WO2012126149A1 - 结核杆菌融合蛋白及其制备方法和应用 - Google Patents

结核杆菌融合蛋白及其制备方法和应用 Download PDF

Info

Publication number
WO2012126149A1
WO2012126149A1 PCT/CN2011/001071 CN2011001071W WO2012126149A1 WO 2012126149 A1 WO2012126149 A1 WO 2012126149A1 CN 2011001071 W CN2011001071 W CN 2011001071W WO 2012126149 A1 WO2012126149 A1 WO 2012126149A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
mycobacterium tuberculosis
protein
vaccine
gene
Prior art date
Application number
PCT/CN2011/001071
Other languages
English (en)
French (fr)
Inventor
祝秉东
辛奇
胡丽娜
王秉翔
达泽蛟
牛红霞
刘万波
唐克峰
高娃
景涛
Original Assignee
兰州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兰州大学 filed Critical 兰州大学
Publication of WO2012126149A1 publication Critical patent/WO2012126149A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/04Mycobacterium, e.g. Mycobacterium tuberculosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • A61P31/06Antibacterial agents for tuberculosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/35Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a Mycobacterium tuberculosis fusion protein and a process for its preparation, and to its use in the preparation of a vaccine subunit vaccine.
  • Mycobacterium tuberculosis is a pathogen causing tuberculosis in humans and animals. Due to its unique biological characteristics, such as cell wall thickness, long growth cycle, latent infection and easy drug resistance, tubercle bacilli face great difficulties in drug treatment of tuberculosis. Although in the first half of the last century, BCG has been successfully developed to prevent tuberculosis, and special drugs for treating tuberculosis (such as isoniazid, rifampic), but by the end of the last century, tuberculosis is still a global infection and infection. The first "killer" of the disease. And with the global ravages of AIDS (HIV) and the emergence of multi- drug resistant strains, the situation of treating tuberculosis is even more severe.
  • HIV global ravages of AIDS
  • BCG tuberculosis
  • tuberculosis vaccines (1) recombinant BCG; (2) live attenuated vaccine against auxotrophic tuberculosis; and (3) tuberculosis subunit vaccine.
  • Subunit vaccines come in three forms: protein vaccines, DNA vaccines, and vaccine-based vaccines, of which protein vaccines are relatively safe and easily accepted.
  • tuberculosis subunit vaccines Antigen selection and construction of highly immunogenic tuberculosis vaccines is one of the primary issues to be addressed by tuberculosis subunit vaccines.
  • the results of the past two decades have shown that the protective antigens of Mycobacterium tuberculosis are mainly found in secreted proteins and cell walls.
  • Human immunogenic proteins such as the early secretory antigen target protein ESAT-6, the major secretory antigen Ag85B, and Mtb8.4, Mtb32, TB10. 4, MPT64 and 38kD proteins (PstS-1) were isolated from the culture filtrate. )Wait.
  • T cell protective antigens such as heat shock proteins HSP65, HSP70 and Mtb39.
  • HSP65, HSP70 and Mtb39 heat shock proteins
  • secretory antigens Ag85B and ESAT6 are considered to have the best immunoprotective capacity.
  • the fusion protein often constructed with various labels (such as His * Tag, GST - Tag, S ⁇ Tag, etc.), but did not consider whether the label carried will affect the animal experiment and Further recognition of clinical trials.
  • the object of the present invention is to provide a Mycobacterium tuberculosis fusion protein which is a protein of SEQ ID NO: 2 in the Sequence Listing, in view of the above-mentioned drawbacks in the prior art.
  • Another object of the present invention is to provide a gene encoding the above Mycobacterium tuberculosis fusion protein.
  • the gene encoding the fusion protein is a gene as follows 1) or 2):
  • a recombinant expression vector comprising the gene encoding the fusion protein described above, wherein the recombinant expression vector is a PET30a plasmid.
  • a host cell comprising the above recombinant expression vector, the host cell being Escherichia coli BL21.
  • a third object of the present invention is to provide a method for preparing the above Mycobacterium tuberculosis fusion protein, comprising the steps of:
  • step 2) vector into the host cell
  • the host cell obtained in the step 4) is treated to obtain the above Mycobacterium tuberculosis fusion protein and purified and expressed.
  • the coding gene is the nucleotide sequence shown in SEQ ID NO: 1; the recombinant expression vector is a PET30a plasmid; and the host cell is Escherichia coli BL21.
  • a fourth object of the present invention is to provide an application of the above Mycobacterium tuberculosis fusion protein in the preparation of a tuberculosis subunit vaccine.
  • the tuberculosis subunit vaccine is prepared by mixing and heating a PBS dilution of the above Mycobacterium tuberculosis fusion protein with an aqueous DDA solution and a TDM aqueous solution.
  • TDM 5 mg/ ⁇ ;
  • the TDM is formulated with water for injection 2. 5 mg / ml;
  • the mixture was heated to 80 ° C for 10 minutes in a water bath;
  • the volume ratio of each component in the tuberculosis subunit vaccine was PBS dilution of Mycobacterium tuberculosis fusion protein: DDA aqueous solution: TDM aqueous solution was 2: 1:1.
  • the main characteristics of the four antigens are as follows:
  • ESAT6 is an early secreted low molecular weight protein of Mycobacterium tuberculosis, which has good antigenic stimulation and can induce a strong T cell immune response and release high levels of IFN-V.
  • Ag85b belongs to the Mycobacterium tuberculosis antigen 85 complex family member. This family is the major secretory protein in short-terra culture filtrates (ST-CF). The experiment proves that the Ag85B gene is an important immunoprotective antigen of Mycobacterium tuberculosis.
  • the mice that were immunized with it obtained obvious specific humoral and cellular immune responses. After attacking the strain of Mycobacterium tuberculosis H37Rv with aerosol, they all obtained close to BCG. Immune protection.
  • Mpt64 is a secreted protein of Mycobacterium tuberculosis and is the main component of Mycobacterium tuberculosis ST-CF. It can account for 8% of the total protein in the supernatant of Mycobacterium tuberculosis medium. The relative molecular mass is 24KDa. Stimulate cellular immune response, It also induces humoral immune responses. In the immunogenic epitope of Mpt64 protein, we selected (190 ⁇ 198) this polypeptide as H-2D (b) restricted CD8 + T cell epitope. It is speculated that the addition of a specific CD8 + T cell antigen component may increase the overall protection rate of the vaccine.
  • Mtb8. 4 antigen can activate CD4+ T cells and CD8+ cytotoxic T lymphocyte (CTL)-mediated immune responses, and can induce partial protective effects in infected mouse models.
  • CTL cytotoxic T lymphocyte
  • the present invention provides for the construction and expression of a purified de-tag fusion protein ESAT6-Ag85B-Mpt64 19 (M98 -Mtb8.4 (EAMM) for the purpose of establishing an immune response against Mycobacterium tuberculosis to enhance the vaccine protection effect.
  • ESAT6-Ag85B-Mpt64 19 M98 -Mtb8.4 (EAMM)
  • the fusion protein EAMM and adjuvant are mixed as a tuberculosis subunit vaccine, which induces Thl-type cell-based immune response and humoral immune response, has strong immunogenicity and has good anti-tuberculosis protection effect.
  • Figure 1 shows the plasmid map of pET-30a.
  • Figure 2 shows the expression of purified protein EAMM in E. coli BL21.
  • FIG. 3 ELISA detection of spleen lymphocyte-specific antigen secretion IFN- ⁇ concentration in immunized mice.
  • Figure 4 ELISA detection of spleen lymphocyte-specific antigen secretion IL-17 concentration in immunized mice.
  • Figure 6 ELISA to detect serum Ag85B-specific IgG2b antibody levels in immunized mice.
  • Figure 7 ELISA to detect serum Ag85B-specific IgG2c antibody levels in immunized mice.
  • Figure 8 ELISA to detect serum ESAT-6-specific IgG1 antibody levels in immunized mice.
  • Figure 10 ELISA to detect serum ESAT-6-specific IgG2c antibody levels in immunized mice.
  • FIG. 11 ELISP0T detects IL-17 levels in the spleen lymphocyte-specific antigens of immunized mice.
  • ELISP0T detects spleen lymphocyte-specific antigen secretion of IFN- ⁇ levels in immunized mice.
  • Figure 14 ELISA detection of serum Ag85B-specific IgG2b antibody levels in immunized mice.
  • Figure 15 ELISA detection of serum Ag85B-specific IgG2c antibody levels in immunized mice.
  • Figure 16 shows the tuberculosis load of lung tissue after challenge in mice.
  • Figure 17 shows the spleen tissue Mycobacterium tuberculosis load after immunization in mice.
  • a novel de-tag fusion protein ESAT6-Ag85B-Mpt64 19 was constructed . - 198 - Mtb8. 4 (EAMM), and mixed it with adjuvant to construct a new tuberculosis subunit vaccine. material:
  • strain DH5 pET28a_AMM The source of the strain DH5 pET28a_AMM was successfully constructed and provided by the associate professor Zhu Bingdong of Lanzhou University.
  • the plasmid extraction kit was purchased from Shanghai Bio-Science Engineering Co., Ltd., and the rubber recovery kit was purchased from Dalian Baosheng Co., Ltd.
  • Fusion protein ESAT6-Ag85B-Mpt64, 9 . 198 - Mtb8. 4 The amino acid sequence of 190-198 of ESAT-6, Ag85B, Mpt64 and the Mtb8.4 gene were ligated into an E. coli expression vector, and expressed in E. coli to purify the protein of interest.
  • PCR amplification of the ESAT-6 gene Since the ESAT-6 gene is fused to express Ag85B-Mpt64 19 . - 198 - Mtb8. 4, so the ESAT-6 termination signal was removed when the primers were designed, and the ESAT-6 fragment was amplified using the 5'-end specific primer ESAT-6F and the 3'-end primer ESAT-6R.
  • the PCR reaction conditions were as follows: pre-denaturation at 96 ° C for 1 minute; denaturation at 98 ° C for 10 seconds, refractory at 60 Torr for 15 seconds, extension at 72 ° C for 30 seconds, 30 cycles.
  • the PCR product was purified and digested with Nde I and EcoR I, and cloned into plasmid PET30a (+).
  • the strain DH5 pET28a-AMM was cultured in the laboratory, the plasmid pET28a-AMM was extracted with the plasmid extraction kit, pET28a-AMM was digested with EcoR I and Hindm, and the purified AMM gene fragment was obtained by gel recovery using a gel recovery kit. .
  • the dialysis bag was pretreated, and a reconstituted solution of 6 M urea, 4 M urea, 2 M urea, 1 M urea, 0 M urea, 5000 ml each, and renaturation by gradient dialysis at 4 ° C was prepared.
  • the renatured protein was filtered through a 0.45 um filter, and the protein concentration (mg/ml) was determined, and the amount of protein loaded was determined based on the loading of the selected column.
  • Purification was carried out by ion exchange chromatography using a weak anion exchange column DEAE (purchased from GE Healthcare, model: HiTrap DEAE FF lml), and different gradient eluates were collected for SDS-PAGE analysis.
  • the finally obtained protein purified product can be used after being dialyzed in PBS.
  • Group of experimental animals C57BL/6 mice were randomly divided into 6 groups, 10 in each group.
  • the fusion protein ESAT6-Ag85B-Mpt64 19 will be used . — 198 - Mtb8. 4 (EAMM) diluted to 10 ug/50 ul in PBS; diluted fusion protein AMM to 10 ug/50 ul in PBS; Ag85B protein diluted to 10 ug/50 ul in PBS; ESAT-6 protein diluted to 10 ug in PBS/ 50 ⁇ ; DDA was prepared with water for injection 2. 5 mg / ml, heated at 80 ° C, lOmin water bath. TDM was prepared by using water for injection in a water bath of 2. 5 mg/ml, 80 ° C, lOmin. Take 50 ⁇ l of each DDA and TDM solution and mix well with an equal amount of 100 ⁇ l of EAMM protein, AMM protein, Ag85b protein or ESAT-6. Finally, the vaccine is homogeneously creamy.
  • Humoral immunity and cellular immunity were measured after 6 weeks of immunization of the last protein vaccine in mice.
  • Humoral immunoassay Serum antibody expression levels were determined by ELISA. With ESAT- 6 (5 ⁇ ⁇ / ⁇ 1) , Ag85B protein (5 ⁇ ⁇ / ⁇ 1), 96 well plates were coated overnight ( ⁇ / well) 4 ° C . Use PBST solution 30 ( ⁇ l/well (Lanzhou knot) The Nuclear Disease Research Center prepared) washing the plate, 5 times X5min/time. From 1:100 to 1:12800, serum samples diluted in PBS were added and placed at 37 ° C for 1 h. After washing the plate, add 20 ( ⁇ l/well of 1:15000 diluted rabbit anti-mouse IgG) 1:10000 diluted 1 ⁇ and 1:5000 diluted IgG 2e .
  • Group of experimental animals C57BL/6 mice were randomly divided into 4 groups, 10 in each group.
  • BCG BCG 5*10 6 CFU inguinal immunization of animals once, BCG immunized animals (200 ⁇ 1/only) with the prepared protein vaccine in the groin at 12 and 14 weeks after the initial immunization.
  • Humoral immunity and cellular immunity were measured after 6 weeks of immunization of the last protein vaccine in mice.
  • Humoral immunoassay Serum antibody expression levels were determined by ELISA. The plate was incubated with Ag85B protein (54 g/ml) in a 96-well plate (10 (l/well) at 4 ° C overnight. Wash the plate with PBST solution 30 ( ⁇ l/well 5 times X 5 min/time. From 1:100 to 1) :102400, add a double-diluted serum sample and place it at 37 ° C for 1 h. After washing the plate, add 20 (mi/well 1:15000 dilution of rabbit anti-mouse IgGl, 1:10000 diluted IgG2b and 1:5000 dilution IgG2c, placed at 37 ° C for 1 h.
  • the tuberculosis virulence standard strain H37Rv is provided by the Department of Immunology, Wuhan University. The strain attack and indicator observation experiments were carried out in the Biosafety Laboratory (P3) of the Animal Experimental Center of Wuhan University. After the vaccine was immunized for 10 weeks, each group of animals was exposed to the tail vein of HXRv solution 5 X 10 5 CFU. The mice were dissected for 6 weeks after exposure, and the spleen was dissected and the lungs were changed. The spleen and lung were half-pathologically sectioned, and pathological changes were observed under a microscope. The tissue sections were subjected to acid-fast staining to observe the presence of Mycobacterium tuberculosis in the tissues. The spleen and lungs were weighed and counted for bacterial quantitative culture.
  • the test results showed that the levels of IFN- ⁇ and IL-17 secreted by spleen lymphocytes in the EAMM vaccine group were higher than those in the BCG-only group after stimulation with the specific antigen Ag85B, ESAT-6 or PPD. This result indicates that BCG priming and EAMM subunit vaccine boosting can induce a strong Thl-type cellular immune response in mice.
  • the levels of IgG1, IgG2b, and IgG2c antibodies stimulated by Ag85B and ESAT-6 antigens were observed, and the EAMM vaccine booster group was higher than the BCG immunized group.
  • tuberculosis load analysis of the immunized mouse tissues after challenge was used to evaluate the protective effect of the EAMM subunit vaccine. Knot The results showed that BCG priming, TB vaccine enhanced TB load was significantly less than the PBS group and only BCG immunization group, indicating that the ability to clear M. tuberculosis is stronger, that is, the ability to fight tuberculosis is stronger. Microscopic observation by HE staining of tissue sections showed that the pathological damage of the lung tissue of mice after EBMM vaccine enhanced BCG was significantly reduced, and the tuberculosis in the tissues was almost absent. '

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pulmonology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

说 明 书 结核杆菌融合蛋白及其制备方法和应用 技术领域
本发明涉及一种结核杆菌融合蛋白和其制备方法, 以及其在制备结核亚单位疫苗中的应 用。
背景技术
结核杆菌是引起人类和动物结核病的病原菌, 结核杆菌由于其独特的生物特性, 如细胞 壁厚、 生长周期长、 多为潜伏感染和易于耐药等特点使结核病药物治疗面临很大的困难。 虽 然在上世纪上半叶, 己成功的研制出预防结核病的卡介苗(BCG) ,以及治疗结核病的特效药 物(如异烟肼, 利福平等) , 但到了上世纪末, 结核病仍然是全球感染和传染病的第一 "杀 手"。而且随着艾滋病(HIV)在全球的肆虐,以及结核多重抗药菌株(multi- drug resistant strains ) 的出现等诸多原因, 使得治疗结核病的形势更加严峻。
目前研制成功的唯一的能够预防结核病的疫苗——卡介苗, 虽然已在全球范围内广泛使 用, 但在近期研究中发现, 其许多临床试验结果并不是十分有效, 免疫预防效果不稳定,在 全球范围的免疫保护力检测,由 0-80%不等, 并且对成人几乎无效, 对已感染患者更是没有治 疗作用, 卡介苗并不是预防肺结核的理想疫苗, 研究和开发新的结核疫苗势在必行!
现阶段研究结核病疫苗主要有以下几种: (1 )重组 BCG; (2) 营养缺陷型结核杆菌减 毒活疫苗; (3 )结核亚单位疫苗。 亚单位疫苗又有三种形式: 蛋白质疫苗、 DNA疫苗和以病 毒为载体的疫苗, 其中蛋白质疫苗相对最为安全, 易于被人们接受。
抗原选择和构建高免疫原性的结核疫苗是结核亚单位疫苗要解决的首要问题之一。过去 二十多年的研究结果表明结核杆菌的保护性抗原主要存在于分泌蛋白和细胞壁中。人们相继 从培养滤液中分离出了有免疫原性的蛋白质, 如早期分泌抗原靶蛋白 ESAT-6、 主要分泌抗原 Ag85B、 以及 Mtb8. 4、 Mtb32、 TB10. 4、 MPT64和 38kD蛋白 (PstS- 1 )等。 除了分泌性蛋白, 一些胞壁蛋白也被证实是 T细胞保护性抗原, 如热休克蛋白 HSP65、 HSP70和 Mtb39等。 其中, 分泌性抗原 Ag85B和 ESAT6被认为具有最好的免疫保护力。 以往为了后期简便的纯化方法, 往 往构建成的融合蛋白带有各种标签(如 His * Tag, GST - Tag, S · Tag等) , 却未考虑所带有 的标签是否会影响到动物实验以及更进一步的临床学试验的认可。
发明内容
本发明的目的就是针对上述现有技术中的缺陷, 提供了一种结核杆菌融合蛋白, 是序列 表中序列 2的蛋白质。 本发明的另一个目的是提供一种上述的结核杆菌融合蛋白的编码基因。
所述融合蛋白的编码基因, 是如下 1 ) 或 2) 的基因:
a) 其核苷酸序列是序列表中的序列 1 ;
b) 在严格条件下与 a) 限定的 DNA序列杂交且编码所述融合蛋白的 DNA分子。
含有上述融合蛋白的编码基因的重组表达载体, 所述重组表达载体为 PET30a质粒。 含有上述重组表达载体的宿主细胞, 所述宿主细胞为大肠杆菌 BL21。
本发明的第三个目的是提供一种上述结核杆菌融合蛋白的制备方法, 包括有以下步骤:
1 ) 获得上述的结核杆菌融合蛋白的编码基因;
2) 将步骤 1 )得到的结核杆菌融合蛋白的编码基因导入重组表达载体;
3)将步骤 2)载体导入宿主细胞;
4) 培养步骤 3)得到的宿主细胞;
5) 将步骤 4) 得到的宿主细胞进行处理得到上述结核杆菌融合蛋白并纯化和表达。 所述编码基因为序列 1所示的核苷酸序列; 所述重组表达载体为 PET30a质粒; 所述宿 主细胞为大肠杆菌 BL21。
本发明的第四个目的是提供一种上述结核杆菌融合蛋白在制备结核亚单位疫苗中的应 用。
所述结核亚单位疫苗是将上述结核杆菌融合蛋白的 PBS稀释液与 DDA水溶液和 TDM水溶 液混合加热后制得的。
所述的结核杆菌融合蛋白为用 PBS稀释至 0. 2ug/ul; 所述 DDA用注射用水配制成 2. 5 mg/ml; 所述 TDM用注射用水配制成 2. 5 mg/ml; 所述加热为 80°C水浴加热 10分钟; 所述结 核亚单位疫苗中各组分的体积比为结核杆菌融合蛋白的 PBS稀释液: DDA水溶液: TDM水溶 液为 2: 1: 1。
本发明所选用的结核杆菌抗原 ESAT- 6、 Ag85B、 Mpt6419。_198、 Mtb. 8. 4均有较强的免疫保护 性, 且分别主要表达于生长期。 四个抗原主要特性如下:
( 1 ) ESAT6是结核杆菌早期分泌性低分子量蛋白, 具有良好的抗原剌激性, 能诱导机体 产生强烈 T细胞免疫应答和释放高水平 IFN- V。
(2) Ag85b属于结核杆菌抗原 85复合体家族成员.该家族是结核杆菌短期培养物的滤过 蛋白质 (short-terra culture filtrates, ST- CF)中的主要分泌性蛋白质。 实验证明 Ag85B 基因是重要的结核杆菌免疫保护性抗原.将其免疫小鼠,都获得了明显的特异性体液和细胞 免疫反应.在用气雾攻击结核杆菌 H37Rv毒株后,均获得了接近 BCG的免疫保护力。
( 3 ) Mpt64是结核杆菌的分泌性蛋白质,也是结核杆菌 ST-CF中的主要成分,可以占到结 核杆菌培养基上清滤过液中蛋白质总量的 8%.相对分子质量 24KDa,既能刺激细胞免疫反应, 又能诱导体液免疫反应.在 Mpt64蛋白的免疫原性表位中,我们选取了其(190〜198) 这段多 肽为 H-2D (b)限制性的 CD8 + T 细胞表位。 推测加入激活特异性的 CD8 + T 细胞抗原成分可 能提高疫苗的整体保护率。
(4) Mtb8. 4抗原可以激活 CD4+T细胞和 CD8+细胞毒性 T淋巴细胞 (CTL)介导的免疫反应, 在感染小鼠模型中可以诱导部分保护效果。
本发明所提供的构建并表达纯化去标签融合蛋白 ESAT6-Ag85B-Mpt6419(M98 - Mtb8. 4 (EAMM) , 目的是建立针对结核杆菌的免疫应答, 以提高疫苗保护效果。 本发明所构造的融 合蛋白 EAMM和佐剂混合作为结核亚单位疫苗, 诱导 Thl型细胞免疫为主的免疫反应和体液免 疫反应, 具有较强的免疫原性并且有很好的抗结核保护效果。
附图说明
图 1为 pET- 30a质粒图谱。
图 2为在大肠杆菌 BL21中表达纯化蛋白 EAMM。
其中, 1. EAMM上清, 2. EAMM沉淀, 3.纯化前的 EAMM, 4.未结合到 DEAE柱上的 EAMM蛋白,
5.纯化得到的 EAMM蛋白, 6. BL21空菌沉淀, 7. Marker。
图 3 ELISA检测免疫小鼠脾脏淋巴细胞特异性抗原分泌 IFN- γ浓度。
图 4 ELISA检测免疫小鼠脾脏淋巴细胞特异性抗原分泌 IL-17浓度。
图 5 ELISA检测免疫小鼠血清 Ag85B特异性 IgGl抗体水平。
图 6 ELISA检测免疫小鼠血清 Ag85B特异性 IgG2b抗体水平。
图 7 ELISA检测免疫小鼠血清 Ag85B特异性 IgG2c抗体水平。
图 8 ELISA检测免疫小鼠血清 ESAT-6特异性 IgGl抗体水平。
图 9 ELISA检测免疫小鼠血清 ESAT-6特异性 IgG2b抗体水平。
图 10 ELISA检测免疫小鼠血清 ESAT-6特异性 IgG2c抗体水平。
图 11 ELISP0T检测免疫小鼠脾脏淋巴细胞特异性抗原分泌 IL-17水平。
图 12 ELISP0T检测免疫小鼠脾脏淋巴细胞特异性抗原分泌 IFN- γ水平。
图 13 ELISA检测免疫小鼠血清 Ag85B特异性 IgGl抗体水平。
图 14 ELISA检测免疫小鼠血清 Ag85B特异性 IgG2b抗体水平。
图 15 ELISA检测免疫小鼠血清 Ag85B特异性 IgG2c抗体水平。
图 16免疫小鼠攻毒后肺脏组织结核菌载量。
图 17免疫小鼠攻毒后脾脏组织结核菌载量。
具体实施方式
构建一种新型去标签融合蛋白 ESAT6-Ag85B- Mpt6419。-198- Mtb8. 4 (EAMM) , 并将其与佐剂 混合构建新型结核亚单位疫苗。 材料:
1、 引物:
5, -端特异性引物 ESAT-6F (5, -CGGCATATGACAGAGCAGCAGTGGAAT-3 ' );
3, -端引物 ESAT- 6R (5, -TTGGAATTCTGCGAACATCCCAGTGAC - 3, )0
2、 ESAT-6基因、 Ag85B、 Mpt64的 190-198位的氨基酸序列和 Mtb8. 4基因均査自 GenBanko
3、 Nde I和 EcoR I酶、 EcoR I和 Hindin酶购自上海生物生工工程有限公司。
4、 菌株 DH5 pET28a_AMM的来源由兰州大学祝秉东副教授克隆构建成功并提供。
5、 质粒提取试剂盒购自上海生物生工工程有限公司, 胶回收试剂盒购自大连宝生物有限公 司。
6、 E. coli BL21菌体由复旦大学王洪海教授惠赠。
实施例 1
一、 融合蛋白 EAMM的构建与表达纯化
融合蛋白 ESAT6- Ag85B- Mpt64,9。—198- Mtb8. 4就是将 ESAT- 6、 Ag85B、 Mpt64的 190-198位的 氨基酸序列以及 Mtb8. 4基因连接克隆构建大肠杆菌表达载体, 并在大肠杆菌中进行表达, 纯 化目的蛋白。
1.融合蛋白 ESAT6- Ag85B-Mpt6419。—198- Mtb8. 4 (EAMM) 的构建:
1) PCR扩增 ESAT- 6基因: 由于 ESAT-6基因后面要融合表达 Ag85B- Mpt6419。-198- Mtb8. 4, 所 以设计引物时把 ESAT-6终止信号去掉, 应用 5' -端特异性引物 ESAT-6F和 3' -端引物 ESAT - 6R 扩增 ESAT-6片断。 PCR反应条件如下: 96°C预变性 1分钟; 98°C变性 10秒, 60Ό复性 15秒, 72 °C 延伸 30秒, 30个循环。 PCR产物经纯化后,用 Nde I和 EcoR I双酶切,克隆构建在质粒 PET30a (+) 中。
2)纯化得到 Ag85B- Mpt6419。- 198- Mtb8. 4片段
培养实验室已有的菌株 DH5 pET28a- AMM,用质粒提取试剂盒提取质粒 pET28a- AMM, 用 EcoR I和 Hindm双酶切 pET28a-AMM后, 用胶回收试剂盒进行胶回收得到纯化的 AMM基因片 段。
3)构建 EAMM表达质粒: PCR产物经纯化后, ESAT-6片断被 Nde I和 EcoR I双酶切, 构 建入 pET30a相应的多克隆酶切位点, 构建质粒 pET30a ESAT- 6。 AMM融合基因片断克隆构建 入质粒 Pet30a ESAT-6中, 构建质粒 Pet30a ESAT6_Ag85B- Mpt64190_198- Mtb8. 4 , 酶切及测 序鉴定。
2. EAMM蛋白表达纯化
活化表达 EAMM蛋白的 £ co/i BL21菌体, 移入 1升培养基中振荡培养 2-3h至 A600值 为 0.6〜0.8; 加入 IPTG (0. 5raM) 37°C诱导振荡培养 4h; 4 V离心 (以下没有特殊说明, 均为 4 V ) 12000rpmX 10分钟收集细菌; 细菌重悬于 20mM PB缓冲液中, 冰浴下超声破碎细菌 90分钟 (200-300 W, 超声 1 sec停 1 sec) ; 12000 rpmX 10 min离心收集 EAMM包涵体, 用 8M尿素溶解。 预先处理透析袋, 配制复性液 6M尿素, 4M尿素, 2M尿素, 1M尿素, 0M尿 素, 各 5000ml, 4°C下进行梯度透析复性。用 0. 45um滤器过滤复性后的蛋白, 并测定蛋白浓 度 (mg/ml ) , 根据所选层析柱的载量, 计算确定蛋白的上样量。 用离子交换层析方法, 选 用弱阴离子交换柱 DEAE (购自于 GE Healthcare 公司, 型号为: HiTrap DEAE FF lml )进 行纯化, 收集不同梯度洗脱液进行 SDS-PAGE分析得到的纯化物。 将最终得到的蛋白纯化物, 在 PBS中进行透析后即可用。
二、 EAMM免疫活性特征检测
1、 实验材料: EAMM蛋白; AMM蛋白; Ag85B 蛋白; ESAT- 6 蛋白; Mtb8. 4蛋白; PPD蛋白 均为兰州结核病研究中心制备。 DDA和 TDM购自于购自美国 Sigma-Aldrich公司。
2、 实验动物: 雌性 C57BL/6小鼠
3、 实验动物分组: C57BL/6小鼠随机分为 6组, 每组 10只
A. PBS
B. BCG
C. EAMM+DDA+TDM
D. AMM+DDA+TDM
E. Ag85B +DDA+TDM
F. ESAT-6+DDA+TDM
①制备疫苗:
将融合蛋白 ESAT6-Ag85B- Mpt6419。—198- Mtb8. 4 (EAMM)用 PBS稀释至 10ug/50ul ; 将融合 蛋白 AMM用 PBS稀释至 10ug/50ul ; 将 Ag85B蛋白用 PBS稀释至 10ug/50ul ; ESAT-6 蛋白用 PBS稀释至 10ug/50ul; DDA用注射用水配制成 2. 5 mg/ml, 80°C、 lOmin水浴加热。 TDM用 注射用水配制成 2. 5 mg/ml, 80'C、 lOmin水浴加热。 取 DDA和 TDM溶液各 50 μ 1分别与等 量 lOOul的 EAMM蛋白、 AMM蛋白、 Ag85b蛋白或 ESAT-6充分混匀, 最后疫苗呈均一的乳油 状。
②免疫动物- 分别在第 1、 3、 6周用制备好的蛋白疫苗腹股沟皮下免疫动物 (200 μ 1/只) 。
③免疫指标测定:
小鼠最后一次蛋白疫苗免疫 6周后分别检测体液免疫和细胞免疫。
( 1 )体液免疫检测:取血清用 ELISA法检测血清抗体表达水平。用 ESAT- 6( 5μβ/πι1 ), Ag85B 蛋白 (5μ§/ηι1 ) , 包被 96孔板 ( ΙΟΟμΙ/well ) 4°C过夜。 用 PBST溶液 30(^l/well (兰州结 核病研究中心配制)洗板, 5次 X5min/次。 从 1:100 开始至 1:12800, 加入用 PBS对倍稀释 的血清样品, 37°C放置 1 h。洗板后,加入 20(^l/well的 1:15000稀释的兔抗鼠 IgG„ 1:10000 稀释的 1§ 和 1:5000稀释的 IgG2e. 37°C放置 lh。洗板后,加入 ΙΟΟμΙ/well T B显色液(兰 州结核病研究中心配制),室温避光反应 15分钟显色后,加入 5(^l/well终止液 (2Μ的 H2S04) 终止反应; 在 450nm检测 0D值。
(2)细胞免疫检测:细胞因子 IFN-Y及 IL-17的水平与结核病的保护性免疫反应相关。 应用酶联免疫吸附实验(ELISA) 方法检测免疫小鼠脾脏淋巴细胞分别针对特异性抗原分泌 IFN-y和 IL- 17的水平。小鼠最后一次免疫 6周后无菌分离脾脏,应用 ELISA技术检测脾细 胞受到 ESAT-6蛋白 (54g/ml) , Ag85B蛋白, Mtb8.4蛋白 (54g/ml) , PPD蛋白 (5 g/ml) 剌激后 IFN- γ及 IL- 17的分泌水平。
三、 EAMM加强 BCG免疫及保护效果检测
1.实验材料: 卡介苗 BCG; EAMM蛋白; AMM蛋白; Ag85B蛋白; ESAT- 6蛋白; PPD蛋 白; DDA、 TDM。
2.实验动物: 雌性 C57BL/6小鼠
3.实验动物分组: C57BL/6小鼠随机分为 4组, 每组 10只
A. PBS
B. BCG
C. BCG初免, EAMM亚单位疫苗加强免疫
D. BCG初免, A M亚单位疫苗加强免疫
4.制备疫苗- 将融合蛋白 ESAT6-Ag85B- Mpt6419Q198-Mtb8.4 (EAMM)用 PBS稀释至 10ug/50ul; 将融合 蛋白 AMM用 PBS稀释至 10ug/50ul。 取 DDA和 TDM溶液各 50 μ 1与等量 lOOul的 EAMM蛋白、 AMM蛋白充分混匀, 最后疫苗呈均一的乳油状。
5.免疫动物:
第 1周卡介苗(BCG) 5*106CFU腹股沟皮下免疫动物一次, BCG初次免疫后分别在第 12、 14周用制备好的蛋白疫苗腹股沟皮下免疫动物 (200μ1/只) 。
6.免疫指标检测:
小鼠最后一次蛋白疫苗免疫 6周后分别检测体液免疫和细胞免疫。
(1)体液免疫检测:取血清用 ELISA法检测血清抗体表达水平。用 Ag85B蛋白(54g/ml), 包被 96孔板(10( l/well)4°C过夜。用 PBST溶液 30(^l/well洗板 5次 X5min/次。从 1: 100 开始至 1:102400, 加入对倍稀释的血清样品, 37°C放置 1 h。 洗板后, 加入 20(mi/well的 1:15000稀释的兔抗鼠 IgGl, 1:10000稀释的 IgG2b和 1:5000稀释的 IgG2c, 37°C放置 lh。 洗板后, 加入 Ιθθμΐ/well TMB显色液, 室温避光反应 15分钟显色后, 加入 5(^l/well终止 液(2M的 H2S04)终止反应; 在 450nm检测 0D值。
(2) 细胞免疫检测: 应用酶联免疫斑点实验 (ELISP0T)方法检测免疫小鼠脾脏淋巴细 胞分别针对特异性抗原分泌 IFN- Y和 IL-17的细胞数。 ELISP0T板预先用 IFN- γ抗体和 IL-17抗体包被过夜,无菌摘除小鼠脾脏,研磨后经 200目尼龙网过滤,经淋巴细胞分离液分 离淋巴细胞。将分离的淋巴细胞加入到 ELISP0T板(购自荷兰 U-CyTech公司)中(5 X 106 / 孔, 分别给予 ESAT- 6 (8μ§/πι1 ),Ag85B蛋白 (5μ§ ) , PPD蛋白 ( 10μ8/πι1 )刺激。 37 °C、 5% C02条件下共同孵育 45小时后, 按 ELISP0T操作说明依次加入检测抗体等试剂, 洗 板、 显色, 分别进行斑点计数。
7.标准毒株攻击与指标观察实验:
结核杆菌毒力标准株 H37Rv由武汉大学免疫学教研室提供。 毒株攻击与指标观察实验均 在武汉大学动物实验中心生物安全实验室(P3)进行。疫苗完成免疫 10周后各组动物用 H37Rv 菌液 5 X 105 CFU尾静脉染毒。 染毒后 6周小鼠, 解剖观察脾, 肺大体变化。 脾, 肺一半作病 理切片, 并显微镜观察病理变化。 组织切片做抗酸染色, 观察组织中存在的结核杆菌。 脾、 肺称重, 并作细菌定量培养计数。
实验结果:
1.将结核杆菌四种具有明显免疫保护力的抗原基因连接在一起,形成新的重组基因。 选 用成熟的 ESAT- 6蛋白的基因, Ag85B蛋白的基因与 Mpt64抗原具 CD8+T细胞表位的一段肽段, 以 及 Mtb8. 4蛋白的基因连接在一起,在大肠杆菌载体内进行克隆表达, 纯化目的蛋白, 成功纯 化到了目的蛋白, 纯度达到 95%以上。
2. EAMM和 Ag85B, ESAT- 6免疫活性比较
特异性 Ag85B, ESAT-6抗体水平的检测结果表明, 融合蛋白 EAMM所诱导的抗体水平高于 单个 Ag85B抗原, ESAT-6抗原免疫所诱导的水平。结果表明针对单个抗原 Ag85B, ESAT-6刺激, EAMM和 Ag85B, ESAT- 6所诱导的细胞免疫水平(IFN- γ 和 IL-17分泌量)无明显差异, 但 EAMM 融合了多个抗原表位, 它在受到其它抗原(PPD,Mtb8. 4)刺激时还可以分泌 IFN- Y 和 IL-17细 胞因子。 因此, 总的来讲, 融合蛋白 EAMM能诱导较 Ag85B和 ESAT-6更强的体液和细胞免疫反 应, 是一理想的候选亚单位疫苗。
3.检测结果表明: 使用特异性抗原 Ag85B, ESAT-6或 PPD刺激后, EAMM疫苗组脾淋巴细胞 分泌 IFN- Y和 IL- 17的水平比仅 BCG免疫组的水平高。 此结果表明了 BCG初免, EAMM亚单位疫 苗加强免疫可以诱导小鼠产生较强的 Thl型细胞免疫反应。 观察分别用 Ag85B, ESAT- 6抗原刺 激后的 IgGl, IgG2b, 和 IgG2c抗体水平, EAMM疫苗加强免疫组的均高于 BCG免疫组。
4.攻毒后免疫小鼠组织的结核菌载量分析用来评价 EAMM亚单位疫苗加强的保护效果。 结 果显示 BCG初免, EAMM疫苗加强后的结核菌载量明显少于 PBS组和仅 BCG免疫组, 表明清除结 核分枝杆菌的能力较强, 即对抗结核病的能力较强。 从组织切片 HE染色后显微镜观察结果得 出, EAMM疫苗加强 BCG后小鼠肺组织的病理损伤明显减轻, 组织中结核菌几乎不见。 '

Claims

权 利 要 求 书
1、 一种结核杆菌融合蛋白, 是序列表中序列 2的蛋白质。
2、 权利要求 1所述的结核杆菌融合蛋白的编码基因。
3、如权利要求 2所述的基因, 其特征在于: 所述融合蛋白的编码基因, 是如下 1 )或 2) 的基因:
a)其核苷酸序列是序列表中的序列 1 ;
b )在严格条件下与 a) 限定的 DNA序列杂交且编码所述融合蛋白的 DNA分子。
4、 含有权利要求 2或 3所述融合蛋白的编码基因的重组表达载体, 所述重组表达载体 为 PET30a质粒。
5、 含有权利要求 4所述重组表达载体的宿主细胞, 所述宿主细胞为大肠杆菌 BL21。
6、 一种如权利要求 1所述的结核杆菌融合蛋白的制备方法, 其特征在于: 包括有以下 步骤:
1 ) 获得如权利要求 2所述的结核杆菌融合蛋白的编码基因;
2)将步骤 1 )得到的结核杆菌融合蛋白的编码基因导入重组表达载体;
3 )将步骤 2 )载体导入宿主细胞;
4)培养步骤 3)得到的宿主细胞;
5 )将步骤 4)得到的宿主细胞进行处理得到如权利要求 2所述的结核杆菌融合蛋白并纯 化和表达。
7、 如权利要求 6所述的制备方法, 其特征在于: 所述编码基因为序列 1所示的核苷酸 序列; 所述重组表达载体为 PET30a质粒; 所述宿主细胞为大肠杆菌 BL21。
8、 一种如权利要求 1所述的结核杆菌融合蛋白在制备结核亚单位疫苗中的应用。
9、 如权利要求 8所述的应用, 其特征在于: 所述结核亚单位疫苗是将如权利要求 1所 述的结核杆菌融合蛋白的 PBS稀释液与 DDA水溶液和 TDM水溶液混合加热后制得的。
10、 如权利要求 9所述的应用, 其特征在于: 如权利要求 1所述的结核杆菌融合蛋白为 用 PBS稀释至 0. 2ug/ul; 所述 DDA用注射用水配制成 2. 5 mg/ml ; 所述 TDM用注射用水配制 成 2. 5 mg/ml; 所述加热为 80°C水浴加热 10分钟; 所述结核亚单位疫苗中各组分的体积比 为结核杆菌融合蛋白的 PBS稀释液: DDA水溶液: TDM水溶液为 2: 1 : 1。
PCT/CN2011/001071 2011-03-22 2011-06-29 结核杆菌融合蛋白及其制备方法和应用 WO2012126149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110068820.0 2011-03-22
CN2011100688200A CN102180974B (zh) 2011-03-22 2011-03-22 一种结核杆菌融合蛋白及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2012126149A1 true WO2012126149A1 (zh) 2012-09-27

Family

ID=44567284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001071 WO2012126149A1 (zh) 2011-03-22 2011-06-29 结核杆菌融合蛋白及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN102180974B (zh)
WO (1) WO2012126149A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104721834A (zh) * 2013-12-20 2015-06-24 安徽理工大学 一种自噬靶向性核酸疫苗
CN104098700B (zh) * 2014-05-05 2017-06-16 兰州大学 结核分枝杆菌融合蛋白eammh、其构建、表达和纯化方法及其应用
CN104151433A (zh) * 2014-08-11 2014-11-19 兰州大学 一种结核分枝杆菌融合蛋白及其制备方法和应用
GB201619965D0 (en) * 2016-11-25 2017-01-11 Univ Of Bath The Immunogenic compositions comprising sbi protein and uses thereof
CN110590957B (zh) * 2019-09-11 2021-06-01 中国人民解放军总医院第八医学中心 一种融合蛋白及其在抗结核分枝杆菌的免疫保护中的应用
CN116769056B (zh) * 2023-07-07 2024-08-09 武汉大学 融合蛋白及纯化制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1579550A (zh) * 2003-08-08 2005-02-16 北京大学 一种结核杆菌核酸疫苗
WO2011013097A2 (en) * 2009-07-29 2011-02-03 Bernd Helmut Adam Rehm Polymer particles and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1793367A (zh) * 2005-10-27 2006-06-28 复旦大学 一种结核杆菌重组蛋白及其表达纯化方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1579550A (zh) * 2003-08-08 2005-02-16 北京大学 一种结核杆菌核酸疫苗
WO2011013097A2 (en) * 2009-07-29 2011-02-03 Bernd Helmut Adam Rehm Polymer particles and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, QING ET AL.: "Protective Efficacy of Mycobacterium tuberculosis Fusion Protein Subunit Vaccine as A booster to Enhance BCG Primed Immunity.", CHIN J BIOLOGICALS, vol. 23, no. 3, March 2010 (2010-03-01) *

Also Published As

Publication number Publication date
CN102180974B (zh) 2013-12-11
CN102180974A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
CN102836425B (zh) 包含潜伏感染阶段期间所表达的抗原的结核疫苗
JP4940479B2 (ja) マイコバクテリウム・ツベルクローシス融合蛋白質及びその応用
CN105377879B (zh) 针对衣原体属物种的疫苗
WO2012126149A1 (zh) 结核杆菌融合蛋白及其制备方法和应用
CN109456393B (zh) 肺炎链球菌蛋白在抗肺炎链球菌感染中的应用
CN112979825A (zh) 结核分枝杆菌融合蛋白lt29构建及其表达纯化方法和应用
Sharma et al. Immune response characterization and vaccine potential of a recombinant chimera comprising B-cell epitope of Aeromonas hydrophila outer membrane protein C and LTB
Tebianian et al. Cloning, expression, and immunogenicity of novel fusion protein of Mycobacterium tuberculosis based on ESAT-6 and truncated C-terminal fragment of HSP70
CN108330142B (zh) 一种具有免疫保护作用的美人鱼发光杆菌溶血素Hlych蛋白
CN116763911A (zh) 含结核分枝杆菌潜伏期分泌抗原HspX的亚单位疫苗
CN115920021A (zh) 一种结核亚单位疫苗及其制备方法
CN108794584B (zh) 一种胸膜肺炎放线杆菌免疫保护性抗原蛋白apjl_1380及其应用
CN116726155A (zh) 一种结核亚单位疫苗的构建,表达,纯化和应用
CN108840913B (zh) 一种胸膜肺炎放线杆菌免疫保护性抗原蛋白apjl_0922及其应用
CN101248084B (zh) 包含潜伏感染阶段期间所表达的抗原的结核疫苗
WO2012088739A1 (zh) 结核分歧杆菌抗原的融合蛋白的制备及其应用
CN111948387B (zh) 结核分枝杆菌抗原蛋白Rv1485在制备结核疫苗中的应用
CN104151433A (zh) 一种结核分枝杆菌融合蛋白及其制备方法和应用
CN111850003A (zh) 一种重组表达的多杀性巴氏杆菌硫胺素周质结合蛋白及应用
CN116063418B (zh) 结核分枝杆菌抗原组合物epdpa015及其制备方法与应用
CN111948399A (zh) 结核分枝杆菌抗原蛋白Rv1705c及其T细胞表位肽的应用
WO2011009771A2 (en) Immunogenic and therapeutic compositions for streptococcus suis
CN116769056B (zh) 融合蛋白及纯化制备方法和应用
US20240010690A1 (en) Oral vaccine, method of preparation and use thereof
Nosareva et al. Construction of an encapsulated ESAT-6-based anti-TB DNA vaccine and evaluation of its immunogenic properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861587

Country of ref document: EP

Kind code of ref document: A1