JP2011171032A - Method for recycling secondary battery - Google Patents

Method for recycling secondary battery Download PDF

Info

Publication number
JP2011171032A
JP2011171032A JP2010032083A JP2010032083A JP2011171032A JP 2011171032 A JP2011171032 A JP 2011171032A JP 2010032083 A JP2010032083 A JP 2010032083A JP 2010032083 A JP2010032083 A JP 2010032083A JP 2011171032 A JP2011171032 A JP 2011171032A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
variation
full charge
charge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010032083A
Other languages
Japanese (ja)
Other versions
JP5416612B2 (en
Inventor
Toshiaki Nakanishi
利明 中西
Katsunori Maekawa
活徳 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2010032083A priority Critical patent/JP5416612B2/en
Publication of JP2011171032A publication Critical patent/JP2011171032A/en
Application granted granted Critical
Publication of JP5416612B2 publication Critical patent/JP5416612B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing the number of useless secondary batteries when secondary batteries, which constitute a plurality of battery packs, collected from users or markets are assembled to reconstitute a new battery pack. <P>SOLUTION: Battery packs collected from the users or markets are recovered (S101) and disassembled to secondary batteries (S102); the characteristics such as full charge capacities of single cells are measured (S103); secondary batteries are classified by setting so that the tolerance of dispersion increases with decrease in full charge capacity (S104, S105); and a battery pack is reassembled with classified secondary batteries (S106). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は二次電池の再利用方法に関し、特に、ユーザから回収した複数の組電池を構成する二次電池を組み合わせて新たな組電池を再構成する方法に関する。   The present invention relates to a method for reusing a secondary battery, and more particularly, to a method for reconfiguring a new assembled battery by combining secondary batteries constituting a plurality of assembled batteries collected from a user.

電気自動車やハイブリッド自動車等の電源には、複数の二次電池で構成される組電池が用いられている。一方、資源の効率的な活用の観点から、車両の電源として用いられる組電池において、ユーザから回収した組電池を再利用可能な性能を有する組電池に再構成(リビルト)して再びユーザに提供する再利用技術も検討されている。リビルトする場合、使用履歴のある組電池では、電池特性、すなわち過充電、過放電、メモリ効果による電圧ばらつき等に変化が生じるため、回収した複数の組電池を構成する二次電池の中で、特に電池性能に優れた二次電池を選別してリビルトすることが提案されている。   A battery pack composed of a plurality of secondary batteries is used as a power source for electric vehicles, hybrid vehicles, and the like. On the other hand, from the viewpoint of efficient use of resources, in assembled batteries used as power sources for vehicles, the assembled batteries collected from the user are reconfigured (rebuilt) into reusable assembled batteries and provided to the user again. Reuse technology is also being studied. When rebuilding, in an assembled battery with a history of use, battery characteristics, that is, overcharge, overdischarge, voltage variation due to memory effect, etc. change, so among the secondary batteries constituting a plurality of collected assembled batteries, In particular, it has been proposed to select and rebuild a secondary battery having excellent battery performance.

下記の特許文献1には、既に使用された後の使用済み二次電池について、それぞれの満充電容量を知得する工程と、満充電容量を知得した使用済み二次電池の群の中から、満充電容量が互いに近いものを複数選択する工程と、選択された複数の使用済み二次電池を組み合わせてリビルトする工程を備える組電池の製造方法が開示されている。また、選択された複数の使用済み二次電池のうち、満充電容量が最も大きなものと満充電容量が最も小さなものとの満充電容量の差を、満充電容量が最も小さなものの満充電容量の10%以内とすることが開示されている。   In the following Patent Document 1, for a used secondary battery that has already been used, a process of obtaining the full charge capacity of each, and a group of used secondary batteries that have obtained the full charge capacity, There is disclosed a method for manufacturing an assembled battery, which includes a step of selecting a plurality of batteries each having a full charge capacity close to each other and a step of combining and rebuilding the selected plurality of used secondary batteries. In addition, among the selected used secondary batteries, the difference in full charge capacity between the battery with the largest full charge capacity and the battery with the smallest full charge capacity is calculated as the full charge capacity of the battery with the smallest full charge capacity. It is disclosed that it is within 10%.

特開2009−4184号公報JP 2009-4184 A

電気自動車やハイブリッド自動車の電源として組電池を用いる場合、組電池は大電流で充電若しくは放電されるため、組電池を構成する各二次電池の容量が揃っていないと過充電や過放電により劣化してしまう。そこで、上記のように満充電容量のばらつきを満充電容量が最も小さなものの10%以内に収める等の方策がとられることとなるが、ユーザから回収した組電池の使用履歴は種々であるから、この条件を満足する二次電池を選択するのは容易ではなく、結果的にリビルト対象から除外されてしまう二次電池も多くなる。   When an assembled battery is used as a power source for an electric vehicle or a hybrid vehicle, the assembled battery is charged or discharged with a large current. Therefore, if the capacity of each secondary battery constituting the assembled battery is not sufficient, it deteriorates due to overcharge or overdischarge. Resulting in. Therefore, as described above, measures such as keeping the variation in the full charge capacity within 10% of the smallest full charge capacity will be taken, but since the usage history of the assembled battery collected from the user is various, It is not easy to select a secondary battery that satisfies this condition, and as a result, many secondary batteries are excluded from the rebuild target.

本発明の目的は、ユーザあるいは市場から回収した複数の組電池を構成する二次電池を組み合わせて新たな組電池を再構成する際に、二次電池の無駄を低減し得る方法を提供することにある。   An object of the present invention is to provide a method that can reduce the waste of a secondary battery when reconfiguring a new assembled battery by combining secondary batteries constituting a plurality of assembled batteries collected from a user or the market. It is in.

本発明は、使用済みの複数の二次電池から組電池を再構成する二次電池の再利用方法であって、使用済みの複数の二次電池の使用履歴や個体差を反映した電池特性である個体電池特性を測定する測定ステップと、前記測定ステップで測定された個体電池特性に基づき、前記組電池を再構成するために分類するステップであって、前記個体電池特性に応じて変化するばらつきの許容範囲を用いて分類する分類ステップと、前記分類ステップで分類された二次電池毎に組電池を再構成する組み立てステップとを備えることを特徴とする。   The present invention relates to a secondary battery recycling method for reconfiguring an assembled battery from a plurality of used secondary batteries, with battery characteristics reflecting usage history and individual differences of the plurality of used secondary batteries. A measurement step for measuring a certain individual battery characteristic, and a step of classifying the assembled battery for reconfiguration based on the individual battery characteristic measured in the measurement step, the variation changing according to the individual battery characteristic A classification step of classifying using the permissible range, and an assembly step of reconfiguring the assembled battery for each secondary battery classified in the classification step.

本発明の1つの実施形態では、前記個体電池特性は、前記二次電池の満充電容量であり、前記分類ステップでは、前記二次電池の前記満充電容量が小さいほど前記ばらつきの許容範囲を大きく設定して分類する。   In one embodiment of the present invention, the individual battery characteristic is a full charge capacity of the secondary battery, and in the classification step, the smaller the full charge capacity of the secondary battery, the larger the tolerance of the variation. Set and classify.

また、本発明の他の実施形態では、前記個体電池特性は、前記二次電池の自己放電後の電圧であり、前記分類ステップでは、前記二次電池の前記電圧が小さいほど前記ばらつきの許容範囲を大きく設定して分類する。   In another embodiment of the present invention, the individual battery characteristic is a voltage after self-discharge of the secondary battery, and in the classification step, the tolerance of the variation is smaller as the voltage of the secondary battery is smaller. Set a large value to classify.

また、本発明の他の実施形態では、前記個体電池特性は、前記二次電池の重量であり、前記分類ステップでは、前記二次電池の重量が小さいほど前記ばらつきの許容範囲を大きく設定して分類する。   In another embodiment of the present invention, the individual battery characteristic is the weight of the secondary battery, and in the classification step, the tolerance of the variation is set to be larger as the weight of the secondary battery is smaller. Classify.

また、本発明の他の実施形態では、分類ステップでは、前記個体電池特性がしきい値以上ある二次電池を車載組電池用として分類し、前記個体電池特性がしきい値未満である二次電池を他の用途として分類する。他の用途は、例えば風力発電や太陽光発電における蓄電装置、あるいは家庭電化製品のバッテリである。   In another embodiment of the present invention, in the classification step, the secondary battery having the individual battery characteristics equal to or greater than a threshold is classified as a vehicle-mounted battery, and the secondary battery having the individual battery characteristics less than the threshold is classified. Classify batteries as other uses. Other uses are, for example, power storage devices for wind power generation and solar power generation, or batteries for home appliances.

本発明によれば、ユーザあるいは市場から回収した複数の組電池を構成する二次電池を組み合わせて新たな組電池を再構成(リビルト)する際に、二次電池の無駄を低減して組電池を市場に効果的に提供できる。   According to the present invention, when reassembling (rebuilding) a new assembled battery by combining secondary batteries constituting a plurality of assembled batteries collected from a user or the market, the assembled battery is reduced in waste. Can be effectively provided to the market.

実施形態の二次電池の再利用方法を示すフローチャートである。It is a flowchart which shows the reuse method of the secondary battery of embodiment. 二次電池の電池特性の時間変化を示すグラフ図である。It is a graph which shows the time change of the battery characteristic of a secondary battery. 回収した二次電池の容量分布ヒストグラムと実施形態のばらつきの許容範囲説明図である。It is the capacity distribution histogram of the collect | recovered secondary battery, and allowable range explanatory drawing of the dispersion | variation of embodiment. 回収した二次電池の容量分布ヒストグラムと従来技術のばらつきの許容範囲説明図である。It is the capacity distribution histogram of the collect | recovered secondary battery, and allowable range explanatory drawing of the dispersion | variation of a prior art.

以下、図面に基づき本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

1.組電池の概要
まず、本実施形態の前提として、電気自動車やハイブリッド車両の電源として搭載される組電池について簡単に説明する。なお、以下では偏平な直方体形状をした角形二次電池(電池モジュール)から構成された組電池に基づいて説明するが、本発明は円筒形二次電池から構成された組電池にも適用できる。
1. First, an assembled battery mounted as a power source for an electric vehicle or a hybrid vehicle will be briefly described as a premise of this embodiment. The following description is based on an assembled battery configured from a rectangular secondary battery (battery module) having a flat rectangular parallelepiped shape, but the present invention can also be applied to an assembled battery configured from a cylindrical secondary battery.

組電池は、複数の二次電池が両端の端板にて拘束された状態で電気的に直列に接続されて構成される。各二次電池は、長側面同士を対向させて並列配置され、接続部材を通じて電気的に直列に接続される。各二次電池は、例えば樹脂製の一体電槽からなる密閉型のニッケル水素電池である。一体電槽内では、複数の単電池(セル)が直列接続されて電池モジュールを構成する。各単電池は、例えばニッケル水素電池であり、設計時、すなわち初期状態において正極に比べ負極の容量を大きく設定される場合が多い。単電池は、正極活物質として水酸化ニッケルを含む正極と、負極活物質として水素吸蔵合金を含み、正極が充電を終えた際に未充電状態にある予め設けられた過剰容量分である充電リザーブ、及び正極が放電を終えた際に充電状態にある予め設けられた過剰容量分である放電リザーブを持ち、正極の理論容量より大きな容量を備えた負極を有する。   The assembled battery is configured by electrically connecting a plurality of secondary batteries in series in a state of being constrained by end plates at both ends. Each secondary battery is arranged in parallel with the long side surfaces facing each other, and is electrically connected in series through a connection member. Each secondary battery is a sealed nickel-metal hydride battery made of, for example, a resin-made integral battery case. In the integrated battery case, a plurality of single cells (cells) are connected in series to form a battery module. Each unit cell is, for example, a nickel metal hydride battery, and the capacity of the negative electrode is often set larger than that of the positive electrode at the time of design, that is, in the initial state. The unit cell includes a positive electrode containing nickel hydroxide as a positive electrode active material, a hydrogen storage alloy as a negative electrode active material, and a charge reserve that is an excess capacity provided in advance when the positive electrode is not charged when it is fully charged. And a negative electrode having a discharge reserve corresponding to a previously provided excess capacity in a charged state when the positive electrode finishes discharging, and having a capacity larger than the theoretical capacity of the positive electrode.

車両に搭載される場合、組電池は電池ECUにより監視される。電池ECUは、プロセッサやROM、RAMを有して構成され、組電池の充放電を制御するとともに、組電池の電圧や電流、温度を監視して組電池の正常/異常を判定する。   When mounted on a vehicle, the battery pack is monitored by a battery ECU. The battery ECU is configured to include a processor, a ROM, and a RAM, and controls charging / discharging of the assembled battery, and monitors the voltage, current, and temperature of the assembled battery to determine normality / abnormality of the assembled battery.

組電池では、使用履歴に応じて組電池特性が互いに異なることが知られており、組電池を構成する個々の二次電池間においても、その個体差から電池特性の変化態様が異なる。従って、ユーザあるいは市場から回収した複数の組電池を構成する二次電池を組み合わせて新たな組電池を再構成するリビルトの際には、少なくとも電池特性が互いに近似する二次電池を選択する必要がある。   In assembled batteries, it is known that the assembled battery characteristics are different from each other depending on the usage history, and the variation characteristics of the battery characteristics are also different among individual secondary batteries constituting the assembled battery due to individual differences. Accordingly, when rebuilding a new assembled battery by combining secondary batteries constituting a plurality of assembled batteries collected from the user or the market, it is necessary to select at least secondary batteries whose battery characteristics approximate each other. is there.

2.リビルトの概要
次に、リビルトの概要について説明する。
2. Outline of Rebuilding Next, an outline of rebuilding will be described.

上記のように、リビルトの際には、電池特性が互いに近似する二次電池を選択し、選択した二次電池で新たに組電池を組み立てる必要がある。選択の際に用いる電池特性としては、例えば満充電容量がある。満充電容量は、所定のパターンで二次電池を充放電して測定できる。例えば、25℃の恒温環境下において、まず0.3Cの電流値で電池電圧が1.0Vになるまで二次電池を放電させ、次に、3分間放置した後、0.35Cの電流値で3.2時間、二次電池を定電流充電する。次に、3分間放置した後、0.3Cの電流値で電池電圧が1.0Vになるまで放電させ、このときの放電電気量を満充電容量とする。なお、二次電池の公称容量を満たす充電量(例えば6.5AH)を1時間で完全放電できる電流量(例えば6.5A)を1Cとする。   As described above, at the time of rebuilding, it is necessary to select a secondary battery whose battery characteristics are similar to each other and to assemble a new assembled battery with the selected secondary battery. As a battery characteristic used for selection, for example, there is a full charge capacity. The full charge capacity can be measured by charging and discharging the secondary battery in a predetermined pattern. For example, in a constant temperature environment of 25 ° C., the secondary battery is first discharged at a current value of 0.3 C until the battery voltage reaches 1.0 V, then left for 3 minutes, and then at a current value of 0.35 C. 3. Charge the secondary battery at a constant current for 2 hours. Next, after leaving for 3 minutes, the battery is discharged at a current value of 0.3 C until the battery voltage reaches 1.0 V, and the amount of electricity discharged at this time is defined as the full charge capacity. Note that a charge amount (for example, 6.5 AH) that satisfies the nominal capacity of the secondary battery is set to 1 C as a current amount (for example, 6.5 A) that can be completely discharged in one hour.

リビルトする場合、満充電容量のばらつきが許容範囲内に収まっている二次電池を選択するが、リビルトする際のばらつきの許容範囲内は、組電池を最初に組み立ててユーザあるいは市場に提供する場合のばらつきの許容範囲(これを初期許容範囲)と同程度とする他に、初期許容範囲よりも狭くして、二次電池の満充電容量のばらつきを小さくすることが好適である。その理由は、上記のように組電池の電池特性は使用履歴に応じて変化し、さらに組電池を構成する二次電池間においても個体差が存在するために、たとえリビルト時において満充電容量が同程度であったとしても、その二次電池が属していた組電池の使用履歴及びその二次電池自身の個体差により、リビルト後の使用において電池特性の相違が顕在化して大きくなる可能性があるからである。   When rebuilding, select a secondary battery whose variation in full charge capacity is within the allowable range, but within the allowable range of variation when rebuilding, the assembled battery is first assembled and provided to the user or the market. It is preferable to make the variation of the full charge capacity of the secondary battery smaller by making it narrower than the initial allowable range, in addition to setting it to the same level as the allowable range of this (this is the initial allowable range). The reason for this is that the battery characteristics of the assembled battery change according to the usage history as described above, and there are individual differences between the secondary batteries that make up the assembled battery. Even if it is the same level, there is a possibility that the difference in battery characteristics will become obvious and increase in use after rebuilding due to the usage history of the assembled battery to which the secondary battery belonged and the individual difference of the secondary battery itself. Because there is.

図2に、二次電池の満充電容量の時間変化を概念的に示す。図において、横軸は時間であり、製品が最初に出荷される初期時点、リビルト時点、リビルト時点より先の将来の時点を示す。縦軸は二次電池の満充電容量である。図において、互いに異なる2個の二次電池A、Bの満充電容量の時間変化をそれぞれa,bで示す。なお、図では説明の都合上、二次電池A,Bの満充電容量は時間とともにリニアに変化するものと仮定している。二次電池A,Bの使用履歴を含む個体差により、二次電池A,Bの満充電容量の時間変化の度合いは異なり、二次電池Aの方が二次電池Bよりも急峻に満充電容量が減少する。従って、2個の二次電池A,Bの満充電容量がたとえリビルト時において互いに近似していても、リビルト後の将来において両者の満充電容量に大きな相違が生じる可能性があり、言い換えれば、このような可能性を考慮すると、少なくともリビルト時においては初期時よりも二次電池間の満充電容量のばらつきの許容範囲を小さくしておく必要がある。例えば、初期時におけるばらつきの許容範囲を5%とすると、リビルト時におけるばらつきの許容範囲を2%とする等である。   FIG. 2 conceptually shows the time change of the full charge capacity of the secondary battery. In the figure, the horizontal axis is time, and shows the initial time when the product is first shipped, the rebuilt time, and the future time before the rebuilt time. The vertical axis represents the full charge capacity of the secondary battery. In the figure, changes with time of the full charge capacities of two different secondary batteries A and B are indicated by a and b, respectively. In the figure, for the sake of explanation, it is assumed that the full charge capacities of the secondary batteries A and B change linearly with time. Due to individual differences including the usage history of the secondary batteries A and B, the degree of time change of the full charge capacity of the secondary batteries A and B is different, and the secondary battery A is fully charged more rapidly than the secondary battery B. Capacity is reduced. Therefore, even if the full charge capacities of the two secondary batteries A and B are similar to each other at the time of rebuilding, there is a possibility that a large difference will occur between the full charge capacities of both in the future after rebuilding. Considering such a possibility, at least at the time of rebuilding, it is necessary to make the allowable range of variation in the full charge capacity between the secondary batteries smaller than at the initial time. For example, if the allowable range of variation at the initial time is 5%, the allowable range of variation at the time of rebuilding is set to 2%.

ところで、このようにリビルト時のばらつきの許容範囲を小さくすると、このばらつきの許容範囲外となる二次電池が出現する可能性があり、これらをリビルトの対象から一律に除外してしまうと二次電池の有効活用が図れなくなる。   By the way, if the allowable range of variation at the time of rebuilding is reduced in this way, secondary batteries that are outside the allowable range of this variation may appear, and if these are uniformly excluded from the targets of rebuilding, The battery cannot be used effectively.

そこで、本実施形態では、リビルトして得られる組電池には、車両に搭載され車両の駆動用電源として用いられる組電池の他に他の用途があり得ることを考慮し、リビルトして得られる組電池の用途を車載用に限定するのではなく他の用途も積極的に許容するとともに、用途によっては満充電容量のばらつきの許容範囲も変わり得るとの事実を利用して、リビルト時の満充電容量のばらつきの許容範囲を満充電容量に応じて変化させるものである。   Therefore, in the present embodiment, the assembled battery obtained by rebuilding is obtained by rebuilding in consideration of other uses besides the assembled battery that is mounted on a vehicle and used as a power source for driving the vehicle. The use of the assembled battery is not limited to in-vehicle use, but other uses are actively allowed, and the fact that the allowable range of variation in full charge capacity may change depending on the use makes it possible to The allowable range of variation in charge capacity is changed according to the full charge capacity.

3.実施形態のリビルト方法
図1に、本実施形態におけるリビルト方法のフローチャートを示す。まず、ユーザあるいは市場から複数の組電池を回収する(S101)。具体的には、電気自動車やハイブリッド車両が廃車となった場合に当該車両に搭載された組電池を回収する。あるいは、組電池を構成する二次電池の一部の不具合により新しい組電池に交換した場合に、古い組電池を回収する。不具合の生じた二次電池以外の他の二次電池は、正常に動作し得るからである。
3. Rebuilding Method of Embodiment FIG. 1 shows a flowchart of the rebuilding method in the present embodiment. First, a plurality of assembled batteries are collected from the user or the market (S101). Specifically, when an electric vehicle or a hybrid vehicle becomes a scrapped vehicle, the assembled battery mounted on the vehicle is collected. Alternatively, when the battery pack is replaced with a new battery pack due to some malfunction of the secondary battery constituting the battery pack, the old battery pack is collected. This is because other secondary batteries other than the secondary battery in which the malfunction has occurred can operate normally.

次に、回収した組電池を二次電池毎に解体する(S102)。二次電池毎に解体する際には、専用の器具を用いて解体することができ、組電池の両端から組電池を圧縮するように所定の圧力を印加した状態で解体するのが好適である。   Next, the collected assembled battery is disassembled for each secondary battery (S102). When disassembling each secondary battery, it can be disassembled using a dedicated instrument, and it is preferable to disassemble in a state where a predetermined pressure is applied so as to compress the assembled battery from both ends of the assembled battery. .

次に、解体して得られた各二次電池の満充電容量を測定する(S103)。満充電容量の測定方法は上記の通りである。すなわち、25℃の恒温環境下において、まず0.3Cの電流値で電池電圧が1.0Vになるまで二次電池を放電させ、次に、3分間放置した後、0.35Cの電流値で3.2時間、二次電池を定電流充電する。次に、3分間放置した後、0.3Cの電流値で電池電圧が1.0Vになるまで放電させ、このときの放電電気量を満充電容量とする。なお、この方法は一例であって、他の方法を用いて二次電池を満充電として満充電容量を測定してもよい。例えば、二次電池がリチウムイオン電池の場合において充電前半は定電流充電を行い、充電後半は定電圧充電を行う等である。   Next, the full charge capacity of each secondary battery obtained by disassembly is measured (S103). The method for measuring the full charge capacity is as described above. That is, in a constant temperature environment of 25 ° C., the secondary battery is first discharged at a current value of 0.3 C until the battery voltage reaches 1.0 V, then left for 3 minutes, and then at a current value of 0.35 C. 3. Charge the secondary battery at a constant current for 2 hours. Next, after leaving for 3 minutes, the battery is discharged at a current value of 0.3 C until the battery voltage reaches 1.0 V, and the amount of electricity discharged at this time is defined as the full charge capacity. Note that this method is an example, and the full charge capacity may be measured using another method with the secondary battery fully charged. For example, when the secondary battery is a lithium ion battery, constant current charging is performed in the first half of charging, and constant voltage charging is performed in the second half of charging.

次に、二次電池の満充電容量毎に、リビルトする際の満充電容量のばらつきの許容範囲を設定する(S104)。具体的には、ばらつきの許容範囲を一定値とするのではなく、満充電容量が小さいほど、ばらつきの許容範囲を大きく設定する。言い換えれば、満充電容量が大きいほど、ばらつきの許容範囲を小さく設定する。   Next, for each full charge capacity of the secondary battery, an allowable range of variation in full charge capacity when rebuilding is set (S104). Specifically, the allowable range of variation is not set to a constant value, but the allowable range of variation is set larger as the full charge capacity is smaller. In other words, the larger the full charge capacity, the smaller the allowable range of variation.

図3に、本実施形態における満充電容量のヒストグラムとばらつきの許容範囲との関係を示す。図において、横軸は満充電容量であり、縦軸は回収した二次電池の個数である。回収した二次電池の個数は、グラフ100で示されるように、ある満充電容量をピークとした分布をなす。そして、満充電容量の大きい二次電池から満充電容量の小さい二次電池までの、組電池としてリビルトする際のばらつきの許容範囲をそれぞれc0、c1、c2、c3とすると、c0<c1<c2<c3となるように設定する。たとえは、c0=2%、c1=3%、c2=4%、c3=20%等である。満充電容量が小さくなるほどばらつきの許容範囲を大きくするのは、満充電容量が大きい、すなわち初期の満充電容量に近い満充電容量を有する二次電池は、使用履歴の影響が少なく、劣化の小さい優れた二次電池であるから、優れた二次電池だけで特別の使用環境(例えば電池の出力特性が低下する寒冷地)において使用され得る組電池、すなわち電池特性に優れた新たな組電池としてリビルトするためにそのばらつきの許容範囲も十分小さくする必要がある一方、満充電容量の小さい、すなわち初期の満充電容量からかなり劣化している二次電池は、使用履歴の影響が大きく、劣化が進んだ二次電池であるから、特定の用途のみに使用される組電池としてリビルトすればよいからそのばらつきの許容範囲も大きく設定して二次電池を効率的に活用するためである。   FIG. 3 shows the relationship between the full charge capacity histogram and the allowable range of variation in this embodiment. In the figure, the horizontal axis is the full charge capacity, and the vertical axis is the number of recovered secondary batteries. The number of recovered secondary batteries has a distribution with a peak at a certain full charge capacity, as shown in a graph 100. Then, assuming that allowable ranges of variation when rebuilt as a battery pack from a secondary battery having a large full charge capacity to a secondary battery having a small full charge capacity are c0, c1, c2, and c3, respectively, c0 <c1 <c2 <C3 is set. For example, c0 = 2%, c1 = 3%, c2 = 4%, c3 = 20%, and the like. Increasing the allowable range of variation as the full charge capacity becomes smaller is that the full charge capacity is large, that is, the secondary battery having a full charge capacity close to the initial full charge capacity is less affected by usage history and less deteriorated. As an excellent secondary battery, an assembled battery that can be used in a special environment (for example, a cold region where the output characteristics of the battery deteriorate) with only an excellent secondary battery, that is, a new assembled battery with excellent battery characteristics While it is necessary to reduce the tolerance of the variation sufficiently for rebuilding, a secondary battery with a small full charge capacity, that is, a battery that has deteriorated considerably from the initial full charge capacity, has a large influence on the usage history, and the deterioration is Since it is an advanced secondary battery, it only needs to be rebuilt as an assembled battery that is used only for a specific application. In order to get the.

なお、車載の組電池として使用される二次電池に要求される満充電容量にはしきい値があり、例えば初期容量の70%程度に設定し得るが、図3にはしきい満充電容量がFCthとして示されている。満充電容量がしきい満充電容量に達する二次電池は車載の組電池としてリビルトされるが、その中において満充電容量が相対的に小さく、そのばらつきの許容範囲が相対的に大きい二次電池(例えばばらつきの許容範囲がc0ではなくc1やc2に含まれる二次電池)をリビルトして得られる組電池は、例えば温帯地域において使用されることが想定される車両用として用いられる。一方、満充電容量がしきい満充電容量に満たない二次電池(ばらつきの許容範囲がc3)は車載以外の組電池としてリビルトされるが、車載のように大電流で充放電する必要がないため、ばらつきの許容範囲が相対的に大きくても実用上問題はない。車載以外の用途の一例は、ストレージ用途である。ストレージ用途では、短時間に放電し、一定電圧で充電する場合が多いため、たとえ組電池を構成する二次電池の満充電容量に大きなばらつきがあったとしても問題は生じにくい。ストレージ用途とは、一般的に、一定電圧で充電し、電気自動車やハイブリッド車両に比べて相対的に小電流で放電され、中間容量域で放置させる頻度が小さい場合における蓄電用途として定義され、具体的には風力発電や太陽光、太陽熱発電等の電力貯蔵装置、あるいは掃除機等の家庭電化製品のバッテリである。なお、ばらつきの許容範囲がc0〜c3以外の二次電池はいずれの用途にも使用不可能なため廃棄される。   There is a threshold value for the full charge capacity required for a secondary battery used as an in-vehicle assembled battery. For example, it can be set to about 70% of the initial capacity, but FIG. 3 shows a threshold full charge capacity. Is shown as FCth. A secondary battery whose full charge capacity reaches the threshold full charge capacity is rebuilt as an in-vehicle assembled battery. Among them, the secondary battery has a relatively small full charge capacity and a relatively large tolerance range. An assembled battery obtained by rebuilding (for example, secondary batteries included in c1 and c2 whose allowable range of variation is not c0) is used for vehicles that are assumed to be used in a temperate region, for example. On the other hand, a secondary battery whose full charge capacity is less than the threshold full charge capacity (variation tolerance c3) is rebuilt as an assembled battery other than a vehicle, but does not need to be charged and discharged with a large current unlike a vehicle. Therefore, there is no practical problem even if the tolerance of variation is relatively large. An example of an application other than in-vehicle use is a storage application. In storage applications, the battery is often discharged in a short time and charged at a constant voltage. Therefore, even if there is a large variation in the full charge capacity of the secondary batteries constituting the assembled battery, problems are unlikely to occur. A storage application is generally defined as a power storage application when charging is performed at a constant voltage, discharged at a relatively small current compared to an electric vehicle or a hybrid vehicle, and less frequently left in an intermediate capacity range. Specifically, they are power storage devices such as wind power generation, solar power generation, and solar thermal power generation, or batteries for home appliances such as vacuum cleaners. Note that secondary batteries whose variation tolerance is other than c0 to c3 are discarded because they cannot be used for any application.

再び図1に戻り、以上のようにして満充電容量に応じてばらつきの許容範囲を設定した後、いずれかのばらつきの許容範囲内に分類する(振り分ける)(S105)。そして、分類毎に別用途として組電池をリビルトする(S106)。例えば、図3において、ばらつきの許容範囲c0、c1、c2、c3に収まる二次電池群をそれぞれA0、A1,A2,A3とすると、二次電池群A0,A1,A2は車載用組電池にリビルトし、A3はストレージ用途にリビルトする。二次電池群A0〜A2はともに車載用組電池にリビルトされるが、これらは互いに満充電容量とばらつきの許容範囲が異なるため、異なる使用環境における車両用が好ましいことは既述したとおりである。   Returning to FIG. 1 again, after setting the allowable range of variation according to the full charge capacity as described above, it is classified (distributed) within any allowable range of variation (S105). And an assembled battery is rebuilt as another use for every classification (S106). For example, in FIG. 3, if the secondary battery groups that fall within the variation tolerance ranges c0, c1, c2, and c3 are A0, A1, A2, and A3, respectively, the secondary battery groups A0, A1, and A2 are used as in-vehicle assembled batteries. Rebuild and A3 rebuild for storage use. The secondary battery groups A0 to A2 are both rebuilt into the in-vehicle assembled battery. However, since the full charge capacity and the allowable range of variation are different from each other, as described above, it is preferable for vehicles in different use environments. .

図4に、本実施形態との対比のため、従来技術における満充電容量のヒストグラムとばらつきの許容範囲との関係を示す。図4におけるグラフ100は、図3のグラフ100と同一である。従来においては、満充電容量によらず、ばらつきの許容範囲はc(例えば2%)と一定であり、満充電容量が互いに近似した二次電池を選択して組電池をリビルトしている。ばらつきの許容範囲がcと一定であるため、ある組電池にリビルトするための二次電池の数が制限されてしまい、結果として組電池として再利用できない場合が生じる。また、しきい満充電容量FCth未満の二次電池は車載用には再利用できないため廃棄される。一方、本実施形態では、満充電容量が小さくなるほどばらつきの許容範囲を大きく設定しているため、その分だけある組電池にリビルトするための二次電池の数に余裕が生じ、ユーザあるいは市場から回収した二次電池を効率的に再利用することが可能となる。   For comparison with this embodiment, FIG. 4 shows the relationship between the histogram of the full charge capacity and the allowable range of variation in the prior art. The graph 100 in FIG. 4 is the same as the graph 100 in FIG. Conventionally, the allowable range of variation is constant at c (for example, 2%) regardless of the full charge capacity, and the assembled battery is rebuilt by selecting secondary batteries whose full charge capacities are close to each other. Since the allowable range of variation is constant as c, the number of secondary batteries for rebuilding to a certain assembled battery is limited, and as a result, there are cases where it cannot be reused as an assembled battery. Further, a secondary battery having a threshold full charge capacity less than FCth is discarded because it cannot be reused for in-vehicle use. On the other hand, in the present embodiment, since the allowable range of variation is set to be larger as the full charge capacity is smaller, there is a surplus in the number of secondary batteries to be rebuilt into the assembled battery, and from the user or the market The recovered secondary battery can be reused efficiently.

以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various change is possible.

例えば、本実施形態では、満充電容量により二次電池を分類しているが、満充電容量に代えて自己放電後の電圧を用いて二次電池を分類してもよい。ユーザあるいは市場から回収した組電池を二次電池に解体し、個々の二次電池について定量充電し、その後、一定の温度環境下、例えば40℃で放置した後の二次電池の電圧を測定する。自己放電した後の電圧に基づいて二次電池を分類する。そして、自己放電後の電圧が小さいほど、ばらつきの許容範囲を大きく設定して二次電池を分類する。自己放電後の電圧の絶対値、あるいは初期状態からの電圧の変化量(あるいは変化の度合い)がしきい値以上であれば車載用組電池としてリビルトし、しきい値に達しない二次電池はストレージ用途としてリビルトする。   For example, in the present embodiment, the secondary battery is classified based on the full charge capacity, but the secondary battery may be classified using a voltage after self-discharge instead of the full charge capacity. Disassemble the assembled battery collected from the user or the market into secondary batteries, charge each secondary battery quantitatively, and then measure the voltage of the secondary battery after leaving it at a constant temperature, for example, at 40 ° C. . Secondary batteries are classified based on the voltage after self-discharge. Then, as the voltage after self-discharge is smaller, the allowable range of variation is set larger and the secondary batteries are classified. If the absolute value of the voltage after self-discharge or the amount of change (or the degree of change) from the initial state is greater than or equal to the threshold value, it will be rebuilt as an in-vehicle assembled battery. Rebuild as a storage application.

また、二次電池の重量を用いて分類してもよい。二次電池は使用されると電解液量が減少するためにその重量が減少し、その減少量は使用履歴や二次電池の個体差に応じて変化し得る。二次電池の重量が小さいほどばらつきの許容範囲を大きく設定して組電池をリビルトする。   Moreover, you may classify | categorize using the weight of a secondary battery. When the secondary battery is used, the amount of the electrolyte decreases, so that its weight decreases. The amount of the reduction can change according to the usage history and the individual difference of the secondary battery. The smaller the weight of the secondary battery, the larger the allowable range of variation is set, and the assembled battery is rebuilt.

満充電容量や自己放電後の電圧、二次電池の重量は、二次電池の使用履歴や個体差が反映された電池特性であり、個々の二次電池の個体電池特性と言うことができる。従って、この意味において、本実施形態の方法は、ユーザあるいは市場から回収した組電池を解体して得られる複数の二次電池を、それぞれの個体電池特性に応じて分類する際に、個体電池特性に応じて同一組電池にリビルトする際のばらつきの許容範囲を一定値とするのではなく、個体電池特性の値に応じて変化させるものと表現することができる。個体電池特性はいずれか一つである必要はなく、満充電容量と自己放電後の電圧の組み合わせ等、複数の物理量を用いて二次電池を分類してもよい。   The full charge capacity, the voltage after self-discharge, and the weight of the secondary battery are battery characteristics reflecting the use history of the secondary battery and individual differences, and can be said to be individual battery characteristics of each secondary battery. Therefore, in this sense, the method according to the present embodiment, when classifying the plurality of secondary batteries obtained by disassembling the assembled battery collected from the user or the market according to the individual battery characteristics, Accordingly, it can be expressed that the allowable range of variation when rebuilding to the same assembled battery is not a constant value, but is changed according to the value of the individual battery characteristics. The individual battery characteristics do not need to be any one, and the secondary batteries may be classified using a plurality of physical quantities such as a combination of the full charge capacity and the voltage after self-discharge.

また、本実施形態において、満充電容量に応じ、満充電容量が小さいほどばらつきの許容範囲を大きく設定しているが、車載用組電池としてリビルトする場合のばらつきの許容範囲の上限は、初期状態、すなわち組電池出荷時のばらつきの許容範囲とすることが好適である。例えば、組電池出荷時のばらつきの許容範囲が5%以内であるものとすると、リビルト時のばらつきの許容範囲を車載用組電池においては2%〜5%とする等である。図3に即して説明すると、c0=2%、c1=3%、c2=4%とする等である。満充電容量がしきい値FCthに満たない二次電池に対しては、ばらつきの許容範囲は組電池出荷時のばらつきの許容範囲とは無関係に設定してもよく、例えば20%〜30%あるいはそれ以上に設定してもよい。自己放電後の電圧その他を用いて分類する場合も同様である。   Further, in the present embodiment, according to the full charge capacity, the allowable range of variation is set larger as the full charge capacity is smaller, but the upper limit of the allowable range of variation when rebuilt as an in-vehicle assembled battery is the initial state In other words, it is preferable to set an allowable range of variation when the assembled battery is shipped. For example, if the allowable range of variation at the time of shipment of the assembled battery is within 5%, the allowable range of variation at the time of rebuilding is set to 2% to 5% in the in-vehicle assembled battery. Referring to FIG. 3, c0 = 2%, c1 = 3%, c2 = 4%, etc. For a secondary battery whose full charge capacity is less than the threshold value FCth, the allowable range of variation may be set regardless of the allowable range of variation at the time of battery pack shipment, for example, 20% to 30% or You may set more. The same applies to classification using voltage after self-discharge and others.

さらに、本実施形態では、組電池の用途に応じて二次電池のばらつきの許容範囲が異なるとの基本的な技術思想に基づいてばらつきの許容範囲を設定してリビルトすることで二次電池を有効活用するものであるが、組電池の経済的な要因に応じて二次電池のばらつきの許容範囲が異なることは当然であり、本発明はこのような態様を排除するものではなく、リビルトして得られる組電池の価格を考慮してばらつきの許容範囲をさらに調整してもよい。   Furthermore, in the present embodiment, the secondary battery is rebuilt by setting the allowable range of variation based on the basic technical idea that the allowable range of variation of the secondary battery varies depending on the use of the assembled battery. Although it is used effectively, it is natural that the allowable range of variation of the secondary battery varies depending on the economic factor of the assembled battery, and the present invention does not exclude such an aspect, The allowable range of variation may be further adjusted in consideration of the price of the assembled battery obtained in this way.

100 回収二次電池のヒストグラム。   100 Histogram of recovered secondary battery.

Claims (6)

使用済みの複数の二次電池から組電池を再構成する二次電池の再利用方法であって、
使用済みの複数の二次電池の使用履歴や個体差を反映した電池特性である個体電池特性を測定する測定ステップと、
前記測定ステップで測定された個体電池特性に基づき、前記組電池を再構成するために分類するステップであって、前記個体電池特性に応じて変化するばらつきの許容範囲を用いて分類する分類ステップと、
前記分類ステップで分類された二次電池毎に組電池を再構成する組み立てステップと、
を備えることを特徴とする二次電池の再利用方法。
A secondary battery recycling method for reconfiguring a battery pack from a plurality of used secondary batteries,
A measurement step for measuring individual battery characteristics, which are battery characteristics reflecting the use history and individual differences of a plurality of used secondary batteries;
A classification step for reconfiguring the assembled battery based on the individual battery characteristics measured in the measurement step, the classification step using a tolerance range of variation that varies according to the individual battery characteristics; ,
An assembly step of reconfiguring the assembled battery for each secondary battery classified in the classification step;
A method for reusing a secondary battery, comprising:
請求項1記載の方法において、
前記個体電池特性は、前記二次電池の満充電容量であり、
前記分類ステップでは、前記二次電池の前記満充電容量が小さいほど前記ばらつきの許容範囲を大きく設定して分類する
ことを特徴とする二次電池の再利用方法。
The method of claim 1, wherein
The solid battery characteristic is a full charge capacity of the secondary battery,
In the classification step, the secondary battery is reused by classifying the secondary battery by setting a larger allowable range of variation as the full charge capacity of the secondary battery is smaller.
請求項1記載の方法において、
前記個体電池特性は、前記二次電池の自己放電後の電圧であり、
前記分類ステップでは、前記二次電池の前記電圧が小さいほど前記ばらつきの許容範囲を大きく設定して分類する
ことを特徴とする二次電池の再利用方法。
The method of claim 1, wherein
The solid battery characteristic is a voltage after self-discharge of the secondary battery,
In the classifying step, as the voltage of the secondary battery is smaller, the allowable range of the variation is set to be larger for classification.
請求項1記載の方法において、
前記個体電池特性は、前記二次電池の重量であり、
前記分類ステップでは、前記二次電池の重量が小さいほど前記ばらつきの許容範囲を大きく設定して分類する
ことを特徴とする二次電池の再利用方法。
The method of claim 1, wherein
The solid battery characteristic is the weight of the secondary battery,
In the classification step, the secondary battery is reused by classifying the secondary battery by setting a larger allowable range of variation as the weight of the secondary battery is smaller.
請求項1記載の方法において、
分類ステップでは、前記個体電池特性がしきい値以上ある二次電池を車載組電池用として分類し、前記個体電池特性がしきい値未満である二次電池を他の用途として分類することを特徴とする二次電池の再利用方法。
The method of claim 1, wherein
In the classification step, the secondary battery having the individual battery characteristics equal to or higher than a threshold value is classified as an in-vehicle assembled battery, and the secondary battery having the individual battery characteristics less than the threshold value is classified as another application. Recycle method of secondary battery.
請求項5記載の方法において、
前記分類するステップにおける前記車載組電池用の前記ばらつきの許容範囲は、組電池の初期出荷時におけるばらつきの許容範囲以下に設定されることを特徴とする二次電池の再利用方法。
The method of claim 5, wherein
The method for reusing a secondary battery, wherein an allowable range of variation for the in-vehicle assembled battery in the classification step is set to be equal to or less than an allowable range of variation at the time of initial shipment of the assembled battery.
JP2010032083A 2010-02-17 2010-02-17 Reuse method of secondary battery Expired - Fee Related JP5416612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032083A JP5416612B2 (en) 2010-02-17 2010-02-17 Reuse method of secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032083A JP5416612B2 (en) 2010-02-17 2010-02-17 Reuse method of secondary battery

Publications (2)

Publication Number Publication Date
JP2011171032A true JP2011171032A (en) 2011-09-01
JP5416612B2 JP5416612B2 (en) 2014-02-12

Family

ID=44684964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032083A Expired - Fee Related JP5416612B2 (en) 2010-02-17 2010-02-17 Reuse method of secondary battery

Country Status (1)

Country Link
JP (1) JP5416612B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347520A (en) * 2011-10-08 2012-02-08 佛山市邦普循环科技有限公司 Method for recovering power cells for new energy vehicles
WO2012086689A1 (en) * 2010-12-24 2012-06-28 日立ビークルエナジー株式会社 Method for manufacturing battery module and battery module
JP2013137867A (en) * 2011-12-27 2013-07-11 Toshiba Corp Secondary battery device and method of manufacturing the same
CN103682490A (en) * 2013-12-30 2014-03-26 合肥国轩高科动力能源股份公司 Repair method for multiple parallel lithium ion battery modules
CN105489962A (en) * 2015-11-30 2016-04-13 山东精工电子科技有限公司 Recycling method for waste power lithium ion batteries
CN106371027A (en) * 2016-08-24 2017-02-01 合肥国轩高科动力能源有限公司 Testing method for echelon recycling and utilization of decommissioning batteries
JP2018028967A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Method for manufacturing battery pack
JP2018041615A (en) * 2016-09-07 2018-03-15 トヨタ自動車株式会社 Secondary battery recovery treatment method and recycling treatment method
CN109428134A (en) * 2017-09-01 2019-03-05 丰田自动车株式会社 The reuse method and secondary battery system of secondary cell
JP2020009677A (en) * 2018-07-10 2020-01-16 株式会社ユーパーツ Inspection equipment of battery unit, inspection method of battery unit, and program
JP2021026440A (en) * 2019-08-02 2021-02-22 本田技研工業株式会社 Secondary battery delivery method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856540B (en) * 2019-02-14 2021-01-26 江苏慧智能源工程技术创新研究院有限公司 Recycling method and grading method of retired battery packs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015781A (en) * 2000-04-28 2002-01-18 Matsushita Electric Ind Co Ltd Replacing method of secondary cell
JP2004328902A (en) * 2003-04-24 2004-11-18 Nec Lamilion Energy Ltd Method for constituting battery module and battery module
JP2008293703A (en) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2009277627A (en) * 2008-05-19 2009-11-26 Panasonic Ev Energy Co Ltd Secondary battery exchanging method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015781A (en) * 2000-04-28 2002-01-18 Matsushita Electric Ind Co Ltd Replacing method of secondary cell
JP2004328902A (en) * 2003-04-24 2004-11-18 Nec Lamilion Energy Ltd Method for constituting battery module and battery module
JP2008293703A (en) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2009277627A (en) * 2008-05-19 2009-11-26 Panasonic Ev Energy Co Ltd Secondary battery exchanging method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086689A1 (en) * 2010-12-24 2012-06-28 日立ビークルエナジー株式会社 Method for manufacturing battery module and battery module
JP2012138192A (en) * 2010-12-24 2012-07-19 Hitachi Vehicle Energy Ltd Method of manufacturing battery module and battery module
CN102347520A (en) * 2011-10-08 2012-02-08 佛山市邦普循环科技有限公司 Method for recovering power cells for new energy vehicles
JP2013137867A (en) * 2011-12-27 2013-07-11 Toshiba Corp Secondary battery device and method of manufacturing the same
CN103682490A (en) * 2013-12-30 2014-03-26 合肥国轩高科动力能源股份公司 Repair method for multiple parallel lithium ion battery modules
CN105489962A (en) * 2015-11-30 2016-04-13 山东精工电子科技有限公司 Recycling method for waste power lithium ion batteries
CN107768761A (en) * 2016-08-15 2018-03-06 丰田自动车株式会社 The manufacture method of battery pack
JP2018028967A (en) * 2016-08-15 2018-02-22 トヨタ自動車株式会社 Method for manufacturing battery pack
US10466306B2 (en) 2016-08-15 2019-11-05 Toyota Jidosha Kabushiki Kaisha Method of manufacturing battery pack
CN107768761B (en) * 2016-08-15 2020-03-27 丰田自动车株式会社 Method for manufacturing battery pack
CN106371027A (en) * 2016-08-24 2017-02-01 合肥国轩高科动力能源有限公司 Testing method for echelon recycling and utilization of decommissioning batteries
CN106371027B (en) * 2016-08-24 2019-05-21 合肥国轩高科动力能源有限公司 A kind of test method that the echelon of retired battery recycles
JP2018041615A (en) * 2016-09-07 2018-03-15 トヨタ自動車株式会社 Secondary battery recovery treatment method and recycling treatment method
CN109428134A (en) * 2017-09-01 2019-03-05 丰田自动车株式会社 The reuse method and secondary battery system of secondary cell
JP2019046644A (en) * 2017-09-01 2019-03-22 トヨタ自動車株式会社 Reusing method of secondary battery and secondary battery system
JP2020009677A (en) * 2018-07-10 2020-01-16 株式会社ユーパーツ Inspection equipment of battery unit, inspection method of battery unit, and program
JP2021026440A (en) * 2019-08-02 2021-02-22 本田技研工業株式会社 Secondary battery delivery method
JP7092715B2 (en) 2019-08-02 2022-06-28 本田技研工業株式会社 Secondary battery delivery method

Also Published As

Publication number Publication date
JP5416612B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5416612B2 (en) Reuse method of secondary battery
Casals et al. Second life batteries lifespan: Rest of useful life and environmental analysis
JP4001708B2 (en) Replacing the secondary battery
Rouholamini et al. A review of modeling, management, and applications of grid-connected Li-ion battery storage systems
Omar et al. Evaluation of performance characteristics of various lithium-ion batteries for use in BEV application
US10254780B2 (en) Method and apparatus for distributing power in energy storage system
US8030901B2 (en) Electric energy storage device
JP5276357B2 (en) How to replace the nickel-hydrogen secondary battery
US20100138072A1 (en) Control of cells, modules and a pack comprised of hybridized electrochemistries
JP6555212B2 (en) Battery pack manufacturing method
US9176196B2 (en) Apparatus and method for managing battery application environment and usage history
JP6911746B2 (en) Battery information processing device, battery manufacturing support device, assembled battery, battery information processing method, and assembled battery manufacturing method
Ciez et al. Asymptotic cost analysis of intercalation lithium-ion systems for multi-hour duration energy storage
JP5973723B2 (en) Secondary battery device and manufacturing method thereof
Al-Karakchi et al. Smart EV charging profiles to extend battery life
US20190067757A1 (en) Method for operating a battery, and battery
KR101569484B1 (en) Apparatus and method for controlling battery pack with temperature information
JP2004328902A (en) Method for constituting battery module and battery module
CN105244535A (en) Sorting method of lithium ion secondary battery
CN102340022B (en) Power battery and manufacturing method for same
Sivakumar Investigation of charging and discharging behavior on lithium–ion battery cell using multi scale multi domain battery model in CFD
CN116111193A (en) Power energy storage battery matching process method and battery pack
Wang et al. Development of Electro-chemical Battery Model for Plug-and-Play Eco-system Library
Aderemi et al. Hybrid battery technologies with battery management system in power and energy sectors
US20160190801A1 (en) Scalable energy storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees