって、図5Bに関しては、図5Aとは異なる点のみ説明し、図5Aと略同様の構成については説明を省略するものとする。
 図5Bの構成では、上記図5Aにおける三方弁112の代わりに、図示の三方弁112’を設けている。図5Aの三方弁112は凝縮器111cの前段(流入側)に設けられていた。これに対して、図5Bの三方弁112’は凝縮器111cの後段(流出側)に設けられている。三方弁112’から先は、冷媒管125が冷媒管125aと冷媒管125bとに分岐している点は、図5Aと略同様である。また、冷媒管125bは膨張弁123に接続し、冷媒管125aは凝縮器121bに接続している点も、図5Aと略同様である。
 図5Aの構成では、三方弁112の弁切換制御によって、冷媒を、凝縮器111cと凝縮器121bのどちらか一方に流すものであった。これに対して、図5Bの構成では、冷媒は必ず凝縮器111cに流すものであり、冷媒を更に凝縮器121bにも流すか否かを、三方弁112’の弁切換によって制御しているものである。
 圧縮器113の出口側の冷媒の温度は、通常、外気温度より高いため、冷媒は必ず凝縮器111cに流す構成とすることで、冷媒温度を下げることが期待できる。更に、「外気温度>内気温度」の場合には、三方弁112’の弁切換制御によって冷媒を冷媒管125aに流すようにする(冷媒を凝縮器121bにも流す)。これによって、冷媒温度を凝縮器111cで一旦下げ、更に凝縮器121bで冷媒温度を内気温度近辺まで下げることが可能となる。
 尚、外気温度は外気温と同義である。
 上記図5Bの構成によれば、凝縮器121bにおける冷媒と内気との熱交換量が減るので、凝縮器121bの小型化を図ることができる。また、熱交換器121cで取り去らなければならない熱量が減少するので、効率向上を期待できる(たとえば、送風機111aの風量減少やポンプ124による循環冷媒の流量減少など)。
 尚、上記図5Bの構成は、以下のように説明することもできる。
 すなわち、外気ユニット110にも凝縮器111cを設け、冷媒管125をこの凝縮器111cに接続し、更に凝縮器111cの冷媒流出側において冷媒管125を分岐すると共に該分岐点に切換装置(三方弁112’)を設ける。そして、この切換装置によって、第1の冷媒を内気ユニット120内の凝縮器121bに循環させた後に膨張弁123に循環させる第1ルートと、第1の冷媒を内気ユニット120内の凝縮器121bに循環させずに膨張弁123に循環させる第2ルートとの何れか一方のルートに切換える。この切換装置によるルート切換制御は、例えばコントローラ130が実行する。
 ここで、図6には、上記実施例3の空調システムの動作モデルとシミュレーション結果を示す。
 まず、図6(a)に示すシミュレーション動作モデルについて説明する。
 尚、以下の説明では、図4の構成に対応付けて説明するが、図5A、図5Bに関しても略同様である(但し、図4と同様に動作させる場合)。
 図6において、まず、太線矢印は、空気(内気)の流れを示す。この空気(内気)の流れに沿った構成、すなわち内気が通過する構成が、図示の発熱体140、凝縮器141、液-ガス熱交換器142、蒸発器143である。
 発熱体140は、上記冷却対象の室内空間の上記発熱体101(サーバ装置等)に相当する。凝縮器141は上記凝縮器91bに相当し、液-ガス熱交換器142は上記内気ユニット90内の液-ガス熱交換器91cに相当し、蒸発器143は上記蒸発器91dに相当する。また、図示の圧縮機144が上記圧縮機92に相当し、図示の膨張弁145が上記膨張弁93に相当する。
 これら凝縮器141、蒸発器143、圧縮機144、膨張弁145の間を繋ぐ図示の細線矢印が、第1の冷媒の流れを示す。すなわち、第1の冷媒が「蒸発器143→圧縮機144→凝縮器141→膨張弁145→蒸発器143」という圧縮式冷凍サイクル(蒸気圧縮式冷凍サイクル等)で循環している。
 また、図示のポンプ146が上記ポンプ94に相当し、図示の液-ガス熱交換器147が上記外気ユニット80側の液-ガス熱交換器81bに相当する。これらポンプ146、液-ガス熱交換器147と、上記液-ガス熱交換器142の間を繋ぐ図示の細線矢印が、第2の冷媒(水など)の流れを示す。これにより、液-ガス熱交換器142においては内気と第2の冷媒との熱交換が行われ、液-ガス熱交換器147においては外気と第2の冷媒との熱交換が行われる。よって、外気温が低い場合等には、第2の冷媒を介して、外気によって間接的に内気が冷却される間接外気冷房機能が実現されることになる。
 ここで、図6(a)には、上記サイクルの各段階における内気と第1の冷媒の温度の一例を示している。尚、これはあくまでも一例に過ぎない。また、これは、シミュレーションとしての理想的な温度を示しているのであり、現実にはこの通りにはならない。例えば、凝縮器141において第1の冷媒の温度は大きく下がるものの、図示のように内気と同じ温度(32℃)まで下がることはなく、それよりも少し高い温度(33℃等)となる。
 まず蒸発器143から話を始めるものとする。図示の例では、内気は、蒸発器143において冷却されることで、18℃の冷気となっている。この冷気によってサーバ装置等である発熱体140が冷却され、内気は32℃の暖気となる。この32℃の暖気は、凝縮器141を通過する。
 ここで、凝縮器141には、圧縮機144によって生成される高温(66℃)の第1の冷媒が流入しており、周囲に放熱している。凝縮器141においては、上記32℃の暖気によって、高温(66℃)の第1の冷媒が冷却されることになる。これによって、凝縮器141の後には、第1の冷媒の温度は32℃に低下する一方で、暖気(内気)の温度は55℃に上昇している。
 この32℃の第1の冷媒は、次段の膨張弁145において更に10℃の第1の冷媒となって蒸発器143に流入し、これによって蒸発器143が上記の通り内気を冷却して18℃の冷気を生成することになる。
 一方、55℃になった暖気は、液-ガス熱交換器142を通過する際に、上記第2の冷媒と熱交換することで温度低下して、36℃の暖気となる。そして、この36℃の暖気は、蒸発器143を通過することで、上記の通り18℃の冷気となる。
 ここで、上記の通り、室内空間からのリターン空気が32℃であるのに対して、蒸発器143へ流入する暖気は36℃となっており、間接外気冷房機能を使っているにも係らず、逆に、温度上昇していることになる。
 しかし、間接外気冷房機能では、上記の通り、55℃の暖気を36℃の暖気にしており、冷却機能を果たしており、また温度差が大きいので暖気(内気)の冷却の効率もよい。これは、外気温が非常に高い状態(例えば36℃)であっても、55℃に比べれば非常に低いことになるためである。液-ガス熱交換器142を通過する暖気が、上記32℃のリターン空気であったならば、外気温が36℃の場合には、温度低下させられないばかりか逆に温度上昇する可能性がある。一方、実施例3では、外気温が非常に高くても、間接外気冷房が機能する可能性が高い。
 ここで、内気が上記のように55℃の高温となるのは、内気ユニット側(室内側)に凝縮器141を設けて、これに内気を通過させるためである。図14や図1~図3等に示す通り、通常、凝縮器は室外側に設けて、外気に対して放熱させるものである。これは、外気温が低い場合には、何等問題ないものであり、凝縮器において外気によって第1の冷媒が十分に冷却されることになる。
 しかし、外気温が非常に高い状態(例えば36℃)では、凝縮器において外気によって第1の冷媒が十分に冷却されないことになり、それでも室温を設定値通りに保とうとすると消費電力が増大することになる。これに対して実施例3の空調システムでは、上記のように凝縮器141において、外気よりも温度が低い上記32℃の内気によって、第1の冷媒が冷却されることになり、外気の場合に比べて第1の冷媒の温度をより下げることができ、消費電力低減につながることになる。
 図6(b)に、上記消費電力低減に係るシミュレーション結果を示す。
 図6(b)に示すグラフは、横軸が外気温度(℃)、縦軸が消費電力(kW)である。
 また、グラフ中の三角(△)で示すデータは間接外気冷房機能の消費電力(主にファンとポンプ146の消費電力)、四角(◇)で示すデータは冷凍サイクルの消費電力(主に圧縮機144の消費電力)、丸(○)はこれらの合計(全体の消費電力)を示す。また、これら各記号内が空白のもの(白三角△、白四角◇、白丸○)が従来の空調システム、各記号内が黒のもの(黒三角▲、黒四角◆、黒丸●)が実施例3の空調システムに対応するデータである。尚、従来の空調システムは、例えば上記図14の空調システムであるが、この例に限らず、例えば上記実施例1や実施例2の空調システムであってもよいと考えても構わない。
 図示のように、外気温が比較的低い場合は、従来の空調システムも本空調システム(実施例3の空調システム)も、全体としての消費電力はそれほど変わらない。
 しかし、外気温がある程度以上高くなると(例えば30℃を超える程度がひとつの目安となる)、従来の空調システムでは間接外気冷房が実質的に機能しなくなる為、ファンとポンプ146を停止することで、図示の通り間接外気冷房機能に係わる消費電力(白三角△)はゼロとなる。一方、本空調システムでは、上記の通り、内気が非常に高温(55℃等)となるため、外気温が30℃を越えても、更に35℃を越えても、間接外気冷房は機能することになり、ファンとポンプ146を停止することはなく、図示の通り一定の消費電力(黒三角▲)があることになる。
 従来の空調システムでは、上記間接外気冷房の消費電力(白三角△)がゼロとなるような外気温の領域(高温領域と言うものとする)では、図示の通り、温度が高くなるに従って全体の消費電力が急激に増大する。尚、この高温領域においては、従来の空調システムでは、「全体の消費電力(白丸○)=冷凍サイクルの消費電力(白四角◇)」となっている。つまり、上記高温領域では、冷凍サイクルの消費電力(白四角◇)が急増する為、全体の消費電力も急増している。
 一方、本空調システムでは、上記高温領域においても、冷凍サイクルの消費電力(黒四角◆)は、それまでと略同様に、外気温の増加に合わせて緩やかに増大しており、急激に増大するようなことはない。この為、図示の通り、上記高温領域では、外気温が高くなればなるほど、従来の空調システムと本空調システムとの全体の消費電力の差が、大きくなっていくことになる。
 この様に、外気温がある程度以上高い環境下では、実施例3の空調システムは、従来の空調システムに比べて消費電力が少なくて済み、この省エネ効果は外気温が高いほど大きくなることになる。
 但し、外気温が低い環境下では、省エネ効果に関して、実施例3の空調システムは逆効果となる可能性があるので、上記図5A等に示す構成とすることで、実質的に図4に示す実施例3の空調システム(その1)と従来の空調システムとを任意のときに切り替えることができるようにする。但し、これは、設置環境にもよるものであり、例えば設置場所が熱帯に属するのであれば、図4の構成でも何等問題はないことになる。
 尚、第1の冷媒の冷却度合いが大きい(冷媒温度が低い;過冷却度が大きい)ほうが、冷凍効果および冷凍能力が大きくなる。これは、例えば参考文献(特開2010-7975号公報;特にその段落0009、0038等)等に記載されているように、公知の事項である。上記参考文献には、例えば、第1の冷媒の過冷却度が小さくなることで冷凍効果(蒸発器における冷媒の比エンタルピー変化量)が小さくなり、従って冷媒循環量が同じ場合には冷凍能力が小さくなることが開示されている。
 一方、冷却対象空間であるサーバルームの温度は、ほぼ設定温度通りに保つ必要があり、上記図6(a)の例であれば蒸発器はほぼ18℃の冷気を生成し続ける必要がある。冷媒の過冷却度が小さくなってもほぼ18℃の冷気を生成するためには、例えば冷媒循環量を増やす必要があり、この為、消費電力が増大することになる。本空調システムでは、外気温度が高い環境下では、従来の空調システム(外気を用いて冷媒冷却)に比べれば第1の冷媒の過冷却度は小さくならないで済むので、従来の空調システムに比べれば消費電力の増大が抑えられる。この様に、本空調システムでは、外気温度が高い環境下では、従来の空調システムと比較して高い省エネ効果が得られる。
 更に、実施例3では、図4や図5A等に示して説明したユニット構成や製造、設置等を行うようにする場合には、上記実施例2と略同様の効果を得ることもできる。すなわち、実施例2の効果として上述した(a)コンパクト化、(b)ダクトレス、壁面取り付けによる施工費低減、(c)積層体によるコンパクト化と製作性の向上、(d)ファン共通化による送風動力(送風電力)低減と低価格化の効果は、実施例3においても得ることができるものである。
 ここで、図7を参照して、実施例3と従来とを比較説明する。
 図7(a)は実施例3の空調システムの動作モデルを示す図である。尚、これは、上記図6(a)と略同様の図面であり一部省略して示している。よって、各構成には図6(a)と同一符号を付してあり、その詳細な説明は省略する。
 概略的には、図示の凝縮器141、蒸発器143、圧縮機144、及び膨張弁145によって蒸気圧縮冷凍サイクル等の冷凍サイクルを実現している。更に、図示のポンプ146、液-ガス熱交換器147、液-ガス熱交換器142によって、間接外気冷房機能を実現している。
 外気が通過する構成である液-ガス熱交換器147は室外側(建物外)に設置し、内気が通過する構成である凝縮器141、液-ガス熱交換器142、蒸発器143は室内側(建物内)に設置する。これら以外の構成の設置場所は、特に限定しない。
 また、図7(c)には、図7(a)との比較のための従来の空調システムの動作モデルを示している。
 図示の通り、少なくとも図7(a)、(c)に示すモデル例に関しては、実施例3と従来とでは構成上の違いは殆どなく、凝縮器の設置位置が異なるだけである。設置位置が異なることから、図7(a)では凝縮器141、図7(c)では凝縮器141’というように符号を変えて示している。
 図7(a)に示す通り、実施例3の空調システムでは、凝縮器141は、発熱体140(サーバ等)を通過後の内気が通過する位置に設置されている。一方、図7(c)に示す通り、従来の空調システムにおける凝縮器141’は、外気が通過する位置に設置されている。尚、本図では示していないが、凝縮器141’は、液-ガス熱交換器147を通過後の外気を通過させるものとすることが望ましい。尚、図示の例では、例えば外気温度が非常に高い為に、間接外気冷房機能は停止している(例えばポンプ146を停止している)。
 図7(b)は、図7(a)の実施例3の空調システムに対応する温度模式図である。
 図7(d)は、図7(c)の従来の空調システムに対応する温度模式図である。
 まず、図7(b)、(d)において、発熱体140(サーバ等)に接続して一周している矢印は、内気に係る温度変化等を示している。また、圧縮機144と膨張弁145に接続している矢印は、第1の冷媒に係る温度変化等を示している。また、Q(Q1a等)は熱量、L(Lpa等)は動力(電力消費量)を意味している。
 また、図7(b)において点線が囲んで符号141aを付している部分は、上記凝縮器141内における内気や冷媒の温度変化を示すものである。同様に、図7(d)において点線が囲んで符号141bを付している部分は、上記凝縮器141’内における冷媒の温度変化を示すものである。
 また、図7(b)において点線が囲んで符号142aを付している部分は、上記液-ガス熱交換器142内における内気の温度変化を示すものである。同様に、図7(d)において点線が囲んで符号142bを付している部分は、上記液-ガス熱交換器142内における内気の温度変化(但し、図示の通り内気の温度は変化しない)を示すものである。
 また、図7(b)において点線が囲んで符号143aを付している部分は、上記蒸発器143内における内気や冷媒の温度変化を示すものである。同様に、図7(d)において点線が囲んで符号143bを付している部分は、上記蒸発器143内における内気や冷媒の温度変化を示すものである。
 そして、まず、図7(b)において、凝縮器141において内気と第1の冷媒との間で熱量Q1aの交換が行われ、その結果、図示の141aに示す通り、内気の温度は上昇し、第1の冷媒の温度は図示の還気(RA)の温度レベルまで下がる。尚、還気(RA)は、発熱体140(サーバ等)からのリターン空気としての内気である。また、尚、図6(a)でも説明した通り、これはシミュレーションとしての理想的な温度模式図を示しているのであり、現実にはこの通りにはならない。例えば、第1の冷媒の温度は大きく下がるものの、図示のように還気(RA)の温度レベルまで下がることはなく、それよりも少し高い温度となる。
 内気は、その後、液-ガス熱交換器142を通過することで、上記間接外気冷房機能によって熱量Q2aを奪われ(間接的に外気と熱交換して、熱は室外側(建物外)へと放出される)、その結果、内気の温度は、例えば図示の142aに示すように外気(OA)温度レベルまで下がることになる。
 そして、更に、図示の143aに示すように、内気は、蒸発器143で熱量Q3aの熱を奪われて図示の給気(SA)の温度レベルまで下がることになる。尚、給気(SA)とは、発熱体140(サーバ等)に供給する内気(冷気)である。尚、蒸発器143における冷媒の温度は、図示の‘J’のレベルまで下がっている。
 一方、図7(d)に示すように、従来では、発熱体140(サーバ等)において熱量QHで温度上昇した内気は、凝縮器141’を通過するわけではないので温度変化することなく(141b参照)、更に図7(c)の例では間接外気冷房機能は停止しているので液-ガス熱交換器142を通過しても温度変化することなく(142b参照)、図示の上記還気(RA)の温度レベルのままとなる。その後、図示の143bに示すように、内気は、蒸発器143で熱量Q3bの熱を奪われて図示の給気(SA)の温度レベルまで下がることになる。
 一方、第1の冷媒は、室外側(建物外)に設置された凝縮器141’における外気との熱量Q1bの熱量交換により、図示の外気(OA)の温度レベルまで温度低下する。第1の冷媒は、その後、膨張弁145を介して図示の‘J’の温度レベルまで温度低下してから、蒸発器143に供給されることになる。
 ここで、図7(b)、(d)に示す通り、膨張弁145に入る前の第1の冷媒の温度は、図7(b)ではRAであり、図7(d)ではOAであり、RA<OAである。つまり、実施例3は、従来よりも、膨張弁145の手前における第1の冷媒の温度が小さい。これより、既に述べた通り、実施例3の方が冷凍サイクルの消費電力が少なくて済む。つまり、図示のように、実施例3における冷凍サイクルの動力(消費電力)(主に圧縮機144動力(消費電力))をLca、従来における冷凍サイクルの動力(消費電力)(主に圧縮機144動力(消費電力))をLcbとした場合、Lcb>Lcaとなる。尚、これは、図示の例のように還気(RA)の温度が外気(OA)の温度よりも低い場合の話である。
 但し、図7の例では、従来では間接外気冷房機能の動力が停止しているのでその消費電力=‘0’であるのに対して、実施例3の場合は間接外気冷房機能の動力(消費電力)Lpaが加わることになる。よって、この例では、「Lcb>Lca+Lpa」の条件を満たす場合に、実施例3の空調システムは従来の空調システムよりも消費電力が小さいことになる。
 図10は、実施例3の空調システムを含む全体の概略構成図である。
 実施例3の空調システムは、上述した例に限らず、例えば図10に示す構成と見做すこともできる。尚、図10では、各構成要素として図4に示す例を用いるものとし、図4と同一符号を付してある。尚、上述したように、一体化・積層化する例に限定されるわけではなく、それ故、例えば図10に示すような構成としてもよいものである。
 図10の例では、実施例3の空調システムは、図示のヒートポンプ151と熱交換器152から成るものとする。ヒートポンプ151は、上記蒸発器91d、圧縮機92、凝縮器91b、膨張弁93等から成り、これらに接続した冷媒管95を介して、冷媒が「蒸発器91d→圧縮機92→凝縮器91b→膨張弁93→蒸発器91d」の順番で循環している。
 また、熱交換器152は、特に図示しないが、上記液-ガス熱交換器91c、81bとこれらを繋ぐ配管96等から成る。
 ヒートポンプ151から送出された冷気(内気)は、床下空間を介してサーバルームに入り、サーバ装置等を冷却することで暖気となる。この暖気(内気)は、天井裏空間を介して、ヒートポンプ151に流入し、凝縮器91bを通過することで温度上昇してから、熱交換器152に流入する。そして、熱交換器152内で内気と外気との間接的な熱交換が行われて、内気の温度は低下する。温度低下した内気が、ヒートポンプ151に流入し、蒸発器91dを通過することで冷却されて上記冷気となり、上記のように床下空間へと送出されることになる。
 次に、以下、実施例4について説明する。
 図11は、実施例4の空調システム(その1)の構成図である。
 図12は、実施例4の空調システム(その2)の構成図である。
 図13は、実施例4の空調システムの動作モデル等を示す図である。
 まず、図11を参照して、実施例4の空調システム(その1)を説明する。尚、図11において図5Bに示す構成と略同一の構成については、図5Bに示す符号と同じ符号を付しており、その説明を省略または簡略化する。
 まず、図11に示す実施例4の空調システム(その1)は、外気ユニット160と内気ユニット170から成る。これら外気ユニット160と内気ユニット170とは、図5Bに示す外気ユニット110と内気ユニット120の場合と略同様に、壁1を挟んで室外側(建物外)と室内側(建物内)とに設けられる。
 また、これら外気ユニット160、内気ユニット170の製造、設置方法は、図5A、図5B等に示す外気ユニット110、内気ユニット120の製造、設置方法と略同様であってよい。これは図12に示す構成に関しても同様である。また、実施例4の空調システムは、実施例3の空調システムと略同様の効果が得られる。そして、更に後述する実施例4特有の効果も得られる。
 外気ユニット160は、積層体111を有する。積層体111は、送風機(ファン)111a、液-ガス熱交換器111b、凝縮器111c等を有し、これらが図示のように積層されて一体となった構成となっている。尚、これらは図5Bに示す積層体111の構成と同一符号を付してあり、既に述べた通りその説明は省略または簡略化する。これは、後述する三方弁112’などに係る構成についても同様である。
 また、膨張弁123、圧縮機113が、それぞれ、外気ユニット160、内気ユニット170のどちらかに設けられている。図示の例では膨張弁123が内気ユニット170に設けられ、圧縮機113が外気ユニット160に設けられているが、この例に限らない。
 そして、図5Bと同様に、上記第1の冷媒を循環させる冷媒管125上には、上記膨張弁123、圧縮機113や、凝縮器111c、凝縮器171b等が設けられている。そして、図11の構成では、冷媒管125上には更に蒸発器172が設けられている。蒸発器172については後に詳しく説明する。
 また、図11の構成では、図5Bと同様に、冷媒管125上には、その途中に切換装置の一例である三方弁112’が設けられている。冷媒管125は、三方弁112’から先は図示の冷媒管125aと冷媒管125bとに分岐している。三方弁112’は凝縮器111cの後段(下流側)に設けられている。冷媒管(分岐管)125aは、内気ユニット170内の凝縮器171bに接続すると共に、凝縮器171bの下流側において冷媒管(分岐管)125bと合流している(図示の合流点Rで合流して、再び1つの冷媒管125となっている)。そして、合流点Rで合流後の冷媒管125は、膨張弁123に接続している。尚、冷媒管125aと冷媒管125bには、それぞれ、合流点R手前近辺において逆支弁122a、122bが設けられている。これによって、第1の冷媒の逆流を防止する。
 以上、図11の構成において、主に図5Bに示す構成と略同一の構成について(当然、蒸発器172等の図5Bと同一符号を付していないものは除く)、簡単に説明した。
 そして、図11の構成では、まず、内気ユニット170側において図示の積層体171が設けられている。積層体171は、送風機(ファン)171a、凝縮器171b、液-ガス熱交換器171cより成る。この積層体171と上記積層体121との違いは、積層体171には上記蒸発器121dが無い点である。従って、図示の送風機(ファン)171a、凝縮器171b、液-ガス熱交換器171c自体は、積層体121における送風機(ファン)121a、凝縮器121b、液-ガス熱交換器121cと略同一であってよい。
 送風機(ファン)121aによって形成させる内気の流れ(図上、一点鎖線矢印で示す)によって、内気は凝縮器171b→液-ガス熱交換器171cの順にこれらを通過する。
 尚、図示の構成は一例であり、この例に限らない。基本的には積層体171は内気ユニット170内に設けられ、積層体111は外気ユニット160内に設けられるが、それ以外の構成は、内気ユニット170と外気ユニット160のどちらに設けてもよい。従って、例えば蒸発器172が外気ユニット160側に設けられていても構わない。
 そして、本構成例では、上記のように蒸発器121dが無い代わりに、図示のように蒸発器172が設けられている。つまり、図5Bにおいては、膨張弁123と圧縮機113との間(勿論、冷媒管125上であることは言うまでもない)には、蒸発器121dが設けられていた。これに対して、本構成では、膨張弁123と圧縮機113との間(冷媒管125上)には蒸発器172が設けられている。
 但し、蒸発器121dと蒸発器172とでは構成が異なる。蒸発器121dは、液-ガス熱交換器であるものと見做すことができ、任意の冷媒と空気(内気)との間の熱交換を、冷媒の蒸発を伴う形で行うものである。つまり、一般的な空調機(エアコン等)で用いられる一般的な蒸発器である。
 これに対して、蒸発器172は、既存のものではあるが、上記液-ガス熱交換器ではなく、液-液熱交換器と見做せるものである。従って、蒸発器172は、ガスである空気(内気)との熱交換は行わない。蒸発器172は、基本的には、内気が通過する積層体171の一部を構成するようなことはない。蒸発器172の設置位置は特に規定しないが、基本的には内部ユニット170内または外部ユニット160内に設けられるものとする。
 蒸発器172は、上記の通り冷媒管125上に設けられており、従って特に図示しないがその内部を上記第1の冷媒が通過する。更に、図示のように蒸発器172は、上記冷媒管125だけでなく配管162にも接続している。配管162自体は、図5Bの配管126と同様に、上記第2の冷媒(例えば水など)を、外気ユニット160の液-ガス熱交換器111bと内気ユニット170の液-ガス熱交換器171cとの間を循環させる為の構成である。尚、図5Bの構成と同様、第2の冷媒を循環させる為の循環ポンプ124が、配管162上の任意の箇所に設けられている。
 そして、上記の通り配管162には更に蒸発器172が接続している。よって、蒸発器172内には、上記第1の冷媒だけでなく第2の冷媒も通過することになる。そして、基本的には図示のように、液-ガス熱交換器171cの手前(上流側)に蒸発器172が設けられる構成とする。これによって後述するように、蒸発器172において第1の冷媒によって冷却された第2の冷媒が、下流側にある液-ガス熱交換器171cに流入することになる。
 尚、図示の例では図5Bとの相違点として更に三方弁161等が設けられている等の違いもあるが、この三方弁161等は必ずしも必要ないものである。よって、三方弁161等については、後に説明する。
 上述したように、特に内部構成は図示しないが、蒸発器172内には第1の冷媒と第2の冷媒とが通過する。そして、蒸発器121dの場合と同様に、蒸発器172内で第1の冷媒は蒸発し、その際に周囲の熱を奪う(周囲を冷却する)。蒸発器121dの場合にはその内部を空気(内気)が通過しており、従って空気(内気)が冷却されることになった。これに対して、蒸発器172の場合には上記の通りその内部を第2の冷媒が通過しており、従って第1の冷媒によって第2の冷媒が冷却されることになる。
 ここで、図5Bの場合、第2の冷媒は、外気ユニット110の液-ガス熱交換器111bにおいて外気との熱交換によって基本的には冷却されて、当該外気による冷却後の第2の冷媒が内気ユニット120の液-ガス熱交換器121cに供給される。これによって、液-ガス熱交換器121c内で第2の冷媒と内気との熱交換が行われ、第2の冷媒によって内気が冷却される。一方、図11の構成の場合、第2の冷媒は、液-ガス熱交換器171cに供給される手前で上記の通り蒸発器172内で更に冷却されることになる。
 これは、1つの考え方としては、図5Bの場合には第1の冷媒によって直接的に空気(内気)を冷却していたのに対して、図11の場合には第2の冷媒を介して間接的に空気(内気)を冷却するものと見做すこともできる。
 図11の構成では、例えば図1に示す天井裏空間から内気流入口128を介して内気ユニット170内に流入する内気(リターン空気;暖気)は、まず凝縮器171bを通過することで温度上昇した後、液-ガス熱交換器171cを通過することで冷却される。この冷却された内気(冷気)は、内気排出口127から排出され、例えば図1に示す床下空間へと送出される。これによって、冷却対象空間(サーバ設置空間)に冷気が供給されることになる。
 そして、コントローラ130は、例えば、内気排出口127から排出される冷気の温度が、所定の設定温度(例えば18℃)と略同一となるように、圧縮機113や循環ポンプ124等を制御して、第1の冷媒や第2の冷媒の流量等を制御する。尚、コントローラ130は、例えば後述する図13に示す信号線131を介して、例えば圧縮機113や循環ポンプ124等を制御することになる。
 また、蒸発器172は、相対的に低温の液体(第1の冷媒)と相対的に高温の液体(第2の冷媒)との間で熱交換を行う「液―液の熱交換器」であり、具体的には例えば所謂「液―液のプレート式熱交換器」等である。
 次に、上記三方弁161等に係る構成について説明する。
 図5Bの構成では、第2の冷媒は必ず液-ガス熱交換器111bに流入させて外気との熱交換を行わせていた。これに対して図11の構成では、三方弁161等を用いることで、第2の冷媒を液-ガス熱交換器111bに流入させない(バイパスさせる)場合も有り得るように構成した。本構成の場合、第2の冷媒は、外気との熱交換が行われない場合でも、蒸発器172において第1の冷媒によって冷却されることになる。
 三方弁161は、配管の流路を2つに分けるための三方弁であり、3つの配管接続口を有しており、そのうちの1つが流入用(流入口と呼ぶ)、2つが流出用(流出口と呼ぶ)である。三方弁161は、上記配管162に接続しており、循環ポンプ124によって配管162内を循環している第2の冷媒を、上記流入口から流入させ、上記2つの流出口の何れか一方から流出させる。ここで、上記配管162は、三方弁161によって2つに分岐すると見做すこともでき、図示の分岐管162a、分岐管162bに分岐するものと考えるものとする。
 上記三方弁161の2つの流出口の何れか一方は分岐管162aに接続し、他方は分岐管162bに接続している。分岐管162aは液-ガス熱交換器111bを通過した後、図示の合流点Qで分岐管162bと合流して再び1つの配管162となって、この配管162が後段の蒸発器172に接続している。一方、分岐管162bはダイレクトに上記合流点Qで分岐管162aに接続・合流している。
 第2の冷媒が三方弁161から分岐管162a上に流出される場合には、第2の冷媒は液-ガス熱交換器111bを通過した後、蒸発器172に流入することになる。一方、第2の冷媒が三方弁161から分岐管162b上に流出される場合には、第2の冷媒は液-ガス熱交換器111bを通過することなく、そのまま、蒸発器172に流入することになる。
 基本的には、液-ガス熱交換器111bにおいて外気によって第2の冷媒を冷却できる状況では、第2の冷媒は液-ガス熱交換器111bを通過させるようにする。逆に言えば、例えば「外気温度 > 液-ガス熱交換器111bに流入する第2の冷媒の温度」の状況では、第2の冷媒が三方弁161から分岐管162b上に流出されるようにする(液-ガス熱交換器111bをバイパスさせる)。これによって、第2の冷媒が液-ガス熱交換器111bにおいて温度上昇させられるような事態を回避できる。
 但し、この様な例に限らず、三方弁161を設けない(よって、配管162が2つに分岐することもない)構成にしてもよい。つまり、第2の冷媒に係る構成に関しては図5Bと同様の構成により、第2の冷媒が必ず液-ガス熱交換器111bにも流れるように構成してもよい。
 尚、図には示していないが、分岐管162aにおいて分岐管162bとの合流点Qの手前に逆止弁を設けるようにしてもよい。これによって、第2の冷媒が三方弁161から分岐管162b上に流出される場合に、この第2の冷媒が液-ガス熱交換器111b内に流入するような事態を防止できる。
 次に、図12に示す実施例4の空調システム(その2)について説明する。
 図12は、図11に示す構成の変形例と見做すこともでき、一部が異なるが、殆どは図11と略同一である。従って、図12に関して、図11と略同一の構成については、その説明は省略もしくは簡略化するものとする。尚、図11と図12との関係(相違)は、上記5Aと図5Bとの関係(相違)と同じであると考えても良い。
 すなわち、図12の構成において図11と異なる点は、冷媒管125上の三方弁の配置である。まず、図12の構成は、外気ユニット160’と内気ユニット170から成る。内気ユニットは、図11の内気ユニット170と同じであってよく、よって同一符号“170”を付してある。一方、外気ユニットは、図11の外気ユニット160と一部異なるものであり、よって符号“160’”を付与してある。
 図11の外気ユニット160では、図5Bと同様に、凝縮器111cの流出側(下流側)に三方弁112’を設けており、第1の冷媒は必ず凝縮器111cを通過させていた。そして、三方弁112’によって、第1の冷媒を更に凝縮器171bも通過させるか否かを制御していた。
 一方、図12の外気ユニット160’では、図5Aと同様に、凝縮器111cの流入側(上流側)に三方弁112を設けている。そして、三方弁112によって、第1の冷媒を、“凝縮器111cを通過させるが凝縮器121bは通過させない状態”と“凝縮器111cは通過させないが凝縮器121bを通過させる状態”の何れか一方の状態に切り換える。
 以上、図12の構成について、図11と異なる点のみ簡単に説明した。尚、図12の構成の機能、効果等は、図11のものと略同様である。
 次に、以下、図13について説明する。
 図13(a)には、上記の通り実施例4の空調システムの動作モデルを示している。また、図13(b)には、実施例4の消費電力低減に係るシミュレーション結果を示す。
 まず、図13(a)について説明する。尚、図13(a)に示す各温度は、図6(a)と同様、シミュレーション結果等に基づく一例を示しているものであり、この例に限らない。
 ここで、図13(a)は、上記図12の構成例に対応するものであり、図12に示す各構成の符号が付してある。但し、図示の発熱体140は、図6(a)に示す発熱体140のことであり、例えば図1に示す発熱体101(サーバ装置等)に相当するものである。また、図13(a)は、図12において三方弁112によって第1の冷媒が凝縮器111c側を通過しない状態になっている場合に対応するものとする。よって、図13(a)には凝縮器111cは示されておらず、圧縮機113の下流側には凝縮器171bが示されている。
 図13(a)において太線矢印で示すように、室内側空気(内気)は、発熱体140、凝縮器171b、液-ガス熱交換器171cを循環している。
 また、上記第1の冷媒は、図示の冷媒管125上の構成を循環している。すなわち、第1の冷媒は、図上に細線矢印で示すように、圧縮機113、凝縮器171b、膨張弁123、蒸発器(液―液の熱交換器)172を循環している。
 また、上記第2の冷媒は、図示の配管162上の構成を循環している。すなわち、第2の冷媒は、図上に細線点線矢印で示すように、循環ポンプ124、液-ガス熱交換器171c、液-ガス熱交換器111b、蒸発器(液―液の熱交換器)172を循環している。
 内気に関しては、まず図6(a)と略同様に、発熱体140を冷却することによって32℃となった内気は、凝縮器171bを通過することで55℃に温度上昇する。この55℃の内気は、液-ガス熱交換器171cを通過する際に、第2の冷媒との熱交換によって冷却されて温度低下する(図示の例では18℃となる)。そして、この18℃の内気が、例えば図1に示す床下空間へと送出されることで、上記発熱体140を冷却することになる。
 図6(a)の場合でも、上記55℃の内気は、液-ガス熱交換器142を通過する際に、第2の冷媒との熱交換によって冷却されて温度低下するが、第2の冷媒の温度は外気温度に影響されるので(例では36℃)、内気の温度を設定温度(18℃等)まで低下させることはできない。後段の蒸発器143によって内気の温度を設定温度(18℃等)まで低下させることになる。
 これに対して、図13(a)の例では、蒸発器(液―液の熱交換器)172によって第2の冷媒の温度を外気温度未満(設定温度以下;本例では18℃)とすることができるので、液-ガス熱交換器171cにおいて内気の温度を設定温度(18℃等)まで低下させることができる。
 ここで、上記の通り(そして図13(a)に示す通り)、蒸発器(液―液の熱交換器)172には、第1の冷媒と第2の冷媒の両方が通過しており、蒸発器172内において第1の冷媒と第2の冷媒との間で熱交換が行われる。図示の例では、蒸発器172に流入する第1の冷媒の温度は、10℃となっている。一方、蒸発器172から流出する第2の冷媒の温度(つまり、第1の冷媒と熱交換後の第2の冷媒の温度)は、18℃となっている。
 ここで、蒸発器172に流入する第2の冷媒の温度は図示されていないが、第2の冷媒は液-ガス熱交換器111bにおいて外気(36℃)と熱交換した後に、蒸発器172に流入する。従って、基本的に、蒸発器172に流入する第2の冷媒の温度が、外気温度(36℃)未満となることはない。つまり、図示の例では、蒸発器172内において10℃の第1の冷媒と36℃以上の第2の冷媒との間で、熱交換が行われることになる。従って、当然、第2の冷媒は第1の冷媒によって冷却されることになり、上記の様に図示の例では18℃まで冷却されることになる。
 また、液-ガス熱交換器171cから流出する第2の冷媒の温度(温度Taと記すものとする)も、図示されていないが、これは第2の冷媒の流量によって異なることになる。つまり、第2の冷媒の流量が少ない場合には、上記温度Taは例えば内気温度(55℃)に近い温度(50℃以上など)となることも有り得る。一方、第2の冷媒の流量が多い場合には、上記温度Taは例えば外気温度(36℃)よりも低い温度となることも有り得る。
 この様なケースを想定して、上記三方弁161等を設ける構成例も提案している。すなわち、コントローラ130は、例えば「Ta<外気温度」となった場合には、三方弁161を制御して第2の冷媒が液-ガス熱交換器111bをバイパスする(通過させない)状態とするようにしてもよい。
 ここで、液-ガス熱交換器171cの後段(内気について下流側)に、不図示の「混合/攪拌ユニット」を設けるようにしてもよい。この「混合/攪拌ユニット」は、既存の構成であるので特に図示/説明しないが、空気等の気体を内部で混合/攪拌することでその温度分布を略一様にするための構成である。つまり、上記のように液-ガス熱交換器171cから流出する内気(冷気)の温度は18℃としたが、これはその温度分布を略一様にした場合の温度を意味しており、実際には温度分布を略一様とはならずに、(18℃と比較して)温度が低い部分や温度が高い部分もある状態となる場合が考えられる。この為、上記不図示の「混合/攪拌ユニット」を設けることで、温度分布を略一様とする構成としてもよい。
 但し、冷気が、床下空間等を流れる間に自然に混合することで、発熱体140に届くときには温度分布を略一様となっているケースも有り得るので、上記不図示の「混合/攪拌ユニット」は、必ずしも設けなくてもよい場合も有り得る。
 尚、第1の冷媒を循環させる冷凍サイクルに係る構成(冷媒管125と上記冷媒管125上の各種構成)は、蒸発器(液―ガスの熱交換器)143が蒸発器(液―液の熱交換器)172に置き換わる点以外が、図6(a)と略同様であると見做しても構わない。よって、簡単に説明するならば、第1の冷媒は、蒸発器(液―液の熱交換器)172において第2の冷媒との熱交換によって25℃となった後、圧縮機113で圧縮されることで66℃となる。この66℃の第1の冷媒は、凝縮器171bにおいて内気との熱交換により温度低下し(32℃となり)、更に膨張弁123によって温度低下する(10℃となる)。この10℃の第1の冷媒が、上記のように蒸発器172において第2の冷媒と熱交換することになる。
 ここで、図13(b)に示すシミュレーション結果について説明する。
 図13(b)に示すグラフは、図6(b)に示すグラフと同様、横軸が外気温度(℃)、縦軸が消費電力(kW)であり、グラフ中の白丸(○)が従来システムのデータ、黒丸(●)が実施例4の空調システムのデータである。尚、これらのデータは、図6(b)における“全体の消費電力”に相当する。また尚、従来の空調システムは、例えば上記図14の空調システムであるが、この例に限らず、例えば上記実施例1や実施例2の空調システムであってもよいと考えても構わない。
 図示のように、外気温が比較的低い場合は、従来の空調システムも本空調システム(実施例4の空調システム)も、消費電力はそれほど変わらない。
 しかし、外気温がある程度以上高くなると(高温領域と言うものとする;例えば30℃を超える程度がひとつの目安となる)、従来の空調システムでは、図示の通り、温度が高くなるに従って全体の消費電力が急激に増大する。
 一方、実施例4の空調システムでは、上記高温領域においても、消費電力は、それまでと略同様に、外気温の増加に合わせて緩やかに増大しており、急激に増大するようなことはない。この為、図示の通り、上記高温領域では、外気温が高くなればなるほど、従来の空調システムと本空調システムとの全体の消費電力の差が、大きくなっていくことになる。
 この様に、外気温がある程度以上高い環境下では、実施例4の空調システムは、従来の空調システムに比べて消費電力が少なくて済み、この省エネ効果は外気温が高いほど大きくなることになる。
 尚、図11、図12に示す構成例は、一例であり、この例に限らない。例えば、上記図5Aに対して図9の変形例を示したが、図11、図12に関してもこれと同様の変形例があってよい。この変形例については特に図示しないが、上記図5Aと図9の関係から明らかに分かるものであると考えられる。
 上述した実施例4の空調システム(その1)(その2)によれば、上述した実施例3の空調システムと略同様の効果に加えて、更に下記の効果が得られる。
・他の実施例の蒸発器(蒸発器121d等)は、空気(内気)と液(第1の冷媒)との間で熱交換を行う液-ガスの熱交換器であるのに対して、蒸発器172は上記の通り液-液の熱交換器である。一般的に、液-液熱交換器は、液-ガス熱交換器に比べて熱交換効率が高い。したがって、熱交換性能を同じとする場合には、液-液熱交換器は、液-ガス熱交換器よりも小型化することができる(一例としては、蒸発器172の体積は、蒸発器121dの5%~10%程度とすることができる)。
・実施例3等では、内気が流れる経路上に、2つの熱交換器(例えば図5A、図5Bでは、液-ガス熱交換器121cと蒸発器121d)があった。これに対して、図11、図12の構成では、蒸発器121dを削除しており、また蒸発器172は内気の流れる経路上には設けないようにする。このように、蒸発器121dを削除することで、内気の送風圧力損失が減少し、以って送風効率が向上することになる。これは、例えばファン171a等の省電力化につながる。
・蒸発器121dと蒸発器172は何れも第1の冷媒による冷却を行うが、蒸発器121dが空気を冷却するのに対して、蒸発器172は液体(第2の冷媒)を冷却する。冷却する媒体が、空気より熱容量が大きい液体であるので、温度変化が緩やかとなり、温度制御が安定する。
 例えば、何らかの原因で一時的に第1の冷媒の温度が大きく変動する場合を想定する。この場合、従来方式では第1の冷媒によって直接的に冷却される空気(内気)の温度も、大きく変動することになる。これに対して、本方式では、第2の冷媒の温度も変動することになるが、その温度変化は(空気の場合に比べて)緩やかとなり、従って第2の冷媒によって冷却される空気(内気)の温度変化も緩やかとなる。従って、内気温度を設定値(例えば18℃)付近に維持する為の温度制御を行い易いことになる。
・外気温が高い場合(例えば、液-ガス熱交換器111bに流入する第2の冷媒の温度<外気温度の場合)、上記三方弁161によって第2の冷媒を液-ガス熱交換器111bをバイパスさせる形で循環させることにより、第2の冷媒が外気によって加熱されて温度上昇するような事態を回避することができる。
 本発明の外気利用空調システム、その内気ユニット、外気ユニット等によれば、外気を利用して省エネで室内空間を冷却する空調システムに関わり、外気温が高い場合でも外気を利用する内気冷却を機能させることができると共に圧縮式冷凍サイクルの空調システムの省エネ化を図ることができる。
 

Claims (19)

  1.  室内側に、第1の熱交換器と、蒸発器と、凝縮器と、該第1の熱交換器と蒸発器と凝縮器とに内気を通過させる為の第1の送風機とを設け、該第1の送風機によって形成される前記内気の流れの上流側から前記凝縮器、前記第1の熱交換器、前記蒸発器の順に設けられ、
     室外側に、第2の熱交換器と、該第2の熱交換器に前記外気を通過させるための第2の送風機とを設け、
     前記蒸発器と、前記凝縮器と、前記室外側と前記室内側の何れかに設けられる膨張弁と、前記室外側と前記室内側の何れかに設けられる圧縮機とに接続する第1配管を設け、該第1配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に第1の冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成し、
     前記第1の熱交換器と前記第2の熱交換器とに接続する第2配管を設け、該第2配管を介して前記第1の熱交換器、第2の熱交換器に第2の冷媒を循環させ、該第2の冷媒と前記凝縮器を通過後の前記内気とを前記第1の熱交換器で熱交換させることで該内気を該第2の冷媒によって冷却し、前記第2の熱交換器において前記内気を冷却後の第2の冷媒と前記外気とを熱交換させることで該第2の冷媒を該外気によって冷却する、間接外気冷房機を構成することを特徴とする外気利用空調システム。
  2.  内気を通過させる内気ユニットと、外気を通過させる外気ユニットとを有し、
     前記内気ユニットは、第1の熱交換器と、蒸発器と、凝縮器と、該第1の熱交換器と蒸発器と凝縮器とに前記内気を通過させる為の第1の送風機とを有し、該第1の送風機によって形成される前記内気の流れの上流側から前記凝縮器、前記第1の熱交換器、前記蒸発器の順に設けられる構成を有し、
     前記外気ユニットは、第2の熱交換器と、該第2の熱交換器に前記外気を通過させるための第2の送風機とを有し、
     前記蒸発器と、前記凝縮器と、前記外気ユニットと前記内気ユニットの何れかに設けられる膨張弁と、前記外気ユニットと前記内気ユニットの何れかに設けられる圧縮機とに接続する第1配管を設け、該第1配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に第1の冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成し、
     前記第1の熱交換器と前記第2の熱交換器とに接続する第2配管を設け、該第2配管を介して前記第1の熱交換器、第2の熱交換器に第2の冷媒を循環させ、該第2の冷媒と前記凝縮器を通過後の前記内気とを前記第1の熱交換器で熱交換させることで該内気を該第2の冷媒によって冷却し、前記第2の熱交換器において前記内気を冷却後の第2の冷媒と前記外気とを熱交換させることで該第2の冷媒を該外気によって冷却する、間接外気冷房機を構成することを特徴とする外気利用空調システム。
  3.  前記内気ユニットに流入する、冷却対象空間において温度上昇して成る暖気としての前記内気は、前記凝縮器を通過することで該凝縮器からの放熱によって更に温度上昇すると共に前記第1の冷媒の温度を低下させることを特徴とする請求項2記載の外気利用空調システム。
  4.  前記凝縮器において温度上昇した前記内気は、前記第1の熱交換器を通過する際に前記第2の冷媒との熱交換によって温度低下し、その後に前記蒸発器を通過することで冷却されて冷気となって前記冷却対象空間へ供給され、
     前記凝縮器において温度低下した前記第1の冷媒は、前記膨張弁、前記蒸発器の順に循環し、該蒸発器において当該蒸発器を通過する前記内気を冷却することを特徴とする請求項3記載の外気利用空調システム。
  5.  前記外気ユニットに、更に、第2の凝縮器を設けると共に、前記第1配管を途中で分岐して成る分岐管を該第2の凝縮器に接続し、
     前記第1配管の分岐点に切換装置を設け、該切換装置によって前記第1の冷媒を、前記内気ユニット内の凝縮器と前記外気ユニット内の第2の凝縮器の何れか一方に循環させることを特徴とする請求項2~4の何れかに記載の外気利用空調システム。
  6.  前記外気ユニットに更に第2の凝縮器を設け、前記第1配管を該第2の凝縮器に接続し、該第2の凝縮器の冷媒流出側において該第1配管を分岐すると共に該分岐点に切換装置を設け、該切換装置によって、前記第1の冷媒を前記内気ユニット内の凝縮器に循環させた後に前記膨張弁に循環させる第1ルートと前記内気ユニット内の凝縮器に循環させずに前記膨張弁に循環させる第2ルートとの何れか一方のルートに切換えることを特徴とする請求項2~4の何れかに記載の外気利用空調システム。
  7.  前記第2の送風機によって形成される前記外気の流れの上流側に前記第2の熱交換器を設け、下流側に前記第2の凝縮器を設けることを特徴とする請求項5または6記載の外気利用空調システム。
  8.  前記切換装置によって前記第1の冷媒を、外気温が高いときには前記凝縮器に循環させ、外気温が低いときには前記第2の凝縮器に循環させることを特徴とする請求項5記載の外気利用空調システム。
  9.  前記切換装置によって前記第1の冷媒を、外気温度が内気温度よりも高いときには前記第1ルートで循環させることを特徴とする請求項6記載の外気利用空調システム。
  10.  室外側に設けられ外気が通過する外気ユニットに対応して設けられる、室内側に設けられ内気が通過する内気ユニットであって、
     第1の熱交換器と、蒸発器と、凝縮器と、該第1の熱交換器と蒸発器と凝縮器とに前記内気を通過させる為の第1の送風機とを有し、該第1の送風機によって形成される前記内気の流れの上流側から前記凝縮器、前記第1の熱交換器、前記蒸発器の順に設けられる構成を有し、
     前記蒸発器と、前記凝縮器と、前記外気ユニットまたは前記内気ユニット内に設けられる膨張弁と、前記外気ユニットまたは前記内気ユニット内に設けられる圧縮機とに接続する第1配管の一部を有し、該第1配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に第1の冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成し、
     前記第1の熱交換器と前記外気ユニット内の第2の熱交換器とに接続する第2配管の一部を有し、該第2配管を介して前記第1の熱交換器と前記第2の熱交換器とに第2の冷媒を循環させ、該第2の冷媒と前記凝縮器を通過後の前記内気とを前記第1の熱交換器で熱交換させることで該内気を該第2の冷媒によって冷却し、前記第2の熱交換器において前記内気を冷却後の第2の冷媒と前記外気とを熱交換させることで該第2の冷媒を該外気によって冷却する、間接外気冷房機を構成することを特徴とする外気利用空調システムの内気ユニット。
  11.  室内側に設けられ内気が通過する内気ユニットに対応して設けられる、室外側に設けられ外気が通過する外気ユニットであって、
     第2の熱交換器と、該第2の熱交換器に前記外気を通過させるための第2の送風機とを有し、
     前記内気ユニット内に設けられる凝縮器及び蒸発器と、前記外気ユニットまたは前記内気ユニット内に設けられる膨張弁と、前記外気ユニットまたは前記内気ユニット内に設けられる圧縮機とに接続する第1配管の一部を有し、該第1配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に第1の冷媒を循環させることで圧縮式冷凍サイクルによる空調機を構成し、
     前記第2の熱交換器と前記内気ユニット内の第1の熱交換器とに接続する第2配管の一部を有し、該第2配管を介して前記第1の熱交換器と前記外気ユニット内の第2の熱交換器とに第2の冷媒を循環させ、該第2の冷媒と前記凝縮器を通過後の前記内気とを前記第1の熱交換器で熱交換させることで該内気を該第2の冷媒によって冷却し、前記第2の熱交換器において前記内気を冷却後の第2の冷媒と前記外気とを熱交換させることで該第2の冷媒を該外気によって冷却する、間接外気冷房機を構成することを特徴とする外気利用空調システムの外気ユニット。
  12.  室外側に設けられ外気が通過する外気ユニットに対応して設けられる、室内側に設けられ内気が通過する内気ユニット内に設けられ、該内気を冷却する為の構成であって、
     第1の冷媒を用いる圧縮式冷凍サイクルを構成する凝縮器であって、前記内気ユニットに流入する、冷却対象空間において温度上昇して成る暖気としての前記内気を通過させて、放熱によって該内気を温度上昇させると共に前記第1の冷媒を温度低下させるための凝縮器と、
     前記外気ユニットにおいて前記外気と熱交換された第2の冷媒と、前記凝縮器において温度上昇した前記内気とを通過させて、該第2の冷媒と該内気との間で熱交換させる第1の熱交換器と、
     前記凝縮器と共に前記圧縮式冷凍サイクルを構成する蒸発器と、
     第1の送風機とが、
     積層されて一体化して成る積層体。
  13.  室内側に設けられ内気が通過する内気ユニットに対応して設けられる、室外側に設けられ外気が通過する外気ユニット内に設けられ、前記内気の熱を外気に移動させる為の構成であって、
     前記内気ユニットにおいて前記内気と熱交換された第2の冷媒と、前記外気とを通過させて、該第2の冷媒と該外気との間で熱交換させる第2の熱交換器と、
     第2の送風機とが、
     積層されて一体化して成る積層体。
  14.  室内側に、第1の熱交換器と、凝縮器と、該第1の熱交換器と凝縮器とに内気を通過させる為の第1の送風機とを設け、該第1の送風機によって形成される前記内気の流れの上流側から前記凝縮器、前記第1の熱交換器の順に設け、
     前記凝縮器と、前記室外側と前記室内側の何れかに設けられる蒸発器と、前記室外側と前記室内側の何れかに設けられる膨張弁と、前記室外側と前記室内側の何れかに設けられる圧縮機とに接続する第1配管を設け、該第1配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に第1の冷媒を循環させることで圧縮式冷凍サイクルを構成し、
     前記第1の熱交換器と前記蒸発器とに接続する第2配管を設け、該第2配管を介して前記第1の熱交換器、前記蒸発器に第2の冷媒を循環させ、前記第1の冷媒と第2の冷媒とを該蒸発器で熱交換させることで該第2の冷媒を該第1の冷媒によって冷却し、前記第1の熱交換器において前記内気と前記冷却後の第2の冷媒とを熱交換させることで該内気を該第2の冷媒によって冷却する、間接外気冷房機を構成することを特徴とする外気利用空調システム。
  15.  内気を通過させる内気ユニットと、外気を通過させる外気ユニットとを有し、
     前記内気ユニットは、第1の熱交換器と、凝縮器と、該第1の熱交換器と凝縮器とに内気を通過させる為の第1の送風機とを有し、該第1の送風機によって形成される前記内気の流れの上流側から前記凝縮器、前記第1の熱交換器の順に設けられる構成を有し、
     前記凝縮器と、前記外気ユニットと前記内気ユニットの何れかに設けられる蒸発器と、前記外気ユニットと前記内気ユニットの何れかに設けられる膨張弁と、前記外気ユニットと前記内気ユニットの何れかに設けられる圧縮機とに接続する第1配管を設け、該第1配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に第1の冷媒を循環させることで圧縮式冷凍サイクルを構成し、
     前記第1の熱交換器と前記蒸発器とに接続する第2配管を設け、該第2配管を介して前記第1の熱交換器、前記蒸発器に第2の冷媒を循環させ、前記第1の冷媒と第2の冷媒とを該蒸発器で熱交換させることで該第2の冷媒を該第1の冷媒によって冷却し、前記第1の熱交換器において前記内気と前記冷却後の第2の冷媒とを熱交換させることで該内気を該第2の冷媒によって冷却する、間接外気冷房機を構成することを特徴とする外気利用空調システム。
  16.  室外側または前記外気ユニット内に、前記第2配管と接続する第2の熱交換器と、該第2の熱交換器に外気を通過させるための第2の送風機とを設け、
     前記第2の冷媒を、前記第2の熱交換器において外気と熱交換させた後、前記蒸発器において前記第1の冷媒と熱交換させることを特徴とする請求項14または15に記載の外気利用空調システム。
  17.  前記第2配管上に、該第2配管を2つの分岐管に分岐して前記第2の冷媒を該2つの分岐管の何れか一方に流す為の切換装置を設けると共に、該2つの分岐管の何れか一方を前記第2の熱交換器に接続し、
     前記切換装置によって、前記第2の冷媒を前記第2の熱交換器にも循環させる状態と前記第2の熱交換器には循環させない状態との何れかの状態に切り換えることを特徴とする請求項16記載の外気利用空調システム。
  18.  前記第1の熱交換器は液-ガス熱交換器であり、前記蒸発器は液-液熱交換器であることを特徴とする請求項14~17の何れかに記載の外気利用空調システム。
  19.  室外側に設けられ外気が通過する外気ユニットに対応して設けられる、室内側に設けられ内気が通過する内気ユニットであって、
     第1の熱交換器と、凝縮器と、該第1の熱交換器と凝縮器とに内気を通過させる為の第1の送風機とを有し、該第1の送風機によって形成される前記内気の流れの上流側から前記凝縮器、前記第1の熱交換器の順に設けられる構成を有し、
     前記凝縮器と、前記外気ユニットと前記内気ユニットの何れかに設けられる蒸発器と、前記外気ユニットと前記内気ユニットの何れかに設けられる膨張弁と、前記外気ユニットと前記内気ユニットの何れかに設けられる圧縮機とに接続する第1配管の一部を有し、該第1配管を介して前記蒸発器、前記凝縮器、前記膨張弁、前記圧縮機に第1の冷媒を循環させることで圧縮式冷凍サイクルを構成し、
     前記第1の熱交換器と前記蒸発器とに接続する第2配管の一部を有し、該第2配管を介して前記第1の熱交換器、前記蒸発器に第2の冷媒を循環させ、前記第1の冷媒と第2の冷媒とを該蒸発器で熱交換させることで該第2の冷媒を該第1の冷媒によって冷却し、前記第1の熱交換器において前記内気と前記冷却後の第2の冷媒とを熱交換させることで該内気を該第2の冷媒によって冷却する、間接外気冷房機を構成することを特徴とする外気利用空調システムの内気ユニット。
     
PCT/JP2011/079778 2010-12-28 2011-12-22 外気利用空調システム、その内気ユニット、外気ユニット、積層体 WO2012090850A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180060473.5A CN103261801B (zh) 2010-12-28 2011-12-22 利用外气的空调系统、其内气单元、外气单元、层积体
US13/977,325 US20130283837A1 (en) 2010-12-28 2011-12-22 Air conditioning system using outdoor air, indoor air unit, and outdoor air unit thereof, and stack
JP2012550897A JP5626365B2 (ja) 2010-12-28 2011-12-22 外気利用空調システム、その内気ユニット、外気ユニット、積層体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010293841 2010-12-28
JP2010-293841 2010-12-28
JP2011-014735 2011-01-27
JP2011014735 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012090850A1 true WO2012090850A1 (ja) 2012-07-05

Family

ID=46382956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079778 WO2012090850A1 (ja) 2010-12-28 2011-12-22 外気利用空調システム、その内気ユニット、外気ユニット、積層体

Country Status (4)

Country Link
US (1) US20130283837A1 (ja)
JP (1) JP5626365B2 (ja)
CN (1) CN103261801B (ja)
WO (1) WO2012090850A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008416A1 (ja) * 2013-07-17 2015-01-22 パナソニックIpマネジメント株式会社 サーバールーム冷却システム
WO2016103593A1 (ja) * 2014-12-25 2016-06-30 パナソニックIpマネジメント株式会社 冷却装置
TWI595194B (zh) * 2016-05-27 2017-08-11 Air conditioning unit
CN107750117A (zh) * 2017-11-29 2018-03-02 郑州云海信息技术有限公司 一种集装箱数据中心
CN111981553A (zh) * 2020-08-14 2020-11-24 浙江理工大学 辐射地板加风机盘管联供的双效热泵系统及使用方法
JP7551048B2 (ja) 2021-12-28 2024-09-17 Solution Creators株式会社 サーバの冷却方法および再生可能エネルギー熱活用型データセンター

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2585784A4 (en) 2010-06-24 2016-02-24 Venmar Ces Inc ENERGY EXCHANGER FOR A LIQUID AIR MEMBRANE
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
US11408681B2 (en) 2013-03-15 2022-08-09 Nortek Air Solations Canada, Iac. Evaporative cooling system with liquid-to-air membrane energy exchanger
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
WO2014147690A1 (ja) * 2013-03-18 2014-09-25 富士通株式会社 モジュール型データセンター
GB2513147A (en) * 2013-04-17 2014-10-22 Ibm Energy efficient data center
JP2016003783A (ja) * 2014-06-13 2016-01-12 三菱電機株式会社 ヒートポンプ装置
US10165710B1 (en) * 2014-06-27 2018-12-25 Amazon Technologies, Inc. Cooling system for data center
DK3183051T3 (da) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc Væske-til-luftmembranenergivekslere
US11092349B2 (en) 2015-05-15 2021-08-17 Nortek Air Solutions Canada, Inc. Systems and methods for providing cooling to a heat load
EP3295088B1 (en) * 2015-05-15 2022-01-12 Nortek Air Solutions Canada, Inc. Using liquid to air membrane energy exchanger for liquid cooling
WO2016183668A1 (en) 2015-05-15 2016-11-24 Nortek Air Solutions Canada, Inc. Systems and methods for managing conditions in enclosed space
US10386091B2 (en) * 2016-01-29 2019-08-20 Robert S. Carter Water evaporative cooled refrigerant condensing radiator upgrade
CN109073265B (zh) * 2016-03-08 2021-09-28 北狄空气应对加拿大公司 用于向热负载提供冷却的系统和方法
CN110785615A (zh) 2017-04-18 2020-02-11 北狄空气应对加拿大公司 被干燥剂增强的蒸发冷却系统和方法
CN107438353A (zh) * 2017-08-31 2017-12-05 国网湖南省电力公司 大容量svg闭式风冷系统
CN108966606B (zh) * 2018-09-03 2024-05-24 沈阳宁声风机有限责任公司 低噪音机房空气能节能装置
TWI772765B (zh) * 2020-03-23 2022-08-01 新加坡商特靈新加坡企業私人有限公司 換熱系統
CN113454339B (zh) * 2020-05-19 2023-02-03 华为数字能源技术有限公司 制冷剂泵和数据中心制冷系统
CN112040740B (zh) * 2020-09-07 2022-09-20 哈尔滨西陆科技有限公司 一种紧凑型模块化工业空调
CN112954955B (zh) * 2021-01-25 2024-07-05 华为数字能源技术有限公司 一种冷却系统和数据中心
CN114719356B (zh) * 2022-04-11 2023-04-18 湖南汽车工程职业学院 一种计算机房的地面散热结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157536B2 (ja) * 1979-08-02 1986-12-08 Daikin Kogyo Co Ltd
JPH02233923A (ja) * 1989-03-06 1990-09-17 Mitsui Ginkou:Kk 集中直膨空調装置
JPH10300128A (ja) * 1997-04-23 1998-11-13 Matsushita Electric Works Ltd 冷媒自然循環冷却除湿装置およびこの装置を併設した空気調和装置
JP2001099446A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp 空気調和機、非加湿型発熱体収納冷却施設
JP3320360B2 (ja) * 1998-08-07 2002-09-03 株式会社エヌ・ティ・ティ ファシリティーズ 空気調和機
JP2003289195A (ja) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp 冷却装置
JP2004132575A (ja) * 2002-10-09 2004-04-30 Mitsubishi Electric Corp 冷却装置
JP2004245537A (ja) * 2003-02-17 2004-09-02 Hitachi Ltd 除湿乾燥装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519306B1 (ko) * 2003-05-28 2005-10-10 엘지전자 주식회사 환기일체형 공조시스템
JP4923794B2 (ja) * 2006-07-06 2012-04-25 ダイキン工業株式会社 空気調和装置
US20100107658A1 (en) * 2008-11-04 2010-05-06 Richard Erwin Cockrell Data center cooling device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157536B2 (ja) * 1979-08-02 1986-12-08 Daikin Kogyo Co Ltd
JPH02233923A (ja) * 1989-03-06 1990-09-17 Mitsui Ginkou:Kk 集中直膨空調装置
JPH10300128A (ja) * 1997-04-23 1998-11-13 Matsushita Electric Works Ltd 冷媒自然循環冷却除湿装置およびこの装置を併設した空気調和装置
JP3320360B2 (ja) * 1998-08-07 2002-09-03 株式会社エヌ・ティ・ティ ファシリティーズ 空気調和機
JP2001099446A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp 空気調和機、非加湿型発熱体収納冷却施設
JP2003289195A (ja) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp 冷却装置
JP2004132575A (ja) * 2002-10-09 2004-04-30 Mitsubishi Electric Corp 冷却装置
JP2004245537A (ja) * 2003-02-17 2004-09-02 Hitachi Ltd 除湿乾燥装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008416A1 (ja) * 2013-07-17 2015-01-22 パナソニックIpマネジメント株式会社 サーバールーム冷却システム
WO2016103593A1 (ja) * 2014-12-25 2016-06-30 パナソニックIpマネジメント株式会社 冷却装置
TWI595194B (zh) * 2016-05-27 2017-08-11 Air conditioning unit
CN107750117A (zh) * 2017-11-29 2018-03-02 郑州云海信息技术有限公司 一种集装箱数据中心
CN107750117B (zh) * 2017-11-29 2023-09-15 郑州云海信息技术有限公司 一种集装箱数据中心
CN111981553A (zh) * 2020-08-14 2020-11-24 浙江理工大学 辐射地板加风机盘管联供的双效热泵系统及使用方法
JP7551048B2 (ja) 2021-12-28 2024-09-17 Solution Creators株式会社 サーバの冷却方法および再生可能エネルギー熱活用型データセンター

Also Published As

Publication number Publication date
JPWO2012090850A1 (ja) 2014-06-05
CN103261801B (zh) 2015-11-25
CN103261801A (zh) 2013-08-21
US20130283837A1 (en) 2013-10-31
JP5626365B2 (ja) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5626365B2 (ja) 外気利用空調システム、その内気ユニット、外気ユニット、積層体
WO2012073746A1 (ja) 一体型空調システム、その内気ユニット、外気ユニット、積層体
JP5907247B2 (ja) 一体型空調システム、その制御装置
US11959652B2 (en) Machine learning apparatus, air conditioning system, and machine learning method
JP4499733B2 (ja) マルチ形空気調和装置
US20130269385A1 (en) Air conditioning system for utilizing outside air and air conditioning device thereof
KR20180108762A (ko) 냉장 시스템을 제어하는 시스템 및 방법
WO2011067905A1 (ja) 空気調和装置用の室外機
WO2013175890A1 (ja) 空調システム、一体型空調システム、制御装置
JP2013134011A (ja) 空調機および空調システム
WO2014175109A1 (ja) 空気調和機
CA3017820A1 (en) Heat transfer and hydronic systems
JP6310077B2 (ja) 熱源システム
WO2022158574A1 (ja) 熱交換器
JP6292469B2 (ja) 空気調和機の室外ユニット
JP5066022B2 (ja) 冷暖房システム
JP6991343B2 (ja) フリークーリングユニット
CN207688456U (zh) 多联式空调系统
JP5602556B2 (ja) 空調機の室内機吹き出し温度制御方法
WO2020035944A1 (ja) 熱源システム
JP4640296B2 (ja) 空調ユニット
CN214420170U (zh) 一种空调系统及汽车
JP2020029980A (ja) 空調システム及び空調システム用冷水製造装置
JP2011112242A (ja) 空気調和機
JP5625826B2 (ja) 熱交換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13977325

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11852865

Country of ref document: EP

Kind code of ref document: A1