WO2012086689A1 - Method for manufacturing battery module and battery module - Google Patents

Method for manufacturing battery module and battery module Download PDF

Info

Publication number
WO2012086689A1
WO2012086689A1 PCT/JP2011/079646 JP2011079646W WO2012086689A1 WO 2012086689 A1 WO2012086689 A1 WO 2012086689A1 JP 2011079646 W JP2011079646 W JP 2011079646W WO 2012086689 A1 WO2012086689 A1 WO 2012086689A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery module
unit cells
manufacturing
aging
Prior art date
Application number
PCT/JP2011/079646
Other languages
French (fr)
Japanese (ja)
Inventor
龍彦 川崎
原 賢二
高橋 宏文
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Publication of WO2012086689A1 publication Critical patent/WO2012086689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module configured by connecting a plurality of unit cells of a secondary battery.
  • a secondary battery used in an electric vehicle (EV) or a hybrid electric vehicle (HEV) that assists a part of driving by an electric motor is required to have high capacity and high output performance.
  • a secondary battery is configured as a battery module in which a plurality of unit cells are connected in series. In each of a plurality of unit cells included in one battery module, the amount of voltage drop due to self-discharge becomes non-uniform due to variations in manufacturing parts such as a positive electrode, a negative electrode, a separator, and an electrolytic solution. There is.
  • the battery module manufacturing method performs charging of each of the plurality of unit cells of the secondary battery and first aging for self-discharge of the plurality of charged unit cells.
  • a first voltage measurement for measuring the first voltage of each of the plurality of unit cells after the first aging, and a second time for self-discharge to the plurality of unit cells after the first voltage measurement.
  • each of the plurality of unit cells is fully charged when charging the plurality of unit cells.
  • the predetermined range is preferably in the range of 30% to 95%.
  • both the first aging and the second aging are performed at a temperature of 25 ° C. Is preferred.
  • the voltage drop among the plurality of unit cells when the plurality of unit cells are classified into the plurality of groups, the voltage drop among the plurality of unit cells. It is preferable to classify unit cells whose amount is larger than a predetermined threshold as a defective product into a defective product group.
  • a voltage drop amount is predetermined among the plurality of unit cells. It is preferable to classify unit cells below the threshold into any of a plurality of groups different from the defective product group based on the voltage drop amount.
  • each of the plurality of unit cells is supplementarily charged so that each voltage of the plurality of unit cells becomes a predetermined voltage.
  • the predetermined range is preferably in the range of 30% to 95%.
  • the first aging and the second aging are both performed at a temperature of 25 ° C. Is preferred.
  • the first aging is performed at a temperature higher than the second aging.
  • the first aging is performed at a temperature of 40 ° C. or higher and 70 ° C. or lower, and the second aging is performed at a temperature of 25 ° C. It is preferable to do this.
  • the third aging is performed in which the plurality of unit cells are self-discharged at a temperature different from the temperature at which the second aging is performed by 10 ° C. or more, and the third aging is performed after the third aging.
  • the battery module After performing the third voltage measurement to measure 3 voltages, dividing the voltage drop by the difference between the second voltage and the third voltage to calculate the rate of temperature change, and classifying multiple unit cells into multiple groups
  • a plurality of unit cells classified into each group are classified into a plurality of small groups based on the temperature change rate.
  • the battery module is preferably manufactured by the battery module manufacturing method according to any one of the first to fourteenth aspects.
  • the performance and reliability of the battery module can be improved.
  • FIG. 3 is an exploded perspective view showing an example of a unit cell applied to the first embodiment of the battery module according to the present invention. It is sectional drawing of the unit cell of FIG. It is a graph which shows the relationship between the leaving time of the unit cell of FIG. 2, and a voltage. It is a figure explaining the grouping rule of a unit cell. It is a figure which shows the battery module manufacturing apparatus by embodiment. It is a flowchart which shows the manufacturing method of the battery module of FIG. 5 is a flowchart illustrating a method for manufacturing a battery module according to a second embodiment of the present invention.
  • 6 is a flowchart illustrating a manufacturing method of a battery module according to a third embodiment of the present invention. 6 is a flowchart illustrating a manufacturing method of a fourth embodiment of a battery module according to the present invention. 7 is a flowchart illustrating a method for manufacturing a battery module according to a fifth embodiment of the present invention.
  • Embodiments of a battery module and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
  • the battery module of each embodiment is mounted on HEV or EV.
  • FIG. 1 shows a first embodiment of a battery module according to the present invention.
  • a battery module 100 includes a cell controller 30 including a plurality of assembled batteries 20a and 20b, and a battery controller 40 for controlling the cell controller 30 and managing information.
  • the cell controller 30 includes a cell controller IC 21 that controls the assembled batteries 20a and 20b, and a microcomputer 22 that controls the assembled batteries 20a and 20b through the cell controller IC 21.
  • Each assembled battery 20a, 20b includes a plurality of unit cells 11 of secondary batteries connected in series, and both positive and negative terminals of the unit cell 11 are electrically connected to the cell controller IC 21.
  • Each cell controller IC 21 is connected to the microcomputer 22 via a communication line.
  • the microcomputer 22 manages various information such as charging / discharging information of the assembled batteries 20a and 20b.
  • the battery module 100 includes one or more cell controllers 30, and each cell controller 30 is electrically connected to the battery controller 40.
  • the battery controller 40 is used for control of each cell controller 30 and information management, and communicates with a host system using the battery module 100 as a power source.
  • the unit cell 11 which is a secondary battery is electrically connected to a vehicle driving motor 42 via an inverter 41.
  • the inverter 41 converts DC power into three-phase AC power.
  • the drive motor 42 is driven with three-phase AC power.
  • (Unit cell) 2 and 3 show the structure of a cylindrical lithium ion secondary battery which is an example of the unit cell 11 included in the battery module 100.
  • FIG. 2 and 3 mainly show essential elements for the cylindrical lithium ion secondary battery.
  • the unit cell 11 has an electrode group 8.
  • the electrode group 8 is obtained by winding the positive electrode 14 and the negative electrode 15 around a resin-made shaft core 7 via a separator 18.
  • the positive electrode 14 is a metal thin film made of aluminum or the like, and a positive electrode mixture 16 is applied to both surfaces.
  • the positive electrode 14 is provided with a plurality of positive electrode tabs 12 on the upper side, that is, on the long side portion on the positive electrode side.
  • the negative electrode 15 is a metal thin film made of copper or the like, and a negative electrode mixture 17 is applied to both surfaces.
  • a plurality of negative electrode tabs 13 are provided below, that is, on the long side portion on the negative electrode side.
  • the separator 18 is an insulating porous material, and is wound around the resin-made shaft core 7 together with the positive electrode 14 and the negative electrode 15. Some separators 18 are wound so as to cover the outermost periphery of the electrode group. The winding end of the separator 18 wound so as to cover the outermost periphery is fixed with an adhesive tape 19.
  • the shaft core 7 has a tubular shape, and a positive electrode current collector plate 5 as a positive electrode current collector component and a negative electrode current collector plate 6 as a negative electrode current collector component are fitted and fixed at both ends thereof.
  • a positive electrode tab 12 is welded to the positive electrode current collector plate 5 by, for example, an ultrasonic welding method.
  • the negative electrode tab 13 is welded to the negative electrode current collector plate 6 by, for example, an ultrasonic welding method.
  • the electrode group 8 is housed in a cylindrical battery case 1 whose bottom surface 54 serves as a negative electrode terminal.
  • the negative electrode current collector plate 6 is electrically connected to the bottom surface 54 of the battery container 1 through the negative electrode lead 10. Connection of the negative electrode lead 10 to the bottom surface 54 is performed after the electrode group 8, the positive electrode current collector plate 5, and the negative electrode current collector plate 6 are accommodated in the battery container 1. That is, a welding jig is inserted into the center of the shaft core 7 and pressed while sandwiching the negative electrode lead 10 between the welding jig and the bottom surface 54, thereby welding the negative electrode lead 10 to the bottom surface 54.
  • the opening 52 of the battery container 1 is sealed by the upper lid 50 having the upper lid 3 and the upper lid case 4.
  • the upper lid part 50 is electrically connected to the positive electrode current collector plate 5.
  • One end of a positive electrode lead 9 made of a conductive flexible ribbon is welded to the upper surface of the positive electrode current collector plate 5.
  • the other end of the positive electrode lead 9 is welded to the bottom surface of the upper lid case 4.
  • the positive electrode current collector plate 5 is electrically connected to the upper lid 3.
  • the positive electrode of the electrode group 8 is electrically connected to the upper lid part 50, and the upper lid 3 functions as a positive electrode terminal.
  • the nonaqueous electrolyte is injected into the battery container 1 before closing the battery container 1 with the upper lid part 50.
  • a gasket 2 is provided between the battery case 1 and the upper lid case 4, and the opening 52 of the battery case 1 is sealed by the gasket 2.
  • the gasket 2 electrically insulates the upper lid part 50 having a positive potential from the battery container 1 having a negative potential.
  • the positive electrode mixture 16 has a positive electrode active material, a positive electrode conductive material, and a positive electrode binder.
  • the positive electrode active material is preferably lithium oxide.
  • Examples of the positive electrode active material include lithium cobaltate, lithium manganate, lithium nickelate, lithium iron phosphate, lithium composite oxide (lithium oxide containing two or more selected from cobalt, nickel, and manganese). It is done.
  • the positive electrode conductive material is a substance that can assist transmission of electrons generated by the occlusion / release reaction of lithium ions in the positive electrode mixture to the positive electrode. Examples of the positive electrode conductive material include graphite and acetylene black.
  • the positive electrode binder can bind the positive electrode active material and the positive electrode conductive material, and can bind the positive electrode mixture and the positive electrode current collector.
  • the positive electrode binder does not deteriorate significantly due to contact with the non-aqueous electrolyte.
  • Examples of the positive electrode binder include polyvinylidene fluoride (PVDF) and fluororubber.
  • a method for forming a positive electrode mixture on a positive electrode a method of applying a dispersion solution of constituent materials of the positive electrode mixture on the positive electrode can be mentioned.
  • the coating method include a roll coating method and a slit die coating method.
  • the solvent for the dispersion solution include N-methylpyrrolidone (NMP) and water.
  • the coating thickness of the positive electrode mixture 16 is, for example, about 40 ⁇ m on each side of the positive electrode.
  • the negative electrode mixture 17 has a negative electrode active material, a negative electrode binder, and a thickener.
  • the negative electrode mixture 17 may have a negative electrode conductive material such as acetylene black.
  • the non-aqueous electrolyte it is preferable to use a solution in which a lithium salt is dissolved in a carbonate solvent.
  • a lithium salt include lithium fluorophosphate (LiPF 6 ), lithium fluoroborate (LiBF 6 ), and the like.
  • carbonate solvents include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), methyl ethyl carbonate (MEC), or a mixture of two or more solvents selected from the above solvents, Is mentioned.
  • This self-discharge amount changes according to the variation of each component in the manufacturing stage. For example, it varies according to variations in the thickness of the positive electrode mixture 16 and the negative electrode mixture 17, or variations in the composition and impurities of the nonaqueous electrolyte solution. Further, when conductive foreign matter that cannot be excluded in the manufacturing stage is mixed in the unit cell 11, the positive electrode 14 and the negative electrode 15 are minutely short-circuited through the foreign matter, and the voltage of the unit cell 11 further decreases.
  • the aging is performed at least twice for the plurality of unit cells 11, and the voltage difference after each aging is measured as a voltage drop amount.
  • the plurality of unit cells 11 are grouped according to the magnitude relationship with the plurality of reference values. Then, a battery module including a plurality of unit cells 11 classified into the same group is manufactured.
  • FIG. 4 shows an example of voltage change with respect to discharge time of the unit cell 11 left after charging.
  • the voltage change of a normal unit cell that is, a good unit cell is indicated by a solid line
  • the voltage change of an abnormal unit cell that is, a defective unit cell is indicated by a broken line.
  • the voltage of the unit cell left after charging suddenly drops until several hours have elapsed from the discharge time 0, and the subsequent voltage drop is gradual.
  • the voltage drop amount varies depending on the unit cell due to variations in the self-discharge amount, and the difference in the voltage value of the cell voltage increases as the leaving period becomes longer.
  • the voltage drop is significant compared to a normal unit cell.
  • FIG. 5 shows an example of grouping rules for unit cells.
  • the predetermined threshold value for separately grouping defective products and non-defective products based on the voltage drop amount is, for example, 0.025V. That is, after the unit cell is fully charged, the voltage value of the unit cell after being left for a first predetermined period, for example, 12 hours, and then after being left for a second predetermined period, for example, 3 days.
  • the voltage drop amount D which is the difference from the voltage value of the unit cell
  • exceeds 0.025 V which is a predetermined threshold
  • the classification device 200 classifies the unit cell as a defective product into a defective product group. To do.
  • the classification device 200 determines that the unit cell is a group A having a voltage drop amount of 0.005V or less, and the voltage drop amount is greater than 0.005V to 0. Group B with 010 V or less, Group C with voltage drop greater than 0.010 V and less than 0.015 V, Group D with voltage drop greater than 0.015 V and less than 0.020 V, and voltage drop greater than 0.020 V It classify
  • FIG. 6 shows a classification device 200 that classifies the unit cells 11 into a plurality of groups.
  • a battery module including a plurality of unit cells classified into the same group by the classification device 200 can be manufactured.
  • the 6 includes an aging area 110, a discharge area 112, a voltage measuring device 116, a grouping device 118, a control device 120, a storage shelf 130, a transport device 140, and a conveyor 150.
  • the control device 120 controls the voltage measurement device 116 and the grouping device 118.
  • the aging area 110 is an area where the unit cell 11 is aged at a predetermined temperature for a predetermined period.
  • a charger 115 is installed in the aging area 110, and the charger 115 charges the unit cell 11.
  • the charger 115 is not necessarily installed in the aging area 110.
  • the charger 115 may be installed outside the aging area 110 in the classification device 200, or may be installed outside the classification device 200.
  • a discharger 114 is installed in the discharge area 112, and the discharger 114 forcibly discharges the unit cell 11.
  • the voltage measuring device 116 measures the voltage of the unit cell 11. The voltage measured at this time is the open circuit voltage of the unit cell 11. As will be described later, voltages V1 and V2 are obtained as measurement results by the voltage measuring device 116.
  • the control device 120 records the voltages V1 and V2 in the memory 124.
  • the grouping device 118 classifies the unit cells 11 into groups A to E according to control by the control device 120.
  • the grouping device 118 transfers the unit cells 11 classified into the groups A to E onto the belt conveyor 150 by, for example, a pusher (not shown).
  • the unit cell 11 transferred to the conveyor is transported by the transport device 140 to the storage shelf 130 that is the storage location of the unit cell 11.
  • the storage shelf 130 cell shelves corresponding to each of the groups A to E are provided.
  • Unit cells 11 classified into groups A to E are transported to cell shelves corresponding to the respective groups. That is, the unit cells 11 are integrated for each group.
  • the control device 120 includes a CPU 122 that controls the entire control device 120, a memory 124 that stores programs and data, and an I / F (interface) 126 for connection to the voltage measurement device 116 and the grouping device 118. .
  • the CPU 122 is connected to the memory 124 and the I / F 126 via the system bus 128.
  • the transport device 140 transports the unit cell 11 between the devices in FIG. 6 as follows. (1) The unit cell on which aging has been performed is transported from the aging area 110 to the discharge area 112. (2) The discharged unit cell 11 is transported from the discharge area 112 to the voltage measuring device 116. (3) The unit cell 11 for which voltage measurement has been performed is transported from the voltage measurement device 116 to the aging area 110. (4) The unit cell 11 on which aging has been performed is transported from the aging area 110 to the voltage measuring device 116. (5) The unit cell 11 for which voltage measurement has been performed is transported from the voltage measurement device 116 to the grouping device 118. (6) The unit cells 11 classified into each group of the plurality of groups by the grouping device 118 are transported via the belt conveyor 150 to the storage shelf 130 provided with the storage location for each corresponding group.
  • the memory 124 includes an area where the ID of the unit cell 11 is recorded, an area where the voltages V1 and V2 are recorded, an area where the voltage drop amount D is recorded, and an area where the group name is recorded.
  • the voltage drop amount D is calculated by the CPU 122 of the control device 120 based on the voltages V1 and V2 stored in the memory 124, and the calculation result is recorded in the memory 124.
  • the ID of the unit cell 11 is printed or stamped on the outer peripheral surface of the battery when the unit cell is manufactured, for example.
  • the ID of the conveyed unit cell 11 is read by an ID reader (not shown), and the unit cell 11 to be processed is Identify.
  • Step S501 is a step of manufacturing the unit cell 11 constituting the battery module 100.
  • a cell ID is printed or stamped on the outer peripheral surface of the unit cell 11.
  • the manufactured unit cell 11 is conveyed to the aging area 110 shown in FIG.
  • Step S502 is a step in which the charger 115 charges the plurality of unit cells 11 until they are fully charged in the aging area 110. At this time, after each unit cell 11 is charged and discharged at least once within the range of 100% to 0% of the full charge voltage when fully charged, each unit cell 11 is set to be fully charged. May be charged.
  • step S503 for the plurality of unit cells 11 charged to be fully charged in step S502, in the aging area 110, a predetermined temperature, for example, 25 ° C., and a predetermined period a, for example, 0.5 days, ie, 12 days.
  • a predetermined temperature for example, 25 ° C.
  • a predetermined period a for example, 0.5 days, ie, 12 days.
  • Step S504 is a step in which the plurality of unit cells 11 that have been subjected to the first aging in step S503 are transported to the discharge area 114 shown in FIG. 6, and the discharger 114 forcibly discharges these unit cells 11. is there. In this forced discharge, the discharger 114 is discharged so as to have a predetermined voltage within a range of 30% to 95% of the full charge voltage of each unit cell 11.
  • Step S505 is a step in which each unit cell 11 forcibly discharged in step S504 is conveyed to the voltage measuring device 116 and the voltage V1 of each unit cell 11 is measured. The measured value of the voltage V1 is recorded in the memory 124.
  • Step S506 is a step in which the unit cell 11 for which voltage measurement has been performed in Step S505 is transported to the aging area 110, and a second aging is performed at a predetermined temperature, for example, 25 ° C., for a predetermined time b, for example, 3 days. is there.
  • a predetermined temperature for example, 25 ° C.
  • a predetermined time b for example, 3 days.
  • the voltage range of 30% to 95% of the full charge voltage is also a voltage range in which the battery module 100 is frequently used as a product.
  • Step S507 is a step in which each unit cell 11 that has been subjected to the second aging in Step S506 is transported to the voltage measuring device 116, and the voltage V2 of each unit cell 11 is measured. The measured value of the voltage V2 is recorded in the memory 124. After the voltage measurement, the unit cell 11 is transported to the grouping device 118.
  • step S506 By setting the temperature at which the second aging is executed in step S506 to room temperature, the difference between the voltages V1 and V2 measured before and after the aging, that is, the voltage drop amount D is stabilized, and good measurement is performed. Accuracy is obtained.
  • step S509 the control device 120 determines that each of the plurality of unit cells 11 is one of the defective product group and the groups A to E based on the voltage drop amount D recorded in the memory 124 and the rule of FIG.
  • the group name is recorded in the memory 124 in association with the ID of each unit cell 11.
  • the control device 120 sends a grouping command signal to the grouping device 118.
  • the grouping command signal includes, for example, the IDs of all unit cells 11 classified into the same group together with the corresponding group names.
  • the grouping device 118 assigns a group name to each grouped unit cell 11 by bar code pasting, printing, or engraving.
  • the grouping device 118 groups a plurality of unit cells 11 based on a grouping command signal, and is connected to each cell shelf provided corresponding to each of the defective product group and the groups A to E. Each unit cell 11 is transferred to the existing belt conveyor 150. Each unit cell 11 transferred to the conveyor is transported to the storage shelf 130 by the transport device 140, and is accumulated and stored in the cell shelf corresponding to each unit cell 11. For example, a plurality of belt conveyors connected to the cell shelves of each group are provided, and the unit cells 11 classified into the group A are transferred to the belt conveyor connected to the cell shelves of the group A, and the group A It is accumulated in the cell shelf. This is the processing of the following steps S510 to S515.
  • Step S510 is a step of accumulating the unit cells 11 classified into the defective product group on the cell shelf of the defective product group of the storage shelf 130.
  • Step S511 is a step of accumulating the unit cells 11 classified into the group A on the cell shelf of the group A of the storage shelf 130.
  • Step S512 is a step of accumulating the unit cells 11 classified into the group B on the cell shelf of the group B of the storage shelf 130.
  • Step S513 is a step of accumulating the unit cells 11 classified into the group C on the cell shelf of the group C of the storage shelf 130.
  • Step S514 is a step of accumulating the unit cells 11 classified into the group D on the cell shelves of the group D of the storage shelves 130.
  • Step S515 is a step of accumulating the unit cells 11 classified into the group E on the cell shelves of the group E of the storage shelves 130.
  • Step S516 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified in the group A.
  • Step S517 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified into the group B.
  • Step S518 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified in the group C.
  • Step S519 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified into the group D.
  • Step S520 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified in the group E.
  • the difference between the voltages V1 and V2 obtained by executing the aging twice is calculated as the voltage drop amount D, and a plurality of unit cells 11 are formed based on the voltage drop amount D.
  • the degree of deterioration of the plurality of unit cells 11 constituting the battery module 100 is made uniform, and the reliability and durability of the battery module 100 are improved.
  • the target voltage for forced discharge in step S504 is set to 30% to 95% of the full charge voltage, the target voltage is not limited to this.
  • the temperature at the time of executing the first aging is 25 ° C.
  • the aging period is 12 hours
  • the temperature at the time of executing the second aging is 25 ° C.
  • the aging period is 3 days.
  • the temperature and the aging period at the time of execution are not limited to these. In the first aging, it is preferable to secure at least 12 hours as the aging period.
  • Step S701 is a step of manufacturing the unit cell 11 as in Step S501 of FIG.
  • Step S702 is a step of charging the plurality of unit cells 11 manufactured in Step S701 to a predetermined voltage included in a range of 30% to 95% of the full charge voltage. At this time, after the unit cell is charged and discharged at least once within the range of 100% to 0% of the full charge voltage, the predetermined voltage included within the range of 30% to 95% of the full charge voltage. You may charge up to. Thereby, the voltage of the unit cell 11 can be set to a stable voltage range without performing forced discharge.
  • Step S704 is a step of measuring the voltage V1 of the unit cell 11 that has been subjected to the first aging in Step S703, as in Step S505 of FIG.
  • Step S706 is a step of measuring the voltage V2 of the unit cell 11 that has been subjected to the second aging in Step S705, as in Step S507 of FIG.
  • Steps S706 to S719 are similar to Steps S507 to S520 of FIG. 5 in calculating the voltage drop amount D, grouping, integration of the unit cells 11 of the defective product group, integration of the unit cells 11 of the groups A to E, and groups A to S In this step, the battery module 100 is manufactured by the unit cell 11 of E.
  • the step of forced discharge can be omitted, so that the effect of shortening the manufacturing process can be obtained.
  • the charging target voltage in step S702 is a predetermined voltage included in the range of 30% to 95% of the full charging voltage, it is not limited to this. That is, the charging target voltage only needs to be included in a stable voltage range.
  • Steps S801 to S803 are similar to Steps S701 to S703 of FIG. 8 in that the unit cell 11 is manufactured, and the unit cell 11 is charged to a predetermined voltage within a range of 30% to 95% of the full charge voltage. This is a step of performing the first aging on the unit cell 11.
  • step S804 the unit cell 11 that has been subjected to the first aging in step S803 is subjected to supplementary charging, and the unit cell 11 is moved to a predetermined voltage within a range of 30% to 95% of the full charge voltage.
  • the target voltage for supplementary charging is, for example, the voltage of the unit cell 11 when aging is started in step S803, that is, the voltage at the time when the charging performed in step S802 before the first aging is completed.
  • the target voltage for supplementary charging for the unit cell 11 that has been aged after being charged to 50% of the full charge voltage is 50% of the full charge voltage.
  • the auxiliary charging in step S804 is performed in order to make the voltage V1 when starting the second aging substantially constant, the charging voltage by the auxiliary charging is, for example, a level that suppresses variations in the voltages of the unit cells 11. Voltage.
  • Steps S805 to S820 are similar to Steps S704 to S719 of FIG. 8, in which voltage V1 measurement, second aging, voltage V2 measurement, voltage drop amount D calculation, grouping, integration of unit cells 11 of groups A to E, This is a step of manufacturing the battery module 100 by the unit cells 11 of the groups A to E.
  • the voltage V1 before the start of the second aging (step S806) is uniform, and the accuracy of the voltage drop amount D is further improved.
  • Battery modules used for HEVs and EVs are generally used at a voltage near 50% of full charge.
  • the self-discharge amount of the unit cell in the fully charged state is not necessarily the self-discharge amount of the unit cell in the actual use environment. Since they do not match, the unit cell classification accuracy may be reduced.
  • the unit cell 11 is charged up to 50% of the full charge voltage in step S804
  • the plurality of unit cells are accurately determined based on the self-discharge amount of the unit cell in the actual use environment. Classified well.
  • the charge target voltage of step S802 is a predetermined voltage included in a range of 30% to 95% of the full charge voltage, it is not limited to this. That is, the charging target voltage only needs to be included in a stable voltage range.
  • the auxiliary charging target voltage in step S804 is the voltage at the end of charging, it is not limited to this. That is, the charging target voltage may be included in the range of 30% to 95% of the full charging voltage.
  • the first aging execution temperature in step S503 of FIG. 7 is set to a higher temperature of 40 ° C. or higher and 70 ° C. or lower in the processing of the first embodiment.
  • the manufacturing method of 4th Embodiment is demonstrated with reference to the flowchart of FIG.
  • Steps S901 and S902 are steps for manufacturing the unit cell 11 and charging the unit cell 11 to the full charge voltage, similarly to Steps S501 and S502 of FIG.
  • step S903 the unit cell 11 charged to the full charge voltage in step S902 is at a predetermined temperature higher than room temperature, for example, 40 ° C. or more and 70 ° C. or less, for a predetermined time a, for example, 0.5 days, that is, 12 days.
  • a predetermined time a for example, 0.5 days, that is, 12 days.
  • Steps S904 to S920 are similar to Steps S504 to S520 in FIG. 7. Discharge, voltage V1 measurement, second aging, voltage V2 measurement, voltage drop amount D calculation, grouping, group A to E of unit cells 11 This is a step of performing integration, manufacturing of the battery module 100 by the unit cells 11 of the groups A to E, and the like. In addition, if the voltage of the unit cell 11 becomes a predetermined voltage within the range of 30% to 95% of the full charge voltage by executing the first aging in Step S903, the forced discharge in Step S904 is It is unnecessary.
  • the first aging is performed at a higher temperature than the first embodiment, so that the processing time of the first aging can be shortened and the manufacturing process can be shortened.
  • the temperature at the time of executing the first aging in step S903 is set to 40 ° C. or more and 70 ° C. or less and the aging time is set to 3 days, the temperature and the aging period for executing the aging are not limited to these. In addition, it is preferable to make the temperature at the time of performing the first aging different from the temperature at the time of performing the second aging by 10 ° C. or more.
  • the temperature condition for executing the second aging is 10 ° C. or more.
  • the third aging under different temperature conditions and the third measurement of the voltage V3 are performed, and the temperature sensitivity evaluation based on the temperature change rate Y of the voltage drop amount described later is also executed.
  • the manufacturing method of 5th Embodiment is demonstrated with reference to the flowchart of FIG.
  • Steps S1001 to S1008 are the same as steps S501 to S508 in FIG. 7 in the manufacture, charge, first aging, discharge, voltage V1 measurement, second aging, voltage V2 measurement, and voltage drop amount D of the unit cell 11. This is the step of performing the calculation.
  • Step S1009 is included in a predetermined temperature higher than room temperature, for example, in the range of 40 ° C. or higher and 70 ° C. or lower, with respect to the unit cell 11 for which the voltage drop amount D is calculated in Step S1008, as in Step S508 of FIG.
  • the third aging is performed at a predetermined temperature for a predetermined time c, for example, 0.5 days, that is, 12 hours or more. Since the diffusion of lithium is promoted by such high temperature aging, the voltage V3 of the unit cell 11 after aging is lower in the unit cell 11 having higher temperature sensitivity.
  • Step S1010 is a step of measuring the voltage V3 of the unit cell 11 that has been aged in step S1009.
  • the temperature change rate Y is expressed by equation (2).
  • the temperature change rate Y indicates that the smaller the value, the higher the temperature sensitivity.
  • step S1012 unit cells 11 having a voltage drop amount D larger than a predetermined threshold are classified into defective product groups, and non-defective unit cells 11 are set to a voltage drop amount D as in the first to fourth embodiments.
  • group A to E In FIG. 11, only the groups A to C are shown in a simplified manner. Therefore, in the following description, it is assumed that the good unit cell 11 is classified into groups A to C.
  • Step S1013 is a step of transporting and accumulating the unit cells 11 classified into the defective product group to the cell shelf of the defective product group in the storage shelf 130.
  • Step S1014 is a step in which the control device 120 specifies the unit cells 11 classified into the group A.
  • Step S1015 is a step in which the control device 120 specifies the unit cells 11 classified into the group B.
  • Step S1016 is a step in which the control device 120 specifies the unit cells 11 classified into the group C.
  • Step S1017 is a step in which the control device 120 classifies the unit cells 11 classified into the group A into the small groups A1, A2, and A3 based on the temperature change rate Y. For example, unit cells 11 with a relatively small temperature change rate Y are classified into the small group A1, unit cells 11 with a relatively large temperature change rate Y are classified into the small group A3, and unit cells that are not classified into any of the small groups 11, that is, the unit cell 11 having a medium temperature change rate Y is classified into the small group A2.
  • Step S1018 is a step in which the control device 120 classifies the unit cells 11 classified into the group B into the small groups B1, B2, and B3 based on the temperature change rate Y. For example, unit cells 11 with a relatively small temperature change rate Y are classified into the small group B1, unit cells 11 with a relatively large temperature change rate Y are classified into the small group B3, and unit cells that are not classified into any small group 11, that is, the unit cell 11 having a medium temperature change rate Y is classified into the small group B2.
  • Step S1019 is a step in which the control device 120 classifies the unit cells 11 classified into the group C into the small groups C1, C2, and C3 based on the temperature change rate Y. For example, a unit cell 11 with a relatively small temperature change rate Y is classified into the small group C1, a unit cell 11 with a relatively large temperature change rate Y is classified into the small group C3, and a unit cell that is not classified into any small group 11, that is, the unit cell 11 having a medium temperature change rate Y is classified into the small group C2.
  • the control device 120 assigns each of the plurality of unit cells 11 to one of the small groups A1 to A3, B1 to B3, and C1 to C3 based on the temperature change rate Y recorded in the memory 124.
  • the small group name is recorded in the memory 124 in association with the ID of each unit cell 11.
  • the control device 120 sends a grouping command signal to the grouping device 118.
  • the grouping command signal includes, for example, the IDs of all unit cells 11 classified into the same small group together with the corresponding small group name.
  • Each grouped unit cell 11 is given a small group name by attaching a barcode, printing, or marking.
  • the grouping device 118 groups the plurality of unit cells 11 based on the grouping command signal, and is provided corresponding to each of the defective product group and the small groups A1 to A3, B1 to B3, and C1 to C3.
  • Each unit cell 11 is transferred to the belt conveyor 150 connected to each cell shelf.
  • Each unit cell 11 transferred to the conveyor is transported to the storage shelf 130 by the transport device 140, and is accumulated and stored in the cell shelf corresponding to each unit cell 11.
  • a plurality of belt conveyors connected to the cell shelves of each small group are provided, and the unit cells 11 classified into the small group A1 are transferred to the belt conveyor connected to the cell shelves of the small group A1. And are accumulated in the cell shelves of the small group A1. This is the processing of the following steps S1020 to S1028.
  • Step S1020 is a step of transporting and accumulating the unit cells 11 classified into the small group A1 to the cell shelves of the small group A1 of the storage shelf 130.
  • Step S1021 is a step in which the unit cells 11 classified into the small group A2 are transported to the cell shelves of the small group A2 of the storage shelf 130 and accumulated.
  • Step S1022 is a step of transporting and accumulating the unit cells 11 classified into the small group A3 to the cell shelves of the small group A3 of the storage shelf 130.
  • Step S1023 is a step of transporting and accumulating the unit cells 11 classified into the small group B1 to the cell shelves of the small group B1 of the storage shelf 130.
  • Step S1024 is a step of transporting and accumulating the unit cells 11 classified into the small group B2 to the cell shelves of the small group B2 of the storage shelf 130.
  • Step S1025 is a step of transporting and accumulating the unit cells 11 classified into the small group B3 to the cell shelves of the small group B3 of the storage shelf 130.
  • Step S1026 is a step of transporting and accumulating the unit cells 11 classified into the small group C1 to the cell shelves of the small group C1 of the storage shelf 130.
  • Step S1027 is a step of transporting and accumulating the unit cells 11 classified into the small group C2 to the cell shelves of the small group C2 of the storage shelf 130.
  • Step S1028 is a step of transporting and accumulating the unit cells 11 classified into the small group C3 to the cell shelves of the small group C3 of the storage shelf 130.
  • Step S1029 is a step of manufacturing the battery module 100 using the unit cells 11 classified into the small group A1.
  • Step S1030 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group A2.
  • Step S1031 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group A3.
  • Step S1032 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group B1.
  • Step S1033 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group B2.
  • Step S1034 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group B3.
  • Step S1035 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group C1.
  • Step S1036 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group C2.
  • Step S1037 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group C3.
  • the temperature change rate Y representing the change rate of the voltage drop amount D with respect to the temperature change is added to the evaluation criteria. Therefore, in addition to the effect of the first embodiment, it is possible to further suppress the variation of the unit cells 11 of the secondary battery in the battery module.
  • the first to fifth embodiments described above can be modified and implemented as follows.
  • the grouping rule shown in FIG. 5 is an example, and the number of groups and boundary values may be arbitrarily set according to cell characteristics and aging conditions.
  • the temperature of the third aging is set to a high temperature, but it may be lower than the second aging, for example, ⁇ 20 to 10 ° C.
  • a favorable temperature change rate can be obtained by making the second aging temperature different from the third aging temperature by 10 ° C. or more.
  • the present invention is not limited to other types of lithium ion batteries such as a square, Or it can apply to secondary batteries other than a lithium ion battery.

Abstract

This method for manufacturing a battery module comprises: charging each of a plurality of secondary battery unit cells; carrying out a first aging; carrying out a first voltage measurement that measures a first voltage after the first aging; carrying out a second aging after the first voltage measurement; carrying out a second voltage measurement that measures a second voltage after the second aging; calculating the difference between the first voltage and the second voltage as an amount of voltage reduction; classifying the plurality of unit cells into a plurality of groups based on the amounts of voltage reduction; and manufacturing a battery module that includes a plurality of unit cells classified into each group of the plurality of groups.

Description

バッテリーモジュールの製造方法およびバッテリーモジュールBattery module manufacturing method and battery module
 本発明は、二次電池の単位セルを複数個接続して構成したバッテリーモジュールに関する。 The present invention relates to a battery module configured by connecting a plurality of unit cells of a secondary battery.
 電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド電気自動車(HEV)に使用される二次電池には、高容量かつ高出力の性能が要求される。このような二次電池は、複数の単位セルを直列に接続したバッテリーモジュールとして構成される。1個のバッテリーモジュールに含まれる複数の単位セルのそれぞれにおいて、正極、負極、セパレータ、電解液などの部品の製造時のばらつきなどに起因して、自己放電による電圧低下量が不均一となることがある。 A secondary battery used in an electric vehicle (EV) or a hybrid electric vehicle (HEV) that assists a part of driving by an electric motor is required to have high capacity and high output performance. Such a secondary battery is configured as a battery module in which a plurality of unit cells are connected in series. In each of a plurality of unit cells included in one battery module, the amount of voltage drop due to self-discharge becomes non-uniform due to variations in manufacturing parts such as a positive electrode, a negative electrode, a separator, and an electrolytic solution. There is.
 単位セルの電圧低下量が不均一な場合、初期充電電圧を揃えたとしても、各単位セルの電圧は時間が経過するにつれてばらつく。その結果、電圧が低いセルは放電時に過放電となり易く、電圧が高いセルは充電の際に過充電になり易い。過放電および過充電は、長期使用時における二次電池の劣化の大きな要因となり、長期使用時の信頼性が損なわれる。 When the amount of voltage drop in the unit cell is uneven, the voltage of each unit cell varies over time even if the initial charge voltage is made uniform. As a result, cells with a low voltage are likely to be overdischarged during discharge, and cells with a high voltage are likely to be overcharged during charging. Overdischarge and overcharge become a major factor of deterioration of the secondary battery during long-term use, and reliability during long-term use is impaired.
 特許文献1には、単位セルを満充電まで充電して放置した後に、単位セルの電圧を検出して自己放電量を測定することによって、単位セルを分類する方法が開示されている。この分類方法により、自己放電量が均一化された単位セル同士を用いたバッテリーモジュールを構成する技術が、特許文献1に開示されている。 Patent Document 1 discloses a method of classifying unit cells by charging the unit cells until they are fully charged and then leaving them, and then detecting the voltage of the unit cells and measuring the self-discharge amount. A technique for configuring a battery module using unit cells with uniform self-discharge amounts by this classification method is disclosed in Patent Document 1.
日本国特開2004-328902号公報Japanese Unexamined Patent Publication No. 2004-328902
 特許文献1に開示されたセル分類方法によると、電圧低下が急激に進む最初の数時間の期間に測定される電圧低下特性に基づいてセルが分類される。しかし、この期間の電圧低下特性は、充電速度や温度などの影響により大きく変化するため、電圧低下特性の測定値は不安定である。そのため、特許文献1のセル分類方法を用いてバッテリーモジュールを製造すると、バッテリーモジュールの性能、信頼性を充分に高めることができない。 According to the cell classification method disclosed in Patent Document 1, cells are classified based on the voltage drop characteristic measured in the first several hours during which the voltage drop rapidly proceeds. However, since the voltage drop characteristic during this period changes greatly due to the influence of the charging speed, temperature, etc., the measured value of the voltage drop characteristic is unstable. Therefore, when a battery module is manufactured using the cell classification method of Patent Document 1, the performance and reliability of the battery module cannot be sufficiently improved.
 本発明の第1の態様によると、バッテリーモジュールの製造方法は、二次電池の複数の単位セルをそれぞれ充電することと、充電された複数の単位セルに自己放電させる1回目のエージングを実行することと、1回目のエージングの後に複数の単位セルの各々の第1電圧を測定する1回目の電圧測定を行うことと、1回目の電圧測定の後に複数の単位セルに自己放電させる2回目のエージングを実行することと、2回目のエージングの後に複数の単位セルの各々の第2電圧を測定する2回目の電圧測定を行うことと、第1電圧と第2電圧との差分を電圧低下量として算出することと、電圧低下量に基づいて、複数の単位セルを複数のグループに分類することと、複数のグループのうちの各グループに分類された複数の単位セルを含むバッテリーモジュールを製造することとを備える。
 本発明の第2の態様によると、バッテリーモジュールの製造方法は、第1の態様のバッテリーモジュールの製造方法において、複数の単位セルをそれぞれ充電する際は、複数の単位セルの各々が満充電になるように充電し、1回目のエージングの後、かつ1回目の電圧測定の前に、複数の単位セルの各々が所定電圧になるよう、複数の単位セルの各々に放電させる強制放電を行い、複数の単位セルの各々が満充電であるときの満充電電圧に対する所定電圧の割合が所定範囲内に含まれるのが好ましい。
 本発明の第3の態様によると、第2の態様のバッテリーモジュールの製造方法において、所定範囲は30%以上95%以下の範囲であるのが好ましい。
 本発明の第4の態様によると、第1乃至第3のいずれかの態様のバッテリーモジュールの製造方法において、1回目のエージングと、2回目のエージングとを、ともに25℃の温度で実行するのが好ましい。
 本発明の第5の態様によると、第1乃至第4のいずれかの態様のバッテリーモジュールの製造方法において、複数の単位セルを複数のグループに分類する際、複数の単位セルのうち、電圧低下量が予め定められた閾値よりも大きい単位セルを、不良品として不良品グループに分類するのが好ましい。
 本発明の第6の態様によると、第5の態様のバッテリーモジュールの製造方法において、複数の単位セルを複数のグループに分類する際、複数の単位セルのうち、電圧低下量が予め定められた閾値以下の単位セルを、電圧低下量に基づいて、不良品グループとは異なる複数のグループのいずれかに分類するのが好ましい。
 本発明の第7の態様によると、第1の態様のバッテリーモジュールの製造方法において、複数の単位セルをそれぞれ充電する際は、複数の単位セルの各々の電圧が所定電圧になるように充電し、複数の単位セルの各々が満充電であるときの満充電電圧に対する所定電圧の割合が所定範囲内に含まれるのが好ましい。
 本発明の第8の態様によると、第7の態様のバッテリーモジュールの製造方法において、所定範囲は30%以上95%以下の範囲であるのが好ましい。
 本発明の第9の態様によると、第7の態様のバッテリーモジュールの製造方法において、
 1回目のエージングの後、かつ1回目の電圧測定の前に、複数の単位セルの各々の電圧が所定電圧になるように、複数の単位セルをそれぞれ補充電するのが好ましい。
 本発明の第10の態様によると、第9の態様のバッテリーモジュールの製造方法において、所定範囲は30%以上95%以下の範囲であるのが好ましい。
 本発明の第11の態様によると、第7乃至第10のいずれかの態様のバッテリーモジュールの製造方法において、1回目のエージングと、2回目のエージングとを、ともに25℃の温度で実行するのが好ましい。
 本発明の第12の態様によると、第1の態様のバッテリーモジュールの製造方法において、1回目のエージングを、2回目のエージングよりも高い温度で実行するのが好ましい。
 本発明の第13の態様によると、第12の態様のバッテリーモジュールの製造方法において、1回目のエージングを40℃以上70℃以下の温度で実行し、2回目のエージングを25℃の温度で実行するのが好ましい。
 本発明の第14の態様によると、第4の態様のバッテリーモジュールの製造方法において、電圧低下量を算出した後、かつ複数の単位セルを複数のグループに分類する前に、複数の単位セルに対して、2回目のエージングを実行した際の温度と10℃以上異なる温度で複数の単位セルに自己放電させる3回目のエージングを実行し、3回目のエージングの後に複数の単位セルの各々の第3電圧を測定する3回目の電圧測定を行い、電圧低下量を第2電圧と第3電圧との差分で除算して温度変化率を算出し、複数の単位セルを複数のグループに分類した後、かつバッテリーモジュールを製造する前に、各グループに分類された複数の単位セルを、温度変化率に基づいて複数の小グループに分類し、バッテリーモジュールを製造する際は、複数の小グループのうちの各小グループに分類された複数の単位セルを使用してバッテリーモジュールを製造するのが好ましい。
 本発明の第15の態様によると、バッテリーモジュールは、第1乃至第14のいずれかの態様のバッテリーモジュール製造方法で製造されるのが好ましい。
According to the first aspect of the present invention, the battery module manufacturing method performs charging of each of the plurality of unit cells of the secondary battery and first aging for self-discharge of the plurality of charged unit cells. A first voltage measurement for measuring the first voltage of each of the plurality of unit cells after the first aging, and a second time for self-discharge to the plurality of unit cells after the first voltage measurement. Performing the aging, performing the second voltage measurement for measuring the second voltage of each of the plurality of unit cells after the second aging, and calculating the difference between the first voltage and the second voltage as a voltage drop amount A plurality of unit cells classified into a plurality of groups based on the voltage drop amount, and a battery including a plurality of unit cells classified into each of the plurality of groups And a to produce a module.
According to the second aspect of the present invention, in the battery module manufacturing method of the first aspect, each of the plurality of unit cells is fully charged when charging the plurality of unit cells. And after the first aging and before the first voltage measurement, perform a forced discharge to discharge each of the plurality of unit cells so that each of the plurality of unit cells has a predetermined voltage, The ratio of the predetermined voltage to the full charge voltage when each of the plurality of unit cells is fully charged is preferably included in the predetermined range.
According to the third aspect of the present invention, in the method for manufacturing the battery module according to the second aspect, the predetermined range is preferably in the range of 30% to 95%.
According to the fourth aspect of the present invention, in the battery module manufacturing method according to any one of the first to third aspects, both the first aging and the second aging are performed at a temperature of 25 ° C. Is preferred.
According to the fifth aspect of the present invention, in the battery module manufacturing method according to any one of the first to fourth aspects, when the plurality of unit cells are classified into the plurality of groups, the voltage drop among the plurality of unit cells. It is preferable to classify unit cells whose amount is larger than a predetermined threshold as a defective product into a defective product group.
According to the sixth aspect of the present invention, in the battery module manufacturing method according to the fifth aspect, when the plurality of unit cells are classified into a plurality of groups, a voltage drop amount is predetermined among the plurality of unit cells. It is preferable to classify unit cells below the threshold into any of a plurality of groups different from the defective product group based on the voltage drop amount.
According to the seventh aspect of the present invention, in the battery module manufacturing method according to the first aspect, when charging the plurality of unit cells, charging is performed so that each voltage of the plurality of unit cells becomes a predetermined voltage. The ratio of the predetermined voltage to the full charge voltage when each of the plurality of unit cells is fully charged is preferably included in the predetermined range.
According to the eighth aspect of the present invention, in the battery module manufacturing method according to the seventh aspect, the predetermined range is preferably in the range of 30% to 95%.
According to a ninth aspect of the present invention, in the method for manufacturing the battery module according to the seventh aspect,
Preferably, after the first aging and before the first voltage measurement, each of the plurality of unit cells is supplementarily charged so that each voltage of the plurality of unit cells becomes a predetermined voltage.
According to the tenth aspect of the present invention, in the battery module manufacturing method according to the ninth aspect, the predetermined range is preferably in the range of 30% to 95%.
According to an eleventh aspect of the present invention, in the method for manufacturing a battery module according to any one of the seventh to tenth aspects, the first aging and the second aging are both performed at a temperature of 25 ° C. Is preferred.
According to the twelfth aspect of the present invention, in the battery module manufacturing method of the first aspect, it is preferable that the first aging is performed at a temperature higher than the second aging.
According to the thirteenth aspect of the present invention, in the battery module manufacturing method according to the twelfth aspect, the first aging is performed at a temperature of 40 ° C. or higher and 70 ° C. or lower, and the second aging is performed at a temperature of 25 ° C. It is preferable to do this.
According to the fourteenth aspect of the present invention, in the battery module manufacturing method according to the fourth aspect, after calculating the voltage drop amount and before classifying the plurality of unit cells into the plurality of groups, On the other hand, the third aging is performed in which the plurality of unit cells are self-discharged at a temperature different from the temperature at which the second aging is performed by 10 ° C. or more, and the third aging is performed after the third aging. After performing the third voltage measurement to measure 3 voltages, dividing the voltage drop by the difference between the second voltage and the third voltage to calculate the rate of temperature change, and classifying multiple unit cells into multiple groups In addition, before manufacturing the battery module, a plurality of unit cells classified into each group are classified into a plurality of small groups based on the temperature change rate. Preferably, to produce a battery module using a plurality of unit cells that are classified into small groups of the group.
According to the fifteenth aspect of the present invention, the battery module is preferably manufactured by the battery module manufacturing method according to any one of the first to fourteenth aspects.
 本発明によれば、バッテリーモジュールの性能、信頼性を向上させることができる。 According to the present invention, the performance and reliability of the battery module can be improved.
本発明によるバッテリーモジュールの第1実施形態を示すブロック図である。It is a block diagram which shows 1st Embodiment of the battery module by this invention. 本発明によるバッテリーモジュールの第1実施形態に適用される単位セルの例を示す分解斜視図である。FIG. 3 is an exploded perspective view showing an example of a unit cell applied to the first embodiment of the battery module according to the present invention. 図2の単位セルの断面図である。It is sectional drawing of the unit cell of FIG. 図2の単位セルの放置時間と電圧との関係を示すグラフである。It is a graph which shows the relationship between the leaving time of the unit cell of FIG. 2, and a voltage. 単位セルのグループ分けルールを説明する図である。It is a figure explaining the grouping rule of a unit cell. 実施形態によるバッテリーモジュール製造装置を示す図である。It is a figure which shows the battery module manufacturing apparatus by embodiment. 図3のバッテリーモジュールの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the battery module of FIG. 本発明によるバッテリーモジュールの第2実施形態の製造方法を示すフローチャートである。5 is a flowchart illustrating a method for manufacturing a battery module according to a second embodiment of the present invention. 本発明によるバッテリーモジュールの第3実施形態の製造方法を示すフローチャートである。6 is a flowchart illustrating a manufacturing method of a battery module according to a third embodiment of the present invention. 本発明によるバッテリーモジュールの第4実施形態の製造方法を示すフローチャートである。6 is a flowchart illustrating a manufacturing method of a fourth embodiment of a battery module according to the present invention. 本発明によるバッテリーモジュールの第5実施形態の製造方法を示すフローチャートである。7 is a flowchart illustrating a method for manufacturing a battery module according to a fifth embodiment of the present invention.
 本発明によるバッテリーモジュールおよびその製造方法の実施形態を、図面を参照して説明する。各実施形態のバッテリーモジュールはHEVやEVに搭載される。 Embodiments of a battery module and a manufacturing method thereof according to the present invention will be described with reference to the drawings. The battery module of each embodiment is mounted on HEV or EV.
---第1実施形態---
(バッテリーモジュール)
 図1は、本発明によるバッテリーモジュールの第1実施形態を示す。図1において、バッテリーモジュール100は、複数の組電池20a,20bを含むセルコントローラ30と、セルコントローラ30の制御および情報管理のためのバッテリーコントローラ40とを含む。セルコントローラ30は、各組電池20a,20bを制御するセルコントローラIC21と、各セルコントローラIC21を通じて各組電池20a,20bを制御するマイクロコンピュータ22とを含む。
--- First embodiment ---
(Battery module)
FIG. 1 shows a first embodiment of a battery module according to the present invention. In FIG. 1, a battery module 100 includes a cell controller 30 including a plurality of assembled batteries 20a and 20b, and a battery controller 40 for controlling the cell controller 30 and managing information. The cell controller 30 includes a cell controller IC 21 that controls the assembled batteries 20a and 20b, and a microcomputer 22 that controls the assembled batteries 20a and 20b through the cell controller IC 21.
 各組電池20a,20bは、直列接続された二次電池の複数の単位セル11を含み、単位セル11のプラス、マイナス両端子がセルコントローラIC21に電気的に接続されている。各セルコントローラIC21は、マイクロコンピュータ22と通信線で接続される。マイクロコンピュータ22は、各組電池20a,20bの充放電情報など種々の情報を管理する。 Each assembled battery 20a, 20b includes a plurality of unit cells 11 of secondary batteries connected in series, and both positive and negative terminals of the unit cell 11 are electrically connected to the cell controller IC 21. Each cell controller IC 21 is connected to the microcomputer 22 via a communication line. The microcomputer 22 manages various information such as charging / discharging information of the assembled batteries 20a and 20b.
 上述したように、バッテリーモジュール100は、1個ないし複数個のセルコントローラ30を含み、各セルコントローラ30はバッテリーコントローラ40に電気的に接続されている。バッテリーコントローラ40は、各セルコントローラ30の制御と情報管理とに使用されると共に、バッテリーモジュール100を電源とする車両の上位システムと通信を行う。 As described above, the battery module 100 includes one or more cell controllers 30, and each cell controller 30 is electrically connected to the battery controller 40. The battery controller 40 is used for control of each cell controller 30 and information management, and communicates with a host system using the battery module 100 as a power source.
 二次電池である単位セル11は、インバータ41を介して車両駆動用モータ42に電気的に接続されている。インバータ41は、直流電力を3相交流電力に変換する。駆動モータ42は3相交流電力で駆動される。 The unit cell 11 which is a secondary battery is electrically connected to a vehicle driving motor 42 via an inverter 41. The inverter 41 converts DC power into three-phase AC power. The drive motor 42 is driven with three-phase AC power.
(単位セル)
 図2、図3は、バッテリーモジュール100に含まれる単位セル11の一例である円筒型リチウムイオン二次電池の構造を示す。なお、図2および図3は、円筒型リチウムイオン二次電池に必須の要素を主に示している。
(Unit cell)
2 and 3 show the structure of a cylindrical lithium ion secondary battery which is an example of the unit cell 11 included in the battery module 100. FIG. 2 and 3 mainly show essential elements for the cylindrical lithium ion secondary battery.
 単位セル11は、電極群8を有する。電極群8は、正極電極14および負極電極15を、セパレータ18を介して、樹脂製の軸芯7の周囲に捲回して得られる。正極電極14はアルミニウム等の金属薄膜であり、両面に正極合剤16が塗布されている。図2において、正極電極14には、上方、すなわち正極側の長辺部に、複数の正極タブ12が設けられている。負極電極15は銅等の金属薄膜であり、両面に負極合剤17が塗布されている。図2において、下方、すなわち負極側の長辺部に、複数の負極タブ13が設けられている。セパレータ18は、絶縁性を有する多孔質であり、正極電極14および負極電極15とともに樹脂製の軸芯7の周囲に捲回される。一部のセパレータ18は、電極群の最外周を被覆するように捲回される。最外周を被覆するように捲回されるセパレータ18の捲回端部は粘着テープ19で固定されている。 The unit cell 11 has an electrode group 8. The electrode group 8 is obtained by winding the positive electrode 14 and the negative electrode 15 around a resin-made shaft core 7 via a separator 18. The positive electrode 14 is a metal thin film made of aluminum or the like, and a positive electrode mixture 16 is applied to both surfaces. In FIG. 2, the positive electrode 14 is provided with a plurality of positive electrode tabs 12 on the upper side, that is, on the long side portion on the positive electrode side. The negative electrode 15 is a metal thin film made of copper or the like, and a negative electrode mixture 17 is applied to both surfaces. In FIG. 2, a plurality of negative electrode tabs 13 are provided below, that is, on the long side portion on the negative electrode side. The separator 18 is an insulating porous material, and is wound around the resin-made shaft core 7 together with the positive electrode 14 and the negative electrode 15. Some separators 18 are wound so as to cover the outermost periphery of the electrode group. The winding end of the separator 18 wound so as to cover the outermost periphery is fixed with an adhesive tape 19.
 軸芯7は管状であり、その両端には正極集電部品である正極集電板5と負極集電部品である負極集電板6とが嵌入され、固定されている。正極集電板5には、正極タブ12が、例えば、超音波溶接法により溶接されている。同様に、負極集電板6には、負極タブ13が、例えば、超音波溶接法により溶接されている。 The shaft core 7 has a tubular shape, and a positive electrode current collector plate 5 as a positive electrode current collector component and a negative electrode current collector plate 6 as a negative electrode current collector component are fitted and fixed at both ends thereof. A positive electrode tab 12 is welded to the positive electrode current collector plate 5 by, for example, an ultrasonic welding method. Similarly, the negative electrode tab 13 is welded to the negative electrode current collector plate 6 by, for example, an ultrasonic welding method.
 電極群8は、底面54が負極端子となる円筒状の電池容器1に収納されている。負極集電板6は、負極リード10を介して電池容器1の底面54に電気的に接続されている。負極リード10の底面54への接続は、電極群8ならびに正極集電板5および負極集電板6を電池容器1内へ収納した後に実施される。すなわち、軸芯7の中央に溶接冶具を挿通し、溶接治具と底面54との間に負極リード10を挟持しつつ押圧して、負極リード10を底面54に溶接する。 The electrode group 8 is housed in a cylindrical battery case 1 whose bottom surface 54 serves as a negative electrode terminal. The negative electrode current collector plate 6 is electrically connected to the bottom surface 54 of the battery container 1 through the negative electrode lead 10. Connection of the negative electrode lead 10 to the bottom surface 54 is performed after the electrode group 8, the positive electrode current collector plate 5, and the negative electrode current collector plate 6 are accommodated in the battery container 1. That is, a welding jig is inserted into the center of the shaft core 7 and pressed while sandwiching the negative electrode lead 10 between the welding jig and the bottom surface 54, thereby welding the negative electrode lead 10 to the bottom surface 54.
 電池容器1の開口部52は、上蓋3および上蓋ケース4を有する上蓋部50によって封口される。上蓋部50は、正極集電板5と電気的に接続されている。正極集電板5の上面には、導電性の可撓性リボンよりなる正極リード9の一端が溶接されている。正極リード9の他端は、上蓋ケース4の底面に溶接される。正極集電板5は、上蓋3に電気的に接続される。こうして、上蓋部50には、電極群8の正極が電気的に接続され、上蓋3が正極端子として機能する。  The opening 52 of the battery container 1 is sealed by the upper lid 50 having the upper lid 3 and the upper lid case 4. The upper lid part 50 is electrically connected to the positive electrode current collector plate 5. One end of a positive electrode lead 9 made of a conductive flexible ribbon is welded to the upper surface of the positive electrode current collector plate 5. The other end of the positive electrode lead 9 is welded to the bottom surface of the upper lid case 4. The positive electrode current collector plate 5 is electrically connected to the upper lid 3. Thus, the positive electrode of the electrode group 8 is electrically connected to the upper lid part 50, and the upper lid 3 functions as a positive electrode terminal.
 電極群8を電池容器1へ収納した後、上蓋部50で電池容器1を閉鎖する前に、非水電解液が電池容器1内に注入される。また、電池容器1と上蓋ケース4との間にはガスケット2が設けられ、このガスケット2により電池容器1の開口部52が密閉される。ガスケット2は、正電位を有する上蓋部50と負電位を有する電池容器1とを電気的に絶縁する。 After housing the electrode group 8 in the battery container 1, the nonaqueous electrolyte is injected into the battery container 1 before closing the battery container 1 with the upper lid part 50. A gasket 2 is provided between the battery case 1 and the upper lid case 4, and the opening 52 of the battery case 1 is sealed by the gasket 2. The gasket 2 electrically insulates the upper lid part 50 having a positive potential from the battery container 1 having a negative potential.
 正極合剤16は、正極活物質と、正極導電材と、正極バインダとを有する。正極活物質は、リチウム酸化物が好ましい。正極活物質の例として、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、リチウム複合酸化物(コバルト、ニッケル、マンガンから選ばれる2種類以上を含むリチウム酸化物)、などが挙げられる。正極導電材は、正極合剤中におけるリチウムイオンの吸蔵/放出反応で生じた電子の正極電極への伝達を補助できる物質である。正極導電材の例として、黒鉛やアセチレンブラックなどが挙げられる。正極バインダは、正極活物質と正極導電材とを結着させること、および正極合剤と正極集電体とを結着させることが可能である。正極バインダは、非水電解液との接触により、大幅に劣化することはない。正極バインダの例としてポリフッ化ビニリデン(PVDF)やフッ素ゴムなどが挙げられる。 The positive electrode mixture 16 has a positive electrode active material, a positive electrode conductive material, and a positive electrode binder. The positive electrode active material is preferably lithium oxide. Examples of the positive electrode active material include lithium cobaltate, lithium manganate, lithium nickelate, lithium iron phosphate, lithium composite oxide (lithium oxide containing two or more selected from cobalt, nickel, and manganese). It is done. The positive electrode conductive material is a substance that can assist transmission of electrons generated by the occlusion / release reaction of lithium ions in the positive electrode mixture to the positive electrode. Examples of the positive electrode conductive material include graphite and acetylene black. The positive electrode binder can bind the positive electrode active material and the positive electrode conductive material, and can bind the positive electrode mixture and the positive electrode current collector. The positive electrode binder does not deteriorate significantly due to contact with the non-aqueous electrolyte. Examples of the positive electrode binder include polyvinylidene fluoride (PVDF) and fluororubber.
 正極電極上に正極合剤が形成される方法の例として、正極合剤の構成物質の分散溶液を正極電極上に塗布する方法が挙げられる。塗布方法の例として、ロール塗工法、スリットダイ塗工法、などが挙げられる。分散溶液の溶媒例として、N-メチルピロリドン(NMP)や水が挙げられる。正極合剤16の塗布の厚さは、例えば、正極電極の両側それぞれに約40μmずつである。 As an example of a method for forming a positive electrode mixture on a positive electrode, a method of applying a dispersion solution of constituent materials of the positive electrode mixture on the positive electrode can be mentioned. Examples of the coating method include a roll coating method and a slit die coating method. Examples of the solvent for the dispersion solution include N-methylpyrrolidone (NMP) and water. The coating thickness of the positive electrode mixture 16 is, for example, about 40 μm on each side of the positive electrode.
 負極合剤17は、負極活物質と、負極バインダと、増粘剤とを有する。なお、負極合剤17は、アセチレンブラックなどの負極導電材を有しても良い。本発明では、負極活物質として、黒鉛炭素を用いることが好ましい。黒鉛炭素を用いることにより、大容量であることが要求されるプラグインハイブリッド自動車や電気自動車向けのリチウムイオン二次電池を製造することができる。 The negative electrode mixture 17 has a negative electrode active material, a negative electrode binder, and a thickener. The negative electrode mixture 17 may have a negative electrode conductive material such as acetylene black. In the present invention, it is preferable to use graphitic carbon as the negative electrode active material. By using graphite carbon, it is possible to manufacture a lithium ion secondary battery for plug-in hybrid vehicles and electric vehicles that are required to have a large capacity.
 負極電極15上に負極合剤17が形成される方法の例として、負極合剤17の構成物質の分散溶液を負極電極15上に塗布する方法が挙げられる。塗布方法の例として、ロール塗工法、スリットダイ塗工法、などが挙げられる。負極合剤17の塗布の厚さは、例えば、負極電極の両側それぞれに約40μmずつである。 As an example of a method for forming the negative electrode mixture 17 on the negative electrode 15, a method of applying a dispersion solution of the constituent material of the negative electrode mixture 17 on the negative electrode 15 can be mentioned. Examples of the coating method include a roll coating method and a slit die coating method. The coating thickness of the negative electrode mixture 17 is, for example, about 40 μm on each side of the negative electrode.
 非水電解液として、リチウム塩がカーボネート系溶媒に溶解した溶液を用いることが好ましい。リチウム塩の例として、フッ化リン酸リチウム(LiPF)、フッ化ホウ酸リチウム(LiBF)、などが挙げられる。また、カーボネート系溶媒の例として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)、あるいは上記溶媒から選ばれる2種類以上の溶媒を混合したもの、が挙げられる。 As the non-aqueous electrolyte, it is preferable to use a solution in which a lithium salt is dissolved in a carbonate solvent. Examples of the lithium salt include lithium fluorophosphate (LiPF 6 ), lithium fluoroborate (LiBF 6 ), and the like. Examples of carbonate solvents include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), methyl ethyl carbonate (MEC), or a mixture of two or more solvents selected from the above solvents, Is mentioned.
(自己放電特性)
 上述のようにして構成されている単位セル11は、充電後に放置されると、自己放電により電圧が低下する。この自己放電量は製造段階での各構成部材のばらつきに応じて変化する。例えば、正極合剤16や負極合剤17の厚みのばらつき、あるいは非水電解液の組成および不純物などのばらつきに応じて変化する。また、製造段階で排除できない導電性の異物が単位セル11の内部に混入すると、正極14と負極15とが異物を介して微小短絡され、単位セル11の電圧は更に低下する。
(Self-discharge characteristics)
If the unit cell 11 configured as described above is left after being charged, the voltage drops due to self-discharge. This self-discharge amount changes according to the variation of each component in the manufacturing stage. For example, it varies according to variations in the thickness of the positive electrode mixture 16 and the negative electrode mixture 17, or variations in the composition and impurities of the nonaqueous electrolyte solution. Further, when conductive foreign matter that cannot be excluded in the manufacturing stage is mixed in the unit cell 11, the positive electrode 14 and the negative electrode 15 are minutely short-circuited through the foreign matter, and the voltage of the unit cell 11 further decreases.
 バッテリーモジュール内の複数の単位セル11の自己放電による電圧低下量がばらつくと、最初は全ての単位セル11の電圧を同等に充電したとしても、時間の経過と共に各単位セル11の電圧がばらつくことになる。換言すると、自己放電に伴う電圧低下量にばらつきがある複数の単位セルにより構成されたバッテリーモジュールにおいて、電圧が低いセルは放電の際に過放電になり易く、電圧が高いセルは充電の際に過充電になり易い。 When the amount of voltage drop due to self-discharge of a plurality of unit cells 11 in the battery module varies, the voltage of each unit cell 11 varies over time even if the voltages of all unit cells 11 are initially charged equally. become. In other words, in a battery module composed of a plurality of unit cells that vary in the amount of voltage drop due to self-discharge, a cell having a low voltage is likely to be overdischarged during discharge, and a cell having a high voltage is charged during charging. Prone to overcharging.
 そこで、本発明によるバッテリーモジュール製造方法では、複数の単位セル11に対して少なくとも2回のエージングを実行し、各エージング後の電圧の差を電圧低下量として測定し、電圧低下量と予め定められた複数の基準値との大小関係に応じて複数の単位セル11をグループ分けする。その上で、同一グループに分類された複数個の単位セル11を含むバッテリーモジュールを製造する。 Therefore, in the battery module manufacturing method according to the present invention, the aging is performed at least twice for the plurality of unit cells 11, and the voltage difference after each aging is measured as a voltage drop amount. The plurality of unit cells 11 are grouped according to the magnitude relationship with the plurality of reference values. Then, a battery module including a plurality of unit cells 11 classified into the same group is manufactured.
 図4に、充電後に放置された単位セル11の、放電時間に対する電圧変化の一例を示す。図4では、正常な単位セル、すなわち良品である単位セルの電圧変化を実線で示し、異常な単位セル、すなわち不良品である単位セルの電圧変化を破線で示している。図4から分かるように、充電後に放置された単位セルは、放電時間0から数時間が経過するまでに、急激に電圧が低下し、その後の電圧低下は緩やかである。正常な単位セルにおいても、自己放電量のばらつきに起因して電圧低下量は単位セルによって異なり、放置期間が長くなるほどセル電圧の電圧値の差異が大きくなる。一方、微小短絡が発生した異常な単位セルでは、正常な単位セルに比較して電圧低下が著しい。 FIG. 4 shows an example of voltage change with respect to discharge time of the unit cell 11 left after charging. In FIG. 4, the voltage change of a normal unit cell, that is, a good unit cell is indicated by a solid line, and the voltage change of an abnormal unit cell, that is, a defective unit cell is indicated by a broken line. As can be seen from FIG. 4, the voltage of the unit cell left after charging suddenly drops until several hours have elapsed from the discharge time 0, and the subsequent voltage drop is gradual. Even in a normal unit cell, the voltage drop amount varies depending on the unit cell due to variations in the self-discharge amount, and the difference in the voltage value of the cell voltage increases as the leaving period becomes longer. On the other hand, in an abnormal unit cell in which a micro short circuit has occurred, the voltage drop is significant compared to a normal unit cell.
 そこで、本実施形態では、単位セルの電圧低下量が予め定められた閾値を超えた場合には、図6に示す分類装置200が、その単位セルを異常な単位セル、すなわち不良品として不良品グループに分類する。さらに加えて、本実施形態では、分類装置200が、正常な単位セル、すなわち良品を、その自己放電による電圧低下量の大きさに基づいて複数のグループに分類する。 Therefore, in this embodiment, when the voltage drop amount of a unit cell exceeds a predetermined threshold, the classification device 200 shown in FIG. 6 determines that the unit cell is an abnormal unit cell, that is, a defective product as a defective product. Classify into groups. In addition, in the present embodiment, the classification device 200 classifies normal unit cells, that is, non-defective products into a plurality of groups based on the magnitude of the voltage drop due to the self-discharge.
 図5は、単位セルのグループ分けのルールの一例を示す。図5に示すように、電圧低下量に基づいて不良品と良品とを別々にグループ分けするための予め定められた閾値は、例えば0.025Vである。すなわち、単位セルが、満充電されてから第1の所定期間、例えば12時間放置された後のその単位セルの電圧値と、その後、さらに第2の所定期間、例えば3日間放置された後のその単位セルの電圧値との差分である電圧低下量Dが、予め定められた閾値である0.025Vを越えているとき、分類装置200は、その単位セルを不良品として不良品グループに分類する。 FIG. 5 shows an example of grouping rules for unit cells. As shown in FIG. 5, the predetermined threshold value for separately grouping defective products and non-defective products based on the voltage drop amount is, for example, 0.025V. That is, after the unit cell is fully charged, the voltage value of the unit cell after being left for a first predetermined period, for example, 12 hours, and then after being left for a second predetermined period, for example, 3 days. When the voltage drop amount D, which is the difference from the voltage value of the unit cell, exceeds 0.025 V, which is a predetermined threshold, the classification device 200 classifies the unit cell as a defective product into a defective product group. To do.
 一方、単位セルの電圧低下量が0.025V以下のときに、分類装置200は、その単位セルを、電圧低下量が0.005V以下のグループA、電圧低下量が0.005Vより大きく0.010V以下のグループB、電圧低下量が0.010Vより大きく0.015V以下のグループC、電圧低下量が0.015Vより大きく0.020V以下のグループD、および電圧低下量が0.020Vより大きく0.025V以下のグループEのうちのいずれか1つの該当するグループに分類する。 On the other hand, when the voltage drop amount of the unit cell is 0.025V or less, the classification device 200 determines that the unit cell is a group A having a voltage drop amount of 0.005V or less, and the voltage drop amount is greater than 0.005V to 0. Group B with 010 V or less, Group C with voltage drop greater than 0.010 V and less than 0.015 V, Group D with voltage drop greater than 0.015 V and less than 0.020 V, and voltage drop greater than 0.020 V It classify | categorizes into any one applicable group of the group E below 0.025V.
 図6は、単位セル11を複数のグループに分類する分類装置200を示す。分類装置200により同一グループに分類された複数の単位セルを含むバッテリーモジュールを製造することができる。 FIG. 6 shows a classification device 200 that classifies the unit cells 11 into a plurality of groups. A battery module including a plurality of unit cells classified into the same group by the classification device 200 can be manufactured.
 図6の分類装置200は、エージングエリア110、放電エリア112、電圧測定装置116、グループ分け装置118、制御装置120、保管棚130、搬送装置140、およびコンベア150を含む。制御装置120は、電圧測定装置116およびグループ分け装置118を制御する。エージングエリア110は、単位セル11を所定温度で、所定期間エージングする領域である。エージングエリア110には、充電器115が設置され、充電器115は単位セル11を充電する。充電器115は、必ずしもエージングエリア110に設置されなくてもよい。充電器115は、例えば、分類装置200内のエージングエリア110外部に設置されることとしてもよいし、分類装置200外部に設置されることとしてもよい。 6 includes an aging area 110, a discharge area 112, a voltage measuring device 116, a grouping device 118, a control device 120, a storage shelf 130, a transport device 140, and a conveyor 150. The control device 120 controls the voltage measurement device 116 and the grouping device 118. The aging area 110 is an area where the unit cell 11 is aged at a predetermined temperature for a predetermined period. A charger 115 is installed in the aging area 110, and the charger 115 charges the unit cell 11. The charger 115 is not necessarily installed in the aging area 110. For example, the charger 115 may be installed outside the aging area 110 in the classification device 200, or may be installed outside the classification device 200.
 放電エリア112には放電器114が設置され、放電器114は単位セル11を強制放電させる。電圧測定装置116は、単位セル11の電圧を測定する。このとき測定される電圧は、単位セル11の開回路電圧である。後述するように、電圧測定装置116による測定結果として電圧V1、V2が得られる。制御装置120は、電圧V1、V2をメモリ124に記録する。グループ分け装置118は、制御装置120による制御にしたがって、単位セル11をグループA~Eへ分類する。グループ分け装置118は、グループA~Eに分類された単位セル11を、例えば不図示のプッシャーによって、ベルトコンベア150に移載する。コンベアに移載された単位セル11は、搬送装置140によって、単位セル11の保管場所である保管棚130まで搬送される。保管棚130には、グループA~Eの各々に対応したセル棚が設けられている。グループA~Eへ分類された単位セル11が、それぞれのグループに対応したセル棚まで搬送される。すなわち、単位セル11がグループ毎に集積される。 A discharger 114 is installed in the discharge area 112, and the discharger 114 forcibly discharges the unit cell 11. The voltage measuring device 116 measures the voltage of the unit cell 11. The voltage measured at this time is the open circuit voltage of the unit cell 11. As will be described later, voltages V1 and V2 are obtained as measurement results by the voltage measuring device 116. The control device 120 records the voltages V1 and V2 in the memory 124. The grouping device 118 classifies the unit cells 11 into groups A to E according to control by the control device 120. The grouping device 118 transfers the unit cells 11 classified into the groups A to E onto the belt conveyor 150 by, for example, a pusher (not shown). The unit cell 11 transferred to the conveyor is transported by the transport device 140 to the storage shelf 130 that is the storage location of the unit cell 11. In the storage shelf 130, cell shelves corresponding to each of the groups A to E are provided. Unit cells 11 classified into groups A to E are transported to cell shelves corresponding to the respective groups. That is, the unit cells 11 are integrated for each group.
 制御装置120は、制御装置120全体を制御するCPU122と、プログラムやデータを格納するメモリ124と、電圧測定装置116およびグループ分け装置118への接続のためのI/F(インターフェース)126とを含む。CPU122はシステムバス128を介してメモリ124およびI/F126に接続されている。 The control device 120 includes a CPU 122 that controls the entire control device 120, a memory 124 that stores programs and data, and an I / F (interface) 126 for connection to the voltage measurement device 116 and the grouping device 118. . The CPU 122 is connected to the memory 124 and the I / F 126 via the system bus 128.
 搬送装置140は、図6の各装置間で単位セル11を次のように搬送する。
(1)エージングが実行された単位セルをエージングエリア110から放電エリア112に搬送する。
(2)放電した単位セル11を放電エリア112から電圧測定装置116に搬送する。
(3)電圧測定が行われた単位セル11を電圧測定装置116からエージングエリア110に搬送する。
(4)エージングが実行された単位セル11をエージングエリア110から電圧測定装置116に搬送する。
(5)電圧測定が行われた単位セル11を電圧測定装置116からグループ分け装置118に搬送する。
(6)グループ分け装置118によって複数のグループのうちの各グループに分類された単位セル11を、ベルトコンベア150を介して、該当するグループ毎の保管場所が設けられた保管棚130に搬送する。
The transport device 140 transports the unit cell 11 between the devices in FIG. 6 as follows.
(1) The unit cell on which aging has been performed is transported from the aging area 110 to the discharge area 112.
(2) The discharged unit cell 11 is transported from the discharge area 112 to the voltage measuring device 116.
(3) The unit cell 11 for which voltage measurement has been performed is transported from the voltage measurement device 116 to the aging area 110.
(4) The unit cell 11 on which aging has been performed is transported from the aging area 110 to the voltage measuring device 116.
(5) The unit cell 11 for which voltage measurement has been performed is transported from the voltage measurement device 116 to the grouping device 118.
(6) The unit cells 11 classified into each group of the plurality of groups by the grouping device 118 are transported via the belt conveyor 150 to the storage shelf 130 provided with the storage location for each corresponding group.
 制御装置120は上述した電圧低下量Dを演算する。電圧低下量Dは、上述した電圧V1およびV2の差分(V1-V2)として得られる。制御装置120は、単位セル11の識別子、すなわちIDと、電圧低下量Dとに基づいてグループ分け装置118を制御する。 The control device 120 calculates the voltage drop amount D described above. The voltage drop amount D is obtained as the difference (V1−V2) between the voltages V1 and V2. The control device 120 controls the grouping device 118 based on the identifier of the unit cell 11, that is, the ID and the voltage drop amount D.
 メモリ124には、単位セル11のIDが記録される領域、電圧V1、V2が記録される領域、電圧低下量Dが記録される領域、グループ名が記録される領域がそれぞれ設けられている。電圧低下量Dは、制御装置120のCPU122において、メモリ124によって記憶された電圧V1、V2に基づいて算出され、算出結果がメモリ124に記録される。 The memory 124 includes an area where the ID of the unit cell 11 is recorded, an area where the voltages V1 and V2 are recorded, an area where the voltage drop amount D is recorded, and an area where the group name is recorded. The voltage drop amount D is calculated by the CPU 122 of the control device 120 based on the voltages V1 and V2 stored in the memory 124, and the calculation result is recorded in the memory 124.
 単位セル11のIDは、例えば、単位セル製造時に電池外周面に印字または刻印される。エージングエリア110、放電エリア112、電圧測定装置116、グループ分け装置118のそれぞれにおいては、搬送されてきた単位セル11のIDが不図示のID読取装置によって読み取られ、処理対象となる単位セル11を識別する。 The ID of the unit cell 11 is printed or stamped on the outer peripheral surface of the battery when the unit cell is manufactured, for example. In each of the aging area 110, the discharge area 112, the voltage measuring device 116, and the grouping device 118, the ID of the conveyed unit cell 11 is read by an ID reader (not shown), and the unit cell 11 to be processed is Identify.
(分類および製造の手順)
 図5のグループ分けを含むバッテリーモジュール100の製造方法について、図7のフローチャートを参照して説明する。
(Classification and manufacturing procedures)
A manufacturing method of the battery module 100 including the grouping of FIG. 5 will be described with reference to the flowchart of FIG.
 ステップS501は、バッテリーモジュール100を構成する単位セル11を製造するステップである。単位セル11の外周面にはセルIDが印字または刻印されている。製造された単位セル11は、図6に示すエージングエリア110に搬送される。 Step S501 is a step of manufacturing the unit cell 11 constituting the battery module 100. A cell ID is printed or stamped on the outer peripheral surface of the unit cell 11. The manufactured unit cell 11 is conveyed to the aging area 110 shown in FIG.
 ステップS502は、エージングエリア110において、充電器115が複数の単位セル11を満充電まで充電するステップである。このとき、満充電であるときの満充電電圧の100%から0%の範囲内で各単位セル11の充電と放電とを少なくとも1回ずつ行った後に、満充電になるように各単位セル11を充電しても良い。 Step S502 is a step in which the charger 115 charges the plurality of unit cells 11 until they are fully charged in the aging area 110. At this time, after each unit cell 11 is charged and discharged at least once within the range of 100% to 0% of the full charge voltage when fully charged, each unit cell 11 is set to be fully charged. May be charged.
 ステップS503は、ステップS502で満充電になるように充電された複数の単位セル11に対して、エージングエリア110において、所定温度、例えば25℃で、所定期間a、例えば0.5日、すなわち12時間の、1回目のエージングを実行するステップである。エージングとは、複数の単位セル11を放置することによって、それぞれの単位セル11に自己放電させる処理である。満充電になるように充電された各単位セル11に対するエージングによって、各単位セルの電圧は短時間で大きく低下した後、安定化する。 In step S503, for the plurality of unit cells 11 charged to be fully charged in step S502, in the aging area 110, a predetermined temperature, for example, 25 ° C., and a predetermined period a, for example, 0.5 days, ie, 12 days. This is a step of executing the first aging of time. Aging is a process in which a plurality of unit cells 11 are left to self-discharge to each unit cell 11. Due to aging of each unit cell 11 charged to be fully charged, the voltage of each unit cell is greatly reduced in a short time and then stabilized.
 ステップS504は、ステップS503で1回目のエージングが実行された複数の単位セル11を、図6に示す放電エリア114に搬送し、放電器114が強制的にそれらの単位セル11を放電させるステップである。この強制放電では、放電器114は、各単位セル11の満充電電圧の30%以上95%以下の範囲内の所定電圧になるよう、放電させる。 Step S504 is a step in which the plurality of unit cells 11 that have been subjected to the first aging in step S503 are transported to the discharge area 114 shown in FIG. 6, and the discharger 114 forcibly discharges these unit cells 11. is there. In this forced discharge, the discharger 114 is discharged so as to have a predetermined voltage within a range of 30% to 95% of the full charge voltage of each unit cell 11.
 ステップS505は、ステップS504で強制放電させられた各単位セル11を電圧測定装置116まで搬送して、各単位セル11の電圧V1を測定するステップである。電圧V1の測定値はメモリ124に記録される。 Step S505 is a step in which each unit cell 11 forcibly discharged in step S504 is conveyed to the voltage measuring device 116 and the voltage V1 of each unit cell 11 is measured. The measured value of the voltage V1 is recorded in the memory 124.
 ステップS506は、ステップS505で電圧測定が行われた単位セル11をエージングエリア110に搬送し、所定温度、例えば25℃で、所定時間b、例えば3日間の、2回目のエージングを実行するステップである。なお、エージング中の温度を一般的に管理が容易な室温、すなわち25℃付近とすることで、エージング後の電圧測定において、測定値を安定化させることができるとともに、バッテリーモジュール100が使用される環境下での測定を行うことができる。 Step S506 is a step in which the unit cell 11 for which voltage measurement has been performed in Step S505 is transported to the aging area 110, and a second aging is performed at a predetermined temperature, for example, 25 ° C., for a predetermined time b, for example, 3 days. is there. Note that, by setting the temperature during aging to a room temperature that is generally easy to manage, that is, around 25 ° C., the measured value can be stabilized in the voltage measurement after aging, and the battery module 100 is used. Measurement under the environment can be performed.
 ステップS506で2回目のエージングの実行が開始される際の各単位セル11の充電状態を、ステップS504の強制放電によって、各単位セル11の満充電電圧の30%以上95%以下の所定電圧に調整しているのは、次の理由(1)、(2)による。
(1)各単位セル11の電圧が満充電電圧から少なくとも満充電電圧の95%まで低下していれば、その後の時間の経過に伴う電圧低下量が安定する。
(2)満充電電圧の30%以下の電圧を有する単位セル11に対してステップS506における2回目のエージングを実行する際の電圧低下量は安定しない。
The charge state of each unit cell 11 when the execution of the second aging is started in step S506 is changed to a predetermined voltage of 30% to 95% of the full charge voltage of each unit cell 11 by forced discharge in step S504. The adjustment is based on the following reasons (1) and (2).
(1) If the voltage of each unit cell 11 is reduced from the fully charged voltage to at least 95% of the fully charged voltage, the amount of voltage decrease with the passage of time thereafter is stabilized.
(2) The amount of voltage drop when the second aging in step S506 is performed on the unit cell 11 having a voltage of 30% or less of the full charge voltage is not stable.
 なお、満充電電圧の30%以上95%以下の電圧の範囲は、バッテリーモジュール100が製品として使用される頻度の高い電圧範囲でもある。 The voltage range of 30% to 95% of the full charge voltage is also a voltage range in which the battery module 100 is frequently used as a product.
 ステップS507は、ステップS506で2回目のエージングが実行された各単位セル11を電圧測定装置116まで搬送して、各単位セル11の電圧V2を測定するステップである。電圧V2の測定値はメモリ124に記録される。電圧測定後、グループ分け装置118まで単位セル11が搬送される。 Step S507 is a step in which each unit cell 11 that has been subjected to the second aging in Step S506 is transported to the voltage measuring device 116, and the voltage V2 of each unit cell 11 is measured. The measured value of the voltage V2 is recorded in the memory 124. After the voltage measurement, the unit cell 11 is transported to the grouping device 118.
 ステップS508は、制御装置120が、ステップS505、S507でそれぞれ測定された電圧V1、V2の差分を、電圧低下量Dとして算出するステップである。すなわち、電圧低下量Dは式(1)で表される。電圧低下量Dはメモリ124に記録される。
 D[mV]=V1-V2             (1)
Step S508 is a step in which the control device 120 calculates the difference between the voltages V1 and V2 measured in steps S505 and S507, respectively, as the voltage drop amount D. That is, the voltage drop amount D is represented by the formula (1). The voltage drop amount D is recorded in the memory 124.
D [mV] = V1-V2 (1)
 なお、ステップS506における2回目のエージングが実行される際の温度を室温としたことにより、そのエージングの前後で測定される電圧V1、V2の差分、すなわち電圧低下量Dが安定化し、良好な測定精度が得られる。 By setting the temperature at which the second aging is executed in step S506 to room temperature, the difference between the voltages V1 and V2 measured before and after the aging, that is, the voltage drop amount D is stabilized, and good measurement is performed. Accuracy is obtained.
 ステップS509は、制御装置120が、メモリ124に記録された電圧低下量Dと、図5のルールとに基づいて、複数の単位セル11の各々を不良品グループおよびグループA~Eのうちのいずれのグループに分類するかを決定し、メモリ124に各単位セル11のIDに対応付けてグループ名を記録する。制御装置120は、グループ分け装置118にグループ分け指令信号を送出する。グループ分け指令信号には、例えば、同一グループに分類されている全ての単位セル11のIDが、対応するグループ名とともに含まれる。グループ分け装置118は、グループ分けされた各単位セル11に対して、バーコード貼付や印字、刻印などによりグループ名を付す。 In step S509, the control device 120 determines that each of the plurality of unit cells 11 is one of the defective product group and the groups A to E based on the voltage drop amount D recorded in the memory 124 and the rule of FIG. The group name is recorded in the memory 124 in association with the ID of each unit cell 11. The control device 120 sends a grouping command signal to the grouping device 118. The grouping command signal includes, for example, the IDs of all unit cells 11 classified into the same group together with the corresponding group names. The grouping device 118 assigns a group name to each grouped unit cell 11 by bar code pasting, printing, or engraving.
 グループ分け装置118は、グループ分け指令信号に基づいて複数の単位セル11をグループ分けして、不良品グループおよびグループA~グループEの各グループに対応して設けられた各セル棚へ接続されているベルトコンベア150に各単位セル11を移載する。コンベアに移載された各単位セル11は、搬送装置140によって保管棚130まで搬送されて、各単位セル11に対応するセル棚に集積され、保管される。たとえば、各グループのセル棚に接続された複数本のベルトコンベアが設けられ、グループAに分類された単位セル11は、グループAのセル棚に接続されたベルトコンベアに移載されて、グループAのセル棚に集積される。これは以下のステップS510~S515の処理である。 The grouping device 118 groups a plurality of unit cells 11 based on a grouping command signal, and is connected to each cell shelf provided corresponding to each of the defective product group and the groups A to E. Each unit cell 11 is transferred to the existing belt conveyor 150. Each unit cell 11 transferred to the conveyor is transported to the storage shelf 130 by the transport device 140, and is accumulated and stored in the cell shelf corresponding to each unit cell 11. For example, a plurality of belt conveyors connected to the cell shelves of each group are provided, and the unit cells 11 classified into the group A are transferred to the belt conveyor connected to the cell shelves of the group A, and the group A It is accumulated in the cell shelf. This is the processing of the following steps S510 to S515.
 ステップS510は、不良品グループに分類された単位セル11を、保管棚130の不良品グループのセル棚に集積するステップである。 Step S510 is a step of accumulating the unit cells 11 classified into the defective product group on the cell shelf of the defective product group of the storage shelf 130.
 ステップS511は、グループAに分類された単位セル11を、保管棚130のグループAのセル棚に集積するステップである。 Step S511 is a step of accumulating the unit cells 11 classified into the group A on the cell shelf of the group A of the storage shelf 130.
 ステップS512は、グループBに分類された単位セル11を、保管棚130のグループBのセル棚に集積するステップである。 Step S512 is a step of accumulating the unit cells 11 classified into the group B on the cell shelf of the group B of the storage shelf 130.
 ステップS513は、グループCに分類された単位セル11を、保管棚130のグループCのセル棚に集積するステップである。 Step S513 is a step of accumulating the unit cells 11 classified into the group C on the cell shelf of the group C of the storage shelf 130.
 ステップS514は、グループDに分類された単位セル11を、保管棚130のグループDのセル棚に集積するステップである。 Step S514 is a step of accumulating the unit cells 11 classified into the group D on the cell shelves of the group D of the storage shelves 130.
 ステップS515は、グループEに分類された単位セル11を、保管棚130のグループEのセル棚に集積するステップである。 Step S515 is a step of accumulating the unit cells 11 classified into the group E on the cell shelves of the group E of the storage shelves 130.
 ステップS516は、グループAに分類された複数の単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S516 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified in the group A.
 ステップS517は、グループBに分類された複数の単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S517 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified into the group B.
 ステップS518は、グループCに分類された複数の単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S518 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified in the group C.
 ステップS519は、グループDに分類された複数の単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S519 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified into the group D.
 ステップS520は、グループEに分類された複数の単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S520 is a step of manufacturing the battery module 100 using the plurality of unit cells 11 classified in the group E.
 第1実施形態によれば、2回のエージングを実行して得られた電圧V1,V2の差分を電圧低下量Dとして算出され、この電圧低下量Dに基づいて複数の単位セル11が複数のグループに分類される。したがって、満充電された各単位セルの放電初期の不安定な時期における自己放電量に基づいて複数の単位セルが分類される従来技術に比べて精度良く、複数の単位セル11を分類することができる。その結果、バッテリーモジュール100を構成する複数の単位セル11の劣化の程度が均一化され、バッテリーモジュール100の信頼性、耐久性が向上する。 According to the first embodiment, the difference between the voltages V1 and V2 obtained by executing the aging twice is calculated as the voltage drop amount D, and a plurality of unit cells 11 are formed based on the voltage drop amount D. Classified into groups. Therefore, it is possible to classify the plurality of unit cells 11 with higher accuracy than in the prior art in which the plurality of unit cells are classified based on the self-discharge amount in the unstable initial stage of discharge of each fully charged unit cell. it can. As a result, the degree of deterioration of the plurality of unit cells 11 constituting the battery module 100 is made uniform, and the reliability and durability of the battery module 100 are improved.
 ステップS503における1回目のエージングで自己放電初期の不安定な電圧低下の影響を除去し、さらにステップS504における強制放電で、その後に測定される電圧V1が安定な電圧範囲に含まれるようにすることができる。そのため、時間差に応じた電圧低下量D(D=V1-V2)の測定値の安定化を図ることができる。その結果、複数の単位セル11の複数のグループへの分類の精度が高まるという効果が得られる。 The effect of unstable voltage drop at the initial stage of self-discharge is removed by the first aging in step S503, and the voltage V1 measured thereafter is included in the stable voltage range by forced discharge in step S504. Can do. Therefore, it is possible to stabilize the measured value of the voltage drop amount D (D = V1-V2) according to the time difference. As a result, an effect of increasing the accuracy of classification of the plurality of unit cells 11 into a plurality of groups can be obtained.
 なお、ステップS504の強制放電の目標電圧を、満充電電圧の30%以上95%以下としたが、目標電圧はこれに限定されない。また、1回目のエージングを実行する際の温度を25℃、かつエージング期間を12時間とし、2回目のエージングを実行する際の温度を25℃、かつエージング期間を3日間としたが、エージングを実行する際の温度およびエージング期間はこれらに限定されない。なお、1回目のエージングでは、エージング期間として少なくとも12時間を確保するのが好ましい。 Although the target voltage for forced discharge in step S504 is set to 30% to 95% of the full charge voltage, the target voltage is not limited to this. In addition, the temperature at the time of executing the first aging is 25 ° C., the aging period is 12 hours, the temperature at the time of executing the second aging is 25 ° C., and the aging period is 3 days. The temperature and the aging period at the time of execution are not limited to these. In the first aging, it is preferable to secure at least 12 hours as the aging period.
---第2実施形態---
 本発明によるバッテリーモジュール100の製造方法の第2実施形態を、図面を参照して説明する。第2実施形態は、第1実施形態のステップS502における満充電電圧までの充電に代えて、満充電電圧の30%以上95%以下の範囲内に含まれる所定電圧までの充電を採用し、これによって強制放電(ステップS504)を省略したものである。第2実施形態の製造方法について、図8のフローチャートを参照して説明する。
--- Second Embodiment ---
A second embodiment of a method for manufacturing a battery module 100 according to the present invention will be described with reference to the drawings. In the second embodiment, instead of charging up to the full charge voltage in step S502 of the first embodiment, charging up to a predetermined voltage included in the range of 30% to 95% of the full charge voltage is adopted. Thus, the forced discharge (step S504) is omitted. The manufacturing method of 2nd Embodiment is demonstrated with reference to the flowchart of FIG.
 ステップS701は、図7のステップS501と同様に、単位セル11を製造するステップである。 Step S701 is a step of manufacturing the unit cell 11 as in Step S501 of FIG.
 ステップS702は、ステップS701で製造された複数の単位セル11を、満充電電圧の30%以上95%以下の範囲内に含まれる所定電圧まで充電するステップである。このとき、単位セルを満充電電圧の100%から0%の範囲内で充電と放電とを少なくとも1回ずつ行った後に、満充電電圧の30%以上95%以下の範囲内に含まれる所定電圧まで充電しても良い。これによって、強制放電を行うことなく、単位セル11の電圧を安定な電圧範囲とすることができる。 Step S702 is a step of charging the plurality of unit cells 11 manufactured in Step S701 to a predetermined voltage included in a range of 30% to 95% of the full charge voltage. At this time, after the unit cell is charged and discharged at least once within the range of 100% to 0% of the full charge voltage, the predetermined voltage included within the range of 30% to 95% of the full charge voltage. You may charge up to. Thereby, the voltage of the unit cell 11 can be set to a stable voltage range without performing forced discharge.
 ステップS703は、ステップS702で充電された単位セル11に対して、図7のステップS503と同様、所定温度、例えば25℃で、所定時間a、例えば0.5日間、すなわち12時間の、1回目のエージングを実施するステップである。 In step S703, the unit cell 11 charged in step S702 is subjected to a first time at a predetermined temperature, for example, 25 ° C., for a predetermined time a, for example, 0.5 days, that is, for 12 hours, as in step S503 of FIG. This is a step of performing aging.
 ステップS704は、図7のステップS505と同様、ステップS703で1回目のエージングが実行された単位セル11の電圧V1を測定するステップである。 Step S704 is a step of measuring the voltage V1 of the unit cell 11 that has been subjected to the first aging in Step S703, as in Step S505 of FIG.
 ステップS705は、ステップS704で電圧測定が行われた単位セル11に対して、図7のステップS506と同様、所定温度、例えば25℃で、所定時間b、例えば3日間の、2回目のエージングを実行するステップである。 In step S705, the unit cell 11 for which voltage measurement was performed in step S704 is subjected to a second aging at a predetermined temperature, for example, 25 ° C., for a predetermined time b, for example, 3 days, as in step S506 of FIG. Step to execute.
 ステップS706は、図7のステップS507と同様、ステップS705で2回目のエージングが実行された単位セル11の電圧V2を測定するステップである。 Step S706 is a step of measuring the voltage V2 of the unit cell 11 that has been subjected to the second aging in Step S705, as in Step S507 of FIG.
 ステップS706~S719は、図5のステップS507~S520と同様、電圧低下量Dの算出、グループ分け、不良品グループの単位セル11の集積、グループA~Eの単位セル11の集積、グループA~Eの単位セル11によるバッテリーモジュール100の製造等を実施するステップである。 Steps S706 to S719 are similar to Steps S507 to S520 of FIG. 5 in calculating the voltage drop amount D, grouping, integration of the unit cells 11 of the defective product group, integration of the unit cells 11 of the groups A to E, and groups A to S In this step, the battery module 100 is manufactured by the unit cell 11 of E.
 第2実施形態は、第1実施形態の効果に加え、強制放電のステップを省略できるため、製造工程の短縮という効果が得られる。 In the second embodiment, in addition to the effect of the first embodiment, the step of forced discharge can be omitted, so that the effect of shortening the manufacturing process can be obtained.
 なお、ステップS702の充電目標電圧を満充電電圧の30%以上95%以下の範囲内に含まれる所定電圧としたが、これに限定されない。すなわち、その充電目標電圧が、安定な電圧範囲内に含まれればよい。 In addition, although the charging target voltage in step S702 is a predetermined voltage included in the range of 30% to 95% of the full charging voltage, it is not limited to this. That is, the charging target voltage only needs to be included in a stable voltage range.
---第3実施形態---
 本発明によるバッテリーモジュール100の製造方法の第3実施形態を、図面を参照して説明する。第3実施形態は、第2実施形態の処理において、図8のステップS704における電圧測定の前に補充電を実行し、電圧V1を略一定に揃えることとしたものである。第3実施形態の製造方法について、図9のフローチャートを参照して説明する。
--- Third embodiment ---
A third embodiment of a method for manufacturing a battery module 100 according to the present invention will be described with reference to the drawings. In the third embodiment, in the process of the second embodiment, auxiliary charging is performed before the voltage measurement in step S704 of FIG. 8, and the voltage V1 is made substantially constant. The manufacturing method of 3rd Embodiment is demonstrated with reference to the flowchart of FIG.
 ステップS801~S803は、図8のステップS701~S703と同様に、単位セル11を製造し、満充電電圧の30%以上95%以下の範囲内に含まれる所定電圧まで単位セル11を充電し、単位セル11に対して1回目のエージングを実行するステップである。 Steps S801 to S803 are similar to Steps S701 to S703 of FIG. 8 in that the unit cell 11 is manufactured, and the unit cell 11 is charged to a predetermined voltage within a range of 30% to 95% of the full charge voltage. This is a step of performing the first aging on the unit cell 11.
 ステップS804は、ステップS803で1回目のエージングが実行された単位セル11に対して補充電を行い、満充電電圧の30%以上95%以下の範囲内に含まれる所定電圧まで、単位セル11を充電するステップである。補充電の目標電圧は、例えば、ステップS803でエージングの実行を開始した際の単位セル11の電圧、すなわち、1回目のエージング前にステップS802で実施された充電が終了した時点の電圧である。たとえば、満充電電圧の50%まで充電された後にエージングが実行された単位セル11に対する補充電の目標電圧は、満充電電圧の50%の電圧である。ステップS804における補充電は、2回目のエージングを開始する際の電圧V1を略一定に揃えるために行われるので、補充電による充電電圧は、例えば各単位セル11の電圧のばらつきを抑える程度の僅かな電圧である。 In step S804, the unit cell 11 that has been subjected to the first aging in step S803 is subjected to supplementary charging, and the unit cell 11 is moved to a predetermined voltage within a range of 30% to 95% of the full charge voltage. Charging step. The target voltage for supplementary charging is, for example, the voltage of the unit cell 11 when aging is started in step S803, that is, the voltage at the time when the charging performed in step S802 before the first aging is completed. For example, the target voltage for supplementary charging for the unit cell 11 that has been aged after being charged to 50% of the full charge voltage is 50% of the full charge voltage. Since the auxiliary charging in step S804 is performed in order to make the voltage V1 when starting the second aging substantially constant, the charging voltage by the auxiliary charging is, for example, a level that suppresses variations in the voltages of the unit cells 11. Voltage.
 ステップS805~S820は、図8のステップS704~S719と同様に、電圧V1測定、2回目のエージング、電圧V2測定、電圧低下量D算出、グループ分け、グループA~Eの単位セル11の集積、グループA~Eの単位セル11によるバッテリーモジュール100の製造等を実施するステップである。 Steps S805 to S820 are similar to Steps S704 to S719 of FIG. 8, in which voltage V1 measurement, second aging, voltage V2 measurement, voltage drop amount D calculation, grouping, integration of unit cells 11 of groups A to E, This is a step of manufacturing the battery module 100 by the unit cells 11 of the groups A to E.
 第3実施形態は、第2実施形態の効果に加え、2回目のエージング(ステップS806)開始前の電圧V1が均一となり、電圧低下量Dの精度がさらに向上するという効果が得られる。 In the third embodiment, in addition to the effects of the second embodiment, the voltage V1 before the start of the second aging (step S806) is uniform, and the accuracy of the voltage drop amount D is further improved.
 HEVやEVに使用されるバッテリーモジュールは、一般には、満充電の50%付近の電圧で使用される。満充電状態における単位セルの自己放電量に基づいて複数の単位セルが分類される従来技術によると、満充電状態における単位セルの自己放電量が実使用環境下における単位セルの自己放電量と必ずしも一致しないため、単位セルの分類精度が低下する場合がある。しかし、本実施の形態では、ステップS804において、単位セル11は満充電電圧の50%の電圧まで充電されるため、実使用環境下における単位セルの自己放電量に基づいて複数の単位セルが精度良く分類される。 Battery modules used for HEVs and EVs are generally used at a voltage near 50% of full charge. According to the prior art in which a plurality of unit cells are classified based on the self-discharge amount of the unit cell in the fully charged state, the self-discharge amount of the unit cell in the fully charged state is not necessarily the self-discharge amount of the unit cell in the actual use environment. Since they do not match, the unit cell classification accuracy may be reduced. However, in the present embodiment, since the unit cell 11 is charged up to 50% of the full charge voltage in step S804, the plurality of unit cells are accurately determined based on the self-discharge amount of the unit cell in the actual use environment. Classified well.
 なお、ステップS802の充電目標電圧を、満充電電圧の30%以上95%以下の範囲内に含まれる所定電圧としたが、これに限定されない。すなわち、その充電目標電圧が、安定な電圧範囲内に含まれればよい。また、ステップS804の補充電目標電圧を、充電終了時の電圧としたが、これに限定されない。すなわち、その充電目標電圧が、満充電電圧の30%以上95%以下の範囲内に含まれればよい。 In addition, although the charge target voltage of step S802 is a predetermined voltage included in a range of 30% to 95% of the full charge voltage, it is not limited to this. That is, the charging target voltage only needs to be included in a stable voltage range. Further, although the auxiliary charging target voltage in step S804 is the voltage at the end of charging, it is not limited to this. That is, the charging target voltage may be included in the range of 30% to 95% of the full charging voltage.
---第4実施形態---
 本発明によるバッテリーモジュール100の製造方法の第4実施形態を、図面を参照して説明する。第4実施形態は、第1実施形態の処理において、図7のステップS503における1回目のエージングの実行温度を、より高温の40℃以上70℃以下に設定したものである。第4実施形態の製造方法について、図10のフローチャートを参照して説明する。
--- Fourth Embodiment ---
A fourth embodiment of the method for manufacturing the battery module 100 according to the present invention will be described with reference to the drawings. In the fourth embodiment, the first aging execution temperature in step S503 of FIG. 7 is set to a higher temperature of 40 ° C. or higher and 70 ° C. or lower in the processing of the first embodiment. The manufacturing method of 4th Embodiment is demonstrated with reference to the flowchart of FIG.
 ステップS901およびS902は、図7のステップS501およびS502と同様に、単位セル11を製造し、満充電電圧まで単位セル11を充電するステップである。 Steps S901 and S902 are steps for manufacturing the unit cell 11 and charging the unit cell 11 to the full charge voltage, similarly to Steps S501 and S502 of FIG.
 ステップS903は、ステップS902で満充電電圧まで充電された単位セル11に対して、室温よりも高温の所定温度、例えば40℃以上70℃以下で、所定時間a、例えば0.5日間、すなわち12時間以上の、1回目のエージングを実行するステップである。このように、1回目のエージングの温度を高温にすることで、リチウムの拡散が促進され、より短時間で電圧低下量が安定化し、エージング時間を短縮することができる。 In step S903, the unit cell 11 charged to the full charge voltage in step S902 is at a predetermined temperature higher than room temperature, for example, 40 ° C. or more and 70 ° C. or less, for a predetermined time a, for example, 0.5 days, that is, 12 days. This is a step of executing the first aging over time. In this way, by increasing the temperature of the first aging, lithium diffusion is promoted, the amount of voltage drop is stabilized in a shorter time, and the aging time can be shortened.
 ステップS904~S920は、図7のステップS504~S520と同様に、放電、電圧V1測定、2回目のエージング、電圧V2測定、電圧低下量D算出、グループ分け、グループA~Eの単位セル11の集積、グループA~Eの単位セル11によるバッテリーモジュール100の製造等を実施するステップである。なお、ステップS903における1回目のエージングを実行することによって、単位セル11の電圧が、満充電電圧の30%以上95%以下の範囲内の所定電圧になるのであれば、ステップS904における強制放電は不要である。 Steps S904 to S920 are similar to Steps S504 to S520 in FIG. 7. Discharge, voltage V1 measurement, second aging, voltage V2 measurement, voltage drop amount D calculation, grouping, group A to E of unit cells 11 This is a step of performing integration, manufacturing of the battery module 100 by the unit cells 11 of the groups A to E, and the like. In addition, if the voltage of the unit cell 11 becomes a predetermined voltage within the range of 30% to 95% of the full charge voltage by executing the first aging in Step S903, the forced discharge in Step S904 is It is unnecessary.
 第4実施形態は、第1実施形態の効果に加え、第1実施形態よりも高温で1回目のエージングを実行するので、1回目のエージングの処理時間を短縮でき、製造工程を短縮できる。 In the fourth embodiment, in addition to the effects of the first embodiment, the first aging is performed at a higher temperature than the first embodiment, so that the processing time of the first aging can be shortened and the manufacturing process can be shortened.
 なお、ステップS903における1回目のエージングを実行する際の温度を40℃以上70℃以下、かつエージング時間を3日間としたが、エージングを実行する際の温度およびエージング期間はこれらに限定されない。なお、1回目のエージングを実行する際の温度と、2回目のエージングを実行する際の温度とを、10℃以上相違させるのが好ましい。 In addition, although the temperature at the time of executing the first aging in step S903 is set to 40 ° C. or more and 70 ° C. or less and the aging time is set to 3 days, the temperature and the aging period for executing the aging are not limited to these. In addition, it is preferable to make the temperature at the time of performing the first aging different from the temperature at the time of performing the second aging by 10 ° C. or more.
---第5実施形態---
 本発明によるバッテリーモジュール100の製造方法の第5実施形態を、図面を参照して説明する。第5実施形態は、第1実施形態のステップS501~S508と同様のステップS1001~S1008の処理の後、すなわち電圧V2測定の後、2回目のエージングを実行する際の温度条件とは10℃以上異なる温度条件での3回目のエージングと、3回目の電圧V3の測定とを行い、後述する電圧低下量の温度変化率Yによる温度感受性評価をも実行するものである。第5実施形態の製造方法について、図11のフローチャートを参照して説明する。
--- Fifth embodiment ---
A fifth embodiment of a method for manufacturing a battery module 100 according to the present invention will be described with reference to the drawings. In the fifth embodiment, after the processing of steps S1001 to S1008 similar to steps S501 to S508 of the first embodiment, that is, after the voltage V2 measurement, the temperature condition for executing the second aging is 10 ° C. or more. The third aging under different temperature conditions and the third measurement of the voltage V3 are performed, and the temperature sensitivity evaluation based on the temperature change rate Y of the voltage drop amount described later is also executed. The manufacturing method of 5th Embodiment is demonstrated with reference to the flowchart of FIG.
 ステップS1001~S1008は、図7のステップS501~S508と同様に、単位セル11の製造、充電、1回目のエージング、放電、電圧V1測定、2回目のエージング、電圧V2測定、電圧低下量Dの算出を実施するステップである。 Steps S1001 to S1008 are the same as steps S501 to S508 in FIG. 7 in the manufacture, charge, first aging, discharge, voltage V1 measurement, second aging, voltage V2 measurement, and voltage drop amount D of the unit cell 11. This is the step of performing the calculation.
 ステップS1009は、図7のステップS508と同様、ステップS1008で電圧低下量Dが算出された単位セル11に対して、室温よりも高温の所定温度、例えば40℃以上70℃以下の範囲内に含まれる所定温度で、所定時間c、例えば0.5日間、すなわち12時間以上の、3回目のエージングを実行するステップである。このような高温のエージングではリチウムの拡散が促進されるので、温度感受性の高い単位セル11ほど、エージング後における単位セル11の電圧V3が低くなる。 Step S1009 is included in a predetermined temperature higher than room temperature, for example, in the range of 40 ° C. or higher and 70 ° C. or lower, with respect to the unit cell 11 for which the voltage drop amount D is calculated in Step S1008, as in Step S508 of FIG. The third aging is performed at a predetermined temperature for a predetermined time c, for example, 0.5 days, that is, 12 hours or more. Since the diffusion of lithium is promoted by such high temperature aging, the voltage V3 of the unit cell 11 after aging is lower in the unit cell 11 having higher temperature sensitivity.
 ステップS1010は、ステップS1009でエージングを実行された単位セル11の電圧V3を測定するステップである。 Step S1010 is a step of measuring the voltage V3 of the unit cell 11 that has been aged in step S1009.
 ステップS1011は、ステップS1008で測定された電圧低下量D(D=V1-V2)を、電圧V2と電圧V3との差分(V2-V3)で除算して、電圧低下量の温度変化率Yを算出するステップである。温度変化率Yは式(2)により表される。温度変化率Yは、その値が小さいほど温度感受性が高いことを示す。メモリ124には、温度変化率Yが記録される領域が設けられている。
 Y=(V1-V2)/(V2-V3)            (2)
In step S1011, the voltage drop amount D (D = V1-V2) measured in step S1008 is divided by the difference (V2-V3) between the voltage V2 and the voltage V3 to obtain the temperature change rate Y of the voltage drop amount. This is a calculating step. The temperature change rate Y is expressed by equation (2). The temperature change rate Y indicates that the smaller the value, the higher the temperature sensitivity. The memory 124 is provided with an area where the temperature change rate Y is recorded.
Y = (V1-V2) / (V2-V3) (2)
 ステップS1012は、電圧低下量Dが予め定められた閾値より大きい単位セル11を不良品グループに分類し、良品の単位セル11を、第1~第4実施形態と同様に、電圧低下量Dに基づいてグループA~Eに分類する。なお、図11では図示を簡略化してグループA~Cのみが表記されている。そこで、以下においては、良品の単位セル11がグループA~Cに分類されるものとして説明する。 In step S1012, unit cells 11 having a voltage drop amount D larger than a predetermined threshold are classified into defective product groups, and non-defective unit cells 11 are set to a voltage drop amount D as in the first to fourth embodiments. Based on group A to E. In FIG. 11, only the groups A to C are shown in a simplified manner. Therefore, in the following description, it is assumed that the good unit cell 11 is classified into groups A to C.
 ステップS1013は、不良品グループに分類された単位セル11を、保管棚130の不良品グループのセル棚へ搬送して集積するステップである。 Step S1013 is a step of transporting and accumulating the unit cells 11 classified into the defective product group to the cell shelf of the defective product group in the storage shelf 130.
 ステップS1014は、制御装置120が、グループAに分類された単位セル11を特定するステップである。 Step S1014 is a step in which the control device 120 specifies the unit cells 11 classified into the group A.
 ステップS1015は、制御装置120が、グループBに分類された単位セル11を特定するステップである。 Step S1015 is a step in which the control device 120 specifies the unit cells 11 classified into the group B.
 ステップS1016は、制御装置120が、グループCに分類された単位セル11を特定するステップである。 Step S1016 is a step in which the control device 120 specifies the unit cells 11 classified into the group C.
 ステップS1017は、制御装置120が、グループAに分類された単位セル11を、温度変化率Yに基づいて、小グループA1、A2、A3に分類するステップである。例えば、温度変化率Yが比較的小さい単位セル11が小グループA1に分類され、温度変化率Yが比較的大きい単位セル11が小グループA3に分類され、いずれの小グループにも分類されない単位セル11が、すなわち温度変化率Yが中程度の単位セル11が、小グループA2に分類される。 Step S1017 is a step in which the control device 120 classifies the unit cells 11 classified into the group A into the small groups A1, A2, and A3 based on the temperature change rate Y. For example, unit cells 11 with a relatively small temperature change rate Y are classified into the small group A1, unit cells 11 with a relatively large temperature change rate Y are classified into the small group A3, and unit cells that are not classified into any of the small groups 11, that is, the unit cell 11 having a medium temperature change rate Y is classified into the small group A2.
 ステップS1018は、制御装置120が、グループBに分類された単位セル11を、温度変化率Yに基づいて、小グループB1、B2、B3に分類するステップである。例えば、温度変化率Yが比較的小さい単位セル11が小グループB1に分類され、温度変化率Yが比較的大きい単位セル11が小グループB3に分類され、いずれの小グループにも分類されない単位セル11が、すなわち温度変化率Yが中程度の単位セル11が、小グループB2に分類される。 Step S1018 is a step in which the control device 120 classifies the unit cells 11 classified into the group B into the small groups B1, B2, and B3 based on the temperature change rate Y. For example, unit cells 11 with a relatively small temperature change rate Y are classified into the small group B1, unit cells 11 with a relatively large temperature change rate Y are classified into the small group B3, and unit cells that are not classified into any small group 11, that is, the unit cell 11 having a medium temperature change rate Y is classified into the small group B2.
 ステップS1019は、制御装置120が、グループCに分類された単位セル11を、温度変化率Yに基づいて、小グループC1、C2、C3に分類するステップである。例えば、温度変化率Yが比較的小さい単位セル11が小グループC1に分類され、温度変化率Yが比較的大きい単位セル11が小グループC3に分類され、いずれの小グループにも分類されない単位セル11が、すなわち温度変化率Yが中程度の単位セル11が、小グループC2に分類される。 Step S1019 is a step in which the control device 120 classifies the unit cells 11 classified into the group C into the small groups C1, C2, and C3 based on the temperature change rate Y. For example, a unit cell 11 with a relatively small temperature change rate Y is classified into the small group C1, a unit cell 11 with a relatively large temperature change rate Y is classified into the small group C3, and a unit cell that is not classified into any small group 11, that is, the unit cell 11 having a medium temperature change rate Y is classified into the small group C2.
 ステップS1017~S1019では、制御装置120が、メモリ124に記録された温度変化率Yに基づいて、複数の単位セル11の各々を小グループA1~A3,B1~B3およびC1~C3のうちのいずれの小グループに分類するかを決定し、メモリ124に各単位セル11のIDに対応付けて小グループ名を記録する。制御装置120は、グループ分け装置118にグループ分け指令信号を送出する。グループ分け指令信号には、例えば、同一小グループに分類されている全ての単位セル11のIDが、対応する小グループ名とともに含まれる。グループ分けされた各単位セル11に対しては、バーコード貼付や印字、刻印などにより小グループ名が付される。 In steps S1017 to S1019, the control device 120 assigns each of the plurality of unit cells 11 to one of the small groups A1 to A3, B1 to B3, and C1 to C3 based on the temperature change rate Y recorded in the memory 124. The small group name is recorded in the memory 124 in association with the ID of each unit cell 11. The control device 120 sends a grouping command signal to the grouping device 118. The grouping command signal includes, for example, the IDs of all unit cells 11 classified into the same small group together with the corresponding small group name. Each grouped unit cell 11 is given a small group name by attaching a barcode, printing, or marking.
 グループ分け装置118は、グループ分け指令信号に基づいて複数の単位セル11をグループ分けして、不良品グループおよび小グループA1~A3,B1~B3およびC1~C3の各グループに対応して設けられた各セル棚へ接続されているベルトコンベア150に各単位セル11を移載する。コンベアに移載された各単位セル11は、搬送装置140によって保管棚130まで搬送されて、各単位セル11に対応するセル棚に集積され、保管される。たとえば、各小グループのセル棚に接続された複数本のベルトコンベアが設けられ、小グループA1に分類された単位セル11は、小グループA1のセル棚に接続されたベルトコンベアに移載されて、小グループA1のセル棚に集積される。これは以下のステップS1020~S1028の処理である。 The grouping device 118 groups the plurality of unit cells 11 based on the grouping command signal, and is provided corresponding to each of the defective product group and the small groups A1 to A3, B1 to B3, and C1 to C3. Each unit cell 11 is transferred to the belt conveyor 150 connected to each cell shelf. Each unit cell 11 transferred to the conveyor is transported to the storage shelf 130 by the transport device 140, and is accumulated and stored in the cell shelf corresponding to each unit cell 11. For example, a plurality of belt conveyors connected to the cell shelves of each small group are provided, and the unit cells 11 classified into the small group A1 are transferred to the belt conveyor connected to the cell shelves of the small group A1. And are accumulated in the cell shelves of the small group A1. This is the processing of the following steps S1020 to S1028.
 ステップS1020は、小グループA1に分類された単位セル11を、保管棚130の小グループA1のセル棚へ搬送して集積するステップである。 Step S1020 is a step of transporting and accumulating the unit cells 11 classified into the small group A1 to the cell shelves of the small group A1 of the storage shelf 130.
 ステップS1021は、小グループA2に分類された単位セル11を、保管棚130の小グループA2のセル棚へ搬送して集積するステップである。 Step S1021 is a step in which the unit cells 11 classified into the small group A2 are transported to the cell shelves of the small group A2 of the storage shelf 130 and accumulated.
 ステップS1022は、小グループA3に分類された単位セル11を、保管棚130の小グループA3のセル棚へ搬送して集積するステップである。 Step S1022 is a step of transporting and accumulating the unit cells 11 classified into the small group A3 to the cell shelves of the small group A3 of the storage shelf 130.
 ステップS1023は、小グループB1に分類された単位セル11を、保管棚130の小グループB1のセル棚へ搬送して集積するステップである。 Step S1023 is a step of transporting and accumulating the unit cells 11 classified into the small group B1 to the cell shelves of the small group B1 of the storage shelf 130.
 ステップS1024は、小グループB2に分類された単位セル11を、保管棚130の小グループB2のセル棚へ搬送して集積するステップである。 Step S1024 is a step of transporting and accumulating the unit cells 11 classified into the small group B2 to the cell shelves of the small group B2 of the storage shelf 130.
 ステップS1025は、小グループB3に分類された単位セル11を、保管棚130の小グループB3のセル棚へ搬送して集積するステップである。 Step S1025 is a step of transporting and accumulating the unit cells 11 classified into the small group B3 to the cell shelves of the small group B3 of the storage shelf 130.
 ステップS1026は、小グループC1に分類された単位セル11を、保管棚130の小グループC1のセル棚へ搬送して集積するステップである。 Step S1026 is a step of transporting and accumulating the unit cells 11 classified into the small group C1 to the cell shelves of the small group C1 of the storage shelf 130.
 ステップS1027は、小グループC2に分類された単位セル11を、保管棚130の小グループC2のセル棚へ搬送して集積するステップである。 Step S1027 is a step of transporting and accumulating the unit cells 11 classified into the small group C2 to the cell shelves of the small group C2 of the storage shelf 130.
 ステップS1028は、小グループC3に分類された単位セル11を、保管棚130の小グループC3のセル棚へ搬送して集積するステップである。 Step S1028 is a step of transporting and accumulating the unit cells 11 classified into the small group C3 to the cell shelves of the small group C3 of the storage shelf 130.
 ステップS1029は、小グループA1に分類された単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1029 is a step of manufacturing the battery module 100 using the unit cells 11 classified into the small group A1.
 ステップS1030は、小グループA2にグループ分けされた単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1030 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group A2.
 ステップS1031は、小グループA3にグループ分けされた単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1031 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group A3.
 ステップS1032は、小グループB1にグループ分けされた単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1032 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group B1.
 ステップS1033は、小グループB2にグループ分けされた単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1033 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group B2.
 ステップS1034は、小グループB3にグループ分けされた単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1034 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group B3.
 ステップS1035は、小グループC1にグループ分けされた単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1035 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group C1.
 ステップS1036は、小グループC2にグループ分けされた単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1036 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group C2.
 ステップS1037は、小グループC3にグループ分けされた単位セル11を使用してバッテリーモジュール100を製造するステップである。 Step S1037 is a step of manufacturing the battery module 100 using the unit cells 11 grouped into the small group C3.
 第5実施形態では、電圧低下量を決定するリチウムの拡散状態の振る舞いは温度によって大きく異なることに注目し、温度変化に対する電圧低下量Dの変化率を表す温度変化率Yを評価基準に加えた。したがって、第1実施形態の効果に加え、バッテリーモジュール内二次電池の単位セル11のばらつきを、さらに抑制することができるという効果が得られる。 In the fifth embodiment, attention is paid to the fact that the behavior of the diffusion state of lithium that determines the voltage drop amount varies greatly depending on the temperature, and the temperature change rate Y representing the change rate of the voltage drop amount D with respect to the temperature change is added to the evaluation criteria. . Therefore, in addition to the effect of the first embodiment, it is possible to further suppress the variation of the unit cells 11 of the secondary battery in the battery module.
---変形例---
 以上説明した第1実施形態~第5実施形態を以下のように変形して実施することができる。
(1)第1実施形態において、所定時間bを比較的長時間とした場合、時間bの設定値にばらつきが生じる可能性がある。そこで、実際の製造でエージングを行う場合、時間bを厳密に測定しておき、次式(3)で表されるような時間bで規格化された電圧低下率Tに基づいてグループ分けすることも可能である。メモリ124には、電圧低下率Tが記録される領域が設けられている。これによって、より高精度なグループ分けと不良選別とが可能となる。
電圧低下率T[mV/day]=(V1-V2)/ 所定時間b     (3)
---- Modifications ----
The first to fifth embodiments described above can be modified and implemented as follows.
(1) In the first embodiment, when the predetermined time b is set to a relatively long time, the set value of the time b may vary. Therefore, when aging is performed in actual manufacturing, the time b is strictly measured and grouped based on the voltage drop rate T normalized by the time b as represented by the following equation (3). Is also possible. The memory 124 is provided with an area where the voltage drop rate T is recorded. This enables more accurate grouping and defect sorting.
Voltage drop rate T [mV / day] = (V1-V2) / predetermined time b (3)
(2)第1実施形態において、図5に示すグループ分けのルールは一例であり、グループの数や境界値はセルの特性やエージング条件に応じて任意に設定されることとしてもよい。 (2) In the first embodiment, the grouping rule shown in FIG. 5 is an example, and the number of groups and boundary values may be arbitrarily set according to cell characteristics and aging conditions.
(3)第5実施形態において、2回目のエージングを実行した上での電圧V2の測定を行う前に、予め3回目のエージングを実行した上での電圧V3の測定を行うことも可能である。 (3) In the fifth embodiment, it is also possible to measure the voltage V3 after executing the third aging in advance before performing the measurement of the voltage V2 after executing the second aging. .
(4)第5実施形態において、3回目のエージングの温度を高温としたが、2回目のエージングよりも低温、例えば-20~10℃にすることも可能である。経験的には、2回目のエージングの温度と3回目のエージングの温度とを10℃以上異なるものとすることにより、良好な温度変化率が得られる。 (4) In the fifth embodiment, the temperature of the third aging is set to a high temperature, but it may be lower than the second aging, for example, −20 to 10 ° C. Empirically, a favorable temperature change rate can be obtained by making the second aging temperature different from the third aging temperature by 10 ° C. or more.
(5)以上の実施形態の説明では、円筒形リチウムイオン電池を単位セルとするバッテリーモジュールおよびその製造方法の実施形態を説明したが、本発明を、角形等の他のタイプのリチウムイオン電池、あるいは、リチウムイオン電池以外の二次電池に適用することができる。 (5) In the above description of the embodiment, the embodiment of the battery module having a cylindrical lithium ion battery as a unit cell and the manufacturing method thereof has been described. However, the present invention is not limited to other types of lithium ion batteries such as a square, Or it can apply to secondary batteries other than a lithium ion battery.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other embodiments conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2010年第288256号(2010年12月24日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 2010 No. 288256 (filed on Dec. 24, 2010)

Claims (15)

  1.  二次電池の複数の単位セルをそれぞれ充電し、
     充電された前記複数の単位セルに自己放電させる1回目のエージングを実行し、
     前記1回目のエージングの後に前記複数の単位セルの各々の第1電圧を測定する1回目の電圧測定を行い、
     前記1回目の電圧測定の後に前記複数の単位セルに自己放電させる2回目のエージングを実行し、
     前記2回目のエージングの後に前記複数の単位セルの各々の第2電圧を測定する2回目の電圧測定を行い、
     前記第1電圧と前記第2電圧との差分を電圧低下量として算出し、
     前記電圧低下量に基づいて、前記複数の単位セルを複数のグループに分類し、
     前記複数のグループのうちの各グループに分類された複数の単位セルを含むバッテリーモジュールを製造する、バッテリーモジュールの製造方法。
    Charge each unit cell of the secondary battery,
    Performing a first aging to self-discharge the charged unit cells,
    Performing a first voltage measurement to measure a first voltage of each of the plurality of unit cells after the first aging;
    Performing a second aging that causes the plurality of unit cells to self-discharge after the first voltage measurement;
    A second voltage measurement is performed to measure a second voltage of each of the plurality of unit cells after the second aging;
    The difference between the first voltage and the second voltage is calculated as a voltage drop amount,
    Based on the voltage drop amount, classify the plurality of unit cells into a plurality of groups,
    A battery module manufacturing method for manufacturing a battery module including a plurality of unit cells classified into each of the plurality of groups.
  2.  請求項1に記載のバッテリーモジュールの製造方法において、
     前記複数の単位セルをそれぞれ充電する際は、前記複数の単位セルの各々が満充電になるように充電し、
     前記1回目のエージングの後、かつ前記1回目の電圧測定の前に、前記複数の単位セルの各々が所定電圧になるよう、前記複数の単位セルの各々に放電させる強制放電を行い、
     前記複数の単位セルの各々が前記満充電であるときの満充電電圧に対する前記所定電圧の割合が所定範囲内に含まれる、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 1,
    When charging each of the plurality of unit cells, charge each of the plurality of unit cells to be fully charged,
    After the first aging and before the first voltage measurement, forcibly discharging each of the plurality of unit cells so that each of the plurality of unit cells has a predetermined voltage,
    The method of manufacturing a battery module, wherein a ratio of the predetermined voltage to a full charge voltage when each of the plurality of unit cells is fully charged is included in a predetermined range.
  3.  請求項2に記載のバッテリーモジュールの製造方法において、
     前記所定範囲は30%以上95%以下の範囲である、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 2,
    The method for manufacturing a battery module, wherein the predetermined range is a range of 30% to 95%.
  4.  請求項1乃至3のいずれか1項に記載のバッテリーモジュールの製造方法において、
     前記1回目のエージングと、前記2回目のエージングとを、ともに25℃の温度で実行する、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to any one of claims 1 to 3,
    The battery module manufacturing method, wherein both the first aging and the second aging are performed at a temperature of 25 ° C.
  5.  請求項1乃至4のいずれか1項に記載のバッテリーモジュールの製造方法において、
     前記複数の単位セルを前記複数のグループに分類する際、前記複数の単位セルのうち、前記電圧低下量が予め定められた閾値よりも大きい単位セルを、不良品として不良品グループに分類する、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to any one of claims 1 to 4,
    When classifying the plurality of unit cells into the plurality of groups, among the plurality of unit cells, classify unit cells having a voltage drop amount larger than a predetermined threshold as a defective product into a defective product group. Battery module manufacturing method.
  6.  請求項5に記載のバッテリーモジュールの製造方法において、
     前記複数の単位セルを前記複数のグループに分類する際、前記複数の単位セルのうち、前記電圧低下量が前記予め定められた閾値以下の単位セルを、前記電圧低下量に基づいて、前記不良品グループとは異なる複数のグループのいずれかに分類する、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 5,
    When classifying the plurality of unit cells into the plurality of groups, out of the plurality of unit cells, unit cells whose voltage drop amount is equal to or less than the predetermined threshold are determined based on the voltage drop amount. A battery module manufacturing method that is classified into one of a plurality of groups different from a non-defective group.
  7.  請求項1に記載のバッテリーモジュールの製造方法において、
     前記複数の単位セルをそれぞれ充電する際は、前記複数の単位セルの各々の電圧が所定電圧になるように充電し、
     前記複数の単位セルの各々が満充電であるときの満充電電圧に対する前記所定電圧の割合が所定範囲内に含まれる、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 1,
    When charging each of the plurality of unit cells, charge so that each voltage of the plurality of unit cells becomes a predetermined voltage,
    The method for manufacturing a battery module, wherein a ratio of the predetermined voltage to a full charge voltage when each of the plurality of unit cells is fully charged is included in a predetermined range.
  8.  請求項7に記載のバッテリーモジュールの製造方法において、
     前記所定範囲は30%以上95%以下の範囲である、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 7,
    The method for manufacturing a battery module, wherein the predetermined range is a range of 30% to 95%.
  9.  請求項7に記載のバッテリーモジュールの製造方法において、
     前記1回目のエージングの後、かつ前記1回目の電圧測定の前に、前記複数の単位セルの各々の電圧が所定電圧になるように、前記複数の単位セルをそれぞれ補充電する、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 7,
    After the first aging and before the first voltage measurement, each of the plurality of unit cells is supplementarily charged so that each voltage of the plurality of unit cells becomes a predetermined voltage. Production method.
  10.  請求項9に記載のバッテリーモジュールの製造方法において、
     前記所定範囲は30%以上95%以下の範囲である、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 9,
    The method for manufacturing a battery module, wherein the predetermined range is a range of 30% to 95%.
  11.  請求項7乃至10のいずれか1項に記載のバッテリーモジュールの製造方法において、
     前記1回目のエージングと、前記2回目のエージングとを、ともに25℃の温度で実行する、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to any one of claims 7 to 10,
    The battery module manufacturing method, wherein both the first aging and the second aging are performed at a temperature of 25 ° C.
  12.  請求項1に記載のバッテリーモジュールの製造方法において、
     前記1回目のエージングを、前記2回目のエージングよりも高い温度で実行する、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 1,
    The battery module manufacturing method, wherein the first aging is performed at a higher temperature than the second aging.
  13.  請求項12に記載のバッテリーモジュールの製造方法において、
     前記1回目のエージングを40℃以上70℃以下の温度で実行し、
     前記2回目のエージングを25℃の温度で実行する、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 12,
    The first aging is performed at a temperature of 40 ° C. or higher and 70 ° C. or lower,
    The battery module manufacturing method, wherein the second aging is performed at a temperature of 25 ° C.
  14.  請求項4に記載のバッテリーモジュールの製造方法において、
     前記電圧低下量を算出した後、かつ前記複数の単位セルを前記複数のグループに分類する前に、前記複数の単位セルに対して、前記2回目のエージングを実行した際の温度と10℃以上異なる温度で前記複数の単位セルに自己放電させる3回目のエージングを実行し、
     前記3回目のエージングの後に前記複数の単位セルの各々の第3電圧を測定する3回目の電圧測定を行い、
     前記電圧低下量を前記第2電圧と前記第3電圧との差分で除算して温度変化率を算出し、
     前記複数の単位セルを前記複数のグループに分類した後、かつ前記バッテリーモジュールを製造する前に、前記各グループに分類された前記複数の単位セルを、前記温度変化率に基づいて複数の小グループに分類し、
     前記バッテリーモジュールを製造する際は、前記複数の小グループのうちの各小グループに分類された複数の単位セルを使用して前記バッテリーモジュールを製造する、バッテリーモジュールの製造方法。
    In the manufacturing method of the battery module according to claim 4,
    After calculating the voltage drop amount and before classifying the plurality of unit cells into the plurality of groups, the temperature when the second aging is performed on the plurality of unit cells is 10 ° C. or more. Performing a third aging to cause the plurality of unit cells to self-discharge at different temperatures;
    A third voltage measurement is performed to measure a third voltage of each of the plurality of unit cells after the third aging;
    Dividing the voltage drop amount by the difference between the second voltage and the third voltage to calculate a temperature change rate;
    After classifying the plurality of unit cells into the plurality of groups and before manufacturing the battery module, the plurality of unit cells classified into the groups are divided into a plurality of small groups based on the temperature change rate. Classified into
    A method of manufacturing a battery module, wherein when manufacturing the battery module, the battery module is manufactured using a plurality of unit cells classified into each of the plurality of small groups.
  15.  請求項1乃至14のいずれか1項に記載のバッテリーモジュール製造方法で製造されるバッテリーモジュール。 A battery module manufactured by the battery module manufacturing method according to any one of claims 1 to 14.
PCT/JP2011/079646 2010-12-24 2011-12-21 Method for manufacturing battery module and battery module WO2012086689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010288256A JP5746856B2 (en) 2010-12-24 2010-12-24 Battery module manufacturing method
JP2010-288256 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086689A1 true WO2012086689A1 (en) 2012-06-28

Family

ID=46313957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079646 WO2012086689A1 (en) 2010-12-24 2011-12-21 Method for manufacturing battery module and battery module

Country Status (2)

Country Link
JP (1) JP5746856B2 (en)
WO (1) WO2012086689A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800901A (en) * 2012-08-21 2012-11-28 成都银鑫新能源有限公司 Classification and pack distribution method for single battery of lithium ion battery pack
CN103579700A (en) * 2013-10-25 2014-02-12 东莞市安德丰电池有限公司 Sorting and grouping method for lithium ion batteries
CN103855431A (en) * 2014-03-24 2014-06-11 四川剑兴锂电池有限公司 Formation method for improving cycling performance of lithium ion battery
CN106025323A (en) * 2015-03-31 2016-10-12 丰田自动车株式会社 Inspection method for secondary battery
CN110021726A (en) * 2019-05-16 2019-07-16 张舒德 A kind of novel constant-pressure lithium battery
CN111063951A (en) * 2019-11-19 2020-04-24 安徽益佳通电池有限公司 Method for screening and matching self-discharge of lithium ion battery
WO2022185757A1 (en) * 2021-03-04 2022-09-09 株式会社カネカ Method for manufacturing battery pack

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221648A (en) * 2011-04-06 2012-11-12 Toyota Motor Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP5678909B2 (en) * 2012-03-02 2015-03-04 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery evaluation device and non-aqueous electrolyte secondary battery evaluation method
KR101800050B1 (en) 2013-10-30 2017-11-21 주식회사 엘지화학 System for early checking a low voltage of a secondary battery and method thereof
JP6171896B2 (en) * 2013-11-29 2017-08-02 トヨタ自動車株式会社 Secondary battery inspection method
JP5928441B2 (en) 2013-12-19 2016-06-01 トヨタ自動車株式会社 Manufacturing method of all solid state battery
JP6107644B2 (en) * 2013-12-26 2017-04-05 トヨタ自動車株式会社 Secondary battery inspection method
JP6277936B2 (en) * 2014-10-16 2018-02-14 トヨタ自動車株式会社 Battery stack inspection method
WO2017170683A1 (en) * 2016-03-31 2017-10-05 株式会社カネカ Method for producing battery pack and method for manufacturing electricity storage device
JP6555212B2 (en) * 2016-08-15 2019-08-07 トヨタ自動車株式会社 Battery pack manufacturing method
CN109919168A (en) * 2017-12-13 2019-06-21 北京创昱科技有限公司 A kind of cell classification method and system
KR102070589B1 (en) 2018-03-05 2020-01-29 주식회사 엘지화학 Method and System for Predicting the Time Required for Low Voltage Expression of a Secondary Battery, and Aging Method of the Secondary Battery Using the Same
KR20220020123A (en) * 2020-08-11 2022-02-18 주식회사 엘지에너지솔루션 automation apparatus for grading battery cells and inserting the battery cells into a battery module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313435A (en) * 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Battery inspection method
JP2004328902A (en) * 2003-04-24 2004-11-18 Nec Lamilion Energy Ltd Method for constituting battery module and battery module
JP2006275846A (en) * 2005-03-30 2006-10-12 Furukawa Electric Co Ltd:The Method and device for determining deterioration of secondary battery, and power source system
JP2007188715A (en) * 2006-01-12 2007-07-26 Nissan Motor Co Ltd Battery pack, unit cell arrangement method thereof and battery system
JP2009016162A (en) * 2007-07-04 2009-01-22 Panasonic Ev Energy Co Ltd Battery pack and its manufacturing method
JP2010086862A (en) * 2008-10-01 2010-04-15 Toshiba Corp Pack of battery pack and method for manufacturing pack of battery pack
JP2011171032A (en) * 2010-02-17 2011-09-01 Primearth Ev Energy Co Ltd Method for recycling secondary battery
JP2012028049A (en) * 2010-07-20 2012-02-09 Toyota Motor Corp Method of manufacturing power storage device, and power storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313435A (en) * 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Battery inspection method
JP2004328902A (en) * 2003-04-24 2004-11-18 Nec Lamilion Energy Ltd Method for constituting battery module and battery module
JP2006275846A (en) * 2005-03-30 2006-10-12 Furukawa Electric Co Ltd:The Method and device for determining deterioration of secondary battery, and power source system
JP2007188715A (en) * 2006-01-12 2007-07-26 Nissan Motor Co Ltd Battery pack, unit cell arrangement method thereof and battery system
JP2009016162A (en) * 2007-07-04 2009-01-22 Panasonic Ev Energy Co Ltd Battery pack and its manufacturing method
JP2010086862A (en) * 2008-10-01 2010-04-15 Toshiba Corp Pack of battery pack and method for manufacturing pack of battery pack
JP2011171032A (en) * 2010-02-17 2011-09-01 Primearth Ev Energy Co Ltd Method for recycling secondary battery
JP2012028049A (en) * 2010-07-20 2012-02-09 Toyota Motor Corp Method of manufacturing power storage device, and power storage device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102800901A (en) * 2012-08-21 2012-11-28 成都银鑫新能源有限公司 Classification and pack distribution method for single battery of lithium ion battery pack
CN103579700A (en) * 2013-10-25 2014-02-12 东莞市安德丰电池有限公司 Sorting and grouping method for lithium ion batteries
CN103855431A (en) * 2014-03-24 2014-06-11 四川剑兴锂电池有限公司 Formation method for improving cycling performance of lithium ion battery
CN106025323A (en) * 2015-03-31 2016-10-12 丰田自动车株式会社 Inspection method for secondary battery
CN110021726A (en) * 2019-05-16 2019-07-16 张舒德 A kind of novel constant-pressure lithium battery
CN111063951A (en) * 2019-11-19 2020-04-24 安徽益佳通电池有限公司 Method for screening and matching self-discharge of lithium ion battery
WO2022185757A1 (en) * 2021-03-04 2022-09-09 株式会社カネカ Method for manufacturing battery pack

Also Published As

Publication number Publication date
JP2012138192A (en) 2012-07-19
JP5746856B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5746856B2 (en) Battery module manufacturing method
TWI814765B (en) Abnormality detection device, abnormality detection method, charge state estimation method, charge state estimation device and computer-readable medium for secondary battery
US11313910B2 (en) Anomaly detection system and anomaly detection method for a secondary battery
US9399404B2 (en) Charging system for all-solid-state battery
US10605870B2 (en) Method for predicting battery charge limit, and method and apparatus for rapidly charging battery using same
JP5235959B2 (en) Battery controller and voltage abnormality detection method
JP5464116B2 (en) Method for producing lithium ion secondary battery
CN103797679B (en) The control device of secondary cell
JP2015122169A (en) Method of inspecting all-solid battery
CN104733769A (en) Manufacturing method of all-solid battery
WO2017086400A1 (en) Storage battery system, and storage battery device and method
US9812742B2 (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP5985280B2 (en) Inspection method for lithium ion secondary battery
JP2012252839A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP5284029B2 (en) Battery pack and method of manufacturing battery pack
JP2014192015A (en) Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
CN106463763B (en) Method for the electrode roll of primary battery and for manufacturing the electrode roll
JP5181508B2 (en) Lithium-ion battery management system
JP2012221782A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP6897511B2 (en) Battery control device
JP5725350B2 (en) Lithium secondary battery
US11888116B2 (en) Fast charge long-lifetime secondary battery, battery module, battery pack, and power consumption device
US20230402864A1 (en) Cell battery fast charging method and system
JP2018055878A (en) Manufacturing method of battery
US20230335780A1 (en) Secondary battery, electronic equipment, and electric tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851731

Country of ref document: EP

Kind code of ref document: A1