WO2012087015A2 - 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템 및 그 방법 - Google Patents

비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템 및 그 방법 Download PDF

Info

Publication number
WO2012087015A2
WO2012087015A2 PCT/KR2011/009912 KR2011009912W WO2012087015A2 WO 2012087015 A2 WO2012087015 A2 WO 2012087015A2 KR 2011009912 W KR2011009912 W KR 2011009912W WO 2012087015 A2 WO2012087015 A2 WO 2012087015A2
Authority
WO
WIPO (PCT)
Prior art keywords
dpf
engine
pump
forced
forced regeneration
Prior art date
Application number
PCT/KR2011/009912
Other languages
English (en)
French (fr)
Other versions
WO2012087015A3 (ko
Inventor
곽규선
김완호
이석원
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100132932A external-priority patent/KR20120071260A/ko
Priority claimed from KR1020100132934A external-priority patent/KR101656532B1/ko
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to EP11850462.0A priority Critical patent/EP2657475B1/en
Priority to CN201180062333.1A priority patent/CN103270265B/zh
Priority to US13/996,658 priority patent/US9032717B2/en
Publication of WO2012087015A2 publication Critical patent/WO2012087015A2/ko
Publication of WO2012087015A3 publication Critical patent/WO2012087015A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/47Engine emissions
    • B60Y2300/476Regeneration of particle filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D2041/026Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus using an external load, e.g. by increasing generator load or by changing the gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a diesel particulate filter (DPF) forced regeneration system of an engine, and more particularly, to provide a non-working load to an engine quickly even when substantial work of a construction machine is stopped.
  • the present invention relates to a diesel particulate filter forced regeneration system and a method for performing forced particulate filter regeneration.
  • EGR Exhaust Gas Recirculation
  • DPF Diesel Particulate Filter
  • the diesel particulate filter refers to a filter capable of collecting and filtering particulate dust (soot), which is a particulate matter including soot in a muffler, on a path through which exhaust gas from an engine is discharged. Also referred to as a device equipped with such a filter.
  • the diesel fine dust filter is abbreviated as DPF.
  • Such a filter requires a process of removing particulate matter collected therein periodically or arbitrarily according to the amount collected, which is commonly referred to as 'DPF regeneration' or 'burning off'.
  • Such regeneration can be classified into passive regeneration and active regeneration according to its implementation.
  • DPF natural regeneration refers to the combustion of fine dust trapped in the filter by the temperature of the exhaust gas raised during the operation of a construction machine, or a small amount of fuel on a path through which the exhaust gas is discharged during operation of the construction machine.
  • DOC diesel oxidation catalyst
  • DOC Diesel Oxidation Catalyst
  • the DPF forced regeneration means that the driver forcibly drives the engine of the construction machine without actually performing work to discharge the exhaust gas, and based on the temperature of the exhaust gas,
  • the fuel is exothermic to the diesel oxidation catalyst device (DOC), which is also pre-positioned on the exhaust path, causing the dust to be collected in the filter by raising the temperature of the exhaust gas to a temperature necessary for combustion (regeneration) of the fine dust.
  • DOC diesel oxidation catalyst device
  • a schematic configuration of a conventional DPF forced regeneration system is as follows.
  • a conventional DPF forced regeneration system 100 includes a diesel particulate filter (DPF) 30 formed on an engine 10 having a turbocharger 12 and an exhaust path 20 through which exhaust gas is discharged. ), And DOC (diesel oxidation catalyst device) 40 at the front end of the DPF, and by the fuel input means 50 and the engine 10 for injecting a small amount of fuel to the front end of the DOC in the exhaust path 20. And a pump 60 driven.
  • DPF diesel particulate filter
  • DOC diesel oxidation catalyst device
  • the exhaust gas from the engine that started to run in the idle state has a relatively low temperature compared to when working.
  • the engine emits exhaust gas at a higher temperature when the engine is driven under a load than the idle driving state.
  • the engine is driven from the stopped state of the construction machine to a substantially no-load state (idle state) until the temperature of the exhaust gas is raised to a predetermined temperature at which the exothermic reaction of the DOC is possible. It takes time. For example, it is known that it takes about 30 minutes to about 1 hour for the DPF forced regeneration of construction machinery.
  • the present invention for achieving this object, the engine;
  • a pump which is directly connected to the engine for discharging hydraulic oil and for varying the discharge flow rate of the hydraulic oil;
  • a diesel fine dust filter (DPF) disposed on an exhaust path through which the exhaust gas from the engine is discharged to the outside;
  • Fuel input means for advancing DPF forced regeneration by burning fuel into the exhaust path at a predetermined temperature to burn off and remove the soot collected in the diesel particulate filter; a selection switch for selecting the forced DPF regeneration;
  • a forced load generating means for providing a non-work load to the engine by increasing the discharge flow rate of the pump when the forced regeneration of the DPF is selected.
  • the exothermic reaction between the DOC and the fuel is possible because the temperature of the exhaust gas can be increased to a predetermined temperature or more in a shorter time than that when the engine is driven under a non-work load and driven in an idle state.
  • the DPF regeneration combustion removal
  • the main pump is driven in a negative control system (Negative Control System) to control the discharge flow rate of the hydraulic fluid by feeding back a signal value based on the pressure of the hydraulic oil recovered to the tank through the center bypass line
  • a negative control system Negative Control System
  • the main pump discharges the working oil at the maximum flow rate by arbitrarily adjusting the feedback value to the minimum.
  • system of the present invention further comprises a solenoid valve disposed on a path through which the feedback value is transmitted, wherein the lowest feedback value is generated by closing the solenoid valve.
  • the system of the present invention when the main pump is driven in a positive control system for controlling the discharge flow rate of the hydraulic fluid based on the proportional current value transmitted to the main pump through a proportional control valve connected to the joystick in the cockpit.
  • the main pump discharges the working oil at the maximum flow rate by arbitrarily adjusting the proportional current value to the maximum.
  • the present invention also provides a method for forcibly regenerating a DPF in the aforementioned DPF forced regeneration system, comprising: (a) driving an engine in an idle state; (b) measuring the temperature of the exhaust gas preceding the DOC; (c) when the measured temperature is below a predetermined temperature, driving the forced load generating means to impart a non-work load to the engine; (d) the engine releasing higher hot exhaust gases by non-work loads; (e) stopping the driving of the forced load generating means if the forced load generating means is being driven when the measured temperature exceeds a predetermined temperature; (f) performing DPF forced regeneration; And (g) repeating steps (b) to (f) until the regeneration of the DPF is completed, wherein the exothermic reaction between the DOC and the fuel is promoted by the high temperature exhaust gas to efficiently perform the forced regeneration of the DPF.
  • the present invention provides a method of forcibly regenerating a diesel fine dust filter using a non-work load.
  • an embodiment of the present invention comprises an engine; A diesel particulate filter (DPF) disposed on an exhaust path through which exhaust gas from the engine is discharged to the outside; A diesel oxidation catalyst device (DOC) disposed in front of the DPF on the exhaust path; Fuel injecting means for injecting a fuel causing an exothermic reaction with the DOC at a predetermined temperature to the front end of the DOC in the exhaust path; And forced load generating means for providing a non-work load to the engine, wherein the forced load generating means is constituted by the fan pump 160a, and during the forced regeneration of the DPF, if the fan pump does not cause substantial work of the construction machine, Provide a diesel particulate filter forced regeneration system using the non-work load, which is controlled to discharge the hydraulic fluid at a maximum flow rate, thereby generating a non-work load and thus the engine exhausting the exhaust gas above a predetermined temperature.
  • the exothermic reaction between the DOC and the fuel is possible because the temperature of the exhaust gas can be increased to a predetermined temperature or more in a shorter time than that when the engine is driven under a non-work load and driven in an idle state.
  • the DPF regeneration combustion removal
  • the system of the present invention uses a variable fan pump as the fan pump 160a, and during the forced regeneration of the DPF, the fan pump arbitrarily adjusts the proportional current signal transmitted to the variable fan pump to maximize the working oil of the maximum flow rate. Characterized in that the discharge.
  • the system of the present invention is characterized in that the fan pump is connected with at least one separately driven fan motor which is not directly connected to the engine.
  • the present invention provides a method of forcibly regenerating a DPF in the aforementioned DPF forced regeneration system, comprising: (a) driving an engine in an idle state; (b) measuring the temperature of the exhaust gas on the exhaust path; (c) when the measured temperature is below a predetermined temperature, driving the forced load generating means to impart a non-work load to the engine; (d) the engine releasing higher hot exhaust gases by non-work loads; (e) stopping the driving of the forced load generating means if the forced load generating means is being driven when the measured temperature exceeds a predetermined temperature; (f) performing DPF forced regeneration; And (g) repeating steps (b) to (f) until the regeneration of the DPF is completed, wherein the exothermic reaction is promoted by the high temperature exhaust gas, thereby forcing the DPF forced regeneration to be efficiently performed.
  • a method forcibly regenerating a diesel particulate filter using a non-work load comprising: (a) driving an engine in an idle state; (b) measuring the temperature of the
  • a DPF forced regeneration system and method which can be efficiently performed by rapidly raising the temperature of the exhaust gas by imparting any non-work load to the engine when the DPF is forcibly regenerated rather than the actual workload of the construction machine. Can be provided.
  • FIG. 1 is a block diagram illustrating an example of a conventional DPF forced regeneration system.
  • FIG. 2 is a block diagram illustrating a DPF forced regeneration system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a DPF forced regeneration system according to another embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a DPF forced regeneration system according to another embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a DPF forced regeneration system according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating a DPF forced regeneration system according to another embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a DPF forced regeneration method according to another embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a DPF forced regeneration system according to an embodiment of the present invention.
  • the DPF forced regeneration system 200 of this embodiment includes a diesel oxidation catalyst device (DOC) on the engine 110 equipped with the turbocharger 112 and the exhaust path 120 of the exhaust gas discharged therefrom.
  • DOC diesel oxidation catalyst device
  • 140 and the diesel particulate filter (DPF) 130 are arranged in turn and includes a fuel injection means 150 for injecting fuel on the exhaust path in front of the DOC 140.
  • the driver or the controller not shown may further include a selection switch (not shown) for selecting the forced regeneration of the DPF.
  • the engine 110 is connected to the main pump 160 for supplying hydraulic oil to various working stages (for example, boom, bucket, swing motor, etc.) of the construction machine, the main pump 160 is a so-called center bypass line
  • the operating stage control valve 170 is controlled by supplying hydraulic oil through the hydraulic circuit including the 162 and the parallel line, thereby causing driving of each stage.
  • the work stage control valve 170 is simply represented by one block, but in reality, it means a plurality of control valves corresponding to each work stage (boom, bucket, swing motor, etc.) and ports and flow paths related thereto. will be.
  • the end of the center bypass line 162 is provided with a tank 164 for recovering the working oil, and the signal value 180 based on the pressure of the working oil immediately before being recovered to the tank 164 is the main pump 160.
  • the hydraulic oil discharge flow rate of the main pump 160 may be controlled in real time based on the feedback signal value.
  • a solenoid valve 190 is formed during a path through which the signal value 180 is fed back, and a signal S for controlling the solenoid valve 190 is provided.
  • This control signal S conveys a value that, for example, shuts off the solenoid valve 190 during DPF forced regeneration.
  • FIG. 2 illustrates an example of the DPF forced regeneration system 200 that may be applied when the main pump 160 is driven in a so-called negative control system.
  • the negative flow method feeds back a signal value 180 based on the pressure of the hydraulic oil recovered to the tank 164 through the center bypass line 162, thereby real-time the hydraulic oil discharge flow rate of the main pump 160. To control the way.
  • the discharge flow rate is determined inversely proportional to the feedback signal value (or also referred to as 'negacon signal'). For example, according to the negative cone method, the lower the signal value fed back to the main pump, the larger the discharge flow rate (L-> H), and the higher the signal value, the lower the discharge flow rate (H-> L).
  • the tank 164 located at the end of the center bypass line 162 since the hydraulic oil is supplied to each work stage (boom, bucket, swing motor, etc.-not shown).
  • the pressure of the hydraulic oil recovered is reduced, and the signal value L based on the low pressure value is fed back so that the main pump 160 discharges the high hydraulic oil flow rate H in proportion thereto.
  • the main pump 160 will discharge a higher flow rate of the working oil.
  • the main pump 160 will discharge only the minimum flow rate. This in turn does not provide a substantial load on the engine and allows the engine to run idle.
  • a predetermined temperature eg, about 235 ° C.
  • a reference for exothermic reaction between the DOC 140 and the fuel is determined based on the temperature of the exhaust gas discharged from the engine 110. It is required to increase the above, and thus the present invention can quickly raise the temperature of the exhaust gas by providing a non-work load to the engine 110 rather than a substantial work.
  • the term 'non-work load' means any forced load provided to the engine 110 without actually driving each work stage of the construction machine.
  • the negative signal fed back to the main pump 160 can be arbitrarily controlled to the lowest level, and thus the main pump.
  • the pump continuously discharges the hydraulic fluid at the maximum flow rate even though no substantial work is performed.
  • a so-called 'non-work load' which is any forced load, is thus provided to the engine 110, through which the engine 110 is driven to idle Compared to the state it is possible to increase the temperature of the exhaust gas more quickly.
  • the exothermic reaction between the DOC 140 and the fuel is promoted by the temperature of the exhaust gas, and the DOC is caused by the high temperature of about 600 ° C. to 700 ° C. which is caused by the exothermic reaction.
  • Soot collected in the DPF 130 disposed at the rear end of the 140 may be burned off. That is, DPF regeneration can be performed.
  • the solenoid valve 190 disposed on the path is blocked by the signal value 180 fed back to the main pump 160 driven by the negative cone method, so that the signal value (negacon signal) is arbitrarily lowered. It is characterized in that the control, so that the main pump 160 to discharge the hydraulic fluid of the maximum flow rate to provide a 'non-work load' to the engine (110).
  • the engine 110 emits exhaust gas at a higher temperature, preferably at a predetermined temperature for promoting the exothermic reaction of the DOC 140, more quickly than when the engine 110 is driven in a conventional idle state through a load. do.
  • FIG. 3 shows an embodiment similar to that of FIG. 2 except that two solenoid valves 192, 192a are arranged on the path through which the negative cone signal is fed back.
  • main pump 160 is shown as one single block in the drawing, a general construction machine generally has a pair of left and right main pumps, and the main pump 160 of FIGS. In practice, this could mean two main pumps in a pair of left and right.
  • hydraulic circuits such as a center bypass line, a parallel line, a work stage control valve, and a tank are separately configured based on each main pump, and as a result, a signal value based on the pressure of the hydraulic oil returned to the tank (Negacon signal). ) Should also be fed back to each main pump one by one, thereby providing two solenoid valves 192 and 192a, one on the path through which each signal value 182 and 182a is fed back.
  • FIG. 3 is substantially the same as the configuration of FIG. 2 except that solenoid valves 192 and 192a are formed for the path fed back to the main pump, respectively, and may be understood as a modification of the embodiment of FIG. 2. have.
  • FIG. 4 is a block diagram showing a DPF forced regeneration system according to another embodiment of the present invention.
  • the DPF forced regeneration system 300 of this embodiment includes a diesel oxidation catalyst device (DOC) on an engine 210 equipped with a turbocharger 212 and an exhaust path 220 of exhaust gas discharged therefrom.
  • DOC diesel oxidation catalyst device
  • DPF diesel particulate filter
  • the engine 210 is connected to a main pump 260 for supplying hydraulic oil to various working stages (for example, booms, buckets, swing motors, etc.) of construction machinery, and the main pump 260 is a so-called
  • the operating stage control valve 270 is controlled by supplying hydraulic oil through a predetermined hydraulic circuit including the center bypass line 262 and the parallel line to cause driving of each stage.
  • stage control valve 270 is simply represented by a single block, but in reality, the stage control valve 270 refers to a plurality of control valves corresponding to each stage (boom, bucket, swing motor, etc.) and ports and flow paths related thereto. will be.
  • a tank 264 for recovering hydraulic oil is provided at the end of the center bypass line 262.
  • a first proportional control valve 280 is disposed in the cockpit, which is controlled in response to the operation of the joystick.
  • the first proportional control valve 280 controls the flow rate of the hydraulic oil supplied from the hydraulic oil supply source (not shown) to the main pump 260 to use it as the first proportional control signal 282.
  • the first proportional control signal 282 may be transmitted to a pump regulator (not shown) that determines the flow rate of the main pump 260, and then the flow rate of the hydraulic fluid discharged from the main pump 160 may be controlled in real time.
  • the first proportional control valve 280 can be replaced by a controller, the controller corresponding to the driver's joystick operation of the main pump 260 It can be configured to control the discharge flow rate.
  • the first proportional control valve 280 may be provided with a signal S for controlling the proportional control valve separately from the operation of the joystick.
  • This control signal S can, for example, control this first proportional control valve 280 during DPF forced regeneration.
  • FIG. 4 illustrates an example of the DPF forced regeneration system 300 that may be applied when the main pump 260 is driven in a so-called positive control system.
  • the Posicon method in real time, the hydraulic oil discharge flow rate of the main pump 260 according to the first proportional control signal 282 transmitted from the first proportional control valve 280 corresponding to the operation of the joystick in the cockpit. It refers to a method of controlling, characterized in that the discharge flow rate is determined in proportion to the proportional control signal transmitted (or also referred to as 'Posicon signal').
  • the lower the signal value transmitted to the main pump the lower the discharge flow rate (L-> L), and the higher the signal value, the higher the discharge flow rate (H-> H).
  • a joystick in the cockpit is operated to drive each work stage (boom, bucket, slew motor, etc.-not shown), and the first proportional to the operation of the joystick. Since the first proportional control signal 282 of the control valve 280 is transmitted to the main pump 260, the main pump 260 discharges a high hydraulic fluid flow rate H in proportion thereto.
  • the main pump 260 will discharge a higher flow of hydraulic fluid.
  • the main pump 260 will discharge only the minimum flow rate. This in turn does not provide a substantial load on the engine and allows the engine to run idle.
  • the temperature of the exhaust gas discharged from the engine 210 is a predetermined temperature (for example, about 235 ° C.), which is a reference for exothermic reaction between the DOC 240 and the fuel. It is required to increase the above, and thus the present invention can quickly increase the temperature of the exhaust gas by providing a non-work load to the engine 210 rather than a substantial work.
  • only the first proportional control valve 280 can be provided with the control signal S to control the first proportional control signal 282 transmitted from the first proportional control valve 280 arbitrarily to the maximum.
  • the main pump continuously discharges the hydraulic fluid at the maximum flow rate even though no substantial work is performed.
  • a so-called 'non-work load' which is any forced load, is thus provided to the engine 210, through which the engine 210 is driven to idle. Compared to the state it is possible to increase the temperature of the exhaust gas more quickly.
  • the exothermic reaction between the DOC 240 and the fuel is promoted by the temperature of the exhaust gas, and the DOC is due to the high temperature of about 600 ° C. to 700 ° C. which is caused by the exothermic reaction.
  • Soot collected in the DPF 230 disposed at the rear end of the 240 may be burned off. That is, DPF regeneration can be performed.
  • the first proportional control signal 282 of the first proportional control valve 280 transmitted to the main pump 260 driven by the Posicon method is arbitrarily controlled to the maximum.
  • the main pump 260 discharges the hydraulic fluid at the maximum flow rate to provide a 'non-working load' to the engine 210, which is therefore more rapid than if the engine 210 was driven through the load to a conventional idle state.
  • the exhaust gas is discharged at a high temperature, preferably a predetermined temperature for promoting the exothermic reaction of the DOC 240.
  • FIG. 5 is a block diagram illustrating a DPF forced regeneration system according to another embodiment of the present invention.
  • the DPF forced regeneration system 400 of this embodiment includes a diesel oxidation catalyst device (DOC) on the engine 110 with the turbocharger 112 and the exhaust path 120 of the exhaust gas discharged therefrom.
  • DOC diesel oxidation catalyst device
  • DPF diesel particulate filter
  • the engine 110 includes, for example, a fan for rotationally driving the cooling fan 474 together with a main pump (not shown) for supplying hydraulic oil to various working stages (for example, a boom, a bucket, a swing motor, and the like) of the construction machine.
  • a fan pump (F / P) 160 for supplying hydraulic oil to the motor 472 is connected.
  • the fan pump 160a may be a variable fan pump capable of varying the flow rate by changing the swash plate angle under the control of a pump regulator (not shown), and is transmitted through a control means such as a second proportional control valve 460.
  • the second proportional control signal 462 may be controlled.
  • cooling fan 472 applied to the oil cooler 470 may be rotated by the fan motor 472 driven by the hydraulic oil supplied from the fan pump 160a.
  • cooling fan 484 applied to the radiator 480 may be connected directly to the engine 110 and rotate without including a separate fan motor.
  • the oil cooler 470 is shown via fan pump 160a and the radiator 480 is directly connected to the engine 110, but is not limited thereto, and these elements may be of various forms. Note that it may be configured as.
  • the hydraulic driving part including the main pump and each working stage (boom, bucket, swing motor, etc.) and a plurality of control valves corresponding to each working stage is omitted. Since the stage is not substantially driven, a detailed description thereof will be omitted below.
  • a predetermined temperature eg, about 235 ° C.
  • a reference for exothermic reaction between the DOC 140 and the fuel is determined based on the temperature of the exhaust gas discharged from the engine 110. It is required to increase the above, and thus the present invention can quickly raise the temperature of the exhaust gas by providing a non-work load to the engine 110 rather than a substantial work.
  • the term 'non-work load' means any forced load provided to the engine 110 without actually driving each work stage of the construction machine.
  • the fan pump 160a which is not connected to each working stage may be controlled to discharge the maximum flow rate of the working oil, that is, the second proportional control valve 460 that controls the fan pump 160a.
  • the signal S may be provided to arbitrarily control the second proportional control signal 462 transmitted therefrom, so that the fan pump continuously discharges the hydraulic fluid at the maximum flow rate regardless of the actual work.
  • a so-called 'non-work load' which is any forced load, is thus provided to the engine 110, through which the engine 110 is driven to idle Compared to the state it is possible to increase the temperature of the exhaust gas more quickly.
  • the exothermic reaction between the DOC 140 and the fuel is promoted by the temperature of the exhaust gas, and the DOC is caused by the high temperature of about 600 ° C. to 700 ° C. which is caused by the exothermic reaction.
  • Soot collected in the DPF 130 disposed at the rear end of the 140 may be burned off. That is, DPF regeneration can be performed.
  • the proportional control signal transmitted to the fan pump that drives the rotation of a plurality of cooling fans driven independently of each work stage is arbitrarily maximized.
  • the control, the fan pump 160a discharges the hydraulic fluid of the maximum flow rate thereby providing a 'non-work load' to the engine 110, whereby the engine 110 through the load conventional idle
  • the exhaust gas is discharged at a higher temperature more quickly than when driven in a state, preferably a predetermined temperature for promoting the exothermic reaction of the DOC 140.
  • FIG. 6 shows an embodiment similar to FIG. 5, wherein only the oil cooler 470 and the radiator 480 are arranged to rotate by fan motors 472 and 482 which are separately driven.
  • the radiator 480 applies a cooling fan directly connected to the engine, while in the system 400 ′ of FIG. 6, the radiator 480 is a fan pump like the oil cooler 470. The difference is that it operates using a separate fan motor 482 which is driven and supplied with hydraulic oil by 160a.
  • FIG. 6 is similar to the configuration of FIG. 5 except that all cooling fans 474 and 484 shown in the drawing are configured to rotate by fan motors 472 and 482 driven by the fan pump 160a. Substantially the same, it can be understood as a modification of the embodiment of FIG. 5.
  • fan motors 472 and 482 driven by the fan pump 160a in the above embodiments are only two illustrated for each of the oil cooler 470 and the radiator 480, it is not limited thereto. Do.
  • the fan pump 160a may be configured to supply hydraulic oil required when operating the joystick in the cockpit, or hydraulic oil used in a steering device and a braking device of a construction machine, for example.
  • the fan pump 160a may be operated without performing actual work (such as driving a boom or bucket or steering or braking the construction machine).
  • the present invention can be applied within a range capable of discharging the hydraulic fluid of the maximum flow rate.
  • a separate cooling fan may be arranged to cool the heat generated in the engine room when performing DPF forced regeneration, which is also driven by a fan motor connected in the fan pump 160a of the present invention.
  • a separate cooling fan may be arranged to cool the heat generated in the engine room when performing DPF forced regeneration, which is also driven by a fan motor connected in the fan pump 160a of the present invention.
  • FIG. 7 is a flowchart showing a DPF forced regeneration method according to another embodiment of the present invention.
  • this embodiment starts with the engine being driven in the idle state to perform DPF forced regeneration (S100).
  • DPF forced regeneration a high temperature of, for example, 600 ° C. to 700 ° C. capable of burning off (regeneration) of fine dust (fine particles including soot, etc.) trapped in the DPF is required. This can be achieved by an exothermic reaction between the DOC and the injected fuel.
  • the forced regeneration of DPF can be performed only when the temperature of the exhaust gas reaches a predetermined temperature of about 235 ° C., which can promote the exothermic reaction of DOC.
  • the temperature of the exhaust gas at the front end of the DOC on the exhaust path is measured (S110).
  • the measured temperature is compared with a predetermined temperature (about 235 ° C.) which may promote an exothermic reaction (S120).
  • the forced load generating means composed of the fan pump is driven to generate a non-work load and provide it to the engine (S130).
  • the engine may be driven under a non-work load to raise the temperature of the exhaust gas faster than the idle state without a substantial work load such as driving the boom or the bucket (S140).
  • providing a non-work load to the engine is intended to raise the temperature of the exhaust gas to a predetermined temperature that can facilitate the exothermic reaction of the DOC. There is no need to provide a 'non-workload' to the engine.
  • the present invention provides a substantial load of construction machinery with the engine so that the exhaust gas temperature can be raised to a predetermined temperature more quickly than the conventional case in which the engine is driven in the idle state when the DPF is forcedly regenerated.
  • the time required for forced regeneration of the DPF can be shortened, while at the same time reducing fuel consumption.
  • the hydraulic system of the construction machine according to the present invention temporarily prevents the operation of the electronic control unit for controlling the electro-hydraulic pump when the control of the electronic control unit is not possible due to the abnormal operation amount of the joystick input to the electronic control unit. It can be used to drive construction machinery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Transportation (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

본 발명은 건설기계의 엔진의 DPF 강제 재생 시스템에 관한 것이며, 더욱 구체적으로는 엔진으로 임의로 비-작업 부하를 제공하여 신속하게 DPF 강제 재생을 수행함을 특징으로 하는 DPF 강제 재생 시스템 및 그 방법에 관한 것으로, 예컨대 실질적인 작업을 수행하지 않으면서 메인 펌프에서 최대 유량의 작동유를 토출하도록 제어함으로써 엔진이 임의로 비-작업 부하를 받아 구동되고, 이에 고온의 배기가스가 배출되어 DOC와 연료 사이의 발열반응을 촉진시키고, 이를 통해 DPF 강제 재생을 실질적인 부하가 없는 아이들 상태로 엔진을 구동하는 경우에 비해 더 신속하게 수행할 수 있는 DPF 강제 재생 시스템 및 그 방법을 제공하며, 이를 통하여 종래보다 단축된 시간 내에 DPF 강제 재생을 완료함으로써 시간과 비용 면에서 재생 효율을 개선할 수 있다.

Description

비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템 및 그 방법
본 발명은 엔진의 디젤 미세먼지 필터(DPF; Diesel Particulate Filter) 강제 재생 시스템에 관한 것이며, 더욱 구체적으로는 건설기계의 실질적인 작업이 정지된 상태에서도 엔진으로 임의로 비-작업 부하를 제공하여 신속하게 디젤 미세먼지 필터 강제 재생을 수행함을 특징으로 하는 디젤 미세먼지 필터 강제 재생 시스템 및 그 방법에 관한 것이다.
건설기계에서 사용되는 엔진은 다양한 규제와 기준을 충족하도록 요구받고 있다. 그러한 기준 중 하나는 배기가스에 포함되는 질소 산화물(NOx) 및 입자상 물질(PM; Particulate Matter)과 같은 오염물을 감소시키는 것으로, 건설기계를 사용함에 있어 소음에 관한 규제와 더불어 주요한 환경 기준이 될 수 있다.
이러한 환경 기준에 부합하기 위해서, 통상적으로 배기가스 재순환 장치(EGR; Exhaust Gas Recirculation) 및 디젤 미세먼지 필터(DPF; Diesel Particulate Filter) 장치와 같은 다양한 수단을 적용한 엔진이 사용되고 있다.
여기서, 디젤미세먼지필터(DPF)는 엔진에서 나온 배기가스가 배출되는 경로상에, 예컨대 머플러 내에 매연을 포함하는 입자상 물질인 미세먼지(soot)를 포집하여 여과할 수 있는 필터를 지칭하는 것으로, 이러한 필터가 장착된 장치를 칭하기도 한다. 이하 디젤 미세먼지 필터를 DPF로 약칭한다.
이러한 필터는 그 안에 포집된 미세먼지를 주기적으로 또는 포집된 양에 따라 임의로 제거하는 과정을 필요로 하며, 이를 통상 'DPF 재생(Regeneration)' 또는 '연소 제거'라 한다.
이러한 재생은 그 구현 방식에 따라 자연 재생(passive regeneration)과 강제 재생(active regeneration)으로 크게 구분될 수 있다.
예컨대, DPF 자연 재생이라 함은, 건설기계의 작업 중에 상승한 배기가스의 온도에 의해 필터 내에 포집되어 있는 미세먼지를 연소시키거나, 또는 건설기계의 운전 중 배기가스가 배출되는 경로 상에 소량의 연료를 투입함으로써 이 경로 상에 미리 배치된 디젤산화촉매장치(DOC; Diesel Oxidation Catalyst)와 투입된 연료가 발열반응을 일으켜 더 높은 열을 생성시키고, 이에 따라 포집되어 있는 미세먼지를 연소시키는 방식을 말한다.
다음으로, DPF 강제 재생이라 함은, 운전자가 실질적으로 작업을 실시하지 않으면서 강제로 건설기계의 엔진을 구동하여 배기가스를 배출하고, 이 배기가스의 온도에 기초하여 배기 경로 상에 투입된 소량의 연료가 역시 배기 경로 상에 미리 배치되어 있는 디젤산화촉매장치(DOC)와 발열반응을 일으켜 미세먼지의 연소(재생)에 필요한 온도로 배기가스의 온도를 더 높임으로써 필터 내에 포집되어 있는 미세먼지를 연소시키는 방식을 말한다.
도 1을 참조하여 통상의 DPF 강제 재생 시스템의 개략적인 구성을 살펴보면 다음과 같다.
도 1에 따르면, 통상의 DPF 강제 재생 시스템(100)은 터보 차저(12)가 형성된 엔진(10)과 그로부터 배기가스가 배출되는 배기 경로(20) 상에 형성된 DPF(디젤미세먼지필터)(30), 및 DPF 전단의 DOC(디젤산화촉매장치: 40)를 포함하고, 또한, 배기 경로(20) 중 DOC의 전단으로 소량의 연료를 투입하는 연료 투입 수단(50) 및 엔진(10)에 의해 구동되는 펌프(60)를 포함한다.
DPF 강제 재생의 경우, 실질적인 작업 부하가 생성되지 않으므로, 그에 관련된 상세는 도면에서 생략되어 있다.
이러한 구성의 시스템을 갖는 DPF 강제 재생의 경우에, 건설기계는 작업이 정지된 상태이기 때문에, 예를 들어, 붐, 버킷 등과 같은 프런트 작업 수단을 구동하거나 차량을 전후로 주행하는 등 건설기계의 실질적인 작업을 일으키지 않는 상태를 유지하게 되고, 엔진은 최소의 부하만을 받는 아이들 상태(즉, 낮은 rpm)로 구동되며, 이에 아이들 상태에서 배출되는 배기가스의 온도는 쉽게 높아지지 않는다.
즉, 아이들 상태로 구동되기 시작한 엔진으로부터 나온 배기가스는 작업할 때와 비교하여 상대적으로 낮은 온도를 가진다.
한편, DPF 강제 재생 방식으로 디젤미세먼지필터(DPF) 내에 포집된 미세먼지를 연소(DPF 재생)시키기 위해서는, 배기 경로 상에 배치되어 있는 DOC와 DOC의 전단에서 배기 경로 상으로 투입되는 연료 사이에 발열반응이 일어나야 하고, 이 발열반응은 소정 온도(약 235℃) 이상에서 가능하기 때문에, 실질적인 작업 부하 없이 실시되는 DPF 강제 재생의 경우 배기가스가 이러한 소정 온도로 가열되기까지 상당한 시간을 필요로 한다.
통상 엔진은 아이들 구동 상태보다 부하를 받아 구동하는 경우에 더 높은 온도의 배기가스를 배출하게 된다. 그러나, 자연 재생의 경우와 달리 강제 재생의 경우는 건설기계가 정지된 상태에서 실질적인 무부하 상태(아이들 상태)로 엔진이 구동되기 때문에 배기가스의 온도가 DOC의 발열반응이 가능한 소정 온도까지 높아지기까지 상당한 시간이 요구되는 것이다. 예컨대, 건설기계의 DPF 강제 재생의 경우 대략 30분에서 1시간여 정도의 시간이 소요되는 것으로 알려져 있다.
건설기계의 구입비용이 크기 때문에, 대부분의 건설기계는 시간 또는 날짜 기준으로 대여되는 것이 일반적이며, 작업을 하면서 병행할 수 있는 DPF 자연 재생 과정과 달리, 작업을 실시하지 못하면서 시간을 보내야 하는 DPF 강제 재생 과정은 건설기계를 대여함에 있어 비용 부담을 가중시켜 왔다.
덧붙여, 건설기계를 대여한 경우가 아니더라도, DPF 강제 재생으로 인해 상당한 시간 동안 작업이 일시 중단되어야 하는 점은 건설기계 작업 공정의 전반적인 효율을 떨어뜨리는 결과를 가져오곤 하였다.
또한, 오랜 시간 동안 지속되는 DPF 강제 재생과정 동안 계속하여 엔진이 구동되어야 하기 때문에 DPF 강제 재생이 수행되는 지속 시간에 따라 연료 소모량이 비례하여 증가하는 어려움이 있었다.
본 발명의 목적은 엔진으로 임의의 비-작업 부하를 부여하여 신속하게 배기가스의 온도를 높임으로써 효율적으로 수행될 수 있는 DPF 강제 재생 시스템 및 그 방법을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 신속한 DPF 강제 재생을 실시함으로써 강제 재생과 관련하여 소모되는 연료량을 최소화할 수 있는 DPF 강제 재생 시스템 및 그 방법을 제공하기 위한 것이다.
이러한 목적을 달성하기 위한 본 발명은, 엔진; 상기 엔진에 직결되어 작동유를 토출하며, 상기 작동유의 토출유량을 가변시킬 수 있는 펌프; 상기 엔진에서 나온 배기가스가 외부로 배출되는 배기 경로 상에 배치되는 디젤미세먼지필터(DPF); 소정 온도에서 연료를 상기 배기 경로에 투입함으로써 상기 디젤미세먼지필터에 포집된 미세먼지(soot)를 연소시켜 제거하는 DPF 강제 재생을 진행시키는 연료 투입 수단;상기 DPF 강제 재생을 선택하기 위한 선택 스위치; 및 상기 DPF 강제 재생 선택시 상기 펌프의 토출유량을 증가시킴으로써 상기 엔진으로 비-작업 부하를 제공하는 강제부하 생성 수단;을 포함하는 것을 특징으로 하는 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템을 제공한다.
이처럼, DPF 강제 재생의 경우에 엔진이 비-작업 부하를 받아 구동됨으로써 아이들 상태로 구동되는 경우와 비교하여 더 짧은 시간에 배기가스의 온도를 소정 온도 이상으로 높일 수 있으므로, DOC와 연료의 발열반응을 촉진하여 그로 인해 생성되는 고온에 의해 DPF 재생(연소 제거)을 효율적으로 실시할 수 있다.
또한, 본 발명의 시스템은, 메인 펌프가 센터바이패스라인을 통해 탱크로 회수되는 작동유의 압력에 기초하는 신호값을 피드백하여 작동유의 토출 유량을 제어하는 네가콘 방식(Negative Control System)으로 구동될 때, DPF 강제 재생시, 피드백 값을 임의로 최저로 조정함으로써 메인 펌프가 최대 유량의 작업유를 토출하도록 함을 특징으로 한다.
또한, 본 발명의 시스템은, 피드백 값이 전달되는 경로 상에 배치되는 솔레노이드 밸브를 더 포함하고, 최저의 피드백 값은 솔레노이드 밸브를 차단함으로써 생성되는 것을 특징으로 한다.
또한, 본 발명의 시스템은, 메인 펌프가 조종석 내 조이스틱에 연결된 비례제어밸브를 통해 메인 펌프로 전달되는 비례전류치에 기초하여 작동유의 토출 유량을 제어하는 포지콘 방식(Positive Control System)으로 구동될 때, DPF 강제 재생시, 비례전류치를 임의로 최대로 조정함으로써 메인 펌프가 최대 유량의 작업유를 토출하도록 함을 특징으로 한다.
또한, 본 발명은, 전술한 DPF 강제 재생 시스템에서 DPF를 강제 재생하는 방법으로서, (a) 엔진을 아이들 상태에서 구동하는 단계와; (b) DOC 전단의 배기가스의 온도를 측정하는 단계와; (c) 측정된 온도가 소정 온도 이하일 때, 강제부하 생성 수단을 구동하여 비-작업 부하를 엔진으로 부여하는 단계와; (d) 엔진이 비-작업 부하에 의해 더 높은 고온의 배기가스를 배출하는 단계와; (e) 측정된 온도가 소정 온도를 초과할 때, 강제 부하 생성수단이 구동 중이라면 강제 부하 생성수단의 구동을 멈추는 단계와; (f) DPF 강제 재생을 실시하는 단계; 및 (g) DPF의 재생 완료시까지 (b) 단계 내지 (f) 단계를 반복하는 단계;를 포함하고, 이때 고온의 배기가스로 인해 DOC와 연료 간의 발열반응이 촉진됨으로써 DPF 강제 재생이 효율적으로 수행되는 것인, 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 방법을 제공한다.
또한, 목적을 달성하기 위한 다른 예로서, 본 발명의 일 실시형태는 엔진과; 엔진에서 나온 배기가스가 외부로 배출되는 배기 경로 상에 배치되는 디젤미세먼지필터(DPF)와; 배기 경로 상에서 DPF의 전단에 배치되는 디젤산화촉매장치(DOC)와; 소정 온도에서 DOC와 발열반응을 일으키는 연료를 배기 경로 중 DOC의 전단으로 투입하는 연료 투입 수단; 및 엔진으로 비-작업 부하를 제공하는 강제부하 생성 수단;을 포함하고, 강제부하 생성 수단은 팬 펌프(160a)에 의해 구성되며, DPF 강제 재생시, 팬 펌프가 건설기계의 실질적인 작업을 야기하지 않으면서 임의로 최대 유량의 작동유를 토출하도록 제어됨으로써 비-작업 부하를 생성하고, 이에 따라 엔진이 소정 온도 이상의 배기가스를 배출하는 것인, 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템을 제공한다.
이처럼, DPF 강제 재생의 경우에 엔진이 비-작업 부하를 받아 구동됨으로써 아이들 상태로 구동되는 경우와 비교하여 더 짧은 시간에 배기가스의 온도를 소정 온도 이상으로 높일 수 있으므로, DOC와 연료의 발열반응을 촉진하여 그로 인해 생성되는 고온에 의해 DPF 재생(연소 제거)을 효율적으로 실시할 수 있다.
또한, 본 발명의 시스템은, 팬 펌프(160a)로 가변 팬 펌프를 사용하며, DPF 강제 재생시, 가변 팬 펌프로 전달되는 비례전류신호를 임의로 최대로 조정함으로써 팬 펌프가 최대 유량의 작업유를 토출하도록 함을 특징으로 한다.
또한, 본 발명의 시스템은, 팬 펌프가 엔진과 직결로 연결되지 않는 적어도 하나의 별치 구동식 팬 모터와 연결되는 것을 특징으로 한다.
본 발명은, 전술한 DPF 강제 재생 시스템에서 DPF를 강제 재생하는 방법으로서, (a) 엔진을 아이들 상태에서 구동하는 단계와; (b) 배기 경로 상의 배기가스의 온도를 측정하는 단계와; (c) 측정된 온도가 소정 온도 이하일 때, 강제부하 생성 수단을 구동하여 비-작업 부하를 엔진으로 부여하는 단계와; (d) 엔진이 비-작업 부하에 의해 더 높은 고온의 배기가스를 배출하는 단계와; (e) 측정된 온도가 소정 온도를 초과할 때, 강제 부하 생성수단이 구동 중이라면 강제 부하 생성수단의 구동을 멈추는 단계와; (f) DPF 강제 재생을 실시하는 단계; 및 (g) DPF의 재생 완료시까지 (b) 단계 내지 (f) 단계를 반복하는 단계;를 포함하고, 이때 고온의 배기가스로 인해 발열반응이 촉진됨으로써 DPF 강제 재생이 효율적으로 수행되는 것인, 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 방법을 제공한다.
본 발명에 따르면, DPF 강제 재생할 때에 엔진으로 건설기계의 실질적인 작업 부하가 아닌 임의의 비-작업 부하를 부여하여 신속하게 배기가스의 온도를 높임으로써 효율적으로 수행될 수 있는 DPF 강제 재생 시스템 및 그 방법을 제공할 수 있다.
또한, 본 발명에 따르면, 신속한 DPF 강제 재생을 실시함으로써 강제 재생과 관련하여 소모되는 연료량을 최소화할 수 있는 DPF 강제 재생 시스템 및 그 방법을 제공할 수 있다.
도 1은 종래의 DPF 강제 재생 시스템의 일 예를 도시한 블록도이다.
도 2는 본 발명의 일 실시형태에 따른 DPF 강제 재생 시스템을 도시한 블록도이다.
도 3은 본 발명의 다른 실시형태에 따른 DPF 강제 재생 시스템을 도시한 블록도이다.
도 4는 본 발명의 또 다른 실시형태에 따른 DPF 강제 재생 시스템을 도시한 블록도이다.
도 5은 본 발명의 일 실시형태에 따른 DPF 강제 재생 시스템을 도시한 블록도이다.
도 6은 본 발명의 다른 실시형태에 따른 DPF 강제 재생 시스템을 도시한 블록도이다.
도 7은 본 발명의 또 다른 실시형태에 따른 DPF 강제 재생 방법을 도시한 순서도이다.
*부호의 설명*
100, 200, 300, 400, 400a: DPF 강제 재생 시스템
10, 110, 210: 엔진(ENG)
12, 112, 212: 터보 차저(T/C)
20, 120, 212: 배기 경로
30, 130, 230: 디젤미세먼지필터(DPF)
40, 140, 240: 디젤산화촉매장치(DOC)
50, 150, 250: 연료 투입 수단
60, 160, 260: 펌프(메인 펌프)
160a: 팬 펌프
162, 262: 센터바이패스라인
164, 264: 탱크
170, 270: 작업단 제어밸브
180, 182, 182a: 피드백 신호
190, 192, 192a: 솔레노이드 밸브
280, 460: 제1, 제2 비례제어밸브
282, 462: 제1, 제2 비례제어신호
470: 오일 쿨러
472, 482: 팬 모터
474, 484: 냉각팬
480: 라디에이터
S: 제어 신호
이하, 도면을 참조하여 본 발명의 바람직한 실시형태를 설명한다.
도 2는 본 발명의 일 실시형태에 따른 DPF 강제 재생 시스템을 도시한 블록도이다.
구체적으로 살펴보면, 이 실시형태의 DPF 강제 재생 시스템(200)은 터보 차저(112)가 구비된 엔진(110)과 그로부터 배출되는 배기가스의 배기 경로(120) 상에 디젤산화촉매장치(DOC)(140) 및 디젤미세먼지필터(DPF)(130)가 차례로 배치되고 DOC(140)의 전단으로 배기 경로 상에 연료를 투입하는 연료 투입 수단(150)을 포함한다. 또한 운전자 또는 미도시된 컨트롤러가 DPF 강제 재생을 선택하기 위한 선택스위치(미도시)를 더 포함할 수 있다.
또한, 엔진(110)에는 건설기계의 각종 작업단(예컨대, 붐, 버킷, 선회모터 등)으로 작동유를 공급하는 메인 펌프(160)가 연결되어 있으며, 메인 펌프(160)는 소위 센터바이패스라인(162)과 패러렐라인을 포함하는 유압 회로를 통해 작동유를 공급함으로써 작업단 제어밸브(170)를 제어하여 각 작업단의 구동을 야기한다.
도면에서 작업단 제어밸브(170)는 단순히 하나의 블록으로 표시되어 있지만, 실제로는 각 작업단(붐, 버킷, 선회모터 등)과 대응하는 다수의 제어밸브와 그에 관련된 포트 및 유로 등을 의미하는 것이다.
또한, 센터바이패스라인(162)의 말단에는 작동유를 회수하는 탱크(164)가 구비되어 있으며, 탱크(164)로 회수되기 직전의 작동유의 압력에 기초한 신호값(180)이 메인 펌프(160)로 피드백 되며, 이 피드백 된 신호값에 기초하여 이후 메인 펌프(160)의 작동유 토출 유량이 실시간으로 제어될 수 있다.
또한, 신호값(180)이 피드백되는 경로 도중에 솔레노이드 밸브(190)가 형성되고, 이 솔레노이드 밸브(190)를 제어하는 신호(S)가 제공된다. 이 제어 신호(S)는 예컨대, DPF 강제 재생시에 이 솔레노이드 밸브(190)를 차단하도록 하는 값을 전달한다.
이처럼, 도 2는 메인 펌프(160)가 소위 네가콘 방식(Negative Control System)으로 구동되는 경우에 적용될 수 있는 DPF 강제 재생 시스템(200)의 일 예를 도시하고 있다.
네가콘 방식이라 함은, 예컨대, 센터바이패스라인(162)을 통해 탱크(164)로 회수되는 작동유의 압력에 기초하는 신호값(180)을 피드백하여 메인 펌프(160)의 작동유 토출 유량을 실시간으로 제어하는 방식을 말한다.
피드백된 신호값(또는 '네가콘 신호'라고도 한다)에 역으로 비례하여 토출 유량이 결정됨을 특징으로 한다. 예를 들어, 네가콘 방식에 따르면, 메인 펌프로 피드백된 신호값이 낮을수록 토출 유량이 많아지고(L->H) 신호값이 높을수록 토출 유량이 낮아지게 된다(H->L).
실제 건설기계가 실질적인 작업을 실시하는 경우에, 각 작업단(붐, 버킷, 선회모터 등 - 도시되지 않음)으로 작동유가 공급되기 때문에, 센터바이패스라인(162)의 말단에 위치한 탱크(164)로 회수되는 작동유의 압력은 낮아지게 되며, 이러한 낮은 압력값에 기초한 신호값(L)이 피드백 됨으로써 그에 역으로 비례하여 메인 펌프(160)가 높은 작동유 유량(H)을 토출하게 된다.
예컨대, 건설기계가 붐과 버킷의 복합구동을 하는 경우라면 메인 펌프(160)는 더 높은 유량의 작동유를 토출하게 될 것이다.
이와 반대로 건설기계가 실질적인 작업을 하지 않게 되면, 센터바이패스라인(162)의 말단에 위치한 탱크(164)로 회수되는 작동유의 압력이 높아지게 되며, 이러한 높은 압력값에 기초한 신호값(H)이 피드백 됨으로써 그에 역으로 비례하여 메인 펌프(160)가 낮은 작동유 유량(L)을 토출하게 된다.
즉, 실질적인 작업이 없는 경우에는 메인 펌프(160)는 최소의 유량만을 토출하게 될 것이다. 이는 결국 엔진에 실질적인 부하를 제공하지 않게 되고, 엔진을 아이들(idle) 상태로 구동하도록 한다.
이와 같은 시스템(200)에 있어서, 운전자가 선택스위치(미도시)를 조작하여DPF 강제 재생을 실시하는 경우라면, 실질적인 작업 부하가 일어나지 않으므로 엔진(110)은 아이들 상태(즉, 낮은 rpm)에서 구동된다.
전술한 바와 같이, DPF 강제 재생을 보다 신속하게 수행하기 위해서는 엔진(110)으로부터 배출되는 배기가스의 온도를 DOC(140)와 연료간의 발열반응이 일어나기 위한 기준인 소정 온도(예컨대, 약 235℃) 이상으로 높이는 것이 요구되며, 이에 본 발명은 실질적인 작업이 아닌 비-작업 부하를 엔진(110)으로 제공함으로써 배기가스의 온도를 빠르게 높일 수 있다.
본 발명의 일실시예에서, 용어 '비-작업 부하'는 결국 건설기계의 각 작업단을 실제로 구동하지 않으면서 엔진(110)으로 제공되는 임의의 강제 부하를 의미한다.
즉, 일실시예의 형태에서 단지 네가콘 신호의 피드백 경로 상에 배치된 솔레노이드 밸브(190)를 차단함으로써, 메인 펌프(160)로 피드백되는 네가콘 신호를 임의로 최저로 제어할 수 있으며, 이에 메인 펌프는 실질적인 작업이 수행되지 않음에도 지속적으로 최대 유량의 작동유를 토출하게 된다.
이처럼, 메인 펌프(160)가 최대 유량의 작동유를 토출하는 동안, 그에 따라 엔진(110)으로 임의의 강제 부하인 소위 '비-작업 부하'가 제공되며, 이를 통해 엔진(110)이 구동됨으로써 아이들 상태와 비교하여 더 빠르게 배기가스의 온도를 높일 수 있게 된다.
배기가스가 소정의 온도, 즉 약 235℃에 이르면, 이 배기가스의 온도에 의해 DOC(140)와 연료간의 발열반응이 촉진되고, 발열반응에 의해 나타나는 약 600℃ ~ 700℃의 고온으로 인해 DOC(140)의 후단에 배치되어 있는 DPF(130) 내에 포집되어 있던 미세먼지(soot)가 연소 제거될 수 있다. 즉, DPF 재생이 실시될 수 있다.
이처럼, 이 실시형태에서는 네가콘 방식으로 구동되는 메인 펌프(160)에 대해 피드백되는 신호값(180)을 경로 상에 배치된 솔레노이드 밸브(190)를 차단하여 신호값(네가콘 신호)을 임의로 최저로 제어함을 특징으로 하며, 이에 따라 메인 펌프(160)가 최대 유량의 작동유를 토출하도록 함으로써 '비-작업 부하'를 엔진(110)으로 제공한다.
이에 따라 엔진(110)이 부하를 통해 종래 아이들 상태로 구동되는 경우보다 더 신속하게 높은 온도, 바람직하게는 DOC(140)의 발열반응을 촉진하기 위한 소정의 온도의 배기가스를 배출함을 특징으로 한다.
다음으로, 도 3은 도 2와 유사한 실시형태를 도시한 것이며, 단지 네가콘 신호가 피드백되는 경로 상에 2개의 솔레노이드 밸브(192, 192a)가 배치된 것이 상이하다.
구체적으로, 비록 도면에서 하나의 단일 블록으로 메인 펌프(160)가 표시되어 있지만, 통상의 건설기계는 좌우 한 쌍의 메인 펌프를 갖는 것이 일반적이며, 도 2 및 도 3의 메인 펌프(160)는 실제로는 좌우 한 쌍의 2개의 메인 펌프를 의미할 수 있다.
또한, 각 메인 펌프를 기준으로 센터바이패스라인, 페러렐라인, 작업단 제어 밸브, 탱크 등의 유압회로가 별개로 구성되며, 결과적으로 탱크로 회수되는 작동유의 압력에 기초하는 신호값(네가콘 신호) 역시 각각의 메인 펌프로 하나씩 피드백되어야 하고, 이에, 각 신호값(182, 182a)이 피드백되는 경로 상에 하나씩 2개의 솔레노이드 밸브(192, 192a)가 제공됨을 나타낸 것이다.
즉, 도 3은 메인 펌프로 피드백되는 경로에 대해 각각 솔레노이드 밸브(192, 192a)가 형성된 점을 제외하고는 도 2의 구성과 실질적으로 동일한 것으로, 도 2의 실시형태의 변형예로 이해될 수 있다.
다음으로, 도 4는 본 발명의 다른 실시형태에 따른 DPF 강제 재생 시스템을 도시한 블록도이다.
구체적으로 살펴보면, 이 실시형태의 DPF 강제 재생 시스템(300)은 터보 차저(212)가 구비된 엔진(210)과 그로부터 배출되는 배기가스의 배기 경로(220) 상에 디젤산화촉매장치(DOC)(240) 및 디젤미세먼지필터(DPF)(230)가 차례로 배치되고, DOC(240)의 전단으로 배기 경로 상에 연료를 투입하는 연료 투입 수단(250)을 포함한다.
또한, 엔진(210)에는 건설기계의 각종 작업단(예컨대, 붐, 버킷, 선회모터 등 - 도시되지 않음)으로 작동유를 공급하는 메인 펌프(260)가 연결되어 있으며, 메인 펌프(260)는 소위 센터바이패스라인(262)과 패러렐라인을 포함하는 소정의 유압 회로를 통해 작동유를 공급함으로써 작업단 제어밸브(270)를 제어하여 각 작업단의 구동을 야기한다.
도면에서 작업단 제어밸브(270)는 단순히 하나의 블록으로 표시되어 있지만, 실제로는 각 작업단(붐, 버킷, 선회모터 등)과 대응하는 다수의 제어밸브와 그에 관련된 포트 및 유로 등을 의미하는 것이다.
또한, 센터바이패스라인(262)의 말단에는 작동유를 회수하는 탱크(264)가 구비되어 있다.
또한, 예컨대 조종석 내에 조이스틱의 작동에 대응하여 제어되는 제1 비례제어밸브(280)가 배치된다. 상기 제 1 비례제어밸브(280)는 미도시된 작동유 공급원으로부터 공급되어 메인 펌프(260)로 공급되는 작동유의 유량을 제어하여 이를 제 1 비례제어신호(282)로 활용할 수 있도록 한다. 상기 제1 비례제어신호(282)가 메인 펌프(260)의 유량을 결정하는 펌프 레귤레이터(미도시)로 전달되어 이후 메인 펌프(160)의 작동유 토출 유량이 실시간으로 제어될 수 있다. 여기서, 메인 펌프(260)가 전자펌프 형태로 구비되는 경우라면, 상기 제 1 비례제어밸브(280)는 컨트롤러로 대체가 가능하고, 상기 컨트롤러는 운전자의 조이스틱 조작에 대응하여 메인 펌프(260)의 토출유량을 제어하도록 구성될 수 있다.
제1 비례제어밸브(280)에는 조이스틱의 작동과 별개로 비례제어밸브를 제어하는 신호(S)가 제공될 수 있다. 이 제어 신호(S)는 예컨대, DPF 강제 재생시에 이 제1 비례제어밸브(280)를 제어할 수 있다.
이처럼, 도 4는 메인 펌프(260)가 소위 포지콘 방식(Positive Control System)으로 구동되는 경우에 적용될 수 있는 DPF 강제 재생 시스템(300)의 일 예를 도시하고 있다.
포지콘 방식이라 함은, 예컨대, 조종석 내에 조이스틱의 작동에 대응하여 제1 비례제어밸브(280)로부터 전달되는 제1 비례제어신호(282)에 따라 메인 펌프(260)의 작동유 토출 유량을 실시간으로 제어하는 방식을 말하며, 전달된 비례제어신호(또는 '포지콘 신호'라고도 한다)에 비례하여 토출 유량이 결정됨을 특징으로 한다.
예를 들어, 포지콘 방식에 따르면, 메인 펌프로 전달된 신호값이 낮을수록 토출 유량이 낮아지고(L->L) 신호값이 높을수록 토출 유량이 높아지게 된다(H->H).
실제 건설기계가 실질적인 작업을 실시하는 경우에, 각 작업단(붐, 버킷, 선회모터 등 - 도시되지 않음)을 구동하기 위해 조종석 내 조이스틱이 작동하게 되며, 이 조이스틱의 작동에 대응하여 제1 비례제어밸브(280)의 제1 비례제어신호(282)가 메인 펌프(260)로 전달됨으로써 그에 비례하여 메인 펌프(260)가 높은 작동유 유량(H)을 토출하게 된다.
예컨대, 건설기계가 붐과 버킷의 복합구동을 하는 경우라면 메인 펌프(260)는 더 높은 유량의 작동유를 토출하게 될 것이다.
이와 반대로 건설기계가 실질적인 작업을 하지 않게 되면, 조이스틱이 작동하지 않게 되고, 이에 최저의 비례제어신호가 메인 펌프(260)으로 전달되며, 그에 비례하여 메인 펌프(260)가 최소의 작동유 유량(L)을 토출하게 된다.
즉, 실질적인 작업이 없는 경우에는 메인 펌프(260)는 최소의 유량만을 토출하게 될 것이다. 이는 결국 엔진에 실질적인 부하를 제공하지 않게 되고, 엔진을 아이들(idle) 상태로 구동하도록 한다.
이와 같은 시스템(300)에 있어서, DPF 강제 재생을 실시하는 경우라면, 실질적인 작업 부하가 일어나지 않으므로 엔진(110)은 아이들 상태(즉, 낮은 rpm)에서 구동된다.
전술한 바와 같이, DPF 강제 재생을 보다 신속하게 수행하기 위해서는 엔진(210)으로부터 배출되는 배기가스의 온도를 DOC(240)와 연료간의 발열반응이 일어나기 위한 기준인 소정 온도(예컨대, 약 235℃) 이상으로 높이는 것이 요구되며, 이에 본 발명은 실질적인 작업이 아닌 비-작업 부하를 엔진(210)으로 제공함으로써 배기가스의 온도를 빠르게 높일 수 있다.
즉, 이 실시형태에서 단지 제1 비례제어밸브(280)로 제어 신호(S)를 제공하여 제1 비례제어밸브(280)로부터 전달되는 제1 비례제어신호(282)를 임의로 최대로 제어할 수 있으며, 이에 메인 펌프는 실질적인 작업이 수행되지 않음에도 지속적으로 최대 유량의 작동유를 토출하게 된다.
이처럼, 메인 펌프(260)가 최대 유량의 작동유를 토출하는 동안, 그에 따라 엔진(210)으로 임의의 강제 부하인 소위 '비-작업 부하'가 제공되며, 이를 통해 엔진(210)이 구동됨으로써 아이들 상태와 비교하여 더 빠르게 배기가스의 온도를 높일 수 있게 된다.
배기가스가 소정의 온도, 즉 약 235℃에 이르면, 이 배기가스의 온도에 의해 DOC(240)와 연료간의 발열반응이 촉진되고, 발열반응에 의해 나타나는 약 600℃ ~ 700℃의 고온으로 인해 DOC(240)의 후단에 배치되어 있는 DPF(230) 내에 포집되어 있던 미세먼지(soot)가 연소 제거될 수 있다. 즉, DPF 재생이 실시될 수 있다.
이처럼, 이 실시형태에서는 포지콘 방식으로 구동되는 메인 펌프(260)로 전달되는 제1 비례제어밸브(280)의 제1 비례제어신호(282)를 임의로 최대로 제어함을 특징으로 하며, 이에 따라 메인 펌프(260)가 최대 유량의 작동유를 토출하도록 함으로써 '비-작업 부하'를 엔진(210)으로 제공하고, 이에 따라 엔진(210)이 부하를 통해 종래 아이들 상태로 구동되는 경우보다 더 신속하게 높은 온도, 바람직하게는 DOC(240)의 발열반응을 촉진하기 위한 소정의 온도의 배기가스를 배출함을 특징으로 한다.
이하, 도면을 참조하여 본 발명의 바람직한 다른 실시형태를 설명한다.
도 5은 본 발명의 다른 실시형태에 따른 DPF 강제 재생 시스템을 도시한 블록도이다.
구체적으로 살펴보면, 이 실시형태의 DPF 강제 재생 시스템(400)은 터보 차저(112)가 구비된 엔진(110)과 그로부터 배출되는 배기가스의 배기 경로(120) 상에 디젤산화촉매장치(DOC)(140) 및 디젤미세먼지필터(DPF)(130)가 차례로 배치되고 DOC(140)의 전단으로 배기 경로 상에 연료를 투입하는 연료 투입 수단(150)을 포함한다.
또한, 엔진(110)에는 건설기계의 각종 작업단(예컨대, 붐, 버킷, 선회모터 등)으로 작동유를 공급하는 메인 펌프(도시되지 않음)와 함께 예컨대, 냉각팬(474)을 회전 구동시키는 팬 모터(472)로 작동유를 공급하는 팬 펌프(F/P; Fan Pump)(160)가 연결되어 있다.
이 팬 펌프(160a)는 펌프 레귤레이터(미도시)의 제어에 의해 사판각을 변경하여 유량을 가변시킬 수 있는 가변 팬 펌프일 수 있고, 제2 비례제어밸브(460)와 같은 제어 수단을 통해 전달되는 제2 비례제어신호(462)를 통해 제어될 수 있다.
다른 실시예의 형태에서 오일 쿨러(470)에 적용된 냉각팬(472)은 팬 펌프(160a)로부터 작동유를 공급받아 구동되는 팬 모터(472)에 의해 회전할 수 있다.
또한, 라디에이터(480)에 적용된 냉각팬(484)은 별도의 팬 모터 등을 포함하지 않고 엔진(110)과 직결로 연결되어 회전할 수 있다.
다른 실시예의 형태에서, 오일 쿨러(470)는 팬 펌프(160a)를 통해 그리고 라디에이터(480)는 엔진(110)과 직결로 연결된 상태로 표시되어 있지만, 이로 한정되는 것은 아니며, 이들 요소는 다양한 형태로 구성될 수 있음에 유의한다.
도면에서 메인 펌프와 그를 통해 구동되는 각 작업단(붐, 버킷, 선회모터 등) 및 각 작업단에 대응하는 다수의 제어밸브 등을 포함하는 유압 구동 부분은 생략되어 있으며, DPF 강제 재생시 이들 작업단은 실질적으로 구동되지 않기 때문에 이하에서 그에 관한 상세한 설명은 생략하기로 한다.
이와 같은 시스템(400)에 있어서, 운전자 또는 컨트롤러가 강제 재생 선택을 위해 선택 스위치(미도시)를 조작하여 DPF 강제 재생을 실시하는 경우라면, 실질적인 작업 부하가 일어나지 않으므로 엔진(110)은 아이들 상태(즉, 낮은 rpm)에서 구동된다.
전술한 바와 같이, DPF 강제 재생을 보다 신속하게 수행하기 위해서는 엔진(110)으로부터 배출되는 배기가스의 온도를 DOC(140)와 연료간의 발열반응이 일어나기 위한 기준인 소정 온도(예컨대, 약 235℃) 이상으로 높이는 것이 요구되며, 이에 본 발명은 실질적인 작업이 아닌 비-작업 부하를 엔진(110)으로 제공함으로써 배기가스의 온도를 빠르게 높일 수 있다.
본 발명의 다른 실시예에서, 용어 '비-작업 부하'는 결국 건설기계의 각 작업단을 실제로 구동하지 않으면서 엔진(110)으로 제공되는 임의의 강제 부하를 의미한다.
즉, 다른 실시예의 형태에서 각 작업단과 연결되지 않는 팬 펌프(160a)에서 최대 유량의 작동유를 토출하도록 제어할 수 있으며, 즉 팬 펌프(160a)를 제어하는 제2 비례제어밸브(460)로 제어 신호(S)를 제공하여 그로부터 전달되는 제2 비례제어신호(462)를 임의로 최대로 제어할 수 있으며, 이에 팬 펌프는 실질적인 작업과 무관하게 지속적으로 최대 유량의 작동유를 토출하게 된다.
이처럼, 팬 펌프(160a)가 최대 유량의 작동유를 토출하는 동안, 그에 따라 엔진(110)으로 임의의 강제 부하인 소위 '비-작업 부하'가 제공되며, 이를 통해 엔진(110)이 구동됨으로써 아이들 상태와 비교하여 더 빠르게 배기가스의 온도를 높일 수 있게 된다.
배기가스가 소정의 온도, 즉 약 235℃에 이르면, 이 배기가스의 온도에 의해 DOC(140)와 연료간의 발열반응이 촉진되고, 발열반응에 의해 나타나는 약 600℃ ~ 700℃의 고온으로 인해 DOC(140)의 후단에 배치되어 있는 DPF(130) 내에 포집되어 있던 미세먼지(soot)가 연소 제거될 수 있다. 즉, DPF 재생이 실시될 수 있다.
이처럼, 다른 실시예 형태에서는 각 작업단(예컨대, 붐, 버킷, 및 선회모터 등)과 무관하게 별치 구동되는 다수의 냉각팬의 회전을 구동하는 팬 펌프에 대해 전달되는 비례제어신호를 임의로 최대로 제어함을 특징으로 하며, 이에 따라 팬 펌프(160a)가 최대 유량의 작동유를 토출하도록 함으로써 '비-작업 부하'를 엔진(110)으로 제공하고, 이에 따라 엔진(110)이 부하를 통해 종래 아이들 상태로 구동되는 경우보다 더 신속하게 높은 온도, 바람직하게는 DOC(140)의 발열반응을 촉진하기 위한 소정의 온도의 배기가스를 배출함을 특징으로 한다.
다음으로, 도 6은 도 5와 유사한 실시형태를 도시한 것이며, 단지 오일쿨러(470)와 라디에이터(480) 모두 별치 구동되는 팬 모터(472 및 482)에 의해 회전하도록 배치된 것이 상이하다.
즉, 도 5의 시스템(400)에서는 라디에이터(480)가 엔진과 직결된 냉각팬을 적용하고 있는 반면, 도 6의 시스템(400')에서는 라디에이터(480)가 오일쿨러(470)와 마찬가지로 팬 펌프(160a)에 의해 작동유를 공급받아 구동되는 별개의 팬 모터(482)를 사용하여 동작한다는 점이 상이하다.
즉, 도 6은 도면에 도시된 모든 냉각팬(474, 484)이 모두 팬 펌프(160a)에 의해 구동되는 팬 모터(472, 482)에 의해 회전하도록 구성된 점을 제외하고는 도 5의 구성과 실질적으로 동일한 것으로, 도 5의 실시형태의 변형예로 이해될 수 있다.
또한, 이상의 실시형태에서 팬 펌프(160a)에 의해 구동되는 팬 모터(472, 482)는 오일쿨러(470) 및 라디에이터(480) 개개에 대한 2개만이 예시되어 있지만, 이로 한정되지 않는다는 점은 자명하다.
또한, 팬 펌프(160a)는 예컨대, 조종석 내에 조이스틱을 작동할 때 요구되는 작동유를 공급하거나, 또는 건설기계의 조향 장치 및 제동 장치 등에 사용되는 작동유를 공급하도록 구성될 수도 있다.
단, DPF 강제 재생 과정에서 건설기계의 실질적인 작업이 발생하는 것은 요구되지 않으며, 따라서 실질적인 작업(붐, 버킷 등의 구동 또는 건설기계의 조향이나 제동 등)을 실시하지 않으면서 팬 펌프(160a)가 최대 유량의 작동유를 토출하도록 할 수 있는 범위 내에서 본 발명이 적용될 수 있다.
예를 들면, DPF 강제 재생을 수행할 때 엔진 룸에서 발생하는 열을 냉각하기 위해 별도의 냉각 팬이 배치될 수 있고, 이러한 냉각팬 역시 본 발명의 팬 펌프(160a)에서 연결된 팬 모터를 통해 구동될 수 있을 것이다.
다음으로, 도 7는 본 발명의 또 일실시 형태와 다른 실시형태에 따른 DPF 강제 재생 방법을 도시하는 순서도이다.
도 7에 따르면, 이 실시형태는 DPF 강제 재생을 실시하기 위해서 아이들 상태에서 엔진이 구동되면서 시작된다(S100). DPF 재생을 수행하기 위해서는 DPF 내에 포집되어 있는 미세먼지(매연 등을 포함하는 미세 입자)를 연소 제거(재생)할 수 있는 예컨대, 600℃ ~ 700℃의 높은 온도가 요구되며, 이는 DPF 강제 재생에서 DOC와 투입되는 연료간의 발열반응에 의해 달성될 수 있다.
따라서, DOC의 발열반응을 촉진할 수 있는 소정 온도인 약 235℃까지 배기가스의 온도가 도달하여야 DPF 강제 재생이 수행될 수 있다.
이에, 배기 경로 상의 DOC의 전단에서 배기가스의 온도가 측정된다(S110).
측정된 온도는 발열반응을 촉진할 수 있는 소정 온도(약 235℃)와 비교된다(S120).
비교 결과 측정된 온도가 소정 온도 이하라면, 전술한 바와 같이 팬 펌프로 이루어진 강제부하 생성 수단을 구동하여 비-작업 부하를 생성하고 이를 엔진으로 제공한다(S130).
엔진은 비-작업 부하를 받아 구동됨으로써 붐, 버킷 등의 구동과 같은 실질적인 작업 부하가 없이 배기가스의 온도를 아이들 상태보다 더 빠르게 높일 수 있다(S140).
배기가스의 온도가 DOC의 발열반응이 촉진될 수 있는 소정 온도로 상승하면, DOC와 연료간의 발열반응에 의해 소정 온도(약 235℃)보다 더 높은 고온(약 600℃ ~ 700℃)이 생성되고 그를 통해 DPF 내에 포집되어 있던 미세먼지가 연소 제거(재생)된다(S150).
이후 재생이 완료되었는지 여부를 확인한 후(S160) DPF 강제 재생 방법이 종료된다.
덧붙여, 전술한 측정 온도 비교 단계(S120)에서 측정 온도가 소정 온도를 초과하는 것으로 판단되면, 강제부하 생성 수단이 구동 중인지 여부를 확인한 후 구동 중이라면 구동중인 강제부하 생성 수단을 정지시켜 비-작업 부하의 생성을 멈춘다(S470).
즉, 엔진으로 제공되는 비-작업 부하를 제거하여 엔진이 아이들 상태로 구동되도록 함으로써 불필요하게 연료가 소모되는 것을 방지할 수 있다.
예컨대, 엔진에 비-작업 부하를 제공하는 것은 배기가스의 온도를 DOC의 발열반응을 촉진할 수 있는 소정 온도까지 높이는 것을 목적으로 한 것이라는 점에서, 그 목적이 이루어진 상태를 확인한 이후에는 더 이상 '비-작업 부하'를 엔진으로 제공할 필요는 없는 것이다.
물론, 재생이 완료되기까지 지속적으로 DOC 전단의 배기가스의 온도를 측정하는 단계 및 이후 단계들(S110 내지 S160)을 반복함으로써, 실시간으로 비-작업 부하의 제공 여부를 결정하고, 그에 따라 불필요한 연료의 소모량을 줄일 수 있다.
이상에서 설명한 바와 같이, 본 발명은 DPF 강제 재생을 실시할 때 엔진이 아이들 상태로 구동되는 종래의 경우와 비교하여 더 빠르게 배기가스의 온도를 소정 온도로 높일 수 있도록 엔진으로 실질적인 건설기계의 작업 부하가 아닌 비-작업 부하를 제공함으로써 DPF 강제 재생에 소요되는 시간을 단축하고, 동시에 시간 단축에 따른 연료 소모량의 절감을 도모할 수 있다.
또한, 비-작업 부하를 배기가스의 온도에 따라 선택적으로 제공함으로써 배기가스의 온도가 소정 온도를 초과하는 경우에는 비-작업 부하의 제공을 차단하게 되어 결과적으로 연료 소모량의 절감을 도모할 수 있다.
본 발명에 따른 건설기계의 유압 시스템은 전자유압펌프를 제어하는 전자제어부의 작동이 비정상적일 때, 특히 전자제어부로 입력되는 조이스틱의 조작량이 정상적으로 전달되지 못함으로 인한 전자제어부의 제어 불능일 때 임시로 건설기계를 구동하는 데에 이용될 수 있다.

Claims (7)

  1. 엔진(110);
    상기 엔진(110)에 직결되어 작동유를 토출하며, 상기 작동유의 토출유량을 가변시킬 수 있는 펌프(160, 260, 160a);
    상기 엔진에서 나온 배기가스가 외부로 배출되는 배기 경로(120) 상에 배치되는 디젤미세먼지필터(DPF)(130);
    소정 온도에서 연료를 상기 배기 경로에 투입함으로써 상기 디젤미세먼지필터에 포집된 미세먼지(soot)를 연소시켜 제거하는 DPF 강제 재생을 진행시키는 연료 투입 수단(150);
    상기 DPF 강제 재생을 선택하기 위한 선택 스위치; 및
    상기 DPF 강제 재생 선택시 상기 펌프의 토출유량을 증가시킴으로써 상기 엔진(110)으로 비-작업 부하를 제공하는 강제부하 생성 수단;을 포함하는 것을 특징으로 하는 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템.
  2. 제1 항에 있어서,
    상기 펌프는 상기 엔진에 직결되어 작업단의 구동을 위한 작동유를 공급하는 메인 펌프를 포함하며,
    상기 메인 펌프(160)가 센터바이패스라인(162)을 통해 탱크(164)로 회수되는 작동유의 압력에 기초하는 신호값(180)을 피드백하여 작동유의 토출 유량을 제어하는 네가콘 방식(Negative Control System)으로 구동될 때,
    상기 강제부하 생성 수단은, DPF 강제 재생시, 상기 피드백 값을 임의로 최저로 조정함으로써 상기 메인 펌프(160)가 최대 유량의 작업유를 토출하도록 하는 것을 특징으로 하는 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템.
  3. 제2 항에 있어서,
    상기 피드백되는 신호값(180)은 상기 탱크(164)로 회수되는 작동유가 상기 메인 펌프의 펌프 레귤레이터로 인가됨으로써 생성되며,
    상기 강제부하 생성 수단은, 상기 피드백되는 신호값이 전달되는 경로 상에 배치되는 솔레노이드 밸브(190)를 더 포함하고,
    상기 최저의 피드백 값은 상기 솔레노이드 밸브(190)를 차단함으로써 생성되는 것을 특징으로 하는 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템.
  4. 제1 항에 있어서,
    상기 펌프는 상기 엔진에 직결되어 작업단의 구동을 위한 작동유를 공급하는 메인 펌프를 포함하며,
    상기 메인 펌프(260)가 조종석 내 조이스틱 조작에 대응하여 생성되는 비례제어신호(282)에 기초하여 작동유의 토출 유량을 제어하는 포지콘 방식(Positive Contorl System)으로 구동될 때,
    상기 강제부하 생성 수단은, DPF 강제 재생시, 상기 비례제어신호(282)를 임의로 최대로 조정함으로써 상기 메인 펌프(260)가 최대 유량의 작업유를 토출하도록 하는 것을 특징으로 하는 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템.
  5. 제1 항에 있어서,
    상기 펌프는 냉각팬(474, 484)을 구동시키는 팬모터(472,482)에 작동유 공급을 위해 상기 엔진에 직결된 팬 펌프(160a)를 포함하며,
    상기 강제부하 생성 수단은, DPF 강제 재생시, 상기 팬 펌프(160a)가 건설기계의 실질적인 작업을 야기하지 않으면서 임의로 최대 유량의 작동유를 토출하도록 제어됨으로써 비-작업 부하를 생성하고, 이에 따라 상기 엔진(110)이 상기 소정 온도 이상의 배기가스를 배출하는 것을 특징으로 하는 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템(400).
  6. 제5 항에 있어서,
    상기 팬 펌프(160a)는 가변 팬 펌프이고,
    DPF 강제 재생시, 상기 가변 팬 펌프의 펌프 레귤레이터로 전달되는 제2 비례제어신호(462)를 임의로 최대로 조정함으로써 상기 팬 펌프가 최대 유량의 작업유를 토출하도록 하는 것을 특징으로 하는, 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템.
  7. DPF 강제 재생 시스템에서 DPF를 강제 재생하는 방법으로서,
    (a) 엔진을 아이들 상태에서 구동하는 단계;
    (b) 상기 배기 경로 상의 배기가스의 온도를 측정하는 단계;
    (c) 상기 측정된 온도가 상기 소정 온도 이하일 때, 상기 강제부하 생성 수단을 구동하여 비-작업 부하를 상기 엔진으로 부여하는 단계;
    (d) 상기 엔진이 비-작업 부하에 의해 더 높은 고온의 배기가스를 배출하는 단계;
    (e) 상기 측정된 온도가 상기 소정 온도를 초과할 때, 상기 강제 부하 생성수단이 구동 중이라면 상기 강제 부하 생성수단의 구동을 멈추는 단계;
    (f) DPF 강제 재생을 실시하는 단계; 및
    (g) DPF의 재생 완료시까지 상기 (b) 단계 내지 (f) 단계를 반복하는 단계;
    를 포함하고, 상기 고온의 배기가스로 인해 상기 발열반응이 촉진됨으로써 상기 DPF 강제 재생이 효율적으로 수행되는 것인, 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 방법.
PCT/KR2011/009912 2010-12-22 2011-12-21 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템 및 그 방법 WO2012087015A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11850462.0A EP2657475B1 (en) 2010-12-22 2011-12-21 Active diesel particulate filter regeneration system using non-work load and method thereof
CN201180062333.1A CN103270265B (zh) 2010-12-22 2011-12-21 利用非工作负载的柴油微粒过滤器强制再生系统及其方法
US13/996,658 US9032717B2 (en) 2010-12-22 2011-12-21 Active diesel particulate filter regeneration system using non-work load and method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100132932A KR20120071260A (ko) 2010-12-22 2010-12-22 비-작업 부하를 이용한 dpf 강제 재생 시스템 및 그 방법
KR10-2010-0132934 2010-12-22
KR10-2010-0132932 2010-12-22
KR1020100132934A KR101656532B1 (ko) 2010-12-22 2010-12-22 비-작업 부하를 이용한 dpf 강제 재생 시스템 및 그 방법

Publications (2)

Publication Number Publication Date
WO2012087015A2 true WO2012087015A2 (ko) 2012-06-28
WO2012087015A3 WO2012087015A3 (ko) 2012-10-04

Family

ID=46314622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009912 WO2012087015A2 (ko) 2010-12-22 2011-12-21 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템 및 그 방법

Country Status (4)

Country Link
US (1) US9032717B2 (ko)
EP (1) EP2657475B1 (ko)
CN (1) CN103270265B (ko)
WO (1) WO2012087015A2 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827404B (zh) * 2011-10-04 2016-08-17 日立建机株式会社 具备废气净化装置的工程机械用液压驱动系统
JP5845285B2 (ja) * 2011-11-29 2016-01-20 日立建機株式会社 建設機械
DE102014112738A1 (de) * 2014-09-04 2016-03-10 Still Gmbh Verfahren zur Steuerung einer verbrennungsmotorisch angetriebenen mobilen Arbeitsmaschine mit Rußpartikelfilter
KR20180007411A (ko) * 2016-07-13 2018-01-23 두산인프라코어 주식회사 엔진 배기 브레이크를 이용한 엑슬 과열 방지 시스템 및 방법
KR102130188B1 (ko) * 2016-12-28 2020-08-05 주식회사 두산 엔진식 지게차의 운전 중 dpf 재생 시스템 및 그 방법
DE102017217284A1 (de) * 2017-09-28 2019-03-28 Robert Bosch Gmbh Verfahren zum Betreiben eines Antriebsstrangs eines Kraftfahrzeugs mit einer Verbrennungskraftmaschine und einer weiteren Maschine
CN108119213B (zh) * 2017-12-20 2020-03-10 潍柴动力股份有限公司 一种doc温度控制方法及系统
DE102018103760A1 (de) 2018-02-20 2019-08-22 Liebherr-Mining Equipment Colmar Sas Verfahren zum Betreiben eines Antriebs einer Bergbaumaschine und Bergbaumaschine
CN110925109B (zh) * 2019-12-13 2022-06-28 潍柴动力股份有限公司 一种整车再生模式下风扇控制的方法及系统
GB2598352A (en) * 2020-08-27 2022-03-02 Bamford Excavators Ltd A control system
CN111963278B (zh) * 2020-09-02 2021-06-11 重庆超力高科技股份有限公司 一种dpf主动再生方法
CN112963226B (zh) * 2021-03-26 2022-02-25 一汽解放汽车有限公司 一种dpf主动再生安全控制方法
JP7472880B2 (ja) * 2021-09-03 2024-04-23 トヨタ自動車株式会社 車両の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073380B2 (ja) * 1993-12-17 2000-08-07 日立建機株式会社 排ガス浄化装置を備えた油圧作業機械
JP3991382B2 (ja) 1997-03-05 2007-10-17 株式会社豊田自動織機 車両用ディーゼルエンジンの排気ガス浄化装置
JP2003120259A (ja) * 2001-10-09 2003-04-23 Tadano Ltd ディーゼル微粒子除去装置の使用確認装置およびディーゼル微粒子除去装置の使用確認装置の使用方法
JP4469207B2 (ja) * 2004-04-08 2010-05-26 キャタピラージャパン株式会社 フィルタ目詰り解消方法
JP4055808B2 (ja) * 2006-06-13 2008-03-05 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2008274835A (ja) * 2007-04-27 2008-11-13 Mitsubishi Fuso Truck & Bus Corp 酸化触媒の劣化診断装置
JP4844467B2 (ja) * 2007-05-07 2011-12-28 日産自動車株式会社 内燃機関の排気浄化装置
WO2009055060A2 (en) 2007-10-26 2009-04-30 Cummins, Inc. Increasing exhaust temperature for aftertreatment operation
JP5271758B2 (ja) * 2009-03-11 2013-08-21 日立建機株式会社 作業機械の油圧駆動装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2657475A4

Also Published As

Publication number Publication date
CN103270265B (zh) 2016-01-20
EP2657475B1 (en) 2019-06-19
WO2012087015A3 (ko) 2012-10-04
CN103270265A (zh) 2013-08-28
EP2657475A4 (en) 2018-04-04
US20130269320A1 (en) 2013-10-17
EP2657475A2 (en) 2013-10-30
US9032717B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
WO2012087015A2 (ko) 비-작업 부하를 이용한 디젤 미세먼지 필터 강제 재생 시스템 및 그 방법
WO2012087082A2 (ko) 전자유압펌프를 포함하는 건설기계의 dpf 강제 재생 시스템 및 방법
EP2208872B1 (en) Work vehicle with exhaust purification system
KR101442293B1 (ko) 건설 기계의 배기 가스 정화 시스템
US20090288398A1 (en) Apparatus, system, and method for controlling particulate accumulation on an engine filter during engine idling
KR20110002871A (ko) 내연 기관의 배기 가스 정화 시스템, 및 수트 필터 재생 방법
WO2012096526A2 (ko) 휠로더의 유압 펌프 제어 방법
WO2013048027A1 (ko) 차량용 분사노즐의 오염방지장치
KR101870994B1 (ko) 무인 강제 재생 시스템
WO2014061946A1 (ko) Dpf의 다단 재생장치 및 재생방법
KR101656532B1 (ko) 비-작업 부하를 이용한 dpf 강제 재생 시스템 및 그 방법
KR20140137499A (ko) 건설기계의 dpf 강제 재생 시스템 및 그 재생 방법
CN111042943A (zh) 颗粒物捕捉器dpf的保护方法和车辆
WO2023097198A1 (en) System and method for controlling operation of exhaust gas treatment apparatus
KR20120077172A (ko) 건설기계용 디젤엔진 배기시스템
WO2013111944A1 (ko) 디젤매연필터의 강제재생 보호 방법
KR20140093322A (ko) 건설 기계의 배기 가스 정화 시스템
WO2013115475A1 (ko) 건설기계의 디젤 매연필터의 재생 제어방법
KR20210053626A (ko) 건설기계의 운행 제어 방법
KR20150114715A (ko) 건설기계의 엔진배기가스 정화시스템
KR101592678B1 (ko) 하이브리드 차량용 dpf 재생 제어 방법
AU2019201184A1 (en) Method of operating a drive of a mining machine and mining machine
US20210252444A1 (en) Mobile filter system and method
WO2016052871A1 (ko) 요소수 농도에 따른 엔진 제어 장치 및 엔진 제어 방법
JP4161591B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850462

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13996658

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011850462

Country of ref document: EP