JP2013137867A - Secondary battery device and method of manufacturing the same - Google Patents

Secondary battery device and method of manufacturing the same Download PDF

Info

Publication number
JP2013137867A
JP2013137867A JP2011287018A JP2011287018A JP2013137867A JP 2013137867 A JP2013137867 A JP 2013137867A JP 2011287018 A JP2011287018 A JP 2011287018A JP 2011287018 A JP2011287018 A JP 2011287018A JP 2013137867 A JP2013137867 A JP 2013137867A
Authority
JP
Japan
Prior art keywords
battery cell
battery
capacity
average value
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011287018A
Other languages
Japanese (ja)
Other versions
JP5973723B2 (en
Inventor
Masahiro Sekino
正宏 関野
Shinichiro Kosugi
伸一郎 小杉
Takashi Sudo
孝 須藤
Shingo Sato
真吾 佐藤
Takeshi Osawa
岳史 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011287018A priority Critical patent/JP5973723B2/en
Publication of JP2013137867A publication Critical patent/JP2013137867A/en
Application granted granted Critical
Publication of JP5973723B2 publication Critical patent/JP5973723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery device in which a plurality of battery cells are appropriately allocated and which has leveled performance and less excess battery cells in manufacture, and a method of manufacturing the same.SOLUTION: A secondary battery device includes a first battery cell group having a first battery cell and a second battery cell connected in parallel, and a second battery cell group having a third battery cell and a fourth battery cell connected in parallel. The first battery cell group and the second battery cell group are connected in series. The first battery cell has a capacity value less than an average value of battery capacities of the first battery cell, the second battery cell, the third battery cell and the fourth battery cell. The second battery cell has a capacity value more than the average value. The third battery cell has a capacity value less than the average value. The fourth battery cell has a capacity value more than the average value.

Description

本発明の実施形態は、二次電池装置およびその製造方法に関する。   Embodiments described herein relate generally to a secondary battery device and a manufacturing method thereof.

二次電池は多種多様な用途の電源として使用されている。主な用途として、携帯電話やパソコン、携帯音楽プレーヤーといった小型電気機器の電源として使用がなされていたが、近年では電気自動車や電力貯蔵用電源といった比較的大きな電力を必要とする機器で使用するための大型の電池装置の開発がすすめられている。   Secondary batteries are used as power sources for a wide variety of applications. As a main application, it was used as a power source for small electric devices such as mobile phones, personal computers, and portable music players, but in recent years it is used for devices that require relatively large power, such as electric vehicles and power storage power sources. The development of large-sized battery devices has been promoted.

前述の比較的大きな電力を必要とする機器に対応するため、複数の電池を多直多並列に接続した二次電池装置(電池パック)を製造し、大型電源用途として使用する方法がある。   There is a method of manufacturing a secondary battery device (battery pack) in which a plurality of batteries are connected in parallel in multiple series in order to deal with the above-described devices that require relatively large power, and using the secondary battery device as a large-scale power source.

特開2011―171032JP2011-171032

繰り返し充放電を行う大型の二次電池装置(電池パック)を構成する各電池セルはしばしば多並列多直列に接続され使用される。例えば、2並列多直列の二次電池装置では電池セルは似通った容量特性または自己放電量特性をもつセルが選択されることが前記電池装置内の電池セルの能力を最大限に発揮する方法として好適とされてきた。   Each battery cell constituting a large-sized secondary battery device (battery pack) that repeatedly charges and discharges is often used connected in multiple parallel multiple series. For example, in a two-parallel multi-series secondary battery device, a battery cell having a similar capacity characteristic or self-discharge amount characteristic is selected as a method of maximizing the capacity of the battery cell in the battery apparatus. Has been preferred.

しかしながら、このような似通った特性の電池セルを集める方法をとった場合、第1段階として似通った特性の電池セル同士を並列接続(以下電池セル群と称する)し、第2段階としてこの電池セル群に似通った特性の電池セル群を直列接続しなければならず、非常に余りがでやすい電池セル選択方法であった。これは、複数の電池セルを量産する際に、電池セルの容量または自己放電量に対する個数分布は、略正規分布となることに由来する。   However, when the method of collecting battery cells having similar characteristics is used, battery cells having similar characteristics are connected in parallel (hereinafter referred to as a battery cell group) as the first stage, and the battery cells are used as the second stage. The battery cell group having characteristics similar to the group had to be connected in series, and this was a battery cell selection method that was very easy to leave. This is because, when mass-producing a plurality of battery cells, the number distribution with respect to the capacity or self-discharge amount of the battery cells becomes a substantially normal distribution.

本実施形態の二次電池装置は、複数の電池セルを適切に配分し、性能が平準化されることで、各電池セルのもつ能力を最大限に発揮させ、かつ製造時に電池セルの選択/組合せによる余りが出にくい二次電池装置またはその製造方法を提供することを目的とする。   The secondary battery device according to the present embodiment appropriately distributes a plurality of battery cells and leveles the performance, thereby maximizing the capabilities of each battery cell and selecting / selecting the battery cell at the time of manufacture. It is an object of the present invention to provide a secondary battery device or a method of manufacturing the secondary battery device that hardly causes a remainder due to the combination.

本二次電池装置は、並列に接続された第1の電池セルと第2の電池セルを有する第1の電池セル群と、並列に接続された第3の電池セルと第4の電池セルを有する第2の電池セル群と、を備える。前記第1の電池セル群と、前記第2の電池セル群と、を直列に接続される。前記第1の電池セルは、前記第1の電池セルと前記第2の電池セルと前記第3の電池セルと前記第4の電池セルの電池容量の平均値よりも少ない容量値であり、前記第2の電池セルは、前記平均値よりも大きい容量値であり、前記第3の電池セルは、前記平均値よりも少ない容量値であり、前記第4の電池セルは、前記平均値よりも大きい容量値である。   The secondary battery device includes a first battery cell group having a first battery cell and a second battery cell connected in parallel, and a third battery cell and a fourth battery cell connected in parallel. And a second battery cell group. The first battery cell group and the second battery cell group are connected in series. The first battery cell has a capacity value smaller than an average value of battery capacities of the first battery cell, the second battery cell, the third battery cell, and the fourth battery cell, The second battery cell has a capacity value larger than the average value, the third battery cell has a capacity value smaller than the average value, and the fourth battery cell has a capacity value smaller than the average value. Large capacity value.

第1の実施形態に係る二次電池装置10の外観の一例を示す斜視図。The perspective view which shows an example of the external appearance of the secondary battery apparatus 10 which concerns on 1st Embodiment. 第1の実施形態に係る電池セル12の外観の一例を示す斜視図。The perspective view which shows an example of the external appearance of the battery cell 12 which concerns on 1st Embodiment. 第1の実施形態に係る二次電池装置10を上面から見た図。The figure which looked at the secondary battery device 10 concerning a 1st embodiment from the upper surface. 第1の実施形態に係る電池セル12α、β、γ、δの容量値の一例を示す図。The figure which shows an example of the capacity | capacitance value of the battery cell 12 (alpha), (beta), (gamma), (delta) which concerns on 1st Embodiment. 第1の実施形態に係る電池セル12の容量または自己放電量の個数分布の一例を表す図。The figure showing an example of the number distribution of the capacity | capacitance or self-discharge amount of the battery cell 12 which concerns on 1st Embodiment. 第2の実施形態に係る二次電池装置10の外観の一例を示す斜視図。The perspective view which shows an example of the external appearance of the secondary battery apparatus 10 which concerns on 2nd Embodiment. 第2の実施形態に係る二次電池装置10を上面から見た図。The figure which looked at the rechargeable battery device 10 concerning a 2nd embodiment from the upper surface. 第の実施形態に係る電池セル12の容量または自己放電量の個数分布の一例を表す図。The figure showing an example of the number distribution of the capacity | capacitance or self-discharge amount of the battery cell 12 which concerns on 1st Embodiment. 変形例1に係る二次電池装置10の外観の一例を示す斜視図。The perspective view which shows an example of the external appearance of the secondary battery apparatus 10 which concerns on the modification 1. FIG. 変形例1に係る二次電池装置10を上面から見た図。The figure which looked at the secondary battery apparatus 10 which concerns on the modification 1 from the upper surface. 変形例2に係る二次電池装置10の外観の一例を示す斜視図。The perspective view which shows an example of the external appearance of the secondary battery apparatus 10 which concerns on the modification 2. FIG. 変形例2に係る二次電池装置10を上面から見た図。The figure which looked at the secondary battery apparatus 10 which concerns on the modification 2 from the upper surface. 変形例3に係る演算システムの一例を示すブロック図。The block diagram which shows an example of the arithmetic system which concerns on the modification 3. FIG. 変形例3に係る電池装置2000の一例を示す図The figure which shows an example of the battery apparatus 2000 which concerns on the modification 3. 変形例3に係る演算システムの動作の一例を示す図。The figure which shows an example of operation | movement of the arithmetic system which concerns on the modification 3.

以下、本発明の実施態様について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1は、本実施形態に係る二次電池装置10の外観を示す斜視図である。二次電池装置を電池モジュール、複数の二次電池装置(電池モジュール)を複数備えた装置を電池パックと呼称してもよい。
(First embodiment)
FIG. 1 is a perspective view illustrating an appearance of a secondary battery device 10 according to the present embodiment. A secondary battery device may be referred to as a battery module, and a device including a plurality of secondary battery devices (battery modules) may be referred to as a battery pack.

二次電池装置10は図1に示すように、例えば、複数の二次電池セル12α,…,12γを有する構成である。これら合計4つの電池セル12は、2つずつの電池セルを直列に配置し、バスバー14で電気的に接続し、2つの電池セル列を形成する。この2つの電池セル列を並行に並べ、バスバー14を用いて電気的に接続して二次電池装置10を構成する。   As shown in FIG. 1, the secondary battery device 10 has, for example, a configuration having a plurality of secondary battery cells 12α,. These four battery cells 12 are arranged in series by two battery cells and electrically connected by a bus bar 14 to form two battery cell rows. The two battery cell rows are arranged in parallel and electrically connected using the bus bar 14 to constitute the secondary battery device 10.

図2は、二次電池セル12の外観を示す斜視図である。   FIG. 2 is a perspective view showing the appearance of the secondary battery cell 12.

各電池セル12(12α,…12δ)は、リチウムイオン電池等の非水電解質二次電池であり、例えば、アルミニウムまたはアルミニウム合金で形成された扁平な略直方体形状の外装容器21と、外装容器内に非水電解液と共に収納された電極体と、正極端子22aと、負極端子22bとを備えている。外装容器21は、アルミニウム缶に代えて、鉄など他の金属からなる缶、ラミネートフィルム(パウチ、ポリマー)や樹脂材を用いても良い。   Each battery cell 12 (12α,... 12δ) is a non-aqueous electrolyte secondary battery such as a lithium ion battery, for example, a flat, substantially rectangular parallelepiped outer container 21 formed of aluminum or an aluminum alloy, and an outer container The electrode body accommodated together with the non-aqueous electrolyte, the positive electrode terminal 22a, and the negative electrode terminal 22b are provided. Instead of the aluminum can, the outer container 21 may be a can made of another metal such as iron, a laminate film (pouch, polymer), or a resin material.

外装容器21は、上端が開口した容器本体と、容器本体に溶接され容器本体の開口を閉塞した矩形板状の蓋体とを有し、液密に形成されている。電極体は、例えば、正極板および負極板をその間にセパレータを介在させて渦巻き状に捲回し、更に、径方向に圧縮することにより、偏平な矩形状に形成されている。   The outer container 21 has a container main body with an open upper end and a rectangular plate-shaped lid body that is welded to the container main body and closes the opening of the container main body, and is formed fluid-tight. The electrode body is formed in a flat rectangular shape, for example, by winding a positive electrode plate and a negative electrode plate in a spiral shape with a separator interposed therebetween, and further compressing in a radial direction.

正極(正極端子)22aおよび負極(負極端子)22bは、蓋体23の長手方向両端部にそれぞれ設けられ、蓋体23から突出している。正極端子22aおよび負極端子22bは、電極体の正極および負極にそれぞれ接続されている。一方の端子、例えば、正極端子22aは、蓋体23に電気的に接続され、外装容器21と同電位となっている。負極端子22bは、蓋体23を貫通して延びている。負極端子22bと蓋体23との間には、合成樹脂、ガラス等の絶縁体からなるシール材、例えば、ガスケットが設けられている。   The positive electrode (positive electrode terminal) 22 a and the negative electrode (negative electrode terminal) 22 b are provided at both ends in the longitudinal direction of the lid body 23, and project from the lid body 23. The positive electrode terminal 22a and the negative electrode terminal 22b are connected to the positive electrode and the negative electrode of the electrode body, respectively. One terminal, for example, the positive electrode terminal 22 a is electrically connected to the lid body 23 and has the same potential as the outer container 21. The negative terminal 22 b extends through the lid body 23. Between the negative electrode terminal 22b and the lid 23, a sealing material made of an insulating material such as synthetic resin or glass, for example, a gasket is provided.

容器本体の周囲には、容器の上端部および下端部を除いて、絶縁性のフィルムが巻装されている。このフィルムは、外装容器の膨張を規制するとともに、外装容器と他の電池セル12との短絡、あるいは、外装容器と他の部材との短絡を防止する。   An insulating film is wound around the container body except for the upper end and the lower end of the container. This film regulates expansion of the outer container and prevents a short circuit between the outer container and the other battery cell 12 or a short circuit between the outer container and the other member.

バスバー14(14α,…,14δ)は、図1に示すように、複数の電池セル12を、電気的に、直列または並列に接続する導電性部材である。複数の電池セル12は、隣合う電池セル12の正極端子と負極端子とが同一に並ぶ向きに配列されている。各バスバー14は、導電材料、例えば、アルミニウム等からなる金属板で形成されている。バスバー14は、一端部が電池セル12の正極端子22aに接合され、他端部が隣の電池セル12の負極端子22bに溶接され、これらの電極端子を電気的に接続している。このように、9個の電池セル12は、複数のバスバー14により直列に接続されている。同様に、複数の電池セル12は、正極同士、負極同士を並列に接続する場合にも使用される。   As shown in FIG. 1, the bus bar 14 (14α,..., 14δ) is a conductive member that electrically connects the plurality of battery cells 12 in series or in parallel. The plurality of battery cells 12 are arranged in the direction in which the positive electrode terminals and the negative electrode terminals of adjacent battery cells 12 are aligned. Each bus bar 14 is formed of a metal plate made of a conductive material, for example, aluminum. One end of the bus bar 14 is joined to the positive terminal 22a of the battery cell 12, and the other end is welded to the negative terminal 22b of the adjacent battery cell 12 to electrically connect these electrode terminals. Thus, the nine battery cells 12 are connected in series by the plurality of bus bars 14. Similarly, the plurality of battery cells 12 are also used when the positive electrodes and the negative electrodes are connected in parallel.

図3は、第1の実施形態に係る二次電池装置10を上面から見た図である。   FIG. 3 is a view of the secondary battery device 10 according to the first embodiment as viewed from above.

図4は、第1の実施形態に係る電池セル12α、β、γ、δの容量値の一例を示す図である。   FIG. 4 is a diagram illustrating an example of capacity values of the battery cells 12α, β, γ, and δ according to the first embodiment.

本実施形態では電池セル12αは18.0[Ah]、電池セル12βは22.0[Ah]、電池セル12γは19.5[Ah]、電池セル12δは20.5[Ah]の電池容量をもつ。   In this embodiment, the battery cell 12α is 18.0 [Ah], the battery cell 12β is 22.0 [Ah], the battery cell 12γ is 19.5 [Ah], and the battery cell 12δ is 20.5 [Ah]. It has.

この4つの電池セルの電池容量の中間値は、
(18.0+22.0+19.5+20.5)/4=20.0[Ah]
である。
The intermediate value of the battery capacity of these four battery cells is
(18.0 + 22.0 + 19.5 + 20.5) /4=20.0 [Ah]
It is.

このうち、電池セル12αは、中間値より低いので電池セル12βまたは12δを並列接続候補として選ぶ。   Among these, since the battery cell 12α is lower than the intermediate value, the battery cell 12β or 12δ is selected as a parallel connection candidate.

(例1)例えば、電池セル12αと電池セル12βを並列接続した場合には、
電池容量の平均値20.0[Ah]、合計40.0[Ah]の並列接続された電池セル群1が形成される。
(Example 1) For example, when the battery cell 12α and the battery cell 12β are connected in parallel,
A battery cell group 1 connected in parallel with an average value of battery capacity of 20.0 [Ah] and a total of 40.0 [Ah] is formed.

他方の電池セル群2は、残りの電池セル12γ、12δで構成され、同様に
電池容量の平均値20.0[Ah]、合計40.0[Ah]の並列接続された電池セル群2が形成される。
The other battery cell group 2 is composed of the remaining battery cells 12γ and 12δ. Similarly, a battery cell group 2 connected in parallel with an average battery capacity value of 20.0 [Ah] and a total of 40.0 [Ah] It is formed.

この電池セル群1と電池セル群2は、電池容量の平均値、合計値が電池セル群として似通ったものが接続できることとなる。   The battery cell group 1 and the battery cell group 2 can be connected to battery cells whose average and total battery capacities are similar as the battery cell group.

(例2)また、電池セル12αと、電池セル12δを並列接続した場合には、
電池容量の平均値19.25[Ah]、合計38.5[Ah]の並列接続された電池セル群1が形成される。
(Example 2) When battery cell 12α and battery cell 12δ are connected in parallel,
A battery cell group 1 connected in parallel with an average value of battery capacity of 19.25 [Ah] and a total of 38.5 [Ah] is formed.

また、電池セル12βと、電池セル12γが並列接続されることとなり、
電池容量の平均値20.75[Ah]、合計41.5[Ah]の並列接続された電池セル群2が形成されることとなる。
In addition, the battery cell 12β and the battery cell 12γ are connected in parallel,
The battery cell group 2 connected in parallel with an average value of 20.75 [Ah] for battery capacity and a total of 41.5 [Ah] is formed.

この場合各電池セル群の電池容量の平均値の差は、1.5[Ah]、合計値の差は3.0[Ah]となる。   In this case, the difference between the average values of the battery capacities of the battery cell groups is 1.5 [Ah], and the difference between the total values is 3.0 [Ah].

これに対して、似通った電池セル同士で電池セル群1,2を構成した場合について述べる。   On the other hand, the case where the battery cell groups 1 and 2 are comprised with similar battery cells is described.

(例3)例えば、電池セル12αと電池セル12γを並列接続すると、
電池容量の平均値18.75[Ah]、合計37.5[Ah]の並列接続された電池セル群1が形成される。
(Example 3) For example, when battery cell 12α and battery cell 12γ are connected in parallel,
A battery cell group 1 connected in parallel with an average value of battery capacity of 18.75 [Ah] and a total of 37.5 [Ah] is formed.

他方は、電池セル12βと、電池セル12γを並列接続し、
電池容量の平均値21.25[Ah]、合計42.5[Ah]の並列接続された電池セル群2が形成される。
On the other hand, the battery cell 12β and the battery cell 12γ are connected in parallel,
The battery cell group 2 connected in parallel with an average value of battery capacity of 21.25 [Ah] and a total of 42.5 [Ah] is formed.

これら2つの電池セル群を直列接続すると、電池容量の平均値の差は、2.5[Ah]、合計値の差は、5.0[Ah]となる。   When these two battery cell groups are connected in series, the difference between the average values of the battery capacities is 2.5 [Ah], and the difference between the total values is 5.0 [Ah].

直列接続された電池セルもしくは電池セル群で二次電池装置を構成した場合には、前述の二次電池装置の容量特性は最も電池容量の低い電池セルもしくは電池セル群の容量となる。従って、上記例1,2に比べ例3の二次電池装置の容量特性も低いこととなる。一方、二次電池装置の使用電圧範囲を無理に広げて、例3の二次電池装置を例1,2と同様な電池容量で稼動させることができる。その場合、過放電状態や過充電状態の電池セルもしくは電池セル群が発生し二次電池装置の寿命が著しく短くなる。従って、直列接続された場合は、最も電池容量の低い電池セル群に合わせた二次電池装置として評価され、上記例1,2に比べ例3の二次電池装置の性能は電池容量の観点から見て低いこととなる。   When the secondary battery device is configured by battery cells or battery cell groups connected in series, the capacity characteristic of the secondary battery device described above is the capacity of the battery cell or battery cell group having the lowest battery capacity. Therefore, the capacity characteristics of the secondary battery device of Example 3 are also lower than those of Examples 1 and 2. On the other hand, the working voltage range of the secondary battery device can be forcibly expanded, and the secondary battery device of Example 3 can be operated with the same battery capacity as in Examples 1 and 2. In that case, a battery cell or a battery cell group in an overdischarged state or an overcharged state is generated, and the life of the secondary battery device is remarkably shortened. Therefore, when connected in series, it is evaluated as a secondary battery device that matches the battery cell group with the lowest battery capacity, and the performance of the secondary battery device of Example 3 compared to Examples 1 and 2 above is from the viewpoint of battery capacity. It will be low to see.

(例4)なお、同様に似通った特性の電池セルの選択方法をとった場合、
電池セル12γと電池セル12δの組み合わせで電池セル群1が形成される。他方の電池セル12αと電池セル12βは似通った特性ではないとして選択されないこととなり、余りの電池セルとして廃棄されるなど利用しないまたは性能を発揮しにくい二次電池装置を構成せざるを得なくなる。
(Example 4) In addition, when the selection method of the battery cell of the similar characteristic is taken similarly,
The battery cell group 1 is formed by a combination of the battery cell 12γ and the battery cell 12δ. The other battery cell 12α and the battery cell 12β are not selected because they do not have similar characteristics, and a secondary battery device that is not used or hardly exhibits performance, such as being discarded as a surplus battery cell, must be configured.

つまり、図5に示すように複数の電池セル12を領域1(小容量側)と領域2(大容量側)に別け、各異なる領域から選択した電池セルを並列接続することにより本実施形態の電池セル群が形成される。この電池セル群を直列接続することにより本実施形態の二次電池装置が形成されることとなる。   That is, as shown in FIG. 5, the battery cell 12 is divided into a region 1 (small capacity side) and a region 2 (large capacity side), and battery cells selected from different regions are connected in parallel. A battery cell group is formed. By connecting the battery cell groups in series, the secondary battery device of the present embodiment is formed.

一般的に二次電池は環境温度が高いと充放電に関わらない化学反応が増加し、劣化が早くなる。従って、二次電池装置の内部発熱による温度上昇が均一で無い場合、二次電池装置内で電池セルもしくは電池セル群の自己発熱量の総和が同じであっても、高い環境温度にさらされる電池セルもしくは電池セル群が発生し、前記電池セルもしくは電池セル群が集中的に劣化する。前述のように、電池セルもしくは電池セル群が直列接続された二次電池装置の場合、二次電池装置の容量特性は最も電池容量の低い電池セルもしくは電池セル群に合わせた二次電池装置として評価される。従って、二次電池装置の内部発熱による温度上昇が均一で無い場合は温度上昇が均一な場合に比べて、二次電池装置としての寿命が短くなる。   In general, when the environmental temperature is high in a secondary battery, a chemical reaction not related to charging / discharging increases, and deterioration is accelerated. Therefore, when the temperature rise due to internal heat generation of the secondary battery device is not uniform, even if the total amount of self-heating of the battery cell or battery cell group is the same in the secondary battery device, the battery is exposed to a high environmental temperature. A cell or battery cell group is generated, and the battery cell or battery cell group deteriorates intensively. As described above, in the case of a secondary battery device in which battery cells or battery cell groups are connected in series, the capacity characteristic of the secondary battery device is a secondary battery device that matches the battery cell or battery cell group having the lowest battery capacity. Be evaluated. Therefore, when the temperature rise due to internal heat generation of the secondary battery device is not uniform, the lifetime as the secondary battery device is shortened compared to the case where the temperature rise is uniform.

一方、電池はその内部抵抗により充放電の際に自己発熱する。自己発熱は電池セルを流れる電流/容量の比が大きければ大きくなり、小さければ小さくなり、直列接続された複数の電池セルもしくは電池セル群で構成される二次電池装置では流れる電流値が一定となるため、容量の小さい電池セルもしくは電池セル群のほうの自己発熱量が大きくなる。また放電末期では内部抵抗が大きくなるため、自己発熱量が大きくなる。直列接続された複数の電池セルもしくは電池セル群で構成される二次電池装置では複数の電池セルもしくは電池セル群が二次電池装置内に密に収納されているため、二次電池装置内の温度環境はその電池セルもしくは電池セル群の自己発熱によるところが大きい。従って、二次電池装置内の温度上昇の均一性を高めるために大容量と低容量の電池セルもしくは大自己放電量と低自己放電量の電池セルを互い違いに並べることにより、容量の違いもしくは長期保管後の充電状態(もしくは放電状態)の違いによる電池セルの自己発熱量の熱分散を均一化でき、二次電池装置の寿命を長期化することができる。例えば、電池セル群1においては、電池セル12βの自己放電量が大きく、放電末期に熱が発生し易い場合、他方の電池セル群2においては、自己放電量の小さい電池セル12δを直接バスバー14によって接続しない位置に設置することで熱分散し易く好適である。   On the other hand, the battery self-heats during charge / discharge due to its internal resistance. Self-heating is larger when the ratio of current / capacitance flowing through the battery cells is larger, and smaller when the ratio is smaller. In a secondary battery device composed of a plurality of battery cells or battery cell groups connected in series, the value of the flowing current is constant. Therefore, the self-heating amount of the battery cell or the battery cell group having a smaller capacity becomes larger. Further, since the internal resistance increases at the end of discharge, the amount of self-heat generation increases. In a secondary battery device composed of a plurality of battery cells or battery cell groups connected in series, a plurality of battery cells or battery cell groups are closely stored in the secondary battery device. The temperature environment is largely due to the self-heating of the battery cell or battery cell group. Therefore, in order to improve the uniformity of temperature rise in the secondary battery device, by arranging the large capacity and low capacity battery cells or the large self discharge amount and low self discharge amount alternately, The heat distribution of the self-heating amount of the battery cell due to the difference in the charged state (or discharged state) after storage can be made uniform, and the life of the secondary battery device can be extended. For example, in the battery cell group 1, when the amount of self-discharge of the battery cell 12β is large and heat is likely to be generated at the end of discharge, in the other battery cell group 2, the battery cell 12δ having a small self-discharge amount is directly connected to the bus bar 14. It is easy to disperse heat by installing it at a position where it is not connected.

上記のように、複数の電池セル群から構成される二次電池装置において並列関係にある電池セルは、上記二次電池セルを構成する全ての電池セルの電池容量(または自己放電量)の平均値より高い電池容量と低い電池容量をもつ電池セルの組合せとなるよう選択する。これらの電池セル群を直列接続することにより、一定以上の性能の二次電池装置となる。また複数の二次電池装置を量産するに当たり余りが出にくい二次電池装置となる。   As described above, in the secondary battery device composed of a plurality of battery cell groups, the battery cells in parallel relation are the average of the battery capacities (or self-discharge amounts) of all the battery cells constituting the secondary battery cell. A combination of battery cells having higher and lower battery capacities is selected. By connecting these battery cell groups in series, a secondary battery device with a certain performance or more is obtained. In addition, the secondary battery device is less likely to have a surplus in mass production of a plurality of secondary battery devices.

次に、自己放電量について例示を行う。例として、電池セル12ε(15.0[mAh/日])と電池セル12γ(25.0[mAh/日])と電池セル12φ(18.0[mAh/日])と電池セル12η(22.0[mAh/日])の4つが製造された場合を記載する。   Next, the self-discharge amount is illustrated. As an example, battery cell 12ε (15.0 [mAh / day]), battery cell 12γ (25.0 [mAh / day]), battery cell 12φ (18.0 [mAh / day]), and battery cell 12η (22 .0 [mAh / day]) is manufactured.

(例5)例えば、電池セル12εと電池セル12γを並列接続した場合には、
自己放電量の平均値20.0[mAh/日]、合計40.0[mAh/日]の並列接続された電池セル群3が形成される。
(Example 5) For example, when the battery cell 12ε and the battery cell 12γ are connected in parallel,
A battery cell group 3 connected in parallel with an average value of self-discharge amount of 20.0 [mAh / day] and a total of 40.0 [mAh / day] is formed.

他方の電池セル群4は、残りの電池セル12φ、12ηで構成され、同様に
自己放電量の平均値20.0[mAh/日]、合計40.0[mAh/日]の並列接続された電池セル群として形成される。
The other battery cell group 4 is composed of the remaining battery cells 12φ and 12η, and similarly connected in parallel with an average self-discharge amount of 20.0 [mAh / day], totaling 40.0 [mAh / day]. It is formed as a battery cell group.

この電池セル群3と電池セル群4は、自己放電量の平均値、合計値が電池セル群として似通ったものを接続できることとなる。   The battery cell group 3 and the battery cell group 4 can be connected to those whose average value and total value of the self-discharge amount are similar as the battery cell group.

(例6)また、電池セル12εと、電池セル12ηを並列接続した場合には、
自己放電量の平均値18.5[mAh/日]、合計37.0[mAh/日]の並列接続された電池セル群3が形成される。
(Example 6) When battery cell 12ε and battery cell 12η are connected in parallel,
Battery cell group 3 connected in parallel with an average self-discharge amount of 18.5 [mAh / day] and a total of 37.0 [mAh / day] is formed.

また、電池セル12γと、電池セル12φが並列接続されることとなり、
自己放電量の平均値21.5[mAh/日]、合計43.0[mAh/日]の並列接続された電池セル群4が形成される。
In addition, the battery cell 12γ and the battery cell 12φ are connected in parallel,
A battery cell group 4 connected in parallel with an average value of self-discharge amount of 21.5 [mAh / day] and a total of 43.0 [mAh / day] is formed.

この場合各電池セル群の自己放電量の平均値の差は3.0[mAh/日]、合計値の差は6.0[mAh/日]となる。   In this case, the difference between the average values of the self-discharge amounts of the battery cell groups is 3.0 [mAh / day], and the difference between the total values is 6.0 [mAh / day].

これに対して、似通った自己放電量をもつ電池セル同士で電池セル群3,4を構成した場合について述べる。   On the other hand, the case where the battery cell groups 3 and 4 are constituted by battery cells having similar self-discharge amounts will be described.

(例7)例えば、電池セル12εと電池セル12φを並列接続すると、
自己放電量の平均値16.5[mAh/日]、合計33.0[mAh/日]の並列接続された電池セル群3が形成される。
(Example 7) For example, when battery cell 12ε and battery cell 12φ are connected in parallel,
The battery cell group 3 connected in parallel with an average value of self-discharge amount of 16.5 [mAh / day] and a total of 33.0 [mAh / day] is formed.

他方は、電池セル12γと、電池セル12ηを並列接続し、
自己放電量の平均値23.5[mAh/日]、合計47.0[mAh/日]の並列接続された電池セル群4が形成される。
On the other hand, the battery cell 12γ and the battery cell 12η are connected in parallel,
A battery cell group 4 connected in parallel with an average self-discharge amount of 23.5 [mAh / day] and a total of 47.0 [mAh / day] is formed.

これら2つの電池セル群を直列接続すると、自己放電量の平均値の差は、7.0[mAh/日]、合計値の差は、14.0[mAh/日]となる。   When these two battery cell groups are connected in series, the difference in the average value of the self-discharge amount is 7.0 [mAh / day], and the difference in the total value is 14.0 [mAh / day].

直列接続された電池セルもしくは電池セル群で二次電池装置を構成した場合には、上記二次電池装置を恣意的に充放電することなく長期間保管すると、電池セルもしくは電池セル群個々の充電状態(もしくは放電状態)が異なるここととなり、二次電池装置全体としてバランスが崩れた状態となる。   When a secondary battery device is configured with battery cells or battery cell groups connected in series, if the secondary battery device is stored for a long period of time without being charged and discharged arbitrarily, the battery cell or battery cell group can be charged individually. The state (or discharge state) is different here, and the balance of the secondary battery device as a whole is lost.

長期間保管し著しくバランスがずれた状態で二次電池装置の放電を行うと、自己放電量が大きく他の電池セルもしくは電池セル群よりも放電がすすんだ電池セルが最初に使用下限電圧に到達し、充電をすると自己放電量が少なく他の電池セルもしくは電池セル群よりも放電がなされていない電池セルが最初に使用上限電圧に到達し、二次電池装置の容量が保管前に比べて少ないこととなる。従って、上記例5、6に比べ例7の二次電池装置は、容量維持の観点から鑑みると保管期間を短く設定しなくてはならないし、もしくは短期保管で容量が低下することとなる。   When a secondary battery device is discharged after being stored for a long period of time and significantly out of balance, the battery cell that has a large self-discharge amount and is more discharged than other battery cells or battery cell groups first reaches the lower limit voltage However, when charged, the amount of self-discharge is small, and the battery cells that are not discharged more than the other battery cells or battery cell groups first reach the upper limit voltage for use, and the capacity of the secondary battery device is less than before storage It will be. Therefore, in the secondary battery device of Example 7 as compared with Examples 5 and 6, the storage period must be set shorter from the viewpoint of maintaining the capacity, or the capacity is reduced by short-term storage.

なお、二次電池装置の保管期間と使用電圧範囲を強制的に広げて、例7の二次電池装置を例5,6と同様の環境で稼働させることができる。その場合、過放電状態や過充電状態の電池セルもしくは電池セル群が発生し二次電池装置の寿命を著しく短期間としてしまう。   Note that the secondary battery device of Example 7 can be operated in the same environment as in Examples 5 and 6 by forcibly extending the storage period and the operating voltage range of the secondary battery device. In this case, overcharged or overcharged battery cells or battery cell groups are generated, and the life of the secondary battery device is remarkably shortened.


(第2の実施形態)
図6は、本実施形態に係る二次電池装置10の外観を示す斜視図である。

(Second Embodiment)
FIG. 6 is a perspective view showing an appearance of the secondary battery device 10 according to the present embodiment.

二次電池装置10は図6に示すように、例えば、複数の二次電池セル12a,…,12iを有する構成である。これら合計9つの電池セル12は、3つずつの電池セルを直列に配置し、バスバー14で電気的に接続し、3つの電池セル列を形成する。この3つの電池セル列を並行に並べ、バスバー14を用いて電気的に接続して二次電池装置10を構成する。   As shown in FIG. 6, the secondary battery device 10 has, for example, a configuration having a plurality of secondary battery cells 12 a,. These nine battery cells 12 are arranged in series by three battery cells and electrically connected by the bus bar 14 to form three battery cell rows. These three battery cell rows are arranged in parallel and electrically connected using the bus bar 14 to constitute the secondary battery device 10.

第1の実施形態と同様の構成要素(電池セル12、バスバー14等)については、説明を省略する。   The description of the same components (battery cells 12, bus bars 14, etc.) as in the first embodiment is omitted.

図8は、第1の実施形態に係る電池セル12a,…,12iの容量値の分散の一例を示す図である。小容量領域18.5〜19.5[Ah]、中容量領域19.5〜20.5[Ah]、大容量領域20.5〜21.5[Ah]としている。   FIG. 8 is a diagram illustrating an example of the dispersion of the capacity values of the battery cells 12a,..., 12i according to the first embodiment. The small capacity region is 18.5 to 19.5 [Ah], the medium capacity region is 19.5 to 20.5 [Ah], and the large capacity region is 20.5 to 21.5 [Ah].

本実施形態では、電池セル12a,12b,12cが領域1(小容量領域)に属し、電池セル12d,12e,12fが領域2(中容量領域)に属し、電池セル12g,12h,12iが領域3(大容量領域)に属している。この3つの領域数は本実施形態では電池セルの数を電池容量の大きい小さいによって3等分することにより行う。例えば、本実施形態では9つの電池セルが存在するため各領域に3つずつ電池セルが存在することとなる。これら小容量領域に属する電池セルは、中容量領域、大容量領域に属する電池セルの電池容量より少ない。中容量領域に属する電池セルは、小容量領域に属する電池セルよりも電池容量が大きく、大容量領域に属する電池セルよりも電池容量が少ない。大容量領域に属する電池セルは、少容量領域、中容量領域に属する電池セルよりも電池容量が大きい。   In the present embodiment, the battery cells 12a, 12b, and 12c belong to the region 1 (small capacity region), the battery cells 12d, 12e, and 12f belong to the region 2 (medium capacity region), and the battery cells 12g, 12h, and 12i belong to the region. 3 (large capacity area). In the present embodiment, the number of these three regions is determined by dividing the number of battery cells into three equal parts depending on whether the battery capacity is large or small. For example, in the present embodiment, since nine battery cells exist, three battery cells exist in each region. The battery cells belonging to these small capacity areas are less than the battery capacity of the battery cells belonging to the medium capacity area and the large capacity area. A battery cell belonging to the medium capacity region has a larger battery capacity than a battery cell belonging to the small capacity region, and has a smaller battery capacity than a battery cell belonging to the large capacity region. The battery cell belonging to the large capacity region has a larger battery capacity than the battery cell belonging to the small capacity region and the medium capacity region.

また、端数が出た場合は最も小容量なものまたは大容量な電池セルを除外するなどして3等分することが好適である。   Further, when the fraction is obtained, it is preferable to divide into three equal parts by excluding the battery with the smallest capacity or the battery with the largest capacity.

この他、電池セルの数が丁度3等分されるように各領域間の上限、下限臨界点を設定し、領域を分けても良い。   In addition, the upper and lower critical points between the regions may be set so that the number of battery cells is exactly divided into three, and the regions may be divided.

例えば、21個の電池セルがあった場合に、上記設定した小容量領域に8個、中容量領域に6個、大容量領域に7個有った場合、中容量領域の下限を小容量領域側に再設定し直し小容量領域に7個、中容量領域に7個、大容量領域に7個に再設定することが好適である。各製造工差による正規分布からの補正に利用することができる。   For example, when there are 21 battery cells, if there are 8 in the set small capacity area, 6 in the medium capacity area, and 7 in the large capacity area, the lower limit of the medium capacity area is set to the small capacity area. It is preferable to reset to 7 in the small capacity area, 7 in the medium capacity area, and 7 in the large capacity area. It can be used for correction from the normal distribution due to each manufacturing process difference.

この領域1、2、3のそれぞれに属する電池セルを一つずつ用いて電池セル3つが並列接続された電池セル群を形成する。この電池セル群を直列接続して二次電池装置を形成する。   A battery cell group in which three battery cells are connected in parallel is formed using one battery cell belonging to each of the regions 1, 2, and 3. The battery cells are connected in series to form a secondary battery device.

このように二次電池装置を組み合わせることにより、電池セル2つを並列接続する場合に比べてより似通った特性の電池セルを容量順に並列接続した二次電池装置を実現することができる。   By combining the secondary battery devices in this way, it is possible to realize a secondary battery device in which battery cells having similar characteristics compared to the case of connecting two battery cells in parallel are connected in parallel in the order of capacity.


(変形例1)
本実施形態は第1の実施形態の変形例である。

(Modification 1)
This embodiment is a modification of the first embodiment.

構成要素や容量の大きい、小さいとの分別は第一の実施形態と同様に行う。   The classification of the component and the capacity is large and small, as in the first embodiment.

このように電池セル12α,12γ一つの電池セルと見立て、電池セル12β、12δを一つの電池セルと見立てる。   Thus, the battery cells 12α and 12γ are regarded as one battery cell, and the battery cells 12β and 12δ are regarded as one battery cell.

このようにすることで、より不要な電池セルが生じにくい。また、複数の電池セルの容量差が非常に小さい場合に有効である。   By doing in this way, it is hard to produce a more unnecessary battery cell. It is also effective when the capacity difference between the plurality of battery cells is very small.

(変形例2)
本実施形態は第2の実施形態の変形例である。
(Modification 2)
This embodiment is a modification of the second embodiment.

構成要素や容量の大きい、小さいは第一の実施形態と同様である。   The components and the capacity are large and small are the same as in the first embodiment.

このように電池セル12a,12b,12c一つの電池セルと見立て、電池セル12d、12e,2fを一つの電池セルと見立て電池セル12g、12h、12iを一つの電池セルと見立てる。   Thus, the battery cells 12a, 12b, and 12c are regarded as one battery cell, the battery cells 12d, 12e, and 2f are regarded as one battery cell, and the battery cells 12g, 12h, and 12i are regarded as one battery cell.

このようにすることで、より不要な電池セルが生じにくい二次電池装置ができる。   By doing in this way, the secondary battery apparatus which is hard to produce a more unnecessary battery cell is made.

(変形例3)
本実施形態は、第1の実施形態、第2の実施形態の二次電池装置を製造する製造方法の実施例である。
(Modification 3)
The present embodiment is an example of a manufacturing method for manufacturing the secondary battery device of the first embodiment and the second embodiment.

例えば、車載用の電池として使用された複数の二次電池装置があった場合、これを解体し、電池セル単位に解体する。この場合、同じようなサイクル数を使用した二次電池装置であることが好適である。これら複数の電池セルの電池容量または自己放電量を計測し、これを分類する。この際、図5、図8に記載するような分布表または分布テーブルを図13に示すCPUおよびROMなどを備える演算装置により作成することが望ましい。   For example, when there are a plurality of secondary battery devices used as in-vehicle batteries, they are disassembled and disassembled in units of battery cells. In this case, a secondary battery device using the same number of cycles is preferable. The battery capacity or self-discharge amount of the plurality of battery cells is measured and classified. At this time, it is desirable to create a distribution table or a distribution table as shown in FIGS. 5 and 8 by an arithmetic unit including a CPU and a ROM shown in FIG.

本変形例の演算装置1000は、CPU100と、RAM(RWM)110と、通信IF120と、入力IF130と、表示IF140と、ROM150と、記憶部160と、タイマ170を含む構成である。その他、USBメモリ等の外部記憶装置を装着するIF(インターフェース)を備えていてもよい。演算装置1000は、プログラムを実行し演算するコンピュータである。   The arithmetic device 1000 of this modification includes a CPU 100, a RAM (RWM) 110, a communication IF 120, an input IF 130, a display IF 140, a ROM 150, a storage unit 160, and a timer 170. In addition, an IF (interface) for mounting an external storage device such as a USB memory may be provided. The arithmetic device 1000 is a computer that executes and calculates a program.

演算装置1000は、通信IF120を解して二次電池装置2000から電流値、環境温度、などのデータを収集し、収集したデータを用いて容量や各電池セルのCMU(cell monitoring unit)または二次電池装置(電池モジュールと称してもよい)のBMU(Battery management unit)に番号を与えるなどの演算処理を行う。   Arithmetic device 1000 collects data such as current value and environmental temperature from secondary battery device 2000 through communication IF 120, and uses the collected data to determine the capacity, CMU (cell monitoring unit) or two of each battery cell. Arithmetic processing such as assigning a number to a BMU (Battery management unit) of a secondary battery device (which may be referred to as a battery module) is performed.

CPU100は、ROM150に予め書き込んだ各プログラムをRAM110に読み出し、演算処理を行う演算処理部(マイクロプロセッサ)である。CPU100は、機能に合わせて複数のCPU群で構成することができる。またCPU内にRAM機能をもった内蔵メモリを備えていてもよい。   The CPU 100 is an arithmetic processing unit (microprocessor) that reads each program written in advance in the ROM 150 into the RAM 110 and performs arithmetic processing. The CPU 100 can be composed of a plurality of CPU groups in accordance with functions. Further, a built-in memory having a RAM function may be provided in the CPU.

RAM(RWM)110は、CPU100がプログラムを実行するに際して使用する記憶エリアであって、ワーキングエリアとして用いられるメモリである。処理に必要なデータを一次記憶させるのに好適である。   A RAM (RWM) 110 is a storage area used when the CPU 100 executes a program, and is a memory used as a working area. It is suitable for temporarily storing data necessary for processing.

通信IF120は、二次電池装置とデータ授受を行う通信装置、通信手段である。たとえば、ルーターがある。本実施形態では通信IF20と二次電池装置2000との接続は有線通信のごとく記載しているが、各種無線通信網に代替することができる。また、通信IF20と二次電池装置2000との接続は一方向または双方向通信可能台数なネットワークを介して行われる形態であってもよい。   The communication IF 120 is a communication device and a communication unit that exchange data with the secondary battery device. For example, there is a router. In the present embodiment, the connection between the communication IF 20 and the secondary battery device 2000 is described as in wired communication, but can be replaced with various wireless communication networks. In addition, the connection between the communication IF 20 and the secondary battery device 2000 may be performed via a network that is capable of one-way or two-way communication.

入力IF130は、入力部130と演算装置1000とを接続するインターフェースである。入力部131から送られてきた入力信号を変換しCPU100が認識可能な信号に変換する入力制御機能を有していても良い。本IFは端子等として必須の構成要素ではなく直接演算装置内の配線と接続されていてもよい。   The input IF 130 is an interface that connects the input unit 130 and the arithmetic device 1000. You may have the input control function which converts the input signal sent from the input part 131, and converts it into the signal which CPU100 can recognize. This IF is not an essential component as a terminal or the like, and may be directly connected to wiring in the arithmetic device.

入力部131は、コンピュータ装置が一般に備えている各種キーボードやボタン等の入力制御を行う入力装置、入力手段である。その他、人の発する声を認識することにより、入力信号として認識または検出する機能を備えていてもよい。本実施形態では演算装置1000の外部に設置しているが演算装置に組み込まれていている形態であってもよい。   The input unit 131 is an input device or an input unit that performs input control of various keyboards and buttons that are generally provided in a computer device. In addition, a function of recognizing or detecting an input signal by recognizing a voice uttered by a person may be provided. In this embodiment, it is installed outside the arithmetic device 1000, but may be incorporated in the arithmetic device.

表示IF140は、表示部140と演算装置1000とを接続するインターフェースである。CPU100から表示IF141を介して表示部130の表示制御がおこなわれてもよいし、グラフィックボードなど描画処理を行うLSI(GPU)により表示制御が行われてもよい。表示制御機能として例えば、画像データを復号化するデコード機能がある。IFを使用せず演算装置1000内部に直接接続される形態であってもよい。   The display IF 140 is an interface that connects the display unit 140 and the arithmetic device 1000. Display control of the display unit 130 may be performed from the CPU 100 via the display IF 141, or display control may be performed by an LSI (GPU) that performs drawing processing such as a graphic board. As a display control function, for example, there is a decoding function for decoding image data. It may be configured to be directly connected to the inside of the arithmetic device 1000 without using the IF.

表示部141は、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイなどの出力装置、出力手段である。その他、音を発する機能を備えていてもよい。本実施形態では演算装置1000の外部に設置しているが演算装置1000に組み込まれていてもよい。   The display unit 141 is an output device or output unit such as a liquid crystal display, an organic EL display, or a plasma display. In addition, you may provide the function to emit a sound. In this embodiment, it is installed outside the arithmetic device 1000, but may be incorporated in the arithmetic device 1000.

ROM150は、容量演算プログラム151と、付番プログラム152と、分布演算プログラム153と領域演算プログラム154と、再分配プログラム155とを記憶するプログラムメモリである。データの書き込みはできない非一次記憶媒体を用いることが好適であるが、データの読み出し、書き込みが随時できる半導体メモリ等の記憶媒体であってもよい。その他、画像データを表示部141にて人が認識可能な文字や図柄を表示させる表示プログラムや、コンテンツを通信IF120を介して外部装置に送信させるプログラム、取得したデータを記憶部160に予め定められた時間毎に記憶させる登録プログラムなどが格納されていてもよい。   The ROM 150 is a program memory that stores a capacity calculation program 151, a numbering program 152, a distribution calculation program 153, an area calculation program 154, and a redistribution program 155. A non-primary storage medium that cannot write data is preferably used, but a storage medium such as a semiconductor memory that can read and write data at any time may be used. In addition, a display program for displaying image data on characters and designs that can be recognized by a person on the display unit 141, a program for transmitting content to an external device via the communication IF 120, and acquired data are predetermined in the storage unit 160. In addition, a registration program to be stored every time may be stored.

容量演算プログラム151は、電池セル12の容量値[Ah]を取得または、電流値、電圧値などから演算する機能をCPU100に実現させる手段である。取得または生成した容量値を容量値DB161に格納する。   The capacity calculation program 151 is a means for causing the CPU 100 to realize a function of acquiring the capacity value [Ah] of the battery cell 12 or calculating from the current value, voltage value, and the like. The acquired or generated capacity value is stored in the capacity value DB 161.

付番プログラム152は、各電池セル12に識別番号(ID)を与える機能をCPU100に実現させる手段である。これらの番号を通信部120を介して各二次電池装置(電池モジュール)のBMU、各電池セルのCMUに送信し番号を付与する。与えた番号を付番DB162に格納する。例えば12個の電池セルがあった場合、順番に1〜12の番号を付与する。   The numbering program 152 is a means for causing the CPU 100 to realize a function of giving an identification number (ID) to each battery cell 12. These numbers are transmitted to the BMU of each secondary battery device (battery module) and the CMU of each battery cell via the communication unit 120 to give the numbers. The given number is stored in the numbering DB 162. For example, when there are 12 battery cells, numbers 1 to 12 are assigned in order.

分布演算プログラム153は、容量演算プログラム151でもとめた容量値[Ah]を用いて各容量[Ah]毎の個数分布を演算する機能をCPU100に実現させる手段である。演算処理結果をテーブル形式またはデータ形式にて分布DB163に格納する。例えば、図5や図8に記載するような分布図を作成する。   The distribution calculation program 153 is a means for causing the CPU 100 to realize the function of calculating the number distribution for each capacity [Ah] using the capacity value [Ah] obtained in the capacity calculation program 151. The calculation processing result is stored in the distribution DB 163 in a table format or a data format. For example, a distribution map as shown in FIGS. 5 and 8 is created.

領域演算プログラム154は、上記個数分布から領域の演算する機能をCPU100に実現させる手段である。演算した領域を領域DB164に格納する。例えば、入力部131にて入力された並列に並べたい電池セル12の数によって領域の数を分ける。各領域の臨界点を電池セル12の個数に合わせるように調整する機能をCPU100に実現する機能をさらに備えていても良い。   The area calculation program 154 is means for causing the CPU 100 to realize a function of calculating an area from the number distribution. The calculated area is stored in the area DB 164. For example, the number of regions is divided according to the number of battery cells 12 input in the input unit 131 and desired to be arranged in parallel. The CPU 100 may further have a function of realizing a function of adjusting the critical point of each region so as to match the number of battery cells 12.

再分配プログラム155は、電池セル12を上記分配した領域に従って、電池セル12の二次電池装置内の位置を分配する機能をCPU100に実現させる手段である。演算した結果を再分配DB165に格納する。例えば、3並列の二次電池装置であれば、上記付番DB162、分布DB163および領域DB164に格納した電池セル、分布、領域に従って、電池セルを並びかえる機能をCPU100に実現させる。   The redistribution program 155 is a means for causing the CPU 100 to realize a function of distributing the positions of the battery cells 12 in the secondary battery device in accordance with the area where the battery cells 12 are distributed. The calculated result is stored in the redistribution DB 165. For example, in the case of three parallel secondary battery devices, the CPU 100 is caused to realize a function of rearranging the battery cells according to the battery cells, distribution, and regions stored in the numbering DB 162, the distribution DB 163, and the region DB 164.

記憶部160は、容量値DB161と、付番DB162、分布DB163、領域DB164、再分配DB165を格納している。その他、CPU100の演算処理に必要なデータが記憶されている。   The storage unit 160 stores a capacity value DB 161, a numbering DB 162, a distribution DB 163, an area DB 164, and a redistribution DB 165. In addition, data necessary for the arithmetic processing of the CPU 100 is stored.

容量値DB161は、対象となる二次電池装置2000内に格納されている電池セル12の取得されたまたは演算処理された容量値を格納する。   The capacity value DB 161 stores the acquired or calculated capacity value of the battery cell 12 stored in the target secondary battery device 2000.

付番DB162は、対象となる上記電池セルの識別番号(ID)を格納する。   The numbering DB 162 stores the identification number (ID) of the target battery cell.

分布DB163は、対象となる上記電池セルの容量値や、自己放電量の分布を示す情報を格納する
領域DB164は、再分配後に製造したい二次電池装置の並列数によって分けられる領域の数や臨界値を格納する。
The distribution DB 163 stores the capacity values of the target battery cells and information indicating the distribution of the self-discharge amount. The area DB 164 is the number of areas divided by the parallel number of secondary battery devices to be manufactured after redistribution and the criticality. Stores a value.

再分配DB165は、再分配後の二次電池装置に好適な電池セルの配置情報を格納する。   The redistribution DB 165 stores battery cell arrangement information suitable for the secondary battery device after redistribution.

タイマ170は、時間を計測するための時計である。計測した時刻を利用してCPU100は、電流値、電圧値の計測、格納を行う。演算装置1000は、タイマ170に代えて、ネットワークを介して時間を取得する形態であってもよいし、タイマ170による計測とネットワークから得られる時刻とから時刻を演算する形態であってもよい。   The timer 170 is a clock for measuring time. Using the measured time, the CPU 100 measures and stores current values and voltage values. Arithmetic device 1000 may be configured to acquire time via a network instead of timer 170, or may be configured to calculate time from measurement by timer 170 and time obtained from the network.

二次電池装置2000は、電池と電池の電流値、電圧値等を計測する制御回路(BMU、CMUなど)を備えた装置である。電池には、各種二次電池が利用できる。   The secondary battery device 2000 is a device including a battery and a control circuit (BMU, CMU, etc.) that measures the current value, voltage value, and the like of the battery. Various secondary batteries can be used as the battery.

次に、変形例3による二次電池装置の製造について図15を参照しながら説明する。   Next, the manufacture of the secondary battery device according to Modification 3 will be described with reference to FIG.

図15は、変形例3の演算システムを使用した倍の二次電池装置の製造方法を示すフローチャートである。   FIG. 15 is a flowchart showing a method for manufacturing a double secondary battery device using the arithmetic system of the third modification.

まず、対象となる二次電池装置を選定する。   First, a target secondary battery device is selected.

まず、上記選定された二次電池装置内の電池セルの容量値が取得、演算される(S102)。   First, the capacity value of the battery cell in the selected secondary battery device is acquired and calculated (S102).

次に、各電池セル12に番号が与えられ、また、前記容量および電池セルの個数に応じて分布情報が作成される(S103)
前記電池セルを、並列にしたい電池セルの個数に従って配置位置が決定される。再配置された情報に従って二次電池装置が作成される(S104)。
Next, each battery cell 12 is given a number, and distribution information is created according to the capacity and the number of battery cells (S103).
The arrangement position of the battery cells is determined according to the number of battery cells to be arranged in parallel. A secondary battery device is created according to the rearranged information (S104).

このように、本変形例によれば、一度使った二次電池の再利用の際に、適切な電池セル分配を実現することができる。   Thus, according to this modification, appropriate battery cell distribution can be realized when reusing a secondary battery once used.

上記各実施形態、各変形例で説明した二次電池装置を構成する、例えば、非水系二次電池であるリチウムイオン二次電池は、電気自動車、ハイブリッド電気自動車、電動自転車の電源、あるいは、電気機器の電源として利用することができる。   The lithium-ion secondary battery that constitutes the secondary battery device described in each of the above embodiments and modifications, for example, is a non-aqueous secondary battery, such as an electric vehicle, a hybrid electric vehicle, a power source of an electric bicycle, or an electric It can be used as a power source for equipment.

また、これらに適用する際には、二次電池は、大容量化、高出力化を図るため、複数の電池セルをケース内に並べて配置し、これらの電池セルを並列あるいは直列に接続した二次電池装置を構成し、更に、複数の二次電池装置を接続した電池パックとして利用することができる。   In addition, when applied to these, the secondary battery has a plurality of battery cells arranged in a case in order to increase the capacity and output, and these battery cells are connected in parallel or in series. The secondary battery device can be used as a battery pack in which a plurality of secondary battery devices are connected.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、様々の省略、置き換え、変更を行うことができる。例えば、本実施形態では上面カバーや連結部材は金属部材であると記載しているが、いわゆるラミネートを外装材とした電池セルを用いても良いし、一つの外装材の内部に複数のコイルを備える電池セルであってもよい。各実施形態では、第1の実施形態にて4個、第2の実施形態で9個の電池セルを用いて説明しているが、この数に限られることはなく2の倍数個(2、4、6…)、3の倍数個(3、6、9…)、n(nは正の整数)の倍数個(n、2n、3n…nn)であってもよい。   As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. For example, in the present embodiment, the upper surface cover and the connecting member are described as metal members, but a battery cell using a so-called laminate as an exterior material may be used, or a plurality of coils may be provided inside one exterior material. The battery cell provided may be sufficient. In each of the embodiments, four battery cells are described in the first embodiment and nine battery cells are used in the second embodiment. However, the number of battery cells is not limited to this number. 4, 6..., A multiple of 3 (3, 6, 9...), And a multiple of n (n is a positive integer) (n, 2n, 3n... Nn).

リチウムイオン電池などの非水電解質二次電池に代えて、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池、アルミニウム電池、マグネシウム電池、固体電解質電池、空気電池などの二次電池であってもよい。なお、鉛蓄電池や、ニッケルカドミウム電池、鉛蓄電池に比べ、リチウムイオン電池、アルミニウム電池などは単位容量当たりの出力特性が高く、大電流を電池セル内に流すこととなりしたがって自己発熱も多くなる場合がある。よって、本実施形態はリチウムイオン電池などの高出力の二次電池に対してさらに好適である。   Instead of a nonaqueous electrolyte secondary battery such as a lithium ion battery, a secondary battery such as a nickel metal hydride battery, a nickel cadmium battery, a lead storage battery, an aluminum battery, a magnesium battery, a solid electrolyte battery, or an air battery may be used. Compared to lead-acid batteries, nickel-cadmium batteries, and lead-acid batteries, lithium-ion batteries, aluminum batteries, etc. have higher output characteristics per unit capacity, causing large currents to flow through the battery cells, thus increasing self-heating. is there. Therefore, the present embodiment is more suitable for a high output secondary battery such as a lithium ion battery.

これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10 … 二次電池装置
12(12a,…12s) … 電池セル(セル)
14(14a,…,14t) … バスバー
21 … 外缶
22a … 正極(正極端子)
22b … 負極(負極端子)
23 … 蓋体(蓋部)
10 ... Secondary battery device 12 (12a, ... 12s) ... Battery cell (cell)
14 (14a, ..., 14t) ... bus bar 21 ... outer can 22a ... positive electrode (positive electrode terminal)
22b ... Negative electrode (negative electrode terminal)
23 ... Lid (lid)

Claims (10)

並列に接続された第1の電池セルと第2の電池セルを有する第1の電池セル群と、
並列に接続された第3の電池セルと第4の電池セルを有する第2の電池セル群と、
を備え、
前記第1の電池セル群と、前記第2の電池セル群と、を直列に接続する二次電池装置であって、
前記第1の電池セルは、前記第1の電池セルと前記第2の電池セルと前記第3の電池セルと前記第4の電池セルとの電池容量の平均値よりも少ない容量値であり、
前記第2の電池セルは、前記平均値よりも大きい容量値であり、
前記第3の電池セルは、前記平均値よりも少ない容量値であり、
前記第4の電池セルは、前記平均値よりも大きい容量値である
二次電池装置。
A first battery cell group having a first battery cell and a second battery cell connected in parallel;
A second battery cell group having a third battery cell and a fourth battery cell connected in parallel;
With
A secondary battery device for connecting the first battery cell group and the second battery cell group in series,
The first battery cell has a capacity value smaller than an average value of battery capacity of the first battery cell, the second battery cell, the third battery cell, and the fourth battery cell,
The second battery cell has a capacity value larger than the average value,
The third battery cell has a capacity value smaller than the average value,
The fourth battery cell is a secondary battery device having a capacity value larger than the average value.
並列に接続された第1の電池セルと第2の電池セルと第3の電池セルを有する第1の電池セル群と、
並列に接続された第4の電池セルと第5の電池セルと第6の電池セルを有する第2の電池セル群と、
を備え、
前記第1の電池セル群と、前記第2の電池セル群と、を直列に接続する二次電池装置であって、
前記第1の電池セルと前記第2の電池セルと前記第3の電池セルと前記第4の電池セルと前記第5の電池セルと前記第6の電池セルとの電池容量の値に応じて2つずつ小容量領域と中容量領域と大容量領域の3つの領域に分けたとき、
前記第1の電池セルと前記第4の電池セルは、小容量領域に属し、
前記第2の電池セルと前記第5の電池セルは、中容量領域に属し、
前記第3の電池セルと前記第6の電池セルは、大容量領域に属する
二次電池装置。
A first battery cell group having a first battery cell, a second battery cell, and a third battery cell connected in parallel;
A second battery cell group having a fourth battery cell, a fifth battery cell, and a sixth battery cell connected in parallel;
With
A secondary battery device for connecting the first battery cell group and the second battery cell group in series,
According to the battery capacity values of the first battery cell, the second battery cell, the third battery cell, the fourth battery cell, the fifth battery cell, and the sixth battery cell. When divided into three areas of small capacity area, medium capacity area and large capacity area,
The first battery cell and the fourth battery cell belong to a small capacity region,
The second battery cell and the fifth battery cell belong to a medium capacity region,
The third battery cell and the sixth battery cell are secondary battery devices belonging to a large capacity region.
並列に接続された第1の電池セルと第2の電池セルを有する第1の電池セル群と、
並列に接続された第3の電池セルと第4の電池セルを有する第2の電池セル群と、
を備え、
前記第1の電池セル群と、前記第2の電池セル群と、を直列に接続する二次電池装置であって、
前記第1の電池セルは、前記第1の電池セルと前記第2の電池セルと前記第3の電池セルと前記第4の電池セルの電池容量の平均値よりも少ない自己放電量であり、
前記第2の電池セルは、前記平均値よりも大きい自己放電量であり、
前記第3の電池セルは、前記平均値よりも少ない自己放電量であり、
前記第4の電池セルは、前記平均値よりも大きい自己放電量である
二次電池装置。
A first battery cell group having a first battery cell and a second battery cell connected in parallel;
A second battery cell group having a third battery cell and a fourth battery cell connected in parallel;
With
A secondary battery device for connecting the first battery cell group and the second battery cell group in series,
The first battery cell has a self-discharge amount smaller than an average value of battery capacities of the first battery cell, the second battery cell, the third battery cell, and the fourth battery cell,
The second battery cell has a self-discharge amount larger than the average value,
The third battery cell has a self-discharge amount smaller than the average value,
The fourth battery cell is a secondary battery device having a self-discharge amount larger than the average value.
直列に接続された第1の電池セルと第2の電池セルを有する第1の電池セル列と、
直列に接続された第3の電池セルと第4の電池セルを有する第2の電池セル列と、
を備え、
前記第1の電池セル列と、前記第2の電池セル列と、を並行に接続し、
前記第1の電池セル列を構成する第1電池セルは、前記第1の電池セルと前記第2の電池セルと前記第3の電池セルと前記第4の電池セルの電池容量の平均値よりも少ない容量値であり、
前記第2の電池セルは、前記平均値よりも少ない容量値であり、
前記第3の電池セルは、前記平均値よりも大きい容量値であり、
前記第4の電池セルは、前記平均値よりも大きい容量値である
二次電池装置。
A first battery cell row having a first battery cell and a second battery cell connected in series;
A second battery cell row having a third battery cell and a fourth battery cell connected in series;
With
Connecting the first battery cell row and the second battery cell row in parallel;
The first battery cell constituting the first battery cell row is based on an average value of battery capacities of the first battery cell, the second battery cell, the third battery cell, and the fourth battery cell. Is less capacity value,
The second battery cell has a capacity value smaller than the average value,
The third battery cell has a capacity value larger than the average value,
The fourth battery cell is a secondary battery device having a capacity value larger than the average value.
前記第1の電池セルと前記第2の電池セルの電池容量の平均値は、
前記平均値よりも少ない容量値であり、
前記第3の電池セルと前記第4の電池セルの電池容量の平均値は、
前記平均値よりも大きい容量値である
請求項4に記載の二次電池装置。
The average value of the battery capacity of the first battery cell and the second battery cell is
The capacity value is smaller than the average value,
The average value of the battery capacity of the third battery cell and the fourth battery cell is
The secondary battery device according to claim 4, wherein the capacity value is larger than the average value.
第1の電池セルと第2の電池セルを有する第1の電池セル群と、
第3の電池セルと第4の電池セルを有する第2の電池セル群と、
を備え、
前記第1の電池セル群と、前記第2の電池セル群と、を接続する二次電池装置の製造方法であって、
前記第1の電池セルと前記第2の電池セルと前記第3の電池セルと前記第4の電池セルの電池容量の平均値よりも少ない容量値の前記第1の電池セルと、前記平均値よりも大きい容量値である前記第2の電池セルとを並列に接続し、
前記平均値よりも少ない容量値である前記第3の電池セルと、前記平均値よりも大きい容量値である前記第4の電池セルとを並列に接続し、
前記第1の電池セル群と前記第2のセル群を直列に接続する
二次電池装置の製造方法。
A first battery cell group having a first battery cell and a second battery cell;
A second battery cell group having a third battery cell and a fourth battery cell;
With
A method of manufacturing a secondary battery device for connecting the first battery cell group and the second battery cell group,
The first battery cell having a capacity value smaller than an average value of battery capacities of the first battery cell, the second battery cell, the third battery cell, and the fourth battery cell, and the average value Connecting the second battery cell having a larger capacity value in parallel,
Connecting the third battery cell having a capacity value smaller than the average value and the fourth battery cell having a capacity value larger than the average value in parallel;
A method for manufacturing a secondary battery device, wherein the first battery cell group and the second cell group are connected in series.
前記少ない容量値の第1の電池セルと、前記第3の電池セルと大きい容量の前記第2の電池セルと前記第4の電池セルがそれぞれ交互に隣接するように設置する
請求項6に記載する二次電池の製造方法。
The first battery cell having a small capacity value, the third battery cell, the second battery cell having a large capacity, and the fourth battery cell are installed so as to be alternately adjacent to each other. To manufacture a secondary battery.
第1の電池セルと第2の電池セルと第3の電池セルを有する第1の電池セル群と、
第4の電池セルと第5の電池セルと第6の電池セルを有する第2の電池セル群と、
を備え、
前記第1の電池セル群と、前記第2の電池セル群と、を接続する二次電池装置の製造方法であって、
前記第1の電池セルと前記第2の電池セルと前記第3の電池セルと前記第4の電池セルと前記第5の電池セルと前記第6の電池セルの電池容量の値に応じて2つずつ3つの領域に分けたとき、
小容量領域に属する前記第1の電池セルと、中容量領域に属する第2の電池セルと、大容量領域に属する第3の電池セルとを並列に接続し、
小容量領域に属する前記第4の電池セルと、中容量領域に属する第5の電池セルと、大容量領域に属する第6の電池セルとを並列に接続し、
前記第1の電池セル群と前記第2の電池セル群を直列に接続する
二次電池装置の製造方法。
A first battery cell group having a first battery cell, a second battery cell, and a third battery cell;
A second battery cell group having a fourth battery cell, a fifth battery cell, and a sixth battery cell;
With
A method of manufacturing a secondary battery device for connecting the first battery cell group and the second battery cell group,
2 depending on the value of the battery capacity of the first battery cell, the second battery cell, the third battery cell, the fourth battery cell, the fifth battery cell, and the sixth battery cell. When divided into three areas,
Connecting the first battery cell belonging to the small capacity region, the second battery cell belonging to the medium capacity region, and the third battery cell belonging to the large capacity region in parallel;
Connecting the fourth battery cell belonging to the small capacity region, the fifth battery cell belonging to the medium capacity region, and the sixth battery cell belonging to the large capacity region in parallel;
The manufacturing method of the secondary battery apparatus which connects the said 1st battery cell group and the said 2nd battery cell group in series.
前記第1の電池セルと前記第6の電池セルを隣接するように設置し、
前記第3の電池セルと前記第4の電池セルを隣接するように設置する
請求項8に記載する二次電池の製造方法。
Installing the first battery cell and the sixth battery cell adjacent to each other;
The method for manufacturing a secondary battery according to claim 8, wherein the third battery cell and the fourth battery cell are installed adjacent to each other.
演算処理部を備えた演算装置に、
二次電池装置を構成する複数の電池セルの電池容量を演算する第一の演算処理と、
前記複数の二次電池セルに識別番号を与える第二の演算処理と、
前記複数の二次電池セルの前記容量に対する個数分布を演算する第三の演算処理と、
前記個数分布に領域を設定する第四の演算処理と、
前記領域に従って二次電池装置内の前記複数の電池セルの配置位置を決定する第五の演算処理と、
を実現させる方法。
In an arithmetic device equipped with an arithmetic processing unit,
A first calculation process for calculating the battery capacity of a plurality of battery cells constituting the secondary battery device;
A second calculation process for giving an identification number to the plurality of secondary battery cells;
A third calculation process for calculating a number distribution for the capacity of the plurality of secondary battery cells;
A fourth calculation process for setting an area in the number distribution;
A fifth calculation process for determining an arrangement position of the plurality of battery cells in the secondary battery device according to the region;
How to realize.
JP2011287018A 2011-12-27 2011-12-27 Secondary battery device and manufacturing method thereof Active JP5973723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287018A JP5973723B2 (en) 2011-12-27 2011-12-27 Secondary battery device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287018A JP5973723B2 (en) 2011-12-27 2011-12-27 Secondary battery device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016134379A Division JP2016225304A (en) 2016-07-06 2016-07-06 Secondary battery device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2013137867A true JP2013137867A (en) 2013-07-11
JP5973723B2 JP5973723B2 (en) 2016-08-23

Family

ID=48913432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287018A Active JP5973723B2 (en) 2011-12-27 2011-12-27 Secondary battery device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5973723B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225304A (en) * 2016-07-06 2016-12-28 株式会社東芝 Secondary battery device and method of manufacturing the same
WO2017042892A1 (en) 2015-09-08 2017-03-16 株式会社東芝 Storage battery device, storage battery system, method, and program
KR20180122378A (en) 2016-03-08 2018-11-12 가부시끼가이샤 도시바 Battery monitoring device and method
WO2019131358A1 (en) * 2017-12-27 2019-07-04 パナソニックIpマネジメント株式会社 Battery pack
JP2019114449A (en) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 Battery information processing apparatus, battery manufacturing support apparatus, battery assembly, battery information processing method, and battery assembly manufacturing method
WO2019225436A1 (en) * 2018-05-23 2019-11-28 株式会社オートネットワーク技術研究所 Power supply device
US11223072B2 (en) 2017-09-25 2022-01-11 Lg Chem, Ltd. Apparatus for assigning identification information to slave battery management units

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154504A (en) * 1996-11-26 1998-06-09 Shin Kobe Electric Mach Co Ltd Battery pack
JP2007188715A (en) * 2006-01-12 2007-07-26 Nissan Motor Co Ltd Battery pack, unit cell arrangement method thereof and battery system
JP2008234854A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Battery pack
JP2008293703A (en) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2009004184A (en) * 2007-06-20 2009-01-08 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2009016162A (en) * 2007-07-04 2009-01-22 Panasonic Ev Energy Co Ltd Battery pack and its manufacturing method
JP2010086862A (en) * 2008-10-01 2010-04-15 Toshiba Corp Pack of battery pack and method for manufacturing pack of battery pack
JP2011171032A (en) * 2010-02-17 2011-09-01 Primearth Ev Energy Co Ltd Method for recycling secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154504A (en) * 1996-11-26 1998-06-09 Shin Kobe Electric Mach Co Ltd Battery pack
JP2007188715A (en) * 2006-01-12 2007-07-26 Nissan Motor Co Ltd Battery pack, unit cell arrangement method thereof and battery system
JP2008234854A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Battery pack
JP2008293703A (en) * 2007-05-22 2008-12-04 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2009004184A (en) * 2007-06-20 2009-01-08 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2009016162A (en) * 2007-07-04 2009-01-22 Panasonic Ev Energy Co Ltd Battery pack and its manufacturing method
JP2010086862A (en) * 2008-10-01 2010-04-15 Toshiba Corp Pack of battery pack and method for manufacturing pack of battery pack
JP2011171032A (en) * 2010-02-17 2011-09-01 Primearth Ev Energy Co Ltd Method for recycling secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017042892A1 (en) 2015-09-08 2017-03-16 株式会社東芝 Storage battery device, storage battery system, method, and program
KR20180122378A (en) 2016-03-08 2018-11-12 가부시끼가이샤 도시바 Battery monitoring device and method
US11693060B2 (en) 2016-03-08 2023-07-04 Kabushiki Kaisha Toshiba Battery monitoring device and method
JP2016225304A (en) * 2016-07-06 2016-12-28 株式会社東芝 Secondary battery device and method of manufacturing the same
US11223072B2 (en) 2017-09-25 2022-01-11 Lg Chem, Ltd. Apparatus for assigning identification information to slave battery management units
JP2019114449A (en) * 2017-12-25 2019-07-11 トヨタ自動車株式会社 Battery information processing apparatus, battery manufacturing support apparatus, battery assembly, battery information processing method, and battery assembly manufacturing method
JPWO2019131358A1 (en) * 2017-12-27 2020-12-10 パナソニックIpマネジメント株式会社 Battery pack
CN111033809A (en) * 2017-12-27 2020-04-17 松下知识产权经营株式会社 Battery pack
JP7203318B2 (en) 2017-12-27 2023-01-13 パナソニックIpマネジメント株式会社 battery pack
WO2019131358A1 (en) * 2017-12-27 2019-07-04 パナソニックIpマネジメント株式会社 Battery pack
JP2019204655A (en) * 2018-05-23 2019-11-28 株式会社オートネットワーク技術研究所 Power-supply device
CN112074971A (en) * 2018-05-23 2020-12-11 株式会社自动网络技术研究所 Power supply device
WO2019225436A1 (en) * 2018-05-23 2019-11-28 株式会社オートネットワーク技術研究所 Power supply device
JP7004219B2 (en) 2018-05-23 2022-01-21 株式会社オートネットワーク技術研究所 Power supply
CN112074971B (en) * 2018-05-23 2023-01-10 株式会社自动网络技术研究所 Power supply device
US11799175B2 (en) 2018-05-23 2023-10-24 Autonetworks Technologies, Ltd. Power supply device

Also Published As

Publication number Publication date
JP5973723B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5973723B2 (en) Secondary battery device and manufacturing method thereof
TWI481097B (en) Battery pack comprising battery cells based on a battery groups having various sizes or capacities
US20200185687A1 (en) Battery module, battery, and electric device
US8854780B2 (en) Protection circuit of battery pack and battery pack using the same
CN103001275B (en) Battery bag, electronic installation and battery bag arrangement
JP2009081981A (en) Charge state optimizing apparatus and battery pack system provided therewith
JP5416612B2 (en) Reuse method of secondary battery
KR20100114123A (en) Charging device and quality judging device of pack cell
EP3605126B1 (en) Apparatus and method for estimating soc of battery
KR101664246B1 (en) Correction method for voltage sensor of battery rack
US8013573B2 (en) Battery pack that provides precise voltage measurements of batteries when safety switch is present
JP6692188B2 (en) Batteries, accumulators, and electrical devices
US8192855B2 (en) Protective circuit module and secondary battery having the same
KR20110117992A (en) Battery charging system and charging method thereof
JP2008112654A (en) Secondary battery device and portable electronic equipment
US11774515B2 (en) Apparatus and method for determining error of a battery cell
JP2016225304A (en) Secondary battery device and method of manufacturing the same
KR200423760Y1 (en) Lithium-ion secondary battery
US20180159098A1 (en) Lithium-ion battery pack
JP2013037861A (en) Secondary battery device and manufacturing method of the same
KR20200018957A (en) Apparatus and method for balancing deterioration of battery
Yiu Battery technologies for electric vehicles and other green industrial projects
JP2012028049A (en) Method of manufacturing power storage device, and power storage device
JP2019219275A (en) Simulation method and simulation device
US20230411705A1 (en) Lithium iron phosphate battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160715

R151 Written notification of patent or utility model registration

Ref document number: 5973723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151