WO2012088743A1 - 一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制备方法 - Google Patents

一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制备方法 Download PDF

Info

Publication number
WO2012088743A1
WO2012088743A1 PCT/CN2011/001457 CN2011001457W WO2012088743A1 WO 2012088743 A1 WO2012088743 A1 WO 2012088743A1 CN 2011001457 W CN2011001457 W CN 2011001457W WO 2012088743 A1 WO2012088743 A1 WO 2012088743A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic fiber
modified polypropylene
polypropylene composite
flame
parts
Prior art date
Application number
PCT/CN2011/001457
Other languages
English (en)
French (fr)
Inventor
杨定吉甫
夏建盟
田晋丽
Original Assignee
上海金发科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海金发科技发展有限公司 filed Critical 上海金发科技发展有限公司
Publication of WO2012088743A1 publication Critical patent/WO2012088743A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a ceramic fiber reinforced flame-retardant modified polypropylene composite and a preparation method thereof, and particularly relates to the addition of excellent thermal stability and chemical stability, low thermal conductivity, and non-corrosive property in a polypropylene resin. Ceramic fiber and corresponding flame retardant achieve enhanced flame retardant effect on polypropylene. BACKGROUND OF THE INVENTION Ceramic fiber is a kind of fibrous lightweight refractory material which combines the excellent properties of traditional heat insulating materials and refractory materials, and has a diameter of generally 2 ⁇ ⁇ 5 ⁇ ⁇ , and a length of 30 mm to 250 mm. The surface of the fiber is smooth. Cylindrical, usually circular in cross section. Its structural characteristics are high porosity (generally greater than 90%), and the pore diameter and specific surface area are large.
  • the air in the pores of the ceramic fiber has a good heat insulating effect, the size of the pores in the fiber and the nature of the pores (opening or closed pores) have a decisive influence on the thermal conductivity.
  • the internal structure of the ceramic fiber is a mixed structure composed of solid fiber and air, and its microstructure is in the form of a continuous phase in both the solid phase and the gas phase. Therefore, in this structure, the solid state The substance exists in a fibrous form and constitutes a continuous phase skeleton, while the gas phase is continuously present in the framework gap of the fibrous material.
  • the ceramic fiber has such a structure that the porosity thereof is high, the pore diameter and the specific surface area are large, so that the ceramic fiber has excellent heat insulating properties and a small bulk density. Used in industrial insulation, sealing, protective materials, insulation of electric heating equipment, thermal insulation materials, equipment and equipment, insulation and insulation materials for electric heating elements, insulation materials for automotive industry, etc.
  • Liquid crystal polyester impregnated ceramic fibers for printed circuit boards and reinforced cement-based composite materials for construction have also appeared in recent years. No reports of ceramic fibers for polypropylene plastic modification have been reported.
  • Polypropylene is one of the most important general-purpose plastics due to its comprehensive performance, wide range of sources, light weight and low cost, and easy forming and processing. It is also the fastest-growing plastic product in recent years. However, polypropylene is extremely flammable, its oxygen index is only 17.0% -18.0%, and it cannot be self-extinguishing after ignition. Therefore, it must be modified by flame retardation. It is also necessary to further improve the heat resistance of PP in order to broaden its application fields.
  • An object of the present invention is to provide a ceramic fiber reinforced flame-retardant modified polypropylene composite and a preparation method thereof, which overcome the above-mentioned drawbacks of the prior art and satisfy the needs of developments in related fields.
  • the present invention provides a ceramic fiber reinforced flame-retardant modified polypropylene composite having a composition and content in parts by weight:
  • the polypropylene resin refers to homopolymer PP, including ordinary homopolymeric PP (HPP) and high crystalline PP (HJPP), and the melt index (Ml) is 8-15;
  • the ceramic fiber is a ceramic fiber treated by a composite coupling agent, and the composite coupling agent is in an amount of 20-40 parts of a phosphate coupling agent, 35-55 parts of a silane coupling agent, and a ring. 5-15 parts of oxygen resin and 15-35 parts of glycidyl ester.
  • the phosphate coupling agent is a chelating type pyrophosphate titanate coupling agent, and can be obtained from Kenrich Company of the United States under the designation KR-238S;
  • the chemical name of the silane coupling agent is vinyl triethoxysilane, and the product of the domestic Qingdao Haida Chemical Co., Ltd. brand A-151 can be used;
  • the epoxy resin may be a product of Japan's Mitsui Chemicals Co., Ltd., R-140;
  • the glycidyl ester is triglycidyl isocyanurate (TGIC), which is commercially available from various domestic manufacturers.
  • TGIC triglycidyl isocyanurate
  • the composite coupling agent is used in an amount of 0.5 to 2% by weight based on the weight of the ceramic fiber.
  • the method for treating the ceramic fiber by the composite coupling agent is as follows: First, the phosphate coupling agent, the silane coupling agent, the epoxy resin and the glycidyl ester are mixed and mixed in the above-mentioned ratio, and placed in the treatment tank, After the wire-treated ceramic fiber is immersed by the composite treatment agent in the treatment tank for 5 to 10 seconds, That is, the ceramic fiber to be modified is obtained.
  • the ceramic fiber is preferably Hebei Fuping Ortestin Industrial Co., Ltd., which is a high temperature (HT) type ceramic fiber having a fiber diameter of 2 to 4 microns.
  • the treated ceramic fiber can enhance the material well, and the material has high modulus and rigidity, which gives the ceramic fiber and resin good wetting and coating, so that the ceramic fiber has high heat resistance and fire resistance in the resin system. Play a role.
  • the flame retardant comprises a main flame retardant and an auxiliary flame retardant
  • the main flame retardant is octabromo S ether
  • its chemical name is tetrabromobisphenol S bis(2,3-dibromopropyl)ether
  • the molecular structure contains a sulfur atom, which is compatible with PP resin and is not easily precipitated.
  • a small amount of synergist is added to generate a large amount of inert gas to insulate the air during combustion, and the fine droplets are taken away to remove the heat to extinguish the flame, thereby achieving the purpose of flame retardant.
  • Octabromo S-ether has a lower melting point and melts when blended with PP, and is well dispersed in the PP resin, so it has little effect on the mechanical properties of the material.
  • the auxiliary flame retardant is any one or more of cerium oxide, ceric acid salt or borate, and specifically includes antimony trioxide, antimony pentoxide, sodium citrate or zinc borate, etc.
  • S ether plays a good synergistic role.
  • the processing aid is selected from the group consisting of low molecular esters, metal soaps, stearic acid complex esters, amides and the like, and specifically includes paraffin wax, liquid paraffin, low molecular weight polyethylene, stearic acid. Calcium (CaSt), zinc stearate, erucamide, methyl bis-stearic acid amide and N, N-ethylene bis stearic acid amide (EBS), etc., whose main function is to increase the processing and molding process. The dispersibility of each component reduces harmful friction and improves processability.
  • the method for preparing a ceramic fiber reinforced flame-retardant modified polypropylene composite comprises the following steps: Step 1: thoroughly mixing the PP resin with a flame retardant and a processing aid in a high-speed mixer; Step 2, mixing the above Adding ceramic fibers through a lateral feed port in a strong shear twin-screw extruder with an aspect ratio of 36:1 to 40:1, an extrusion temperature of 200-240 °C, and a rotational speed of 350-450 rpm. , melt extrusion, stranding, cooling, pelletizing, drying to obtain the final product.
  • the product of the invention has the advantages of good flame retardant performance, high heat resistance, high surface hardness and high rigidity.
  • the flame retardant grade can reach UL94 V-0, which can meet the requirements of the electrical shell and internal structural parts.
  • the ceramic fiber-containing flame-retardant reinforced polypropylene composite of the invention adopts twin-screw extrusion equipment, and has the advantages of simple process, continuous, high production efficiency and stable product quality. The best way to implement the invention
  • the PP resin used in this embodiment is HPP and HJPP with M1 of 8-12;
  • the ceramic fiber is high temperature (HT) type ceramic fiber produced by Hebei Fuping Ortestin Industrial Co., Ltd., and the fiber diameter is 2 to 4 microns;
  • the flame retardant is octabromo S ether and antimony trioxide;
  • the processing aid is EBS.
  • the preparation process of the material is as follows: PP resin, flame retardant, processing aid EBS, etc. are mixed in a high-mixer, and then fed with a length-to-diameter ratio of 36:1, an extrusion temperature of 220 ° C, and a rotation speed.
  • a twin-screw extruder in which a 400 rpm strong shear screw element is distributed, the ceramic feed fibers are uniformly added to the lateral feed port, and melt-extruded and granulated to finally obtain the product.
  • Examples 1 to 3 were respectively obtained according to the formulation of Table 1, and the ceramic fiber reinforced flame-retardant modified polypropylene composites of Examples 1 to 3 were respectively obtained through the above-mentioned preparation process, and the final product was tested, tested, and the performance unit was as follows.
  • Table 2 shows the physical property data obtained as shown in Table 1:
  • the treated ceramic fiber and the flame retardant are added to the polypropylene resin, so that the polypropylene composition has good flame retardancy and high heat resistance, high surface hardness and high. Characteristics such as rigidity.
  • the flame retardant grade can reach UL94 V-0, which can meet the requirements of the electrical shell and internal structural parts.

Description

一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制备方法
技术领域 本发明涉及一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制备方法, 具 体涉及在聚丙烯树脂中添加具有优良的热稳定性和化学稳定性, 低导热率, 无腐蚀性的陶瓷纤维和相应的阻燃剂, 对聚丙烯实现增强阻燃的效果。 背景技术 陶瓷纤维是一种集传统绝热材料、 耐火材料优良性能于一体的纤维状轻 质耐火材料, 其直径一般为 2 μ ιη~5 μ ηι, 长度多为 30mm〜250mm, 纤维表 面呈光滑的圆柱形, 横截面通常是圆形。 其结构特点是气孔率高 (一般大于 90%), 而且气孔孔径和比表面积大。
由于陶瓷纤维的气孔中的空气具有良好的隔热作用, 因而纤维中气孔孔 径的大小及气孔的性质 (开气孔或闭气孔)对其导热性能具有决定性的影响。 实际上,陶瓷纤维的内部组织结构是一种由固态纤维与空气组成的混合结构, 其显微结构特点在固相和气相都是以连续相的形式存在, 因此, 在这种结构 中, 固态物质以纤维状形式存在, 并构成连续相骨架, 而气相则连续存在于 纤维材料的骨架间隙之中。 正是由于陶瓷纤维具有这种结构, 使其气孔率较 高、 气孔孔径和比表面积较大, 从而使陶瓷纤维具有优良的隔热性能和较小 的体积密度。 多用于工业绝缘、 密封, 防护材料、 电热装置绝缘、 隔热材料, 仪器设备、 电热元件的绝缘和隔热材料, 汽车行业隔热材料等。
近年也出现用于印刷电路板的液晶聚酯浸渍陶瓷纤维和用于建筑的增强 水泥基复合材料。 未见陶瓷纤维用于聚丙烯塑料改性的报道。
聚丙烯 (PP) 因其综合性能优良、 来源广泛、 质轻价廉、 易成型加工等 特点而成为最重要的通用塑料之一, 也是近几年应用发展最快的塑料品种。 但聚丙烯极易燃烧, 其氧指数仅 17.0%-18.0%, 着火后不能自熄, 因而必须 对其进行阻燃改性, 也需进一步提高 PP的耐热性, 才能拓宽其应用领域。
1
确 认 本 常见对聚丙烯进行增强改性使用玻璃纤维或天然纤维, 未见报道引入适当的 陶瓷纤维作为功能改性组分以提高聚丙烯复合物的强度, 在现有的耐热、 阻 燃等改性研究中、 未出现对陶瓷纤维增强聚丙烯复合物作耐热性、 阻燃性能 的报道。 发明的公开
本发明的目的是提供一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制 备方法, 以克服现有技术存在的上述缺陷, 满足相关领域发展的需要。
为了达到上述目的, 本发明提供了一种陶瓷纤维增强阻燃改性聚丙烯复 合物, 按重量份数计, 其组分和含量为:
聚丙烯树脂 60~75份;
陶瓷纤维 15~30份;
阻燃剂 5〜10份;
加工助剂 3-10份。
所述的聚丙烯树脂是指均聚 PP, 包括普通均聚 PP (HPP) 和高结晶 PP(HJPP), 熔融指数 (Ml) 为 8-15;
所述的陶瓷纤维优选采用经过复合偶联剂进行处理的陶瓷纤维, 所述的 复合偶联剂重量份数组成为: 磷酸酯偶联剂 20-40份, 硅烷偶联剂 35-55份, 环氧树脂 5-15份, 縮水甘油酯 15-35份。
所述的磷酸酯偶联剂为螯合型焦磷酸钛酸酯偶联剂,可采用美国 Kenrich 公司牌号为 KR-238S的产品;
所述的硅烷偶联剂的化学名称为乙烯基三乙氧基硅垸, 可采用国内青岛 海大化工有限公司牌号为 A-151的产品;
所述的环氧树脂可采用日本三井化学牌号为 R-140的产品;
所述的縮水甘油酯为异氰尿酸三縮水甘油酯 (TGIC), 国内多个厂家均 有售。
所述的复合偶联剂用量为基于陶瓷纤维重量计的重量百分数为 0.5~2%。 所述的复合偶联剂处理陶瓷纤维的方法如下: 先将磷酸酯偶联剂、 硅烷 偶联剂、 环氧树脂、 缩水甘油酯按上述的配比混合均勾并放置于处理槽中, 经拉丝处理后的陶瓷纤维通过处理槽内的复合处理剂浸渍 5〜10秒处理后, 即得所需改性处理的陶瓷纤维。
所述的陶瓷纤维优选河北滦平奥特斯丁工业有限公司,规格为高温( HT ) 型的陶瓷纤维, 纤维直径 2〜4微米。 处理后的陶瓷纤维能够对材料起到良好 的增强作用, 使材料具有高模量和刚性, 赋予陶瓷纤维和树脂的良好浸润、 包覆, 使得陶瓷纤维高耐热、 耐火特性在树脂体系中得以发挥作用。
所述的阻燃剂包括主阻燃剂和辅助阻燃剂, 主阻燃剂为八溴 S醚, 其化 学名称为四溴双酚 S双 (2, 3-二溴丙基) 醚, 其分子结构中含硫原子, 与 PP树脂相容性好, 不易析出。 同时加入少量协效剂, 燃烧时生成大量惰性气 体隔绝空气, 并产生细密熔滴带走热量使火焰熄灭, 从而达到阻燃的目的。 八溴 S醚熔点较低, 在与 PP共混时熔融, 能够很好地分散到 PP树脂中, 因 而对材料的力学性能影响不大。
所述的辅阻燃剂为锑的氧化物、 锑酸盐或硼酸盐中的任意一种以上, 具 体包括三氧化二锑、 五氧化二锑、 锑酸钠或硼酸锌等, 对八溴 S醚起良好的 协效作用。
所述的加工助剂选自低分子酯类、 金属皂类、 硬脂酸复合酯类、 酰胺类 等中的任意一种以上, 具体包括固体石蜡、 液体石蜡、 低分子聚乙烯、 硬脂 酸钙(CaSt)、 硬脂酸锌、 芥酸酰胺、 甲撑双硬脂酸酰胺和 N, N-乙撑双硬脂 酸酰胺 (EBS) 等, 其主要作用是在加工和成型过程中提高加各组份的分散 性, 减少有害磨擦, 从而改善加工性能。
制备陶瓷纤维增强阻燃改性聚丙烯复合物的方法, 包括如下步骤: 步骤 1, 将 PP树脂与阻燃剂、 加工助剂预先在高速混料机中充分混匀; 步骤 2, 将上述混和物加入长径比为 36:1~40:1、 挤出温度为 200-240 °C、 转速为 350-450rpm的强剪切双螺杆挤出机中,通过侧向喂料口均匀加入陶瓷 纤维, 熔融挤出, 拉条、 冷却、 切粒、 干燥后得到最终产品。
本发明的产品, 既具有很好的阻燃性能, 同时又具有高耐热、 高表面硬 度、 高刚性等特点。 阻燃等级可达到 UL94 V-0, 可满足电器外壳、 内部结构 件类制品的使用要求。 本发明的含有陶瓷纤维的阻燃增强聚丙烯复合物, 采 用双螺杆挤出设备, 具有流程简单、 连续、 生产效率高、 产品质量稳定的优 点。 实现本发明的最佳方式
以下结合实施例对本发明的技术方案做进一步的说明。
本实施例中采用的 PP树脂为 Ml为 8-12的 HPP和 HJPP;陶瓷纤维为河北滦 平奥特斯丁工业有限公司生产的高温( HT )型的陶瓷纤维, 纤维直径 2~4微 米; 阻燃剂为八溴 S醚和三氧化二锑; 加工助剂为 EBS。
材料的制备过程如下所述: 将 PP树脂、 阻燃剂、 加工助剂 EBS等在高混 机中混合均勾, 再喂入长径比为 36:1、挤出温度为 220°C、转速为 400rpm的强 剪切螺杆元件分布组合的双螺杆挤出机中, 侧向喂料口均匀加入陶瓷纤维, 熔融挤出造粒, 最终得到本产品。
实施例 1~3分别按表 1的配方, 通过上述制备过程, 分别得到实施例 1~3 的陶瓷纤维增强阻燃改性聚丙烯复合物, 该最终产品, 经测试, 测试标准及 性能单位如表 2所示, 所得到的物理性能数据如表 1所示:
表 1 : 实施例 1-3的配方及其性能测试结果
Figure imgf000006_0001
Figure imgf000007_0001
表 2: 实施例 1-3所得的产品的性能测试标准及单位
Figure imgf000007_0002
由上表数据可以看出:在聚丙烯树脂中加入经处理的陶瓷纤维和阻燃剂, 使得聚丙烯组合物既具有很好的阻燃性能, 同时又具有高耐热、高表面硬度、 高刚性等特点。 阻燃等级可达到 UL94 V-0, 可满足电器外壳、 内部结构件类 制品的使用要求。
本发明采用的测试方法标准见附表 1 :尽管本发明的内容已经通过上述优 选实施例作了详细介绍, 但应当认识到上述的描述不应被认为是对本发明的 限制。 在本领域技术人员阅读了上述内容后, 对于本发明的多种修改和替代 都将是显而易见的。 因此, 本发明的保护范围应由所附的权利要求来限定。

Claims

权利要求
1. 一种陶瓷纤维增强阻燃改性聚丙烯复合物, 其特征在于: 按重量份数计, 其组分和含量为: 聚丙烯树脂 60〜75份; 陶瓷纤维 15〜30份; 阻燃剂 5〜10份; 加工助剂 3-10份。
2. 根据权利要求 1所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征在于: 聚丙烯树脂为熔融指数为 8-15的均聚 PP,包括普通均聚 PP和高结晶 PP。
3. 根据权利要求 1或 2所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征 在于:所述的陶瓷纤维为经过复合偶联剂进行处理的陶瓷纤维,所述的复 合偶联剂重量份数组成为:磷酸酯偶联剂 20-40份,硅垸偶联剂 35-55份, 环氧树脂 5-15份, 縮水甘油酯 15-35份。
4. 根据权利要求 3所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征在于: 所述的磷酸酯偶联剂为螯合型焦磷酸钛酸酯偶联剂。
5. 根据权利要求 4所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征在于: 所述的硅垸偶联剂的化学名称为乙烯基三乙氧基硅垸。
6. 根据权利要求 4或 5所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征 在于: 所述的縮水甘油酯为异氰尿酸三缩水甘油酯。
7. 根据权利要求 3所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征在于: 所述的复合偶联剂用量为基于陶瓷纤维重量的重量百分数为 0.5~2 %。
8. 根据权利要求 4或 5或 7所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其 特征在于,所述的复合偶联剂处理陶瓷纤维的方法如下:先将磷酸酯偶联 剂、硅烷偶联剂、环氧树脂、縮水甘油按所述的组成比例混合均匀并放置 于处理槽中, 经拉丝处理后的陶瓷纤维通过处理槽内的复合处理剂浸渍 5〜10秒, 即得所需改性处理的陶瓷纤维。
9. 根据权利要求 8所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征在于: 所述陶瓷纤维为高温型陶瓷纤维, 其直径 2〜4微米。
10. 根据权利要求 1或 2或 4或 5或 7或 9所述的陶瓷纤维增强阻燃改性聚 丙烯复合物, 其特征在于: 所述的阻燃剂包括主阻燃剂和辅阻燃剂, 主阻 燃剂为八溴 S醚, 其化学名称为四溴双酚 S双 (2, 3-二溴丙基) 醚; 辅 阻燃剂为锑的氧化物、 锑酸盐或硼酸盐中的任意一种以上。
11. 根据权利要求 10所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征在 于: 所述的辅阻燃剂为: 三氧化二锑、 五氧化二锑、锑酸钠和硼酸锌中的 任意一种以上。
12. 根据权利要求 1或 2或 4或 5或 7或 9或' 11所述的陶瓷纤维增强阻燃改 性聚丙烯复合物, 其特征在于: 所述的加工助剂选自低分子酯类、金属皂 类、 硬脂酸复合酯类、 酰胺类中的任意一种以上。
13. 根据权利要求 12所述的陶瓷纤维增强阻燃改性聚丙烯复合物,其特征在 于:所述的加工助剂为: 固体石蜡、液体石蜡、低分子聚乙烯、硬脂酸钙、 硬脂酸锌、芥酸酰胺、甲撑双硬脂酸酰胺和 N,N-乙撑双硬脂酸酰胺 (EBS ) 中的任意一种以上。
14. 一种制备权利要求 1或 2或 4或 5或 7或 9或 11或 13所述陶瓷纤维增 强阻燃改性聚丙烯复合物的方法,其特征在于,该方法包括如下具体步骤: 步骤 1, 将 PP树脂与阻燃剂、 加工助剂预先在高速混料机中充分混 匀;
步骤 2, 将上述混和物加入长径比为 36: 1〜40:1、 挤出温度为 200-240 。C、 转速为 350-450rpm的强剪切双螺杆挤出机中, 通过侧向喂料口均勾 加入陶瓷纤维, 熔融挤出, 拉条、 冷却、 切粒、 干燥后得到最终产品。
PCT/CN2011/001457 2010-12-28 2011-08-30 一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制备方法 WO2012088743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106082670A CN102532690A (zh) 2010-12-28 2010-12-28 一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制备方法
CN201010608267.0 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012088743A1 true WO2012088743A1 (zh) 2012-07-05

Family

ID=46340806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001457 WO2012088743A1 (zh) 2010-12-28 2011-08-30 一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制备方法

Country Status (2)

Country Link
CN (1) CN102532690A (zh)
WO (1) WO2012088743A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231431A (zh) * 2014-08-27 2014-12-24 上海日之升新技术发展有限公司 一种高光泽阻燃耐刮擦聚丙烯组合物及其制备方法
CN112552584A (zh) * 2019-09-26 2021-03-26 合肥杰事杰新材料股份有限公司 一种新型可陶瓷化阻燃聚丙烯复合材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105294041A (zh) * 2015-11-06 2016-02-03 合肥神舟建筑集团有限公司 一种匀质改性防火保温板
CN106747581A (zh) * 2016-12-16 2017-05-31 侯风光 一种掺杂硬质聚丙烯纤维的蒸压加气混凝土砌块及其制备方法
CN107972200A (zh) * 2017-03-14 2018-05-01 昆山台益塑胶科技有限公司 聚甲醛-玻纤嵌段共聚物生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250996A (en) * 1990-12-19 1992-06-24 Lycab Limited Composite material
JPH05202271A (ja) * 1992-01-27 1993-08-10 Toyobo Co Ltd ポリフェニレンサルファイド樹脂組成物
EP1070745A1 (en) * 1999-07-23 2001-01-24 Albemarle Corporation Flame retardant compositions
CN1388202A (zh) * 2002-07-09 2003-01-01 杭州华电华源环境工程有限公司 一种导热高分子材料及制备方法
CN1765972A (zh) * 2004-10-29 2006-05-03 上海日之升新技术发展有限公司 可用于电器壳体的无卤阻燃抗静电改性聚丙烯组合物
CN101121798A (zh) * 2006-08-09 2008-02-13 上海金发科技发展有限公司 高光泽低表面析出阻燃聚丙烯复合物及其制备方法
DE102008046481A1 (de) * 2008-09-09 2010-03-11 Rehau Ag + Co. Verbundwerkstoff
CN102108153A (zh) * 2009-12-28 2011-06-29 崔贵府 一种含有陶瓷纤维的阻燃耐热聚丙烯复合物及制法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2250996A (en) * 1990-12-19 1992-06-24 Lycab Limited Composite material
JPH05202271A (ja) * 1992-01-27 1993-08-10 Toyobo Co Ltd ポリフェニレンサルファイド樹脂組成物
EP1070745A1 (en) * 1999-07-23 2001-01-24 Albemarle Corporation Flame retardant compositions
CN1388202A (zh) * 2002-07-09 2003-01-01 杭州华电华源环境工程有限公司 一种导热高分子材料及制备方法
CN1765972A (zh) * 2004-10-29 2006-05-03 上海日之升新技术发展有限公司 可用于电器壳体的无卤阻燃抗静电改性聚丙烯组合物
CN101121798A (zh) * 2006-08-09 2008-02-13 上海金发科技发展有限公司 高光泽低表面析出阻燃聚丙烯复合物及其制备方法
DE102008046481A1 (de) * 2008-09-09 2010-03-11 Rehau Ag + Co. Verbundwerkstoff
CN102108153A (zh) * 2009-12-28 2011-06-29 崔贵府 一种含有陶瓷纤维的阻燃耐热聚丙烯复合物及制法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104231431A (zh) * 2014-08-27 2014-12-24 上海日之升新技术发展有限公司 一种高光泽阻燃耐刮擦聚丙烯组合物及其制备方法
CN112552584A (zh) * 2019-09-26 2021-03-26 合肥杰事杰新材料股份有限公司 一种新型可陶瓷化阻燃聚丙烯复合材料及其制备方法

Also Published As

Publication number Publication date
CN102532690A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2012088743A1 (zh) 一种陶瓷纤维增强阻燃改性聚丙烯复合物及其制备方法
CN103254531A (zh) 一种阻燃pvc复合材料及其制备方法
CN107418201B (zh) 一种高效无卤阻燃增强尼龙复合材料及其制备方法
Yue et al. Investigation of flame-retarded poly (butylene succinate) composites using MHSH as synergistic and reinforced agent
CN103342880B (zh) 一种高光表面环保无卤阻燃pbt复合材料及其制备方法
Liu et al. Magnesium hydroxide nanoparticles grafted by DOPO and its flame retardancy in ethylene‐vinyl acetate copolymers
CN104231575A (zh) 一种无卤无膦pbt增强复合材料及其制备方法
CN112745571B (zh) 一种无锑阻燃陶瓷化聚烯烃组合物及其制备方法和应用
CN104693701A (zh) 低翘曲无卤阻燃玻纤增强pbt/as合金及其制备方法
CN101062992A (zh) 一种无卤阻燃高抗冲聚苯乙烯组合物及其制备方法
CN108912642B (zh) 一种抗静电、低烟、无卤阻燃pc/abs合金材料及其制备工艺
CN105111729B (zh) 环保阻燃碳纤维增强聚酰胺复合材料及其制备方法和应用
Hu et al. Microwave‐Assisted Confining Flame‐Retardant Polypropylene in Carbon Nanotube Conductive Networks for Improved Electromagnetic Interference Shielding and Flame Retardation
CN104693793A (zh) 一种阻燃增强尼龙复合材料及其制备方法
CN103849059A (zh) 增韧增强抗静电阻燃改性聚乙烯复合材料
CN102604212B (zh) 一种芳纶浆粕增强膨胀阻燃聚丙烯复合材料及其制备方法
CN103881318A (zh) 一种聚对苯二甲酸丁二醇酯加纤阻燃抗静电材料
CN104744772A (zh) 一种玻纤增强聚乙燃粉末
CN104419141A (zh) 玻纤增强无卤阻燃抗静电pbt/pet合金
CN104672811A (zh) 环保阻燃抗静电增强pbt/pet复合材料
CN102108178A (zh) 一种含有陶瓷纤维的阻燃增强abs复合物及制法
CN108384178A (zh) 一种无卤阻燃abs复合材料及其制备方法
CN106479035B (zh) 一种阻燃耐冲击的聚丙烯复合材料及其制备方法
Di et al. A novel EVA-based composite via ceramization toward excellent flame retardance performance and high-temperature resistance
CN104448808A (zh) 一种耐热稳定无卤阻燃增强尼龙复合材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853891

Country of ref document: EP

Kind code of ref document: A1