WO2012086757A1 - タービン - Google Patents

タービン Download PDF

Info

Publication number
WO2012086757A1
WO2012086757A1 PCT/JP2011/079808 JP2011079808W WO2012086757A1 WO 2012086757 A1 WO2012086757 A1 WO 2012086757A1 JP 2011079808 W JP2011079808 W JP 2011079808W WO 2012086757 A1 WO2012086757 A1 WO 2012086757A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
tip
downstream side
steam
upstream side
Prior art date
Application number
PCT/JP2011/079808
Other languages
English (en)
French (fr)
Inventor
祥弘 桑村
松本 和幸
大山 宏治
田中 良典
朝春 松尾
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020137013349A priority Critical patent/KR101464910B1/ko
Priority to EP11851503.0A priority patent/EP2657452B1/en
Priority to US13/995,542 priority patent/US9353640B2/en
Priority to CN201180056739.9A priority patent/CN103228871B/zh
Publication of WO2012086757A1 publication Critical patent/WO2012086757A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/10Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/294Three-dimensional machined; miscellaneous grooved

Definitions

  • the present invention relates to a turbine used in, for example, a power plant, a chemical plant, a gas plant, a steel mill, a ship, and the like.
  • a turbine used in, for example, a power plant, a chemical plant, a gas plant, a steel mill, a ship, and the like.
  • a casing As a kind of steam turbine, a casing, a shaft body (rotor) rotatably provided inside the casing, a stationary blade fixedly disposed on an inner peripheral portion of the casing, and a downstream side of the stationary blade
  • a shaft body rotor
  • a stationary blade Fixedly disposed on an inner peripheral portion of the casing
  • a downstream side of the stationary blade One having a plurality of stages of moving blades radially provided on a shaft body is known.
  • an impulse turbine converts steam pressure energy into velocity energy by a stationary blade, and converts this velocity energy into rotational energy (mechanical energy) by the blade.
  • the reaction turbine among the steam turbines converts pressure energy into velocity energy even in the moving blade, and converts this velocity energy into rotational energy (mechanical energy) by reaction force from which the steam is ejected.
  • a radial gap is formed between the tip of the rotor blade and a casing that surrounds the rotor blade to form a steam flow path, and the tip and shaft of the stationary blade
  • radial gaps are also formed between the body and the body.
  • the leaked steam that passes through the gap at the tip of the moving blade downstream does not impart a rotational force to the moving blade.
  • the leaked steam that passes through the gap at the tip of the stationary blade downstream does not convert pressure energy into velocity energy by the stationary blade, and therefore hardly imparts rotational force to the downstream moving blade. Therefore, in order to improve the performance of the steam turbine, it is important to reduce the amount of leaked steam that passes through the gap.
  • a structure shown in FIG. 9 has been proposed (see, for example, Patent Document 1).
  • a step portion 502 (502A, 502B, 502C) whose height gradually increases from the upstream side in the rotation axis direction (hereinafter simply referred to as the axial direction) from the upstream side to the downstream side at the tip portion 501 of the moving blade 500.
  • the casing 503 is provided with seal fins 504 (504A, 504B, 504C) having minute gaps H101, H102, H103 with respect to the step portion 502 (502A, 502B, 502C).
  • the leakage flow that passes through the minute gaps H101, H102, and H103 of the seal fins 504 causes the stepped surface 506 (506A, 506A, 506A
  • the flow resistance can be increased by colliding with the edge portions (edge portions) 505 (505A, 505B, 505C) forming 506B, 506C).
  • step difference surface 506 (506A, 506B, 506C) turns into peeling vortex Y100.
  • the separation vortex Y100 causes a downflow from the tip of the seal fin 504 (504A, 504B, 504C) toward the tip 501 of the rotor blade 500.
  • This downflow has the effect of contraction of the steam passing through the minute gaps H101, H102, H103. For this reason, the flow rate of the leaked steam passing through the minute gaps 101, H102, H103 between the casing 503 and the tip 501 of the rotor blade 500 is reduced.
  • the density of the fluid passing through the moving blade 500 decreases toward the downstream side, so the flow velocity of the steam passing through the step unit 502 (502A, 502B, 502C) decreases toward the downstream side. Get faster. That is, the steam peeled off at the edge 505 (505A, 505B, 505C) of the step surface 506 (506A, 506B, 506C) has a higher radial speed as the steam is downstream. For this reason, when the inclination angles of the step surfaces 506 (506A, 506B, 506C) are set to be equal, a separation vortex Y100 that is curved in the radial direction toward the downstream side is formed.
  • the separation vortex Y100 having such a shape has a small contraction effect and a small static pressure reduction effect, it is difficult to reduce the flow rate of the steam passing through the minute gaps 101, H102, H103 of the tip 501 of the rotor blade 500. .
  • the present invention has been made in view of the above-described circumstances, and provides a high-performance turbine in which the flow rate of steam that passes through a minute gap at the tip of a blade is further reduced.
  • the turbine according to the present invention is provided with a blade and a structure that is provided on the tip end side of the blade via a gap and that rotates relative to the blade, and in which a fluid flows in the gap,
  • a step portion having at least one step surface and projecting to the other side is provided at any one of the tip portion of the blade and the portion facing the tip portion of the structure.
  • a cutting portion for guiding the separation vortex separated from the main flow of the fluid toward the seal fin is provided.
  • a cut portion is formed on the step surface so as to be continuous with the upper surface of the step portion. That is, the edge portion of the step surface is cut by the cut portion, and the separation vortex is guided toward the seal fin rather than the edge portion. For this reason, the diameter of the separation vortex formed in front of the seal fin is reduced compared with the case where the cut portion is not formed. Therefore, the downflow due to the separation vortex in the vicinity of the tip of the seal fin is strengthened, and the contraction effect of the fluid passing through the minute gap can be improved. Moreover, the static pressure on the upstream side of the seal fin can be reduced by reducing the diameter of the separation vortex. For this reason, the differential pressure between the upstream side and the downstream side can be reduced with the seal fin interposed therebetween. Therefore, the leakage flow rate can be further reduced.
  • the step portion includes a plurality of the step surfaces, and is formed such that a protruding height gradually increases from the upstream side toward the downstream side, and the cut portion includes each step surface.
  • An inclined portion that is inclined toward the downstream side from the upstream side, and an inclination angle of each inclined portion with respect to the rotational axis radial direction is formed on the step surface on the downstream side
  • the inclination angle may be set larger.
  • the velocity vector of the separation vortex can be directed toward the tip side (axial direction) of the seal fin in the same manner on the upstream side and the downstream side.
  • the diameter of the peeling vortex formed in each step part can be made substantially uniform. That is, even if the flow velocity of the fluid on each step surface of the step portion changes, the diameter of the separation vortex formed on each step surface can be reduced substantially uniformly. Accordingly, the effect of contraction due to the separation vortex of the fluid passing through the minute gap can be further reliably improved, and the static pressure on the upstream side of the seal fin can be further reliably reduced.
  • the step portion includes a plurality of the step surfaces, and is formed such that a protruding height gradually increases from the upstream side toward the downstream side, and the cut portion includes each step surface.
  • An arc-shaped portion smoothly connected to the upper surface from the upstream side toward the downstream side, and an angle between a tangential direction of a portion connected to the upper surface of the arc-shaped portion and a rotational shaft radial direction is The angle of the arc-shaped portion formed on the step surface on the downstream side may be set larger.
  • the diameter of the separation vortex formed on each step surface can be reduced substantially evenly even if the flow velocity of the fluid on each step surface of the step changes. For this reason, it is possible to further reliably improve the effect of contraction due to the separation vortex of the fluid passing through the minute gap, and it is possible to further reliably reduce the static pressure on the upstream side of the seal fin.
  • the diameter of the separation vortex formed in front of the seal fin can be reduced as compared with the case where the cut portion is not formed. For this reason, the downflow due to the separation vortex near the tip of the seal fin is strengthened, and the effect of contraction of the fluid passing through the minute gap can be improved. Moreover, the static pressure on the upstream side of the seal fin can be reduced by reducing the diameter of the separation vortex. For this reason, the differential pressure between the upstream side and the downstream side can be reduced with the seal fin interposed therebetween. Therefore, the leakage flow rate can be further reduced.
  • FIG. 1 is a schematic sectional view showing a steam turbine according to an embodiment of the present invention.
  • the steam turbine 1 is provided in a casing 10, a regulating valve 20 that adjusts the amount and pressure of the steam S flowing into the casing 10, and an inward rotation of the casing 10.
  • the main structure includes a shaft body 30 to be transmitted, a stationary blade 40 held in the casing 10, a moving blade 50 provided on the shaft body 30, and a bearing portion 60 that rotatably supports the shaft body 30 about its axis.
  • the bearing portion 60 includes a journal bearing device 61 and a thrust bearing device 62, and supports the shaft body 30 in a rotatable manner.
  • Casing 10 is a flow path for steam S.
  • the internal space of the casing 10 is hermetically sealed.
  • a ring-shaped partition plate outer ring 11 through which the shaft body 30 is inserted is firmly fixed to the inner wall surface of the casing 10.
  • Each regulating valve 20 includes a regulating valve chamber 21 into which steam S flows from a boiler (not shown), a valve body 22 and a valve seat 23.
  • a regulating valve chamber 21 into which steam S flows from a boiler (not shown)
  • a valve body 22 When the valve body 22 is separated from the valve seat 23, the steam flow path is opened, so that the steam S flows into the internal space of the casing 10 through the steam chamber 24.
  • the shaft body 30 includes a shaft main body 31 and a plurality of disks 32 extending from the outer periphery of the shaft main body 31 in the rotational axis radial direction (hereinafter simply referred to as the radial direction).
  • the shaft body 30 transmits rotational energy to a machine such as a generator (not shown).
  • a large number of the stationary blades 40 are arranged radially so as to surround the shaft body 30 to constitute an annular stationary blade group.
  • Each stationary blade 40 is held by the partition plate outer ring 11.
  • the inner sides of the stationary blades 40 in the radial direction are connected by a ring-shaped hub shroud 41.
  • the shaft body 30 is inserted through the hub shroud 41.
  • the tip of the stationary blade 40 is disposed with a radial gap with respect to the shaft body 30.
  • Six annular stator blade groups including the plurality of stator blades 40 are formed at intervals in the axial direction.
  • the annular stator blade group converts the pressure energy of the steam S into velocity energy and guides the steam S to the moving blade 50 adjacent to the downstream side.
  • the rotor blade 50 is firmly attached to the outer peripheral portion of the disk 32 included in the shaft body 30.
  • a large number of the blades 50 are arranged radially on the downstream side of each annular stationary blade group to constitute the annular blade group.
  • the steam turbine 1 has six sets of annular stator blade groups and annular rotor blade groups.
  • a tip shroud 51 extending in the circumferential direction is provided at the tip of these rotor blades 50.
  • the shaft body 30 and the partition plate outer ring 11 constitute a “structure” in the present invention.
  • the stationary blade 40, the hub shroud 41, the tip shroud 51, and the moving blade 50 constitute a “blade” in the present invention.
  • the shaft body 30 is a “structure”.
  • the partition plate outer ring 11 is a “structure”.
  • the partition plate outer ring 11 is described as a “structure”
  • the moving blade 50 is described as a “blade”.
  • FIG. 2 is an enlarged cross-sectional view showing a main part I in FIG.
  • the tip shroud 51 provided at the tip of the moving blade 50 is disposed to face the partition plate outer ring 11 fixed to the casing 10 with a gap K therebetween.
  • the chip shroud 51 includes step portions 52 (52A to 52C) that protrude toward the partition plate outer ring 11.
  • Each step part 52 (52A to 52C) has a step surface 53 (53A to 53C).
  • the chip shroud 51 of this embodiment includes three step units 52 (52A to 52C).
  • the projecting height of the upper surface 152 (152A to 152C) of the three step portions 52A to 52C from the rotor blade 50 is from the upstream side (left side in FIG. 2) to the downstream side (right side in FIG. 2) of the shaft body 30. It gets higher gradually as you go to.
  • the step surfaces 53 (53A to 53C) of the step portions 52A to 52C face the upstream side in the axial direction.
  • each step surface 53 is formed with an inclined portion 56 (56A to 56C) so as to be inclined to the downstream side. That is, the step surfaces 53 (53A to 53C) are cut obliquely to form inclined portions 56 (56A to 56C).
  • the upper edge portion 55 (55A to 55C) of the inclined portion 56 (56A to 56C) is connected to the upper surface 152 (152A to 152C) of the step portion 52 (52A to 52C).
  • the inclination angles ⁇ 1 to ⁇ 3 with respect to the radial direction of the inclined portion 56 are set to be larger toward the downstream side. That is, among the three step portions 52 (52A to 52C), the inclination angle with respect to the radial direction of the inclined portion 56A formed on the step surface 53A of the first step portion 52A located on the most upstream side is expressed as ⁇ 1. It is defined as An inclination angle with respect to the radial direction of the inclined portion 56B formed on the step surface 53B of the second step portion 52B located downstream of the first step portion 52A is defined as ⁇ 2.
  • An inclination angle with respect to the radial direction of the inclined portion 56C formed on the step surface 53C of the third step portion 52C located downstream of the second step portion 52B is defined as ⁇ 3.
  • ⁇ 1, ⁇ 2, and ⁇ 3 are ⁇ 3> ⁇ 2> ⁇ 1 It is set to satisfy.
  • annular groove 111 is formed at a portion facing the step portion 52 of the chip shroud 51.
  • the annular groove 111 has three annular recesses 111A to 111C that gradually increase in diameter from the upstream side toward the downstream side so as to correspond to the three step portions 52 (52A to 52C).
  • the annular groove 111 has a fourth-stage recess 111D that is formed on the most downstream side and has a diameter smaller than that of the third-stage recess 111C.
  • an end edge (edge portion) 112A located at the boundary between the first-stage recess 111A and the second-stage recess 111B, and an end located at the boundary between the second-stage recess 111B and the third-stage recess 111C
  • Three seal fins extending radially inward toward the tip shroud 51 are provided on the edge 112B and the end edge 112C located at the boundary between the third-stage recess 111C and the fourth-stage recess 111D.
  • 15 (15A to 15C) are provided.
  • the seal fins 15 (15A to 15C) face the step portions 52 (52A to 52C), respectively.
  • Each seal fin 15 (15A to 15C) forms a minute gap H (H1 to H3) in the radial direction between the corresponding step portion 52 (52A to 52C).
  • Each dimension of these minute gaps H (H1 to H3) is within a safe range where they do not come into contact with each other in consideration of the thermal elongation amount of the casing 10 and the moving blade 50, the centrifugal elongation amount of the moving blade 50, and the like. It is set to the smallest one.
  • H1 to H3 all have the same dimensions. However, H1 to H3 can be appropriately changed as necessary.
  • each step portion 52 (52A to 52C) and the three concave portions 111A to 111C of the annular groove 111 corresponding thereto are provided. Cavities C (C1 to C3) are formed between them. More specifically, the first cavity C1 formed on the most upstream side and corresponding to the first step portion 52A includes the seal fin 15A corresponding to the first step portion 52A and the upstream side of the first step recess 111A. It is formed between the inner wall surface 54 ⁇ / b> A and between the chip shroud 51 and the partition plate outer ring 11.
  • the second cavity C2 corresponding to the second step portion 52B includes the seal fin 15B corresponding to the second step portion 52B, the inner wall surface 54B on the upstream side of the second step recess 111B, and the edge. It is formed between the seal fin 15 ⁇ / b> A provided in the portion 112 ⁇ / b> A and between the chip shroud 51 and the partition plate outer ring 11.
  • the third cavity C3 corresponding to the third step portion 52C includes a seal fin 15C corresponding to the third step portion 52C, an inner wall surface 54C on the downstream side of the third step recess 111C, and a third step. It is formed between the inner wall surface 54D on the upstream side of the concave portion 111C of the eye and the seal fin 15B provided on the end edge portion 112B, and between the tip shroud 51 and the partition plate outer ring 11.
  • FIGS. 3A and 3B are diagrams for explaining the operation of the steam turbine, in which FIG. 3A is an enlarged view of a main part I in FIG. 1, and FIG.
  • FIGS. 1 to 3A when the regulating valve 20 (see FIG. 1) is first opened, the steam S flows from the boiler (not shown) into the internal space of the casing 10.
  • the steam S flowing into the internal space of the casing 10 sequentially passes through the annular stator blade group and the annular rotor blade group in each stage. At this time, the pressure energy is converted into velocity energy by the stationary blade 40. Most of the steam S passing through the stationary blades 40 flows between the moving blades 50 constituting the same stage. The moving blade 50 converts the velocity energy of the steam S into rotational energy and imparts rotation to the shaft body 30. On the other hand, a part (for example, several percent) of the steam S flows out of the stationary blade 40 and then flows into the annular groove 111 to become so-called leaked steam.
  • the steam S flowing into the annular groove 111 first flows into the first cavity C1 and collides with the step surface 53A of the first step portion 52A.
  • a main vortex Y1 that rotates counterclockwise on the paper surface of FIG. 3 is generated.
  • a part of the flow is separated from the main vortex Y1, so that the watch rotates in the direction opposite to the main vortex Y1, in this example on the paper surface of FIG.
  • a peeling vortex Y2 is generated so as to turn around.
  • the step surface 53A of the first step portion 52A forms an inclined portion 56A so as to incline downstream.
  • the velocity vector at the upper edge portion 55A of the main vortex Y1 is inclined toward the seal fin 15A side as compared with the case where the step surface 53A does not form the inclined portion 56A.
  • the diameter of the separation vortex Y2 formed on the upper surface 152A of the first step portion 52A is smaller than that when the step surface 53A does not form the inclined portion 56A.
  • Such a separation vortex Y2 exhibits an effect of reducing a leakage flow passing through the minute gap H1 between the seal fin 15A and the step portion 52A, that is, a contraction effect. That is, when the separation vortex Y2 is formed as shown in FIG. 3A, the separation vortex Y2 is a down flow that directs the velocity vector radially inward on the upstream side in the axial direction of the tip of the seal fin 15A. Form. Since this downflow possesses an inertial force that is directed inward in the radial direction immediately before the minute gap H1, the effect of contracting the flow passing through the minute gap H1 inward in the radial direction (constriction effect) is exhibited. . Thereby, the leakage flow rate of the steam S is reduced.
  • the diameter of the separation vortex Y2 is twice that of the minute gap H1, and the outer periphery thereof is in contact with the seal fin 15A.
  • the position where the velocity component F directed radially inward in the downflow formed by the separation vortex Y2 is the same as the tip (inner end edge) of the seal fin 15A. In this case, since the downflow passes immediately before the minute gap H1 at a higher speed, the contraction effect on the leakage flow is maximized.
  • the step surface 53A of the first step portion 52A forms an inclined portion 56A. Accordingly, since the diameter of the separation vortex Y2 is smaller than that in the case where the inclined portion 56A is not formed on the step surface 53A, it is easy to set the diameter of the separation vortex Y2 to twice the minute gap H1. Further, when the distance between the seal fin 15A and the upper edge portion 55A of the inclined portion 56A located on the upstream side is defined as L1, the diameter of the separation vortex Y2 is twice as large as the minute gap H1. In addition, the distance L1 and the inclination angle ⁇ 1 of the inclined portion 56 may be set.
  • the steam S that has passed through the minute gap H1 flows into the second cavity C2, and collides with the step surface 53B of the second step portion 52B.
  • the steam S returns to the upstream side, for example, a main vortex Y1 that rotates counterclockwise on the paper surface of FIG. 3 is generated.
  • a part of the flow is separated from the main vortex Y1, so that it rotates clockwise in the direction opposite to the main vortex Y1, in this example on the paper surface of FIG. As shown in FIG.
  • the steam S that has passed through the minute gap H2 flows into the third cavity C3, and collides with the step surface 53C of the third step portion 52C.
  • a main vortex Y1 that rotates counterclockwise on the paper surface of FIG. 3 is generated.
  • a part of the flow is separated from the main vortex Y1 at the upper edge portion 55C of the step portion 52C in the third stage, so that it rotates clockwise in the direction opposite to the main vortex Y1, in this example on the paper surface of FIG. As shown in FIG.
  • the density of the steam S decreases toward the downstream side, the flow velocity of the steam S in the meridian plane increases as the downstream cavity C increases. For this reason, the flow toward the radially outer side of the steam S colliding with the step surface 53B in the second cavity C2 is greater than the flow toward the radially outer side of the steam S colliding with the step surface 53A within the first cavity C1. Also become stronger. Therefore, the diameter of the separation vortex Y2 formed on the upper surface 152B of the second step portion 52B tends to be larger than the diameter of the separation vortex Y2 formed on the upper surface 152A of the first step portion 52A. Similarly, in the third cavity C3, the diameter of the separation vortex Y2 formed on the upper surface 152C of the third step portion 52C is the diameter of the separation vortex Y2 formed on the second step portion 52B. More likely to be bigger.
  • the inclination angles ⁇ 1 to ⁇ 3 of the inclined portions 56A to 56C formed by the step surfaces 53A to 53C satisfy ⁇ 3> ⁇ 2> ⁇ 1, that is, toward the downstream side. It is set to be larger (see FIG. 2). Therefore, the velocity vector of the separation vortex Y2 formed in each cavity C (C1 to C3) can be directed to the seal fins 15 (15A to 15C) side (axial direction). Therefore, the diameter of each peeling vortex Y2 becomes substantially the same size.
  • the distance L2 between the seal fin 15B corresponding to the second step portion 52B and the upper edge portion 55B of the inclined portion 56B located on the upstream side, and the inclination angle ⁇ 2 of the inclined portion 56B are:
  • the diameter of the separation vortex Y2 may be set to be twice the minute gap H2.
  • the distance L3 between the seal fin 15C corresponding to the step part 52C of the third stage and the upper edge part 55C of the inclined part 56C located on the upstream side thereof, and the inclination angle ⁇ 3 of the inclined part 56C are:
  • the diameter of the separation vortex Y2 may be set to be twice the minute gap H3.
  • the separation vortex Y2 can be formed on the upstream side of each seal fin 15 (15A to 15C).
  • the separation vortex Y2 forms a downflow that directs the velocity vector radially inward on the upstream side in the axial direction of the seal fin 15A. Therefore, the effect of reducing leakage flow that passes through the minute gaps H (H1 to H3). That is, the contraction effect can be exhibited.
  • step surfaces 53 (53A to 53C) of the step portions 52 (52A to 52C) form inclined portions 56 (56A to 56C), and the inclination angles ⁇ 1 to 56 of the inclined portions 56 (56A to 56C).
  • ⁇ 3 is set to be larger toward the downstream side. That is, the inclination angles ⁇ 1 to ⁇ 3 are set so as to satisfy ⁇ 3> ⁇ 2> ⁇ 1.
  • the diameter of the separation vortex Y2 formed in each cavity C (C1 to C3) has substantially the same size, so that the downflow on the upstream side in the axial direction of each seal fin 15 (15A to 15C) is prevented. Can be strong. Therefore, it is possible to reliably exhibit the effect of reducing the leakage flow that passes through each minute gap H (H1 to H3), that is, the contraction effect.
  • the stepped surfaces 53 (53A to 53C) are obliquely cut to form the inclined portions 56 (56A to 56C), and the upper surfaces of the step portions 52 (52A to 52C).
  • the case where the upper edge portion 55 (55A to 55C) of the inclined portion 56 (56A to 56C) is connected to the 152 (152A to 152C) has been described.
  • the present invention is not limited to this, and each step surface 53 (53A to 53C) only needs to be cut out so as to be connected to at least the upper surface 152 (152A to 152C) of the step portion 52 (52A to 52C).
  • FIG. 4 is a schematic cross-sectional view of a first modification of the step portion.
  • the stepped surfaces 53 (53A to 53C) of the three step portions 52 (52A to 52C) formed on the chip shroud 51 are each provided with a flattened portion 156 at the edge portion (edge portion).
  • (156A to 156B) are formed. That is, the upper surface 152 (152A to 152C) side of each step surface 53 (53A to 53C) is cut off obliquely.
  • the upper edge portion 155 (155A to 155C) of the chamfered portion 156 (156A to 156C) is connected to the upper surface 152 (152A to 152C).
  • the chamfered portions 156 (156A to 156C) are set such that the inclination angles ⁇ 1 ′ to ⁇ 3 ′ with respect to the radial direction increase toward the downstream side (right side in FIG. 4). That is, the inclination angle ⁇ 1 ′ of the chamfered portion 156A formed on the step surface 53A of the first step portion 52A, and the inclination angle ⁇ 2 ′ of the chamfered portion 156B formed on the step surface 53B of the second step portion 52B.
  • the above-described first modified example has the same effect as the above-described embodiment. Further, the chamfered portion 156 (156A to 156C) has a smaller amount of resection of each step portion 52 (52A to 52C) than the case where the inclined portion 56 (56A to 56C) of the above-described embodiment is formed. Therefore, the processing cost can be reduced.
  • FIG. 5 is a schematic cross-sectional view of a second modification of the step portion.
  • the point that three step portions 52 (52A to 52C) are formed in the chip shroud 51 is the same as in the above-described embodiment. Since the configuration of each step unit 52 (52A to 52C) is the same, only a part of the step units 52 is shown, and the other step units 52 are not shown.
  • the difference between the above-described embodiment and the second modified example is that the step surfaces 53 (53A to 53C) of the respective step portions 52 (52A to 52C) of the above-described embodiment are simply different from each other.
  • the inclined portion 56 (56A to 56C) is formed
  • 56B and a connection portion between the upper surface 152B of the second step portion 52B and the inclined portion 56C formed in the third step portion 52C is recessed toward the downstream side (right side in FIG. 5). In this way, arc-shaped portions 57B and 57C having a radius r1 are formed.
  • the upper surface 152A of the first step portion 52A and the inclined portion 56B formed in the second step portion 52B are smoothly connected by the arc-shaped portion 57B. Further, the arc-shaped portion 57C smoothly connects the upper surface 152B of the second step portion 52B and the inclined portion 56C formed in the third step portion 52C.
  • the leaked steam can be smoothly guided to the inclined portions 57 (57A to 57C), and flows out from the upper edge portions 55 (55A to 55C) of the inclined portions 57 (57A to 57C).
  • the energy loss of the main vortex Y1 can be reduced.
  • the separation vortex Y2 can exhibit a larger contraction effect.
  • FIG. 6 is a schematic cross-sectional view of a third modification of the step portion.
  • the difference between the above-described embodiment and the third modification is that the stepped surface 53 (53A-53C) of each step portion 52 (52A-52C) of the above-described embodiment is inclined.
  • the portion 56 (56A to 56C) is formed, in the third modified example, only the arc-shaped portion 256 (256A to 256C) having the radius r2 is formed instead of the inclined portion 56 (56A to 56C). There is in point.
  • the arc-shaped portion 256 (256A to 256C) is formed to be recessed toward the downstream side (right side in FIG. 6).
  • the upper edge portion 255 (255A to 255C) of the arc-shaped portion 256 (256A to 256C) is connected to the upper surface 152 (152A to 152C) of the step portion 52 (52A to 52C).
  • the angle ⁇ A between the tangential direction of the arc-shaped portion 256 (256A to 256C) in the upper edge portion 255 (255A to 255C) and the radial direction is set to be larger toward the downstream side.
  • the third modified example has the same effect as the above-described embodiment.
  • the leaked steam can be more smoothly guided to the upper edge portion 255 (255A to 255C) of the arc-shaped portion 256 (256A to 256C) than in the above-described embodiment, the energy loss of the main vortex Y1 can be reduced. Can do.
  • the downflow of the separation vortex Y2 can be further increased, it becomes possible to exert a large contraction effect by the separation vortex Y2.
  • FIG. 7 is a schematic cross-sectional view of a fourth modification of the step portion.
  • the difference between the first modification and the fourth modification described above is that each of the step surfaces 53 (53A to 53C) of the step portion 52 (52A to 52C) in the first modification has a difference.
  • a flattening portion 156 (156A to 156C) is formed at the end edge portion (edge portion), whereas the flattening portion 156 (156A to 156C) of this fourth modification has a radius r3 on the lower edge side.
  • a round chamfered portion 356 (356A to 356C) is formed.
  • the stepped surface 53 (53A to 53C) and the flat surface chamfered portion 156 (156A to 156B) are smoothly connected by the round chamfered portion 356 (356A to 356C). For this reason, the steam S colliding with the step surface 53 (53A to 53C) is smoothly guided to the flattening portion 156 (156A to 156C). As a result, it is possible to reliably prevent a small separation vortex Y2 '(see the two-dot chain line in FIG. 7) from being separated from the main vortex Y1 at the lower edge portion of the flattening portion 156 (156A to 156C). Therefore, since the energy loss of the main vortex Y1 can be reduced, it is possible to increase the contraction effect by the separation vortex Y2.
  • FIG. 8 is a schematic sectional view of a fifth modification of the step portion. As shown in FIG. 8, the difference between the third modified example and the fifth modified example is formed on the step surface 53 (53A to 53C) of each step portion 52 (52A to 52C) in the fifth modified example.
  • the arcuate portion 456 (456A to 456C) having a radius r4 is formed.
  • the arc-shaped portion 256 (256A to 256C) of the third modified example is formed to be recessed toward the downstream side (the right side in FIG. 6), whereas the arc-shaped portion 456 (456A to 456C) of the fifth modified example is formed. ) Is formed so as to bulge toward the upstream side (left side in FIG. 8).
  • the upper edge portion 455 (455A to 455C) of the arc-shaped portion 456 (456A to 456C) is connected to the upper surface 152 (152A to 152C) of the step portion 52 (52A to 52C).
  • the angle ⁇ B between the tangential direction of the arc-shaped portion 456 (456A to 456C) and the radial direction in the upper edge portion 455 (455A to 455C) is set to be larger toward the downstream side. Therefore, the fifth modified example described above has the same effect as the third modified example.
  • the partition plate outer ring 11 provided in the casing 10 is a structure.
  • the present invention is not limited to this, and the casing 10 itself may be the structure of the present invention without providing the partition plate outer ring 11. That is, this structure may be any member as long as it surrounds the moving blade 50 and defines a flow path so that fluid passes between the moving blades.
  • the annular groove 111 is formed in a portion corresponding to the chip shroud 51 of the partition plate outer ring 11, and the annular groove 111 corresponds to the three step portions 52 (52A to 52C).
  • the case has been described in which the three annular recesses 111A to 111C gradually expanded in diameter by the step and the fourth recess 111D having a diameter smaller than that of the third recess 111C are described.
  • the present invention is not limited to this, and the entire annular groove 111 may be formed to have substantially the same diameter.
  • the present invention is not limited to this, and the number of the step portions 52 and the corresponding cavities C is arbitrary, and may be one, three, or four or more. Further, a plurality of seal fins 15 may be provided facing one step portion 52.
  • the present invention is applied to the final stage moving blade 50 and the stationary blade 40, but the present invention may be applied to other stages of the moving blade 50 and the stationary blade 40.
  • the “blade” according to the present invention is the moving blade 50, and the step portion 52 (52A to 52C) is formed in the tip shroud 51 that is the tip portion thereof.
  • the “structure” according to the present invention is a partition plate outer ring 11, and seal fins 15 (15 A to 15 C) are provided on the partition plate outer ring 11.
  • the present invention is not limited to this, and the “blade” according to the present invention may be used as the stationary blade 40 and the step portion 52 may be formed at the tip thereof.
  • the “structure” according to the present invention may be the shaft body (rotor) 30, and the seal fin 15 may be provided on the shaft body 30. Also in this case, the above-described embodiment or modification can be employed for the step unit 52.
  • the present invention is applied to the condensing steam turbine 1, but the present invention is applied to other types of steam turbines, for example, a two-stage extraction turbine, an extraction turbine, and an air-mixing turbine. You can also. Furthermore, in the above-described embodiment, the present invention is applied to the steam turbine 1, but the present invention can also be applied to a gas turbine, and furthermore, the present invention can be applied to all the rotor blades. it can.
  • the present invention relates to a turbine used in, for example, a power plant, a chemical plant, a gas plant, a steel mill, a ship, and the like. According to the present invention, the amount of leakage of working fluid can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

 このタービンは、ブレードと、前記ブレードの先端部側に隙間を介して設けられると共に、前記ブレードに対して相対回転する構造体と、前記ブレードの前記先端部に設けられ、少なくとも1つの段差面を有し、前記構造体の前記先端部に対向する部位に向けて突出するステップ部と、前記構造体の前記先端部に対向する部位に設けられ、前記ステップ部に向かって延出し、このステップ部との間に微小隙間を形成するシールフィンと、前記段差面に、前記ステップ部の上面に連なるように形成された切除部とを備える。前記切除部は、前記隙間を流通する流体の主流から剥離した剥離渦を、前記ステップ部の上面において前記シールフィンに向かって案内する。

Description

タービン
 この発明は、例えば、発電プラント、化学プラント、ガスプラント、製鉄所、船舶等に用いられるタービンに関する。
 本願は2010年12月22日に日本に出願された特願2010-286583号について優先権を主張し、その内容をここに援用する。
 従来から、蒸気タービンの一種として、ケーシングと、ケーシングの内部に回転自在に設けられた軸体(ロータ)と、ケーシングの内周部に固定配置された静翼と、この静翼の下流側において軸体に放射状に設けられた動翼とを複数段備えたものが知られている。このような蒸気タービンのうち衝動タービンは、蒸気の圧力エネルギーを静翼によって速度エネルギーに変換し、この速度エネルギーを動翼によって回転エネルギー(機械エネルギー)に変換する。また、蒸気タービンのうち反動タービンは、動翼内でも圧力エネルギーを速度エネルギーに変換し、この速度エネルギーを蒸気が噴出する反動力により回転エネルギー(機械エネルギー)に変換する。
 この種の蒸気タービンでは、動翼の先端部と、動翼を囲繞して蒸気の流路を形成するケーシングとの間に径方向の隙間が形成されていると共に、静翼の先端部と軸体との間にも径方向の隙間が形成されている場合が多い。
 しかしながら、動翼先端部の隙間を下流側に通過する漏洩蒸気は、動翼に対して回転力を付与しない。また、静翼先端部の隙間を下流側に通過する漏洩蒸気は、静翼によって圧力エネルギーを速度エネルギーに変換しないため、下流側の動翼に対して回転力をほとんど付与しない。したがって、蒸気タービンの性能向上のためには、前記隙間を通過する漏洩蒸気の量を低減することが重要となる。
 ここで、図9に示す構造が提案されている(例えば、特許文献1参照)。この構造では、例えば動翼500の先端部501に、回転軸方向(以下、単に軸方向という)上流側から下流側に向かって高さが漸次高くなるステップ部502(502A,502B,502C)が設けられる。ケーシング503に、ステップ部502(502A,502B,502C)に対して微小隙間H101,H102,H103を有するシールフィン504(504A,504B,504C)が設けられる。
 このように構成することで、シールフィン504(504A,504B,504C)の微小隙間H101,H102,H103を通り抜けた漏れ流れが、ステップ部502(502A,502B,502C)の段差面506(506A,506B,506C)を形成する端縁部(エッジ部)505(505A,505B,505C)に衝突することにより、流動抵抗を増大させることができる。また、段差面506(506A,506B,506C)の端縁部505(505A,505B,505C)で剥離した蒸気が剥離渦Y100となる。この剥離渦Y100が、シールフィン504(504A,504B,504C)の先端から動翼500の先端部501に向かうダウンフローを生じさせる。このダウンフローが、微小隙間H101,H102,H103を通過する蒸気の縮流効果を奏する。このため、ケーシング503と動翼500の先端部501との微小隙間101,H102,H103を通過する漏洩蒸気の流量が低減される。
特開2006-291967号公報
 ところで、図9に示すように、動翼500を通過する流体の密度は下流側に向かうほど小さくなるので、ステップ部502(502A,502B,502C)を通過する蒸気の流速は下流側に向かうほど速くなる。すなわち、段差面506(506A,506B,506C)の端縁部505(505A,505B,505C)で剥離した蒸気は、下流側の蒸気ほど径方向の速度が大きくなる。このため、段差面506(506A,506B,506C)の傾斜角度が等しく設定されている場合、下流側に向かうほど径方向に湾曲した剥離渦Y100が形成される。このような形状の剥離渦Y100は、縮流効果が小さく、静圧低減効果も小さいため、動翼500の先端部501の微小隙間101,H102,H103を通過する蒸気の漏洩流量を低減しにくい。
 そこで、この発明は、上述した事情に鑑みてなされたものであって、ブレードの先端部の微小隙間を通過する蒸気の漏洩流量をより低減化した高性能なタービンを提供するものである。
 本発明に係るタービンは、ブレードと、前記ブレードの先端部側に隙間を介して設けられると共に、前記ブレードに対して相対回転する構造体とを備え、前記隙間に流体が流通されるタービンにおいて、前記ブレードの前記先端部、および前記構造体の前記先端部に対向する部位の何れか一方には、少なくとも1つの段差面を有して他方側に突出するステップ部が設けられ、前記他方側には、前記ステップ部に向かって延出し、このステップ部との間に微小隙間を形成するシールフィンが設けられ、前記段差面には、前記ステップ部の上面に連なるように形成され、この上面において前記流体の主流から剥離した剥離渦を前記シールフィンに向かって案内する切除部が設けられている。
 このように構成することで、ブレードを通過する流体の主流の一部が段差面に衝突し、上流側に戻るように主渦を形成すると共に、段差面の端縁部(エッジ)において主渦から一部の流れが剥離されて主渦とは反対方向に回る剥離渦が形成される。すなわち、剥離渦はシールフィン先端からステップ部に向かうダウンフローを生じさせる。このため、剥離渦がシールフィン先端とステップ部との間の微小隙間を通過する流体の縮流効果を奏するので、漏洩流量を低減することができる。
 ここで、段差面には、ステップ部の上面に連なるように切除部が形成されている。すなわち、段差面の端縁部が切除部によって切除され、剥離渦が端縁部よりもシールフィンに向かって案内される。このため、切除部が形成されていない場合と比較してシールフィンの手前に形成される剥離渦の直径が縮径される。よって、シールフィン先端近傍での剥離渦によるダウンフローが強くなり、さらに微小隙間を通過する流体の縮流効果を向上させることができる。
 また、剥離渦の直径が縮径されることにより、シールフィンの上流側の静圧を低減させることができる。このため、シールフィンを挟んで上流側と下流側との差圧を小さくすることができる。よって、さらに漏洩流量を低減することが可能になる。
 本発明に係るタービンは、前記ステップ部は、前記段差面を複数有し、上流側から下流側に向かって突出高さが漸次高くなるように形成されており、前記切除部は、各段差面に形成され、前記上流側から前記下流側に向かって傾斜する傾斜部であって、各傾斜部の回転軸径方向に対する傾斜角度は、前記下流側の前記段差面に形成されている前記傾斜部の前記傾斜角度ほど大きく設定されていてもよい。
 このように構成することで、上流側も下流側も同様に、剥離渦の速度ベクトルをシールフィン先端側(軸方向)に向かせることができる。このため、各ステップ部で形成される剥離渦の直径を略均一にすることができる。すなわち、ステップ部の各段差面における流体の流速が変化しても各段差面に形成される剥離渦の直径を略均等に縮径させることができる。よって、微小隙間を通過する流体の剥離渦による縮流効果をさらに確実に向上させることができると共に、シールフィンの上流側の静圧をさらに確実に低減させることができる。
 本発明に係るタービンは、前記ステップ部は、前記段差面を複数有し、上流側から下流側に向かって突出高さが漸次高くなるように形成されており、前記切除部は、各段差面に形成され、前記上流側から前記下流側に向かって滑らかに前記上面に連なる弧状部を有し、前記弧状部の前記上面に接続する部位の接線方向と回転軸径方向との間の角度は、前記下流側の前記段差面に形成されている前記弧状部の前記角度ほど大きく設定されていてもよい。
 このように構成することで、ステップの各段差面における流体の流速が変化しても各段差面に形成される剥離渦の直径を略均等に縮径させることができる。このため、微小隙間を通過する流体の剥離渦による縮流効果をさらに確実に向上させることができると共に、シールフィンの上流側の静圧をさらに確実に低減させることができる。
 本発明によれば、切除部が形成されていない場合と比較してシールフィンの手前に形成される剥離渦の直径を縮径することができる。このため、シールフィン先端近傍での剥離渦によるダウンフローが強くなり、微小隙間を通過する流体の縮流効果を向上させることができる。
 また、剥離渦の直径が縮径されることにより、シールフィンの上流側の静圧を低減させることができる。このため、シールフィンを挟んで上流側と下流側との差圧を小さくすることができる。よって、さらに漏洩流量を低減することが可能になる。
本発明の実施形態における蒸気タービンを示す概略構成断面図である。 図1における要部Iを示す拡大断面図である。 本発明の実施形態における蒸気タービンの作用説明図であって、(a)は図1における要部Iの拡大図、(b)は(a)の要部拡大図である。 本発明の第一変形例におけるステップ部の概略構成断面図である。 本発明の第二変形例におけるステップ部の概略構成断面図である。 本発明の第三変形例におけるステップ部の概略構成断面図である。 本発明の第四変形例におけるステップ部の概略構成断面図である。 本発明の第五変形例におけるステップ部の概略構成断面図である。 従来の蒸気タービンにおける要部の概略構成図である。
(蒸気タービン)
 次に、この発明の実施形態を図1~図4に基づいて説明する。
 図1は、本発明の実施形態に係る蒸気タービンを示す概略構成断面図である。
 蒸気タービン1は、ケーシング10と、ケーシング10に流入する蒸気Sの量と圧力を調整する調整弁20と、ケーシング10の内方に回転自在に設けられ、動力を図示しない発電機等の機械に伝達する軸体30と、ケーシング10に保持された静翼40と、軸体30に設けられた動翼50と、軸体30を軸回りに回転可能に支持する軸受部60とを主たる構成としている。
 軸受部60は、ジャーナル軸受装置61およびスラスト軸受装置62を備えており、軸体30を回転可能に支持している。
 ケーシング10は、蒸気Sの流路である。ケーシング10の内部空間は気密に封止されている。このケーシング10の内壁面には、軸体30が挿通されたリング状の仕切板外輪11が強固に固定されている。
 調整弁20は、ケーシング10の内部に複数個取り付けられている。各調整弁20は、それぞれ図示しないボイラから蒸気Sが流入する調整弁室21と、弁体22と、弁座23とを備えている。弁体22が弁座23から離れると蒸気流路が開くことにより、蒸気室24を介して蒸気Sがケーシング10の内部空間に流入する。
 軸体30は、軸本体31と、この軸本体31の外周から回転軸径方向(以下、単に径方向という)に延出した複数のディスク32とを備えている。この軸体30は、不図示の発電機等の機械に回転エネルギーを伝達する。
 静翼40は、軸体30を囲繞するように放射状に多数配置されて環状静翼群を構成している。各静翼40は、それぞれ仕切板外輪11に保持されている。これら静翼40の径方向における内方側は、リング状のハブシュラウド41で連結されている。このハブシュラウド41には、軸体30が挿通されている。静翼40の先端部は、軸体30に対して径方向の隙間をあけて配設されている。
 これら複数の静翼40からなる環状静翼群は、軸方向に間隔をあけて六つ形成されている。環状静翼群は、蒸気Sの圧力エネルギーを速度エネルギーに変換して、下流側に隣接する動翼50側に蒸気Sを案内する。
 動翼50は、軸体30が有するディスク32の外周部に強固に取り付けられている。この動翼50は、各環状静翼群の下流側において、放射状に多数配置されることにより環状動翼群を構成している。
 これら環状静翼群と環状動翼群とは、一組一段とされている。蒸気タービン1は、六組の環状静翼群及び環状動翼群を有している。これら動翼50の先端部には、周方向に延びるチップシュラウド51が設けられている。
 ここで、本実施形態では、軸体30および仕切板外輪11が、本発明における「構造体」を構成する。また、静翼40、ハブシュラウド41、チップシュラウド51、および動翼50が、本発明における「ブレード」を構成する。そして、静翼40およびハブシュラウド41が「ブレード」である場合は、軸体30が「構造体」である。一方、動翼50およびチップシュラウド51が「ブレード」である場合は、仕切板外輪11が「構造体」である。なお、以下の説明においては、仕切板外輪11を「構造体」とし、動翼50を「ブレード」として説明する。
 図2は、図1における要部Iを示す拡大断面図である。
 図2に示すように、動翼50の先端部に設けられたチップシュラウド51は、ケーシング10に固定された仕切板外輪11と隙間Kを介して対向して配置されている。チップシュラウド51は、仕切板外輪11側に突出するステップ部52(52A~52C)を備えている。各ステップ部52(52A~52C)は、段差面53(53A~53C)を有している。
 本実施形態のチップシュラウド51は、三つのステップ部52(52A~52C)を備えている。これら三つのステップ部52A~52Cの上面152(152A~152C)の動翼50からの突出高さは、軸体30の軸方向上流側(図2における左側)から下流側(図2における右側)に向かうに従って、漸次高くなる。ステップ部52A~52Cの段差面53(53A~53C)は、軸方向上流側を向いている。
 ここで、各段差面53(53A~53C)は、それぞれ下流側に傾くように傾斜部56(56A~56C)を形成している。すなわち、各段差面53(53A~53C)は、斜めに切除されて傾斜部56(56A~56C)を形成している。そして、ステップ部52(52A~52C)の上面152(152A~152C)に、傾斜部56(56A~56C)の上縁部55(55A~55C)が接続されている。
 また、傾斜部56(56A~56C)の径方向に対する傾斜角度θ1~θ3は、下流側に向かうほど大きく設定されている。すなわち、三つのステップ部52(52A~52C)のうち、最も上流側に位置している一段目のステップ部52Aの段差面53Aに形成されている傾斜部56Aの径方向に対する傾斜角度を、θ1と定義する。一段目のステップ部52Aよりも下流側に位置している二段目のステップ部52Bの段差面53Bに形成されている傾斜部56Bの径方向に対する傾斜角度を、θ2と定義する。二段目のステップ部52Bよりも下流側に位置している三段目のステップ部52Cの段差面53Cに形成されている傾斜部56Cの径方向に対する傾斜角度を、θ3と定義する。
 θ1、θ2、及びθ3は、
 θ3>θ2>θ1
 を満たすように設定されている。
 一方、仕切板外輪11には、チップシュラウド51のステップ部52に対向する部位に、環状溝111が形成されている。環状溝111は、三つのステップ部52(52A~52C)に対応するように、上流側から下流側に向かって漸次拡径する三つの環状の凹部111A~111Cを有している。また、環状溝111は、最下流側に形成され、三段目の凹部111Cよりも縮径された四段目の凹部111Dを有している。
 ここで、一段目の凹部111Aと二段目の凹部111Bとの境界に位置する端縁部(エッジ部)112A、二段目の凹部111Bと三段目の凹部111Cとの境界に位置する端縁部112B、および三段目の凹部111Cと四段目の凹部111Dとの境界に位置する端縁部112Cには、チップシュラウド51に向けて径方向内方側に延出する三つのシールフィン15(15A~15C)が設けられている。シールフィン15(15A~15C)は、ステップ部52(52A~52C)にそれぞれ向かい合っている。
 各シールフィン15(15A~15C)は、それぞれ対応するステップ部52(52A~52C)との間に、微小隙間H(H1~H3)を径方向に形成している。これら微小隙間H(H1~H3)の各寸法は、ケーシング10や動翼50の熱伸び量、動翼50の遠心伸び量等を考慮した上で、両者が接触することがない安全な範囲内で、最小のものに設定されている。
 なお、本実施形態では、H1~H3は全て同じ寸法である。ただし、必要に応じて、H1~H3を適宜変更することが可能である。
 このような構成のもとに、チップシュラウド51と仕切板外輪11との間には、各ステップ部52(52A~52C)と、これらに対応する環状溝111の三つの凹部111A~111Cとの間にキャビティC(C1~C3)が形成されている。
 より詳しくは、最上流側に形成され、一段目のステップ部52Aに対応する第一のキャビティC1は、一段目のステップ部52Aに対応するシールフィン15Aと、一段目の凹部111Aの上流側の内壁面54Aとの間で、かつチップシュラウド51と仕切板外輪11との間に形成されている。
 また、二段目のステップ部52Bに対応する第二のキャビティC2は、二段目のステップ部52Bに対応するシールフィン15Bと、二段目の凹部111Bの上流側の内壁面54Bおよび端縁部112Aに設けられているシールフィン15Aとの間で、かつチップシュラウド51と仕切板外輪11との間に形成されている。
 さらに、三段目のステップ部52Cに対応する第三のキャビティC3は、三段目のステップ部52Cに対応するシールフィン15Cおよび三段目の凹部111Cの下流側の内壁面54Cと、三段目の凹部111Cの上流側の内壁面54Dおよび端縁部112Bに設けられているシールフィン15Bとの間で、かつチップシュラウド51と仕切板外輪11との間に形成されている。
(蒸気タービンの動作)
 次に、図1~図3に基づいて、蒸気タービン1の動作について説明する。
 図3は、蒸気タービンの作用説明図であって、(a)は図1における要部Iの拡大図、(b)は(a)の要部拡大図である。
 図1~図3(a)に示すように、まず、調整弁20(図1参照)を開状態とすると、図示しないボイラから蒸気Sがケーシング10の内部空間に流入する。
 ケーシング10の内部空間に流入した蒸気Sは、各段における環状静翼群と環状動翼群とを順次通過する。この際には、圧力エネルギーが静翼40によって速度エネルギーに変換される。静翼40を経た蒸気Sのうちの大部分が、同一の段を構成する動翼50間に流入する。動翼50が、蒸気Sの速度エネルギーを回転エネルギーに変換し、軸体30に回転を付与する。一方、蒸気Sのうちの一部(例えば、数%)は、静翼40から流出した後、環状溝111内に流入することにより、所謂漏洩蒸気となる。
 ここで、図3(a)に示すように環状溝111内に流入した蒸気Sは、まず、第一のキャビティC1に流入し、一段目のステップ部52Aの段差面53Aに衝突する。蒸気Sが、上流側に戻ることにより、例えば図3の紙面上にて反時計回りに回る主渦Y1が生じる。
 その際、特に一段目のステップ部52Aの上縁部55Aにおいて、主渦Y1から一部の流れが剥離することにより、この主渦Y1と反対方向、本例では図3の紙面上にて時計回りに回るように、剥離渦Y2が生じる。
 ここで、一段目のステップ部52Aの段差面53Aは、下流側に傾くように傾斜部56Aを形成している。このため、主渦Y1の上縁部55Aにおける速度ベクトルは、段差面53Aが傾斜部56Aを形成していない場合と比較して、シールフィン15A側に向かって傾く。これにより、一段目のステップ部52Aの上面152A上に形成された剥離渦Y2の直径は、段差面53Aが傾斜部56Aを形成していない場合と比較して、小さくなる。
 このような剥離渦Y2は、シールフィン15Aとステップ部52Aとの間の微小隙間H1を通り抜ける漏れ流れを低減する効果、すなわち縮流効果を発揮する。
 すなわち、図3(a)に示したように剥離渦Y2が形成されると、この剥離渦Y2は、シールフィン15A先端の軸方向上流側において、速度ベクトルを径方向内方側に向けるダウンフローを形成する。このダウンフローは、微小隙間H1の直前で径方向内方側に向う慣性力を保有しているため、微小隙間H1を通り抜ける流れを径方向内方側に縮める効果(縮流効果)を発揮する。これにより、蒸気Sの漏洩流量は小さくなる。
 ここで、図3(b)に示すように、剥離渦Y2が真円を形成すると仮定すると、剥離渦Y2の直径が微小隙間H1の2倍になってその外周がシールフィン15Aに接する場合に、この剥離渦Y2が形成するダウンフローにおける径方向内方側に向く速度成分Fが最大になる位置が、シールフィン15Aの先端(内端縁)に一致する。この場合、ダウンフローが微小隙間H1の直前をより速い速度で通過するため、漏れ流れに対する縮流効果が最大になる。
 本実施形態にあっては、一段目のステップ部52Aの段差面53Aが傾斜部56Aを形成している。従って、段差面53Aに傾斜部56Aが形成されていない場合と比較して剥離渦Y2の直径が小さくなるので、剥離渦Y2の直径を微小隙間H1の2倍に設定し易い。
 また、シールフィン15Aと、これよりも上流側に位置する傾斜部56Aの上縁部55Aとの間の距離をL1と定義するとき、剥離渦Y2の直径が微小隙間H1の2倍となるように、距離L1と傾斜部56の傾斜角度θ1とを設定すればよい。
 続いて、微小隙間H1を通過した蒸気Sは、第二のキャビティC2に流入し、二段目のステップ部52Bの段差面53Bに衝突する。蒸気Sが、上流側に戻ることにより、例えば図3の紙面上にて反時計回りに回る主渦Y1が生じる。そして、二段目のステップ部52Bの上縁部55Bにおいて、主渦Y1から一部の流れが剥離することにより、この主渦Y1と反対方向、本例では図3の紙面上にて時計回りに回るように、剥離渦Y2が生じる。
 さらに、微小隙間H2を通過した蒸気Sは、第三のキャビティC3に流入し、三段目のステップ部52Cの段差面53Cに衝突する。蒸気Sが、上流側に戻ることにより、例えば図3の紙面上にて反時計回りに回る主渦Y1を生じる。そして、三段目のステップ部52Cの上縁部55Cにおいて、主渦Y1から一部の流れが剥離することにより、この主渦Y1と反対方向、本例では図3の紙面上にて時計回りに回るように、剥離渦Y2が生じる。
 ここで、蒸気Sの密度は下流側に向かうほど小さくなるので、下流側のキャビティCほど蒸気Sの子午面内の流速が速くなる。このため、第二のキャビティC2内で段差面53Bに衝突した蒸気Sの径方向外側に向かう流れは、第一のキャビティC1内で段差面53Aに衝突した蒸気Sの径方向外側に向かう流れよりも強くなる。したがって、二段目のステップ部52Bの上面152B上に形成される剥離渦Y2の直径は、一段目のステップ部52Aの上面152A上に形成される剥離渦Y2の直径よりも大きくなりやすい。
 同様に、第三のキャビティC3内において、三段目のステップ部52Cの上面152C上に形成される剥離渦Y2の直径は、二段目のステップ部52B上に形成される剥離渦Y2の直径よりも大きくなりやすい。
 しかしながら、本実施形態にあっては、各段差面53A~53Cが形成している傾斜部56A~56Cの傾斜角度θ1~θ3が、θ3>θ2>θ1を満たすように、つまり、下流側に向かうほど大きく設定されている(図2参照)。このため、各キャビティC(C1~C3)内で形成される剥離渦Y2の速度ベクトルを、シールフィン15(15A~15C)側(軸方向)に向かせることができる。よって、各剥離渦Y2の直径は、略同一の大きさになる。
 なお、二段目のステップ部52Bに対応するシールフィン15Bと、これよりも上流側に位置する傾斜部56Bの上縁部55Bとの間の距離L2、および傾斜部56Bの傾斜角度θ2は、距離L1および傾斜角度θ1と同様に、剥離渦Y2の直径が微小隙間H2の2倍となるように設定すればよい。また、三段目のステップ部52Cに対応するシールフィン15Cと、これよりも上流側に位置する傾斜部56Cの上縁部55Cとの間の距離L3、および傾斜部56Cの傾斜角度θ3は、距離L1および傾斜角度θ1と同様に、剥離渦Y2の直径が微小隙間H3の2倍となるように設定すればよい。
(効果)
 したがって、上述の実施形態によれば、チップシュラウド51に、三つのステップ部52(52A~52C)を形成すると共に、仕切板外輪11に形成されている環状溝111のステップ部52(52A~52C)に対応する部位に、それぞれ三つのシールフィン15(15A~15C)を設けることにより、各シールフィン15(15A~15C)の上流側に剥離渦Y2を形成することができる。この剥離渦Y2は、シールフィン15Aの軸方向上流側において、速度ベクトルを径方向内方側に向けるダウンフローを形成するので、各微小隙間H(H1~H3)を通り抜ける漏れ流れを低減する効果、すなわち縮流効果を発揮することができる。
 これに加え、ステップ部52(52A~52C)の段差面53(53A~53C)は、傾斜部56(56A~56C)を形成しており、傾斜部56(56A~56C)の傾斜角度θ1~θ3が、下流側に向かうほど大きく設定されている。すなわち、傾斜角度θ1~θ3が、θ3>θ2>θ1を満たすように設定されている。
 このため、各キャビティC(C1~C3)内で形成される剥離渦Y2の直径は、略同一の大きさになるので、各シールフィン15(15A~15C)の軸方向上流側におけるダウンフローを強くすることができる。よって、確実に各微小隙間H(H1~H3)を通り抜ける漏れ流れを低減する効果、すなわち縮流効果を発揮することができる。
 なお、上述の実施形態では、各段差面53(53A~53C)が斜めに切除されて傾斜部56(56A~56C)を形成した状態になっており、ステップ部52(52A~52C)の上面152(152A~152C)に、傾斜部56(56A~56C)の上縁部55(55A~55C)が接続された状態になっている場合について説明した。しかしながら、これに限られるものではなく、少なくともステップ部52(52A~52C)の上面152(152A~152C)に連なるように、各段差面53(53A~53C)が切除されていればよい。
(第一変形例)
 より具体的に、図4~図8に基づいて説明する。
 図4は、ステップ部の第一変形例の概略構成断面図である。なお、上述の実施形態と同一態様には、同一符号を付して説明する(以下の変形例についても同様)。
 図4に示すように、チップシュラウド51に形成されている三つのステップ部52(52A~52C)の段差面53(53A~53C)には、それぞれ端縁部(エッジ部)に平面取り部156(156A~156B)が形成されている。すなわち、各段差面53(53A~53C)の上面152(152A~152C)側は斜めに切除されている。そして、この上面152(152A~152C)に、面取り部156(156A~156C)の上縁部155(155A~155C)が接続されている。
 また、面取り部156(156A~156C)は、径方向に対する傾斜角度θ1’~θ3’が、下流側(図4における右側)に向かうほど大きく設定されている。すなわち、一段目のステップ部52Aの段差面53Aに形成されている面取り部156Aの傾斜角度θ1’、二段目のステップ部52Bの段差面53Bに形成されている面取り部156Bの傾斜角度θ2’、および三段目のステップ部52Cの段差面53Cに形成されている面取り部156Cの傾斜角度θ3’は、
 θ3’>θ2’>θ1’
 を満たすように設定されている。
 したがって、上述の第一変形例は、前述の実施形態と同様の効果を奏する。また、面取り部156(156A~156C)は、前述の実施形態の傾斜部56(56A~56C)を形成する場合と比較して、各ステップ部52(52A~52C)の切除量が少ない。従って、加工コストを低減することが可能になる。
(第二変形例)
 図5は、ステップ部の第二変形例の概略構成断面図である。なお、以下の図面において、チップシュラウド51に三つのステップ部52(52A~52C)が形成されている点は、上述の実施形態と同様である。そして、各ステップ部52(52A~52C)の構成が同様であるので、一部のステップ部52のみ図示し、他のステップ部52の図示を省略する。
 図5に示すように、上述の実施形態と第二変形例との相違点は、上述の実施形態の各ステップ部52(52A~52C)の段差面53(53A~53C)には、それぞれ単に傾斜部56(56A~56C)が形成されているのみであるのに対し、第二変形例では、一段目のステップ部52Aの上面152Aと二段目のステップ部52Bに形成されている傾斜部56Bとの接続部分、および二段目のステップ部52Bの上面152Bと三段目のステップ部52Cに形成されている傾斜部56Cとの接続部分に下流側(図5における右側)に向かって凹むように半径r1の弧状部57B,57Cが形成されている点にある。
 弧状部57Bにより、一段目のステップ部52Aの上面152Aと二段目のステップ部52Bに形成されている傾斜部56Bとが滑らかに接続される。また、弧状部57Cにより、二段目のステップ部52Bの上面152Bと三段目のステップ部52Cに形成されている傾斜部56Cとが滑らかに接続される。
 したがって、第二変形例によれば、漏洩蒸気をスムーズに傾斜部57(57A~57C)に導くことができ、各傾斜部57(57A~57C)の上縁部55(55A~55C)から流出する主渦Y1のエネルギー損失を小さくすることができる。この結果、剥離渦Y2のダウンフローを大きくすることができるため、剥離渦Y2にさらに大きな縮流効果を発揮させることが可能になる。
(第三変形例)
 図6は、ステップ部の第三変形例の概略構成断面図である。
 図6に示すように、上述の実施形態と第三変形例との相違点は、上述の実施形態の各ステップ部52(52A~52C)の段差面53(53A~53C)には、それぞれ傾斜部56(56A~56C)のみが形成されているのに対し、第三変形例では、傾斜部56(56A~56C)に代わって、半径r2の弧状部256(256A~256C)のみが形成されている点にある。
 弧状部256(256A~256C)は、下流側(図6における右側)に向かって凹むように形成されている。そして、ステップ部52(52A~52C)の上面152(152A~152C)に、弧状部256(256A~256C)の上縁部255(255A~255C)が接続されている。ここで、上縁部255(255A~255C)における弧状部256(256A~256C)の接線方向と、径方向との間の角度θAは、下流側に向かうほど大きく設定されている。
 したがって、第三変形例は、前述の実施形態と同様の効果を奏する。これに加え、前述の実施形態よりも漏洩蒸気をスムーズに弧状部256(256A~256C)の上縁部255(255A~255C)に導くことができるので、主渦Y1のエネルギー損失を小さくすることができる。この結果、剥離渦Y2のダウンフローをさらに大きくすることができるため、剥離渦Y2により大きな縮流効果を発揮させることが可能になる。
(第四変形例)
 図7は、ステップ部の第四変形例の概略構成断面図である。
 同図に示すように、前述の第一変形例と第四変形例との相違点は、第一変形例におけるステップ部52(52A~52C)の段差面53(53A~53C)には、それぞれ端縁部(エッジ部)に平面取り部156(156A~156C)が形成されているのに対し、この第四変形例の平面取り部156(156A~156C)には、下縁側に半径r3の丸面取り部356(356A~356C)が形成されている点にある。
 丸面取り部356(356A~356C)により、段差面53(53A~53C)と平面取り部156(156A~156B)とが滑らかに接続される。このため、段差面53(53A~53C)に衝突した蒸気Sが、スムーズに平面取り部156(156A~156C)に導かれる。この結果、平面取り部156(156A~156C)の下縁部分で主渦Y1から剥離して小さな剥離渦Y2’(図7における二点鎖線参照)が形成されることを確実に防止できる。よって、主渦Y1のエネルギーロスを低減できるため、剥離渦Y2による縮流効果を大きくすることが可能になる。
(第五変形例)
 図8は、ステップ部の第五変形例の概略構成断面図である。
 図8に示すように、前述の第三変形例と第五変形例との相違点は、第五変形例における各ステップ部52(52A~52C)の段差面53(53A~53C)に形成されている半径r4の弧状部456(456A~456C)の形状にある。
 すなわち、第三変形例の弧状部256(256A~256C)は下流側(図6における右側)に向かって凹むように形成されているのに対し、第五変形例の弧状部456(456A~456C)は上流側(図8における左側)に向かって膨出するように形成されている。そして、ステップ部52(52A~52C)の上面152(152A~152C)に、弧状部456(456A~456C)の上縁部455(455A~455C)が接続されている。
 ここで、上縁部455(455A~455C)における弧状部456(456A~456C)の接線方向と、径方向との間の角度θBは、下流側に向かうほど大きく設定されている。
 したがって、上述の第五変形例は、前述の第三変形例と同様の効果を奏する。
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述の実施形態や変形例では、ケーシング10に設けられた仕切板外輪11を構造体とした。しかしながら、これに限られるものではなく、仕切板外輪11を設けずに、ケーシング10自体を本発明の構造体としてもよい。すなわち、この構造体は、動翼50を囲繞するとともに、流体が動翼間を通過するように流路を規定するものであれば、どのような部材であってもよい。
 また、上述の実施形態や変形例では、仕切板外輪11のチップシュラウド51に対応する部位に環状溝111を形成し、この環状溝111を、三つのステップ部52(52A~52C)に対応するように、段差により漸次拡径された三つの環状の凹部111A~111Cと、三段目の凹部111Cよりも縮径された四段目の凹部111Dとにより構成した場合について説明した。しかしながら、これに限られるものではなく、環状溝111全体を略同径に形成してもよい。
 さらに、上述の実施形態や変形例では、チップシュラウド51にステップ部52を複数設け、これによってキャビティCも複数形成した場合について説明した。しかしながら、これに限られるものではなく、ステップ部52やこれに対応するキャビティCの数は任意であり、一つであっても、三つ、あるいは四つ以上であってもよい。
 また、一つのステップ部52に向かい合わせて複数のシールフィン15を設けてもよい。
 また、上述の実施形態や変形例では、最終段の動翼50や静翼40に本発明を適用したが、他の段の動翼50や静翼40に本発明を適用してもよい。
 さらに、上述の実施形態や変形例では、本発明に係る「ブレード」を動翼50とし、その先端部となるチップシュラウド51にステップ部52(52A~52C)を形成した。また、本発明に係る「構造体」を仕切板外輪11とし、仕切板外輪11にシールフィン15(15A~15C)を設けた。しかしながら、これに限られるものではなく、本発明に係る「ブレード」を静翼40とし、その先端部にステップ部52を形成してもよい。また、本発明に係る「構造体」を軸体(ロータ)30として、軸体30にシールフィン15を設けてもよい。この場合も、ステップ部52に、上述の実施形態や変形例を採用することができる。
 また、上述の実施形態では、本発明を復水式の蒸気タービン1に適用したが、他の型式の蒸気タービン、例えば、二段抽気タービン、抽気タービン、混気タービン等に本発明を適用することもできる。
 さらに、上述の実施形態では、本発明を蒸気タービン1に適用したが、ガスタービンにも本発明を適用することができ、さらには、回転翼のある全てのものに本発明を適用することができる。
 本発明は、例えば、発電プラント、化学プラント、ガスプラント、製鉄所、船舶等に用いられるタービンに関する。本発明によれば、作動流体の漏洩量を低減することができる。
1 蒸気タービン(タービン)
10 ケーシング
11 仕切板外輪(構造体)
15(15A~15C) シールフィン
30 軸体(構造体)
40 静翼(ブレード)
41 ハブシュラウド
50 動翼(ブレード)
51 チップシュラウド
52(52A~52C) ステップ部
53(53A~53C) 段差面
55(55A~55C),155(155A~155C),455(455A~455C) 上縁部
56(56A~56C) 傾斜部
57B,57C,256(256A~256C),456(456A~456C) 弧状部
156(156A~156C) 平面取り部(切除部)
356(356A~356C) 丸面取り部
C(C1~C3) キャビティ
H(H1~H3) 微小隙間
K 隙間
S 蒸気
Y1 主渦
Y2 剥離渦
θ1~θ3,θ1’~θ3’ 傾斜角度
θA,θB 角度

Claims (3)

  1.  ブレードと、
     前記ブレードの先端部側に隙間を介して設けられると共に、前記ブレードに対して相対回転する構造体と、
     前記ブレードの前記先端部、および前記構造体の前記先端部に対向する部位の何れか一方に設けられ、少なくとも1つの段差面を有し、他方に向かって突出するステップ部と、
     前記ブレードの前記先端部、および前記構造体の前記先端部に対向する部位の何れか他方に設けられ、前記ステップ部に向かって延出し、このステップ部との間に微小隙間を形成するシールフィンと、
     前記段差面に、前記ステップ部の上面に連なるように形成された切除部とを備え、
     前記隙間に流体が流通され、
     前記切除部は、前記流体の主流から剥離した剥離渦を、前記ステップ部の上面において前記シールフィンに向かって案内するタービン。
  2.  前記ステップ部は、前記段差面を複数有し、上流側から下流側に向かって突出高さが漸次高くなるように形成されており、
     前記切除部は、各段差面に形成され、前記上流側から前記下流側に向かって傾斜する傾斜部であって、
     各傾斜部の回転軸径方向に対する傾斜角度は、前記下流側の前記段差面に形成されている前記傾斜部の前記傾斜角度ほど大きく設定されている請求項1に記載のタービン。
  3.  前記ステップ部は、前記段差面を複数有し、上流側から下流側に向かって突出高さが漸次高くなるように形成されており、
     前記切除部は、各段差面に形成され、前記上流側から前記下流側に向かって滑らかに前記上面に連なる弧状部を有し、
     前記弧状部の前記上面に接続する部位の接線方向と回転軸径方向との間の角度は、前記下流側の前記段差面に形成されている前記弧状部の前記角度ほど大きく設定されている請求項1に記載のタービン。
PCT/JP2011/079808 2010-12-22 2011-12-22 タービン WO2012086757A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137013349A KR101464910B1 (ko) 2010-12-22 2011-12-22 터빈
EP11851503.0A EP2657452B1 (en) 2010-12-22 2011-12-22 Turbine with sealing arrangement at the tip of the blades
US13/995,542 US9353640B2 (en) 2010-12-22 2011-12-22 Turbine
CN201180056739.9A CN103228871B (zh) 2010-12-22 2011-12-22 涡轮

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-286583 2010-12-22
JP2010286583A JP5517910B2 (ja) 2010-12-22 2010-12-22 タービン、及びシール構造

Publications (1)

Publication Number Publication Date
WO2012086757A1 true WO2012086757A1 (ja) 2012-06-28

Family

ID=46314024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079808 WO2012086757A1 (ja) 2010-12-22 2011-12-22 タービン

Country Status (6)

Country Link
US (1) US9353640B2 (ja)
EP (1) EP2657452B1 (ja)
JP (1) JP5517910B2 (ja)
KR (1) KR101464910B1 (ja)
CN (1) CN103228871B (ja)
WO (1) WO2012086757A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558138B2 (ja) * 2010-02-25 2014-07-23 三菱重工業株式会社 タービン
JP5484990B2 (ja) * 2010-03-30 2014-05-07 三菱重工業株式会社 タービン
JP5518022B2 (ja) 2011-09-20 2014-06-11 三菱重工業株式会社 タービン
JP5916458B2 (ja) 2012-03-23 2016-05-11 三菱日立パワーシステムズ株式会社 タービン
KR102136879B1 (ko) * 2013-04-16 2020-07-23 엘지전자 주식회사 터보팬 및 이를 사용한 천정형 공기조화기
JP6296649B2 (ja) 2014-03-04 2018-03-20 三菱日立パワーシステムズ株式会社 シール構造、及び回転機械
JP6530918B2 (ja) * 2015-01-22 2019-06-12 三菱日立パワーシステムズ株式会社 タービン
JP6227572B2 (ja) * 2015-01-27 2017-11-08 三菱日立パワーシステムズ株式会社 タービン
JP6785041B2 (ja) 2015-12-10 2020-11-18 三菱パワー株式会社 シール構造及びタービン
JP2017145813A (ja) 2016-02-19 2017-08-24 三菱日立パワーシステムズ株式会社 回転機械
FR3053386B1 (fr) * 2016-06-29 2020-03-20 Safran Helicopter Engines Roue de turbine
JP2018003812A (ja) * 2016-07-08 2018-01-11 三菱日立パワーシステムズ株式会社 動翼およびそれを用いたタービン
FR3055353B1 (fr) * 2016-08-25 2018-09-21 Safran Aircraft Engines Ensemble formant joint d'etancheite a labyrinthe pour une turbomachine comportant un abradable et des lechettes inclines
JP6706585B2 (ja) * 2017-02-23 2020-06-10 三菱重工業株式会社 軸流回転機械
JP6917162B2 (ja) * 2017-02-28 2021-08-11 三菱パワー株式会社 動翼、ロータユニット、及び、回転機械

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104803U (ja) * 1977-01-31 1978-08-23
JPH10311205A (ja) * 1997-05-14 1998-11-24 Toshiba Corp 軸流タービン
JPH11148308A (ja) * 1997-09-19 1999-06-02 Asea Brown Boveri Ag 軸流タービンのためのシュラウドバンド
JP2010216321A (ja) * 2009-03-16 2010-09-30 Hitachi Ltd 蒸気タービンの動翼及びそれを用いた蒸気タービン

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897169A (en) * 1973-04-19 1975-07-29 Gen Electric Leakage control structure
FR2374766A1 (fr) 1976-12-20 1978-07-13 Lincoln Electric Co Generatrice a auto-excitation pour circuit d'allumage de moteur a combustion interne
FR2452601A1 (fr) * 1979-03-30 1980-10-24 Snecma Support amovible de revetement d'etancheite pour carter de soufflante de turboreacteur
JPS5951104A (ja) 1982-09-17 1984-03-24 Hitachi Ltd タ−ビン段落の内部構造
JPS6123804A (ja) 1984-07-10 1986-02-01 Hitachi Ltd タ−ビン段落構造
JPS61134501A (ja) 1984-12-06 1986-06-21 株式会社東芝 一体貫流型蒸気発生器
JPS6361501A (ja) 1986-09-01 1988-03-17 Matsushita Electric Ind Co Ltd 周波数コンバ−タ一体型平面アンテナ
GB2226365B (en) * 1988-12-22 1993-03-10 Rolls Royce Plc Turbomachine clearance control
JPH0435601A (ja) 1990-05-31 1992-02-06 Kunimitsu Masuda 装身具用飾り体の製造方法
JPH04350302A (ja) 1991-05-28 1992-12-04 Hitachi Ltd タービン段落構造
JPH0913905A (ja) 1995-06-30 1997-01-14 Mitsubishi Heavy Ind Ltd タービン
JPH11148307A (ja) 1997-11-17 1999-06-02 Hitachi Ltd タービンのシール構造
JPH11200810A (ja) 1998-01-09 1999-07-27 Mitsubishi Heavy Ind Ltd ラビリンスシール機構
EP1001139B1 (de) * 1998-11-10 2004-01-07 ALSTOM (Switzerland) Ltd Spitzendichtung für Turbinenlaufschaufeln
EP1013884B1 (de) 1998-12-24 2005-07-27 ALSTOM Technology Ltd Turbinenschaufel mit aktiv gekühltem Deckbandelememt
JP2002228014A (ja) 2001-02-05 2002-08-14 Mitsubishi Heavy Ind Ltd ラビリンスシール
JP2004332616A (ja) 2003-05-07 2004-11-25 Toshiba Corp 軸流型ターボ機械
CN2725533Y (zh) * 2004-07-28 2005-09-14 上海汽轮机有限公司 大功率汽轮机低压自带冠长叶片台阶型围带
JP2006291967A (ja) 2006-05-29 2006-10-26 Toshiba Corp 軸流タービン
JP2009047043A (ja) 2007-08-17 2009-03-05 Mitsubishi Heavy Ind Ltd 軸流タービン
US20090072487A1 (en) 2007-09-18 2009-03-19 Honeywell International, Inc. Notched tooth labyrinth seals and methods of manufacture
DE102009040758A1 (de) 2009-09-10 2011-03-17 Mtu Aero Engines Gmbh Umlenkvorrichtung für einen Leckagestrom in einer Gasturbine und Gasturbine
JP2011080452A (ja) 2009-10-09 2011-04-21 Mitsubishi Heavy Ind Ltd タービン
DE102009052314A1 (de) 2009-11-07 2011-05-12 Mtu Aero Engines Gmbh Dichtanordnung für eine Gasturbine und eine derartige Gasturbine
US20110156359A1 (en) * 2009-12-31 2011-06-30 General Electric Company Turbine engine seals
JP5484990B2 (ja) 2010-03-30 2014-05-07 三菱重工業株式会社 タービン
EP2390466B1 (en) 2010-05-27 2018-04-25 Ansaldo Energia IP UK Limited A cooling arrangement for a gas turbine
JP5709447B2 (ja) 2010-09-28 2015-04-30 三菱日立パワーシステムズ株式会社 タービン

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104803U (ja) * 1977-01-31 1978-08-23
JPH10311205A (ja) * 1997-05-14 1998-11-24 Toshiba Corp 軸流タービン
JPH11148308A (ja) * 1997-09-19 1999-06-02 Asea Brown Boveri Ag 軸流タービンのためのシュラウドバンド
JP2010216321A (ja) * 2009-03-16 2010-09-30 Hitachi Ltd 蒸気タービンの動翼及びそれを用いた蒸気タービン

Also Published As

Publication number Publication date
JP5517910B2 (ja) 2014-06-11
US20130272855A1 (en) 2013-10-17
EP2657452B1 (en) 2019-05-22
US9353640B2 (en) 2016-05-31
CN103228871B (zh) 2015-07-15
EP2657452A4 (en) 2014-06-11
KR20130114165A (ko) 2013-10-16
JP2012132397A (ja) 2012-07-12
KR101464910B1 (ko) 2014-11-24
EP2657452A1 (en) 2013-10-30
CN103228871A (zh) 2013-07-31

Similar Documents

Publication Publication Date Title
WO2012086757A1 (ja) タービン
JP5558138B2 (ja) タービン
WO2011043286A1 (ja) タービン
JP5484990B2 (ja) タービン
US9429022B2 (en) Steam turbine
JP5725848B2 (ja) タービン
JP5916458B2 (ja) タービン
WO2015133313A1 (ja) シール構造、及び回転機械
JP5518022B2 (ja) タービン
US11187097B2 (en) Rotary machine
JP5936515B2 (ja) 回転機械
JP2011012631A (ja) タービン
JP6167158B2 (ja) シール構造及びターボ機械
KR102290579B1 (ko) 동익, 로터 유닛 및 회전 기계
JP5412571B2 (ja) タービン
JP5783570B2 (ja) タービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137013349

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13995542

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011851503

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE