WO2012090485A1 - 冷媒放熱器 - Google Patents

冷媒放熱器 Download PDF

Info

Publication number
WO2012090485A1
WO2012090485A1 PCT/JP2011/007297 JP2011007297W WO2012090485A1 WO 2012090485 A1 WO2012090485 A1 WO 2012090485A1 JP 2011007297 W JP2011007297 W JP 2011007297W WO 2012090485 A1 WO2012090485 A1 WO 2012090485A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
tube
radiator
tubes
Prior art date
Application number
PCT/JP2011/007297
Other languages
English (en)
French (fr)
Inventor
加藤 吉毅
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US13/997,895 priority Critical patent/US20130284415A1/en
Priority to EP11853757.0A priority patent/EP2660548B1/en
Priority to CN201180063418.1A priority patent/CN103282735B/zh
Priority to KR1020137016077A priority patent/KR101472868B1/ko
Publication of WO2012090485A1 publication Critical patent/WO2012090485A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0266Particular core assemblies, e.g. having different orientations or having different geometric features

Definitions

  • the present invention relates to a refrigerant radiator that radiates a refrigerant in a vapor compression refrigerant cycle.
  • the refrigerant radiator of Patent Document 1 is applied to a vehicle air conditioner, and exchanges heat between a compressor discharge refrigerant and vehicle interior blown air that is blown into a vehicle interior that is an air conditioning target space. It functions as a heating unit that heats the air.
  • this refrigerant radiator has a heat exchange region disposed on the windward side in the flow direction of the blown air and a heat exchange region disposed on the leeward side.
  • the refrigerant discharged from the compressor Is circulated from one end side to the other end side, and the leeward heat exchange region outflow refrigerant is circulated from the other end side to the one end side in the heat exchange region on the windward side.
  • the heat exchange performance of the leeward heat exchange region is lowered than the heat exchange performance of the leeward heat exchange region.
  • the refrigerant dissipates heat in the supercritical state by the refrigerant radiator, so that the refrigerant circulating in the refrigerant radiator dissipates heat while decreasing the temperature with a substantially constant gradient. Therefore, as in Patent Document 1, the flow direction of the refrigerant flowing through the heat exchange area on the leeward side and the heat exchange area on the leeward side are opposed to each other, and the temperature rapidly decreases immediately after the refrigerant flows into the heat exchange area on the leeward side. By suppressing this, the temperature difference of the blown air can be reduced.
  • the refrigerant flowing through the refrigerant radiator is a gas-phase refrigerant or a liquid-phase refrigerant
  • the refrigerant dissipates heat while reducing its temperature (that is, temperature and enthalpy).
  • it when it is a gas-liquid two-phase refrigerant, it dissipates heat without lowering its temperature (that is, only enthalpy is reduced).
  • the refrigerant when viewed from the flow direction of the blown air, the refrigerant is in a gas phase state or in a liquid phase in one heat exchange region where the refrigerant is in a gas-liquid two-phase state and the other heat exchange region. If the heat exchange region in the state is polymerized in the air flow direction, the temperature distribution of the blown air blown out from the refrigerant radiator may not be sufficiently suppressed.
  • the present invention provides a refrigerant radiator in which the refrigerant flowing through the inside thereof changes into a gas phase state, a gas-liquid two-phase state, and a liquid phase state.
  • the purpose is to reduce the temperature difference.
  • the disclosure relating to the present invention has been devised based on the knowledge obtained by the inventors' examination examination described below.
  • the inventor of the present application is a refrigerant radiator of a subcritical refrigerant cycle applied to a vehicle air conditioner, and a temperature distribution of blown air blown out from a refrigerant radiator functioning as a heating unit similar to Patent Document 1. Was examined.
  • the air blown in the heat exchanger region on the driver seat side of the refrigerant radiator is mainly blown out to the driver seat side, and the passenger seat side
  • the blown air heated in the heat exchange area is blown mainly to the passenger seat side. Therefore, if the temperature difference in the horizontal direction of the blown air is reduced, the temperature difference between the blown air blown to the driver seat side and the blown air blown to the passenger seat side can be reduced.
  • the refrigerant flowing in the refrigerant radiator applied to this subcritical refrigerant cycle is a gas-phase refrigerant having a superheat degree from the inlet side to the outlet side of the refrigerant radiator ⁇ gas-liquid two-phase refrigerant ⁇ supercooling
  • the phase changes in the order of the liquid phase refrigerant having a degree to increase its density.
  • the mass flow rate of the refrigerant flowing through the refrigerant radiator is constant, so that the refrigerant decreases the flow rate with the phase change.
  • the present inventor as the refrigerant radiator, is an all-pass type tank and tube heat exchanger having the same configuration as the refrigerant radiator described in FIGS. 3A and 3B of the first embodiment described later.
  • a refrigerant radiator was arranged so that the longitudinal direction of the tube was at least a direction having a component in the vertical direction, and the temperature distribution of the blown air was examined.
  • the direction having at least a component in the vertical direction means that the extending direction of the tube extends in a direction perpendicular to the horizontal direction or at an angle with respect to the horizontal direction.
  • the reason for arranging the tubes in such a way that the longitudinal direction of the tubes has a vertical component is that the refrigerant discharged from the compressor flows into all the tubes from the header tank for refrigerant distribution. This is because although the temperature distribution of the blown air can occur, the temperature difference of the blown air in the horizontal direction can be suppressed.
  • the distribution header tank provided with the refrigerant inlet is arranged on the lower side, and the collecting header tank provided with the refrigerant outlet is arranged on the upper side.
  • the present inventor changes the refrigerant flow rate Gr circulating through the refrigerant cycle to which the refrigerant radiator is applied (that is, the refrigerant flow rate (kg / h) flowing through the refrigerant radiator).
  • the refrigerant flow rate (kg / h) flowing through the refrigerant radiator The heat dissipation performance of the refrigerant heatsink was confirmed.
  • FIG. 8 is a graph showing changes in the heat dissipation performance with respect to changes in the refrigerant flow rate Gr and the blown air flow rate Va (m 3 / h).
  • the scale of the refrigerant flow rate Gr and the scale of the blown air flow rate Va shown on the horizontal axis in FIG. 8 represent the flow rate at which the amount of heat released from the refrigerant and the amount of heat absorbed by the blown air are balanced in this refrigerant radiator.
  • the relationship between Va can be approximated by Equation 1 shown below.
  • the inclination angle ⁇ (unit: degree) formed by the flow direction of the refrigerant flowing in the tube and the horizontal direction is 90 °, 60 °, 30
  • the definition of the inclination angle ⁇ is as described in detail in the embodiments described later.
  • the present inventor investigated the temperature distribution of the blown air blown from the refrigerant radiator when the refrigerant flow rate Gr was changed as shown in FIG. .
  • the heat exchange area of the refrigerant radiator is divided into 16 areas, the average temperature of the blown air blown out for each area is obtained, and further, heat exchange on one side in the horizontal direction (right side of the paper)
  • the temperature difference between the average temperature of the eight regions and the average temperature of the eight regions of the heat exchange region on the other side in the horizontal direction (left side of the paper) is defined as a left-right average temperature difference ⁇ T.
  • the left-right average temperature difference ⁇ T can be used as an index representing the temperature distribution in the horizontal direction of the blown air.
  • the blown air flow rate Va, the refrigerant flow rate Gr, the superheat degree SH of the refrigerant at the refrigerant inlet of the refrigerant radiator 12, and the refrigerant outlet of the refrigerant radiator 12 are indicated only by the signs Va, Gr, SH, SC, and Tain, respectively.
  • the heat exchange region is a region having a relatively low temperature (the broken line in the heat exchange region in the example (b) and the example (c) in FIG. 9).
  • the generation point of the region having a relatively low temperature in the heat exchange region (enclosed by the broken line in the heat exchange region in the example (d) of FIG. 9) (Substantially the center and the left side of the page) increase to a plurality of locations.
  • the inventor conducted further studies, and the reason for the occurrence of a relatively low temperature region among the heat exchange regions of the refrigerant radiator is due to the difference in the degree of condensation of the refrigerant flowing through each tube. I found out.
  • the refrigerant flowing through the tube is more easily condensed than the refrigerant flowing through the tube constituting another heat exchange region.
  • the refrigerant pressure difference between the tube inlet and outlet becomes smaller as the refrigerant flow rate Gr decreases, the flow rate of the condensed refrigerant further decreases, and the condensed refrigerant hardly flows out of the tube.
  • the condensed refrigerant adheres to the wall surface of the refrigerant passage and stays in the tube, the area of the refrigerant passage in the tube constituting the specific heat exchange region becomes narrower than the tube constituting the other region.
  • the pressure loss of the tube to which the refrigerant is attached increases.
  • the high-temperature refrigerant discharged from the compressor is less likely to flow into the tubes constituting the specific heat exchange region than the tubes constituting the other regions, and the heat exchange region (hereinafter referred to as a relatively low temperature) , Referred to as a low temperature region).
  • the present inventor examined the pressure loss of the tube constituting the low temperature region, and the increase in the pressure loss of the tube constituting the low temperature region is due to the condensed refrigerant staying in the tube. Therefore, in addition to the flow velocity U of the refrigerant, which is an energy source for extruding the refrigerant, (1) Increase in pressure loss due to increase in viscosity ⁇ due to condensation of refrigerant (2) Need to consider decrease in pressure loss due to decrease in density ⁇ due to condensation of refrigerant I focused on it. Furthermore, in the refrigerant radiator where the refrigerant flows in the tube from below to above, (3) It has been noted that it is also necessary to consider the increase in pressure loss converted to gravity acting on the condensed refrigerant.
  • the pressure of the tube 121 constituting the low temperature region is considered. It is possible to suppress the heat exchange region having a relatively low temperature from being formed with the loss equivalent to the pressure loss of the tubes constituting the other regions.
  • the present inventor uses the Reynolds number Re and the inclination angle ⁇ defined as the ratio of the inertia force and the viscosity force using the flow velocity U, the viscosity ⁇ , and the density ⁇ of the refrigerant, An arrangement condition of the refrigerant radiator that can suppress the formation of a heat exchange region having a low temperature is obtained by simulation calculation, and the result is calculated as an approximate expression.
  • the average flow velocity of the refrigerant flowing through the tube is used as the refrigerant flow velocity U.
  • the refrigerant flowing into the refrigerant radiator is a gas phase refrigerant having a pressure of 2 MPa and a superheat of 45 ° C., and the air flowing into the refrigerant radiator is 20 ° C. with a flow rate of 200 m 3 / h.
  • the viscosity mu m of gas-liquid two-phase fluid which is required for obtaining the increase in the pressure loss of the above equation (1) is determined using the equation of Taylor shown in Equation 2 below.
  • Equation 3 the void ratio ⁇ g of the gas-liquid two-phase fluid required for the Taylor equation is obtained using the LEVY equation (LEVY momentum minimum model) shown in Equation 3 below.
  • the low temperature region is configured by using the arrangement condition shown in the following Expression 4. It has been found that the pressure loss of the tubes that make up the other regions is equivalent to the pressure loss of the tubes that make it possible to suppress the formation of a relatively low temperature region in the heat exchange region.
  • the high-temperature and high-pressure refrigerant applied to the vapor compression refrigerant cycle and compressed by the compressor and the blown air blown into the air-conditioning target space are heated.
  • a refrigerant radiator that exchanges and dissipates a gas-phase refrigerant having a superheat degree until it becomes a liquid-phase refrigerant having a supercooling degree, a plurality of tubes through which the refrigerant flows from above to below, and a plurality of tubes
  • a first header that is connected to the end and distributes the refrigerant flowing into at least some of the plurality of tubes, and is connected to an end of the plurality of tubes, and at least some of the plurality of tubes
  • a second header for collecting the refrigerant flowing out from the tank.
  • the refrigerant radiator used in the region where 62.42 ⁇ Re ⁇ 1234 where the refrigerant flow circulating in the tube is forced convection is converted to gravity acting on the condensed refrigerant. It is desirable to use a refrigerant evaporator that circulates in the tube from the upper side to the lower side without considering the increased pressure loss.
  • the high-temperature and high-pressure refrigerant that is applied to the vapor compression refrigerant cycle and compressed by the compressor that compresses and discharges the refrigerant and the blown air that is blown into the air-conditioning target space are heated.
  • a refrigerant radiator that exchanges heat and dissipates a gas-phase refrigerant having a superheat degree until it becomes a liquid-phase refrigerant having a supercooling degree, and includes a plurality of tubes through which the refrigerant flows, and the tubes are perpendicular to the horizontal direction.
  • the inclination angle formed between the flow direction of the refrigerant flowing in the tube and the horizontal direction is ⁇ (°), and flows in the tube.
  • the dryness of the refrigerant at a predetermined location where the refrigerant is a gas-liquid two-phase refrigerant is X
  • the Reynolds number of the refrigerant at the predetermined location obtained from the average flow velocity (m / S) of the refrigerant flowing in the tube is Re.
  • the inclination angle ( ⁇ ) is 0 ⁇ ⁇ 90 ° as the flow
  • the refrigerant radiator in which the inclination angle ( ⁇ ) is 0 ⁇ ⁇ 90 °, that is, the refrigerant flows in the tube from below to above, even if the refrigerant flowing in the tube undergoes a phase change, the refrigerant
  • the refrigerant In consideration of parameters such as the flow velocity, viscosity, density, and inclination angle ( ⁇ ), non-uniformity in the pressure loss of the refrigerant in each tube can be suppressed. Therefore, it is possible to suppress the formation of a heat exchange region having a relatively low temperature among the heat exchange regions of the refrigerant radiator.
  • any location can be adopted as long as the coolant circulating in the tube is a gas-liquid two-phase refrigerant.
  • the Reynolds number (Re) is calculated using this dryness (X).
  • the tube extends in a direction having a vertical component does not mean that the entire region of the tube extends in the vertical direction, but a part of the tube extends in the vertical direction. It means to include.
  • the refrigerant radiator according to the fourth aspect of the present disclosure may include a header tank that extends in the stacking direction of the plurality of tubes and is disposed on at least one end side of the plurality of tubes to collect or distribute the refrigerant.
  • each tube depends on the position of the refrigerant inlet or outlet provided in the header tank. Changes in the flow rate of the refrigerant flowing through the air easily occur, and the temperature distribution of the blown air tends to occur. Therefore, it is extremely effective to apply the arrangement condition that can reduce the temperature difference of the blown air to the refrigerant radiator having such a configuration.
  • the plurality of tubes are provided with a first tube group in which the refrigerant flows from the lower side to the upper side and a second tube group in which the refrigerant flows from the upper side to the lower side. May be.
  • the internal space of the header tank is divided into a plurality of spaces, and a refrigerant inlet for allowing the gas-phase refrigerant to flow into the divided one space.
  • the other space may be provided with a refrigerant outlet through which the liquid phase refrigerant flows out.
  • a plurality of tubes may be arranged along the flow direction of the blown air.
  • one of the heat exchange regions on the windward side and the leeward side is set as a region where a refrigerant having a superheat degree flows (superheat degree region), and the other is a region where a refrigerant having a supercooling degree flows (supercooling degree).
  • the superheat degree region and the supercooling degree region can be polymerized when viewed from the flow direction of the blown air, and the temperature difference of the blown air in the vertical direction can be reduced.
  • the flow direction of the refrigerant flowing through the plurality of tubes may be the same.
  • the refrigerant cycle is applied to a vehicle air conditioner, and the air-conditioning target space may be a vehicle interior.
  • the temperature difference in the horizontal direction of the blown air can be reduced, and the temperature difference between the blown air blown to the driver seat side and the blown air blown to the passenger seat side can be reduced.
  • (A) is a front view of the refrigerant
  • (b) is a side view of (a).
  • (A) is a front view of the refrigerant radiator of 3rd Embodiment,
  • (b) is a side view of (a).
  • (A) is a front view of the refrigerant radiator of 4th Embodiment,
  • (b) is a side view of (a).
  • FIG. 1 is an overall configuration diagram of a vehicle air conditioner 1 according to the present embodiment.
  • the vehicle air conditioner 1 can be applied not only to a normal engine vehicle that obtains a driving force for driving from an engine (internal combustion engine) but also to various vehicles such as a hybrid vehicle and an electric vehicle.
  • the heat pump cycle 10 fulfills the function of heating or cooling the vehicle interior air blown into the vehicle interior, which is the air conditioning target space, in the vehicle air conditioner 1. Therefore, the heat pump cycle 10 switches the refrigerant flow path, heats the vehicle interior blown air that is a heat exchange target fluid to heat the vehicle interior, and heats the vehicle interior blown air.
  • a cooling operation (cooling operation) for cooling the room can be executed.
  • an HFC-based refrigerant (specifically, R134a) is adopted as the refrigerant, and a subcritical refrigerant cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • an HFO refrigerant (specifically, R1234yf) or the like may be adopted as long as it is a refrigerant constituting a subcritical refrigerant cycle.
  • the refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 is disposed in the engine room, sucks the refrigerant in the heat pump cycle 10 and compresses and discharges the refrigerant.
  • a fixed capacity compressor 11a having a fixed discharge capacity is fixed by the electric motor 11b. It is an electric compressor to drive.
  • various compression mechanisms such as a scroll compression mechanism and a vane compression mechanism can be employed as the fixed capacity compressor 11a.
  • the electric motor 11b has its operation (the number of rotations) controlled by a control signal output from an air conditioning control device, which will be described later, and may employ either an AC motor or a DC motor. And the refrigerant
  • the refrigerant outlet side of the compressor 11 is connected to the refrigerant inlet side of the refrigerant radiator 12.
  • the refrigerant radiator 12 is disposed in a casing 31 of an indoor air conditioning unit 30 of the vehicle air conditioner 1 described later, and is blown into the vehicle interior after passing through a high-temperature and high-pressure refrigerant discharged from the compressor 11 and a refrigerant evaporator 20 described later. It is a heat exchanger for heating that exchanges heat with air.
  • the detailed configuration of the refrigerant radiator 12 and the indoor air conditioning unit 30 will be described later.
  • the refrigerant outlet 12 of the refrigerant radiator 12 is connected to a heating fixed throttle 13 as a heating operation decompression section that decompresses and expands the refrigerant that has flowed out of the refrigerant radiator 12 during the heating operation.
  • a heating fixed throttle 13 As the heating fixed throttle 13, an orifice, a capillary tube or the like can be adopted.
  • the refrigerant inlet side of the outdoor heat exchanger 16 is connected to the outlet side of the heating fixed throttle 13.
  • a fixed throttle bypass passage 14 is connected to the refrigerant outlet side of the refrigerant radiator 12 to guide the refrigerant flowing out of the refrigerant radiator 12 to the outdoor heat exchanger 16 side by bypassing the heating fixed throttle 13. Yes.
  • the fixed throttle bypass passage 14 is provided with an on-off valve 15a for opening and closing the fixed throttle bypass passage 14.
  • the on-off valve 15a is an electromagnetic valve whose opening / closing operation is controlled by a control voltage output from the air conditioning control device.
  • the pressure loss that occurs when the refrigerant passes through the on-off valve 15a is extremely small with respect to the pressure loss that occurs when the refrigerant passes through the heating fixed throttle 13. Accordingly, the refrigerant flowing out of the refrigerant radiator 12 flows into the outdoor heat exchanger 16 via the fixed throttle bypass passage 14 side when the on-off valve 15a is open, and when the on-off valve 15a is closed. Flows into the outdoor heat exchanger 16 through the heating fixed throttle 13.
  • the on-off valve 15a can switch the refrigerant flow path of the heat pump cycle 10. Accordingly, the on-off valve 15a of the present embodiment functions as a refrigerant flow path switching unit.
  • a refrigerant flow switching unit a refrigerant circuit connecting the refrigerant radiator 12 outlet side and the heating fixed throttle 13 inlet side, the refrigerant radiator 12 outlet side, and the fixed throttle bypass passage 14 inlet side, An electric three-way valve or the like that switches the refrigerant circuit that connects the two may be employed.
  • the outdoor heat exchanger 16 exchanges heat between the low-pressure refrigerant circulating inside and the outside air blown from the blower fan 17.
  • This outdoor heat exchanger 16 is disposed in the engine room and functions as an evaporator that evaporates the low-pressure refrigerant and exerts an endothermic effect during heating operation, and functions as a radiator that radiates the high-pressure refrigerant during cooling operation. Heat exchanger.
  • the blower fan 17 is an electric blower in which the operating rate, that is, the rotation speed (the amount of blown air) is controlled by a control voltage output from the air conditioning control device.
  • An electrical three-way valve 15 b is connected to the outlet side of the outdoor heat exchanger 16. The operation of the three-way valve 15b is controlled by a control voltage output from the air-conditioning control device, and constitutes a refrigerant flow path switching unit together with the on-off valve 15a described above.
  • the three-way valve 15b switches to a refrigerant flow path that connects an outlet side of the outdoor heat exchanger 16 and an inlet side of an accumulator 18 described later during heating operation, and the outdoor heat exchanger 16 during cooling operation. Is switched to a refrigerant flow path connecting the outlet side of the cooling and the inlet side of the cooling fixed throttle 19.
  • the cooling fixed throttle 19 is a pressure reducing unit for cooling operation that decompresses and expands the refrigerant that has flowed out of the outdoor heat exchanger 16 during the cooling operation, and the basic configuration thereof is the same as that of the heating fixed throttle 13.
  • a refrigerant inlet side of a refrigerant evaporator 20 as an indoor evaporator is connected to the outlet side of the cooling fixed throttle 19.
  • the refrigerant evaporator 20 is disposed in the casing 31 of the indoor air-conditioning unit 30 on the upstream side of the air flow from the refrigerant radiator 12, and exchanges heat between the refrigerant circulating in the interior and the air blown into the vehicle interior. It is a heat exchanger for cooling which cools vehicle interior blowing air.
  • the inlet side of the accumulator 18 is connected to the refrigerant outlet side of the refrigerant evaporator 20.
  • the accumulator 18 is a gas-liquid separator for a low-pressure side refrigerant that separates the gas-liquid refrigerant flowing into the accumulator 18 and stores excess refrigerant in the cycle.
  • the suction side of the compressor 11 is connected to the gas-phase refrigerant outlet of the accumulator 18. Accordingly, the accumulator 18 functions to prevent the compressor 11 from being compressed by suppressing the suction of the liquid phase refrigerant into the compressor 11.
  • FIG. 3A is a front view of the refrigerant radiator 12
  • FIG. 3B is a schematic side view of FIG. 3A.
  • illustration of an inlet side connector 122a and an outlet side connector 123a described later is omitted.
  • the up and down arrows in FIG. 3A indicate the up and down directions in a state where the refrigerant radiator 12 is mounted in the casing 31 of the indoor air conditioning unit 30.
  • the refrigerant radiator 12 includes a plurality of tubes 121 through which the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows, and the lengths of the plurality of tubes 121.
  • a pair of header tanks 122, 123, etc. that are arranged at both ends of the direction and circulate or distribute the refrigerant flowing through the tubes 121, and the flow directions of the refrigerant flowing through the tubes 121 are all the same so-called all It is configured as a pass-type multiflow heat exchanger.
  • the tube 121 is a flat tube that is formed of a metal (for example, an aluminum alloy) having excellent heat conductivity, and has a flat cross section perpendicular to the flow direction of the refrigerant flowing inside. Furthermore, the flat surface (flat surface) formed in the outer surface is arrange
  • the tube 121 is a tube 121 in which a refrigerant channel having an equivalent circular diameter de (4 ⁇ channel cross-sectional area ⁇ wet side length of channel) of 0.5 to 1.5 mm is formed. desirable.
  • the plurality of tubes 121 are stacked in the horizontal direction so that the flat surfaces of the respective tubes 121 are parallel to each other, and the air in which the vehicle interior blown air circulates between the adjacent tubes 121.
  • a passage is formed.
  • fins 124 that promote heat exchange between the refrigerant and the air blown into the passenger compartment are arranged between the adjacent tubes 121.
  • the fins 124 are corrugated fins formed by bending a thin plate material of the same material as the tube 121 into a wave shape, and the tops thereof are brazed and joined to the flat surface of the tube 121.
  • FIG. 3A only a part of the fins 124 is shown for simplification of illustration, but the fins 124 are arranged over substantially the entire area between the adjacent tubes 121.
  • the header tanks 122 and 123 are cylindrical members formed in a shape extending in the stacking direction of the plurality of tubes 121 (in this embodiment, the horizontal direction). Furthermore, in the present embodiment, in a state where the refrigerant radiator 12 is mounted in the casing 31 of the indoor air conditioning unit 30, the lower header tank is used as the refrigerant distribution header tank 122, and the upper header tank is used as the refrigerant assembly. It is used as a header tank 123 for use.
  • Each of the header tanks 122 and 123 is configured as a divided type header tank, formed of the same material as the tube 121, and a plate member to which the longitudinal ends of the respective tubes 121 are brazed and joined, It has the tank member combined with this plate member, and is formed in the cylinder shape.
  • the header tanks 122 and 123 may be formed of a tubular member or the like.
  • a refrigerant inlet port that functions as a connecting portion with the discharge port side of the compressor 11 and into which the refrigerant flows into the header tank 122 is provided.
  • An inlet side connector 122a is arranged.
  • the other end side of the header tank 122 is closed by a tank cap 122b as a closing member.
  • one end of the header tank 123 for refrigerant assembly on the upper side functions as a connection portion between the inlet side of the fixed throttle 13 for heating and the inlet side of the fixed throttle bypass passage 14, and refrigerant is supplied from the header tank 123.
  • An outlet-side connector 123a provided with a refrigerant outlet for discharging is disposed.
  • the other end side of the header tank 123 is closed by a tank cap 123b serving as a closing member.
  • the refrigerant discharged from the compressor 11 flows into the refrigerant distribution header tank 122 via the inlet-side connector 122a, as indicated by the thick arrows in FIG. It distributes to each tube 121. Then, when the refrigerant flowing into the tube 121 flows through the tube 121, it exchanges heat with the air blown into the passenger compartment and flows out of the tube 121.
  • the refrigerant that has flowed out of the tube 121 collects in the header tank 123 for collecting refrigerant and flows out through the outlet-side connector 123a. That is, the refrigerant flows in the tube 121 from the lower side to the upper side.
  • the heat pump cycle 10 of the present embodiment constitutes a subcritical refrigerant cycle
  • the refrigerant flowing through the tube 121 is superheated while exchanging heat with the air blown into the vehicle interior in the tube 121.
  • the phase changes in the order of a gas-phase refrigerant having a temperature ⁇ a gas-liquid two-phase refrigerant ⁇ a liquid-phase refrigerant having a degree of supercooling.
  • coolant heat radiator 12 of this embodiment is arrange
  • the refrigerant flow upstream side of the refrigerant radiator 12 starts from the refrigerant flow downstream side (in this embodiment, the refrigerant assembly header).
  • An angle formed by a line segment toward the tank 123 side and a straight line extending in the horizontal direction starting from the upstream side of the refrigerant flow of the refrigerant radiator 12 is defined as an inclination angle ⁇ (where ⁇ 90 ° ⁇ ⁇ ⁇ 90 °).
  • the inclination angle ⁇ changes from 0 ° to 90 ° as the flow direction of the refrigerant flowing through the tube 121 changes from the horizontal direction to the vertically upward direction.
  • the inclination angle ⁇ 0 °
  • the inclination angle ⁇ 90 °
  • the inclination angle ⁇ ⁇ 90 °.
  • the dryness of the refrigerant at a predetermined location where the refrigerant flowing through the tube 121 is a gas-liquid two-phase refrigerant is X
  • the average flow velocity (unit: m / S) of the refrigerant flowing through the tube 121 is X.
  • the refrigerant radiator 12 is arranged so that the Reynolds number of the refrigerant obtained from the above equation is Re, and the relationship shown in Equation 4 described above is satisfied.
  • any location can be adopted as long as it is a predetermined location where the refrigerant flowing through the tube 121 is a gas-liquid two-phase refrigerant.
  • a portion of the tube 121 on the downstream side of the refrigerant flow or a portion of the tube 121 closer to the refrigerant assembly header tank 123 than the refrigerant distribution header tank 122 may be employed.
  • the indoor air conditioning unit 30 is disposed inside the instrument panel (instrument panel) at the foremost part of the vehicle interior, and the blower 32, the above-described refrigerant radiator 12, the refrigerant evaporator 20, and the like are provided in a casing 31 that forms the outer shell thereof. Is housed.
  • the casing 31 forms an air passage for vehicle interior air that is blown into the vehicle interior, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching device 33 that switches and introduces vehicle interior air (inside air) and outside air is disposed on the most upstream side of the air flow inside the casing 31.
  • the inside / outside air switching device 33 is formed with an inside air introduction port for introducing inside air into the casing 31 and an outside air introduction port for introducing outside air. Furthermore, inside / outside air switching device 33 is provided with an inside / outside air switching door that continuously adjusts the opening area of the inside air introduction port and the outside air introduction port to change the air volume ratio between the inside air volume and the outside air volume. Has been.
  • a blower 32 that blows air sucked through the inside / outside air switching device 33 toward the vehicle interior is disposed on the downstream side of the air flow of the inside / outside air switching device 33.
  • the blower 32 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor, and the number of rotations (the amount of blown air) is controlled by a control voltage output from the air conditioning control device.
  • the refrigerant evaporator 20 and the refrigerant radiator 12 are arranged in this order with respect to the flow of the air blown into the vehicle interior.
  • the refrigerant evaporator 20 is disposed upstream of the refrigerant radiator 12 in the flow direction of the air blown into the vehicle interior.
  • the ratio of the amount of air passing through the refrigerant radiator 12 in the blown air after passing through the refrigerant evaporator 20 is disposed. Further, on the downstream side of the air flow of the refrigerant radiator 12, the blown air heated by exchanging heat with the refrigerant in the refrigerant radiator 12 and the blown air not heated while bypassing the refrigerant radiator 12 are mixed. A mixing space 35 is provided.
  • An opening hole for blowing the conditioned air mixed in the mixing space 35 into the passenger compartment, which is a space to be cooled, is disposed in the most downstream portion of the casing 31 in the air flow.
  • the opening hole includes a face opening hole that blows conditioned air toward the upper body of an occupant in the vehicle interior, a foot opening hole that blows conditioned air toward the feet of the occupant, and the inner surface of the front window glass of the vehicle
  • a defroster opening hole (both not shown) for blowing air-conditioning air toward is provided.
  • the temperature of the conditioned air mixed in the mixing space 35 is adjusted by adjusting the ratio of the air volume that the air mix door 34 passes through the refrigerant radiator 12, and the temperature of the conditioned air blown out from each opening hole. Is adjusted. That is, the air mix door 34 constitutes a temperature adjustment unit that adjusts the temperature of the conditioned air blown into the vehicle interior.
  • the air mix door 34 functions as a heat exchange amount adjusting unit that adjusts the heat exchange amount between the refrigerant discharged from the compressor 11 and the air blown into the passenger compartment in the refrigerant radiator 12.
  • the air mix door 34 is driven by a servo motor (not shown) whose operation is controlled by a control signal output from the air conditioning control device.
  • a face door that adjusts the opening area of the face opening hole, a foot door that adjusts the opening area of the foot opening hole, and a defroster opening hole respectively A defroster door (none of which is shown) for adjusting the opening area is arranged.
  • These face doors, foot doors, and defroster doors constitute an opening hole mode switching unit that switches the opening hole mode, and their operation is controlled by a control signal output from the air conditioning control device via a link mechanism or the like. Driven by a servo motor (not shown).
  • the air flow downstream side of the face opening hole, the foot opening hole, and the defroster opening hole is respectively connected to the face air outlet, the foot air outlet, and the defroster air outlet provided in the vehicle interior via ducts that form air passages. It is connected.
  • the face opening hole is connected to the front face outlet P1 provided at the center in the left-right direction of the instrument panel P and the side face outlet P2 provided at the end in the left-right direction. Has been.
  • the front face outlet P1 and the side face outlet P2 are provided at a plurality of locations for the driver seat and the passenger seat, respectively.
  • the blown air heated in the heat exchange area on the driver's seat side is mainly blown out to the driver's seat side
  • the blown air heated in the heat exchange area on the passenger seat side is mainly blown out to the passenger seat side.
  • the air conditioning control device is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side.
  • the operation of the various air conditioning control devices 11, 15a, 15b, 17, 32, etc. is controlled.
  • an inside air sensor that detects the temperature inside the vehicle
  • an outside air sensor that detects the outside air temperature
  • a solar radiation sensor that detects the amount of solar radiation in the vehicle interior
  • a group of sensors for air conditioning control such as an evaporator temperature sensor for detecting the temperature), a discharge refrigerant temperature sensor for detecting the refrigerant discharge refrigerant temperature, and an outlet refrigerant temperature sensor for detecting the refrigerant temperature on the outlet side of the outdoor heat exchanger 16. Is connected.
  • an operation panel (not shown) disposed near the instrument panel in front of the passenger compartment is connected to the input side of the air conditioning control device, and operation signals from various air conditioning operation switches provided on the operation panel are input.
  • various air conditioning operation switches provided on the operation panel there are provided an operation switch of a vehicle air conditioner, a vehicle interior temperature setting switch for setting the vehicle interior temperature, an operation mode selection switch, and the like.
  • a control unit that controls the electric motor 11b, the on-off valve 15a, the three-way valve 15b, and the like of the compressor 11 is integrally configured to control these operations.
  • the configuration (hardware and software) for controlling the operation of the compressor 11 constitutes the refrigerant discharge capacity control unit, and the configuration for controlling the operation of the various devices 15a and 15b constituting the refrigerant flow switching unit. Constitutes a refrigerant flow path control unit.
  • the operation of the vehicle air conditioner 1 of the present embodiment having the above configuration will be described.
  • the heating operation for heating the passenger compartment and the cooling operation for cooling the passenger compartment can be performed.
  • the operation in each operation will be described below.
  • Heating operation is started when the heating operation mode is selected by the selection switch while the operation switch of the operation panel is turned on.
  • the air conditioning control device closes the on-off valve 15 a and switches the three-way valve 15 b to a refrigerant flow path that connects the outlet side of the outdoor heat exchanger 16 and the inlet side of the accumulator 18.
  • the heat pump cycle 10 is switched to the refrigerant
  • the air conditioning control device reads the detection signal of the above-described air conditioning control sensor group and the operation signal of the operation panel. And the target blowing temperature TAO which is the target temperature of the air which blows off into a vehicle interior is calculated based on the value of a detection signal and an operation signal. Furthermore, based on the calculated target blowing temperature TAO and the detection signal of the sensor group, the operating states of various air conditioning control devices connected to the output side of the air conditioning control device are determined.
  • the refrigerant discharge capacity of the compressor 11, that is, the control signal output to the electric motor of the compressor 11 is determined as follows. First, based on the target blowing temperature TAO, the target evaporator blowing temperature TEO of the refrigerant evaporator 20 is determined with reference to a control map stored in advance in the air conditioning control device.
  • the blowing air temperature from the refrigerant evaporator 20 is determined using a feedback control method.
  • a control signal output to the electric motor of the compressor 11 is determined so as to approach the target evaporator outlet temperature TEO.
  • the target blowing temperature TAO For the control signal output to the servo motor of the air mix door 34, the target blowing temperature TAO, the blowing air temperature from the refrigerant evaporator 20, the discharge refrigerant temperature detected by the discharge refrigerant temperature sensor, etc. are used.
  • the temperature of the air blown into the passenger compartment is determined so as to be a desired temperature for the passenger set by the passenger compartment temperature setting switch.
  • control signals determined as described above are output to various air conditioning control devices.
  • the above detection signal and operation signal are read at every predetermined control cycle ⁇ the target blowout temperature TAO is calculated ⁇ the operating states of various air conditioning control devices are determined -> Control routines such as control voltage and control signal output are repeated. Such a control routine is basically repeated in the same manner during the cooling operation.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant radiator 12.
  • the refrigerant that has flowed into the refrigerant radiator 12 exchanges heat with the vehicle interior blown air that has been blown from the blower 32 and passed through the refrigerant evaporator 20 to dissipate heat. Thereby, vehicle interior blowing air is heated.
  • the high-pressure refrigerant that has flowed out of the refrigerant radiator 12 flows into the heating fixed throttle 13 and is decompressed and expanded because the on-off valve 15a is closed. Then, the low-pressure refrigerant decompressed and expanded by the heating fixed throttle 13 flows into the outdoor heat exchanger 16.
  • the low-pressure refrigerant flowing into the outdoor heat exchanger 16 absorbs heat from the outside air blown by the blower fan 17 and evaporates.
  • the refrigerant flowing out of the outdoor heat exchanger 16 flows into the accumulator 18 because the three-way valve 15b is switched to the refrigerant flow path connecting the outlet side of the outdoor heat exchanger 16 and the inlet side of the accumulator 18. Gas-liquid separation. The gas-phase refrigerant separated by the accumulator 18 is sucked into the compressor 11 and compressed again.
  • the air blown into the vehicle interior is heated by the amount of heat of the refrigerant discharged from the compressor 11 by the refrigerant radiator 12, and the vehicle interior, which is the air conditioning target space, can be heated.
  • Air-cooling operation is started when the operation switch of the operation panel is turned on (ON) and the air-cooling operation mode is selected by the selection switch.
  • the air conditioning control device opens the on-off valve 15a and switches the three-way valve 15b to a refrigerant flow path connecting the outlet side of the outdoor heat exchanger 16 and the inlet side of the cooling fixed throttle 19.
  • the heat pump cycle 10 is switched to the refrigerant
  • the high-pressure refrigerant discharged from the compressor 11 flows into the refrigerant radiator 12 and exchanges heat with the vehicle interior blown air that has been blown from the blower 32 and passed through the refrigerant evaporator 20. Dissipate heat.
  • the high-pressure refrigerant that has flowed out of the refrigerant radiator 12 flows into the outdoor heat exchanger 16 through the fixed throttle bypass passage 14 because the on-off valve 15a is open.
  • the low-pressure refrigerant that has flowed into the outdoor heat exchanger 16 further dissipates heat to the outside air blown by the blower fan 17.
  • the refrigerant flowing out of the outdoor heat exchanger 16 is switched to the refrigerant flow path in which the three-way valve 15b connects the outlet side of the outdoor heat exchanger 16 and the inlet side of the cooling fixed throttle 19, so that the cooling fixed The diaphragm 19 is expanded under reduced pressure.
  • the refrigerant that has flowed out of the cooling fixed throttle 19 flows into the refrigerant evaporator 20, absorbs heat from the air blown by the blower 32, and evaporates. Thereby, vehicle interior blowing air is cooled.
  • the refrigerant flowing out of the refrigerant evaporator 20 flows into the accumulator 18 and is separated into gas and liquid.
  • the gas-phase refrigerant separated by the accumulator 18 is sucked into the compressor 11 and compressed again.
  • the refrigerant evaporator 20 absorbs the low-pressure refrigerant from the air blown into the vehicle interior and evaporates, whereby the air blown into the vehicle interior is cooled and the vehicle interior can be cooled.
  • the opening degree of the air mix door 34 is set so that the temperature of the air blown into the vehicle interior becomes higher than the vehicle interior temperature. Is adjusted. Even in such a case, in the refrigerant evaporator 20, the air blown into the vehicle interior is cooled and the absolute humidity thereof is reduced, so that dehumidifying heating in the vehicle interior can be realized.
  • the heating operation, the cooling operation, and the dehumidifying heating operation can be performed by switching the refrigerant flow path of the heat pump cycle 10.
  • the refrigerant radiator 12 is arranged in the indoor air conditioning unit 30 so as to satisfy the relationship of the above-described mathematical formula 4.
  • the refrigerant radiator 12 in which the refrigerant flowing in the tube 121 changes in phase, it is specified in consideration of parameters such as the flow rate U, viscosity ⁇ , density ⁇ , and inclination angle ⁇ of the refrigerant. It can suppress that the refrigerant
  • the non-uniformity of the pressure loss generated in the refrigerant flowing through each tube 121 can be suppressed, and the heat exchange area having a relatively low temperature can be suppressed from being formed in the heat exchange area of the refrigerant radiator. .
  • a decrease in the heat dissipation performance of the refrigerant radiator 12 can be suppressed even when the flow rate of the refrigerant flowing through the tube 121 changes due to air conditioning load fluctuations of the heat pump cycle 10 and the refrigerant radiator 12 is heated. Generation of uneven temperature distribution in the horizontal direction of the blown air can be suppressed.
  • the blown air heated in the heat exchange region on the driver seat side in the refrigerant radiator 12 is mainly blown out to the driver seat side
  • the blown air heated in the heat exchange region is mainly blown out to the passenger seat side. Therefore, it is possible to reduce the temperature difference in the horizontal direction of the blown air blown from the refrigerant radiator 12 by arranging the refrigerant radiator 12 as in the present embodiment, and the blown air blown to the driver's seat side and the passenger seat This is extremely effective in that the expansion of the temperature difference with the blown air blown to the side can be suppressed.
  • the refrigerant inlet of the inlet side connector 122a provided in the header tanks 122 and 123 or the refrigerant outlet of the outlet side connector 123a is provided.
  • the flow rate of the refrigerant flowing through each tube 121 is likely to change, and the temperature distribution of the blown air is likely to be uneven. Therefore, it is effective to apply an arrangement condition that can reduce the temperature difference of the blown air to the refrigerant radiator 12.
  • Equation 4 when A to G are expressed as a function of the inclination angle ⁇ , the refrigerant flowing in the tube 121 has a refrigerant flowing in the upward direction at any inclination angle ⁇ . The occurrence of uneven temperature distribution in the horizontal direction of the air blown out from the radiator can be suppressed.
  • FIGS. 5A and 5B correspond to FIGS. 3 (a) and 3 (b), and the same or equivalent parts in FIGS. 3 (a) and 3 (b) are denoted by the same reference numerals. It is attached. The same applies to the following drawings.
  • the inlet connector 122a is arranged upward and the outlet connector 123a is arranged downward, and the refrigerant flows through the tube 121 from the upper side to the lower side.
  • the refrigerant radiator in which the refrigerant circulates in the tube 121 from the upper side to the lower side, it is not necessary to consider the pressure loss due to gravity acting on the condensed refrigerant, and consider the inclination angle ⁇ .
  • the non-uniformity of the pressure loss generated in the refrigerant flowing through each tube 121 can be suppressed, and the heat exchange area having a relatively low temperature can be prevented from being formed in the heat exchange area of the refrigerant radiator. .
  • the tube 121 is arranged such that the longitudinal direction of the tube 121 is inclined with respect to the horizontal direction.
  • the tube 121 is arranged so that the longitudinal direction is substantially vertical, and the refrigerant flows in the tube 121 in the substantially vertical direction.
  • the Grashof number Gras calculated by gravity acceleration g, volume expansion force ⁇ , viscosity ⁇ , density ⁇ , and the like as parameters that similarly indicate the flow state (the influence of gravity) on the refrigerant flow. Is mentioned.
  • the Reynolds number Re 2 > Grashof number Gras of the refrigerant flowing in the tube 121 that is, in the region where 62.42 ⁇ Re, the refrigerant flow passing through the tube 121 is forced convection and therefore passes through the tube 121.
  • the flow rate of the refrigerant to be increased increases, the flow rate passing through each tube 121 tends to be non-uniform, and the temperature distribution in each heat exchange region tends to be non-uniform.
  • the refrigerant evaporator in the region where the refrigerant flow rate Gr is 47 kg / h or less, in a region where Re ⁇ 1234 in terms of conversion, the refrigerant evaporator is configured such that the refrigerant flows in the tube 121 from the lower side to the upper side. Regardless of the inclination angle ⁇ of the tube 121, the heat dissipation performance is reduced as compared with the case where the refrigerant flows through the tube 121 from the upper side to the lower side.
  • the direction of the refrigerant circulating in the tube 121 is less from the upper side to the lower side because the influence of gravity on the condensed refrigerant is small.
  • FIGS. 6A and 6B are drawings corresponding to FIGS. 3A and 3B, FIGS. 5A and 5B of the first embodiment.
  • the tubes 121 of this embodiment are roughly divided into a first tube group 121a connected to the gathering space 123e of the upper header tank 123 and a second tube group 121b connected to the distribution space 123d.
  • an inlet-side connector 123f is connected to the upper header tank 123 so that the refrigerant discharged from the compressor 11 flows into the distribution space 123d, and the refrigerant flows out from the inside of the collecting space 123e.
  • the outlet side connector 123a is connected.
  • the refrigerant discharged from the compressor 11 is distributed through the inlet side connector 123f in the upper header tank 122. It flows into 123d and is distributed to the tubes 121 constituting the second tube group 121b.
  • the refrigerant that has flowed into the tubes 121 constituting the second tube group 121b exchanges heat with the air blown into the passenger compartment when flowing through the tubes 121, and flows out of the tubes 121.
  • the refrigerant that has flowed out of the tubes 121 that constitute the second tube group 121b gathers in the header tank 122 on the lower side and is distributed to the tubes 121 that constitute the first tube group 121a.
  • the refrigerant that has flowed into the tubes 121 constituting the first tube group 121 a flows out of the tubes 121 by exchanging heat with the air blown into the passenger compartment when flowing through the tubes 121.
  • the refrigerant that has flowed out of the tubes 121 constituting the first tube group 121a gathers in the gathering space 123e of the upper header tank 122 and flows out through the outlet-side connector 123a.
  • the refrigerant flowing through the second tube group 121b flows from the upper side to the lower side, and the refrigerant flowing through the first tube group 121a is moved from the lower side to the upper side. Flowing.
  • the refrigerant flowing through the second tube group 121b exchanges heat with the gas phase refrigerant, and the downstream portion (the broken line in FIG. 6) from the intermediate portion in the refrigerant flow direction of the first tube group 121a. It is known that a gas-liquid two-phase refrigerant is formed at a portion surrounded by a circle and a liquid-phase refrigerant downstream thereof.
  • an arbitrary portion from the intermediate portion in the refrigerant flow direction to the downstream portion of the first tube group 121a can be adopted as the predetermined portion. Furthermore, since the refrigerant flows from the lower side to the upper side in the part, the inclination angle ⁇ of the refrigerant radiator 12 of the present embodiment is set to the same value as that of the first embodiment. Other configurations and operations of the vehicle air conditioner 1 are the same as those in the first embodiment.
  • the refrigerant radiator 12 of this embodiment in the heat exchange region configured by the second tube group 121b, the refrigerant dissipates heat while remaining in a gas phase state, so that the heat dissipation performance due to the difference in the degree of refrigerant condensation between the tubes 121. Is less likely to occur. Therefore, the temperature difference which arises in the vehicle interior blowing air which blows off from the heat exchange area
  • the refrigerant radiator 12 as a whole can suppress a reduction in the heat radiation performance of the refrigerant radiator 12 even if the flow rate of the refrigerant flowing through the tube 121 changes due to fluctuations in the air conditioning load of the heat pump cycle 10 and the like.
  • the temperature difference in the horizontal direction of the air heated and blown out by the vessel 12 can be reduced.
  • the refrigerant radiator 12 of the present embodiment even if the refrigerant flow direction at a predetermined location where the refrigerant flowing through the tube 121 is a gas-liquid two-phase refrigerant is directed from the upper side to the lower side. If the refrigerant radiator 12 is arranged so as to satisfy the relationship of the above-described mathematical formula 4, the same effect can be obtained.
  • FIGS. 7A and 7B In the present embodiment, as shown in FIGS. 7A and 7B, an example in which the configuration of the refrigerant radiator 12 is changed with respect to the first embodiment will be described.
  • the internal space of the upper header tank 123 is divided into a distribution space 123d and a gathering space 123e in the flow direction of the blown air.
  • FIGS. 7A and 7B are drawings corresponding to FIGS. 3A and 3B and FIGS. 5A and 5B of the first embodiment.
  • the tube 121 of this embodiment is also roughly divided into a first tube group 121a connected to the collecting space 123e and a second tube group 121b connected to the distributing space 123d, as in the second embodiment.
  • the first tube group 121a is disposed on the downstream side in the flow direction X of the blown air in the vehicle interior of the second tube group 121b.
  • a plurality of tubes 121 are arranged in the flow direction X of the air blown into the vehicle interior.
  • an inlet-side connector 123f is disposed in the header tank 123 so that the refrigerant discharged from the compressor 11 flows into the distribution space 123d, and an outlet is provided so that the refrigerant flows out of the gathering space 123e.
  • a side connector 123a is disposed.
  • the refrigerant discharged from the compressor 11 is distributed to the distribution space 123d of the upper header tank 123 ⁇ second.
  • the refrigerant flowing through the second tube group 121b on the upstream side of the air flow exchanges heat while remaining as a gas phase refrigerant, and among the refrigerant flowing through the first tube group 121a on the downstream side of the air flow. It has been found that the gas-liquid two-phase refrigerant is formed at the downstream portion from the intermediate portion in the refrigerant flow direction, and the liquid-phase refrigerant is formed at the downstream side.
  • the inclination angle ⁇ of the refrigerant radiator 12 of the present embodiment is set to the same value as in the first embodiment.
  • Other configurations and operations of the vehicle air conditioner 1 are the same as those in the first embodiment.
  • the refrigerant radiator 12 of the present embodiment is configured as described above, in the heat exchange region on the upstream side of the air flow constituted by the second tube group 121b, the refrigerant radiates heat while remaining in a gas phase state. A decrease in heat dissipation performance due to the degree of refrigerant condensation is unlikely to occur, and there is little non-uniform temperature distribution in the vehicle interior blown air blown out from this heat exchange region.
  • the refrigerant radiator 12 As the refrigerant radiator 12 as a whole, it is possible to suppress a decrease in heat dissipation performance and to suppress the occurrence of uneven temperature distribution in the horizontal direction of the air heated and blown by the refrigerant radiator 12.
  • the refrigerant distributed in the distribution space 123 d of the upper header tank 123 passes through the lower header tank 122. It makes a U-turn and flows back to the gathering space 123e of the upper header tank 123.
  • a region (superheat degree region) through which the gas-phase refrigerant having a relatively high degree of superheat flows is formed on the upper side, and among the heat exchange regions on the leeward side, the comparison is made.
  • a region (supercooling region) in which a liquid refrigerant having a supercooling degree with a low target temperature flows can be formed on the upper side. Therefore, when viewed from the flow direction X of the blown air, the superheat degree region and the supercooling degree region can be polymerized, and uneven temperature distribution of the blown air in the vertical direction can be suppressed.
  • the refrigerant radiator 12 of the present embodiment the example in which the flow of the refrigerant that has flowed out from the tube 121 on the upstream side of the blown air flow is U-turned and flows into the tube 121 on the downstream side has been described.
  • the refrigerant flowing out of the tube 121 may be U-turned to flow into the upstream tube 121.
  • the refrigerant radiator 12 of the present embodiment even if the refrigerant flow direction at a predetermined location where the refrigerant circulating in the tube 121 is a gas-liquid two-phase refrigerant is directed from the upper side to the lower side. If the refrigerant radiator 12 is arranged so as to satisfy the relationship of the above-described mathematical formula 4, the same effect can be obtained.
  • the tube 121 applicable to the refrigerant radiator 12 of the present invention includes It is not limited. That is, as long as it has a component extending at least in the vertical direction, it may be formed in a meandering shape.
  • positioned below can also be abolished.
  • the configuration of the refrigerant radiator 12 of the present invention is the same. It is not limited. For example, it may be configured to allow heat exchange of a plurality of types of fluids such as a refrigerant, air blown into the vehicle interior, and other heat medium.
  • a refrigerant tube that circulates a refrigerant and a heat medium tube that circulates a heat medium are sequentially stacked and arranged adjacent to each other.
  • An air passage through which the blown air is circulated is formed between the tube for heating and the heat medium tube, and the refrigerant, the air and the heat medium are joined to both the refrigerant tube and the heat medium tube in the air passage.
  • stimulating heat exchange with blast air can be employ
  • the device mounted on the vehicle is not limited to acceleration / deceleration, right / left turn, or parking on an uphill road.
  • the arrangement state in the horizontal direction may change. Therefore, in each of the above-described embodiments, the relationship of Formula 4 is satisfied in the entire range of ⁇ ⁇ ⁇ in consideration of the change amount ⁇ due to the inclination of the entire vehicle with respect to the inclination angle ⁇ . desirable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 ヒートポンプサイクルに適用される冷媒放熱器(12)は、複数のチューブ(121)を備える。チューブ(121)内を流通する冷媒の流れ方向と水平方向とのなす傾斜角度θ(°)とし、チューブ(121)内を流通する冷媒が気液二相冷媒となっている所定箇所の冷媒の乾き度をXとし、チューブ(121)内を流通する冷媒の平均流速(m/S)から求められる所定箇所における冷媒のレイノルズ数をReとしたときに、 Re≧A×X6+B×X5+C×X4+D×X3+E×X2+F×X+G を満たすようにチューブ(121)を配置する。この際、A~Gは、θの関数とすることで、各チューブ121における冷媒の圧力損失の不均一を抑制して、吹き出される空気の温度差を低減する。

Description

冷媒放熱器 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2010年12月28日に出願された日本特許出願2010-292599、及び2011年12月21日に出願された日本特許出願2011-280337を基にしている。
 本発明は、蒸気圧縮式の冷媒サイクルにて冷媒を放熱させる冷媒放熱器に関する。
 従来、蒸気圧縮式の冷媒サイクルにて、圧縮機から吐出された高温高圧冷媒を空気と熱交換させて放熱させる冷媒放熱器が知られている。例えば、特許文献1の冷媒放熱器は、車両用空調装置に適用されており、圧縮機吐出冷媒と空調対象空間である車室内へ送風される車室内送風空気とを熱交換させて、車室内送風空気を加熱する加熱部としての機能を果たしている。
 また、特許文献1の冷媒サイクルでは、冷媒として二酸化炭素を採用しており、圧縮機吐出側から減圧装置入口側へ至るサイクルの高圧側冷媒圧力が冷媒の臨界圧力以上となる、いわゆる超臨界冷媒サイクルを構成している。従って、特許文献1の冷媒放熱器では、冷媒は相変化することなく超臨界状態のまま放熱する。
 さらに、この冷媒放熱器では、送風空気の流れ方向の風上側に配置される熱交換領域と風下側に配置される熱交換領域とを有し、風下側の熱交換領域では、圧縮機吐出冷媒を一端側から他端側へ流通させ、風上側の熱交換領域では、風下側の熱交換領域流出冷媒を他端側から一端側へ流通させている。加えて、風下側の熱交換領域の熱交換性能を風上側の熱交換領域の熱交換性能よりも低下させている。
 これにより、送風空気の流れ方向から見たときに、一方の熱交換領域のうち比較的高い温度の冷媒が流れる熱交換領域と他方の熱交換領域のうち比較的低い温度の冷媒が流れる熱交換領域とを重合させるとともに、風下側の熱交換領域へ流入した直後の冷媒の急激な温度低下を抑制して、冷媒放熱器から吹き出される送風空気に温度差を低減できる。
特開2004-125346号公報 しかしながら、特許文献1の冷媒放熱器を、高圧側冷媒圧力が冷媒の臨界圧力未満となる、いわゆる亜臨界冷媒サイクルに適用すると、上述した温度分布の不均一の抑制効果を充分に得ることができなくなる場合ある。その理由は、亜臨界冷媒サイクルでは、冷媒が冷媒放熱器にて放熱する際に、過熱度を有する気相冷媒から気液二相冷媒へ、さらには過冷却度を有する液相冷媒へ相変化するからである。
 より詳細には、超臨界冷媒サイクルでは、冷媒放熱器にて冷媒を超臨界状態のまま放熱させるので、冷媒放熱器内を流通する冷媒は、ほぼ一定の勾配で温度低下しながら放熱する。従って、特許文献1のように、風上側の熱交換領域および風下側の熱交換領域を流通する冷媒の流れ方向を対向させ、冷媒が風下側の熱交換領域へ流入した直後の急激な温度低下を抑制することによって、送風空気の温度差を低減できる。
 一方、亜臨界冷媒サイクルでは、冷媒放熱器内を流通する冷媒が気相冷媒あるいは液相冷媒になっている際には、冷媒は、その温度を低下させながら放熱する(すなわち、温度とエンタルピとの双方を低下させる)ものの、気液二相冷媒になっている際には、その温度を低下させることなく放熱する(すなわち、エンタルピのみを低下させる)。
 従って、送風空気の流れ方向から見たときに、一方の熱交換領域のうち冷媒が気液二相状態になっている熱交換領域と他方の熱交換領域のうち冷媒が気相状態あるいは液相状態になっている熱交換領域が、空気流れ方向に重合していると冷媒放熱器から吹き出される送風空気の温度分布の不均一を充分に抑制できなくなる場合もある。
 本発明は、上記点に鑑み、内部を流通する冷媒が、気相状態、気液二相状態および液相状態に相変化する冷媒放熱器にて、冷媒と熱交換して吹き出される空気の温度差を低減することを目的とする。
 本発明に関連する開示は、以下に説明する本発明者の試験検討によって得られた知見に基づいて案出されたものである。本出願の発明者は、車両用空調装置に適用される亜臨界冷媒サイクルの冷媒放熱器であって、特許文献1と同様の加熱部として機能する冷媒放熱器から吹き出される送風空気の温度分布について検討を行った。
 この種の車両用空調装置では、後述する図4で説明するように、冷媒放熱器のうち運転席側の熱交換領域で加熱された送風空気が主に運転席側に吹き出され、助手席側の熱交換領域で加熱された送風空気が主に助手席側に吹き出される。従って、送風空気の水平方向の温度差を低減すれば、運転席側へ吹き出される送風空気と助手席側へ吹き出される送風空気との温度差を縮小できる。
 また、この亜臨界冷媒サイクルに適用される冷媒放熱器内を流通する冷媒は、冷媒放熱器の入口側から出口側へ向かって、過熱度を有する気相冷媒→気液二相冷媒→過冷却度を有する液相冷媒の順に相変化して、その密度を上昇させる。さらに、サイクルを循環する冷媒流量が一定であれば、冷媒放熱器内を流通する冷媒の質量流量は一定となるので、冷媒は相変化に伴って流速を低下させる。
 従って、亜臨界冷媒サイクルに適用される冷媒放熱器では、理論的には、熱交換領域全体のうち、空気との温度差が相対的に大きくなる気相冷媒と送風空気とを熱交換させる熱交換領域の占める割合が大きくなり、広範囲の熱交換領域にて気相冷媒を放熱させることができる。
 そこで、本発明者は、冷媒放熱器として、後述する第1実施形態の図3(a)、(b)で説明する冷媒放熱器と同様の構成の全パスタイプのタンクアンドチューブ型熱交換器(マルチフロー型熱交換器)を用い、さらに、チューブの長手方向が、少なくとも鉛直方向の成分を有する方向となるように冷媒放熱器を配置して、送風空気の温度分布の検討を行った。本願で、「少なくとも鉛直方向の成分を有する方向」とは、チューブの延伸方向が水平方向に垂直な方向に、もしくは水平方向に対して角度を有して伸びていることを意味する。
 このようにチューブの長手方向が、鉛直方向の成分を有する方向となるように配置した理由は、冷媒分配用のヘッダタンクから、全てのチューブに圧縮機吐出冷媒を流入させることで、鉛直方向の送風空気の温度分布は発生しうるものの、水平方向の送風空気の温度差を抑制できるからである。なお、この冷媒放熱器では、冷媒流入口が設けられる分配用のヘッダタンクを下方側に配置し、冷媒流出口が設けられる集合用のヘッダタンクを上方側に配置している。
 次に、図8、図9を用いて検討結果について説明する。まず、本発明者は、図8に示すように、この冷媒放熱器が適用された冷媒サイクルを循環する冷媒流量Gr(すなわち、冷媒放熱器を流通する冷媒の流量(kg/h))を変化させた際の冷媒放熱器の放熱性能を確認した。
 なお、図8は、冷媒流量Grおよび送風空気流量Va(m3/h)の変化に対する放熱性能の変化を示すグラフである。また、図8の横軸に示した冷媒流量Grの目盛りと送風空気流量Vaの目盛りは、この冷媒放熱器における冷媒の放熱量と送風空気の吸熱量がバランスする流量を表しており、GrとVaとの間の関係は、以下示す数式1で近似できる。
Figure JPOXMLDOC01-appb-M000001
 さらに、図8では、送風空気流れと直交する方向から見たときに、チューブ内を流通する冷媒の流れ方向と水平方向とのなす傾斜角度θ(単位:度)を90°、60°、30°に変化させた際の放熱性能、および、分配用のヘッダタンクを上方側に配置し、集合用のヘッダタンクを下方側に配置し、傾斜角度θを-90°とした際の放熱性能をプロットしている。なお、傾斜角度θの定義は、後述する実施形態にて詳述する通りである。
 図8から明らかなように、検討に用いた冷媒放熱器では、冷媒流量Grの減少に伴って、放熱性能が大きく低下する。そこで、本発明者は、この放熱性能の低下の原因を調査するため、図9に示すように、冷媒流量Grを変化させた際の冷媒放熱器から吹き出される送風空気の温度分布を調査した。
 この温度分布の調査では、冷媒放熱器の熱交換領域を16の領域に分割し、各領域毎に吹き出される送風空気の平均温度を求め、さらに、水平方向一方側(紙面右側)の熱交換領域の8つの領域の平均温度と水平方向他方側(紙面左側)の熱交換領域の8つの領域の平均温度との温度差を左右平均温度差ΔTとしている。なお、この左右平均温度差ΔTは、送風空気の水平方向の温度分布を表す指標として用いることができる。
 また、図9に示す例(a)― 例(d)では、送風空気流量Va、冷媒流量Gr、冷媒放熱器12の冷媒流入口における冷媒の過熱度SH、冷媒放熱器12の冷媒流出口における過冷却度SC、冷媒放熱器12へ流入する空気の温度TainをそれぞれVa、Gr、SH、SC、Tainと符合のみ表記している。
 図9から明らかなように、冷媒流量Grを低下させるに伴って、熱交換領域のうち相対的に温度の低い領域(図9の例(b)、例(c)の熱交換領域の破線で囲んだ略中央部)が拡大し、さらに冷媒流量Grを低下させると熱交換領域のうち相対的に温度の低い領域の発生箇所(図9の例(d)の熱交換領域の破線で囲んだ略中央部および紙面左側部)が複数箇所に増える。
 つまり、冷媒流量Grの減少に伴って、熱交換領域のうち相対的に温度の低い領域、すなわち、送風空気を充分に加熱することのできない熱交換領域が増加して、冷媒放熱器全体としての放熱性能の低下を招いていることが判った。さらに、熱交換領域のうち相対的に温度の低い領域が生じることは、図9の例(d)に示すように、左右平均温度差ΔTを増加させ、送風空気の水平方向の温度分布の均一さを悪化させる要因にもなっていることが判った。
 そこで、発明者は、さらなる検討を行い、冷媒放熱器の熱交換領域のうち相対的に温度の低い領域が発生してしまう原因が、各チューブを流通する冷媒の凝縮度合の相違によるものであることを見出した。
 このことをより詳細に説明すると、冷媒放熱器の各チューブには、気相冷媒が流入することから、各チューブへ冷媒を流入させる際の分配性は比較的良好であるものの、ヘッダタンク内における圧損、冷媒流入の慣性力等の影響により、全く均一に分配することは難しい。そのため、冷媒放熱器の熱交換器領域に比較的均一な空気を流入したとしても、多少なりとも冷媒流入量の少ないチューブが存在する場合がある。
 このような冷媒流入量の少ないチューブが構成する特定の熱交換領域では、チューブを流通する冷媒が、他の熱交換領域を構成するチューブを流通する冷媒よりも凝縮しやすくなってしまう。この際、冷媒流量Grの減少に伴って、チューブ出入口間の冷媒の圧力差が小さくなると、凝縮した冷媒の流速がより一層低下して、凝縮した冷媒がチューブ内から流出しにくくなる。
 これにより、凝縮した冷媒が冷媒通路壁面などに付着してチューブ内に滞留してしまうと、特定の熱交換領域を構成するチューブ内の冷媒通路面積が他の領域を構成するチューブよりも狭くなってしまい、冷媒が付着したチューブの圧力損失が大きくなってしまう。その結果、特定の熱交換領域を構成するチューブには、他の領域を構成するチューブよりも、圧縮機から吐出された高温冷媒が流入しにくくなり、相対的に温度の低い熱交換領域(以下、低温領域という。)が形成されてしまう。
 そこで、本発明者は、低温領域を構成するチューブの圧力損失について検討したところ、低温領域を構成するチューブの圧力損失の増加は、凝縮した冷媒がチューブ内に滞留してしまうことに起因するものであるから、冷媒を押し出すためのエネルギ源となる冷媒の流速Uの他に、
(1)冷媒が凝縮することによって粘度μを上昇させることによる圧力損失の上昇分
(2)冷媒が凝縮することによって密度ρを低下させることによる圧力損失の低下分
を考慮する必要があることに着眼した。さらに、チューブ内を冷媒が下方から上方へと流れる冷媒放熱器においては、
(3)凝縮した冷媒に作用する重力を換算した圧力損失の上昇分
についても考慮する必要があることに着眼した。
 つまり、冷媒の流速U、粘度μ、密度ρ、および、凝縮した冷媒に作用する重力を算出するために必要なパラメータとしての傾斜角度θ等を考慮すれば、低温領域を構成するチューブ121の圧力損失を、他の領域を構成するチューブの圧力損失と同等として、相対的に温度の低い熱交換領域が形成されてしまうことを抑制できる。
 この着眼に基づいて、本発明者は、冷媒の流速U、粘度μ、密度ρを用いて慣性力と粘性力との比として定義されるレイノルズ数Reと傾斜角度θとを用いて、相対的に温度の低い熱交換領域が形成されてしまうことを抑制できる冷媒放熱器の配置条件をシミュレーション計算により求め、その結果を近似式として算出した。
 なお、冷媒放熱器の配置条件の算出には、冷媒の流速Uとして、チューブ内を流通する冷媒の平均流速を用いている。また、冷媒放熱器へ流入する冷媒は、圧力2MPaで過熱度45℃の気相冷媒とし、冷媒放熱器へ流入する空気は、20℃で流量200m3/hとしている。さらに、上記数式(1)の圧力損失の上昇分を求めるため必要となる気液二相流体の粘度μmは、以下数式2に示すTaylorの式を用いて求めている。
Figure JPOXMLDOC01-appb-M000002
 さらに、Taylorの式に必要となる気液二相流体のボイド率αgは、以下数式3に示
すLEVYの式(LEVYの運動量極小モデル)を用いて求めている。
Figure JPOXMLDOC01-appb-M000003
 その結果、傾斜角度(θ)が0<θ≦90°、すなわち、チューブ内を冷媒が下方から上方へと流れる冷媒放熱器では、以下数式4に示す配置条件とすることで、低温領域を構成するチューブの圧力損失が他の領域を構成するチューブの圧力損失が同等となり、熱交換領域に相対的に温度の低い領域が形成されてしまうことを抑制できることが判明した。
Figure JPOXMLDOC01-appb-M000004
 以上の知見に基づいて、本開示の第1態様によると、蒸気圧縮式の冷媒サイクルに適用されて、圧縮機で圧縮された高温高圧の冷媒と空調対象空間へ送風される送風空気とを熱交換させて、過熱度を有する気相冷媒を過冷却度を有する液相冷媒となるまで放熱させる冷媒放熱器であって、冷媒が上方から下方へと流通する複数のチューブと、複数のチューブの端部に接続され、複数のチューブのうち少なくとも一部のチューブに流入する冷媒を分配する第1のヘッダと、複数のチューブの端部に接続され、前記複数のチューブのうち少なくとも一部のチューブから流出する冷媒を集合させる第2のヘッダとを有する。これによれば、チューブ内を冷媒が上方から下方へと流れる冷媒放熱器において、チューブ内を流通する冷媒が相変化しても、各チューブにおける冷媒の圧力損失の不均一を抑制できる。従って、冷媒放熱器の熱交換領域のうち、相対的に温度の低い熱交換領域が形成されてしまうことを抑制できる。
 例えば、本開示の第2態様によると、チューブ内を流通する冷媒流れが強制対流となる62.42≦Re≦1234となる領域に用いる冷媒放熱器としては、凝縮した冷媒に作用する重力を換算した圧力損失の上昇分を考慮する必要のない、チューブ内部を上方側から下方側へと流通する冷媒蒸発器を用いることが望ましい。
 本開示の第3態様によると、蒸気圧縮式の冷媒サイクルに適用されて、冷媒を圧縮して吐出する圧縮機で圧縮された高温高圧の冷媒と空調対象空間へ送風される送風空気とを熱交換させて、過熱度を有する気相冷媒を過冷却度を有する液相冷媒となるまで放熱させる冷媒放熱器であって、冷媒が流通する複数のチューブを備え、前記チューブは、水平方向に垂直な方向に、もしくは水平方向に対して角度を有して延びるように配置され、チューブ内を流通する冷媒の流れ方向と水平方向とのなす傾斜角度をθ(°)とし、チューブ内を流通する冷媒が気液二相冷媒となっている所定箇所の冷媒の乾き度をXとし、チューブ内を流通する冷媒の平均流速(m/S)から求められる所定箇所における冷媒のレイノルズ数をReとしたときに、
 Re≧A×X6+B×X5+C×X4+D×X3+E×X2+F×X+Gの関係を満たすように、チューブが構成され、但し、
 A=-0.0537×θ2+9.7222×θ+407.19
 B=-(-0.2093×θ2+37.88×θ+1586.3)
 C=-0.3348×θ2+60.592×θ+2538.1
 D=-(-0.2848×θ2+51.53×θ+2158.2)
 E=-0.1402×θ2+25.365×θ+1062.8
 F=-(-0.0418×θ2+7.5557×θ+316.46)
 G=-0.0132×θ2+2.3807×θ+99.73
 とし、チューブ内を流通する冷媒の流れ方向が鉛直下方から鉛直上方に向かって変化するに伴って、傾斜角度(θ)は、0<θ≦90°であるものとする。
 これによれば、傾斜角度(θ)が0<θ≦90°、すなわち、チューブ内を冷媒が下方から上方へと流れる冷媒放熱器において、チューブ内を流通する冷媒が相変化しても、冷媒の流速、粘度、密度および傾斜角度(θ)といったパラメータを考慮して、各チューブにおける冷媒の圧力損失の不均一を抑制できる。従って、冷媒放熱器の熱交換領域のうち、相対的に温度の低い熱交換領域が形成されてしまうことを抑制できる。
 その結果、冷媒サイクルを循環する冷媒流量が変化して、チューブ内を流通する冷媒の流速が変化しても、冷媒放熱器の放熱性能の低下を抑制できるとともに、冷媒放熱器にて加熱されて吹き出される空気の水平方向の不均一の温度分布の発生を抑制できる。
 ここで、「所定箇所」としては、チューブを流通する冷媒が気液二相冷媒となっている所定箇所であれば、任意の箇所を採用することができる。つまり、チューブを流通する冷媒の乾き度(X)が変化しても、この乾き度(X)を用いて、レイノルズ数(Re)が算定されるので、所定箇所として任意の箇所を採用しても、相対的に温度の低い熱交換領域が形成されてしまうことを抑制できる。
 「チューブは、鉛直方向の成分を有する方向に延びている」とは、チューブの全域が鉛直方向に延びていることのみを意味するものではなく、チューブの一部が鉛直方向に延びていることを含む意味である。
 本開示の第4態様による冷媒放熱器は、複数のチューブの積層方向に延びるとともに、複数のチューブの少なくとも一端側に配置されて、冷媒の集合あるいは分配を行うヘッダタンクを備えてもよい。
 複数のチューブを流通する冷媒をヘッダタンクを用いて集合させる、あるいは、分配するマルチフロー型の熱交換器構成では、ヘッダタンクに設けられた冷媒流入口あるいは冷媒流出口の位置によって、それぞれのチューブを流通する冷媒の流量に変化が生じやすく、送風空気の温度分布も生じやすい。従って、このような構成の冷媒放熱器に送風空気の温度差を低減できる配置条件を適用することは極めて有効である。
 本開示の第5態様によると、前記複数のチューブには、冷媒が下方側から上方側へ向かって流れる第1チューブ群および冷媒が上方側から下方側へ向かって流れる第2チューブ群が設けられてもよい。
 また、本開示の第6態様の冷媒放熱器によると、ヘッダタンクの内部空間は、複数の空間に分割されており、分割された一方の空間には、気相冷媒を流入させる冷媒流入口が設けられ、他方の空間には、液相冷媒を流出させる冷媒流出口が設けられていてもよい。
 さらに、本開示の第7態様の冷媒放熱器によると、複数のチューブは、送風空気の流れ方向に沿って複数配列されてもよい。これによれば、風上側および風下側の熱交換領域のうちの一方を、過熱度を有する冷媒が流れる領域(過熱度領域)とし、他方を過冷却度を有する冷媒が流れる領域(過冷却度領域)とし、さらに、送風空気の流れ方向から見たときに過熱度領域および過冷却度領域を重合させて、鉛直方向の送風空気の温度差を低減できる。
 本開示の第8態様の冷媒放熱器によると、複数のチューブを流通する冷媒の流れ方向は、いずれも同一であってもよい。
 本開示の第9態様の冷媒放熱器によると、冷媒サイクルは、車両用空調装置に適用されており、空調対象空間は、車室内であってもよい。
 従って、送風空気の水平方向の温度差を低減でき、運転席側へ吹き出される送風空気と助手席側へ吹き出される送風空気との温度差を低減できる。
 本発明における上記あるいは他の目的、構成、利点は、下記の図面を参照しながら、以下の詳細説明から、より明白となる。
第1実施形態のヒートポンプサイクルの暖房運転時の冷媒流路等を示す全体構成図である。 第1実施形態のヒートポンプサイクルの冷房運転時の冷媒流路等を示す全体構成図である。 (a)は、第1実施形態の冷媒放熱器の正面図であり、(b)は、(a)の側面図である。 第1実施形態の冷媒放熱器の配置状態を示す概略図である。 (a)は、第2実施形態の冷媒放熱器の正面図であり、(b)は、(a)の側面図である。 (a)は、第3実施形態の冷媒放熱器の正面図であり、(b)は、(a)の側面図である。 (a)は、第4実施形態の冷媒放熱器の正面図であり、(b)は、(a)の側面図である。 出願人の検討用の冷媒放熱器の冷媒流量および送風空気流量の変化に対する放熱性能の変化を示すグラフである。 出願人の検討用の冷媒放熱器の温度分布の実験結果を示す概略図である。 出願人の検討用の冷媒放熱器における、冷媒流量に対するレイノルズ数またはグラスホフ数の変化を示すグラフである。
 以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 図1~4により、本発明の第1実施形態を説明する。本実施形態では、本発明の冷媒放熱器12を備えるヒートポンプサイクル10(蒸気圧縮式の冷媒サイクル)を、車両用空調装置1に適用している。図1は、本実施形態の車両用空調装置1の全体構成図である。なお、車両用空調装置1は、エンジン(内燃機関)から走行用駆動力を得る通常のエンジン車両のみならず、ハイブリッド車両や電気自動車等種々の車両に適用可能である。
 ヒートポンプサイクル10は、車両用空調装置1において、空調対象空間である車室内へ送風される車室内送風空気を加熱あるいは冷却する機能を果たす。従って、このヒートポンプサイクル10は、冷媒流路を切り替えて、熱交換対象流体である車室内送風空気を加熱して車室内を暖房する暖房運転(加熱運転)、車室内送風空気を冷却して車室内を冷房する冷房運転(冷却運転)を実行できる。
 なお、図1、2のヒートポンプサイクル10に示す全体構成図では、それぞれ暖房運転時における冷媒の流れ、および、冷房運転時における冷媒の流れを実線矢印で示している。
 また、本実施形態のヒートポンプサイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷媒サイクルを構成している。もちろん、亜臨界冷媒サイクルを構成する冷媒であれば、HFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、この冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 まず、圧縮機11は、エンジンルーム内に配置されて、ヒートポンプサイクル10において冷媒を吸入し、圧縮して吐出するもので、吐出容量が固定された固定容量型圧縮機11aを電動モータ11bにて駆動する電動圧縮機である。固定容量型圧縮機11aとしては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。
 電動モータ11bは、後述する空調制御装置から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、圧縮機11の冷媒吐出能力が変更される。従って、本実施形態では、電動モータ11bが圧縮機11の吐出能力変更部を構成する。
 圧縮機11の冷媒吐出口には、冷媒放熱器12の冷媒入口側が接続されている。冷媒放熱器12は、後述する車両用空調装置1の室内空調ユニット30のケーシング31内に配置されて、圧縮機11から吐出された高温高圧冷媒と後述する冷媒蒸発器20通過後の車室内送風空気とを熱交換させる加熱用熱交換器である。なお、冷媒放熱器12および室内空調ユニット30の詳細構成については後述する。
 冷媒放熱器12の冷媒出口側には、暖房運転時に冷媒放熱器12から流出した冷媒を減圧膨張させる暖房運転用の減圧部としての暖房用固定絞り13が接続されている。この暖房用固定絞り13としては、オリフィス、キャピラリチューブ等を採用できる。暖房用固定絞り13の出口側には、室外熱交換器16の冷媒入口側が接続されている。
 さらに、冷媒放熱器12の冷媒出口側には、冷媒放熱器12から流出した冷媒を、暖房用固定絞り13を迂回させて室外熱交換器16側へ導く固定絞り迂回用通路14が接続されている。この固定絞り迂回用通路14には、固定絞り迂回用通路14を開閉する開閉弁15aが配置されている。開閉弁15aは、空調制御装置から出力される制御電圧によって、その開閉作動が制御される電磁弁である。
 また、冷媒が開閉弁15aを通過する際に生じる圧力損失は、暖房用固定絞り13を通過する際に生じる圧力損失に対して極めて小さい。従って、冷媒放熱器12から流出した冷媒は、開閉弁15aが開いている場合には固定絞り迂回用通路14側を介して室外熱交換器16へ流入し、開閉弁15aが閉じている場合には暖房用固定絞り13を介して室外熱交換器16へ流入する。
 これにより、開閉弁15aは、ヒートポンプサイクル10の冷媒流路を切り替えることができる。従って、本実施形態の開閉弁15aは、冷媒流路切替部としての機能を果たす。なお、このような冷媒流路切替部としては、冷媒放熱器12出口側と暖房用固定絞り13入口側とを接続する冷媒回路および冷媒放熱器12出口側と固定絞り迂回用通路14入口側とを接続する冷媒回路を切り替える電気式の三方弁等を採用してもよい。
 室外熱交換器16は、内部を流通する低圧冷媒と送風ファン17から送風された外気とを熱交換させるものである。この室外熱交換器16は、エンジンルーム内に配置されて、暖房運転時には、低圧冷媒を蒸発させて吸熱作用を発揮させる蒸発器として機能し、冷房運転時には、高圧冷媒を放熱させる放熱器として機能する熱交換器である。
 また、送風ファン17は、空調制御装置から出力される制御電圧によって稼働率、すなわち回転数(送風空気量)が制御される電動式送風機である。室外熱交換器16の出口側には、電気式の三方弁15bが接続されている。この三方弁15bは、空調制御装置から出力される制御電圧によって、その作動が制御されるもので、上述した開閉弁15aとともに、冷媒流路切替部を構成している。
 より具体的には、三方弁15bは、暖房運転時には、室外熱交換器16の出口側と後述するアキュムレータ18の入口側とを接続する冷媒流路に切り替え、冷房運転時には、室外熱交換器16の出口側と冷房用固定絞り19の入口側とを接続する冷媒流路に切り替える。
 冷房用固定絞り19は、冷房運転時に室外熱交換器16から流出した冷媒を減圧膨張させる冷房運転用の減圧部であり、その基本的構成は、暖房用固定絞り13と同様である。冷房用固定絞り19の出口側には、室内蒸発器としての冷媒蒸発器20の冷媒入口側が接続されている。
 冷媒蒸発器20は、室内空調ユニット30のケーシング31内のうち、冷媒放熱器12よりも空気流れの上流側に配置されて、その内部を流通する冷媒と車室内送風空気とを熱交換させ、車室内送風空気を冷却する冷却用熱交換器である。冷媒蒸発器20の冷媒出口側には、アキュムレータ18の入口側が接続されている。
 アキュムレータ18は、その内部に流入した冷媒の気液を分離して、サイクル内の余剰冷媒を蓄える低圧側冷媒用の気液分離器である。アキュムレータ18の気相冷媒出口には、圧縮機11の吸入側が接続されている。従って、このアキュムレータ18は、圧縮機11に液相冷媒が吸入されてしまうことを抑制して、圧縮機11の液圧縮を防止する機能を果たす。
 次に、図3(a)、(b)を用いて、冷媒放熱器12の詳細構成を説明する。図3(a)は、冷媒放熱器12の正面図であり、図3(b)は、図3(a)の模式的な側面図である。なお、図3(b)では、図示の簡略化のため、後述する入口側コネクタ122aおよび出口側コネクタ123aの図示を省略している。
 また、図3(a)における上下の各矢印は、冷媒放熱器12を室内空調ユニット30のケーシング31内に搭載した状態における上下の各方向を示している。このことは、以下の図面においても同様である。
 具体的には、冷媒放熱器12は、図3(a)、(b)に示すように、圧縮機11から吐出された高温高圧冷媒が流通する複数のチューブ121、この複数のチューブ121の長手方向両端側に配置されてチューブ121を流通する冷媒の集合あるいは分配を行う一対のヘッダタンク122、123等を有し、各チューブ121を流通する冷媒の流れ方向がいずれも同一となる、いわゆる全パスタイプのマルチフロー型の熱交換器として構成されている。
 チューブ121は、伝熱性に優れる金属(例えば、アルミニウム合金)で形成され、内部を流通する冷媒の流れ方向に垂直な断面が扁平形状に形成された扁平チューブである。さらに、その外表面に形成された平坦面(扁平面)が、車室内送風空気の流れ方向Xと平行に配置されている。なお、チューブ121としては、単穴あるいは多穴の扁平チューブのいずれを採用してもよい。なお、チューブ121としては、相当円直径de(4×流路断面積×流路の濡れ辺長さ)が0.5~1.5mmである冷媒流路が形成されたチューブ121とすることが望ましい。
 さらに、複数のチューブ121は、それぞれのチューブ121の平坦面同士が互いに平行となるように水平方向に積層配置されており、隣り合うチューブ121同士の間には、車室内送風空気が流通する空気通路が形成されている。また、隣り合うチューブ121同士の間には、冷媒と車室内送風空気との熱交換を促進するフィン124が配置されている。
 フィン124は、チューブ121と同じ材質の薄板材を波状に曲げ成形することで形成されたコルゲートフィンであり、その頂部がチューブ121の平坦面にろう付け接合されている。なお、図3(a)では、図示の簡略化のため、フィン124を一部のみ図示しているが、フィン124は、隣り合うチューブ121の間の略全域に渡って配置されている。
 ヘッダタンク122、123は、複数のチューブ121の積層方向(本実施形態では、水平方向)に延びる形状に形成された筒状部材である。さらに、本実施形態では、冷媒放熱器12を室内空調ユニット30のケーシング31内に搭載した状態において、下方側のヘッダタンクを冷媒分配用のヘッダタンク122として用い、上方側のヘッダタンクを冷媒集合用のヘッダタンク123として用いている。
 また、ヘッダタンク122、123は、いずれも分割タイプのヘッダタンクとして構成されており、チューブ121と同じ材質で形成され、それぞれのチューブ121の長手方向端部がろう付け接合されるプレート部材と、このプレート部材に組み合わされるタンク部材とを有して筒状に形成されている。もちろん、ヘッダタンク122、123を管状部材等で形成してもよい。
 さらに、下方側の冷媒分配用のヘッダタンク122の一端側には、圧縮機11の吐出口側との接続部として機能するとともに、ヘッダタンク122内へ冷媒を流入させる冷媒流入口が設けられた入口側コネクタ122aが配置されている。また、ヘッダタンク122の他端側は、閉塞部材としてのタンクキャップ122bにて閉塞されている。
 一方、上方側の冷媒集合用のヘッダタンク123の一端側には、暖房用固定絞り13入口側および固定絞り迂回用通路14入口側との接続部として機能するとともに、ヘッダタンク123内から冷媒を流出させる冷媒流出口が設けられた出口側コネクタ123aが配置されている。また、ヘッダタンク123の他端側は、閉塞部材としのタンクキャップ123bにて閉塞されている。
 従って、冷媒放熱器12では、図3(a)の太線矢印で示すように、圧縮機11から吐出された冷媒が、入口側コネクタ122aを介して、冷媒分配用のヘッダタンク122へ流入し、それぞれのチューブ121へ分配される。そして、チューブ121へ流入した冷媒は、チューブ121を流通する際に、車室内送風空気と熱交換して、チューブ121から流出する。チューブ121から流出した冷媒は、冷媒集合用のヘッダタンク123内に集合して、出口側コネクタ123aを介して流出していく。つまり、冷媒はチューブ121内を下方側から上方側へと流通する。
 この際、前述の如く、本実施形態のヒートポンプサイクル10は亜臨界冷媒サイクルを構成しているので、チューブ121を流通する冷媒は、チューブ121内にて車室内送風空気と熱交換しながら、過熱度を有する気相冷媒→気液二相冷媒→過冷却度を有する液相冷媒の順に相変化する。
 また、本実施形態の冷媒放熱器12は、図3(b)に示すように、チューブ121の長手方向が水平方向に対して傾斜して配置されている。つまり、チューブ121の長手方向は、少なくとも鉛直方向(上下方向)の成分を有する方向になっている。換言すると、チューブ121内を流通する冷媒の流れ方向は、水平方向に対して傾斜しまたは鉛直している。
 ここで、本実施形態では、冷媒放熱器12の冷媒流れ上流側(本実施形態では、冷媒分配用のヘッダタンク122側)を起点として冷媒流れ下流側(本実施形態では、冷媒集合用のヘッダタンク123側)へ向かう線分と、冷媒放熱器12の冷媒流れ上流側を起点として水平方向に延びる直線とのなす角度を傾斜角度θ(但し、-90°≦θ≦90°)と定義する。
 つまり、傾斜角度θは、チューブ121内を流通する冷媒の流れ方向が水平方向から鉛直上方に向かって変化するに伴って、0°から90°へ変化する。例えば、チューブ121内を流通する冷媒の流れ方向が水平方向に向かっている場合は、傾斜角度θ=0°となり、鉛直上方に向かっている場合は、傾斜角度θ=90°となり、さらに、鉛直下方に向かっている場合は、傾斜角度θ=-90°となる。
 また、本実施形態では、チューブ121を流通する冷媒が気液二相冷媒となっている所定箇所の冷媒の乾き度をXとし、チューブ121を流通する冷媒の平均流速(単位:m/S)から求められる冷媒のレイノルズ数をReとし、上記で説明した数式4に示す関係を満たすように、冷媒放熱器12を配置している。
 なお、本実施形態の冷媒放熱器12における所定箇所としては、チューブ121を流通する冷媒が気液二相冷媒となっている所定箇所であれば、任意の箇所を採用することができる。例えば、チューブ121のうち冷媒流れ下流側の部位、あるいは、チューブ121のうち冷媒分配用のヘッダタンク122よりも冷媒集合用のヘッダタンク123に近い部位等を採用できる。
 次に、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(インストルメントパネル)の内側に配置されて、その外殻を形成するケーシング31内に送風機32、前述の冷媒放熱器12、冷媒蒸発器20等を収容したものである。
 ケーシング31は、車室内に送風される車室内送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケーシング31内の車室内送風空気流れ最上流側には、車室内空気(内気)と外気とを切替導入する内外気切替装置33が配置されている。
 内外気切替装置33には、ケーシング31内に内気を導入させる内気導入口および外気を導入させる外気導入口が形成されている。さらに、内外気切替装置33の内部には、内気導入口および外気導入口の開口面積を連続的に調整して、内気の風量と外気の風量との風量割合を変化させる内外気切替ドアが配置されている。
 内外気切替装置33の空気流れ下流側には、内外気切替装置33を介して吸入された空気を車室内へ向けて送風する送風機32が配置されている。この送風機32は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、空調制御装置から出力される制御電圧によって回転数(送風量)が制御される。
 送風機32の空気流れ下流側には、冷媒蒸発器20および冷媒放熱器12が、車室内送風空気の流れに対して、この順に配置されている。換言すると、冷媒蒸発器20は、冷媒放熱器12に対して、車室内送風空気の流れ方向上流側に配置されている。
 さらに、冷媒蒸発器20の空気流れ下流側であって、かつ、冷媒放熱器12の空気流れ上流側には、冷媒蒸発器20通過後の送風空気のうち、冷媒放熱器12を通過させる風量割合を調整するエアミックスドア34が配置されている。また、冷媒放熱器12の空気流れ下流側には、冷媒放熱器12にて冷媒と熱交換して加熱された送風空気と冷媒放熱器12を迂回して加熱されていない送風空気とを混合させる混合空間35が設けられている。
 ケーシング31の空気流れ最下流部には、混合空間35にて混合された空調風を、冷却対象空間である車室内へ吹き出す開口穴が配置されている。具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および、車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴(いずれも図示せず)が設けられている。
 従って、エアミックスドア34が冷媒放熱器12を通過させる風量の割合を調整することによって、混合空間35にて混合された空調風の温度が調整され、各開口穴から吹き出される空調風の温度が調整される。つまり、エアミックスドア34は、車室内へ送風される空調風の温度を調整する温度調整部を構成している。
 換言すると、エアミックスドア34は、冷媒放熱器12において、圧縮機11吐出冷媒と車室内送風空気との熱交換量を調整する熱交換量調整部としての機能を果たす。なお、エアミックスドア34は、空調制御装置から出力される制御信号によって作動が制御される図示しないサーボモータによって駆動される。
 さらに、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
 これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替部を構成するものであって、リンク機構等を介して、空調制御装置から出力される制御信号によってその作動が制御される図示しないサーボモータによって駆動される。
 一方、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口に接続されている。例えば、フェイス開口穴については、図4に示すように、インストルメントパネルPの左右方向中央部に設けられたフロントフェイス吹出口P1、左右方向端部側に設けられたサイドフェイス吹出口P2に接続されている。
 また、図4から明らかなように、これらのフロントフェイス吹出口P1、サイドフェイス吹出口P2は、それぞれ運転席用および助手席用に複数箇所に設けられており、例えば、暖房運転時に冷媒放熱器12のうち運転席側の熱交換領域で加熱された送風空気は主に運転席側に吹き出され、助手席側の熱交換領域で加熱された送風空気は主に助手席側に吹き出される。
 次に、本実施形態の電気制御部について説明する。空調制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種空調制御機器11、15a、15b、17、32等の作動を制御する。
 また、空調制御装置の入力側には、車室内温度を検出する内気センサ、外気温を検出する外気センサ、車室内の日射量を検出する日射センサ、冷媒蒸発器20の吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ、圧縮機11吐出冷媒温度を検出する吐出冷媒温度センサ、室外熱交換器16出口側冷媒温度を検出する出口冷媒温度センサ等の種々の空調制御用のセンサ群が接続されている。
 さらに、空調制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種空調操作スイッチからの操作信号が入力される。操作パネルに設けられた各種空調操作スイッチとしては、車両用空調装置の作動スイッチ、車室内温度を設定する車室内温度設定スイッチ、運転モードの選択スイッチ等が設けられている。
 なお、空調制御装置は、圧縮機11の電動モータ11b、開閉弁15a、三方弁15b等を制御する制御部が一体に構成され、これらの作動を制御するものであるが、本実施形態では、空調制御装置のうち、圧縮機11の作動を制御する構成(ハードウェアおよびソフトウェア)が冷媒吐出能力制御部を構成し、冷媒流路切替部を構成する各種機器15a、15bの作動を制御する構成が冷媒流路制御部を構成している。
 次に、上記構成における本実施形態の車両用空調装置1の作動を説明する。本実施形態の車両用空調装置1では、前述の如く、車室内を暖房する暖房運転および車室内を冷房する冷房運転を実行することができる。以下に各運転における作動を説明する。
 (a)暖房運転
 暖房運転は、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって暖房運転モードが選択されると開始される。暖房運転時には、空調制御装置が、開閉弁15aを閉じるとともに、三方弁15bを室外熱交換器16の出口側とアキュムレータ18の入口側とを接続する冷媒流路に切り替える。これにより、ヒートポンプサイクル10は、図1の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 この冷媒流路の構成で、空調制御装置が上述の空調制御用のセンサ群の検出信号および操作パネルの操作信号を読み込む。そして、検出信号および操作信号の値に基づいて車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。さらに、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置の出力側に接続された各種空調制御機器の作動状態を決定する。
 例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め空調制御装置に記憶された制御マップを参照して、冷媒蒸発器20の目標蒸発器吹出温度TEOを決定する。
 そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された冷媒蒸発器20からの吹出空気温度との偏差に基づいて、フィードバック制御手法を用いて冷媒蒸発器20からの吹出空気温度が目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
 また、エアミックスドア34のサーボモータへ出力される制御信号については、目標吹出温度TAO、冷媒蒸発器20からの吹出空気温度および吐出冷媒温度センサによって検出された圧縮機11吐出冷媒温度等を用いて、車室内へ吹き出される空気の温度が車室内温度設定スイッチによって設定された乗員の所望の温度となるように決定される。
 なお、暖房運転時には、図1に図示するように、送風機32から送風された車室内送風空気の全風量が、冷媒放熱器12を通過するようにエアミックスドア34の開度を制御してもよい。
 そして、上記の如く決定された制御信号等を各種空調制御機器へ出力する。その後、操作パネルによって車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種空調制御機器の作動状態決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、冷房運転時にも基本的に同様に行われる。
 また、暖房運転時のヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が冷媒放熱器12へ流入する。冷媒放熱器12へ流入した冷媒は、送風機32から送風されて冷媒蒸発器20を通過した車室内送風空気と熱交換して放熱する。これにより、車室内送風空気が加熱される。
 冷媒放熱器12から流出した高圧冷媒は、開閉弁15aが閉じているので、暖房用固定絞り13へ流入して減圧膨張される。そして、暖房用固定絞り13にて減圧膨張された低圧冷媒は、室外熱交換器16へ流入する。室外熱交換器16へ流入した低圧冷媒は、送風ファン17によって送風された外気から吸熱して蒸発する。
 室外熱交換器16から流出した冷媒は、三方弁15bが、室外熱交換器16の出口側とアキュムレータ18の入口側とを接続する冷媒流路に切り替えられているので、アキュムレータ18へ流入して気液分離される。そして、アキュムレータ18にて分離された気相冷媒が、圧縮機11に吸入されて再び圧縮される。
 以上の如く、暖房運転時には、冷媒放熱器12にて圧縮機11から吐出された冷媒の有する熱量によって車室内送風空気が加熱されて、空調対象空間である車室内の暖房を行うことができる。
 (b)冷房運転
 冷房運転は、操作パネルの作動スイッチが投入(ON)された状態で、選択スイッチによって冷房運転モードが選択されると開始される。この冷房運転時には、空調制御装置が、開閉弁15aを開くとともに、三方弁15bを室外熱交換器16の出口側と冷房用固定絞り19の入口側とを接続する冷媒流路に切り替える。これにより、ヒートポンプサイクル10は、図2の実線矢印に示すように冷媒が流れる冷媒流路に切り替えられる。
 冷房運転時のヒートポンプサイクル10では、圧縮機11から吐出された高圧冷媒が冷媒放熱器12へ流入して、送風機32から送風されて冷媒蒸発器20を通過した車室内送風空気と熱交換して放熱する。冷媒放熱器12から流出した高圧冷媒は、開閉弁15aが開いているので、固定絞り迂回用通路14を介して室外熱交換器16へ流入する。
 室外熱交換器16へ流入した低圧冷媒は、送風ファン17によって送風された外気にさらに放熱する。室外熱交換器16から流出した冷媒は、三方弁15bが、室外熱交換器16の出口側と冷房用固定絞り19の入口側とを接続する冷媒流路に切り替えられているので、冷房用固定絞り19にて減圧膨張される。
 冷房用固定絞り19から流出した冷媒は、冷媒蒸発器20へ流入して、送風機32によって送風された車室内送風空気から吸熱して蒸発する。これにより、車室内送風空気が冷却される。冷媒蒸発器20から流出した冷媒は、アキュムレータ18へ流入して気液分離される。
 そして、アキュムレータ18にて分離された気相冷媒が、圧縮機11に吸入されて再び圧縮される。上記の如く、冷房運転時には、冷媒蒸発器20にて低圧冷媒が車室内送風空気から吸熱して蒸発することによって、車室内送風空気が冷却されて車室内の冷房を行うことができる。
 なお、冷房運転時に、乗員が車室内温度設定スイッチによって車室内温度よりも高い温度を設定すると、車室内送風空気の温度が車室内温度よりも高い温度となるようにエアミックスドア34の開度が調整される。このような場合であっても、冷媒蒸発器20では、車室内送風空気が冷却され、その絶対湿度を低下させるので、車室内の除湿暖房を実現することができる。
 以上、説明したように、本実施形態の車両用空調装置1では、ヒートポンプサイクル10の冷媒流路を切り替えることによって、暖房運転、冷房運転、除湿暖房運転を実行することができる。
 さらに、本実施形態では、上述した数式4の関係を満たすように、冷媒放熱器12を室内空調ユニット30内に配置している。このように配置することにより、チューブ121内を流通する冷媒が相変化する冷媒放熱器12であっても、冷媒の流速U、粘度μ、密度ρおよび傾斜角度θといったパラメータを考慮して、特定のチューブ121内に凝縮した冷媒が滞留してしまうことを抑制できる。
 従って、各チューブ121内を流通する冷媒に生じる圧力損失の不均一を抑制して、冷媒放熱器の熱交換領域のうち、相対的に温度の低い熱交換領域が形成されてしまうことを抑制できる。その結果、ヒートポンプサイクル10の空調負荷変動等によって、チューブ121内を流通する冷媒の流速が変化しても冷媒放熱器12の放熱性能の低下を抑制できるとともに、冷媒放熱器12にて加熱されて吹き出される空気の水平方向の不均一の温度分布の発生を抑制できる。
 また、前述の如く、本実施形態の車両用空調装置1では、冷媒放熱器12のうち運転席側の熱交換領域で加熱された送風空気は主に運転席側に吹き出され、助手席側の熱交換領域で加熱された送風空気は主に助手席側に吹き出される。従って、本実施形態のように冷媒放熱器12を配置して、冷媒放熱器12から吹き出される送風空気の水平方向の温度差を低減できることは、運転席側へ吹き出される送風空気と助手席側へ吹き出される送風空気との温度差の拡大を抑制できる点で極めて有効である。
 また、本実施形態の冷媒放熱器12のように、マルチフロー型の熱交換器では、ヘッダタンク122、123に設けられた入口側コネクタ122aの冷媒流入口あるいは出口側コネクタ123aの冷媒流出口の位置によって、各チューブ121を流通する冷媒の流量に変化が生じやすく、送風空気の温度分布の不均一も生じやすい。従って、このような冷媒放熱器12に対して送風空気の温度差を低減できる配置条件を適用することは有効である。
 なお、冷媒がチューブ121内を下方側から上方側へと流通する冷媒放熱器の場合、上述した数式4の関係を満たすように冷媒放熱器12を配置することが望ましい。
 従って、上述の数式4に示すように、A~Gを傾斜角度θの関数で表すことによって、チューブ121内を流通する冷媒の流れ方向が上方側へ向かう場合いずれの傾斜角度θにおいても、冷媒放熱器から吹き出される空気の水平方向の温度分布の不均一の発生を抑制できる。
 (第2の実施形態)
 本実施形態では、第1実施形態に対して図5(a)、(b)に示すように、入口側コネクタ122aおよび出口側コネクタ123aの位置を変更した例について述べる。なお、図5(a)、(b)は、図3(a)、(b)に対応する図であって、図3(a)、(b)と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
 本実施形態の冷媒放熱器12では、入口側コネクタ122aが上方に、出口側コネクタ123aが下方にそれぞれ配されており、冷媒がチューブ121内を上方側から下方側へ向かって流通する。
 このように、冷媒がチューブ121内を上方側から下方側へ向かって流通する冷媒放熱器の場合、凝縮した冷媒に作用する重力による圧力損失を考慮する必要がなく、傾斜角度θを考慮することなく、各チューブ121内を流通する冷媒に生じる圧力損失の不均一を抑制して、冷媒放熱器の熱交換領域のうち、相対的に温度の低い熱交換領域が形成されてしまうことを抑制できる。
 そのため、チューブ121の長手方向が水平方向に対して傾斜するように配置する必要がない。換言すると、チューブ121は長手方向が略鉛直方向となるように配されており、冷媒はチューブ121内を略鉛直方向に流れる。
 ところで、図10に示すように、冷媒流れに対する(重力の影響を)流れ状態を相似的に示すパラメータとして、重力加速度g、体積膨張力β、粘度μ、密度ρなどで算出されるグラスホフ数Grasが挙げられる。チューブ121内を流れる冷媒のレイノルズ数Re>グラスホフ数Grasとなる領域、すなわち62.42≦Reとなる領域では、チューブ121内部を通過する冷媒流れは強制対流となるため、チューブ121内部を通過する冷媒の流速が大きくなり、各チューブ121を通過する流速は不均一となりやすく、各熱交換領域における温度分布が不均一なものとなりやすい。
 また、図8に示すように、冷媒流量Grが47kg/h以下となる、換算するとRe≦1234となる領域では、チューブ121内を冷媒が下方側から上方側へ流通する冷媒蒸発器であると、チューブ121の傾斜角度θによらず、チューブ121内を冷媒が上方側から下方側へ流通する場合に比べて放熱性能が低下する。
 そのため、62.42≦Re≦1234となる領域においては、凝縮した冷媒に対する重力の影響が少ない、チューブ121内を流通する冷媒の向きを上方側から下方側へとすることが望ましい。
 (第3実施形態)
 本実施形態では、第1実施形態に対して、図6(a)、(b)に示すように、冷媒放熱器12の構成を変更した例を説明する。本実施形態の冷媒放熱器12では、上方側のヘッダタンク123の内部にセパレータ123cを配置することによって、ヘッダタンク123の内部空間をヘッダタンク123の長手方向に2つに分割して、分配用空間123dと集合用空間123eとを形成している。なお、図6(a)、(b)は、第1実施形態の図3(a)、(b)、図5(a)、(b)に対応する図面である。
 このため、本実施形態のチューブ121は、上方側のヘッダタンク123の集合用空間123eに接続される第1チューブ群121aと分配用空間123dに接続される第2チューブ群121bとに大別される。さらに、上方側のヘッダタンク123には、分配用空間123dの内部に圧縮機11から吐出された冷媒を流入させるように入口側コネクタ123fが接続され、集合用空間123eの内部から冷媒を流出させるように出口側コネクタ123aが接続されている。
 従って、本実施形態の冷媒放熱器12では、図6の太線矢印に示すように、圧縮機11から吐出された冷媒が、入口側コネクタ123fを介して、上方側のヘッダタンク122の分配用空間123dへ流入し、第2チューブ群121bを構成するチューブ121へ分配される。
 そして、第2チューブ群121bを構成するチューブ121へ流入した冷媒は、チューブ121を流通する際に、車室内送風空気と熱交換して、チューブ121から流出する。第2チューブ群121bを構成するチューブ121から流出した冷媒は、下方側のヘッダタンク122内に集合して、第1チューブ群121aを構成するチューブ121へ分配される。
 さらに、第1チューブ群121aを構成するチューブ121へ流入した冷媒は、チューブ121を流通する際に、車室内送風空気と熱交換して、チューブ121から流出する。第1チューブ群121aを構成するチューブ121から流出した冷媒は、上方側のヘッダタンク122の集合用空間123e内に集合して、出口側コネクタ123aを介して流出していく。
 つまり、本実施形態の冷媒放熱器12では、第2チューブ群121bを流通する冷媒は上方側から下方側へ向かって流れ、第1チューブ群121aを流通する冷媒は下方側から上方側へ向かって流れる。
 さらに、本実施形態の冷媒放熱器12では、第2チューブ群121bを流れる冷媒は気相冷媒のまま熱交換し、第1チューブ群121aの冷媒流れ方向中間部位から下流側部位(図6の破線で示す丸で囲まれた部位)で気液二相冷媒となり、その下流側で液相冷媒となることが判っている。
 従って、本実施形態では、所定箇所として、第1チューブ群121aの冷媒流れ方向中間部位から下流側部位の任意の箇所を採用することができる。さらに、当該部位では、冷媒が下方側から上方側へ向かって流れるので、本実施形態の冷媒放熱器12の傾斜角度θは、第1実施形態と同様の値としている。その他の車両用空調装置1の構成および作動は第1実施形態と同様である。
 本実施形態の冷媒放熱器12では、第2チューブ群121bによって構成される熱交換領域では、冷媒が気相状態のままで放熱するので、各チューブ121間における冷媒の凝縮度合の相違による放熱性能の低下は生じにくい。従って、第2チューブ群121bによって構成される熱交換領域から吹き出される車室内送風空気に生じる温度差は少ない。
 一方、第1チューブ群121aによって構成される熱交換領域では、上述の数式4に示された配置条件となるので、第1実施形態と全く同様の効果を得ることができる。
 その結果、冷媒放熱器12全体として、ヒートポンプサイクル10の空調負荷変動等によって、チューブ121内を流通する冷媒の流速が変化しても冷媒放熱器12の放熱性能の低下を抑制できるとともに、冷媒放熱器12にて加熱されて吹き出される空気の水平方向の温度差を低減できる。
 また、本実施形態の冷媒放熱器12においても、チューブ121内を流通する冷媒が気液二相冷媒となっている所定箇所における冷媒の流れ方向が、上方側から下方側に向かっていたとしても、上述した数式4の関係を満たすように、冷媒放熱器12を配置すれば、同様の効果を得ることができる。
 (第4実施形態)
 本実施形態では、図7(a)、(b)に示すように、第1実施形態に対して、冷媒放熱器12の構成を変更した例を説明する。本実施形態の冷媒放熱器12では、上方側のヘッダタンク123の内部空間を送風空気の流れ方向に、分配用空間123dと集合用空間123eとに分割している。なお、図7(a)、(b)は、第1実施形態の図3(a)、(b)、図5(a)、(b)に対応する図面である。
 このため、本実施形態のチューブ121も、第2実施形態と同様に、集合用空間123eに接続される第1チューブ群121aと分配用空間123dに接続される第2チューブ群121bとに大別され、さらに、第1チューブ群121aは、第2チューブ群121bの車室内送風空気の流れ方向Xの下流側に配置されている。換言すると、チューブ121は、車室内送風空気の流れ方向Xに複数(本実施形態では、2列)配列されている。
 さらに、ヘッダタンク123には、分配用空間123dの内部に圧縮機11から吐出された冷媒を流入させるように入口側コネクタ123fが配置され、集合用空間123eの内部から冷媒を流出させるように出口側コネクタ123aが配置されている。
 従って、本実施形態の冷媒放熱器12においても、図7(a)の太線矢印に示すように、圧縮機11から吐出された冷媒が、上方側のヘッダタンク123の分配用空間123d→第2チューブ群121bを構成する空気流れ上流側のチューブ121→下方側のヘッダタンク122→第1チューブ群121aを構成する空気流れ下流側のチューブ121→上方側のヘッダタンク122の集合用空間123eの順に流通して、出口側コネクタ123aを介して流出していく。
 さらに、本実施形態の冷媒放熱器12では、空気流れ上流側の第2チューブ群121bを流れる冷媒は気相冷媒のまま熱交換し、空気流れ下流側の第1チューブ群121aを流れる冷媒のうち、冷媒流れ方向中間部位から下流側部位で気液二相冷媒となり、その下流側で液相冷媒となることが判っている。
 従って、本実施形態では、所定箇所として、第1チューブ群121aの冷媒流れ方向中間部位から下流側部位の任意の箇所を採用することができる。そのため、本実施形態の冷媒放熱器12の傾斜角度θは、第1実施形態と同様の値としている。その他の車両用空調装置1の構成および作動は第1実施形態と同様である。
 本実施形態の冷媒放熱器12は、上記の如く構成されているので、第2チューブ群121bによって構成される空気流れ上流側の熱交換領域では、冷媒が気相状態のままで放熱するので、冷媒の凝縮度合による放熱性能の低下は生じにくく、この熱交換領域から吹き出される車室内送風空気に生じる温度分布の不均一は少ない。
 一方、第1チューブ群121aによって構成される空気流れ下流側の熱交換領域では、上述の数式4に示される配置条件となるので、第1実施形態と全く同様の効果を得ることができる。従って、冷媒放熱器12全体として、放熱性能の低下を抑制できるとともに、冷媒放熱器12にて加熱されて吹き出される空気の水平方向の温度分布の不均一の発生を抑制できる。
 さらに、本実施形態の冷媒放熱器12では、図7(b)に示すように、上方側のヘッダタンク123の分配用空間123dにて分配された冷媒が、下方側のヘッダタンク122を介してUターンして、上方側のヘッダタンク123の集合用空間123eへ戻るように流れる。
 これにより、風上側の熱交換領域のうち、比較的温度の高い過熱度を有する気相冷媒が流通する領域(過熱度領域)を上方側に形成し、風下側の熱交換領域のうち、比較的温度の低い過冷却度を有する液相冷媒が流れる領域(過冷却度領域)を上方側に形成することができる。従って、送風空気の流れ方向Xから見たときに、過熱度領域と過冷却度領域とを重合させることができ、鉛直方向の送風空気の温度分布の不均一についても抑制できる。
 また、本実施形態の冷媒放熱器12では、送風空気流れ上流側のチューブ121から流出した冷媒の流れをUターンさせて下流側のチューブ121へ流入させた例を説明したが、もちろん、下流側のチューブ121から流出した冷媒の流れをUターンさせて上流側のチューブ121へ流入させてもよい。
 さらに、本実施形態の冷媒放熱器12においても、チューブ121内を流通する冷媒が気液二相冷媒となっている所定箇所における冷媒の流れ方向が、上方側から下方側に向かっていたとしても、上述した数式4の関係を満たすように、冷媒放熱器12を配置すれば、同様の効果を得ることができる。
 (他の実施形態)
 本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 (1)上述の実施形態では、冷媒放熱器12のチューブ121として、一方向に延びるチューブ121を採用した例を説明したが、本発明の冷媒放熱器12に適用可能なチューブ121は、これに限定されない。つまり、少なくとも鉛直方向に延びる成分を有していれば、蛇行状等に形成されていてもよい。
 例えば、U字状に湾曲して、チューブ121の冷媒入口と冷媒出口がチューブ121の長手方向同一側に設けられたものを採用してもよい。このようなチューブを採用することによって、実質的に第3実施形態と同様の冷媒放熱器12を実現することができる。これによれば、下方側に配置されるヘッダタンク122を廃止することもできる。
 (2)上述の実施形態の冷媒放熱器12では、冷媒と車室内送風空気とを熱交換させる構成のものを採用した例を説明したが、本発明の冷媒放熱器12の構成は、これに限定されない。例えば、冷媒、車室内送風空気、他の熱媒体等の複数種の流体の熱交換を可能に構成されたものであってもよい。
 このような複数種の流体の熱交換を実現可能に構成された熱交換器としては、冷媒を流通させる冷媒用チューブと熱媒体を流通させる熱媒体用チューブとを順次積層配置し、隣り合う冷媒用チューブと熱媒体用チューブとの間に送風空気を流通させる空気通路を形成し、さらに、この空気通路に冷媒用チューブおよび熱媒体用チューブの双方に接合されて、冷媒と送風空気および熱媒体と送風空気との熱交換を促進するとともに、冷媒と熱媒体との熱移動を可能とするフィンを配置した構成を採用できる。
 (3)上述の実施形態では、冷媒放熱器12を車両用空調装置に適用した例を説明したが、車両に搭載される機器は、車両の加減速時、右左折時あるいは登坂路への駐停車時等に車両全体が傾くことによって、水平方向に対する配置状態が変化することがある。従って、上述の各実施形態では、傾斜角度θに対して、上述の車両全体の傾きに起因する変化量Δθを考慮した、θ±Δθの全範囲で、数式4の関係を満たしていることが望ましい。
 (4)上述の実施形態では、本発明の冷媒放熱器12を備えるヒートポンプサイクル10を車両用空調装置に適用した例を説明したが、本発明の冷媒放熱器12を備えるヒートポンプサイクル10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。
 本発明は、好適な実施例を参照して開示されたが、本発明が当該好適な実施例やその構造に限られるわけではないと理解される。本発明は、種々の変形例や等価な配列を包含することを意図している。加えて、単に一要素を多くあるいは少なく含むような、好適な、あるいは、他の種々の組み合わせや形態もまた、本発明の範疇と射程内に入る。
 

Claims (9)

  1.  蒸気圧縮式の冷媒サイクル(10)に適用されて、
     圧縮機(11)で圧縮された高温高圧の冷媒と空調対象空間へ送風される送風空気とを熱交換させて、過熱度を有する気相冷媒を過冷却度を有する液相冷媒となるまで放熱させる冷媒放熱器であって、
     冷媒が上方から下方へと流通する複数のチューブ(121)と、
     前記複数のチューブ(121)の端部に接続され、前記複数のチューブ(121)のうち少なくとも一部のチューブ(121)に流入する冷媒を分配する第1のヘッダと、
     前記複数のチューブ(121)の端部に接続され、前記複数のチューブ(121)のうち少なくとも一部のチューブ(121)から流出する冷媒を集合させる第2のヘッダとを有する冷媒放熱器。
  2.  前記チューブ(121)内を流通する冷媒が気液二相冷媒となっている所定箇所の冷媒の乾き度をXとし、
     前記チューブ(121)内を流通する冷媒の平均流速(m/S)から求められる前記所定箇所における冷媒のレイノルズ数をReとしたときに、前記チューブは、
    62.42≦Re≦1234関係を満たすように配置されている請求項1に記載の冷媒蒸発器。
  3.  蒸気圧縮式の冷媒サイクル(10)に適用されて、
     圧縮機(11)で圧縮された高温高圧の冷媒と空調対象空間へ送風される送風空気とを熱交換させて、過熱度を有する気相冷媒を過冷却度を有する液相冷媒となるまで放熱させる冷媒放熱器であって、
     冷媒が流通する複数のチューブ(121)を備え、
     前記チューブ(121)は、水平方向に垂直な方向に、もしくは水平方向に対して角度を有して延びるように配置され、
     前記チューブ(121)内を流通する冷媒の流れ方向と水平方向とのなす傾斜角度をθ(°)とし、 前記チューブ(121)内を流通する冷媒が気液二相冷媒となっている所定箇所の冷媒の乾き度をXとし、前記チューブ(121)内を流通する冷媒の平均流速(m/S)から求められる前記所定箇所における冷媒のレイノルズ数をReとしたときに、前記チューブは、以下の関係が満たすように配置され、
     Re≧A×X6+B×X5+C×X4+D×X3+E×X2+F×X+G
    但し、
     A=-0.0537×θ2+9.7222×θ+407.19
     B=-(-0.2093×θ2+37.88×θ+1586.3)
     C=-0.3348×θ2+60.592×θ+2538.1
     D=-(-0.2848×θ2+51.53×θ+2158.2)
     E=-0.1402×θ2+25.365×θ+1062.8
     F=-(-0.0418×θ2+7.5557×θ+316.46)
     G=-0.0132×θ2+2.3807×θ+99.73
     とし、
     前記チューブ(121)内を流通する冷媒の流れ方向が鉛直下方から鉛直上方に向かって変化するに伴って、前記傾斜角度(θ)は、0<θ≦90°であるものとする冷媒放熱器。
  4.  前記複数のチューブ(121)の積層方向に延びるとともに、前記複数のチューブ(121)の少なくとも一端側に配置されて、前記冷媒の集合あるいは分配を行うヘッダタンク(122、123)を備える請求項3に記載の冷媒放熱器。
  5.  前記複数のチューブ(121)には、冷媒が下方側から上方側へ向かって流れる第1チューブ群(121a)および冷媒が上方側から下方側へ向かって流れる第2チューブ群(121b)が設けられている請求項3または4に記載の冷媒放熱器。
  6.  前記ヘッダタンク(123)の内部空間は、複数の空間(123d、123e)に分割されており、
     分割された一方の空間(123d)には、前記気相冷媒を流入させる冷媒流入口が設けられ、他方の空間(123e)には、前記液相冷媒を流出させる冷媒流出口が設けられている請求項1、2、4のうちいずれか1つに記載の冷媒放熱器。
  7.  前記複数のチューブ(121)は、前記送風空気の流れ方向に沿って複数配列されている請求項1ないし6のいずれか1つに記載の冷媒放熱器。
  8.  前記複数のチューブ(121)を流通する冷媒の流れ方向は、いずれも同一である請求項1ないし7のいずれか1つに記載の冷媒放熱器。
  9.  前記冷媒サイクル(10)は、車両用空調装置に適用されており、
     前記空調対象空間は、車室内であることを特徴とする請求項1ないし8のいずれか1つに記載の冷媒放熱器。
PCT/JP2011/007297 2010-12-28 2011-12-27 冷媒放熱器 WO2012090485A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/997,895 US20130284415A1 (en) 2010-12-28 2011-12-27 Refrigerant radiator
EP11853757.0A EP2660548B1 (en) 2010-12-28 2011-12-27 Cooling medium radiator
CN201180063418.1A CN103282735B (zh) 2010-12-28 2011-12-27 制冷剂散热器
KR1020137016077A KR101472868B1 (ko) 2010-12-28 2011-12-27 냉매 방열기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010292599 2010-12-28
JP2010-292599 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090485A1 true WO2012090485A1 (ja) 2012-07-05

Family

ID=46382619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007297 WO2012090485A1 (ja) 2010-12-28 2011-12-27 冷媒放熱器

Country Status (6)

Country Link
US (1) US20130284415A1 (ja)
EP (1) EP2660548B1 (ja)
JP (1) JP5626198B2 (ja)
KR (1) KR101472868B1 (ja)
CN (1) CN103282735B (ja)
WO (1) WO2012090485A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105910343A (zh) * 2016-06-20 2016-08-31 泰州格灵电器制造有限公司 一种太阳能热泵悬挂式散热片

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020920A (zh) * 2011-03-03 2015-11-04 三电有限公司 车辆用空气调节装置
JP6248486B2 (ja) * 2013-09-11 2017-12-20 ダイキン工業株式会社 空気調和機のダクト型室内機
JP6207958B2 (ja) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 車両用空気調和装置
US20150115669A1 (en) * 2013-10-30 2015-04-30 Danielle Kagan Climate controlled child transport
KR101575317B1 (ko) 2014-05-27 2015-12-07 현대자동차 주식회사 차량 공기 유량 제어 시스템 및 그 제어 방법
KR101628124B1 (ko) * 2014-05-27 2016-06-21 현대자동차 주식회사 차량 엔진 룸 공기 유량 제어 시스템
KR101575318B1 (ko) 2014-05-28 2015-12-07 현대자동차 주식회사 자동차의 공기흐름 제어 시스템
FR3086744B1 (fr) * 2018-09-27 2020-12-04 Valeo Systemes Thermiques Module d’echange thermique de vehicule automobile
US10773704B1 (en) * 2019-04-03 2020-09-15 Ford Gloabal Technologies, LLC Systems and methods for controlling engine operation to support external electric loads
KR20200125792A (ko) * 2019-04-25 2020-11-05 현대자동차주식회사 차량의 공조장치
KR20200127068A (ko) 2019-04-30 2020-11-10 현대자동차주식회사 차량용 열관리시스템
KR102663607B1 (ko) 2019-05-09 2024-05-08 현대자동차주식회사 차량용 열관리시스템
KR102699010B1 (ko) 2019-08-19 2024-08-26 현대자동차주식회사 차량의 통합 열관리 모듈
WO2021096212A1 (en) * 2019-11-13 2021-05-20 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner having the same
US11976855B2 (en) 2019-11-13 2024-05-07 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner having the same
KR20210105296A (ko) 2020-02-18 2021-08-26 한온시스템 주식회사 열교환기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304719A (ja) * 2000-04-17 2001-10-31 Korea Mach Res Inst モジュール形多重流路扁平管蒸発器
JP2004125346A (ja) 2002-10-07 2004-04-22 Denso Corp 熱交換器
JP2004218969A (ja) * 2003-01-16 2004-08-05 Univ Tokyo 熱交換器
JP2009097817A (ja) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The 冷却器、冷却装置、ヒートポンプ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526539A (ja) * 1991-07-19 1993-02-02 Hitachi Ltd 熱交換器
JPH075825U (ja) * 1993-06-28 1995-01-27 カルソニック株式会社 自動車用空気調和装置
JP3355824B2 (ja) * 1994-11-04 2002-12-09 株式会社デンソー コルゲートフィン型熱交換器
JP2000304489A (ja) * 1999-04-15 2000-11-02 Denso Corp 熱交換器及び放熱器
US6241012B1 (en) * 1999-12-10 2001-06-05 Visteon Global Technologies, Inc. Folded tube for a heat exchanger and method of making same
JP4770474B2 (ja) * 2006-01-20 2011-09-14 株式会社デンソー エジェクタ式冷凍サイクル用ユニットおよびその製造方法
JP4078812B2 (ja) * 2000-04-26 2008-04-23 株式会社デンソー 冷凍サイクル装置
US6875247B2 (en) * 2000-06-06 2005-04-05 Battelle Memorial Institute Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids
US7040385B2 (en) * 2001-10-17 2006-05-09 Showa Denko K.K. Evaporator and vehicle provided with refrigeration cycle having the same
JP2005315467A (ja) * 2004-04-27 2005-11-10 Denso Corp 熱交換器
WO2006064823A1 (en) * 2004-12-16 2006-06-22 Showa Denko K.K. Evaporator
BRPI0519907A2 (pt) * 2005-02-02 2009-09-08 Carrier Corp trocador de calor de fluxo paralelo
JP2007024353A (ja) * 2005-07-13 2007-02-01 Mitsubishi Heavy Ind Ltd 熱交換器および空気調和機
US20070119580A1 (en) * 2005-11-25 2007-05-31 Markus Wawzyniak Heat exchanger
JP2007255857A (ja) * 2006-03-24 2007-10-04 Calsonic Kansei Corp エバポレータ
US20080023184A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
WO2008064228A1 (en) * 2006-11-22 2008-05-29 Johnson Controls Technology Company Multichannel evaporator with flow mixing microchannel tubes
US20090038562A1 (en) * 2006-12-18 2009-02-12 Halla Climate Control Corp. Cooling system for a vehicle
JP5082120B2 (ja) * 2007-03-23 2012-11-28 国立大学法人 東京大学 熱交換器
JP5136050B2 (ja) * 2007-12-27 2013-02-06 株式会社デンソー 熱交換器
JP2010115993A (ja) * 2008-11-12 2010-05-27 Denso Corp 車両用空調装置
FR2941522B1 (fr) * 2009-01-27 2012-08-31 Valeo Systemes Thermiques Echangeur de chaleur pour deux fluides, en particulier evaporateur de stockage pour dispositif de climatisation
CN101691981B (zh) * 2009-07-23 2011-12-07 三花丹佛斯(杭州)微通道换热器有限公司 具有改进的制冷剂流体分配均匀性的多通道换热器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304719A (ja) * 2000-04-17 2001-10-31 Korea Mach Res Inst モジュール形多重流路扁平管蒸発器
JP2004125346A (ja) 2002-10-07 2004-04-22 Denso Corp 熱交換器
JP2004218969A (ja) * 2003-01-16 2004-08-05 Univ Tokyo 熱交換器
JP2009097817A (ja) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The 冷却器、冷却装置、ヒートポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105910343A (zh) * 2016-06-20 2016-08-31 泰州格灵电器制造有限公司 一种太阳能热泵悬挂式散热片
CN105910343B (zh) * 2016-06-20 2019-05-31 泰州格灵电器制造有限公司 一种太阳能热泵悬挂式散热片

Also Published As

Publication number Publication date
CN103282735B (zh) 2015-07-22
US20130284415A1 (en) 2013-10-31
KR101472868B1 (ko) 2014-12-15
JP5626198B2 (ja) 2014-11-19
EP2660548B1 (en) 2021-10-06
CN103282735A (zh) 2013-09-04
EP2660548A4 (en) 2018-06-13
JP2012149872A (ja) 2012-08-09
EP2660548A1 (en) 2013-11-06
KR20130107332A (ko) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5626198B2 (ja) 冷媒放熱器
JP5799792B2 (ja) 冷媒放熱器
US10266035B2 (en) Vehicle air-conditioner
US9625214B2 (en) Heat exchanger
JP5659925B2 (ja) 車両用空調装置
JP5626194B2 (ja) 熱交換システム
JP5920175B2 (ja) 熱交換器
JP6380455B2 (ja) 冷凍サイクル装置
CN109328288B (zh) 制冷循环装置
JP2019055704A (ja) 冷凍サイクル装置
WO2011161918A1 (ja) 熱交換器
JP6623962B2 (ja) 冷凍サイクル装置
JP5983387B2 (ja) 熱交換器
WO2019031123A1 (ja) 空調装置
JP5505350B2 (ja) 車両用冷凍サイクル装置
JP5556697B2 (ja) 冷媒放熱器
JP2014055735A (ja) 冷媒放熱器
JP7363321B2 (ja) 冷凍サイクル装置
WO2017010239A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137016077

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13997895

Country of ref document: US

Ref document number: 2011853757

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE