WO2012088739A1 - 结核分歧杆菌抗原的融合蛋白的制备及其应用 - Google Patents

结核分歧杆菌抗原的融合蛋白的制备及其应用 Download PDF

Info

Publication number
WO2012088739A1
WO2012088739A1 PCT/CN2011/001090 CN2011001090W WO2012088739A1 WO 2012088739 A1 WO2012088739 A1 WO 2012088739A1 CN 2011001090 W CN2011001090 W CN 2011001090W WO 2012088739 A1 WO2012088739 A1 WO 2012088739A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
protein
purified
purification
pcr
Prior art date
Application number
PCT/CN2011/001090
Other languages
English (en)
French (fr)
Inventor
祝秉东
牛红霞
李青
胡丽娜
王秉翔
达泽蛟
辛奇
Original Assignee
兰州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兰州大学 filed Critical 兰州大学
Publication of WO2012088739A1 publication Critical patent/WO2012088739A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/04Mycobacterium, e.g. Mycobacterium tuberculosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to a fusion protein, in particular to a method for constructing, expressing and purifying a M. tuberculosis fusion protein Mtbl0.4-Hspl6.3, and the application of the fusion protein in a tuberculosis subunit vaccine.
  • Tuberculosis is the most widely spread, longest-lasting and most devastating infectious disease in the world. Tuberculosis has resurfaced since the 1980s, with morbidity and mortality rates ranked first and second among all types of infectious diseases. It is estimated that 2 million people die each year from tuberculosis infections; more seriously, about 2 billion people are in the incubation period of Mycobacterium tuberculosis infection each year, and 5-10% of them are converted into active tuberculosis. China is one of the countries with a high burden of tuberculosis, with an incidence rate of about 1% of the country's total population. .
  • tuberculosis vaccines The only tuberculosis vaccine currently developed, BCG, has been widely used worldwide. However, different studies have shown that BCG is protectively unstable in different populations, especially for adult tuberculosis. 0-80%.
  • the main types of tuberculosis vaccines studied at this stage are: (1) recombinant BCG; (2) live attenuated vaccine against tuberculosis; and (3) tuberculosis subunit vaccine.
  • tuberculosis subunit vaccines include protein vaccines, DNA vaccines and vaccine-based vaccines. Among them, protein vaccines are more acceptable because they are clear and relatively safe.
  • antigen selection is one of the first steps in building a vaccine subunit vaccine.
  • the object of the present invention is to construct and express the purified fusion protein Mtbl0.4-Hspl6.3, aiming at the immune response in each growth phase of M. tuberculosis, especially establishing an effective immune response to dormant bacteria, and improving the protective effect of single antigen.
  • the fusion protein Mtbl0.4-Hspl6.3 (MH) and adjuvant (DDA+TDM) are mixed as a tuberculosis subunit vaccine, which can induce strong Thl-type cell-based cellular immune response and humoral immune response.
  • the animal protection effect as a candidate subunit vaccine for late-stage clinical studies, especially for dormant tuberculosis.
  • the Mycobacterium tuberculosis antigens Mtbl0.4 and Hspl6.3 used in the present invention have strong immunoprotective properties, and are mainly expressed in the growth phase and the dormancy phase, respectively, and have different immunological advantages.
  • the main characteristics of the two antigens are as follows: (l) Mtbl0.4: Mtbl0.4 Originally a secreted protein of Mycobacterium tuberculosis, belonging to the ESA T-6 protein family, this family includes ESAT-6, CFP-10, TBI 0.4, TB10.3 and other proteins.
  • Mtbl0.4 antigen is an important immunoprotective antigen of M. tuberculosis and is an ideal candidate antigen for component tuberculosis vaccine.
  • Hspl6.3 is a kind of heat shock protein (Hsp), which is highly expressed in the dormant period of bacteria and hypoxia, and plays an important role in the persistence of tuberculosis in macrophages.
  • Hspl6.3 stimulates Th1 type cellular responses and stimulates high levels of IF- ⁇ secretion.
  • a higher proportion of HspX T cell stimulating activity a higher proportion of HspX T cell stimulating activity
  • M. tuberculosis fusion protein Mtbl0.4-Hspl6.3 The construction, expression and purification methods of M. tuberculosis fusion protein Mtbl0.4-Hspl6.3 are:
  • the Mtbl0.4 and Hspl6.3 genes were PCR amplified and inserted into the multiple cloning site of the cloning vector to construct a recombinant vector;
  • the recombinant vector is then expressed in E. coli to express the fusion protein Mtbl0.4-Hspl6.3;
  • the method for constructing the fusion protein Mtbl0.4-Hspl6.3 comprises the following steps:
  • PCR reaction conditions pre-denaturation at 96 °C for 1 min, denaturation at 98 °C for 10 s, renaturation for 15 s at 54 °C, extension for 30 s at 72 °C, 30 cycles; extension of lOmin at 72 °C; purification of PCR products by gel recovery kit .
  • PCR reaction conditions 96°C pre-denaturation lmin, 98°C denaturation 10s, 55°C renaturation 20s, 72°C extension 30s, 30 cycles Ring; 72 ° C extension lOmin; PCR product purified by gel recovery kit;
  • Hspx gene and recombinant plasmid Mtbl0.4-pET-30a(+) were digested with Sac I and Hindlll, respectively, and purified.
  • the T4 ligase was ligated and transformed into E. coli DH5a, and the recombinant plasmid Mtbl0.4-Hspx- pET-30a(+) was cloned.
  • the positive clones were screened by PCR to identify the clones.
  • the expression method of the fusion protein Mtbl0.4-Hspl6.3 comprises the following steps:
  • the recombinant plasmid pET30a-Mtbl0.4-Hspl6.3 was extracted from P ET30a-Mtbl0.4-Hspl6.3 ( DH5a ) of E. coli above and transformed into E.Coli BL21 (DE3).
  • the clone was identified by sequencing (Beijing Huada Gene Technology completed sequencing), which is the preservation strain pET30a-Mtbl0.4-Hspl6.3 (BL21);
  • the purification method of the fusion protein Mtbl0.4-Hspl6.3 comprises the following steps:
  • the fusion protein MH was expressed in a large amount, and the collected bacteria were suspended in 20 mM PB buffer, sonicated for about 1 h in an ice bath, centrifuged at 4 ° C / 10,000 rpm for 10 min, and the supernatant containing MH protein was collected after centrifugation; Filter and remove bacteria by 0.45um filter;
  • the second step of purification hydrophobic chromatography. After preliminary purification of the protein by ion exchange chromatography, an equal volume of the III solution is added to cause the protein to have a high salt on the column. Purification was carried out using a Butyl HP column, and different gradient eluents were collected for SDS-PAGE analysis to obtain a two-step purified product;
  • the third step of purification gel filtration chromatography.
  • the protein purified by two steps of ion exchange chromatography and hydrophobic chromatography was purified by superdex prep grade column, and different gradient eluates were collected for SDS-PAGE analysis to obtain the final purified product;
  • the final purified protein can be used after measuring the concentration.
  • the above-described M. tuberculosis fusion protein Mtbl0.4-Hspl6.3 is used in a tuberculosis subunit vaccine.
  • the invention has the advantages that: the invention successfully constructs, expresses and purifies the M. tuberculosis fusion protein TB10.4-Ag85B without any label by using genetic engineering technology, and solves the problem that the label of the fusion protein is affected. Subsequent problems in animal experiments and further clinical trials, and the fusion protein is efficiently purified by using different chromatographic methods, which induce strong cellular and humoral immune responses and have certain animal protection effects. It is expected to be a candidate vaccine for clinical tuberculosis prevention and treatment; the fusion protein vaccine can induce strong cellular and humoral immune responses in animals; animal challenge experiments show that the vaccine has enhanced immunity based on BCG immunity and can improve Prolong the protective effect of BCG; and the vaccine has no obvious side effects.
  • FIG. 1 Expression of purified protein MH in E. coli (Mr 26.7 x 10 3 ) ( 1. Protein Maker, 2. MH before purification, 3. Protein MH after purification in the first step, 4. Purified after purification in the second step Protein MH, 5. Protein purified in the third step);
  • Figure 2 spleen cells secrete IFN-r levels (A: antigen Hspl6.3 stimulates spleen cells, B : PPD stimulates spleen cells); Figure 3 tuberculosis antigen Hps6.3 specific antibody levels (A: antibody IgGl, B: antibody IgG2b) ;
  • Figure 4 Number of spleen cells secreting IFN-r factor (A: cells stimulated with CD8 T cell epitope of Mtbl0.4 antigen, B: cells stimulated with Hxp6.3 protein, C: cells stimulated with PPD, * indicates experiment The P value was less than 0.05 when the group was statistically analyzed with the PBS and BCG groups;
  • Figure 5 Number of spleen cells secreting IL-17 factor (A: cells stimulated with CD8 T cell epitope of MtblO.4 antigen, B: cells stimulated with Hxp6.3 protein, * indicates that the experimental group is counted with PBS, BCG group P value is less than 0.05);
  • Figure 6 tuberculosis antigen Hps6.3 specific antibody level A: antibody IgGl, B: antibody IgG2b, C: antibody IgG2c);
  • the protective effect of the priming animals (results expressed as the logarithm of the number of CFUs in the lungs and spleen, the number of mice in each group was greater than or equal to 6, and the data were statistically analyzed by the analysis of variance and SPSS 13.0 software).
  • the Mtbl0.4 and Hspl6.3 genes were amplified by PCR and inserted into the multiple cloning site of the cloning vector to construct a recombinant vector.
  • the recombinant vector was then expressed in E. coli to express the fusion protein Mtbl0.4-Hspl6. 3;
  • the fusion protein Mtbl0.4-Hspl6.3 was obtained by purification. The specific steps are as follows: Instruction manual
  • Hspx F ATAGAGCTCTTCGCAGTCACGAACGACGGGG
  • Hspx R ACAAAAGCTTTCAGTTGGTGGACCG (Hindffl)
  • Hspl6.3 gene fragment was amplified with Hspl6.3F and Hspl6.3R using the Mycobacterium tuberculosis standard strain (H37Rv) DNA as a template; PCR reaction conditions: pre-denaturation at 96 °C for 1 min Denaturation at 98 °C for 10 s, 55 °C for 20 s, 72 °C for 30 s, 30 cycles; 72 °C for 10 min.
  • the PCR product was purified by a gel recovery kit.
  • Hspx gene and recombinant plasmid Mtbl0.4-pET-30a(+) were purified by Sac I and Hindlll, respectively, and purified by T4.
  • the ligase was ligated, transformed into E. coli DH5a, and cloned to construct the recombinant plasmid Mtbl0.4-Hspx- pET-30a (+). Positive clones were screened by PCR to identify them.
  • the recombinant plasmid pET30a-Mtbl0.4-Hspl6.3 was extracted from pET30a-Mtbl0.4-Hspl6.3 (DH5a) in E. coli above and transformed into E.Coli BL21(DE3).
  • the clone was identified by sequencing (Beijing Huada Gene Technology completed sequencing), which is the preservation strain pET30a-Mtbl0.4-Hspl6.3 (BL21).
  • the fusion protein MH was expressed in a large amount.
  • the collected bacteria were suspended in 20mMPB buffer, sonicated for about 1 hour in an ice bath, centrifuged at 4°C/10,000 rpm for 10 minutes, and the supernatant containing MH protein was collected after centrifugation. 0.45um filter filtration sterilization;
  • MH protein Hspl6.4 protein, dinonyl adipate (DDA), trehalose dimycolic acid (TDM); BCG (BCG), phosphate buffer (PBS);
  • mice C57BL/6 mice
  • the dried film is dried to a powder form by a low-temperature freeze-drying apparatus, and the powder is resuspended in PBS (DDA final concentration: 5 mg/ml, TDM final concentration: 1 mg/ml), 60 ° C water bath
  • the powder was dissolved in 20 minutes and cooled to room temperature for use. Mix the dissolved protein, DDA, and TDM in a ratio of 2: 1: 1 to use.
  • the prepared mixed vaccine (MH+DDA+TDM and Hspl 6.3+DDA+TDM) was subcutaneously immunized to the experimental group (200 ⁇ 1/only), and the PBS and BCG groups (5 ⁇ 10 6 CFU) were immunized. /only); The animals in the experimental group were boosted with the same dose of the prepared mixed vaccine in the inguinal region (200 ⁇ l/only) at the 3rd and 6th week after the initial immunization. 6 methods for determination of immune indicators
  • mice The levels of IFN- ⁇ and IL-17 secreted by the spleen lymphocytes of the immunized mice against specific antigens were detected by ELISA.
  • the mice were aseptically isolated from the spleen lymphocytes after 6W immunization.
  • the specific antigen and spleen cells were co-incubated in 24 plates for 68 hours.
  • the cell culture supernatant was collected and the spleen lymphocytes were detected by ELISA.
  • the Hspl6.3 protein and PPD protein were detected by ELISA. Expression of IFN- ⁇ after stimulation.
  • the isolated lymphocytes were added to a 24-well cell culture plate at a final concentration of 5 ⁇ 10 6 , and Hspl 6.3 protein (10 ug/ml) was administered, respectively, and stimulated with PPD protein (10 ug/ml). After incubation for 68 hours at 37 ° C under 5% CO 2 , the cell culture supernatant was collected. The cell culture supernatant was added to a 96-well ELISA plate, lOOul/well, and reagents such as detection antibodies were sequentially added according to the ELISA instructions, washing, coloring, termination of the reaction, reading of the microplate reader, and IFN-r according to the standard curve. Value (pg/ml).
  • Mouse serum antibody expression levels were measured by ELISA.
  • a 96-well plate ( ⁇ /well) was coated with Hspl6.3 (5 ug/ml) at 4 ° C overnight; the plate was washed 5 times x lmin / time with PBST solution 300 ⁇ l ⁇ 11; from 1:100 ⁇ to 1: 25600 (IgG2b and IgG2c) Or from 1:1600 to 1:509600 (IgGl), add a double-diluted serum sample and place at 37 °C for 1 h.
  • a 1 : 15000 diluted rabbit anti-mouse IgG1, 1: 10,000 diluted rabbit anti-mouse IgG2b, and a 1:5000 diluted rabbit anti-mouse IgG2c were added and placed at 37 ° C for 1 h.
  • ⁇ /well TMB coloring solution was added, and the color was developed at room temperature for 15 minutes in the dark, and then the reaction was terminated by adding a 50 ⁇ l/ ⁇ ⁇ 11 stop solution ( 2 ⁇ H 2 S0 4 ); the OD value was measured at 450 nm.
  • BCG phosphate buffered saline
  • PBS phosphate buffered saline
  • mice C57BL/6 mice
  • the dried film was dried overnight to a powder, and the powder was resuspended in PBS (DDA final concentration: 5 mg/ml, TDM final concentration: 1 mg/ml), and the powder was dissolved in a water bath at 60 ° C for 20 minutes, and cooled to room temperature for use. Mix the dissolved protein, DDA, and TDM in a ratio of 2: 1: 1 to use.
  • BCG Week 1 BCG (BCG) 5x l0 6 CFU inguinal immunization of animals once; BCG (BCG) After the initial immunization, animals were immunized subcutaneously with the prepared protein vaccine in the 12th and 14th weeks (200 ⁇ 1/only).
  • mice After the last protein and vaccine immunization of the mice, the cells were immunized for 6 weeks and then tested for cellular immunity and humoral immunity.
  • the levels of IFN- ⁇ and IL-17 secreted by specific antigens in the spleen lymphocytes of immunized mice were detected by ELISPOT method.
  • the secretion levels of IFN- ⁇ and IL-17 are in direct phase with the protective immune response of tuberculosis.
  • the spleen lymphocytes were aseptically isolated after 6 weeks of immunization of the mice, and the spleen lymphocytes were detected by the enzyme-linked immunospot assay (ELISPOT) on the Mtbl0.4 CD8+ T cell epitope, Hspl6.3 protein, and PPD protein-stimulated IFN. - Expression of gamma and IL-17.
  • the 96-well plate was pre-coated with IFN- ⁇ antibody and IL-17 antibody overnight, and the spleen was aseptically removed, ground, filtered through a 200 mesh nylon mesh, and lymphocytes were separated using a lymphocyte separation solution.
  • the isolated lymphocytes were added to a 96-well ELISPOT plate at a final concentration of 5 ⁇ 106/vacate, and bl0.4 CD8+ T cell epitope (5 ug/ml), HSP16.3 protein (10 ug/ml), PPD protein were administered. (10ug/ml) stimulation.
  • the reagents such as the detection antibody were sequentially added according to the ELISPOT operation instructions, the plate was washed, the color was developed, and the number of spots was counted.
  • Mouse serum antibody expression levels were measured by ELISA. - Using Hspl 6 , ( 5 u ⁇ /ml) ⁇ by well, .GiQQi ⁇ lAyell ) 4°C overnight, wash plate 5 times x lmin/time with PBST solution 300 ⁇ 1 ⁇ 11, starting from 1:100 to 1:25600 (IgG2b And IgG2c) or from 1: 1600 pm to 1: 509600 (IgGl), add a dilution of the serum sample, and place at 37 ° C for 1 h.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

结核分歧杆菌抗原的融合蛋 ό的制备及其应用 技术领域
本发明涉及一种融合蛋白, 具体地说是一种结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3的 构建、 表达和纯化方法, 以及该融合蛋白在结核亚单位疫苗中的应用。
背景技术
结核病是全球传播范围最广、 持续时间最久、 危害最为严重的传染病。 自上世纪 80年 代以来结核病死灰复燃, 发病率和死亡率据各类传染病首位和第二位。 据估计, 每年有 2百 万人死于结核病感染; 更为严重的是每年有大约 20亿人处于结核分支杆菌感染的潜伏期, 其 中有 5-10%潜伏期结转变成活动期结核。 我国是结核病高负担的国家之一, 发病率约达到全 国总人口的 1%。。 由于细菌变异, 部分结核病患者使用常规化学药物治疗不能治愈, 持续排 菌, 对个人健康和公共卫生造成了极大的威胁。 因此, 研制和开发抗结核疫苗尤其是针对休 眠期结核的疫苗是控制结核病的重要途径。
目前研制成功的唯一的结核病疫苗——卡介苗 (BCG), 虽然已在全球范围内广泛使用, 然而不同研究显示, BCG在不同人群中的保护性不稳定, 尤其是对成人肺结核的保护效率介 于 0-80%不等。 现阶段进行研究的结核病疫苗主要有以下几种: (1 ) 重组 BCG; (2 ) 结核杆 菌减毒活疫苗; (3 ) 结核亚单位疫苗。 其中结核亚单位疫苗包括蛋白疫苗、 DNA疫苗和以病 毒为载体的疫苗三种形式, 其中蛋白疫苗因成份明确、 相对安全, 更易于被人们接受。
大量研究表明, 利用基因工程技术将具有不同优势的单个结核菌保护性抗原进行重组, 可构建成具有较强免疫原性和更好保护效应的融合蛋白。 因此, 抗原选择是构建结核亚单位 疫苗的首要步骤之一。
发明内容
本发明的目的在于构建并表达纯化融合蛋白 Mtbl0.4-Hspl6.3, 针对结核分枝杆菌各生 长期的免疫应答, 尤其是对休眠状态细菌建立有效的免疫应答, 并且提高单个抗原的保护效 果; 融合蛋白 Mtbl0.4-Hspl6.3 ( MH ) 和佐剂 (DDA+TDM ) 混合作为结核亚单位疫苗, 能 诱导较强的 Thl型细胞免疫为主的细胞免疫反应和体液免疫反应,具有较好的动物保护效果, 作为后期临床研究尤其是针对休眠期结核的候选亚单位疫苗。
本发明所选用的结核杆菌抗原 Mtbl0.4、 Hspl6.3均有较强的免疫保护性,分别主要表达 于生长期和休眠期且具有不同的免疫优势。 两抗原主要特性如下: (l ) Mtbl0.4: Mtbl0.4抗 原是结核分支杆菌早期分泌性蛋白, 属于 ESA T-6 蛋白家族, 该家族包括 ESAT-6, CFP-10, TBI 0.4, TB10.3等蛋白。 相关研究证明 Mtbl0.4抗原是重要的结核分枝杆菌免疫保护性抗原, 是理想的构件结核疫苗的候选抗原。 Mtbl0.4抗原对 BCG接种的健康者和结核分枝杆菌感染 的患者均可诱导强烈的细胞及体液免疫反应, 与 ESAT-6 抗原相比是更好的结核疫苗候选抗 原。 将其免疫小鼠, 可获得明显的特异性体液和细胞免疫反应, 此外小鼠在用气雾攻击结核 杆菌 H37Rv毒株后,可获得接近 BCG的免疫保护效果。 (2 ) Hspl6.3: 是热休克蛋白 (Hsp) 的一种, 在细菌休眠期和缺氧环境下高表达, 对于结核菌在巨噬细胞内的持续存在起重要作 用。 Hspl6.3能够激起 Thl型细胞反应,刺激高水平的 IF -γ的分泌。 在健康的与肺结核密切 接触的家人 (80%) 和医务工作者 (90%) 中, 具有较高比例的 HspX T细胞刺激活性, 比例
明显高于普通人群 (50%), 提示 Hspl6.3抗原具有免疫保护作用。
本发明的技术方案为- 书
结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3的构建、 表达和纯化方法为:
首先,将 Mtbl0.4和 Hspl6.3基因进行 PCR扩增并依次插入到克隆载体的多克隆位点中, 构建重组载体;
然后将上述重组载体在大肠杆菌中表达融合蛋白 Mtbl0.4-Hspl6.3;
最后根据融合蛋白 Mtbl0.4-Hspl6.3的分子量、 电荷和亲和力进行纯化, 通过纯化得到 融合蛋白 Mtbl0.4-Hspl6.3。
所述的融合蛋白 Mtbl0.4- Hspl6.3的构建方法包括以下步骤:
( 1) 根据 GenBank中 H37Rv中的 Mtbl0.4和 Hspl6.3的基因序列, 设计引物;
( 2) PCR扩增 Mtbl0.4基因: 由于 Mtbl0.4基因后面要融合 Hspl6.3, 所以设计引物时 把 MtblO.4终止信号去掉; 以结核杆菌标准毒株 DNA为模板, 用 5'端特异性引物 Mtbl0.4F 和 3'端引物 Mtbl0.4R扩增 Mtbl0.4全基因序列;
PCR反应条件: 96°C预变性 lmin,98°C变性 10s,54°C复性 15s, 72°C延伸 30s, 30个循环; 72°C延伸 lOmin; PCR产物经胶回收试剂盒纯化进行纯化。
( 3 )构建重组质粒 MtblO.4- pET-30a(+): 用 Nde I和 Sac I双酶切纯化后 Mtbl0.4基因 和质粒 pET30a, 在 T4连接酶的作用下将两者进行连接, 转化入 E.Coli DH5a中, 构建重组 质粒 Mtbl0.4-pET-30a(+), PCR验证筛选阳性克隆进行测序鉴定。
(4 ) PCR扩增 Hspl6.3基因:以结核杆菌标准毒株 DNA为模板,用 Hspl6.3F和 Hspl6.3R 扩增 Hspl6.3基因片段;
PCR反应条件: 96°C预变性 lmin,98°C变性 10s, 55°C复性 20s, 72°C延伸 30s, 30个循 环; 72°C延伸 lOmin; PCR产物经胶回收试剂盒纯化;
( 5 ) 构建重组质粒 Mtbl0.4-Hspx- pET-30a(+): 用 Sac I禾卩 Hindlll双酶切纯化后 Hspx 基因和重组质粒 Mtbl0.4-pET-30a(+), 分别纯化后用 T4 连接酶进行连接, 转化入 E.Coli DH5a, 克隆构建重组质粒 Mtbl0.4-Hspx- pET-30a(+); PCR验证筛选阳性克隆进行测序鉴定。
所述的融合蛋白 Mtbl0.4-Hspl6.3的表达方法包括以下步骤:
( 1 ) 从以上 E.Coli 的 PET30a-Mtbl0.4-Hspl6.3 ( DH5a ) 提取重组质粒 pET30a- Mtbl0.4-Hspl6.3 , 转化入 E.Coli BL21(DE3)中, PCR验证筛选阳性克隆进行测序鉴定 (北京 华大基因科技完成测序), 即为保存菌种 pET30a- Mtbl0.4-Hspl6.3 (BL21 );
( 2 ) 活化表达 MH蛋白的 E.coli BL-21菌体, 取 Ιπι 活化后菌体加入 200mlLB培养基
中震荡培养 3h lOmim至 OD 600nm达到〜 0.6; 加入 IPTG(1.0mmol/L)100ul; 25°C诱导振荡培 养 12h; 4°C 10000rpm/min离心 lOmin收集菌体书; 菌体重悬于 PB缓冲液 (Na2HP04'12H20 20mMol L, Na2HP04 12H20 20m ol L, pH7.4 ) lOml/g湿菌,冰浴下超声破碎细菌 lh(180~200 W, 超声 4s 停 5s); lOOOOrpm/min离心 20min 后分别收集上清和沉淀, 将上清和沉淀分别进 行聚丙烯酰胺凝胶电泳; 经 SDS-PAGE电泳分析, 与 BL21空菌相比, 分子量在 26.7 D左 右有明显的特异蛋白表达条带, 以上清形式表达为主, 沉淀中蛋白很少。
所述的融合蛋白 Mtbl0.4-Hspl6.3的纯化方法包括以下步骤:
( 1) 配制以下缓冲液: I液 20mM PB (pH7.4 ); II液 20mM PB+1M NaCl (pH7.4 ); ΙΠ液 20mM PB+2 M NaCl (pH7.4 ); 缓冲液均用 0.45um滤器过滤除菌;
(2) 大量表达融合蛋白 MH, 收集的菌体重悬于 20mM PB缓冲液中, 冰浴下超声破碎 lh左右, 4°C/10,000rpm离心 lOmin, 离心后收集含 MH蛋白的上清; 上清用 0.45um滤器过 滤除菌;
( 3 ) 第一步纯化: 离子交换层析。 选用强阴离子交换柱 Q介质进行纯化, 收集不同梯 度洗脱液进行 SDS-PAGE分析得初步纯化物;
(4 ) 第二步纯化: 疏水层析。 经过离子交换层析初步纯化后的蛋白, 加入等体积的 III 液,使蛋白含高盐上柱。 选用 Butyl HP柱进行纯化, 收集不同梯度洗脱液进行 SDS-PAGE分 析得二步纯化物;
( 5 ) 第三步纯化: 凝胶过滤层析。 将经过离子交换层析和疏水层析两步纯化后的蛋白, 选用 superdex prep grade 柱进行纯化, 收集不同梯度洗脱液进行 SDS-PAGE分析得最终纯化 物;
(6 ) 将最终得到的蛋白纯化物测定浓度之后即可使用。 说 明 书 上述结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3应用在结核亚单位疫苗中。
本发明的优点在于: 本发明利用基因工程技术, 成功构建、 表达和纯化了不带有任何标 签的结核分枝杆菌融合蛋白 TB10.4-Ag85B,解决了融合蛋白所带有的标签会影响到动物实验 以及更进一步的临床学试验的后续问题, 并且通过利用不同的色谱分析方法使融合蛋白得到 了有效的纯化, 此蛋白可诱导较强的细胞和体液免疫应答并具有一定的动物保护效应, 有望 成为临床结核病预防和治疗的候选疫苗; 该融合蛋白疫苗可诱导动物较强的细胞和体液免疫 反应; 通过动物攻毒实验表明, 该疫苗在 BCG免疫基础上, 具有加强免疫作用, 可提高和延 长 BCG的保护效果; 且该疫苗无明显毒副作用。
附图说明
图 1在大肠杆菌中表达纯化蛋白 MH ( Mr 为 26.7 x 103 ) ( 1.蛋白 Maker, 2.纯化前的 MH, 3.第一步纯化后的蛋白 MH, 4.第二步纯化后的蛋白 MH, 5.第三步步纯化后的蛋白);
图 2脾细胞分泌 IFN-r水平 (A: 抗原 Hspl6.3刺激脾细胞, B: PPD刺激脾细胞); 图 3结核抗原 Hps6.3特异性抗体水平 (A: 抗体 IgGl, B: 抗体 IgG2b);
图 4分泌 IFN-r因子的脾细胞数量(A:细胞用 Mtbl0.4抗原的 CD8 T细胞表位刺激, B: 细胞用 Hxp6.3蛋白进行刺激, C: 细胞用 PPD进行刺激, *表示实验组与 PBS、 BCG组进行 统计学分析时 P值小于 0.05 ); '
图 5分泌 IL-17因子的脾细胞数量(A:细胞用 MtblO.4抗原的 CD8 T 细胞表位刺激, B: 细胞用 Hxp6.3蛋白进行刺激,*表示实验组与 PBS、BCG组进行统计学分析时 P值小于 0.05 ); 图 6结核抗原 Hps6.3特异性抗体水平(A:抗体 IgGl, B:抗体 IgG2b, C:抗体 IgG2c ); 图 7 融合蛋白 Mtbl0.4-Hspl6.3对 BCG初免动物的保护效果 (结果用肺和脾的 CFU数 的对数表示,每组小鼠数量大于等于 6只,数据用方差分析方法和 SPSS13.0软件进行统计)。 具体实施方式
以下对本发明的优选实施例进行说明, 应当理解, 此处所描述的优选实施例仅用于说明 和解释本发明, 并不用于限定本发明。 一、 结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3的构建、 表达和纯化
首先,将 Mtbl0.4和 Hspl6.3基因进行 PCR扩增并依次插入到克隆载体的多克隆位点中, 构建重组载体; 然后将上述重组载体在大肠杆菌中表达融合蛋白 Mtbl0.4-Hspl6.3; 最后根据 融合蛋白 Mtbl0.4-Hspl6.3 的分子量、 电荷和亲和力进行纯化, 通过纯化得到融合蛋白 Mtbl0.4-Hspl6.3 , 具体步骤如下: 说 明 书
1、 融合蛋白 Mtbl0.4- Hspl6.3 ( MH) 的构建:
( 1 ) 根据 GenBank 中 H37Rv 中的 Mtbl0.4 ( Rv0288, 相对分子量 Mr为 10.4 103 96 AA) 和 Hspl6.3 (Rv2301 , 相对分子量 Mr为 16.3 03, 144 AA) 的基因序列, 设计 4对 引物, 分别为:
Mtbl0.4F GTGCATATGTCGCAAATCATGTACAACTA (Nde l )
Mtbl0.4R ATAGAGCTCGCCGCCCCATTT ( Sac I )
Hspx F ATAGAGCTCTTCGCAGTCACGAACGACGGGG
TGATTATGGCCACCACCCTTC (Sac I )
Hspx R ACAAAAGCTTTCAGTTGGTGGACCG (Hindffl)
(2) PCR扩增 Mtbl0.4基因: 由于 Mtbl0.4基因后面要融合 Hspl6.3, 所以设计引物时 把 Mtbl0.4终止信号去掉, 以结核杆菌标准毒株 (H37Rv) DNA为模板, 用 5'端特异性引物 Mtbl0.4F和 3'端引物 Mtbl0.4R扩增 ΜΛ0.4全基因序列; PCR反应条件: 96°C预变性 lmin, 98°C变性 10s,54°C复性 15s, 72°C延伸 30s, 30个循环; 72°C延伸 lOmin; PCR产物经胶回收 试剂盒纯化进行纯化。
(3 ) 构建重组质粒 Mtbl0.4- pET-30a(+): 用 Nde I和 Sac I双酶切纯化后 Mtbl0.4基因 和质粒 pET30a, 在 T4连接酶的作用下将两者进行连接, 转化入 E.Coli DH5a中, 构建重组 质粒 Mtbl0.4-pET-30a(+;>, PCR验证筛选阳性克隆进行测序鉴定。 (见鉴定结果序列表)
(4 ) PCR扩增 Hspl6.3基因: 以结核杆菌标准毒株(H37Rv) DNA为模板,用 Hspl6.3F 和 Hspl6.3R扩增 Hspl6.3基因片段; PCR反应条件: 96°C预变性 lmin,98°C变性 10s, 55 °C 复性 20s, 72°C延伸 30s, 30个循环; 72°C延伸 10min。 PCR产物经胶回收试剂盒纯化。
( 5 ) 构建重组质粒 Mtbl0.4-Hspx- pET-30a(+): 用 Sac I和 Hindlll双酶切纯化后 Hspx 基因和重组质粒 Mtbl0.4-pET-30a(+), 分别纯化后用 T4 连接酶进行连接, 转化入 E.Coli DH5a, 克隆构建重组质粒 Mtbl0.4-Hspx- pET-30a(+)。 PCR验证筛选阳性克隆进行测序鉴定。
(见鉴定结果序列表)
2、 MH蛋白 (分子量为 26.7 x 103 ) 的表达 (见氨基酸序列表)
( 1 ) 从以上 E.Coli 中的 pET30a-Mtbl0.4-Hspl6.3 ( DH5a ) 提取重组质粒 pET30a- Mtbl0.4-Hspl6.3 , 转化入 E.Coli BL21(DE3)中, PCR验证筛选阳性克隆进行测序鉴定 (北京 华大基因科技完成测序), 即为保存菌种 pET30a- Mtbl0.4-Hspl6.3 ( BL21 )。
(2 ) 活化表达 MH蛋白的 E.coli BL-21菌体, 取 lml活化后菌体加入 200mlLB培养基 中震荡培养 3hl0mim至 OD600nm达到约 0.6; 加入 IPTG(1.0mmol/L)100ul; 25 °C诱导振荡培 说 明 书 养 12h; 4°C 10000rpm/min离心 lOmin收集菌体; 菌体重悬于 PB缓冲液 (Na2HP04'12H20 20mMol/L, Na2HP0412H2020mMol/L, PH7.4) lOml/g湿菌, 冰浴下超声破碎细菌 lh(180〜 200 W, 超声 4s 停 5s); lOOOOrpm/min离心 20min 后分别收集上清和沉淀, 将上清和沉淀分 别进行聚丙烯酰胺凝胶电泳; 经 SDS-PAGE电泳分析, 与 BL21空菌相比, 分子量在 26.7 D 左右有明显的特异蛋白表达条带, 以上清形式表达为主, 沉淀中蛋白很少。 (见蛋白表达结果 序列表)。
3.MH蛋白 (分子量为 26.7χ103) 的纯化
(1) 配制以下缓冲液: I液 20mM PB (pH7.4); II液 20mM PB+1M NaCl (pH7.4); III液 20mM PB+2M NaCl (pH7.4); 缓冲液均用 0.45um滤器过滤除菌;
(2) 大量表达融合蛋白 MH, 收集的菌体重悬于 20mMPB缓冲液中, 冰浴下超声破碎 lh左右, 4°C/10,000rpm离心 lOmin, 离心后收集含 MH蛋白的上清; 上清用 0.45um滤器过 滤除菌;
(3) 第一步纯化: 离子交换层析; 选用季钹基交联琼脂糖高柱效介质 (Q Sepherose High Performance) (注: 强阴离子交换柱) 进行纯化, 收集不同梯度洗脱液进行聚丙烯 酰胺凝胶 (SDS-PAGE) 分析得初步纯化物;
(4) 第二步纯化: 疏水层析; 经过离子交换层析初步纯化后的蛋白, 加入等体 积的 III液, 使蛋白含高盐上柱,选用丁基交联琼脂糖高柱效介质 (Butyl Sepherose High Performance)进行纯化, 收集不同梯度洗脱液进行聚丙烯酰胺凝胶
(SDS-PAGE) 电泳分析得二步纯化物;
(5)第三歩纯化: 凝胶过滤层析; 将经过离子交换层析和疏水层析两步纯化后的蛋白, 选用凝胶过滤介质 Superdex 75 pre grade (superdex为交联琼脂糖和葡萄糖的符合填料; 分离 范围为: 3000〜70000)进行纯化, 收集不同梯度洗脱液进行聚丙炼酷胺凝胶(SDS-PAGE) 电泳分析得最终纯化物; (纯化结果见附图 1)
(6) 将最终得到的蛋白纯化物测定浓度之后即可使用。 二、 融合蛋白 MH免疫活性检测方法 说 明 书
1 实验材料: MH蛋白; Hspl6.4蛋白、己二酸二癸酯(DDA)、海藻糖二霉菌酸月旨 ( TDM ); 卡介苗 (BCG)、 磷酸盐缓冲液 (PBS );
2 实验动物: C57BL/6小鼠;
3 实验动物分组 (共四组):
A: PBS;
B: BCG;
C: MH+DDA+TDM;
D: Hspl6.3+DDA+TDM;
4制备蛋白和佐剂混合疫苗:
将融合蛋白 Mtbl 0.4-Hspx(MH)和 Hspl 6.3蛋白分别用用 PBS稀释到 0.2mg/ml; DDA和 TDM用氯仿-甲醇溶液(氯仿: 甲醇 =9: 1 )溶解,氮气吹干(使氯仿-甲醇溶液挥发完全)、 用低温冷冻干燥仪将吹干后的薄膜过夜干燥成粉末状, PBS 重悬粉末 (DDA 终浓度为 5mg/ml,TDM终浓度为 lmg/ml), 60 °C 水浴 20分钟溶解粉末, 冷却到室温待用。 将溶 解好的蛋白、 DDA、 TDM按 2: 1: 1比例混合均匀即可使用。
5免疫动物:
第 1周用制备好的混合疫苗 (MH+DDA+TDM和 Hspl 6.3+DDA+TDM)腹股沟皮下免疫实 验组动物一次 (200μ1/只), 同时免疫对照组 PBS和 BCG组 (5 x l06CFU /只); 实验组动物初 次免疫后分别在第 3、6周用制备好的混合疫苗腹股沟皮下相同剂量加强免疫动物 ( 200μ1/只)。 6 免疫指标测定方法
( 1 ) 细胞免疫检测
应用 ELISA方法检测了免疫小鼠脾脏淋巴细胞分别针对特异性抗原分泌 IFN-γ和 IL-17 的水平。 小鼠末次免疫 6W后无菌分离脾脏淋巴细胞, 特异性抗原和脾细胞在 24板中共同孵 育 68小时后, 收集细胞培养上清, 用 ELISA计数检测脾脏淋巴细胞在 Hspl6.3蛋白, PPD 蛋白刺激后 IFN-γ的表达。 具体歩骤: 无菌摘除脾脏, 研磨后经 200 目尼龙网过滤, 用淋巴 细胞分离液分离淋巴细胞。将分离出的淋巴细胞加入到 24孔细胞培养板中,终浓度为 5χ 106, 分别给予 Hspl6.3蛋白(10ug/ml), PPD蛋白(10ug/ml)刺激。在 37°C、 5%C02条件下共同孵育 68时后, 收集细胞培养上清。将细胞培养上清加入到 96孔 ELISA板中, lOOul/孔, 按 ELISA 说明依次加入检测抗体等试剂,洗板、显色、终止反应、酶标仪读板、根据标准曲线求的 IFN-r 的数值 (pg/ml )。
结果显示: PBS、 BCG、 MH+DDA+TDM H+DDA+TDM四组结果进行比较, 重组 MH 说 明 书 蛋白与 DDA和 TDM佐剂结合组, 在 Hspl6.3蛋白, PPD蛋白刺激后, 脾细胞分泌 IFN-γ的 水平明显高于 PBS组和 BCG 组, 具有明显统计学差异 (PO.05); 与单个抗原 H+DDA+TDM 组相比无明显统计学差异 (P>0.05), 表明可产生相同水平的 IFN-r。 结果证明本发明的融合蛋 白与佐剂 DDA和 TDM混合后可引起较强的细胞免疫反应,保留了单个抗原 Hspl6.3的免疫原 性。 (结果见附图 2-A、 2-B )
( 2 ) 体液免疫反应
用 ELISA法检测小鼠血清抗体表达水平。 用 Hspl6.3(5ug/ml)包被 96孔板 (ΙΟΟμΙ/well) 4°C过夜; 用 PBST溶液 300μ1Ανε11洗板 5次 x lmin /次; 从 1: 100 幵始至 1: 25600 ( IgG2b 和 IgG2c) 或从 1: 1600开始到 1: 509600 ( IgGl ), 加入对倍稀释的血清样品, 37°C放置 1 h。洗板后,加入 200μ1/\νε11的 1: 15000稀释的兔抗鼠 IgGl、 1: 10000稀释的兔抗鼠 IgG2b、 1: 5000稀释的兔抗鼠 IgG2c, 37°C放置 lh。 洗板后, 加入 ΙΟΟμΙ/well TMB显色液, 室温避 光反应 15分钟显色后, 加入 50μ1/\νε11终止液 (2Ν的 H2S04)终止反应; 在 450nm检测 OD 值。
结果显示: PBS、 BCG、 MH+DDA+TDM> H+DDA+TDM四组结果进行比较, 重组 MH 蛋白与 DDA和 TDM佐剂结合组,针对抗原 Hpsl 6.3所产生的特异性抗体 IgGl、IgGb和 IgGc 的水平明显高于 PBS、 BCG和单个抗原 H+DDA+TDM组。
此结果显示本发明的融合蛋白可刺激机体产生抗原 Hspl6.3特异性抗体, 具有较强的体 液免疫反应, 说明抗原融合后保留了原单个抗原 Hspl6.3 的免疫原性。 (结果见附图 3-A、 3-B、 3-C )
三、 加强 BCG效应及保护力评价
1 实验材料: MH蛋白; 己二酸二癸酯 (DDA)、 海藻糖二霉菌酸脂 (TDM); 卡介苗
( BCG )、 磷酸盐缓冲液 (PBS );
2 实验动物: C57BL/6小鼠;
3 实验动物分组 (共三组):
A: PBS
B: BCG
C: BCG/MH+DDA+TDM
4制备疫苗:
将融合蛋白 Mtb0.4-Hspx(MH)用 PBS稀释到 0.2mg/ml; DDA和 TDM用氯仿-甲醇溶液 (氯仿: 甲醇 =9: 1 ) 溶解, 氮气吹干 (使氯仿-甲醇溶液挥发完全)、 用低温冷冻干燥仪 说 明 书
. 将吹干后的薄膜过夜干燥成粉末状, PBS重悬粉末 (DDA终浓度为 5mg/ml,TDM终浓度 为 lmg/ml), 60°C 水浴 20分钟溶解粉末, 冷却到室温待用。 将溶解好的蛋白、 DDA、 TDM按 2: 1: 1比例混合均匀即可使用。
免疫动物:
第 1周卡介苗 (BCG) 5x l06CFU腹股沟皮下免疫动物一次; 卡介苗 (BCG) 初次免疫 后分别在第 12、 14周用制备好的蛋白疫苗腹股沟皮下免疫动物 (200μ1/只)。
、 免疫指标测定方法
小鼠最后一次蛋白、 苗免疫 6周后分别进行细胞免疫和体液免疫检测。
( 1 ) 细胞免疫检测
应用 ELISPOT方法检测了免疫小鼠脾脏淋巴细胞分别针对特异性抗原分泌 IFN-γ和 IL-17的水平。 IFN-γ和 IL-17的分泌水平与结核病的保护性免疫反应成正相。最后一次免疫 小鼠 6周后无菌分离脾脏淋巴细胞, 应用酶联免疫斑点实验(ELISPOT)技术检测脾脏淋巴 细胞在 Mtbl0.4 CD8+ T cell抗原表位, Hspl6.3蛋白, PPD蛋白刺激后 IFN-γ和 IL-17的表 达。
具体步骤: 96孔板预先用 IFN-γ抗体和 IL-17抗体包被过夜,无菌摘除脾脏,研磨后经 200 目尼龙网过滤, 用淋巴细胞分离液分离淋巴细胞。 将分离出的淋巴细胞加入 96孔 ELISPOT 板中, 终浓度为 5x 106/空, 分别给予 bl0.4 CD8+ T cell 抗原表位 ( 5ug/ml ), HSP16.3蛋 白(10ug/ml), PPD 蛋白(10ug/ml)刺激。 在 37°C、 5%C02条件下共同孵育 48 小时后, 按 ELISPOT操作说明依次加入检测抗体等试剂, 洗板、 显色, 计数斑点数。
结果显示: PBS 、BCG 、 BCG/MH+DDA+TDM 三组结果进行比较重组 MH蛋白与 DDA 和 TDM佐剂结合组, 在 Mtbl0.4 CD8+ T cell抗原表位, HSP16.3蛋白, PPD蛋白刺激后, 脾细胞分泌 IFN-γ和 IL-17的水平明显高于 PBS组和 BCG 组。结果证明丰发明的融合蛋白 与佐剂 DDA和 TDM混合后可引起较强的细胞免疫反应。(见附图 4-A、 4-B、 4-C、附图 5-A、 5-B )
(2 ) 体液免疫反应
用 ELISA法检测小鼠血清抗体表达水平。 -用 Hspl6, (5u§/ml)^被 孔 , .GiQQi^lAyell ) 4°C过夜, 用 PBST溶液 300μ1Ανε11洗板 5次 x lmin/次, 从 1: 100 开始至 1: 25600 ( IgG2b 和 IgG2c ) 或从 1: 1600幵始到 1: 509600 ( IgGl ),、加入对倍稀释的血清样品, 37°C放置 1 h。洗板后,加入 200μ1Ανε11的 1: 15000稀释的兔抗鼠 IgGl、 1: 10000稀释的兔抗鼠 IgG2b、 1: 5000稀释的兔抗鼠 IgQ .c, 37°C放置 lh。 洗板后, 加入 ΙΟΟμΙ/well TMB显色液,,室温避 说 明 书
光反应 15分钟显色后, 加入 50μ1Λνε11终止液 (2Ν的 H2S04)终止反应; 在 450nm检测 OD 值。
结果显示: PBS、 BCG、 BCG/MH+DDA+TDM三组结果进行比较,重组 MH蛋白与 DDA 和 TDM佐剂结合组, Hpsl6.3所产生的特异性抗体 IgGl、IgGb和 IgGc的水平明显高于 PBS 和 BCG 组。 此结果表明本发明的融合蛋白可刺激机体产生较强的体液免疫反应。 (见附图 6-A、 6-B、 6-C )
7、 攻毒后免疫小鼠组织的结核菌载量
具体步骤: 给每组小鼠攻击等量的结核菌毒株 H37Rv后 6周, 解剖所有的小鼠, 计算肺 脏中结核菌的数量, 用来评价本专利的融合蛋白 MH的动物保护效果。
结果显示,在小鼠肺脏中, BCG/MH+DDA+TDM组的结核菌量明显少于 PBS组(P=0.00) 和 BCG组 (P=0.069 )。 (细菌载量结果见附图 7 )
最后应说明的是: 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 尽管 参照前述实施例对本发明进行了详细的说明, 对于本领域的技术人员来说, 其依然可以对前 述各实施例所记载的技术方案进行修 ¾, 或者 分技术特征进. 等 替^。,凡奄本发 明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围 之内。

Claims

权 利 要 求 书
1、 结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3的构建、 表达和纯化方法, 其特征在于: 首先,将 Mtbl0.4和 Hspl6.3基因进行 PCR扩增并依次插入到克隆载体的多克隆位点中, 构建重组载体;
然后将上述重组载体在大肠杆菌中表达融合蛋白 Mtbl0.4-Hspl6.3 ;
最后根据融合蛋白 Mtbl0.4-Hspl6.3的分子量、 电荷和亲和力进行纯化, 通过纯化得到 融合蛋白 Mtbl0.4-Hspl6.3。
2、根据权利要求 1所述的结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3的构建、表达和纯化 方法, 其特征在于所述的融合蛋白 Mtbl0.4- Hspl6.3的构建方法包括以下步骤:
( 1 )根据 GenBank中结核杆菌标准毒株 H37Rv的 MtblO.4和 Hspl6.3的基因序列, 设 计引物;
(2 ) PCR扩增 Mtbl0.4基因: 以结核杆菌标准毒株 H37Rv DNA为模板, 用 5'端特异 性引物 Mtbl0.4F和 3'端引物 Mtbl0.4R扩增 Mtbl0.4全基因序列;
PCR反应条件: 96°C预变性 lmin, 98°C变性 10s, 54°C复性 15s, 72 °C延伸 30s, 30个 循环; 72°C延伸 lOmin; PCR产物经胶回收试剂盒纯化进行纯化;
( 3 ) 构建重组质粒 Mtbl0.4- pET-30a: 用 Nde I和 Sac I双酶切纯化后的 Mtbl0.4基因 和质粒 pET30a, 在 T4连接酶的作用下将两者进行连接, 转化入 E.Coli DH5a (DH5a为大肠 杆菌 E.Coli的一个菌属) 中, 构建重组质粒 Mtbl0.4-pET-30a(+), PCR验证筛选阳性克隆进 行测序鉴定;
(4 ) PCR扩增 Hspl6.3基因:以结核杆菌标准毒株 DNA为模板,用 Hspl6.3F和 Hspl6.3R 扩增 Hspl6.3基因片段;
PCR反应条件: 96°C预变性 lmin, 98°C变性 10s, 55°C复性 20s, 72°C延伸 30s, 30个 循环; 72°C延伸 lOmin; PCR产物经胶回收试剂盒纯化;
( 5 )构建重组质粒 Mtbl0.4-Hspx-pET-30a(+): 用 Sac I和 HindlU双酶切纯化后 Hspx基 因和重组质粒 Mtbl0.4-pET-30a(+), 分别纯化后用 T4连接酶进行连接, 转化入 E.Coli DH5a, 克隆构建重组质粒 Mtbl0.4-Hspx- pET-30a(+); PCR验证筛选阳性克隆进行测序鉴定。
3、根据权利要求 1所述的结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3的构建、表达和纯化 方法, 其特征在于所述的融合蛋白 Mtbl0.4-Hspl6.3的表达方法包括以下步骤:
( 1 ) 从以上 E.Coli pET30a-Mtbl0.4-Hspl6.3提取重组质粒 pET30a- Mtbl0.4-Hspl6.3 , 转化入 E.Coli中, PCR验证筛选阳性克隆进行测序鉴定;
(2 ) 活化表达 MH蛋白的 E.coli菌体, 取活化后菌体加入培养基中震荡培养; 诱导振
权 利 要 求 书 荡培养, 离心收集菌体; 菌体重悬于缓冲液中, 冰浴下超声破碎细菌, 离心后分别收集上清 和沉淀, 将上清和沉淀分别进行聚丙烯酰胺凝胶电泳。
4、根据权利要求 1所述的结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3的构建、表达和纯化 方法, 其特征在于所述的融合蛋白 Mtbl0.4-Hspl6.3的纯化方法包括以下步骤:
( 1 )配制以下缓冲液: I液 20mM PB; II液 20mM PB+1M NaCl; III液 20mM PB+2 M NaCl; 缓冲液均用滤器过滤除菌;
( 2 ) 大量表达融合蛋白 MH, 收集的菌体重悬于缓冲液中, 冰浴下超声破碎, 离心后 收集含 MH蛋白的上清, 上清用滤器过滤除菌;
( 3 ) 第一步纯化离子交换层析: 选用强阴离子交换柱 Q介质进行纯化, 收集不同梯度 洗脱液进行 SDS-PAGE分析得初步纯化物;
(4 ) 第二步纯化疏水层析: 经过离子交换层析初步纯化后的蛋白, 加入等体积的 ΠΙ液, 使蛋白含高盐上柱, 选用 Butyl HP柱进行纯化, 收集不同梯度洗脱液进行 SDS-PAGE分析得 二步纯化物;
( 5 ) 第三步纯化凝胶过滤层析: 将经过离子交换层析和疏水层析两步纯化后的蛋白, 选用 superdeX 75 柱进行纯化, 收集不同梯度洗脱液进行 SDS-PAGE分析得最终纯化物;
(6 ) 将最终得到的蛋白纯化物测定浓度之后即可使用。
5、 结核分枝杆菌融合蛋白 Mtbl0.4-Hspl6.3在结核亚单位疫苗中的应用。
PCT/CN2011/001090 2010-12-29 2011-07-01 结核分歧杆菌抗原的融合蛋白的制备及其应用 WO2012088739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010106133206A CN102154324B (zh) 2010-12-29 2010-12-29 结核分枝杆菌融合蛋白Mtb10.4-Hsp16.3的构建、表达和纯化方法及其应用
CN201010613320.6 2010-12-29

Publications (1)

Publication Number Publication Date
WO2012088739A1 true WO2012088739A1 (zh) 2012-07-05

Family

ID=44435996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001090 WO2012088739A1 (zh) 2010-12-29 2011-07-01 结核分歧杆菌抗原的融合蛋白的制备及其应用

Country Status (2)

Country Link
CN (1) CN102154324B (zh)
WO (1) WO2012088739A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999865A (zh) * 2021-10-09 2022-02-01 安徽理工大学 结核分枝杆菌融合蛋白ar2及其构建与表达纯化方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112103A1 (en) * 2012-01-27 2013-08-01 Peas Institut Ab Method of detecting tuberculosis
CN103203018A (zh) * 2013-03-27 2013-07-17 兰州大学 一种结核亚单位疫苗复合佐剂、以其构建的结核亚单位疫苗及制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061534A2 (en) * 2003-12-23 2005-07-07 Statens Serum Institut Improved tuberculosis vaccines
CN101090974A (zh) * 2004-11-16 2007-12-19 克鲁塞尔荷兰公司 包含重组病毒载体的多价疫苗

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1629185B (zh) * 1998-04-07 2011-11-02 科里克萨公司 结核杆菌抗原融合蛋白及其应用
CN101654477A (zh) * 2008-08-21 2010-02-24 兰州大学 结核分枝杆菌融合蛋白的构建及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061534A2 (en) * 2003-12-23 2005-07-07 Statens Serum Institut Improved tuberculosis vaccines
CN101090974A (zh) * 2004-11-16 2007-12-19 克鲁塞尔荷兰公司 包含重组病毒载体的多价疫苗

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIETRICH, J. ET AL.: "Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy", JOURNAL OF IMMUNOLOGY, vol. 174, no. 10, 15 May 2005 (2005-05-15), pages 6332 - 6339 *
SURAJ, B. S. ET AL.: "Tuberculosis subunit vaccine development: impact of physicochemical properties of mycobacterial test antigens", VACCINE, vol. 25, no. 9, 2007, pages 1553 - 1566 *
YANG, W. ET AL.: "Expression, purification and identification of the fusion protein Ag85B-Hsp16.3 of MycobacteriuYn tuberculosis", CHINESE JOURNAL OF ZOONOSES, vol. 26, no. 10, October 2010 (2010-10-01), pages 953 - 956 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999865A (zh) * 2021-10-09 2022-02-01 安徽理工大学 结核分枝杆菌融合蛋白ar2及其构建与表达纯化方法和应用
CN113999865B (zh) * 2021-10-09 2023-06-16 安徽理工大学 结核分枝杆菌融合蛋白ar2及其构建与表达纯化方法和应用

Also Published As

Publication number Publication date
CN102154324A (zh) 2011-08-17
CN102154324B (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
Zhu et al. Tuberculosis vaccines: Opportunities and challenges
Da’Dara et al. DNA-based vaccines protect against zoonotic schistosomiasis in water buffalo
CN105377879B (zh) 针对衣原体属物种的疫苗
Li et al. Immunogenicity and protective efficacy of a fusion protein vaccine consisting of antigen Ag85B and HspX against Mycobacterium tuberculosis infection in mice
WO2007079684A1 (en) A mycobacterium tuberculosis fusion protein and uses thereof
De Amicis et al. Analysis of the coverage capacity of the StreptInCor candidate vaccine against Streptococcus pyogenes
CN102836425A (zh) 包含潜伏感染阶段期间所表达的抗原的结核疫苗
de la Maza et al. Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go?
JP2008179646A (ja) 生物材料およびその使用
CN109456393B (zh) 肺炎链球菌蛋白在抗肺炎链球菌感染中的应用
Yuan et al. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection
Clow et al. PilVax, a novel Lactococcus lactis‐based mucosal vaccine platform, stimulates systemic and mucosal immune responses to Staphylococcus aureus
Fan et al. Differential immunogenicity and protective efficacy of DNA vaccines expressing proteins of Mycobacterium tuberculosis in a mouse model
WO2012126149A1 (zh) 结核杆菌融合蛋白及其制备方法和应用
CN104098700B (zh) 结核分枝杆菌融合蛋白eammh、其构建、表达和纯化方法及其应用
Fan et al. Construction and immunogenicity of a T cell epitope-based subunit vaccine candidate against Mycobacterium tuberculosis
Sharma et al. Immune response characterization and vaccine potential of a recombinant chimera comprising B-cell epitope of Aeromonas hydrophila outer membrane protein C and LTB
CN103266119B (zh) 一种结核杆菌三抗原融合基因疫苗及其制备方法和应用
WO2012088739A1 (zh) 结核分歧杆菌抗原的融合蛋白的制备及其应用
Luo et al. Fusion protein Ag85B-MPT64190–198-Mtb8. 4 has higher immunogenicity than Ag85B with capacity to boost BCG-primed immunity against Mycobacterium tuberculosis in mice
Liang et al. Immunogenicity and therapeutic effects of latency-associated genes in a Mycobacterium tuberculosis reactivation mouse model
CN116763911A (zh) 含结核分枝杆菌潜伏期分泌抗原HspX的亚单位疫苗
CN112979825A (zh) 结核分枝杆菌融合蛋白lt29构建及其表达纯化方法和应用
EP2929893A1 (en) Adjuvant for mucous membrane vaccine
CN101248084B (zh) 包含潜伏感染阶段期间所表达的抗原的结核疫苗

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853996

Country of ref document: EP

Kind code of ref document: A1