WO2012088711A1 - 一种可降解的塑料薄膜及其制备方法 - Google Patents

一种可降解的塑料薄膜及其制备方法 Download PDF

Info

Publication number
WO2012088711A1
WO2012088711A1 PCT/CN2010/080602 CN2010080602W WO2012088711A1 WO 2012088711 A1 WO2012088711 A1 WO 2012088711A1 CN 2010080602 W CN2010080602 W CN 2010080602W WO 2012088711 A1 WO2012088711 A1 WO 2012088711A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignosulfonate
film
density polyethylene
modified
polyethylene
Prior art date
Application number
PCT/CN2010/080602
Other languages
English (en)
French (fr)
Inventor
张玉苍
孙岩峰
何连芳
郭建国
Original Assignee
大连工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连工业大学 filed Critical 大连工业大学
Priority to PCT/CN2010/080602 priority Critical patent/WO2012088711A1/zh
Publication of WO2012088711A1 publication Critical patent/WO2012088711A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin

Definitions

  • the invention belongs to the technical field of organic polymer compounds, and relates to a preparation method of a polyolefin-based degradable polymer film.
  • Plastic bags made of plastic film are light, thin, impervious, strong, and low cost. They are a good packaging material. The use of plastic bags brings great convenience to people's lives. The dosage is getting larger and larger, but the used waste plastic bags are not easy to recycle and are not easy to be degraded. A large number of waste plastic bags have become a serious problem in the current polluted environment. In order to reduce the environmental pollution of plastic films, some degradable plastic films have been developed. At present, starch-based and polylactic acid-based biodegradable plastics are the most widely used materials, for example, Huang Mingfu et al. [1] activated montmorillonite (EMMT) with aminoethanol, and then thermoplasticized with formamide/aminoethanol.
  • EMMT activated montmorillonite
  • FETPS/EMMT biodegradable nanocomposites were successfully prepared by melt intercalation of starch (FETPS); Wu Chunhua et al [2] used cannabis starch and polyvinyl alcohol as raw materials under the action of formaldehyde, gelatin and borax crosslinkers. A degradable plastic film with good water resistance and mechanical properties was prepared. DSRosa et al [3] prepared a degradable film by blending three different amylose starches with poly- ⁇ -caprolactone (PCL). In recent years, biodegradable plastics at home and abroad have developed rapidly and become the focus of sustainable and circular economy development. Whether it is from energy substitution, carbon dioxide reduction, or environmental protection.
  • PCL poly- ⁇ -caprolactone
  • the basic component of lignosulfonate is a benzyl propyl hydrazine derivative, a structure having a C6-C3 hydrophobic skeleton and a sulfonic acid group and other hydrophilic groups, and is also a natural, renewable, fully degradable Shape polyphenol polymer. Therefore, the replacement of starch or polylactic acid with lignosulfonate is not only inexpensive, but also easy to obtain raw materials, and solves the problem that the lignosulfonate itself is contaminated with the environment. references
  • the technical proposal of the invention utilizes the lignosulfonate recovered from the waste liquid in the pulp and paper industry, and is epoxidized with the epichlorohydrin to prepare a degradable plastic film together with the linear polyethylene. The specific steps are as follows:
  • the plasticizer is dibutyl phthalate or dioctyl phthalate.
  • the compatibilizer is polyethylene grafted maleic anhydride or polyethylene vinyl acetate.
  • the preparation method comprises the following steps: accurately weighing the above raw materials according to the formula, mixing and hooking, granulating at 140 ⁇ 160 ° C through a co-rotating twin-screw granulator, cooling and dicing, and drying. At 140 ⁇ 160 °C, a film is formed by blow molding in a single-screw blown film machine to obtain a composite degradable plastic film.
  • the above raw materials in addition to the modified lignosulfonate, they are commercially available.
  • the composite film produced by the present invention Tensile strength 14.8 ⁇ 20.9MPa, elongation at break 69 ⁇ 235%. After 1 month of biodegradation, the mass is reduced by 18 ⁇ 30%, the tensile strength is reduced by 35 ⁇ 45%, and the elongation at break is reduced by 54 ⁇ 70%.
  • the lignosulfonate is modified by epoxidation and compounded with polyethylene to prepare a degradable plastic film; the product naturally degrades naturally; the lignosulfonate is a natural, renewable, complete Degraded amorphous polyphenolic polymer, modified starch lignin sulfonate instead of starch or polylactic acid, etc., not only cheap, easy to obtain raw materials, but also solves the environmental pollution of lignosulfonate in pulp and paper industry wastewater problem.
  • the preparation method is simple, easy to operate, and low in cost.
  • Polyethylene products such as film-grade linear low-density polyethylene and linear low-density polyethylene used in the examples were purchased from petrochemical plants such as Daqing Petrochemical, Maoming Petrochemical, and Zhonghai Shell; polyethylene grafted maleic anhydride and polyethylene vinyl acetate were purchased. From Dalian Haizhou Chemical Co., Ltd., Yangzi BASF and other chemical companies.
  • Preparation of modified lignosulfonate The dried lignosulfonate is dissolved in a NaOH solution having a concentration of 35 to 40%, wherein: the mass ratio of the NaOH solution to the lignosulfonate is 1: 1, and the mixture is heated and stirred in a water bath; After heating to 75 °C, add the epoxy chloropropene solution, the molar ratio of lignosulfonate to epichlorohydrazine is 1/10, stir at 75 °C under reflux for 4.5 h, then use methanol, go The product was repeatedly washed with ionized water to a pH of 7, and after drying under vacuum at 105 ° C, an epoxidized lignosulfonate was obtained.
  • the weight percentage of the film-grade linear low-density polyethylene is 60%
  • the weight percentage of the modified lignosulfonate is 30%
  • the weight percentage of dioctyl phthalate It is 10%.
  • Preparation method linear low density polyethylene, modified lignosulfonate and dioctyl phthalate are uniformly mixed in a high-speed stirrer, granulated by a co-rotating twin-screw granulator, cooled, pelletized, dried
  • the composite material is obtained by blow molding into a film in a single screw blown film machine.
  • the tensile strength was measured to be 14.8 MPa, and the elongation at break was 152%. After 1 month of biodegradation, the mass is reduced by 20%, the tensile strength is reduced by 35%, and the elongation at break is reduced by 60%.
  • Example 2 Example 2
  • Preparation of modified lignosulfonate The dried lignosulfonate is dissolved in a NaOH solution having a concentration of 35 to 40%, and the mass ratio of the NaOH solution to the lignosulfonate is 1:1.5, and the mixture is heated and stirred in a water bath; After adding to epichlorohydrin solution at 75 °C, the molar ratio of lignosulfonate to epichlorohydrin is 1/7.5, and the reaction is stirred at 75 °C under reflux for 4.5 h, and then repeated with methanol and deionized water. The product was washed to a pH of 7, and after vacuum drying at 105 ° C, an epoxidized lignosulfonate (LER:) was obtained.
  • LER epoxidized lignosulfonate
  • the variety and mass ratio of the raw materials used to make the degradable plastic 50% by weight of the film-grade linear low-density polyethylene, 40% by weight of the modified lignosulfonate, and the weight of the polyethylene-grafted maleic anhydride The percentage is 10%.
  • Preparation method linear low density polyethylene, modified lignosulfonate and polyethylene grafted maleic anhydride are uniformly mixed in a high-speed stirrer, granulated by a co-rotating twin-screw granulator, then cooled and diced, dried
  • the composite material is obtained by blow molding into a film in a single screw blown film machine.
  • the tensile strength was measured to be 15.2 MPa, and the elongation at break was 69%. After 1 month of biodegradation, the mass is reduced by 30%, the tensile strength is reduced by 45%, and the elongation at break is reduced by 70%.
  • Preparation of modified lignosulfonate The dried lignosulfonate is dissolved in a NaOH solution having a concentration of 35 to 40%, and the mass ratio of the NaOH solution to the lignosulfonate is 2:1, and the mixture is heated and stirred in a water bath; After the temperature is 75 °C, the epoxy chlorohydrazine solution is added, the molar ratio of lignosulfonate to epichlorohydrin is 1/5, and the reaction is stirred at 75 ° C under constant temperature for 4.5 hours, followed by methanol and deionized water. The product was repeatedly washed to a pH of 7, and after vacuum drying at 105 ° C, an epoxidized lignosulfonate (LER:) was obtained.
  • LER epoxidized lignosulfonate
  • the variety and mass ratio of the raw materials used for the production of degradable plastics 40% by weight of the film-grade linear low-density polyethylene, 30% by weight of the modified lignosulfonate, and the weight percentage of the polyvinyl acetate 30%.
  • Preparation method linear low density polyethylene, modified lignosulfonate and polyethylene vinyl acetate are uniformly mixed in a high-speed stirrer, granulated by a co-rotating twin-screw granulator, then cooled and pelletized, dried,
  • the composite material is obtained by blow molding into a single screw blown film machine.
  • the tensile strength was measured to be 16.4 MPa, and the elongation at break was 163%. After 1 month of biodegradation, the mass was reduced by 28%, the tensile strength was reduced by 40%, and the elongation at break was reduced by 60%.
  • Film grade linear low density polyethylene The weight percentage is 40%, the weight percent of the film grade low density polyethylene is 20%, the weight percentage of the modified lignosulfonate is 30%, and the weight percentage of the polyethylene grafted maleic anhydride is 10%.
  • Preparation method linear low density polyethylene, low density polyethylene, modified lignosulfonate and polyethylene grafted maleic anhydride are uniformly mixed in a high speed stirrer, and then granulated by a co-rotating twin-screw granulator The pellets are cooled, dried, and blown into a film in a single screw blown film machine to obtain a composite material.
  • the tensile strength was measured to be 18.7 MPa, and the elongation at break was 235%. After 1 month of biodegradation, the mass decreased by 22%, the tensile strength decreased by 38%, and the elongation at break decreased by 63%.
  • the modified lignosulfonate was prepared in the same manner as in Example 2.
  • the variety and mass ratio of the raw materials used to make the degradable plastic 30% by weight of the film-grade linear low-density polyethylene, 10% by weight of the film-grade low-density polyethylene, and the weight percentage of the modified lignosulfonate It is 30%, and the weight percentage of polyvinyl acetate is 30%.
  • Preparation method linear low density polyethylene, high density polyethylene, modified lignosulfonate and polyethylene grafted maleic anhydride are mixed in a high speed mixer, and then granulated by the same direction twin screw granulator After cooling, the pellets are dried, and blown into a film in a single-screw blown film machine to obtain a composite material.
  • the tensile strength was measured to be 20.9 MPa, and the elongation at break was 265%. After 1 month of biodegradation, the mass was reduced by 18%, the tensile strength was reduced by 35%, and the elongation at break was reduced by 54%.
  • the modified lignosulfonate was prepared in the same manner as in Example 3.
  • the variety and mass ratio of the raw materials used for the production of degradable plastics 30% by weight of the film-grade linear low-density polyethylene, and 40% by weight of the modified lignosulfonate, dibutyl phthalate
  • the weight percentage of 5% by weight of polyvinyl acetate is 25%.
  • Preparation method linear low density polyethylene, modified lignosulfonate, dibutyl phthalate and polyethylene vinyl acetate are mixed in a high speed mixer, and then made by the same direction twin screw granulator The pellets are cooled and pelletized, dried, and blown into a film in a single screw blown film machine to obtain a composite material.
  • the tensile strength was measured to be 15.4 MPa, and the elongation at break was 78%. After 1 month of biodegradation, the mass was reduced by 23%, the tensile strength was reduced by 45%, and the elongation at break was reduced by 68%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

说 明 书
一种可降解的塑料薄膜及其制备方法 技术领域
本发明属于有机高分子化合物技术领域, 涉及聚烯烃类可降解高分子薄膜 的制备方法。
背景技术
用塑料薄膜制作的塑料袋轻、 薄、 不透水、 强度很大、 成本低, 是一种很 好的包装材料, 塑料袋的使用给人们的生活带来了极大的方便, 使塑料袋的用 量越来越大, 但用过后的废弃物塑料袋不易回收、 不易降解, 大量的废弃物塑 料袋已成为当前污染环境的一个严重的问题。 为了减轻塑料薄膜对环境的污染, 人们研发了一些可降解塑料薄膜。 目前, 淀粉基、 聚乳酸基生物降解塑料是应 用最广泛的一类材料, 例如, 黄明福等 [1]用氨基乙醇活化蒙脱土 (EMMT),然后再 与甲酰胺 /氨基乙醇塑化的热塑性淀粉 (FETPS)经熔融插层聚合,成功制备了 FETPS /EMMT生物降解纳米复合材料; 吴春华等 [2]以芭蕉芋淀粉和聚乙烯醇为 原料,在甲醛、 明胶和硼砂交联剂作用下,制备出耐水性和机械性能较好的可降解 塑料薄膜; D.S.Rosa等 [3]利用 3种不同直链淀粉含量的淀粉与聚 ε-己内酯 (PCL)共 混, 制备出可降解薄膜。 近年来, 国内外可生物降解塑料得到了很快的发展,成 为可持续、 循环经济发展的焦点。 无论是从能源替代、 二氧化碳减少,还是从环 境保护方面都具有重要意义。 但是, 一方面, 淀粉、 聚乳酸等价格相对来说比 较昂贵; 另一方面, 由于粮食危机, 国家禁止用粮食作为原料生产工业品, 而 且这种降解薄膜易吸水吸潮, 从而导致耐水性差, 影响产品性能。 自然界中, 木质素的储量仅次于纤维素,每年以 500亿 t左右的速度再生,尤其是在制浆造纸 工业中, 每年要从植物中分离出 114亿 t的纤维素, 同时得到 5000万 t左右的木质 素副产品, 其中主要是碱木素和木质素磺酸盐, 直接排放不但污染环境, 更是 巨大的资源浪费。木质素磺酸盐基本组分是苯甲基丙垸衍生物, 具有 C6-C3疏水 骨架和磺酸基以及其它亲水性基团的结构, 也是一种天然、 可再生、 可完全降 解的无定形多酚聚合体。 因此, 用木质素磺酸盐代替淀粉或者聚乳酸等, 不仅 价格便宜, 原料易得, 而且解决了木质素磺酸盐自身对环境得污染问题。 参考文献
[IJHUANG Ming-fu , YU Jiu-gao , MA Xiao-fei, et al. High Performance Biodegrade Thermoplastic Starch-EMMT Nanoplastics[J]. Polymer, 2005, 46(9):3157-3162.
[2]吴春华,安鑫南,刘应隆.可生物降解的耐水性塑料薄膜的研制 [J].南京林业大学 学报(自然科学版), 2002,26(2):49-51.
[3]D S ROSA D S, LOPES D , CAL IL M R.The Influence of the St ructure of Starch on the Mechanical Morphological and Thermal Properties of Poly(e-caprolactone)in Starch Blends[J]. Journal of Materials Science,2007,42(7):2323-2328.
发明内容
本发明的目的在于提供一种能够降解的聚乙烯塑料薄膜及其制备方法。 本发明的技术方案是利用制浆造纸工业中废液回收的木质素磺酸盐, 经环 氧氯丙烷环氧化后与线性聚乙烯共同制备可降解的塑料薄膜。具体操作步骤为:
( 1 ) 改性木质素磺酸盐的制备: 将已干燥木质素磺酸盐用浓度为 35~40% 的 NaOH溶液溶解后 (其中: NaOH溶液与木质素磺酸盐质量比为 1 :1〜2:1 ) , 水 浴加热搅拌; 升温至 75°C后, 加入环氧氯丙烷溶液后 (其中: 木质素磺酸盐与 环氧氯丙烷摩尔比为 1/5〜1Z10) , 于 75°C下恒温回流搅拌反应 4.5h后, 用甲醇、 去离子水反复洗涤产品至 pH值为 7, 经 105°C真空烘干后, 得到环氧化木质素磺 酸盐 (LER:)。
(2) 可降解塑料的制备: 原料质量百分配比:
薄膜级线性低密度聚乙烯
薄膜级低密度聚乙烯
改性木质素磺酸盐
增塑剂
相容剂
其中, 增塑剂为邻苯二甲酸二丁酯或邻苯二甲酸二辛酯。 相容剂为聚乙烯接枝 马来酸酐或聚乙烯醋酸乙烯酯。
制法是: 按配方精确称量上述原料, 混合均勾后, 在 140〜160°C下, 经同向双螺 杆造粒机造粒后冷却切粒、干燥。在 140~160°C下,经单螺杆吹膜机中吹塑成膜, 即制得复合可降解塑料薄膜。 上述原料中, 除了改性木质素磺酸盐外, 都可以在市场上购得。
本发明制得的复合薄膜。拉伸强度 14.8〜20.9MPa, 断裂伸长率 69〜235%。土 埋生物降解 1个月后, 质量减少 18〜30%, 拉伸强度减少 35〜45%, 断裂伸长率减 少 54~70%。
本发明的突出优点在于:
1、木质素磺酸盐通过环氧化改性后, 与聚乙烯复合,制备可降解塑料薄膜; 产品在土中自然降解作用明显; 木质素磺酸盐是一种天然、 可再生、 可完全降 解的无定形多酚聚合体, 用改性木质素磺酸盐代替淀粉或者聚乳酸等, 不仅价 格便宜, 原料易得, 而且解决了制浆造纸工业废水中木质素磺酸盐对环境得污 染问题。
2、 复合材料中添加相容剂和增塑剂, 增加其机械性能, 完全能够满足制作 生活用品的包装膜袋的要求。
3、 制备方法简单、 易行, 成本低廉。
具体实施方式
实施例中所用的薄膜级线性低密度聚乙烯、 线性低密度聚乙烯等聚乙烯产 品购自大庆石化、 茂名石化、 中海壳牌等石化厂; 聚乙烯接枝马来酸酐、 聚乙 烯醋酸乙烯酯购自大连海洲化工有限公司、 扬子巴斯夫等化工公司。
实施例 1
改性木质素磺酸盐的制备: 将干燥木质素磺酸盐用浓度为 35〜40%的 NaOH 溶液溶解, 其中: NaOH溶液与木质素磺酸盐质量比为 1 : 1, 水浴加热搅拌; 升温 至 75 °C后, 加入环氧氯丙垸溶液, 木质素磺酸盐与环氧氯丙垸摩尔比为 1/10, 于 75 °C下恒温回流搅拌反应 4.5h后, 用甲醇、 去离子水反复洗涤产品至 pH值为 7, 经 105°C真空烘干后, 得到环氧化木质素磺酸盐。
制作可降解塑料所用原料品种和质量配比: 薄膜级线性低密度聚乙烯的重 量百分数是 60%, 改性木质素磺酸盐的重量百分数是 30%, 邻苯二甲酸二辛酯的 重量百分数是 10%。
制备方法: 将线性低密度聚乙烯、 改性木质素磺酸盐和邻苯二甲酸二辛酯 在高速搅拌器中混合均匀后, 经同向双螺杆造粒机造粒后冷却切粒、 干燥, 在 单螺杆吹膜机中吹塑成膜, 即制得复合材料。 测得拉伸强度 14.8MPa, 断裂伸长 率 152%。 土埋生物降解 1个月后, 质量减少 20%, 拉伸强度减少 35%, 断裂伸长 率减少 60% 实施例 2
改性木质素磺酸盐的制备: 将已干燥木质素磺酸盐用浓度为 35〜40%的 NaOH溶液溶解, NaOH溶液与木质素磺酸盐质量比为 1 : 1.5, 水浴加热搅拌; 升 温至 75 °C后, 加入环氧氯丙烷溶液, 木质素磺酸盐与环氧氯丙烷摩尔比为 1/7.5, 于 75 °C下恒温回流搅拌反应 4.5h后,用甲醇、去离子水反复洗涤产品至 pH值为 7, 经 105°C真空烘干后, 得到环氧化木质素磺酸盐 (LER:)。
制作可降解塑料所用所用原料品种和质量配比: 薄膜级线性低密度聚乙烯 的重量百分数是 50%, 改性木质素磺酸盐的重量百分数是 40%, 聚乙烯接枝马来 酸酐的重量百分数是 10%。
制备方法: 将线性低密度聚乙烯、 改性木质素磺酸盐和聚乙烯接枝马来酸 酐在高速搅拌器中混合均匀后, 经同向双螺杆造粒机造粒后冷却切粒、 干燥, 在单螺杆吹膜机中吹塑成膜, 即制得复合材料。 测得拉伸强度 15.2MPa, 断裂伸 长率 69%。 土埋生物降解 1个月后, 质量减少 30%, 拉伸强度减少 45%, 断裂伸 长率减少 70%
实施例 3
改性木质素磺酸盐的制备: 将已干燥木质素磺酸盐用浓度为 35〜40%的 NaOH溶液溶解, NaOH溶液与木质素磺酸盐质量比为 2: 1, 水浴加热搅拌; 升温 至 75 °C后, 加入环氧氯丙垸溶液, 木质素磺酸盐与环氧氯丙烷摩尔比为 1/5, 于 75°C下恒温回流搅拌反应 4.5h后, 用甲醇、 去离子水反复洗涤产品至 pH值为 7, 经 105°C真空烘干后, 得到环氧化木质素磺酸盐 (LER:)。
制作可降解塑料所用所用原料品种和质量配比: 薄膜级线性低密度聚乙烯 的重量百分数是 40%, 改性木质素磺酸盐的重量百分数是 30%, 聚乙烯醋酸乙烯 酯的重量百分数是 30%。
制备方法: 将线性低密度聚乙烯、 改性木质素磺酸盐和聚乙烯醋酸乙烯酯 在高速搅拌器中混合均匀后, 经同向双螺杆造粒机造粒后冷却切粒、 干燥, 在 单螺杆吹膜机中吹塑成膜, 即制得复合材料。 测得拉伸强度 16.4MPa, 断裂伸长 率 163%。 土埋生物降解 1个月后, 质量减少 28%, 拉伸强度减少 40%, 断裂伸长 率减少 60%。
实施例 4
改性木质素磺酸盐的制备同实施例 1。
制作可降解塑料所用所用原料品种和质量配比: 薄膜级线性低密度聚乙烯 的重量百分数是 40%, 薄膜级低密度聚乙烯的重量百分数是 20%, 改性木质素磺 酸盐的重量百分数是 30%, 聚乙烯接枝马来酸酐的重量百分数是 10%。
制备方法: 将线性低密度聚乙烯、 低密度聚乙烯、 改性木质素磺酸盐和聚 乙烯接枝马来酸酐在高速搅拌器中混合均匀后, 经同向双螺杆造粒机造粒后冷 却切粒、 干燥, 在单螺杆吹膜机中吹塑成膜, 即制得复合材料。 测得拉伸强度 18.7MPa, 断裂伸长率 235%。 土埋生物降解 1个月后, 质量减少 22%, 拉伸强度 减少 38%, 断裂伸长率减少 63%。
实施例 5
改性木质素磺酸盐的制备同实施例 2。
制作可降解塑料所用所用原料品种和质量配比: 薄膜级线性低密度聚乙烯 的重量百分数是 30%, 薄膜级低密度聚乙烯的重量百分数是 10%, 改性木质素磺 酸盐的重量百分数是 30%, 聚乙烯醋酸乙烯酯的重量百分数是 30%。
制备方法: 将线性低密度聚乙烯、 高密度聚乙烯、 改性木质素磺酸盐和聚 乙烯接枝马来酸酐在高速搅拌器中混合均勾后, 经同向双螺杆造粒机造粒后冷 却切粒、 干燥, 在单螺杆吹膜机中吹塑成膜, 即制得复合材料。 测得拉伸强度 20.9 MPa, 断裂伸长率 265%。 土埋生物降解 1个月后, 质量减少 18%, 拉伸强度 减少 35%, 断裂伸长率减少 54%。
实施例 6
改性木质素磺酸盐的制备同实施例 3。
制作可降解塑料所用所用原料品种和质量配比: 薄膜级线性低密度聚乙烯 的重量百分数是 30%,, 改性木质素磺酸盐的重量百分数是 40%, 邻苯二甲酸二 丁酯的重量百分数 5%, 聚乙烯醋酸乙烯酯的重量百分数是 25%。
制备方法: 将线性低密度聚乙烯、 改性木质素磺酸盐、 邻苯二甲酸二丁酯 和聚乙烯醋酸乙烯酯在高速搅拌器中混合均勾后, 经同向双螺杆造粒机造粒后 冷却切粒、 干燥, 在单螺杆吹膜机中吹塑成膜, 即制得复合材料。 测得拉伸强 度 15.4MPa, 断裂伸长率 78%。土埋生物降解 1个月后, 质量减少 23%, 拉伸强度 减少 45%, 断裂伸长率减少 68%。

Claims

权 利 要 求 书
1、 一种可降解的塑料薄膜, 是一种复合膜, 其特征在于性能为: 拉伸强 度 14.8〜20.9MPa, 断裂伸长率 69〜235%。 土埋生物降解 1个月后, 质量减少 18-30%, 拉伸强度减少 35〜45%, 断裂伸长率减少 54〜70%;
由以下品种原料质量百分配方, 经混合均匀后, 用同向双螺杆造粒机造粒 后冷却切粒、 干燥, 在单螺杆吹膜机中吹塑成膜而成:
薄膜级线性低密度聚乙烯
薄膜级低密度聚乙烯
改性木质素磺酸盐
增塑剂
相容剂
其中,改性木质素磺酸盐的制法是:将已干燥木质素磺酸盐用浓度为 35-40% 的 NaOH溶液溶解后, 水浴加热搅拌; 升温至 75°C后, 加入环氧氯丙垸溶液后, 于 75°C下恒温回流搅拌反应 4.5h后过滤, 用甲醇、 去离子水反复洗涤沉淀至 pH 值为 7, 经 105°C真空烘干后而得;
改性木质素磺酸盐的制法中, NaOH溶液与木质素磺酸盐质量比为 1: 1~2: 1; 木质素磺酸盐与环氧氯丙垸摩尔比为 1/5〜1/10;
所述: 增塑剂为邻苯二甲酸二丁酯或邻苯二甲酸二辛酯; 相容剂为聚乙烯 接枝马来酸酐或聚乙烯醋酸乙烯酯。
2、 如权利要求 1可降解的塑料薄膜的制备方法, 其特征在于所用原料品种 的质量百分配方为
薄膜级线性低密度聚乙烯 30〜60
薄膜级低密度聚乙烯 0〜20
改性木质素磺酸盐 30〜40
增塑剂 0〜10
相容剂 0~30
其中,改性木质素磺酸盐的制法是:将已干燥木质素磺酸盐用浓度为 35-40% 的 NaOH溶液溶解后, 水浴加热搅泮; 升温至 75°C后, 加入环氧氯丙垸溶液后, 于 75°C下恒温回流搅泮反应 4.5h后过滤, 用甲醇、 去离子水反复洗涤沉淀至 pH 值为 7, 经 105°C真空烘干后而得;
改性木质素磺酸盐的制法中, NaOH溶液与木质素磺酸盐质量比为 1: 1~2: 1; 木质素磺酸盐与环氧氯丙垸摩尔比为 1/5〜1/10;
所述: 增塑剂为邻苯二甲酸二丁酯或邻苯二甲酸二辛酯; 相容剂为聚乙烯 接枝马来酸酐或聚乙烯醋酸乙烯酯;
其制备方法为: 按原料配比将其混合均匀后, 用同向双螺杆造粒机造粒后 冷却切粒、 干燥, 在单螺杆吹膜机中吹塑成膜而成。
PCT/CN2010/080602 2010-12-31 2010-12-31 一种可降解的塑料薄膜及其制备方法 WO2012088711A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080602 WO2012088711A1 (zh) 2010-12-31 2010-12-31 一种可降解的塑料薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080602 WO2012088711A1 (zh) 2010-12-31 2010-12-31 一种可降解的塑料薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2012088711A1 true WO2012088711A1 (zh) 2012-07-05

Family

ID=46382227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080602 WO2012088711A1 (zh) 2010-12-31 2010-12-31 一种可降解的塑料薄膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2012088711A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121967A1 (de) * 2013-02-11 2014-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrostrukturiertes kompositmaterial, verfahren zu dessen herstellung, formkörper hieraus sowie verwendungszwecke
CN104341672A (zh) * 2014-10-11 2015-02-11 甘肃振海塑业有限责任公司 一种果树专用除草膜及其制备工艺
CN106521420A (zh) * 2016-10-14 2017-03-22 无锡三帝特种高分子材料有限公司 一种食品包装用镀铝膜
CN108582549A (zh) * 2018-03-22 2018-09-28 黄山五环科技有限公司 一种固体环氧树脂的清洁化加工系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200557A (ja) * 2004-01-16 2005-07-28 Nippon Paper Chemicals Co Ltd 消臭袋
CN101445731A (zh) * 2008-12-25 2009-06-03 吴俊三 一种可降解液体地膜及其制造方法
CN101717537A (zh) * 2009-11-07 2010-06-02 汕头市安德利环保科技有限公司 一种聚烯烃薄膜及其制造方法
WO2010139056A1 (en) * 2009-06-01 2010-12-09 The University Of Guelph Lignin based materials and methods of making those

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200557A (ja) * 2004-01-16 2005-07-28 Nippon Paper Chemicals Co Ltd 消臭袋
CN101445731A (zh) * 2008-12-25 2009-06-03 吴俊三 一种可降解液体地膜及其制造方法
WO2010139056A1 (en) * 2009-06-01 2010-12-09 The University Of Guelph Lignin based materials and methods of making those
CN101717537A (zh) * 2009-11-07 2010-06-02 汕头市安德利环保科技有限公司 一种聚烯烃薄膜及其制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014121967A1 (de) * 2013-02-11 2014-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrostrukturiertes kompositmaterial, verfahren zu dessen herstellung, formkörper hieraus sowie verwendungszwecke
US9783679B2 (en) 2013-02-11 2017-10-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Microstructured composite material, method for the production thereof, moulded articles made thereof and also purposes of use
CN104341672A (zh) * 2014-10-11 2015-02-11 甘肃振海塑业有限责任公司 一种果树专用除草膜及其制备工艺
CN106521420A (zh) * 2016-10-14 2017-03-22 无锡三帝特种高分子材料有限公司 一种食品包装用镀铝膜
CN108582549A (zh) * 2018-03-22 2018-09-28 黄山五环科技有限公司 一种固体环氧树脂的清洁化加工系统

Similar Documents

Publication Publication Date Title
CN102643497B (zh) 无机粉体高填充聚乙烯醇复合材料及其制备方法
CN102241862A (zh) 熔融挤出法制备耐水性聚乙烯醇生物降解薄膜
CN108929527B (zh) 一种兼具高延展性和高阻隔性能的pbat/改性淀粉全生物降解薄膜及其制备方法和应用
US11926711B2 (en) TPS/PLA/PBAT blend modified biodegradable resin prepared by using chain extender and preparation method thereof
CN110408180B (zh) 一种木质素-淀粉组合母粒复合的生物降解聚酯材料及其制备方法
CN1935882B (zh) 水溶性可生物降解材料及其制备方法以及片材类成型制品
CN104371296B (zh) 一种聚甲基乙撑碳酸酯组合物及其制备方法
CN111621239B (zh) 一种全生物降解胶带及其制备方法
WO2012088711A1 (zh) 一种可降解的塑料薄膜及其制备方法
CN112143042A (zh) 一种淀粉基可降解膜及其制备方法
CN107686567A (zh) 一种淀粉泡沫塑料的制备方法
CN104892999A (zh) 一种高耐水全降解塑料薄膜及其制备方法
CN111978687A (zh) 全生物降解复合高分子材料及其制备方法和应用
CN103087487B (zh) 一种可生物降解树脂及其生产方法
CN105924684B (zh) 一种利用废弃塑料制备的环保降解材料
CN110938291A (zh) 聚乳酸复合材料及其制备方法
CN104945818A (zh) 一种稻壳灰改性全降解塑料薄膜及其制备方法
CN107964145A (zh) 一种高强度管材用环保工程塑料的制备方法
CN111073229A (zh) 一种含改性造纸废弃物的可生物降解母粒及其制备方法
CN114685961B (zh) 一种改性聚乳酸薄膜材料
CN104892998A (zh) 一种抗冲击全降解塑料薄膜及其制备方法
CN107602938A (zh) 一种淀粉/eva复合泡沫塑料的制备方法
CN1939965A (zh) 疏水性可生物降解材料及其制备方法以及片材类成型制品
CN113881111A (zh) 一种用于塑料填充的热塑性玉米淀粉及其制备方法
CN109401021B (zh) 一种离子液体改性的生物基复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10861365

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10861365

Country of ref document: EP

Kind code of ref document: A1