WO2012081821A1 - 선박용 전자 천측 항법 시스템 - Google Patents

선박용 전자 천측 항법 시스템 Download PDF

Info

Publication number
WO2012081821A1
WO2012081821A1 PCT/KR2011/008000 KR2011008000W WO2012081821A1 WO 2012081821 A1 WO2012081821 A1 WO 2012081821A1 KR 2011008000 W KR2011008000 W KR 2011008000W WO 2012081821 A1 WO2012081821 A1 WO 2012081821A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
ship
angle detection
stabilizer
detection sensor
Prior art date
Application number
PCT/KR2011/008000
Other languages
English (en)
French (fr)
Inventor
윤승재
Original Assignee
이영섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영섭 filed Critical 이영섭
Publication of WO2012081821A1 publication Critical patent/WO2012081821A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/02Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present invention relates to an electronic celestial navigation system for ships, and more particularly, in order to prevent an emergency situation and a ship accident of a navigating ship due to a failure or intentional failure signal of a satellite positioning system, An electronic overhead navigation system for a ship providing operation.
  • navigation can be defined as a method of inducing a moving object to reach from one point to another.
  • Such navigation is based on the control principle of fingerprint navigation, celestial navigation, dead reckoning, and propagation navigation.
  • Representative systems include the Inertial Navigation System (INS-Inertial Navigation System), the Global Navigation Satellite System (GNSS), the Radio Navigation System, and the Celestial Navigation System. Can be.
  • the current navigation system is a GPS satellite navigation system, which is composed of 24 satellites placed on Earth's orbit and a control station that controls satellites on the ground and a user's GPS receiver.
  • the four satellites are arranged in six orbits, each spaced 60 kHz, so that the GPS receiver can simultaneously receive five to eight satellite signals at all points on Earth.
  • the distance from the satellite measuring the position to the receiver is calculated by measuring the time difference between the occurrence and reception times of the code signal generated by each satellite, and then multiplying by the speed of light to calculate the position of the satellite. Using the orbital force transmitted from the satellite to determine the position of the GPS receiver relative to
  • the satellite positioning system can be strengthened or calibrated locally to improve the precision and stability of the positioning service, and to secure its own navigation system, reducing or eliminating external dependence from existing systems. Efforts are being made in various ways.
  • Loran equipment represented by Loran-C
  • Loran-C is being operated by country groups around the offshore region, but since 2010, the Coast Guard of the United States has announced the suspension of service to stop the positioning of GPS positioning system, If it generates, there is a problem that technical escape is impossible in various positioning issues, including navigation.
  • the present invention has been proposed to solve the above conventional problems
  • An object of the electronic electronic side navigation system for ships includes a sensor unit for precision angle detection and a thousand force database server to detect the current altitude of a celestial body when a satellite positioning system malfunctions or intentional failure signal generation, To detect.
  • Another object is to analyze the hull motion according to the waveform and wave period, to minimize the effects of the sea wave height, to enable stable positioning system operation.
  • Still another object is to provide a power supply in case of emergency of the ship further comprising an emergency power supply.
  • Still another object is to further include a user interface unit, input a control command for navigation operation and operation, and to display the position of the vessel to the outside.
  • Still another object is to detect a digital angle and an absolute angle position of a celestial body about three axes, including an angle detection sensor unit.
  • Another object is to detect the real-time positioning of the ship, including the various thousand database in the thousand force database server.
  • Still another object is to design a parameter for controlling the stabilizer by analyzing the hull motion according to the waveform and wave period, including the stabilizer controller.
  • the electronic celestial navigation system for ships is connected to an angle detection sensor unit for detecting an altitude of a celestial body and the angle detection sensor unit for the celestial positioning of a ship, and the altitude value and current time detected by the angle detection sensor unit. It characterized in that it comprises a thousand force database (DB) server to detect the position of the current position of the own ship, and transmits to the stabilizer control unit.
  • DB thousand force database
  • the electronic electronic navigation system for ships is connected to a stabilizer controller and a stabilizer controller for analyzing modeling of ship motion moments by analyzing hull motions according to waveforms and wave periods, thereby ensuring stable positioning function. It characterized in that it further comprises a stabilizer (Stabilizer) for driving a three-axis motor using a dedicated controller to operate as.
  • a stabilizer Stabilizer
  • the angle detection sensor unit of the electronic electronic navigation system for ships according to the present invention, the digital angle detection unit for detecting the digital angle value of the ship with respect to the x-axis, y-axis, z-axis and the digital angle detection unit, x-axis, It characterized in that it comprises an absolute angle position detection unit for detecting the absolute angle position value of the ship with respect to the y-axis, z-axis.
  • the celestial force database server of the electronic celestial navigation system for ships includes a body table (Bowditch) table, measurement altitude azimuth storage unit, celestial measurement storage unit, solar azimuth storage unit, celestial azimuth storage unit, navigation power (Nautical) Almanac) characterized in that it comprises at least one database of the table unit.
  • the stabilizer control unit of the ship's electronic sky navigation system is connected to the waveform condition analysis unit for analyzing the hull motion according to the waveform, wave period condition analysis for analyzing the hull motion according to the wave period It is connected with the wave period condition analysis unit, characterized in that it comprises a stabilizer motion predictor for analyzing the characteristics of the vessel motion, designing the moment of motion.
  • the ship's electronic celestial navigation system includes a sensor unit for precision angle detection and a celestial force database server, and when the fault or intentional fault signal of the satellite positioning system occurs, By detecting the real-time ship positioning by detection, there is an effect that can prevent an emergency situation or a ship accident of the navigational vessel.
  • 1 is a block diagram of the electronic electronic navigation system for ships according to the present invention.
  • Figure 2 is a detailed configuration of the angle detection sensor of the ship electronic navigation system for ships according to the present invention.
  • Figure 3 is a detailed configuration diagram of the cloth force DB server of the electronic cheoncheon navigation system for ships according to the present invention.
  • Figure 4 is a detailed configuration of the stabilizer control unit of the electronic electronic navigation system for ships according to the present invention.
  • FIG. 5 is a detailed configuration diagram of a user interface unit of the electronic electronic navigation system for ships according to the present invention.
  • Figure 6 is a conceptual diagram showing an embodiment of the electronic electronic navigation system for ships according to the present invention.
  • 1 is a diagram showing the configuration of the electronic navigation system for ships according to the present invention, the emergency power supply unit 10, the angle detection sensor unit 20, the thousand force database server 30, the stabilizer control unit 40 , The stabilizer unit 50 and the user interface unit 60.
  • the emergency power supply unit 10 serves to supply emergency power to the angle detection sensor unit 20, the stabilizer control unit 40 and the stabilizer unit 50 when an emergency situation of the ship occurs.
  • the emergency power supply 10 is configured as an independent power source including a lithium-ion (Li-ion) battery, the output voltage is 12VDc (10VDc ⁇ 38VDc), the battery measurement error is 5mV or less, The service time is more than 1 hour, and it is formed with the waterproof seal structure of IP Grade 7 or higher.
  • Li-ion lithium-ion
  • the angle detection sensor unit 20 detects the altitude of the object through the positioning of the object, and serves to deliver to the cloth force database server 30, as shown in the detailed configuration shown in Figure 2, the digital angle And a detection unit 21 and an absolute angular position detection unit 23.
  • the digital angle detection unit 21 serves to detect the digital angle value of the ship about the x-axis, y-axis, z-axis, the absolute angle position detection unit 23 is connected to the digital angle detection unit 21, It detects the absolute angular position value of the ship with respect to the x-axis, y-axis, and z-axis.
  • the angle detection sensor unit 20 is configured with an angle measurement accuracy of 0.5 degrees or less, and includes a controller integrating a three-axis Servo, a gyro sensor and an acceleration sensor. It is preferable.
  • the cloth force force database server 30 is connected to the angle detection sensor unit, and detects the position of the current position of the own ship according to the altitude value detected by the angle detection sensor unit, and transmits to the stabilizer control unit 40 As shown in the detailed configuration shown in FIG. 3, the body table (Bowditch) table 31, the measurement altitude azimuth storage unit 32, the celestial measurement storage unit 33, and the solar bearing angle storage unit 34 are provided. ), At least one database of the angular azimuth storage unit 35, the navigational table (Nautical Almanac) table unit 36 is preferably included.
  • the body table (Bowditch) table 31 is composed of HO 9 Bowditch Table 27 and HO 9 Bowditch Table 28,
  • the measurement altitude azimuth storage unit 32 is composed of HO 214 measurement altitude azimuth
  • the measurement measurement storage unit 33 is composed of HO229 measurement measurement table.
  • the solar azimuth storage unit 34 is composed of a HO 260 solar azimuth angle table and a Sight Reduction Table
  • the celestial azimuth storage unit 35 is composed of a HO 261 celestial azimuth angle table
  • the navigational (Nautical Almanac) table portion ( 36) can be configured as a Nautical Almanac Table.
  • the stabilizer control unit 40 analyzes the hull motion according to the waveform and wave period, and analyzes the modeling of the vessel motion moment, and transmits a control signal to the stabilizer unit 50, [Fig. 4] As shown in the detailed configuration diagram, the waveform condition analysis unit 41, wave period analysis unit 43 and the stabilizer motion prediction unit 45 is included.
  • the waveform condition analysis unit 41 serves to analyze the hull motion according to the waveform
  • the wave period condition analysis unit 43 is connected to the waveform condition analysis unit 41 to analyze the hull motion according to the wave period.
  • the stabilizer motion predictor 45 is connected to the wave period condition analysis unit 43 to analyze the characteristics of the ship motion and to design the optimum moment of motion.
  • the stabilizer unit 50 is connected to the stabilizer control unit 40 and serves to drive a three-axis motor using a dedicated controller to stably operate the positioning function.
  • the stabilizer unit 50 includes a protocol (NMEA-0183) between an upper controller and a gyro motion controller, and includes a 3-axis Servo-Motor Controller Board using a 32-bit dedicated controller. It is desirable to have a precision control algorithm using a double worm gear, to have a load of up to 20 kg ( ⁇ 44 lbs), a position resolution within 0.5 degrees, and a pan range of 360 degrees.
  • the user interface unit 60 is connected to the cloth force database server 30, as shown in Figure 5, includes a control input unit 61 and the ship position display unit 63.
  • the control input unit 61 serves to input a control command for navigation operation and operation
  • the ship position display unit 63 is in real time interlocked with the empirical force database server 30 to display the position of the own ship to the outside. Play a role.
  • the ship position display unit 63 of the user interface unit 60 may be configured with a black and white FSTN-LCD, and may have a resolution of 320 * 240 dots or more.
  • the ship's electronic celestial navigation system when the ship's electronic celestial navigation system according to the present invention is applied, when the satellite positioning system malfunctions or intentionally generates a fault signal, the altitude of the current celestial body is detected and the vessel positioning is detected, thereby making the emergency of the navigational vessel an emergency. It can enjoy the effect of preventing the situation or the ship accident.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Astronomy & Astrophysics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

본 발명은 위성측위 시스템의 고장 또는 의도적인 고장신호로 인해 항행 선박의 위급상황 및 선박사고가 발생하는 것을 방지하기 위하여, 선박의 측위를 검출하고 안정적인 선체 운동을 제공하는 선박용 전자 천측 항법 시스템에 관한 것으로, 본 발명에 따른 선박용 전자 천측 항법 시스템은 선박의 측위를 위해 천체에 대한 고도를 검출하는 각도검출센서부 및 상기 각도검출센서부와 연결되어, 상기 각도검출센서부에서 검출된 고도 값과 현재 시각에 따라 자선의 현 위치에 대한 측위를 검출하여, 상기 안정장치제어부에 전달하는 천측력 데이터베이스(DB) 서버를 포함하는 것을 기술적 특징으로 한다.

Description

선박용 전자 천측 항법 시스템
본 발명은 선박용 전자 천측 항법 시스템에 관한 것으로, 더 자세히는 위성측위 시스템의 고장 또는 의도적인 고장신호로 인해 항행 선박의 위급상황 및 선박사고가 발생하는 것을 방지하기 위하여, 선박의 측위를 검출하고 안정적인 운용을 제공하는 선박용 전자 천측 항법 시스템에 관한 것이다.
일반적으로 항법(Navigation)은 이동하는 물체를 한 지점으로부터 다른 한 지점으로 도달할 수 있게 유도하는 방법이라 정의할 수 있으며, 이러한 항법은 그 제어 원리에 따라 지문항법, 천측항법, 추측항법, 전파항법으로 나뉠 수 있으며, 대표적인 시스템은 관성 항법시스템(INS-Inertial Navigation System), 위성 항법시스템(GNSS : Global Navigation Satellite System), 전파 항법시스템(Radio Navigation System), 천측항법 시스템(Celestial Navigation System)을 들 수 있다.
현재 항법시스템은 GPS 위성 항법시스템이며, GPS는 지구 궤도 상에 배치된 24개의 인공위성과 지상에서 인공위성을 통제하는 관제국과 사용자의 GPS 수신기로 구성되어 있다. 인공위성들은 60ㅀ 간격인 6개의 궤도에 각각 4개씩 배치되어 GPS 수신기는 지구상의 모든 지점에서 동시에 5개 내지 8개의 인공위성 신호를 수신할 수 있다.
이러한 GPS는 삼각측량의 원리로 위치를 측정하는 인공위성으로부터 수신기까지의 거리는 각 위성에서 발생하는 부호 신호의 발생 시점과 수신 시점의 시간 차이를 측정한 다음 빛의 속도를 곱하여, 계산하고, 인공위성의 위치를 기준으로 GPS 수신기의 위치를 결정하기 위해서 인공위성으로부터 전송되는 궤도력을 사용한다.
하지만 이러한 GPS 의존도가 심화됨에 따라, 주권, 안보 및 관련기술의 종속화 등으로 많은 국가들이 독자적인 위성항법시스템 개발에 노력을 기술이고 있는 실정이다.
독자적인 위성측위시스템을 확보하지 못한 대부분의 국가에서는 위성측위시스템을 국지적으로 보강하거나 보정하여, 측위 서비스의 정밀성과 안정성을 제고하는 한편, 독자적인 항법시스템을 확보하여, 기존 시스템으로부터 대외 의존도를 줄이거나 탈피하고자 하는 노력을 다각도로 전개하고 있다.
국내에서도 Loran-C로 대표되는 로란장비가 연근해 지역을 중심으로 국가 그룹별로 운용되고 있지만 2010년부터 미국의 Coast Guard에서 서비스 중단을 공표함으로써, GPS 측위시스템의 측위위성을 정지시키거나, 임으로 고장신호를 발생 시킬 경우, 항법을 비롯한 각종 측위 현안에 기술적 탈피가 불가능한 문제점이 있는 것이다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 제안된 것으로,
본 발명에 따른 선박용 전자 천측 항법 시스템의 목적은 정밀 각도 검출용 센서부 및 천측력 데이터베이스 서버를 포함하여, 위성측위 시스템의 고장 또는 의도적인 고장신호 발생 시, 천체의 현재 고도를 검출하여, 선박 측위를 검출하는데 있다.
다른 목적은, 파형 및 파주기에 따른 선체 운동을 해석하여, 해상 파고에 따른 영향을 최소화하여, 안정적인 측위 시스템 운용을 가능하게 하는데 있다.
또 다른 목적은, 비상전원공급부를 더 포함하여, 선박의 비상 상황 발생 시, 전원을 공급하는데 있다.
또 다른 목적은, 사용자인터페이스부를 더 포함하여, 항법 조작 및 운용을 위한 제어명령을 입력하고, 선박의 위치를 외부로 표시하는데 있다.
또 다른 목적은, 각도검출센서부를 포함하여, 3축에 관한 천체의 디지털 각도 및 절대각 위치를 검출하는데 있다.
또 다른 목적은, 천측력 데이터베이스 서버에 다양한 천측 데이터베이스를 포함하여, 선박의 실시간 측위를 검출하는데 있다.
또 다른 목적은, 안정장치제어부를 포함하여, 파형 및 파주기에 따른 선체운동을 해석하여, 안정장치를 제어하는 파라미터를 설계하는데 있다.
본 발명에 따른 선박용 전자 천측 항법 시스템은 선박의 천측 측위를 위해 천체에 대한 고도를 검출하는 각도검출센서부 및 상기 각도검출센서부와 연결되어, 상기 각도검출센서부에서 검출된 고도 값과 현재 시각에 따라 자선의 현 위치에 대한 측위를 검출하여, 상기 안정장치제어부에 전달하는 천측력 데이터베이스(DB) 서버를 포함하는 것을 특징으로 한다.
또한 본 발명에 따른 선박용 전자 천측 항법 시스템은 파형 및 파주기에 따른 선체 운동을 해석하여, 선박 운동 모멘트의 모델링을 해석하는 안정장치제어부(Stabilizer controller) 및 상기 안정장치제어부와 연결되어, 측위 기능을 안정적으로 운용하도록 전용컨트롤러를 이용한 3축 모터를 구동하는 안정장치부(Stabilizer)를 더 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 선박용 전자 천측 항법 시스템의 각도검출센서부는, x축, y축, z축에 관한 선박의 디지털 각도 값을 검출하는 디지털각도검출부 및 상기 디지털각도검출부와 연결되어, x축, y축, z축에 관한 선박의 절대각 위치 값을 검출하는 절대각위치검출부를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 선박용 전자 천측 항법 시스템의 천측력 데이터베이스 서버는, 보디치(Bowditch) 테이블부, 계측고도 방위각 저장부, 천측계측 저장부, 태양방위각 저장부, 천체방위각 저장부, 항해력(Nautical Almanac) 테이블부 중 적어도 어느 하나 이상의 데이터베이스를 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 선박용 전자 천측 항법 시스템의 안정장치제어부는 파형에 따른 선체운동을 해석하는 파형조건해석부, 상기 파형조건해석부와 연결되어, 파주기에 따른 선체운동을 해석하는 파주기조건해석부 및 상기 파주기조건해석부와 연결되어, 선박운동의 특성을 해석하여, 운동모멘트를 설계하는 안정장치 운동 예측부를 포함하는 것을 특징으로 한다.
이상에서 설명한 바와 같이, 본 발명에 따른 선박용 전자 천측 항법 시스템은 정밀 각도 검출용 센서부 및 천측력 데이터베이스 서버를 포함하여, 위성측위 시스템의 고장 또는 의도적인 고장신호 발생 시, 천체에 대한 현재 고도를 검출하여, 실시간 선박 측위를 검출함으로써, 항행 선박의 위급상황 또는 선박사고를 방지 할 수 있는 효과가 있다.
또한, 파형 및 파주기에 따른 선체 운동을 해석함으로써, 해상 파고에 따른 영향을 최소화하여, 안정적인 측위 시스템 운용을 가능하게 하는 효과가 있다.
또한, 비상전원공급부를 더 포함함으로써, 선박의 비상 상황 발생 시, 안정적으로 전원을 공급하는데 있다.
또한, 사용자인터페이스부를 더 포함함으로써, 항법 조작 및 운용을 위한 제어명령을 신속하게 입력하고, 선박의 위치를 외부로 표시할 수 있는 효과가 있다.
또한, 각도검출센서부를 포함함으로써, 3축에 관한 선박의 디지털 각도 및 절대각 위치를 정밀하게 검출할 수 있는 효과가 있다.
또한, 천측력 데이터베이스 서버에 다양한 천측 데이터베이스를 포함함으로써, 선박의 실시간 측위를 검출할 수 있는 효과가 있다.
또한, 안정장치제어부를 포함함으로써, 파형 및 파주기에 따른 선체운동을 해석하여, 안정장치를 제어하는 파라미터를 설계할 수 있는 효과가 있다.
도 1은 본 발명에 따른 선박용 전자 천측 항법 시스템의 구성도.
도 2는 본 발명에 따른 선박용 전자 천측 항법 시스템의 각도검출센서부의 상세 구성도.
도 3은 본 발명에 따른 선박용 전자 천측 항법 시스템의 천측력 DB 서버의 상세 구성도.
도 4는 본 발명에 따른 선박용 전자 천측 항법 시스템의 안정장치제어부의 상세 구성도.
도 5는 본 발명에 따른 선박용 전자 천측 항법 시스템의 사용자인터페이스부의 상세 구성도.
도 6은 본 발명에 따른 선박용 전자 천측 항법 시스템의 일실시예를 나타내는 개념도.
이하, 본 발명에 따른 선박용 전자 천측 항법 시스템을 실시하기 위한 구체적인 내용을 설명하면 다음과 같다.
[도 1]은 본 발명에 따른 선박용 전자 천측 항법 시스템 구성도를 나타내는 도면으로, 비상전원 공급부(10), 각도검출센서부(20), 천측력데이터베이스서버(30), 안정장치제어부(40), 안정장치부(50) 및 사용자인터페이스부(60)로 구성된다.
상기 비상전원 공급부(10)는 선박의 비상 상황 발생 시, 상기 각도검출센서부(20), 안정장치 제어부(40) 및 안정장치부(50)에 비상 전원을 공급하는 역할을 한다.
본 발명의 실시예에서 상기 비상전원 공급부(10)는 리튬이온(Li-ion) 배터리를 포함하는 독립 전원으로 구성하며, 출력전압은 12VDc(10VDc~38VDc)이며, 배터리 측정오차는 5mV 이하이며, 사용시간을 1시간 이상이며, IP Grade 7 이상의 방수기밀 구조로 형성하였다.
상기 각도검출센서부(20)는 천체의 측위를 통해 천체의 고도를 검출하여, 상기 천측력데이터베이스서버(30)에 전달하는 역할을 하며, [도 2]에 도시된 상세 구성도와 같이, 디지털각도검출부(21) 및 절대각위치검출부(23)를 포함한다.
상기 디지털각도검출부(21)는 x축, y축, z축에 관한 선박의 디지털 각도 값을 검출하는 역할을 하며, 상기 절대각위치검출부(23)는 상기 디지털각도검출부(21)와 연결되어, x축, y축, z축에 관한 선박의 절대각 위치 값을 검출하는 역할을 한다.
또한, 본 발명에 따른 상기 각도검출센서부(20)는 각도 계측 정확도가 0.5도 이하로 구성되며, 3축 Servo, 자이로 센서(Gyro Sensor) 및 가속도 센서(Acceleration Sensor)를 통합한 컨트롤러를 포함하는 것이 바람직하다.
상기 천측력데이터베이스서버(30)는 각도검출센서부와 연결되어, 상기 각도검출센서부에서 검출된 고도 값에 따라 자선의 현 위치에 대한 측위를 검출하여, 상기 안정장치제어부(40)에 전달하는 역할을 하며, [도 3]에 도시된 상세 구성도와 같이, 보디치(Bowditch) 테이블부(31), 계측고도 방위각 저장부(32), 천측계측 저장부(33), 태양방위각 저장부(34), 천체방위각 저장부(35), 항해력(Nautical Almanac) 테이블부(36) 중 적어도 어느 하나 이상의 데이터베이스를 포함하는 것이 바람직하다.
본 발명의 실시예에서 상기 보디치(Bowditch) 테이블부(31)는 HO 9 Bowditch Table 27과 HO 9 Bowditch Table 28로 구성하고, 상기 계측고도 방위각 저장부(32)는 HO 214 계측고도 방위각표로 구성하고, 상기 천측계측 저장부(33)는 HO229 천측계측표로 구성한다.
또한, 상기 태양방위각 저장부(34)는 HO 260 태양방위각 표와 Sight Reduction Table로 구성하고, 상기 천체방위각 저장부(35)는 HO 261 천체방위각표로 구성하고, 상기 항해력(Nautical Almanac) 테이블부(36)는 Nautical Almanac Table로 구성 가능하다.
상기 안정장치제어부(40)는 파형 및 파주기에 따른 선체 운동을 해석하여, 선박 운동 모멘트의 모델링을 해석하여, 상기 안정장치부(50)에 제어신호를 전달하는 역할을 하며, [도 4]에 도시된 상세 구성도와 같이, 파형조건해석부(41), 파주기조건해석부(43) 및 안정장치 운동 예측부(45)를 포함한다.
상기 파형조건 해석부(41)는 파형에 따른 선체운동을 해석하는 역할을 하며, 상기 파주기 조건 해석부(43)는 상기 파형조건해석부(41)와 연결되어, 파주기에 따른 선체운동을 해석하는 역할을 하며, 상기 안정장치 운동 예측부(45)상기 파주기조건해석부(43)와 연결되어, 선박운동의 특성을 해석하여, 최적의 운동모멘트를 설계하는 역할을 한다.
상기 안정장치부(50)는 상기 안정장치제어부(40)와 연결되어, 측위 기능을 안정적으로 운용하도록 전용컨트롤러를 이용한 3축 모터를 구동하는 역할을 수행한다.
또한 본 발명에 따른 상기 안정장치부(50)는 상위 컨트롤러와 자이로 모션 제어부(Gyro motion controller) 간의 프로토콜(NMEA-0183)을 구비하고, 32bit 전용 컨트롤러를 사용한 3축 Servo-Motor Controller Board를 구비하고, 더블 웜 기어를 이용한 정밀 제어 알고리즘을 구비하고, 적재 하중이 최대 20Kg(≒44lbs)로 구성되고, Position Resolution을 0.5도 이내로 구성하고, Pan Range를 360 도로 구성하는 것이 바람직하다.
상기 사용자인터페이스부(60)는 상기 천측력 데이터베이스 서버(30)와 연결되며, [도 5]에 도시된 바와 같이, 제어입력부(61) 및 선박위치 표시부(63)을 포함한다.
상기 제어입력부(61)는 항법 조작 및 운용을 위한 제어명령을 입력하는 역할을 하며, 상기 선박위치 표시부(63)는 상기 천측력 데이터베이스 서버(30)와 실시간 연동되어 자선의 위치를 외부로 표시하는 역할을 한다.
본 발명의 실시예에서 상기 사용자인터페이스부(60)의 선박위치 표시부(63)는 흑백 FSTN-LCD로 구성하여, 해상도를 320*240 dots 이상으로 구성가능하다.
이상에서 설명한 바와 같이, 본 발명에 따른 선박용 전자 천측 항법 시스템을 적용하면 위성측위 시스템의 고장 또는 의도적인 고장신호 발생 시, 현재 천체에 대한 고도를 검출하여, 선박 측위를 검출함으로써, 항행 선박의 위급상황 또는 선박사고를 방지 할 수 있는 효과를 누릴 수 있는 것이다.
이상 본 발명의 실시예로 설명하였으나 본 발명의 기술적 사상이 상기 실시예로 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범주에서 다양한 선박용 전자 천측 항법 시스템으로 구현할 수 있다.
[부호의 설명]
10 : 비상전원공급부
20 : 각도검출센서부
21 : 디지털 각도 검출부
23 : 절대각 위치 검출부
30 : 천측력 데이터베이스(DB) 서버
31 : 보디치(Bowditch) 테이블부
32 : 계측고도 방위각 저장부
33 : 천측계측 저장부
34 : 태양방위각 저장부
35 : 천체방위각 저장부
36 : 항해력(Nautical Almanac) 테이블부
40 : 안정장치 제어부(Stabilizer controller)
41 : 파형조건 해석부
43 : 파주기조건 해석부
45 : 안정장치 운동 예측부
50 : 안정장치부(Stabilizer)
60 : 사용자인터페이스부
61 : 제어입력부
63 : 선박위치표시부

Claims (7)

  1. 선박의 측위를 위해 천체에 대한 고도를 검출하는 각도검출센서부 및
    상기 각도검출센서부와 연결되어, 상기 각도검출센서부에서 검출된 고도 값과 현재 시각에 따라 자선의 현 위치에 대한 측위를 검출하여, 상기 안정장치제어부에 전달하는 천측력 데이터베이스(DB) 서버를 더 포함하는 것을 특징으로 하는 선박용 전자 천측 항법 시스템.
  2. 제1항에 있어서,
    파형 및 파주기에 따른 선체 운동을 해석하여, 선박 운동 모멘트의 모델링을 해석하는 안정장치제어부(Stabilizer controller) 및
    상기 안정장치제어부와 연결되어, 측위 기능을 안정적으로 운용하도록 전용컨트롤러를 이용한 3축 모터를 구동하는 안정장치부(Stabilizer)를 더 포함하는 것을 특징으로 하는 선박용 전자 천측 항법 시스템.
  3. 제2항에 있어서,
    상기 각도검출센서부 및 상기 안정장치제어부와 연결되어, 선박의 비상 상황 발생 시, 전원을 공급하는 비상전원공급부를 더 포함하는 것을 특징으로 하는 선박용 전자 천측 항법 시스템.
  4. 제2항에 있어서,
    상기 천측력 데이터베이스 서버와 연결되어, 사용자인터페이스부를 더 포함하며,
    상기 사용자인터페이스부는 항법 조작 및 운용을 위한 제어명령을 입력하는 제어입력부 및
    상기 천측력 데이터베이스 서버와 실시간 연동되어 자선의 위치를 외부로 표시하는 선박위치 표시부를 포함하는 것을 특징으로 하는 선박용 전자 천측 항법 시스템.
  5. 제2항에 있어서,
    상기 각도검출센서부는 , x축, y축, z축에 관한 선박의 디지털 각도 값을 검출하는 디지털각도검출부 및
    상기 디지털각도검출부와 연결되어, x축, y축, z축에 관한 선박의 절대각 위치 값을 검출하는 절대각위치검출부를 포함하는 것을 특징으로 하는 선박용 전자 천측 항법 시스템.
  6. 제2항에 있어서,
    상기 천측력 데이터베이스 서버는, 보디치(Bowditch) 테이블부, 계측고도 방위각 저장부, 천측계측 저장부, 태양방위각 저장부, 천체방위각 저장부, 항해력(Nautical Almanac) 테이블부 중 적어도 어느 하나 이상의 데이터베이스를 포함하는 것을 특징으로 하는 선박용 전자 천측 항법 시스템.
  7. 제2항에 있어서,
    상기 안정장치제어부는,
    파형에 따른 선체운동을 해석하는 파형조건해석부;
    상기 파형조건해석부와 연결되어, 파주기에 따른 선체운동을 해석하는 파주기조건해석부 및
    상기 파주기조건해석부와 연결되어, 선박운동의 특성을 해석하여, 운동모멘트를 설계하는 안정장치 운동 예측부를 포함하는 것을 특징으로 하는 선박용 전자 천측 항법 시스템.
PCT/KR2011/008000 2010-10-29 2011-10-25 선박용 전자 천측 항법 시스템 WO2012081821A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100106922A KR101212587B1 (ko) 2010-10-29 2010-10-29 선박용 전자 천측 항법 시스템
KR10-2010-0106922 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012081821A1 true WO2012081821A1 (ko) 2012-06-21

Family

ID=45501114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008000 WO2012081821A1 (ko) 2010-10-29 2011-10-25 선박용 전자 천측 항법 시스템

Country Status (2)

Country Link
KR (1) KR101212587B1 (ko)
WO (1) WO2012081821A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794558C1 (ru) * 2022-05-30 2023-04-21 Акционерное общество Научно-производственное предприятие "Авиационная и Морская Электроника" (АО НПП "АМЭ") Устройство измерения высоты небесных светил
CN116127614A (zh) * 2023-04-17 2023-05-16 中国船舶集团有限公司第七〇七研究所 基于求解风包络的动力定位能力分析方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230075854A (ko) 2021-11-23 2023-05-31 한국해양과학기술원 고정밀 상대항법을 위한 다중 센서 모듈 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095422A (ja) * 1995-06-21 1997-01-10 Yokogawa Denshi Kiki Kk 電子海図システム
JP2001201342A (ja) * 2000-01-19 2001-07-27 Hitachi Ltd 画像処理装置等
JP2007003315A (ja) * 2005-06-23 2007-01-11 Mitsui Eng & Shipbuild Co Ltd 測位データ処理方法
JP2010097243A (ja) * 2008-10-14 2010-04-30 Seiko Epson Corp 登山支援情報処理装置、データ生成装置、登山支援情報処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH095422A (ja) * 1995-06-21 1997-01-10 Yokogawa Denshi Kiki Kk 電子海図システム
JP2001201342A (ja) * 2000-01-19 2001-07-27 Hitachi Ltd 画像処理装置等
JP2007003315A (ja) * 2005-06-23 2007-01-11 Mitsui Eng & Shipbuild Co Ltd 測位データ処理方法
JP2010097243A (ja) * 2008-10-14 2010-04-30 Seiko Epson Corp 登山支援情報処理装置、データ生成装置、登山支援情報処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2794558C1 (ru) * 2022-05-30 2023-04-21 Акционерное общество Научно-производственное предприятие "Авиационная и Морская Электроника" (АО НПП "АМЭ") Устройство измерения высоты небесных светил
CN116127614A (zh) * 2023-04-17 2023-05-16 中国船舶集团有限公司第七〇七研究所 基于求解风包络的动力定位能力分析方法及系统

Also Published As

Publication number Publication date
KR101212587B1 (ko) 2012-12-14
KR20110133404A (ko) 2011-12-12

Similar Documents

Publication Publication Date Title
CN109470247B (zh) 一种基于电子海图的复杂海域航行安全辅助信息指示系统
Cruz et al. The MARES AUV, a modular autonomous robot for environment sampling
CN109367738B (zh) 一种水下自主作业机器人及其作业方法
CN111811537A (zh) 一种捷联惯性导航的误差补偿方法及导航系统
US20090031940A1 (en) Underwater Vehicle With Sonar Array
CN105841698B (zh) 一种无需调零的auv舵角精确实时测量系统
WO2003059734A1 (en) Construction of an underwater vehicle
WO2012081821A1 (ko) 선박용 전자 천측 항법 시스템
KR20200075942A (ko) 항로표지용 드론 착륙 균형유지 장치 및 방법
CN101556154A (zh) 定位及路径地图生成系统及其数据采集分析方法
KR100376313B1 (ko) 북반구 극지에 관한 헤딩각을 측정하기 위해 설계된 관성및 자계 센서 시스템
WO2022139021A1 (ko) 증강현실을 이용한 선박 안전운항 관리시스템
WO2023071703A1 (zh) 一种多船运动姿态实时监测系统
CN101718555B (zh) 一种高精度数字磁罗经装置
CN208921138U (zh) 惯性导航系统在运载体上的安装结构
WO2019088346A1 (ko) Hils 기반의 선박조종 성능 계측관리 시스템
JPH1090017A (ja) 海面定点を浮遊する多目的ポッド
Cruz et al. DART—A portable deep water hovering AUV
JP2001330466A (ja) 水中航走体とその方位・姿勢角検出方法
Chensky et al. Water environment monitoring with an autonomous unmanned surface vessel
RU198953U1 (ru) Устройство определения параметров движения судна
CN112241170B (zh) 基于并联六自由度平台的无人艇自稳定系统
Kondo et al. Object observation in detail by the AUV" Tri-Dog 1" with laser pointers
RU2313067C2 (ru) Способ определения навигационных параметров летательного аппарата и устройство для его осуществления
CN114739389B (zh) 一种深海作业型缆控潜器水下导航装置及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849468

Country of ref document: EP

Kind code of ref document: A1