WO2023071703A1 - 一种多船运动姿态实时监测系统 - Google Patents

一种多船运动姿态实时监测系统 Download PDF

Info

Publication number
WO2023071703A1
WO2023071703A1 PCT/CN2022/123022 CN2022123022W WO2023071703A1 WO 2023071703 A1 WO2023071703 A1 WO 2023071703A1 CN 2022123022 W CN2022123022 W CN 2022123022W WO 2023071703 A1 WO2023071703 A1 WO 2023071703A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
data
real
attitude
time monitoring
Prior art date
Application number
PCT/CN2022/123022
Other languages
English (en)
French (fr)
Inventor
昝英飞
袁利毫
韩端锋
Original Assignee
哈尔滨工程大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工程大学 filed Critical 哈尔滨工程大学
Publication of WO2023071703A1 publication Critical patent/WO2023071703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • G01C21/1654Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with electromagnetic compass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry

Definitions

  • the invention relates to a real-time monitoring system for multi-vessel motion attitude, which belongs to the field of measurement.
  • the present invention provides a real-time monitoring system for multi-vessel movement and attitude, which can measure the real-time movement and attitude of ships in real-time during the platform dismantling operation, and monitor the wind and waves of the ocean during the operation. Real-time measurement of flow, various hull motions and attitudes, and synchronous data transmission.
  • a real-time monitoring system for multi-vessel motion attitude of the present invention includes a first test system located on the No. 1 crane ship and a second test system located on the No. 2 crane.
  • the first test system includes a data timing synchronization transmission system, a wind speed and direction measurement device, a wave measurement device, a data acquisition and analysis system, an attitude measurement device, and a position measurement device.
  • the second test system includes a data timing synchronous transmission system, a data collection and analysis system, a network communication system, an attitude measurement device, and a position measurement device.
  • the data timing synchronous transmission system is connected with each measuring device, collects data and adds a time stamp and sends it to the data collection and analysis system through the network communication system.
  • the core switch of the network communication system realizes the data transmission link of the first test system and the second test system through the wireless access node and the network bridge device.
  • Each measuring device in the first test system and the second test system selects a wired or wireless data communication method according to the installation position of the real ship.
  • the attitude measurement device of the belt removal platform sends data to the first test system and the second test system through the data timing synchronization transmission system.
  • the network communication system establishes a communication link between the first heavy ship, the second heavy ship and the transport ship through a network bridge, and the network controller is deployed on the first heavy ship.
  • all the measurement devices of the mainframes of the principle data acquisition analysis processing system in the first and second test systems are equipped with the data timing synchronization transmission module, and the data is transmitted through a wireless link
  • the first and second testing systems to the altimetry radar, which are respectively arranged at the bow, midship and stern of the ship on both sides.
  • the data timing synchronous transmission module is provided with a wireless wired communication mode, uses GPS timing to obtain an accurate time signal, and uses this as a clock reference for data recording.
  • the data timing synchronous transmission module includes a GPS receiver, a processor and a communication module.
  • the communication module can be connected to the router signal through a WIFI or Ethernet interface.
  • the module is powered by a lithium battery, which can be deployed quickly and is easy to install.
  • dual GPS antennas are arranged on the No. 1 crane ship and the No. 2 crane ship.
  • an anemometer is installed at a position 10 meters above the No. 1 crane ship and No. 2 crane ship.
  • three radar altimeters are installed on the left and right sides of the No. 1 crane ship and the No. 2 crane ship, and the horizontal distance between the two radar altimeters on one side is not less than 20 meters.
  • the real-time monitoring system for multi-vessel movement and attitude of the present invention can measure the movement and attitude data of ships in real time during the platform dismantling operation, and the data of multiple measuring devices will be processed and processed by the data analysis and processing system to display the same time in real time
  • the environmental variables under the axis and the real-time attitude data of the ship under the action of environmental load and operating load and dynamically display the position data of the operating ship and the target platform. It is convenient to more accurately grasp the status and operation effect of the operation ship, equipment and target platform during the operation process, and provide data support for the on-site operation command and decision-making.
  • Fig. 1 is a schematic diagram of the system of the present invention.
  • Fig. 2 is a schematic diagram of a data timing synchronous transmission module of the present invention.
  • Fig. 3 is a system block diagram of the present invention.
  • a real-time monitoring system for multi-vessel movement and attitude of the present invention including the first test system located on the No. 1 crane ship, the second test system located on the No. 2 crane, and the attitude measurement device and network communication system located on the platform to be dismantled .
  • the first test system includes a wave measuring device, a wind speed and direction measuring device, a freeboard height measuring device, a heading measuring device, an RTK positioning measuring device, a ship attitude measuring device, a platform attitude measuring device and a data acquisition and analysis system host.
  • the host of the wave measuring device of the first measurement system obtains the gyrocompass heading measurement data, the GNSS receiver data, and the wind speed and direction instrument data through the serial port communication for auxiliary calculation of the wave current data, and the measured wave current data is sent to the data acquisition through the serial port Analyze system hosts.
  • the six-degree-of-freedom data of the ship measured by the inertial measurement unit is directly sent to the host computer of the data acquisition and analysis system through the serial port.
  • the heading measurement data measured by the gyrocompass are sent to the host computer of the data acquisition, analysis and processing system through the serial port.
  • the measurement data of the wind speed and direction measurement device, the freeboard height measurement device, and the platform attitude measurement device are connected to the network communication system through the data timing synchronous transmission system, and sent to the data acquisition and analysis system host;
  • the second test module includes wind speed and wind direction Measuring device, freeboard height measuring device, heading measuring device, RTK positioning measuring device, ship attitude measuring device and the host of the second data acquisition and analysis system.
  • the deployment and data communication methods of the system measuring device are the same as those of the first test system.
  • the network communication system includes the first core switch (including network control function), the first network bridge and the first network access node deployed on the first crane ship, the second core switch and the second network bridge deployed on the second crane ship , The second network access node is deployed on the third network bridge and the third core switch of the transport ship.
  • the data timing synchronous communication module is provided with a wireless communication mode and a wired communication mode, and uses the GPS second pulse as a clock calibration reference for data timing.
  • the data timing synchronization communication module includes a GPS receiving unit, a processor and a communication unit, the GPS receiving unit receives satellite signals, the processor receives sensor data and the communication unit accesses the communication network, and the data timing synchronization communication module is powered by a lithium battery. At the same time, the sensor does not provide power supply.
  • the No. 1 crane ship and the No. 2 crane ship are equipped with dual GPS antennas. An anemometer is installed at the position 2 meters above the No. 1 crane ship and the No. 2 crane ship.
  • the No. 1 crane ship and the No. 2 crane ship are equipped with two radar altimeters on the left and right sides, and the horizontal distance between the two radar altimeters on one side is not less than 20 meters.
  • an inertial measurement unit is a device for measuring the three-axis attitude angle (or angular rate) and acceleration of an object. It includes three single-axis accelerometers and three single-axis gyroscopes.
  • the accelerometer detects the acceleration signal of the three-axis independent object in the carrier coordinate system, while the gyroscope detects the angular velocity signal of the carrier relative to the navigation coordinate system, and measures the object in three dimensions. Angular velocity and acceleration in space, and use this to calculate the attitude of the object.
  • the wave measuring radar continuously measures the orbital velocity and echo intensity of water particles in all directions, and calculates the ocean wave spectrum and velocity spectrum through the linear ocean wave theory.
  • the radial ocean current at this azimuth is obtained.
  • Various parameters such as directional wave height spectrum, wave statistics (such as effective wave height, wave period, wave direction, etc.) and vector flow are obtained through data fusion.
  • the wireless remote data acquisition system in order to adapt to the harsh environment of marine engineering and reduce the construction difficulty of the data acquisition system, the wireless remote data acquisition system is designed.
  • the system uses GPS timing to obtain accurate time signals, and uses this as a clock reference for data recording.
  • the system also supports wired communication as a backup communication method to improve the reliability of system operation.
  • the system network connection adopts the wired/wireless multiplexing function, and the wireless + battery mode can be used when the wiring conditions are limited; if the wiring is convenient, the RJ45 interface can be connected to a network cable above Cat5 level for communication and POE power supply.
  • the present invention in order to realize the heading measurement function of the crane ship, the transport ship, and the platform to be dismantled, it is necessary to arrange dual GPS antennas on the above platforms to determine the heading position.
  • two GPS antennas are placed at the bow and stern of the ship respectively, with a distance of more than 20 meters.
  • the positioning accuracy of RTK at sea is 2-4cm, so when the distance between the two antennas is 20 meters, the heading error is 0.23°.
  • the anemometer is installed above the living quarters of the two crane ships, 2 meters away from the installation surface, at least 1 meter away from the very high frequency (VHF) antenna, and at least 5 meters away from the medium frequency high frequency (HF/MF) antenna, And the installation location needs to avoid the radar scanning area.
  • the wave measuring radar is installed above the living area of the No. 1 crane ship.
  • the wave measuring radar is supported by the lifting bracket. The stroke of the lifting bracket should ensure that the wave measuring radar is more than 15 meters away from the sea level when it is working, and avoid VHF, HF and IF Antenna (VHF/HF/MF) and anemometer.
  • the system configures two container control rooms, which are respectively placed on the decks of two crane ships to monitor the operation of the entire system and provide space for monitoring equipment, network equipment, IMU, GPS, and gyrocompass .
  • the container house should be placed as close to the center of gravity of the crane ship as possible. If the conditions are not allowed, the installation position and direction of the container control room on the deck should be accurately measured, and the coordinate relationship between the container control room and the center of gravity should be established in the software. Convert the formula and correct the monitoring software.
  • the invention discloses a real-time monitoring system for multi-vessel motion posture, which includes a first test system located on No. 1 crane ship, a second test system located on No. 2 crane, and a first wireless network bridge and a
  • the second network bridge located on the transport ship the first test system includes a wave measurement system host and a data acquisition and analysis system host, the wave measurement system display is connected to the radar central control unit, and the radar central control unit is connected to the first radar and the Digital signal conversion unit signal connection;
  • the second test module includes a second data acquisition and analysis system host, the second data acquisition and analysis system host is connected to the second core switch, the second core switch is connected to several communication modules and the second wireless network bridge connection.
  • the invention measures the real-time movement and attitude of the ship in real time during the dismantling operation of the platform, and performs real-time measurement of the wind, wave and flow of the ocean, the movement and attitude of each ship body during the operation, and transmits the data synchronously.

Abstract

一种多船运动姿态实时监测系统,包括位于1号起重船的第一测试系统和位于2号起重机上的第二测试系统,以及位于待拆除平台的第一无线网桥和位于运输船上的第二网桥,第一测试系统包含测波系统主机和数据采集分析系统主机,测波系统显示器与雷达中央控制单元信号连接,雷达中央控制单元与第一雷达和数字信号转换单元信号连接;第二测试模块包含第二数据采集分析系统主机,第二数据采集分析系统主机与第二核心交换机连接,第二核心交换机与若干个通信模块和第二无线网桥连接。该系统在平台拆解作业过程中实时测量船舶的实时运动及姿态,在作业过程中对海洋的风浪流、各个船体运动及姿态进行实时测量,数据同步传输。

Description

一种多船运动姿态实时监测系统 技术领域
本发明涉及一种多船运动姿态实时监测系统,属于测量领域。
背景技术
近现代海洋石油工业发展迅速,在作业海域新建的石油生产设施越来越多,目前全球建设了超过10700多座海洋石油生产设施,一般的海洋石油平台设计寿命是20年左右,平台设计寿命到期后,如果没有其他用途,那么必须废弃拆除。废弃海洋平台的拆除对海洋环境、通航和渔业生产具有重要意义。
进入本世纪以来我国陆续建设的海洋平台将大量进入废弃阶段,平台拆除任务艰巨。新的平台拆除技术也发展迅速,多船协同作业拆解平台在安全、经济、效率和适用范围方面具有优势。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种多船运动姿态实时监测系统,在平台拆解作业过程中实时测量船舶的实时运动及姿态,在作业过程中对海洋的风浪流、各个船体运动及姿态进行实时测量,数据同步传输。
技术方案:为解决上述技术问题,本发明的一种多船运动姿态实时监测系统,包括位于1号起重船的第一测试系统和位于2号起重机上的第二测试系统,待拆除平台姿态测量装置以及网络通讯系统。,所述第一测试系统包含数据授时同步传输系统、风速风向测量装置、测波装置、数据采集分析系统、姿态测量装置、位置测量装置。所述第二测试系统包含数据授时同步传输系统、数据采集分析系统、网络通讯系统、姿态测量装置、位置测量装置。所述数据授时同步传输系统与各测量装置连接,采集数据并加入时戳通过网络通讯系统发送至数据采集分析系统。所述网络通讯系统之核心交换机通过无线访问节点与网桥设备实现第一测试系统及第二测试系统数据传输链路。所述第一测试系统和第二此时系统中各测量装置根据实船安装位置,选择采用有线或无线数据通讯方式。所述带拆除平台姿态测量装置通过数据授时同步传输系统发送数据至第一测试系统与第二测试系统。
网络通讯系统在第一起重船、第二起重船以及运输船间通过网桥建立通讯链接,网络控制器部署在第一起重船。
作为优选,所述第一、第二测试系统中所有原理数据采集分析处理系统主机的测量装置均配置所述数据授时同步传输模块,数据通过无线链路传输
作为优选,所述第一、第二测试系统至测高雷达各有六个个,分别布置在船舷两侧的船艏、船中和船艉。
作为优选,所述数据授时同步传输模块设有无线有线通讯模式,使用GPS授时获得精确的时间信号,并以此为时钟基准进行数据记录。
作为优选,所述数据授时同步传输模块包含GPS接收器、处理器和通讯模块,通信模块可通过WIFI或以太网接口与路由器信号连接,模块通过锂电池供电,可快速部署,便于安装。
作为优选,所述1号起重船和2号起重船上均布置双GPS天线。
作为优选,所述1号起重船和2号起重船上方10米位置上安装有风速风向仪。
作为优选,所述1号起重船和2号起重船左右两舷各安装三只雷达测高仪,单侧舷的两只雷达测高仪水平距离不低于20米。
有益效果:本发明的多船运动姿态实时监测系统,在平台拆解作业过程中实时测量船舶运动及姿态数据,多个测量装置数据经过数据分析处理系统的解算与融合处理,实时显示同一时间轴下的环境变量以及在环境载荷和作业载荷作用下的船舶实时姿态数据,并动态显示作业船舶与目标平台的位置数据。便于在作业过程更准确的掌握作业船舶、机具以及目标平台的状态及作业效果,对现场作业指挥决策提供数据支持。
附图说明
图1为本发明的系统示意图。
图2为本发明数据授时同步传输模块示意图。
图3为本发明系统框图。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1至图3所示,本发明应用的项目中采用两个起重船和一个运输船,船体均为配置了DP3动力定位系统的半潜船。本发明的一种多船运动姿态实时监测系统,包括位于1号起重船的第一测试系统和位于2号起重机上的第二测试系统,以及位于待拆除平台的姿态测量装置和网络通讯系统。
所述第一测试系统包含测波装置、风速风向测量装置、干舷高度测量装置、航向测量装置、RTK定位测量装置、船舶姿态测量装置、平台姿态测量装置和数据采集分析系统主机。所述第一测量系统之测波装置主机通过串口通讯获取电罗经艏向测量数据及GNSS接收机数据、风速风向仪数据用于浪流数据辅助计算,所测浪流数据通过串口发送至数据采集分析系统主机。惯性测量单元所测船舶六自由度数据通过串口直接发送至数据采集分析系统主机。电罗经所测航向测量数据通过串口发送至数据采集分析 处理系统主机。所述风速风向测量装置、干舷高度测量装置、平台姿态测量装置测量数据通过数据授时同步传输系统接入网路通讯系统,并发送至数据采集分析系统主机;所述第二测试模块包含风速风向测量装置、干舷高度测量装置、航向测量装置、RTK定位测量装置、船舶姿态测量装置以及第二数据采集分析系统主机,系统测量装置部署与数据通讯方式与第一测试系统相同。
网络通讯系统包括部署在第一起重船的第一核心交换机(包含网络控制功能)、第一网桥、第一网络访问节点,部署在第二起重船的第二核心交换机、第二网桥、第二网络访问节点,部署在运输船的第三网桥和第三核心交换机。
在本发明中,所述测波有一个,部署在第一起重船。所述数据授时同步通信模块设有无线通讯模式和有线通讯模式,采用GPS秒脉冲作为时钟校准基准进行数据授时。所述数据授时同步通信模块包含GPS接收单元、处理器和通讯单元,所述GPS接收单元接收卫星信号,处理器接收传感器数据并通讯单元接入通讯网络,数据授时同步通讯模块采用锂电池供电,同时未传感器提供供电电源。所述1号起重船和2号起重船上均布置双GPS天线。所述1号起重船和2号起重船上方2米位置上安装有风速风向仪。所述1号起重船和2号起重船左右两舷各安装两只雷达测高仪,单侧舷的两只雷达测高仪水平距离不低于20米。
在本发明中,惯性测量单元是测量物体三轴姿态角(或角速率)以及加速度的装置。其包含了三个单轴的加速度计和三个单轴的陀螺,加速度计检测物体在载体坐标系统独立三轴的加速度信号,而陀螺检测载体相对于导航坐标系的角速度信号,测量物体在三维空间中的角速度和加速度,并以此解算出物体的姿态。
在本发明中,测波雷达基于多普勒原理,连续测量各方向水质点的轨道速度和回波强度,通过线性海浪理论,计算出海浪谱和速度谱。同时根据视向速度与海流速度的对应关系,获得该方位的径向海流。数据融合得到有向浪高谱、海浪统计(如有效浪高、浪周期、浪向等)以及矢量流等多种参数。
在本发明中,为适应海洋工程的恶劣环境,降低数据采集系统的施工难度,设计该无线远程数据采集系统,该系统使用GPS授时获得精确的时间信号,并以此为时钟基准进行数据记录。同时本系统还支持有线通讯方式作为备用通讯方式,提高系统运行的可靠性。系统网络连接采用有线/无线复用功能,在布线条件有限时可使用无线+电池模式;如果方便布线可选用其RJ45接口连接Cat5级别以上的网线进行通讯与POE供电。
在本发明中,为实现起重船、运输船与待拆除平台的艏向测量功能,需要在以上平台分别布置双GPS天线以确定艏向位置。如下图所示,两个GPS天线分别放置于船 首与船尾,距离20米以上。RTK在海上定位精度为2-4cm,故当双天线距离20米时,艏向误差为0.23°。
在本发明中,风速风向仪安装于两艘起重船生活区上方距离安装面2米,距离甚高频(VHF)天线至少1米,距离中频高频(HF/MF)天线至少5米,并且安装位置需避开雷达扫描区域。测波雷达安装于1号起重船生活区上方,测波雷达由升降支架支撑,升降支架行程应保证测波雷达工作时距离海平面15米以上,并避开甚高频、高频、中频天线(VHF/HF/MF)与风速风向仪。
在本发明中,系统配置两个集装箱控制房,分别放置于两艘起重船的甲板上,用于监控整个系统的运行,并且为监控设备,网络设备,IMU,GPS,电罗经提供放置空间。集装箱房的放置应尽可能的靠近起重船重心位置,如条件不允许则需精确测量集装箱控制房在甲板上的安装位置与方向,并在软件中建立集装箱控制房与重心的坐标关系,得到换算公式并对监控软件进行矫正。
本发明公开了一种多船运动姿态实时监测系统,包括位于1号起重船的第一测试系统和位于2号起重机上的第二测试系统,以及位于待拆除平台的第一无线网桥和位于运输船上的第二网桥,所述第一测试系统包含测波系统主机和数据采集分析系统主机,所述测波系统显示器与雷达中央控制单元信号连接,雷达中央控制单元与第一雷达和数字信号转换单元信号连接;所述第二测试模块包含第二数据采集分析系统主机,第二数据采集分析系统主机与第二核心交换机连接,第二核心交换机与若干个通信模块和第二无线网桥连接。本发明在平台拆解作业过程中实时测量船舶的实时运动及姿态,在作业过程中对海洋的风浪流、各个船体运动及姿态进行实时测量,数据同步传输。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种多船运动姿态实时监测系统,其特征在于:
    1号起重船的第一测试系统和位于2号起重机上的第二测试系统,待拆除平台姿态测量装置以及网络通讯系统;所述第一测试系统包含数据授时同步传输系统、风速风向测量装置、测波装置、数据采集分析系统、姿态测量装置、位置测量装置;所述第二测试系统包含数据授时同步传输系统、数据采集分析系统、网络通讯系统、姿态测量装置、位置测量装置;所述数据授时同步传输系统与各测量装置连接,采集数据并加入时戳通过网络通讯系统发送至数据采集分析系统;所述网络通讯系统之核心交换机通过无线访问节点与网桥设备实现第一测试系统及第二测试系统数据传输链路;所述第一测试系统和第二此时系统中各测量装置根据实船安装位置,选择采用有线或无线数据通讯方式;所述带拆除平台姿态测量装置通过数据授时同步传输系统发送数据至第一测试系统与第二测试系统;网络通讯系统在第一起重船、第二起重船以及运输船间通过网桥建立通讯链接,网络控制器部署在第一起重船。
  2. 根据权利要求1所述的多船运动姿态实时监测系统,其特征在于:所述测波雷达有个,布置在第一起重船高层甲板处或者集装箱控制房顶(需配置升降装置),安装高度要求不低于15米,雷达天线周围无障碍物。
  3. 根据权利要求1所述的多船运动姿态实时监测系统,其特征在于:所述通信模块包含无线通讯模块和有线通讯模块,使用GNSS授时获得精确的时间信号,并以此为时钟基准进行数据记录。
  4. 根据权利要求1所述的多船运动姿态实时监测系统,其特征在于:所述数据授时同步通信模块包含GPS接收单元、处理器和通讯单元,所述GPS接收单元接收卫星信号,处理器接收传感器数据并通讯单元接入通讯网络,数据授时同步通讯模块采用锂电池供电,同时未传感器提供供电电源。
  5. 根据权利要求1所述的多船运动姿态实时监测系统,其特征在于:所述1号起重船和2号起重船上均布置双GPS天线。
  6. 根据权利要求1所述的多船运动姿态实时监测系统,其特征在于:所述1号起重船和2号起重船高层甲板或集装箱控制房顶10米位置上安装有风速风向仪。
  7. 根据权利要求1所述的多船运动姿态实时监测系统,其特征在于:所述1号起重船和2号起重船左右两舷各安装六只雷达测高仪,单侧舷的三只雷达测高仪水平距离不低于20米。
PCT/CN2022/123022 2021-10-25 2022-09-30 一种多船运动姿态实时监测系统 WO2023071703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111240142.1A CN113888853A (zh) 2021-10-25 2021-10-25 一种多船运动姿态实时监测系统
CN202111240142.1 2021-10-25

Publications (1)

Publication Number Publication Date
WO2023071703A1 true WO2023071703A1 (zh) 2023-05-04

Family

ID=79013573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123022 WO2023071703A1 (zh) 2021-10-25 2022-09-30 一种多船运动姿态实时监测系统

Country Status (2)

Country Link
CN (1) CN113888853A (zh)
WO (1) WO2023071703A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113888853A (zh) * 2021-10-25 2022-01-04 哈尔滨工程大学 一种多船运动姿态实时监测系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058929A1 (en) * 2004-02-16 2006-03-16 Marine Cybernetics As Method and system for testing a control system of a marine vessel
CN104527940A (zh) * 2014-12-09 2015-04-22 中国海洋石油总公司 海洋平台组块海上双船整体迁移的方法
CN108924119A (zh) * 2018-06-28 2018-11-30 中国船舶重工集团公司第七0七研究所 一种船-岸-船态势信息交互系统
CN110286580A (zh) * 2019-04-27 2019-09-27 中国人民解放军海军工程大学 一种光纤和无线授时守时同步无缝对接的授时方法
CN110687776A (zh) * 2019-10-30 2020-01-14 武汉理工大学 一种多船同步过闸自适应巡航编队控制系统及方法
CN110764401A (zh) * 2019-10-29 2020-02-07 北京无线电计量测试研究所 一种船载时间同步校准设备
CN111268059A (zh) * 2020-02-28 2020-06-12 中远海运特种运输股份有限公司 一种海上平台拆除方法
CN213109712U (zh) * 2020-03-12 2021-05-04 海洋石油工程股份有限公司 双浮托多船协同调载辅助系统
CN113485121A (zh) * 2021-08-03 2021-10-08 大连海事大学 一种分布式多船协同动力定位控制方法
CN113888853A (zh) * 2021-10-25 2022-01-04 哈尔滨工程大学 一种多船运动姿态实时监测系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182343A (zh) * 2015-11-03 2015-12-23 珠海纳睿达科技有限公司 一种基于海洋雷达监测技术的预警系统
CN105675195B (zh) * 2016-02-03 2018-04-24 中国海洋石油总公司 基于船舶姿态测量的工程船作业实时分析系统
US10677891B2 (en) * 2016-09-16 2020-06-09 Applied Physical Sciences Corp. Systems and methods for wave sensing and ship motion forecasting using multiple radars
CN111336996A (zh) * 2020-03-28 2020-06-26 哈尔滨工程大学 一种海洋环境与船舶运动监测预报系统及监测预报方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060058929A1 (en) * 2004-02-16 2006-03-16 Marine Cybernetics As Method and system for testing a control system of a marine vessel
CN104527940A (zh) * 2014-12-09 2015-04-22 中国海洋石油总公司 海洋平台组块海上双船整体迁移的方法
CN108924119A (zh) * 2018-06-28 2018-11-30 中国船舶重工集团公司第七0七研究所 一种船-岸-船态势信息交互系统
CN110286580A (zh) * 2019-04-27 2019-09-27 中国人民解放军海军工程大学 一种光纤和无线授时守时同步无缝对接的授时方法
CN110764401A (zh) * 2019-10-29 2020-02-07 北京无线电计量测试研究所 一种船载时间同步校准设备
CN110687776A (zh) * 2019-10-30 2020-01-14 武汉理工大学 一种多船同步过闸自适应巡航编队控制系统及方法
CN111268059A (zh) * 2020-02-28 2020-06-12 中远海运特种运输股份有限公司 一种海上平台拆除方法
CN213109712U (zh) * 2020-03-12 2021-05-04 海洋石油工程股份有限公司 双浮托多船协同调载辅助系统
CN113485121A (zh) * 2021-08-03 2021-10-08 大连海事大学 一种分布式多船协同动力定位控制方法
CN113888853A (zh) * 2021-10-25 2022-01-04 哈尔滨工程大学 一种多船运动姿态实时监测系统

Also Published As

Publication number Publication date
CN113888853A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
CN109285389A (zh) 一种无人船自动靠泊系统及方法
JP6867666B2 (ja) 波浪計測装置および波浪計測装置を備えた浮体
EP2386064B1 (en) Subsea measurement system and method of determining a subsea location-related parameter
RU2483280C1 (ru) Навигационный комплекс
CN103760584B (zh) 一种用于浮托安装实际测量的运动监控系统
WO2023071703A1 (zh) 一种多船运动姿态实时监测系统
CN112923924B (zh) 一种锚泊船舶姿态与位置监测方法及系统
CN203349841U (zh) 一种舰船波浪运动检测装置
CN103134472A (zh) 一种能实时监测河海波浪浪高及频率的测量装置
CN103213657A (zh) 一种船舶吃水量检测系统及其检测方法
CN112000069A (zh) 外海沉管浮运安装集成测控系统及其测控方法
WO2021139022A1 (zh) 一种水声定位与授时浮标及水下定位方法
CN110082033B (zh) 一种运动状态下的水上载体重心测量装置和方法
CN202928573U (zh) Gps无验潮水深测量测杆竖直实时控制装置
CN115166805A (zh) 一种基于北斗的fpso六自由度监测系统及方法
CN112762935B (zh) 一种基于船体姿态监测的定位方法及系统
JP2894555B1 (ja) ケーソン施工支援システム
Williams et al. Motion tracking in an acoustic point-measurement current meter
RU2036432C1 (ru) Инерциально-спутниковый модуль и комплексная инерциально-спутниковая система навигации, связи, освещения обстановки, управления и контроля
CN113218372B (zh) 一种海底基准点位置标校系统及方法
RU198953U1 (ru) Устройство определения параметров движения судна
KR102185898B1 (ko) 해상 파고 계측 시스템 및 방법
CN106697217A (zh) 一种船舶吃水量检测系统及其检测方法
Wang et al. A Field Monitoring System for Dynamic Positioning Floatover Installation
CN112965032B (zh) 一种基于数字模型的超短基线水声定位系统及调试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885586

Country of ref document: EP

Kind code of ref document: A1