WO2012090677A1 - ハイブリッド車両システム及びその制御方法 - Google Patents
ハイブリッド車両システム及びその制御方法 Download PDFInfo
- Publication number
- WO2012090677A1 WO2012090677A1 PCT/JP2011/078523 JP2011078523W WO2012090677A1 WO 2012090677 A1 WO2012090677 A1 WO 2012090677A1 JP 2011078523 W JP2011078523 W JP 2011078523W WO 2012090677 A1 WO2012090677 A1 WO 2012090677A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- rotation angle
- resolver
- crankshaft
- vehicle system
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/50—Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/02—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
- B60L15/025—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0038—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
- B60W50/029—Adapting to failures or work around with other constraints, e.g. circumvention by avoiding use of failed parts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/44—Drive Train control parameters related to combustion engines
- B60L2240/441—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/081—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/009—Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a control method of a motor mounted on an electric vehicle such as a hybrid vehicle.
- a hybrid car is a car that uses a motor as a traveling drive source in addition to the conventional engine, and travels with only the motor, drives the motor to start the engine or assists it, performs regeneration (generation), and It is something to charge or do.
- the motor is attached with a rotation angle sensor such as a resolver to detect the rotation angle and the rotation speed of the motor itself, and the motor control device (inverter) is based on the information of the rotation angle and the rotation speed from the resolver
- the motor control is performed in the most efficient state.
- the motor control device inverter
- the motor control device can not accurately detect the rotational angle and the rotational speed of the motor, so that it is difficult to perform normal motor control. Therefore, it is conceivable to stop the motor control and continue traveling only with the engine for fail-safe, but in that case, the battery can not be charged by the motor, so the battery capacity gradually decreases. Driving with only the engine becomes impossible, and the vehicle stops.
- Patent Document 1 when the resolver is determined to be abnormal, instead of the motor rotation angle detected by the resolver, rotation detected by a crank angle sensor mounted on a crankshaft of an engine that rotates in synchronization with the motor is detected. Motor control is continued using the angle. In addition, the reliability of the motor rotation angle is improved by considering the delay in the communication time from when the rotation angle is detected by the crank angle sensor to when the rotation angle information is transferred to the motor control device (inverter). There is.
- FIG. 7 compares the angle information of the crank angle sensor and the resolver when the motor has a 4-pole pair. Since the crank angle sensor outputs 60 pulses per engine rotation, the rotation angle can only be detected with an accuracy of 15 pulses per motor electrical angle cycle, but the resolver has an accuracy of 512 to 1024 bits per motor electrical angle cycle. Can detect the rotation angle. The electrical angle per pulse (1 bit) is 24 degrees in the crank angle sensor, but the resolver is very accurate 0.7 to 0.35 degrees.
- the current can not be controlled in a direction appropriate to the induced voltage (d-axis current and q-axis current can not be appropriately controlled).
- field weakening control is performed by flowing d-axis current in the negative direction, but d-axis current flows in the positive direction because rotation angle information is very coarse, and field strengthening Can fall into a state of Even if the induced voltage of the motor is low and the rotation speed is low, if the strong field is generated, an over voltage may occur.
- the rough detection angle has the following problems. (1) The required torque can not be output because the fluctuation (ripple) of the output torque is large. (2) The fluctuation of current and voltage (ripple) is large.
- the motor can not be driven to restart the engine after the engine is stopped by an idle stop or the like.
- the battery when the battery is regenerated by running (generation) and charging the battery, the battery can not be supplied with an appropriate current or voltage, causing the battery to be overcharged or undercharged, leading to a decrease in battery life or failure. There is a fear.
- the lifespan or failure of the capacitor and battery inside the inverter may be caused.
- the present invention has been made in view of the above problems, and when an abnormality occurs in a resolver or its peripheral circuit, the motor rotation angle does not affect the accuracy (resolution) of the detection angle of a crank angle sensor which is an alternative sensor.
- An object of the present invention is to provide an estimation method, and to perform motor control (field weakening control) without causing a failure of the inverter and its peripheral devices.
- a hybrid vehicle system comprises an inverter circuit having a switching element for converting direct current into alternating current, a vehicle drive motor driven by receiving the alternating current, and a rotor of the motor A resolver that detects a rotation angle, a control circuit that controls the switching operation of the switching element based on the rotor rotation angle information, and a torque command value, an engine connected to the motor via a crankshaft, the crank A crankshaft sensor for detecting the number of revolutions of the shaft, and the control circuit estimates a rotor rotation angle based on a rate of change of the number of revolutions of the crankshaft when an abnormality of the resolver is detected, Field weakening control is performed based on the estimated rotor rotation angle.
- a control method of a hybrid vehicle system comprises: an inverter circuit having a switching element for converting a direct current into an alternating current; a vehicle drive motor driven by receiving the alternating current; A resolver for detecting a rotor rotation angle of a motor, a control circuit for controlling a switching operation of the switching element based on the rotor rotation angle information and a torque command value, an engine connected to the motor via a crankshaft
- a control method of a hybrid vehicle system having a crankshaft sensor for detecting the number of revolutions of the crankshaft, wherein, when an abnormality of the resolver is detected, a rotor based on a rate of change of the number of revolutions of the crankshaft.
- the rotation angle is estimated, and field weakening control is performed based on the estimated rotor rotation angle.
- the rotation angle of the motor before the time when the abnormality of the resolver is detected and the abnormality of the resolver are detected. It is preferable to be calculated based on the rate of change of the rotational speed of the crankshaft after the time of day.
- the timing of correcting the estimated rotor rotation angle is that the crank position calculated from the information from the crank shaft sensor is a predetermined pulse position. preferable.
- FIG. 1 is a configuration diagram of a system of a hybrid vehicle that is an example of an embodiment of the present invention. It is a signal waveform of the angle information (pulse) from the crank angle sensor which is an example of embodiment of this invention.
- FIG. 2 is a diagram showing a resolver and its peripheral circuit according to an embodiment of the present invention. It is an example of the vector diagram of the dq axis coordinate system used for vector control. It is the flowchart which showed the control method when the resolver which is an example of embodiment of this invention or its peripheral circuit is normal, and when abnormality is detected. It is a related figure of engine revolving speed from a crank angle sensor by an embodiment of the present invention, and a presumed rotation angle of a motor. It is the figure which compared the angle information of the crank angle sensor and resolver in case the motor by 4th embodiment of this invention is a motor.
- FIG. 1 is a block diagram of a system of a hybrid vehicle which is an example of the embodiment.
- the system of the hybrid vehicle includes a motor 1 for driving the vehicle, a resolver 2 for detecting the number of rotations and a rotation angle of the motor 1, and an engine 4 connected to the motor 1 via a crankshaft.
- a crank angle sensor 5 for detecting the rotational speed and rotational angle of a crankshaft of the engine 4, a transmission 6 for transmitting the rotational force of the crankshaft to an axle, a hybrid control unit 14 for controlling the entire vehicle, and a motor control circuit 8
- a three-phase current sensor 16 a main battery 10, a DC / DC converter 11, and an accessory battery 12.
- the main battery 10 is a high voltage battery for driving the motor 1 and is a secondary battery made of lithium ion, nickel hydrogen or the like.
- the accessory battery 12 is a low voltage battery for driving a so-called accessory such as a controller in the vehicle and an electric component such as a bed light.
- the DC / DC converter 11 steps down the high voltage of the main battery 10 to the low voltage of the accessory battery 12 to charge the accessory battery 12.
- the motor control circuit 8 converts a DC voltage supplied from the main battery 10 through the DC power line 13 into a three-phase AC voltage of U, V, W and outputs it to the motor coil of the motor 1 through the motor power line 9.
- the generated three-phase AC voltage is converted into a DC voltage, and the DC voltage is supplied (charged) to the main battery 10.
- Motor control circuit 8 performs switching operation of the switching element based on an inverter circuit having a switching element for converting direct current from main battery 10 to alternating current, and information and torque command value 15 output from resolver 2. It is comprised from the control circuit to control. Motor control circuit 8 also includes a smoothing capacitor circuit for smoothing direct current from main battery 10.
- the motor 1 is a three-phase AC motor provided with a permanent magnet type rotor.
- the engine 4 is, for example, an in-line four-cylinder type engine, which receives positive torque from the motor 1 at the time of start or assist on the crankshaft and the engine 4 is rotated by the motor 1. In response to the torque, the motor 1 is rotated from the engine 4 and regenerated.
- the crank angle sensor 5 detects the number of rotations of the engine 4 and the rotation angle of the crankshaft, and the engine rotation number / crank angle information 7 is obtained by the hybrid controller 14 such as the fuel injection timing and ignition timing of the engine 4. It is used for calculation.
- the engine speed / crank angle information 7 from the crank angle sensor 5 is, for example, a pulse waveform as shown in FIG. 2, and one pulse is output each time the crankshaft rotates 6 degrees. Also, in order to indicate the reference point, pulses of 354 degrees (59th pulse) and 360 degrees (60th pulse) are not generated. That is, (60-2) pulses are output per engine revolution (360 degrees).
- the hybrid controller 14 detects what number pulse the current tooth is, and calculates the rotation angle. In addition, it detects how many pulses are generated within a fixed time, and calculates the number of rotations.
- the accuracy (resolution) of the engine speed / crank angle information 7 from the crank angle sensor 5 is 60 pulses (6 degrees per pulse) per engine rotation, but as shown in FIG. In the case of the pair, the number of pulses per motor electrical angle cycle is 15 pulses (24 electrical degrees per pulse).
- the resolver 2 is attached to the motor 1, and the detected motor rotational speed / angle information 3 is input to the motor control circuit 8 through the harness.
- the motor rotation number / angle information 3 from the resolver 2 has an analog waveform as shown in FIG. 3 and is converted into the digital value 23 of the rotation number and rotation angle by the resolver IC 21 mounted in the motor control circuit 8.
- the accuracy (resolution) of the rotation angle converted to the digital value 23 depends on the performance of the resolver IC 21. Generally, 512 to 1024 bits per motor electric angle (0.7 to 0.35 electric angle per bit) Degree) accuracy.
- the resolver IC 21 makes a diagnosis and outputs an error signal 24 to the microprocessor 25 so that the microprocessor 25 detects an abnormality.
- the microprocessor 25 is an arithmetic unit necessary to realize motor control.
- the resolver IC 21 has the following diagnostic function, and when abnormal, outputs an error signal 24 to the microprocessor 25 to report an abnormal state.
- the amplitude of motor rotational speed / angle information 3 (analog signal) (sine / cosine waveform) is smaller than the normal value.
- the amplitude of motor rotational speed / angle information 3 (analog signal) (sine / cosine waveform) is larger than the normal value.
- the motor control circuit 8 detects the number of revolutions / angle information 3 of the motor 1 detected by the resolver 2, the three-phase current information 17 detected by the three-phase current sensor 16, and the hybrid controller 14. The three-phase vector control is performed based on the torque command value 15 so that the three-phase current flows to the most efficient phase angle.
- FIG. 4 is a vector diagram in which a three-phase coordinate system is converted to a two-phase coordinate system (dq axis coordinate system).
- the current Ia is controlled to flow in a region of (I q > 0, I d ⁇ 0).
- a negative torque is controlled to flow a current I a in the area of (I q ⁇ 0, I d ⁇ 0). Both are (I d ⁇ 0) in order to suppress the induced voltage of the motor by passing a current so as to cancel the magnetic flux generated by the magnet of the motor and performing field weakening.
- FIG. 5 is a flowchart showing a control method when the resolver 2 or its peripheral circuit is normal and when an abnormality is detected. This will be described below with reference to FIG.
- step S4 If the resolver is normal, information on the motor rotational speed (N) and the angle ( ⁇ ) from the resolver is acquired in processing S3. Then, in step S4, angle information (pulse number) from the crank angle sensor is acquired, and the pulse number and the motor angle ( ⁇ ) from the resolver acquired in step S3 are stored in the memory.
- step S5 motor control is performed using the number of rotations (N) and the angle ( ⁇ ) in step S5, and in step S6, the current number of rotations (N) and the angle ( ⁇ ) ) And ( ⁇ 1) to complete the process.
- the motor control in step S5 includes field weakening control described with reference to FIG.
- step S2 If it is determined in the determination process S2 that the resolver is abnormal, information on the current engine speed (N) from the crank angle sensor is obtained in the process S7. Then, the current motor angle ( ⁇ ) is estimated based on the amount of change between the engine speed (N) acquired in step S7 and the previous value (N1) set in step S6 in step S8.
- step S5 motor control is performed using the number of rotations (N) and the angle ( ⁇ ) in step S5, and in step S6, the current number of rotations (N) and the angle ( ⁇ ) ) And ( ⁇ 1) to complete the process.
- an interrupt S9 is generated when the angle information (pulse number) from the crank angle sensor reaches a predetermined value.
- the interrupt S9 occurs, in step S10, when the resolver is normal, the motor angle ( ⁇ ') with respect to the pulse number which is the interrupt factor is searched from the pulse number and the motor angle ( ⁇ ) information stored in the memory in step S3. Do. Then, in step S11, the current motor angle ( ⁇ ) is corrected to the retrieved motor angle ( ⁇ ′). By performing this correction process, the accuracy of the motor angle ( ⁇ ) estimated in the process S8 can be increased, and the reliability of motor control can be improved.
- FIG. 6 shows the relationship between the engine rotational speed (N) from the crank angle sensor and the rotational angle ( ⁇ ) of the motor estimated in step S8.
- the amount of change of the engine rotational speed (N) during the specified time (dt) corresponds to the amount of change (d ⁇ ) of the rotational angle (electrical angle) of the motor. That is, the area (D) of the area (D) surrounded by the current engine speed (N) and the engine speed (N1) before the specified time (dt) is the change amount (d ⁇ ) of the motor rotation angle (electrical angle) It corresponds to).
- the initial values of the engine speed (N1) and the estimated motor rotation angle ( ⁇ 1) before the specified time (dt) are respectively the rotation speed (Ni) of the motor 1 and the rotation angle ( ⁇ i) of the motor 1 just before abnormality detection. ).
- the amount of change (N-N1) in the rotational speed of the specified time (dt) is considered to be small. Therefore, the amount of change (d ⁇ ) of the rotation angle (electrical angle) of the motor 1 during the specified time (dt) is calculated by the following equation.
- the current estimated motor rotation angle ( ⁇ ) is expressed by the following equation from the estimated motor rotation angle ( ⁇ 1) before the specified time (dt) and the change amount (d ⁇ ) of the rotation angle (electrical angle) of the motor 1 Calculated by
- the crank angle information from the crank angle sensor 5 becomes a pulse number specified in advance
- the angle information ( ⁇ ′) of the motor 1 before abnormality detection stored in the memory is compared with the current estimated motor rotation angle ( ⁇ Correct to).
- the rotation angle (electrical angle) of the motor 1 can be estimated using (Equation 2) and (Equation 3) using the rate of change of the engine speed (N), that is, the rate of change of the speed of the crankshaft. Thereby, the rotation angle (electrical angle) of the motor can be estimated without being affected by the accuracy of the crank angle information from the crank angle sensor. Further, by correcting the estimated rotation angle of the motor 1 by (Expression 4), the reliability of the estimated motor rotation angle ( ⁇ ) can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Human Computer Interaction (AREA)
- Sustainable Energy (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
(1)出力トルクの変動(リップル)が大きいため、必要なトルクを出力できない。
(2)電流・電圧の変動(リップル)が大きい。
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
(1)モータ回転数/角度情報3(アナログ信号)(正弦/余弦波形)の振幅が正常値よ り小さい。(レゾルバハーネス22の断線,レゾルバ2本体の故障)
(2)モータ回転数/角度情報3(アナログ信号)(正弦/余弦波形)の振幅が正常値よ り大きい。(レゾルバハーネス22の短絡,レゾルバ2本体の故障)
(3)レゾルバIC21の故障
モータ制御回路8は、レゾルバ2で検出したモータ1の回転数/角度情報3と、3相電流センサ16で検出した3相電流情報17と、ハイブリッド制御装置14からのトルク指令値15に基づいて、最も効率のよい位相角へ3相電流を流すように、3相ベクトル制御を行っている。
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
2 レゾルバ
3 モータ回転数/角度情報
4 エンジン
5 クランク角センサ
6 トランスミッション
7 エンジン回転数/クランク角情報
8 モータ制御回路
9 モータ電力線
10 メインバッテリ
11 DC/DCコンバータ
12 補機用バッテリ
13 直流電力線
14 ハイブリッド制御装置
15 トルク指令
16 3相電流センサ
17 3相電流情報
Claims (8)
- 直流電流を交流電流に変換するスイッチング素子を有するインバータ回路と、
前記交流電流を受けて駆動する車両駆動用モータと、
前記モータのロータ回転角を検出するレゾルバと、
前記ロータ回転角情報、及びトルク指令値に基づいて前記スイッチング素子のスイッチング動作を制御する制御回路と、
クランク軸を介して前記モータと接続されるエンジンと、
前記クランク軸の回転数を検出するクランク軸センサと、を有し、
前記制御回路は、前記レゾルバの異常が検知された場合、前記クランク軸の回転数の変化率に基づいてロータ回転角を推定し、当該推定されたロータ回転角に基づいて弱め界磁制御をすることを特徴とするハイブリッド車両システム。 - 請求項1に記載の車両システムであって、
前記推定されたロータの回転角は、前記レゾルバの異常が検知された時よりも前の前記モータの回転数、および前記レゾルバの異常が検知された時よりも後の前記クランク軸の回転数の変化率に基づいて算出されることを特徴とするハイブリッド車両システム。 - 請求項1または2のいずれかに記載の車両システムであって、
前記制御回路は、前記レゾルバが正常な場合に記憶されたモータの回転数情報に基づいて、前記推定されたロータ回転角を補正することを特徴とするハイブリッド車両システム。 - 請求項3に記載の車両システムであって、
前記推定されたロータ回転角を補正するタイミングは、前記クランク軸センサからの情報から算出されるクランク角が予め定められたパルス位置であるハイブリッド車両システム。 - 直流電流を交流電流に変換するスイッチング素子を有するインバータ回路と、前記交流電流を受けて駆動する車両駆動用モータと、前記モータのロータ回転角を検出するレゾルバと、前記ロータ回転角情報、及びトルク指令値に基づいて前記スイッチング素子のスイッチング動作を制御する制御回路と、クランク軸を介して前記モータと接続されるエンジンと、前記クランク軸の回転数を検出するクランク軸センサと、を有するハイブリッド車両システムの制御方法であって、
前記レゾルバの異常が検知された場合、前記クランク軸の回転数の変化率に基づいてロータ回転角を推定し、当該推定されたロータ回転角に基づいて弱め界磁制御をすることを特徴とするハイブリッド車両システムの制御方法。 - 請求項5に記載のハイブリッド車両システムの制御方法であって、
前記推定されたロータの回転角は、前記レゾルバの異常が検知された時よりも前の前記モータの回転数、および前記レゾルバの異常が検知された時よりも後の前記クランク軸の回転数の変化率に基づいて算出されることを特徴とするハイブリッド車両システムの制御方法。 - 請求項5または6のいずれかに記載のハイブリッド車両システムの制御方法であって、
前記レゾルバが正常な場合に記憶されたモータの回転数情報に基づいて、前記推定されたロータ回転角を補正することを特徴とするハイブリッド車両システムの制御方法。 - 請求項7に記載のハイブリッド車両システムの制御方法であって、
前記推定されたロータ回転角を補正するタイミングは、前記クランク軸センサからの情報から算出されるクランク角が予め定められたパルス位置であるときであるハイブリッド車両システムの制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112011104614T DE112011104614T5 (de) | 2010-12-28 | 2011-12-09 | Hybridelektrofahrzeugsystem und Verfahren zu seiner Steuerung |
US13/976,769 US8773054B2 (en) | 2010-12-28 | 2011-12-09 | Hybrid electric vehicle system and method of controlling the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010291547A JP5452466B2 (ja) | 2010-12-28 | 2010-12-28 | ハイブリッド車両システム及びその制御方法 |
JP2010-291547 | 2010-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090677A1 true WO2012090677A1 (ja) | 2012-07-05 |
Family
ID=46382796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078523 WO2012090677A1 (ja) | 2010-12-28 | 2011-12-09 | ハイブリッド車両システム及びその制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8773054B2 (ja) |
JP (1) | JP5452466B2 (ja) |
DE (1) | DE112011104614T5 (ja) |
WO (1) | WO2012090677A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104290756A (zh) * | 2013-07-16 | 2015-01-21 | 通用汽车环球科技运作有限责任公司 | 用于动力总成系统的扭矩机中的故障缓解的方法和设备 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101438638B1 (ko) | 2013-08-14 | 2014-09-05 | 현대자동차 주식회사 | 모터를 구비한 차량의 제어장치 및 제어방법 |
JP6017057B2 (ja) * | 2013-10-22 | 2016-10-26 | 三菱電機株式会社 | モータ制御装置 |
JP6222447B2 (ja) * | 2013-11-21 | 2017-11-01 | 三菱自動車工業株式会社 | 電気自動車のモータ制御装置 |
JP5832509B2 (ja) * | 2013-11-28 | 2015-12-16 | ファナック株式会社 | モータと主軸との間の動力伝達部の異常検出機能を有するモータ制御装置 |
US10988030B2 (en) * | 2014-09-26 | 2021-04-27 | Francis Xavier Gentile | Electric motor, generator and battery combination |
DE102014009715B4 (de) * | 2014-06-28 | 2018-07-12 | Audi Ag | Verfahren zum Betreiben einer Antriebseinrichtung eines Kraftfahrzeugs sowie entsprechende Antriebseinrichtung |
JPWO2016166884A1 (ja) * | 2015-04-17 | 2017-08-17 | 三菱電機株式会社 | ハイブリッド車両の制御装置及びハイブリッド車両の制御方法 |
JP6269624B2 (ja) * | 2015-09-08 | 2018-01-31 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
CA3197928A1 (en) * | 2015-11-12 | 2017-05-18 | Bombardier Recreational Products Inc. | Method and system for starting an internal combustion engine |
US11448146B2 (en) * | 2015-11-12 | 2022-09-20 | Bombardier Recreational Products Inc. | Method and system for starting an internal combustion engine |
US10975824B2 (en) * | 2015-11-12 | 2021-04-13 | Bombardier Recreational Products Inc. | Method and system for starting an internal combustion engine |
JP6773478B2 (ja) * | 2016-08-02 | 2020-10-21 | 新明和工業株式会社 | 電動作業車両、その制御方法及びその制御装置 |
WO2018216149A1 (ja) * | 2017-05-24 | 2018-11-29 | 三菱電機株式会社 | 回転角度検出装置および交流回転機制御装置 |
KR102383246B1 (ko) * | 2017-10-20 | 2022-04-05 | 현대자동차 주식회사 | 하이브리드 차량의 제어 방법 |
JP7134857B2 (ja) * | 2018-12-18 | 2022-09-12 | 住友重機械工業株式会社 | 建設機械 |
US10988133B2 (en) * | 2019-02-18 | 2021-04-27 | Ford Global Technologies, Llc | Vehicle exhaust sound control systems and methods |
DE102019108226B4 (de) * | 2019-03-29 | 2021-06-24 | Mtu Friedrichshafen Gmbh | Motorwellenanordnung, Brennkraftmaschine, Verfahren zum Betrieb einer Brennkraftmaschine |
JP7555251B2 (ja) * | 2020-12-04 | 2024-09-24 | 日立Astemo株式会社 | 制御装置 |
CN113044053B (zh) * | 2021-02-01 | 2023-01-31 | 东风汽车集团股份有限公司 | Eps控制器相mosfet撞击防损控制方法及系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005133614A (ja) * | 2003-10-29 | 2005-05-26 | Denso Corp | エンジン制御装置 |
JP2006050878A (ja) * | 2004-08-09 | 2006-02-16 | Fuji Heavy Ind Ltd | ハイブリッド車の異常監視装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4520300A (en) * | 1982-12-06 | 1985-05-28 | Fradella Richard B | Brushless ultra-efficient regenerative servomechanism |
DE69304462D1 (de) * | 1992-01-07 | 1996-10-10 | Signature Tech Inc | Verfahren und vorrichtung zum steuern einer presse |
JP4589093B2 (ja) * | 2004-12-10 | 2010-12-01 | 日立オートモティブシステムズ株式会社 | 同期モータ駆動装置及び方法 |
JP2009232551A (ja) * | 2008-03-21 | 2009-10-08 | Aisin Aw Co Ltd | 駆動装置及びその製造方法 |
-
2010
- 2010-12-28 JP JP2010291547A patent/JP5452466B2/ja not_active Expired - Fee Related
-
2011
- 2011-12-09 DE DE112011104614T patent/DE112011104614T5/de not_active Withdrawn
- 2011-12-09 US US13/976,769 patent/US8773054B2/en active Active
- 2011-12-09 WO PCT/JP2011/078523 patent/WO2012090677A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005133614A (ja) * | 2003-10-29 | 2005-05-26 | Denso Corp | エンジン制御装置 |
JP2006050878A (ja) * | 2004-08-09 | 2006-02-16 | Fuji Heavy Ind Ltd | ハイブリッド車の異常監視装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104290756A (zh) * | 2013-07-16 | 2015-01-21 | 通用汽车环球科技运作有限责任公司 | 用于动力总成系统的扭矩机中的故障缓解的方法和设备 |
CN104290756B (zh) * | 2013-07-16 | 2017-10-24 | 通用汽车环球科技运作有限责任公司 | 用于动力总成系统的扭矩机中的故障缓解的方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
US8773054B2 (en) | 2014-07-08 |
JP5452466B2 (ja) | 2014-03-26 |
US20130271051A1 (en) | 2013-10-17 |
DE112011104614T5 (de) | 2013-10-02 |
JP2012136202A (ja) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012090677A1 (ja) | ハイブリッド車両システム及びその制御方法 | |
US9154064B2 (en) | Control device for AC motor | |
US8631894B2 (en) | Electric vehicle, and control apparatus and control method for electric vehicle | |
EP3696965B1 (en) | Motor drive device and motor drive device control method | |
US9054626B2 (en) | Motor control apparatus | |
US7336456B2 (en) | Control-motor system | |
JP5333583B2 (ja) | 回転角算出装置および回転角算出方法 | |
JP6190327B2 (ja) | 電動機制御システム | |
US10826425B2 (en) | Drive device and control method for vehicle | |
JP5605312B2 (ja) | 回転機の制御装置 | |
JP2011252789A (ja) | 回転角を算出する装置および方法 | |
JP7467194B2 (ja) | 駆動装置、および、駆動装置の制御方法 | |
JP5259936B2 (ja) | 電動車両のモータ診断装置 | |
JP2013234914A (ja) | 回転角度検出システム | |
JP5904583B2 (ja) | モータの制御装置 | |
JP2015231276A (ja) | 同期モータの制御装置、及び、これを備える車両制御システム | |
JP5605311B2 (ja) | 回転機の制御装置 | |
CN114929507B (zh) | 车用控制装置 | |
JP7149398B2 (ja) | モータ駆動装置及びモータ駆動装置の制御方法 | |
WO2018097014A1 (ja) | 回転センサの異常検出装置 | |
JP7305984B2 (ja) | 車両 | |
JP5397033B2 (ja) | エンジン始動装置 | |
JP6772848B2 (ja) | モータ制御装置、電動パワーステアリング装置及び車両 | |
JP6589848B2 (ja) | 診断装置 | |
JP6948845B2 (ja) | 電子制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11852224 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13976769 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120111046146 Country of ref document: DE Ref document number: 112011104614 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11852224 Country of ref document: EP Kind code of ref document: A1 |