WO2012081618A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2012081618A1
WO2012081618A1 PCT/JP2011/078905 JP2011078905W WO2012081618A1 WO 2012081618 A1 WO2012081618 A1 WO 2012081618A1 JP 2011078905 W JP2011078905 W JP 2011078905W WO 2012081618 A1 WO2012081618 A1 WO 2012081618A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
region
pixels
image
light
Prior art date
Application number
PCT/JP2011/078905
Other languages
English (en)
French (fr)
Inventor
大野 渉
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2012548809A priority Critical patent/JP5274720B2/ja
Priority to CN201180059907.XA priority patent/CN103262522B/zh
Priority to EP11849632.2A priority patent/EP2629504B1/en
Publication of WO2012081618A1 publication Critical patent/WO2012081618A1/ja
Priority to US13/728,381 priority patent/US8823788B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00124Connectors, fasteners and adapters, e.g. on the endoscope handle electrical, e.g. electrical plug-and-socket connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00126Connectors, fasteners and adapters, e.g. on the endoscope handle optical, e.g. for light supply cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00128Connectors, fasteners and adapters, e.g. on the endoscope handle mechanical, e.g. for tubes or pipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/533Control of the integration time by using differing integration times for different sensor regions
    • H04N25/534Control of the integration time by using differing integration times for different sensor regions depending on the spectral component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/46Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by combining or binning pixels

Definitions

  • the present invention relates to an imaging apparatus including an imaging unit capable of outputting, as pixel information, an electrical signal after photoelectric conversion from a pixel arbitrarily designated as a readout target among a plurality of pixels for imaging.
  • an endoscope system has been used to observe the inside of an organ of a subject.
  • a flexible insertion part having an elongated shape is inserted into a body cavity of a subject such as a patient, and white light is irradiated to a living tissue in the body cavity through the insertion part. Then, the reflected light is received by the imaging unit at the distal end of the insertion unit, and an in-vivo image is captured. The living body image thus captured is displayed on the monitor of the endoscope system.
  • a user such as a doctor observes the body cavity of a subject through an in-vivo image displayed on a monitor of an endoscope system.
  • an endoscope system that can acquire other images such as an image for fluorescence observation different from the normal image as well as the normal image by white light is realized.
  • an endoscope system a configuration has been proposed in which, in addition to an image sensor for acquiring a normal image, another image sensor for acquiring an image is arranged at the distal end of the endoscope (for example, see Patent Document 1). ).
  • a configuration has been proposed in which a switching mechanism and an adjustment mechanism are provided for each imaging optical system and filter, and a normal image and another image are acquired with one image sensor (see, for example, Patent Document 2).
  • the distal end of the endoscope insertion portion is introduced into the body cavity of the subject, a reduction in diameter is required, and the usable space is limited.
  • a complicated mechanism such as a plurality of imaging elements or a switching mechanism and an adjustment mechanism must be mounted on the distal end of the endoscope insertion portion, and the structure becomes complicated.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an imaging apparatus having a simple configuration capable of acquiring a plurality of types of images with one imaging element.
  • an imaging apparatus includes a first optical system that collects and emits incident light, and an optical that collects and emits incident light.
  • a second optical system that is different from the first optical system, a first area that is an area where light emitted from the first optical system is incident, and an area that is different from the first area
  • a second region that is an area where light emitted from the second optical system is incident, and after photoelectric conversion from a pixel arbitrarily set as a readout target among a plurality of pixels for imaging
  • An imaging unit capable of outputting an electrical signal as pixel information, and a pixel to be read in the imaging unit can be arbitrarily set, and at least one of the pixel in the first region and the pixel in the second region
  • a setting unit to set as a pixel to be read; and
  • a readout unit that reads out pixel information from a pixel that is set as a readout target by the setting unit among a plurality of pixels for imaging in the image
  • control unit corresponds to the image to be acquired, sets the pixel to be read by the setting unit, the reading process by the reading unit, and the The image generation processing by the image processing unit is controlled.
  • the imaging apparatus further includes a control condition storage unit that stores a control condition by the control unit in association with each acquisition target image in the above invention, and the control unit stores the control condition storage.
  • the setting unit sets the pixel to be read by the setting unit, the reading process by the reading unit, and the image generation process by the image processing unit. It is characterized by controlling.
  • the imaging apparatus further includes a display unit that displays an image generated by the image processing unit in the above invention, the pixel information includes a luminance value, and the first optical system includes: Of the incident light, only the component polarized on the first polarization plane is emitted to the first region of the imaging unit, and the control unit outputs the pixel of the first region and the second region to the setting unit.
  • the reading unit reads out pixel information of the pixels in the first region and the pixels in the second region, and the luminance value of the pixels in the first region
  • the pixel information of the pixels in the first region read out by the read-out unit is output to the image processing unit with the amplification factor higher than the amplification factor for the luminance value of the pixels in the second region.
  • pixels of the second region To generate two images based on each of the element information, the display unit, and displaying the two images by the image processing unit has generated.
  • the imaging device includes the light source and a polarization unit that emits, to the subject, a component polarized in the second polarization plane among the light emitted by the light source.
  • the second optical system picks up only the component of incident light that is polarized on a third polarization plane different from the first polarization plane. It emits to the 2nd field of a part.
  • the imaging apparatus irradiates the first irradiation unit that irradiates the first light and the second light that is light having a wider wavelength band than the first light.
  • a second irradiating unit wherein the first optical system includes a spectroscopic member that splits light incident from the outside corresponding to the first light, and the control unit includes the first irradiating unit.
  • the first irradiating unit and the second irradiating unit alternately irradiate light, and image a subject illuminated with the first light irradiated from the first irradiating unit to output pixel information.
  • the second setting unit causes the setting unit to set the pixel in the first region as the pixel to be read, and causes the reading unit to read out pixel information of the pixel in the first region.
  • Pixel information obtained by imaging the subject illuminated with the second light emitted from In the second frame to be output the setting unit is caused to set the pixels in the second region as pixels to be read, and the reading unit is caused to read out pixel information of the pixels in the second region.
  • control unit includes the first irradiation unit and the first irradiation unit so that an exposure time in the first frame is longer than an exposure time in the second frame.
  • the irradiation process in the second irradiation unit and the reading process in the reading unit are controlled.
  • the pixel information includes a luminance value
  • the control unit sends pixels to the first region in the first frame. Are amplified with an amplification factor higher than the amplification factor with respect to the luminance value of the pixels in the second region in the second frame, and output.
  • the pixel information includes a luminance value
  • the control unit is adjacent to the reading unit as the luminance value of the pixel in the first region.
  • the luminance values of a plurality of pixels included in a block composed of a plurality of pixels are added and output in units of blocks.
  • the imaging apparatus further includes a first irradiation unit that irradiates special light having a narrower wavelength band than white light, and a second irradiation unit that irradiates white light.
  • the first optical system includes a first transmission filter that transmits red light and green light of incident light
  • the second optical system is a second filter that transmits blue light of incident light.
  • a transmission filter, and the control unit corresponds to the image to be acquired, illumination processing by the first illumination unit and the second illumination unit, setting processing of the pixel to be read by the setting unit, The reading process by the reading unit and the image generation process by the image processing unit are controlled.
  • the acquisition target image is an image obtained by white light illumination
  • the control unit is configured such that the acquisition target image is an image obtained by the white light illumination.
  • the acquisition target image is an enhanced image in which the acquisition target image emphasizes a distribution of a specific substance
  • the control unit When the image is the emphasized image, the first irradiation unit is irradiated with light included in the wavelength band of green light and blue light as the special light, and the green light of the first region is incident on the setting unit Pixels to be read and all pixels in the second region are set as pixels to be read, and the reading unit reads out all the pixels in which the green light in the first region is incident and all pixels in the second region.
  • the image corresponding to the pixel information of the pixels in which the green light in the first region is incident on the image processing unit and the image corresponding to the pixel information of all the pixels in the second region are combined into one image. It is characterized by generating .
  • the acquisition target image is a fluorescence observation image
  • the control unit when the acquisition target image is the fluorescence observation image,
  • the first irradiating unit is irradiated with excitation light for the fluorescent substance included in the wavelength bands of red light and green light as the special light, and all the pixels in the first region are read out as pixels to be read by the setting unit.
  • setting the readout unit to read out pixel information of all the pixels in the first region, and causing the image processing unit to read one piece of the fluorescence information based on the pixel information of all the pixels in the first region.
  • An image is generated.
  • the control unit causes the setting unit to set all the pixels in the second region together with all the pixels in the first region as pixels to be read
  • the reading unit causes the pixel information to be read from all the pixels in the second region together with all the pixels in the first region
  • the image processing unit causes the image processing unit to read out pixel information from all the pixels in the second region.
  • One black-and-white image is generated.
  • the pixel information includes a luminance value
  • the control unit sends all the pixels in the second region together with all the pixels in the first region to the setting unit.
  • a pixel is set as a pixel to be read, and the readout unit reads pixel information from all the pixels in the second region together with all the pixels in the first region, and the image processing unit causes the first region to be read out.
  • the luminance values of all the pixels are corrected using the luminance values of all the pixels in the second region, and then one image for fluorescence observation is generated.
  • the focal length of the first optical system is different from the focal length of the second optical system
  • the control unit includes the first optical system in the setting unit.
  • the pixels in the first region and the pixels in the second region are set as pixels to be read, and the reading unit reads out pixel information of the pixels in the first region and the pixels in the second region, respectively.
  • the image processing unit superimposes the image corresponding to the pixel information of the pixels in the first area read out by the reading unit and the image corresponding to the pixel information of the pixels in the second area. The image is generated.
  • the pixel information includes a luminance value
  • the control unit sends the luminance value of the pixel in the first region to the reading unit.
  • the pixel is amplified with an amplification factor different from the amplification factor with respect to the luminance value of the pixel in the region, and output.
  • the imaging apparatus further includes a display unit that displays the image generated by the image processing unit in the above invention, and the viewing angle of the first optical system is that of the second optical system.
  • the control unit causes the setting unit to set the pixels in the first region and the pixels in the second region as the pixels to be read, and causes the reading unit to set the pixels in the first region.
  • the pixel information of the pixels in the second region are read out, and the pixel information of the pixels in the first region and the pixels of the second region read out by the reading unit in the image processing unit. Two images based on each of the pixel information are generated, and the display unit displays the two images generated by the image processing unit.
  • the viewing angle of the first optical system is wider than the viewing angle of the second optical system, and the first region is the second area. It is characterized by being narrower than the region.
  • the imaging device is the imaging device according to the invention described above, wherein the imaging device has a tip portion introduced into the body and a signal processing device, and the tip portion and the signal processing device are connected by a transmission unit.
  • the distal end portion includes the first optical system, the second optical system, the imaging unit, and the reading unit, and the signal processing device includes the setting unit.
  • the control unit and the image processing unit are included.
  • An imaging apparatus uses an imaging unit capable of outputting, as pixel information, an electrical signal after photoelectric conversion including a luminance value from a pixel arbitrarily designated as a readout target among a plurality of pixels for imaging.
  • an imaging unit capable of outputting, as pixel information, an electrical signal after photoelectric conversion including a luminance value from a pixel arbitrarily designated as a readout target among a plurality of pixels for imaging.
  • a plurality of types of images can be acquired by a single imaging unit without switching the optical system.
  • FIG. 1 is a diagram illustrating a schematic configuration of an endoscope portion according to the first embodiment.
  • FIG. 2 is a diagram showing a distal end surface of the distal end portion of the endoscope shown in FIG.
  • FIG. 3 is a view showing a part of the cut surface obtained by cutting the tip portion shown in FIG. 2 along the line AA.
  • 4 is a view showing a part of a cut surface obtained by cutting the tip portion shown in FIG. 2 along the line BB.
  • FIG. 5 is a diagram illustrating an example of a light receiving region set in the light receiving unit illustrated in FIG. 3.
  • FIG. 6 is a block diagram of a configuration of the endoscope system according to the first embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of an endoscope portion according to the first embodiment.
  • FIG. 2 is a diagram showing a distal end surface of the distal end portion of the endoscope shown in FIG.
  • FIG. 3 is a view showing a part of the cut surface
  • FIG. 7 is a diagram showing an example of a list table of control conditions stored in the control condition memory shown in FIG.
  • FIG. 8 is a diagram illustrating an example of the distal end surface of the distal end portion of the endoscope according to the first modification of the first embodiment.
  • FIG. 9 is a view showing a part of the cut surface obtained by cutting the tip portion shown in FIG. 8 along the line CC.
  • FIG. 10 is a diagram illustrating an example of the distal end surface of the distal end portion of the endoscope according to the second modification of the first embodiment.
  • FIG. 11 is a view showing a part of the cut surface obtained by cutting the tip portion shown in FIG. 10 along the line DD.
  • FIG. 12 is a block diagram of a configuration of the endoscope system according to the second embodiment.
  • FIG. 13 is a diagram illustrating a distal end surface of the distal end portion of the endoscope according to the second embodiment.
  • FIG. 14 is a diagram illustrating the first optical system and the second optical system shown in FIG.
  • FIG. 15 is a diagram illustrating an example of a light receiving region set in the light receiving unit illustrated in FIG.
  • FIG. 16 is a diagram showing an example of a list table of control conditions stored in the control condition memory shown in FIG.
  • FIG. 17 is a diagram illustrating an example of the first optical system and the second optical system illustrated in FIG.
  • FIG. 18 is a block diagram of a configuration of the endoscope system according to the third embodiment.
  • FIG. 19 is a diagram for explaining the first optical system and the second optical system shown in FIG. FIG.
  • FIG. 20 is a diagram illustrating an example of a light receiving region set in the light receiving unit illustrated in FIG.
  • FIG. 21 is a plan view showing the filter arrangement of the on-chip filter shown in FIG.
  • FIG. 22 is a diagram showing an example of a list table of control conditions stored in the control condition memory shown in FIG.
  • FIG. 23 is a diagram showing another example of the control condition list table stored in the control condition memory shown in FIG.
  • FIG. 24 is a diagram showing another example of the control condition list table stored in the control condition memory shown in FIG.
  • FIG. 25 is a block diagram illustrating a configuration of an endoscope system according to the fourth embodiment.
  • FIG. 26 is a diagram illustrating an example of the near point optical system and the far point optical system illustrated in FIG. 25.
  • FIG. 26 is a diagram illustrating an example of the near point optical system and the far point optical system illustrated in FIG. 25.
  • FIG. 27 is a diagram illustrating an example of a light receiving region set in the light receiving unit illustrated in FIG.
  • FIG. 28 is a diagram showing an example of a list table of control conditions stored in the control condition memory shown in FIG.
  • FIG. 29 is a diagram illustrating the relationship between the distance from the illumination and the resolution in the near point image and the far point image.
  • FIG. 30 is a block diagram illustrating a configuration of an endoscope system according to the fifth embodiment.
  • FIG. 31 is a diagram for explaining an example of the wide-angle image optical system and the main image optical system shown in FIG.
  • FIG. 32 is a diagram illustrating an example of a light receiving region set in the light receiving unit illustrated in FIG.
  • FIG. 33 is a block diagram of a configuration of the endoscope system according to the sixth embodiment.
  • FIG. 34 is a diagram illustrating an example of the right image optical system and the left image optical system illustrated in FIG. 33.
  • FIG. 35 is a diagram illustrating an example of a light receiving region set
  • a medical endoscope system that includes an imaging device at the distal end of an insertion portion and captures and displays an image of a body cavity of a subject such as a patient will be described.
  • the present invention is not limited to the embodiments.
  • the same parts are denoted by the same reference numerals.
  • the drawings are schematic, and it is necessary to note that the relationship between the thickness and width of each member, the ratio of each member, and the like are different from the actual ones. Also in the drawings, there are included portions having different dimensional relationships and ratios.
  • FIG. 1 is a diagram illustrating a schematic configuration of an endoscope portion of the endoscope system according to the first embodiment.
  • an endoscope 1 according to the first embodiment includes an elongated insertion portion 2 and an operation portion 3 on the proximal end side of the insertion portion 2 and held by an endoscope apparatus operator.
  • the flexible universal cord 4 extends from the side of the operation unit 3.
  • the universal cord 4 includes a light guide cable, an electric cable, and the like.
  • the insertion portion 2 is a distal end portion 5 incorporating a CMOS sensor as an image sensor, a bending portion 6 that is configured by a plurality of bending pieces, and is provided on the proximal end side of the bending portion 6. And a long flexible tube portion 7 having flexibility.
  • the connector 8 is provided at the end of the universal cord 4.
  • the connector portion 8 includes a light guide connector 9 that is detachably connected to the light source device, and an electrical contact that is connected to the control device to transmit an electrical signal of the subject image photoelectrically converted by the CMOS sensor to the signal processing control device.
  • An air supply base 11 for sending air to the nozzles of the part 10 and the tip part 5 is provided.
  • the light source device includes a white light source, a special light source, and the like, and supplies light from the white light source or the special light source as illumination light to the endoscope 1 connected via the light guide connector 9.
  • the control device is a device that supplies power to the image sensor and receives an electrical signal photoelectrically converted from the image sensor, and processes the electrical signal imaged by the image sensor to display an image on a display unit that is connected. In addition to displaying, a drive signal for controlling and driving the gain adjustment of the image sensor is output.
  • the operation section 3 includes a bending knob 12 that bends the bending section 6 in the vertical direction and the left-right direction, a treatment instrument insertion section 13 that inserts a treatment instrument 16 such as a biopsy forceps and a laser probe into the body cavity, a control device, and a light source device.
  • a plurality of switches 14 for operating peripheral devices such as air supply, water supply, and gas supply means are provided.
  • the treatment tool 16 inserted from the treatment tool insertion portion 13 is exposed from the opening 15 at the distal end of the insertion portion 2 through a treatment tool channel provided inside. For example, when the treatment tool 16 is a biopsy forceps, a biopsy is performed in which the affected tissue is collected with the biopsy forceps.
  • FIG. 2 is a view showing the distal end surface of the distal end portion 5 of the endoscope 1 shown in FIG.
  • FIG. 3 is a view showing a part of the cut surface obtained by cutting the tip 5 shown in FIG. 2 along the line AA.
  • FIG. 4 is a view showing a part of a cut surface obtained by cutting the tip 5 shown in FIG. 2 along the line BB.
  • a treatment tool exposing opening 15, a cleaning nozzle 17, an illumination window 18 through which illumination light is emitted, and observation A window 21 and an observation window 22 are provided.
  • the illumination window 18 white light or special light supplied from the light source device is emitted from the illumination lens 18a via a light guide 19 composed of a glass fiber bundle or the like.
  • the treatment tool expression opening 15 communicates with the treatment tool channel 20.
  • the observation window 21 and the observation window 22 are closed using cover glasses 21a and 22a, respectively.
  • Light incident from the outside through the observation window 21 enters the first optical system 23 and is condensed.
  • Light incident from the outside through the observation window 22 enters a second optical system 24 different from the first optical system 23 and is condensed.
  • the light receiving unit 28 has a plurality of imaging pixels arranged two-dimensionally in a matrix, and both light emitted from the first optical system 23 and light emitted from the second optical system 24 are incident. To be arranged.
  • the light receiving unit 28 receives the light incident through the first optical system 23 and the second optical system 24 and images the inside of the body cavity. As shown in FIG. 5, the light receiving unit 28 receives a region S1 where light emitted from the first optical system 23 is incident, and a region different from the region S1 and light emitted from the second optical system 24.
  • a cover glass 25 is provided on the light receiving surface side of the light receiving unit 28.
  • An on-chip filter 27 in which R, G, or B filters are arranged corresponding to the arrangement of the pixels of the light receiving unit 28 is provided between the cover glass 25 and the light receiving unit 28.
  • the light receiving unit 28 is mounted on the circuit board 26 together with a driver 29 for instructing the imaging timing to the light receiving unit 28 and supplying power, a conversion circuit 30 for reading an image signal from the light receiving unit 28 and converting it into an electrical signal, and the like.
  • a plurality of electrodes 32 are provided on the circuit board 26.
  • the electrode 32 is connected to a signal line 31a that transmits an electrical signal to and from the control device via, for example, an anisotropic conductive resin film.
  • the collective cable 31 is formed by a plurality of signal lines 31a such as a signal line for transmitting an image signal which is an electrical signal output from the light receiving unit 28 or a signal line for transmitting a control signal from a control device.
  • the first optical system 23 includes lenses 23a to 23c and a light detection member 23d provided on the observation window side that detects and transmits only the component of the incident light that is polarized on the first polarization plane. . Accordingly, the first optical system 23 emits only the component polarized on the first polarization plane of the light incident through the observation window 21 to the region S1 of the light receiving unit 28.
  • the second optical system 24 includes lenses 24a to 24c, and emits the light incident through the observation window 22 to the region S2 of the light receiving unit 28 as it is.
  • the area S1 and the area S2 are different areas.
  • a CMOS image sensor 80 that can read only a pixel at an arbitrarily set address among the pixels of the light receiving unit 28 is employed as an image sensor.
  • the readout address setting unit 53 sets the readout target pixel according to the acquisition target image.
  • the pixel in the region S1 of the light receiving unit 28 corresponding to the first optical system 23 that emits only the component polarized on the first polarization plane and the second optical that emits light with no polarization.
  • FIG. 6 is a block diagram illustrating a configuration of the endoscope system according to the first embodiment.
  • the endoscope system 100 according to the first embodiment includes a control device 40 that is connected to a CMOS image sensor 80 provided at the distal end portion 5 via a collective cable 31 having a plurality of signal lines.
  • a light source device 60 that supplies white light or special light, a display unit 71 that displays an in-vivo image captured by the CMOS image sensor 80, an output unit 73 that outputs information related to in-vivo observation, and various instruction information required for in-vivo observation
  • An input unit 72 for input and a storage unit 74 for storing in-vivo images and the like are provided.
  • the first optical system 23, the second optical system 24, and the CMOS image sensor 80 are provided at the distal end portion 5.
  • the CMOS image sensor 80 includes an AFE (Analog Front End) unit 35 including a light receiving unit 28, a control circuit 33, a timing generator 34, a noise removing unit 36, a gain adjusting unit 37, and an A / D conversion unit 38, and The P / S conversion unit 39 converts the input digital signal from a parallel signal into a serial signal.
  • the light receiving unit 28 and the CMOS sensor peripheral circuit constituting the CMOS image sensor 80 are formed on a single chip, for example.
  • the light receiving unit 28 outputs an electrical signal after photoelectric conversion as pixel information from a pixel arbitrarily designated as a reading target among a plurality of pixels for imaging arranged in a two-dimensional matrix. Each pixel information includes a luminance value.
  • the light receiving unit 28 functions as an imaging unit in the claims.
  • control circuit 33 performs an imaging process on the light receiving unit 28, an imaging speed of the light receiving unit 28, a readout process of pixel information from the pixels of the light receiving unit 28, and transmission of the read pixel information. Control processing.
  • the timing generator 34 is driven according to the timing signal output from the control device 40, and in accordance with the reading order according to the setting of the reading address setting unit 53, the position designated as the reading target in the plurality of pixels constituting the light receiving unit 28.
  • the electrical signal after photoelectric conversion is output from the pixel at (address) as pixel information.
  • the noise removing unit 36 removes noise from the pixel information signal output from the predetermined pixel of the light receiving unit 28.
  • the gain adjustment unit 37 amplifies the luminance value of the pixel information output from the noise removal unit 36 with the amplification factor indicated in the setting data output from the control unit 55, and then outputs it to the A / D conversion unit 38. .
  • the A / D conversion unit 38 converts the pixel information signal from which noise has been removed from an analog signal into a digital signal, and outputs the signal to the P / S conversion unit 39.
  • the pixel information read from the light receiving unit 28 by the timing generator 34 and the AFE unit 35 is converted into an image signal of a serial signal by the P / S conversion unit 39, and then is passed through a predetermined signal line of the collective cable 31. It is transmitted to the control device 40.
  • the timing generator 34 and the AFE unit 35 function as a reading unit in the claims.
  • the control device 40 processes the image signal to display the in-vivo image on the display unit 71, and controls each component of the endoscope system 100.
  • the control device 40 includes an S / P converter 41, an image processor 42, a brightness detector 51, a dimmer 52, a read address setting unit 53, a CMOS drive signal generator 54, a controller 55, and a reference clock generator 56. And a control condition memory 57.
  • the S / P converter 41 converts the image signal, which is a digital signal received from the tip 5, from a serial signal to a parallel signal.
  • the image processing unit 42 reads the timing generator 34 and the AFE unit 35 from the parallel image signal output from the S / P conversion unit 41, that is, the pixel information of the pixels read by the timing generator 34 and the AFE unit 35.
  • An in-vivo image displayed on the display unit 71 is generated based on the pixel address of the light receiving unit 28.
  • the image processing unit 42 includes a synchronization unit 43, a WB adjustment unit 44, a gain adjustment unit 45, a ⁇ correction unit 46, a D / A conversion unit 47, a format change unit 48, a sample memory 49, and a still image memory 50. .
  • the synchronization unit 43 inputs the input image signals of the R, G, and B pixels to a memory (not shown) provided for each pixel, and the pixels of the light receiving unit 28 read by the timing generator 34 and the AFE unit 35.
  • the values of the memories are held while being sequentially updated with the input image signals, and the image signals of the three memories are synchronized as RGB image signals.
  • the synchronized RGB image signals are sequentially output to the WB adjustment unit 44, and some of the synchronized RGB image signals are also output to the sample memory 49 for image analysis such as brightness detection. , Retained.
  • the WB adjustment unit 44 adjusts the white balance of the RGB image signal.
  • the gain adjusting unit 45 adjusts the gain of the RGB image signal.
  • the ⁇ correction unit 46 performs gradation conversion of the RGB image signal corresponding to the display unit 71.
  • the D / A converter 47 converts the RGB image signal after gradation conversion from a digital signal to an analog signal.
  • the format changing unit 48 changes the image signal converted into the analog signal into a format such as a high-definition method and outputs the same to the display unit 71. As a result, one in-vivo image is displayed on the display unit 71.
  • a part of the RGB image signal gain-adjusted by the gain adjusting unit 45 is also held in the still image memory 50 for still image display, enlarged image display, or emphasized image display.
  • the brightness detection unit 51 detects a brightness level corresponding to each pixel from the RGB image signals held in the sample memory 49, and the detected brightness level is stored in a memory provided in the brightness detection unit 51.
  • the brightness detection unit 51 calculates a gain adjustment value and a light irradiation amount based on the detected brightness level.
  • the calculated gain adjustment value is output to the gain adjustment unit 45, and the calculated light irradiation amount is output to the dimming unit 52. Further, the detection result by the brightness detection unit 51 is also output to the control unit 55.
  • the dimming unit 52 sets the amount of current supplied to each light source and the driving condition of the neutral density filter based on the light irradiation amount output from the brightness detection unit 51 under the control of the control unit 55.
  • the light source synchronization signal including the setting conditions is output to the light source device 60.
  • the dimmer 52 sets the type, amount of light, and light emission timing of the light emitted from the light source device 60.
  • the read address setting unit 53 can arbitrarily set the pixel to be read and the reading order in the light receiving unit 28. That is, the read address setting unit 53 can arbitrarily set the pixel address of the light receiving unit 28 read by the timing generator 34 and the AFE unit 35. Further, the read address setting unit 53 outputs the set address of the pixel to be read to the synchronization unit 43.
  • the CMOS drive signal generation unit 54 generates a driving timing signal for driving the light receiving unit 28 and the CMOS sensor peripheral circuit, and outputs the timing signal to the timing generator 34 via a predetermined signal line in the collective cable 31.
  • This timing signal includes the address of the pixel to be read out.
  • the control unit 55 is constituted by a CPU or the like, reads various programs stored in a memory (not shown), and executes each processing procedure indicated in the program, thereby controlling each drive of each component, and each of these components Information input / output control and information processing for inputting / outputting various types of information to / from these components.
  • the control device 40 outputs setting data for imaging control to the control circuit 33 of the distal end portion 5 via a predetermined signal line in the collective cable 31.
  • the setting data includes an imaging speed of the light receiving unit 28, instruction information for instructing a reading speed of pixel information from an arbitrary pixel of the light receiving unit 28, instruction information for instructing an amplification factor of the luminance value of the read pixel information, and the read pixel Includes information transmission control information.
  • the control unit 55 changes the pixel to be read and the read order set by the read address setting unit 53. Then, the control unit 55 changes the pixel to be read and the reading order set by the read address setting unit 53 according to the image to be acquired.
  • the control unit 55 controls the readout target pixel setting processing by the readout address setting unit 53, the readout processing of the timing generator 34 and the AFE unit 35, and the image generation processing by the image processing unit 42 in association with the acquisition target image. .
  • the control condition memory 57 stores the control condition by the control unit 55 in association with each acquisition target image.
  • the control unit 55 sets the pixel to be read by the read address setting unit 53 according to the control condition corresponding to the image to be acquired among the control conditions stored in the control condition memory 57, the timing generator 34, and the AFE unit. 35 and the image generation processing by the image processing unit 42 are controlled.
  • the reference clock generation unit 56 generates a reference clock signal that is an operation reference of each component of the endoscope system 100 and supplies the generated reference clock signal to each component of the endoscope system 100.
  • the light source device 60 performs light irradiation processing under the control of the control unit 55.
  • the light source device 60 is a white light source 61 that irradiates white light composed of LEDs or the like, and is any one of RGB light that has a wavelength band different from the white irradiation light and is narrowed by a narrow band pass filter.
  • a special light source 62 that emits light as special light
  • a light source drive circuit that controls the amount of current supplied to the white light source 61 or the special light source 62 and the drive of the neutral density filter according to the light source synchronization signal transmitted from the light control unit 52 63, an LED driver 64 for supplying a predetermined amount of current to the white light source 61 or the special light source 62 under the control of the light source driving circuit 63.
  • the light emitted from the white light source 61 or the special light source 62 is supplied to the insertion portion 2 via the light guide 19 and is emitted to the outside from the tip of the tip portion 5.
  • the polarization image and the normal image are images to be acquired.
  • the control unit 55 controls each component according to the control conditions shown in the table T1 of FIG. 7 among the control conditions held in the control condition memory 57, so that the endoscope system 100 can detect the observation image. Both the polarization image and the normal image are acquired simultaneously.
  • the control unit 55 of the light receiving unit 28 corresponding to the first optical system 23 that emits only the component polarized on the predetermined first polarization plane is used for the polarization image.
  • the pixel to be read set by the read address setting unit 53 is the pixel in the region S1 and the pixel in the region S2 of the light receiving unit 28 corresponding to the second optical system that emits light without polarization for an unpolarized image.
  • the read address setting unit 53 controls, under the control of the control unit 55, the pixels in the region S1 corresponding to the polarization image and the pixels in the region S2 corresponding to the non-polarization image among the pixels of the light receiving unit 28. Both are set as pixels to be read.
  • the timing generator 34 and the AFE unit 35 obtain pixel information from each of the pixels in the region S1 and the pixels in the region S2 that are set as reading targets by the read address setting unit 53 among the plurality of pixels for imaging in the light receiving unit 28. read out.
  • the timing generator 34 and the AFE unit 35 do not read pixel information from pixels other than the pixels in the regions S1 and S2 in the light receiving unit 28.
  • the control unit 55 causes the image processing unit 42 to receive two images based on the pixel information of the pixels in the area S1 and the pixel information of the pixels in the area S2 read by the timing generator 34 and the AFE unit 35, respectively. Generate.
  • the image processing unit 42 generates a polarization image based on the pixel information of the pixels in the region S1, and generates a polarization image based on the pixel information of the second region.
  • the display unit 71 simultaneously displays two images, a polarized image and a non-polarized image, generated by the image processing unit 42.
  • the first optical system 23 and the second optical system 24 are provided in accordance with the polarization image and the non-polarized image to be acquired, and the first optical system 23 for the polarization image and the non-polarization image.
  • Different readout areas of the light receiving section 28 are set in the light receiving section 28 as readout areas corresponding to the second optical system 24 for the polarization image.
  • the pixel information is read from the pixels in each region, and the pixel information that is the basis of the polarized image and the pixel information that is the basis of the non-polarized image is obtained without performing the trimming process. Acquire each one at the same time.
  • the first embodiment it is possible to efficiently acquire a plurality of types of images with a simple configuration having one CMOS image sensor 80.
  • the pixel to be read is set in correspondence with the image to be acquired, and the amplification factor of the amplification process performed by the gain adjusting unit 37 of the AFE unit 35 is set.
  • the first optical system 23 emits only the component polarized on the predetermined first polarization plane of the light incident from the outside to the first region of the light receiving unit 28. For this reason, the amount of light received in the region S1 is lower than that in the region S2 in which light incident from the outside by the second optical system 24 enters without polarization.
  • the control unit 55 causes the gain adjustment unit 37 to amplify and output the luminance value of the pixel in the region S1 with an amplification factor higher than the amplification factor for the luminance value of the pixel in the region S2. For example, as shown in the table T1 of FIG. 7, the control unit 55 sets the gain adjustment condition in the CMOS image sensor 80 to 1 in the region S2 where non-polarized light is incident, and polarization is applied to the first polarization plane. The amplification factor of the region S1 where the incident component enters is set to double.
  • the luminance value of the pixel in the region S1 where the amount of received light is lower than that in the region S2 is amplified by the gain adjusting unit 37 with a higher amplification factor than that in the region S2, and is output to the control device 40.
  • the CMOS image sensor 80 outputs pixel information having an appropriate luminance value.
  • a non-polarized image with appropriate brightness can be generated without performing gain adjustment by the image processing unit 42 on the control device 40 side, so that the image generation processing can be performed efficiently.
  • the control unit 55 may switch the image displayed by the display unit 71 in accordance with the display image selection information input from the input unit 72 to the control device 40.
  • the control unit 55 since the pixel information corresponding to both a polarization image and a non-polarization image is read simultaneously, a display image can be switched in real time.
  • the area S2 of the light receiving unit 28 may be set to the same area and the same shape as the area S1 in order to obtain the same number of pixels.
  • FIG. 8 is a diagram illustrating an example of the distal end surface of the distal end portion of the endoscope according to the first modification of the first embodiment.
  • FIG. 9 is a view showing a part of a cut surface obtained by cutting the distal end portion 5A shown in FIG. 8 along line CC.
  • the light detecting member 23d in the first optical system 23 out of the light incident between the light guide 19 and the illumination lens 18a.
  • the light detection member 18b that transmits only the polarized component to the second polarization plane that is orthogonal to the first polarization plane.
  • a component polarized in a plane orthogonal to the first polarization plane is irradiated onto the subject from the illumination window 18A.
  • the first optical system 23 for obtaining a polarized image is provided with the light detection member 23d that polarizes the illumination light that irradiates the subject and transmits the component polarized in a plane orthogonal to the polarization plane of the illumination light.
  • the light detection member 23d that polarizes the illumination light that irradiates the subject and transmits the component polarized in a plane orthogonal to the polarization plane of the illumination light.
  • FIG. 10 is a diagram illustrating an example of the distal end surface of the distal end portion of the endoscope according to the second modification of the first embodiment.
  • FIG. 11 is a view showing a part of a cut surface obtained by cutting the tip 5B shown in FIG. 10 along the line DD.
  • the distal end portion 5 ⁇ / b> B of the endoscope according to the second modification of the first embodiment has a second optical system 24 ⁇ / b> B instead of the second optical system 24.
  • the second optical system 24B includes a first polarization plane by the light detection member 23d in the first optical system 23 and a light detection member 18b provided between the illumination window 18A and the light guide 19.
  • the light detection member 24d further transmits only the component polarized in the third polarization plane different from any of the second polarization planes.
  • the light detection member 24d transmits only the component polarized in the surface rotated 45 ° with respect to the polarization surface by the light detection member 23d in the first optical system 23 in the incident light.
  • the second optical system 24B only includes a component polarized on a surface rotated by 45 ° with respect to the polarization plane by the light detection member 23d in the first optical system 23 out of the light incident from the observation window 22B.
  • the light is emitted to the region S2 of the light receiving unit 28.
  • polarized images for different polarization planes can be acquired, and the tissue properties can be observed by changing the depth direction.
  • a distribution image having a tissue property can also be acquired by performing image calculation using polarized images for different polarization planes.
  • a fluorescence observation image for observing a fluorescent substance that emits fluorescence when irradiated with excitation light as special light is acquired as an image to be acquired together with a normal image of normal white light.
  • FIG. 12 is a block diagram showing a configuration of the endoscope system according to the second embodiment.
  • the endoscope system 200 according to the second embodiment has a first optical system 223 at the distal end portion 205 instead of the first optical system 23 shown in FIG. 6.
  • the control device 240 of the endoscope system 200 has a control unit 255 having the same function as the control unit 55 instead of the control unit 55 shown in FIG. 6, and corresponds to the normal image to be acquired and the fluorescence observation image.
  • a control condition memory 257 for storing the control conditions.
  • Embodiment 2 a fluorescent substance having a spectrum in a green to red range originally existing in a living tissue, or a labeling substance that emits red fluorescence or green fluorescence introduced into a subject is detected.
  • the special light source 62 emits blue or purple excitation light having a shorter wavelength than blue.
  • the white light source 61 emits white light when acquiring a normal image.
  • FIG. 13 is a diagram illustrating a distal end surface of the distal end portion of the endoscope according to the second embodiment.
  • 18 and an observation window 22 and an observation window 221 are provided on the distal end surface of the distal end portion 205 of the endoscope.
  • Light incident from the outside through the observation window 221 enters the first optical system 223 and is condensed.
  • light incident from the outside through the observation window 22 enters the first optical system 223 and is condensed.
  • the observation window 221 has the cover glass 21a closed as in the case of FIG.
  • FIG. 14 is a diagram for explaining the first optical system 223 and the second optical system 24 shown in FIG.
  • FIG. 14 is a cross-sectional view of the first optical system, the second optical system, the on-chip filter, and the light receiving unit 28 at the distal end portion 205 when cut along the line EE shown in FIG. 13, and is shown in FIG.
  • the cover glasses 21a, 22a, 25, the circuit board 26, the driver 29, the conversion circuit 30, the collective cable 31, and the electrode 32 are not shown.
  • the first optical system 223 includes a spectral filter 223d in place of the light detection member 23d in the first optical system 23, and the light incident through the observation window 221 is condensed after the light splitting. The light is emitted to the region S21 (see FIG. 15).
  • the second optical system 24 is configured by lenses 24a to 24c, and collects the light incident through the observation window 22 as it is, and the region S22 of the light receiving unit 28 (a region different from the region S21) (see FIG. 15).
  • the control unit 255 causes the white light source 61 and the special light source 62 to alternately irradiate white light and special light, and changes the pixel to be read out for each frame according to the type of irradiation light, thereby changing the normal image and The fluorescence observation image is acquired almost simultaneously.
  • the control unit 255 controls the illumination processing of each light source and the reading processing of the timing generator 34 and the AFE unit 35 in accordance with the acquisition target image, for example, according to the control conditions shown in the table T2 shown in FIG.
  • the table T2 is held in the control condition memory 257.
  • the control unit 255 causes the special light source 62 to emit blue or purple excitation light having a shorter wavelength than blue as the special light. Then, the control unit 255 acquires the luminance of fluorescence by the fluorescent material excited by the excitation light, and the light receiving unit 28 on which the light L21 (see FIG. 14) collected after the spectroscopy by the first optical system 223 enters. Is changed as a pixel to be read set by the read address setting unit 53.
  • the read address setting unit 53 sets the pixel in the region S21 corresponding to the first optical system 223 among the pixels of the light receiving unit 28 under the control of the control unit 255 as the pixel to be read.
  • the generator 34 and the AFE unit 35 read out pixel information from the pixels in the region S21 set as the reading target by the reading address setting unit 53 among the plurality of pixels for imaging in the light receiving unit 28.
  • the timing generator 34 and the AFE unit 35 do not read pixel information from pixels other than the pixels in the region S21 in the light receiving unit 28.
  • the image processing unit 42 generates a fluorescence observation image based on the pixel information of the region S21 of the light receiving unit 28 read by the timing generator 34 and the AFE unit 35.
  • the control unit 255 causes the white light source 61 to emit white light as shown in the table T2 (see FIG. 16). Then, when the normal image is generated, the control unit 255 reads the region S22 of the light receiving unit 28 on which the light L22 (see FIG. 14) collected by the second optical system 24 is incident is set by the read address setting unit 53. Change as the target pixel.
  • the read address setting unit 53 sets a pixel in the region S22 corresponding to the second optical system 24 among the pixels of the light receiving unit 28 under the control of the control unit 255 as a pixel to be read.
  • the generator 34 and the AFE unit 35 read out pixel information from the pixels in the region S22 set as a reading target by the reading address setting unit 53 among the plurality of pixels for imaging in the light receiving unit 28.
  • the timing generator 34 and the AFE unit 35 do not read pixel information from pixels other than the pixels in the region S22 in the light receiving unit 28.
  • the image processing unit 42 generates a normal image based on the pixel information of the region S22 of the light receiving unit 28 read by the timing generator 34 and the AFE unit 35.
  • control unit 255 changes the control conditions between the fluorescence observation image acquisition and the normal observation image acquisition, Each component is controlled.
  • the control unit 255 captures the subject illuminated with the special light emitted from the special light source 62 and outputs the pixel information, and the exposure time in the frame is a white light source.
  • the irradiation process in the white light source 61 and the special light source 62, the timing generator 34, and the exposure process so that the exposure time in the frame in which the subject illuminated with white light emitted from 61 is imaged and pixel information is output is increased.
  • the reading process in the AFE unit 35 is controlled to increase the actual light receiving sensitivity of fluorescence.
  • control unit 255 captures the luminance value of the pixel in the region S21 in the frame in which the gain adjusting unit 37 images the subject illuminated with the special light emitted from the special light source 62 and outputs the pixel information. Then, the object illuminated with white light emitted from the white light source 61 is imaged and amplified and output with a higher amplification factor than the standard amplification factor for the luminance value of the pixel in the region S21 in the frame where pixel information is output.
  • control unit 255 adds the luminance values of a plurality of pixels included in a block composed of a plurality of adjacent pixels as the luminance value of the pixel in the region S21 to the AFE unit 35, and outputs the binning in units of blocks. Let Accordingly, the control unit 255 increases the luminance value of the pixel in the region S21 that receives the fluorescence.
  • the image processing unit 42 can use the pixel information of the pixels in the region S21 having an increased luminance value when performing image processing on the fluorescence observation image. Can be generated.
  • the second embodiment has the same effects as the first embodiment, and is suitable for observation by controlling the exposure time, the amplification process, and the binning output process corresponding to the image to be acquired.
  • a bright fluorescence observation image can be acquired.
  • the optical system since the optical system can be set to be unique corresponding to each image to be observed, the lenses and spectral filters constituting the first optical system 223 and the second optical system 24 are supported. It can be optimized according to the image to be performed.
  • the spectral filter 223d in the first optical system 223 may be a filter having a narrow half-value width transmittance so that an image with increased fluorescence specificity may be acquired.
  • the filter is removed from the region where the light L21 at the time of fluorescence observation is incident, and only the region S22 of the light receiving unit 28 where the light L22 collected by the second optical system 24 is incident is turned on.
  • the chip filter 227 the light receiving sensitivity of the pixel in the region S21 that is a reading target when acquiring the fluorescence observation image may be further increased.
  • the area S22 of the light receiving unit 28 may be set to have the same area and the same shape as the area S21 in order to obtain the same number of pixels.
  • Embodiment 3 Next, Embodiment 3 will be described.
  • Embodiment 3 in addition to a normal white light image and an image for fluorescence observation, two types of narrow-band blue light and green light that are easily absorbed by hemoglobin in blood are used as acquisition target images. By irradiating the band of light, an NBI observation image in which the capillaries and mucous fine patterns on the surface of the mucosa are highlighted is acquired.
  • FIG. 18 is a block diagram illustrating a configuration of the endoscope system according to the third embodiment.
  • the endoscope system 300 according to the third embodiment has a first optical system 323 at the distal end portion 305 instead of the first optical system 23 shown in FIG. 6.
  • a second optical system 324 is provided instead of the optical system 24.
  • the control device 340 of the endoscope system 300 includes a control unit 355 having the same function as the control unit 55 instead of the control unit 55 illustrated in FIG. 6, and includes a normal image to be acquired, an image for fluorescence observation, and an NBI. It has a control condition memory 357 that stores control conditions corresponding to the observation image, and an image processing unit 342 that further includes a combining unit 358 that combines two images to generate one image.
  • the white light source 61 emits white light when acquiring a normal image
  • the special light source 62 is arranged in a narrower wavelength band than white light when acquiring an image for fluorescence observation. In this case, blue or violet excitation light having a shorter wavelength than blue is irradiated.
  • the special light source 62 emits NBI illumination light of two types of bands, blue light and green light, which are narrow band that is easily absorbed by hemoglobin in blood. To do.
  • FIG. 19 for explaining the first optical system 323 and the second optical system 324 shown in FIG. 18 shows the first optical system, the second optical system, the on-chip filter, and the light receiving unit 28 at the tip 305.
  • FIG. 19 illustrations of the cover glasses 21 a, 22 a, 25, the circuit board 26, the driver 29, the conversion circuit 30, the collective cable 31, and the electrode 32 at the distal end portion 305 are omitted.
  • the first optical system 323 includes lenses 23a to 23c and a filter 323d that transmits red light and green light out of the incident light, and out of the light incident through the observation window. Only red light and green light are collected and emitted to the region S31 of the light receiving unit 28 (see FIG. 20).
  • the second optical system 324 has a filter 324d that transmits blue light out of incident light together with the lenses 24a to 24c, and condenses only blue light out of light incident through the observation window.
  • the light is emitted to a region S32 (see FIG. 20) of the light receiving unit 28, which is a region different from S31.
  • the area S32 of the light receiving unit 28 may be set to the same area and the same shape as the area S31 in order to obtain the same number of pixels.
  • FIG. 21 is a plan view showing a filter arrangement of the on-chip filter 327 shown in FIG.
  • the R filter is located on the pixel P11 in the region S31a located on the region S31 of the light receiving unit 28, and the pixel P12 adjacent to the right side of the pixel P11 in the drawing.
  • no filter is provided on the pixel P21 adjacent to the lower side of the pixel P11 in the drawing, and an R filter is positioned on the pixel P22 adjacent to the right side of the pixel P21 in the drawing.
  • red light is incident on the pixels provided with the R filter (for example, the pixels P11 and P22 in FIG. 21), and no filter is provided. Both red light and green light are incident on the pixels (for example, pixels P12 and P21 in FIG. 21) as they are.
  • the on-chip filter 327 no filter is provided in the region S32a located on the region S32 of the light receiving unit 28. Therefore, the blue light emitted from the second optical system 324 is directly incident on all pixels.
  • control unit 355 corresponds to the image to be acquired, performs illumination processing by the white light source 61 and the special light source 62, setting processing of the pixel to be read by the read address setting unit 53, the timing generator 34, and The reading process by the AFE unit 35 and the image generation process by the image processing unit 342 are controlled.
  • the control unit 355 causes each light source, the read address setting unit 53, the timing generator 34, the AFE unit 35, and the image processing unit 342 to correspond to the image to be acquired in accordance with, for example, the control condition shown in the table T3 shown in FIG. Control each one. This table T3 is held in the control condition memory 357.
  • the control unit 355 causes the white light source 61 to emit white light. Then, the control unit 355 generates all the pixels in the region S31 of the light receiving unit 28 on which the light L31 (see FIG. 19) collected by the first optical system 323 is incident and the second optical system 324 when generating a normal image. All the pixels in the region S32 of the light receiving unit 28 on which the L32 condensed by the light incident is changed as the pixel to be read set by the read address setting unit 53.
  • the read address setting unit 53 sets all the pixels in the region S31 and all the pixels in the region S32 among the pixels of the light receiving unit 28 under the control of the control unit 355, and the timing generator 34
  • the AFE unit 35 reads pixel information from all the pixels in the region S31 and all the pixels in the region S32 set as the reading target by the read address setting unit 53 among the plurality of pixels for imaging in the light receiving unit 28.
  • the image processing unit 342 generates an R image and a G image in the synchronization unit 43 based on the pixel information read from all the pixels in the region S31.
  • the image processing unit 342 generates a B image based on the pixel information read from all the pixels in the region S32 in the synchronization unit 43.
  • the combining unit 358 combines the R image and the G image corresponding to the pixel information of all the pixels in the region S31 and the B image corresponding to the pixel information of all the pixels in the region S32. A normal image is generated.
  • the display unit 71 displays the normal image generated in this way during white light observation.
  • the control unit 355 causes the special light source 62 to irradiate NBI illumination light in two bands of blue light and green light that are narrowed. Then, the control unit 355 generates a second pixel other than the R pixel in the region S31 of the light receiving unit 28 on which the light L31 (see FIG. 19) collected by the first optical system 323 is incident when the NBI image is generated. All pixels in the region S32 of the light receiving unit 28 on which L32 collected by the optical system 324 is incident are changed as pixels to be read set by the read address setting unit 53.
  • the read address setting unit 53 sets the pixels other than the R pixel in the region S31 and all the pixels in the region S32 among the pixels of the light receiving unit 28 as pixels to be read.
  • the timing generator 34 and the AFE unit 35 are pixel information from the pixels other than the R pixel in the region S31 set as a read target by the read address setting unit 53 and all the pixels in the region S32 among the plurality of pixels for imaging in the light receiving unit 28. Is read.
  • the timing generator 34 and the AFE unit 35 read pixel information from pixels other than the R pixel in the region S31, and acquire pixel information that is the basis of the G image. Then, the image processing unit 342 generates a G image in the synchronization unit 43 based on the read pixel information.
  • the image processing unit 342 generates a B image based on the pixel information read from all the pixels in the region S32 in the synchronization unit 43.
  • the combining unit 358 combines the G image corresponding to the pixel information of the pixels other than the R pixel in the region S31 and the B image corresponding to the pixel information of all the pixels in the region S32, An image for NBI observation is generated.
  • the display unit 71 displays the NBI observation image generated in this way.
  • control unit 355 controls the read timing of the timing generator 34 so that the exposure time is longer than the standard exposure time at the time of normal image acquisition. Increases light and green light sensitivity. Further, the control unit 355 amplifies the luminance values of the pixels in the region S31 and the region S32 with respect to the gain adjustment unit 37 at an amplification factor higher than the standard amplification factor at the time of normal image acquisition when acquiring the NBI observation image. Output.
  • control unit 355 raises the luminance value of the pixel receiving the blue light and the green light, and acquires a bright NBI observation image suitable for observation.
  • control unit 355 removes the on-chip filter itself from the region S32, and further causes the AFE unit 35 to perform binning output in units of blocks as the luminance value of the pixel in the region S32 so that the blue light with low sensitivity and illumination light quantity is low.
  • the light receiving sensitivity may be increased.
  • the control unit 355 causes the special light source 62 to emit blue or purple excitation light having a shorter wavelength than blue. As a result, the fluorescent substance to be observed is excited and emits red fluorescence and green fluorescence. Then, when the fluorescence observation image is generated, the control unit 355 sets the foreground image of the region S31 of the light receiving unit 28 on which the red light and the green light collected by the first optical system 323 are incident. The pixel to be read is changed.
  • the read address setting unit 53 sets all the pixels in the region S31 among the pixels of the light receiving unit 28 under the control of the control unit 355 as pixels to be read, and the timing generator 34 and the AFE unit 35 Pixel information is read from all the pixels in the region S31 set as a read target by the read address setting unit 53 among the plurality of pixels for imaging in the light receiving unit 28.
  • the timing generator 34 and the AFE unit 35 do not read pixel information from the pixels in the region S32.
  • the image processing unit 342 Only red light is incident on the R pixel in the region S31, and both red light and green light are incident on the pixel in the region S31 on which no filter is provided. Therefore, the image processing unit 342 generates an R image and a G image based on the pixel information read from all the pixels in the region S31, and based on the R image and the G image, the red fluorescence and the green fluorescence. A fluorescence observation image for observation is generated. The display unit 71 displays the image for fluorescence observation generated in this way.
  • the control unit 355 controls the read timing of the timing generator 34 so that the exposure time is longer than the standard exposure time at the time of acquiring the normal image. Increasing the light receiving sensitivity of fluorescence and green fluorescence.
  • the control unit 355 causes the gain adjustment unit 37 to amplify and output the luminance values of all the pixels in the region S31 at a gain higher than the standard gain at the time of acquiring the normal image when acquiring the fluorescence observation image. .
  • the control unit 355 raises the luminance value of the pixel that has received the red fluorescence and the green fluorescence, and acquires a bright fluorescence observation image suitable for observation.
  • the third embodiment has the same effect as the first embodiment, and performs normal processing by performing illumination processing, setting of pixels to be read, and image processing in correspondence with the image to be acquired.
  • Three types of images can be acquired: an image for fluorescence observation and an image for NBI observation.
  • a bright NBI observation image and fluorescence observation image suitable for observation are acquired by controlling the exposure time, amplification processing, and binning output processing in correspondence with the acquired outer phase image. Can do.
  • the control unit 355 irradiates the special light source 62 with excitation light, as shown in the table T31 of FIG. Then, the control unit 355 causes the timing generator 34 and the AFE unit 35 together with the region S31 to set all the pixels in the region S32 where only the blue light is incident on the readout address setting unit 53 for the monochrome image. The pixel information of all the pixels in the region S32 is read out. Then, the control unit 355 causes the image processing unit 342 to generate one monochrome image based on the pixel information of all the pixels in the region S32. By controlling in this way, a monochrome image for shape observation can be obtained simultaneously with the image for fluorescence observation, and a smoother observation can be realized.
  • control unit 355 causes the read address setting unit 53 to set all the pixels in the region S32 where light is not incident together with all the pixels in the region S31 as the pixels to be read, and the timing generator 34 and the AFE.
  • the unit 35 is caused to read pixel information from all pixels in the region S32 together with all pixels in the region S31.
  • the gain adjusting unit 37 also outputs the luminance value of the pixel information in the region S32 after amplifying with the same high amplification factor as that in the region S31.
  • control unit 355 causes the image processing unit 342 to correct the luminance values of all the pixels in the region S31 where the R image and the G image are formed using the luminance values of all the pixels in the region S31 where no light is incident.
  • One image for fluorescence observation is generated. By controlling in this way, a standardized fluorescence observation image can be acquired, and more appropriate observation can be realized.
  • FIG. 25 is a block diagram illustrating a configuration of an endoscope system according to the fourth embodiment.
  • an endoscope system 400 according to the fourth embodiment has a near point optical system 423 at the distal end 405 instead of the first optical system 23 shown in FIG.
  • a far point optical system 424 is provided instead of the optical system 24 of FIG.
  • the control device 440 of the endoscope system 400 includes a control unit 455 having the same function as the control unit 55 in place of the control unit 55 shown in FIG. 6, for acquiring an image with an expanded depth of field.
  • an image processing unit 442 that further includes a combining unit 458 that combines two images to generate one image.
  • FIG. 26 for explaining the near-point optical system 423 and the far-point optical system 424 shown in FIG. 25 shows the near-point optical system 423, the far-point optical system 424, the on-chip filter 27, and the like at the tip 405.
  • a cross-sectional view of the light receiving unit 28 is shown.
  • illustration of the cover glasses 21a, 22a, 25, the circuit board 26, the driver 29, the conversion circuit 30, the collective cable 31, and the electrode 32 at the tip 405 is omitted.
  • the configurations of the lenses 423a to 423d and the lenses 424a to 424d are set so that the near point optical system 423 and the far point optical system 424 have different focal lengths.
  • the focal point position in the near point optical system 423 is set to be closer to the observation window side than the focal point position in the far point optical system 424, and the near point optical system 423 emits light L41 for forming a near point image.
  • the light is emitted to a region S41 (see FIG. 27) of the light receiving unit 28.
  • the far point optical system 424 emits light L42 for forming a far point image to a region S42 (see FIG. 27) of the light receiving unit which is a region different from the region S41. Note that it is desirable to set the region S42 of the light receiving unit 28 to have the same area and the same shape as the region S41 for superimposition processing by the combining unit 458 described later.
  • the control unit 455 controls the read address setting unit 53, the timing generator 34, the AFE unit 35, and the image processing unit 442, for example, according to the control conditions shown in the table T4 shown in FIG. This table T4 is held in the control condition memory 457.
  • control unit 455 sets the readout address for both the pixel in the region S41 corresponding to the near point optical system 423 and the pixel in the region S42 corresponding to the far point optical system 424.
  • the pixel 53 is changed as a readout target pixel set by the unit 53.
  • the read address setting unit 53 sets both the pixel in the region S41 and the pixel in the region S42 among the pixels of the light receiving unit 28 under the control of the control unit 455 as the pixels to be read, and the timing generator 34.
  • the AFE unit 35 reads out pixel information from each of the pixel in the region S41 and the pixel in the region S42 set as the readout target by the readout address setting unit 53 among the plurality of pixels for imaging in the light receiving unit 28.
  • the timing generator 34 and the AFE unit 35 do not read pixel information from pixels other than the pixels in the regions S41 and S42 in the light receiving unit 28.
  • the control unit 455 causes the gain adjustment unit 37 to display the pixel in the region S41 corresponding to the near point image.
  • the luminance value of the pixel in the region S41 is amplified with a low amplification factor so that the gain of.
  • the far point optical system 424 is underexposed farther from the observation window than the near point optical system 423. Therefore, the control unit 455 causes the gain adjustment unit 37 to store the pixels in the region S42 corresponding to the far point image.
  • the luminance value of the pixel in the region S42 is amplified at a high amplification factor so that the gain is increased.
  • control unit 455 causes the gain adjustment unit 37 to amplify and output the amplification factor for the luminance value of the pixel in the region S41 with an amplification factor different from the amplification factor for the luminance value of the pixel in the region S42.
  • the control unit 455 causes the gain adjustment unit 37 to amplify and output the amplification factor for the luminance value of the pixel in the region S41 with an amplification factor different from the amplification factor for the luminance value of the pixel in the region S42.
  • the image processing unit 442 includes a near-point image corresponding to the pixel information of the pixel in the region S41 read by the timing generator 34 and the AFE unit 35 in the synthesis unit 458, and the region One image is generated by superimposing the far point image corresponding to the pixel information of the pixel in S42.
  • FIG. 29 is a diagram showing the relationship between the distance from the illumination and the resolution in the near point image and the far point image.
  • the near point image has a higher resolution at a distance closer to the observation window.
  • the far point image has a higher resolution at a distance farther than the observation window. Therefore, an image focused from the far point to the near point can be acquired by superimposing the near point image corresponding to the pixel information of the pixel in the region S41 and the far point image corresponding to the pixel information of the pixel in the region S42. .
  • the fourth embodiment it is possible to simultaneously acquire a near-point image and a far-point image with a simple configuration having one CMOS image sensor 80, and to focus from the near point to the far point.
  • An image obtained by enlarging the image can be acquired appropriately.
  • the pixel information of the pixel in the region S41 corresponding to the near-point image and the pixel information of the pixel in the region S42 corresponding to the far-point image are each amplified with an appropriate amplification factor.
  • FIG. 30 is a block diagram illustrating a configuration of an endoscope system according to the fifth embodiment.
  • an endoscope system 500 according to the fifth embodiment has a wide-angle image optical system 523 at the distal end portion 505 instead of the first optical system 23 shown in FIG.
  • a main image optical system 524 is provided instead of the optical system 24.
  • the control device 540 of the endoscope system 500 includes a control unit 555 having the same function as the control unit 55 instead of the control unit 55 shown in FIG. 6, and is a main image that is a detailed high-definition image for observation.
  • a control condition memory 557 for storing control conditions for acquiring two images, ie, a wide-angle image that is an auxiliary image.
  • FIG. 31 is a cross-sectional view of the wide-angle image optical system 523, the main image optical system 524, the on-chip filter 27, and the light receiving unit 28 at the distal end portion 505.
  • illustration of the cover glass 21a, 22a, 25, the circuit board 26, the driver 29, the conversion circuit 30, the collective cable 31, and the electrode 32 at the front end portion 505 is omitted.
  • the wide-angle image optical system 523 includes lenses 523a to 523f including a wide-angle lens and a relay lens in addition to a concave lens and a convex lens. Has a wider viewing angle than system 524.
  • the wide-angle image optical system 523 emits light L51 for forming a wide-angle image to a region S51 (see FIG. 32) of the light receiving unit 28.
  • the main image optical system 524 emits light L52 for forming a main image to a region S52 (see FIG. 32) of the light receiving unit which is a region different from the region S51.
  • the wide-angle image is an auxiliary image for assisting a surgical procedure or the like, it is sufficient to always observe a wider range than the treatment range. Therefore, since it is sufficient for the wide-angle image that is an auxiliary image to confirm a wider range than the treatment range, there is no particular problem because the resolution is lower than that of the main image for which higher definition is required. Therefore, the region S51 where the light emitted by the wide-angle image optical system 523 is incident can be made smaller than the region S52 where the light emitted by the main image optical system 524 is incident. By setting the areas S51 and S52 in this way, a wide reading area for main image formation can be secured and a high-definition main image can be acquired.
  • the control unit 555 changes both the pixel in the region S51 corresponding to the wide-angle image optical system 523 and the pixel in the region S52 corresponding to the main image optical system 524 as the pixels to be read set by the read-out address setting unit 53. To do.
  • the read address setting unit 53 sets both the pixel in the region S51 and the pixel in the region S52 as pixels to be read out of the pixels of the light receiving unit 28 under the control of the control unit 555, and the timing generator 34
  • the AFE unit 35 reads out pixel information from each of the pixel in the region S51 and the pixel in the region S52 set as the reading target by the read address setting unit 53 among the plurality of pixels for imaging in the light receiving unit 28.
  • the timing generator 34 and the AFE unit 35 do not read pixel information from pixels other than the pixels in the regions S51 and S52 in the light receiving unit 28.
  • the image processing unit 42 under the control of the control unit 555, the image processing unit 42 generates a wide-angle image that is an auxiliary image based on the pixel information of the region S51 of the light receiving unit 28 read by the timing generator 34 and the AFE unit 35, A main image that is a high-definition image is generated based on the pixel information in the region S52 of the light receiving unit 28 read by the timing generator 34 and the AFE unit 35.
  • the display unit 71 displays the main image and the wide-angle image generated by the image processing unit 542.
  • the main image and the wide-angle image as the auxiliary image can be simultaneously acquired with only one endoscope.
  • an imaging operation is performed at the time of shipping inspection after manufacture, brightness detection is performed, and light corresponding to each optical system is actually transmitted.
  • control conditions are stored in the control condition memories 57, 257, 357, 457, and 557 in the control devices 40, 240, 340, 440, and 540
  • each control condition may be held in a memory (not shown) in the CMOS image sensor 80 of the tip portions 5, 205, 305, 405, and 505.
  • the control units 55, 255, 355, 455, and 555 notify the control circuit 33 of an instruction condition indicating the control condition to be used, and the control circuit 33 uses a memory (not shown) in the CMOS image sensor 80 to display the instruction condition.
  • the light receiving unit 28, the timing generator 34, and the AFE unit 35 may be controlled by selecting the indicated control conditions.
  • FIG. 33 is a block diagram illustrating a configuration of an endoscope system according to the sixth embodiment.
  • the endoscope system 600 according to the sixth embodiment includes a right image optical system 623 and a left image optical system 624 at the distal end portion 605.
  • the control device 640 of the endoscope system 600 includes a control unit 655 having the same function as the control unit 55 in place of the control unit 55 shown in FIG. 6, and stores control conditions for so-called stereoscopic image generation.
  • the image processing unit 642 includes a condition memory 657 and further includes a combining unit 658 that combines the two images of the right image and the left image acquired at the same time to generate one stereoscopic image.
  • the right image optical system 623 including the lenses 623a to 623d emits light L61 for right image formation to the right region S61 (see FIG. 35) of the light receiving unit 28.
  • the left image optical system 624 including the lenses 624a to 624d emits light L62 for left image formation to the left region S62 (see FIG. 35) of the light receiving unit. Note that it is desirable to set the region S62 of the light receiving unit 28 to have the same area and the same shape as the region S61 for the combining process by the combining unit 658.
  • the control unit 655 causes the readout address setting unit 53 to read out both the pixel in the right region S61 corresponding to the right image optical system 623 and the pixel in the left region S62 corresponding to the left image optical system 624 as pixels to be read out.
  • the timing generator 34 and the AFE unit 35 are set so that each of the pixels in the right region S61 and the pixels in the left region S62 that are set as readout targets by the readout address setting unit 53 among the plurality of pixels for imaging in the light receiving unit 28.
  • the pixel information is read out from.
  • the combining unit 658 combines the two images of the right image and the left image acquired simultaneously to generate one stereoscopic image.
  • a right image and a left image can be simultaneously acquired and a stereoscopic image can be generated with a simple configuration having one CMOS image sensor 80.
  • the right image and the left image can be aligned by changing the other left region S62 based on the right region S61.
  • the parallax can be adjusted in a pseudo manner.
  • the present embodiment is not limited to an endoscope system, and can be improved in efficiency when applied to a photographing apparatus such as a digital camera, a digital single lens reflex camera, a digital video camera, or a camera-equipped mobile phone.
  • a photographing apparatus such as a digital camera, a digital single lens reflex camera, a digital video camera, or a camera-equipped mobile phone.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Endoscopes (AREA)
  • Studio Devices (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Cameras In General (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Lenses (AREA)

Abstract

 本発明にかかる内視鏡システム(100)は、第1の光学系(23)と、第2の光学系(24)と、検光部材を有する第1の光学系から出射した光が入射する第1の領域と、第1の領域と異なる領域であって第2の光学系から出射した光が入射する第2の領域とを有する受光部(28)と、第1の領域の画素と第2の領域の画素とを読み出し対象の画素として設定する読出アドレス設定部(53)と、読み出し対象として設定された第1の領域の画素および第2の領域の画素のそれぞれから画素情報を読み出すタイミングジェネレータ(34)およびAFE部(35)と、第1の領域の画素の画素情報から偏光画像を生成し、第2の領域の画素の画素情報をもとに通常画像を生成する画像処理部とを備える。

Description

撮像装置
 本発明は、撮像用の複数の画素のうち読み出し対象として任意に指定された画素から光電変換後の電気信号を画素情報として出力可能である撮像部を備えた撮像装置に関する。
 従来から、医療分野においては、被検体の臓器内部を観察する際に内視鏡システムが用いられている。内視鏡システムにおいては、一般に、患者等の被検体の体腔内に細長形状をなす可撓性の挿入部を挿入し、この挿入した挿入部を介して体腔内の生体組織に白色光を照射し、その反射光を挿入部先端の撮像部によって受光して、体内画像を撮像する。このように撮像された生体画像は、この内視鏡システムのモニタに表示される。医師等のユーザは、内視鏡システムのモニタに表示された体内画像を通して、被検体の体腔内を観察する。
 ここで、白色光による通常画像とともに、通常画像とは異なる蛍光観察用画像等の他の画像を取得できる内視鏡システムが実現されている。このような内視鏡システムとして、通常画像取得用の撮像素子に加えて、他の画像取得用の撮像素子を内視鏡先端部に配置した構成が提案されている(たとえば、特許文献1参照)。また、各結像光学系およびフィルタに対する切替機構や調整機構を設けて、一つの撮像素子で通常画像と他の画像とを取得する構成が提案されている(たとえば、特許文献2参照)。
特開2009-034224号公報 特開2002-336196号公報
 ここで、内視鏡挿入部先端は、被検体の体腔内に導入されるため、細径化が要求されており、使用できるスペースにも限界がある。しかしながら、従来の構成では、複数種の画像を取得するために、複数の撮像素子あるいは切替機構および調整機構といった複雑な機構を内視鏡挿入部先端に搭載しなければならず構造が複雑となり、挿入部先端の細径化が困難になるとともに、撮像素子、ドライバおよび変換回路などの実装にも多くの制約が生じてしまうという問題があった。
 本発明は、上記に鑑みてなされたものであって、1つの撮像素子で複数種の画像を取得できる簡易な構成の撮像装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる撮像装置は、入射した光を集光して出射する第1の光学系と、入射した光を集光して出射する光学系であって前記第1の光学系とは異なる第2の光学系と、前記第1の光学系から出射した光が入射する領域である第1の領域と、前記第1の領域と異なる領域であって前記第2の光学系から出射した光が入射する領域である第2の領域とを有し、撮像用の複数の画素のうち読み出し対象として任意に設定された画素から光電変換後の電気信号を画素情報として出力可能である撮像部と、前記撮像部における読み出し対象の画素を任意に設定可能であって、前記第1の領域の画素および前記第2の領域の画素の少なくとも一方を読み出し対象の画素として設定する設定部と、前記撮像部における前記撮像用の複数の画素のうち前記設定部により読み出し対象として設定された画素から画素情報を読み出す読出し部と、前記設定部が設定する読み出し対象の画素を取得対象の画像に応じて変更する制御部と、前記読出し部によって読み出された画素の画素情報の少なくとも一方をもとに前記取得対象の画像を生成する画像処理部と、を備えたことを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記制御部は、前記取得対象の画像に対応させて、前記設定部による読み出し対象の画素の設定処理、前記読出し部による読み出し処理および前記画像処理部による画像生成処理を制御することを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記制御部による制御条件を各取得対象の画像に対応させて記憶する制御条件記憶部をさらに備え、前記制御部は、前記制御条件記憶部に記憶された制御条件のうち前記取得対象の画像に対応した制御条件にしたがって、前記設定部による読み出し対象の画素の設定処理、前記読出し部の読み出し処理および前記画像処理部による画像生成処理を制御することを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記画像処理部が生成した画像を表示する表示部をさらに備え、前記画素情報は、輝度値を含み、前記第1の光学系は、入射した光のうち第1の偏光面に偏光した成分のみを前記撮像部の第1の領域に出射し、前記制御部は、前記設定部に前記第1の領域の画素および前記第2の領域の画素を前記読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の画素および前記第2の領域の画素の画素情報をそれぞれ読み出させるとともに前記第1の領域の画素の輝度値を前記第2の領域の画素の輝度値に対する増幅率よりも高い増幅率で増幅して出力させ、前記画像処理部に、前記読出し部によって読み出された前記第1の領域の画素の画素情報と前記第2の領域の画素の画素情報とのそれぞれに基づく2枚の画像を生成させ、前記表示部は、前記画像処理部が生成した2枚の画像を表示することを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、光源と、前記光源によって発せられた光のうち第2の偏光面に偏光した成分を前記被写体に出射する偏光部と、を有することを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記第2の光学系は、入射した光のうち、前記第1の偏光面と異なる第3の偏光面に偏光した成分のみを前記撮像部の第2の領域に出射することを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、第1の光を照射する第1の照射部と、前記第1の光よりも広い波長帯域の光である第2の光を照射する第2の照射部と、をさらに備え、前記第1の光学系は、前記第1の光に対応して外部から入射した光を分光する分光部材を有し、前記制御部は、前記第1の照射部および前記第2の照射部に交互に光を照射させるとともに、前記第1の照射部から照射される第1の光で照明された被写体を撮像して画素情報を出力させる第1のフレームにおいては、前記設定部に前記第1の領域の画素を前記読み出し対象の画素として設定させて前記読出し部に前記第1の領域の画素の画素情報を読み出させ、前記第2の照射部から照射される第2の光で照明された前記被写体を撮像して画素情報を出力させる第2のフレームにおいては、前記設定部に前記第2の領域の画素を読み出し対象の画素として設定させて前記読出し部に前記第2の領域の画素の画素情報を読み出させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記制御部は、前記第1のフレームにおける露光時間が前記第2のフレームにおける露光時間よりも長くなるように前記第1の照射部および前記第2の照射部における照射処理と前記読出し部における読み出し処理とを制御することを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記画素情報は、輝度値を含み、前記制御部は、前記読出し部に、前記第1のフレームにおいては、前記第1の領域の画素の輝度値を、前記第2のフレームにおける前記第2の領域の画素の輝度値に対する増幅率よりも高い増幅率で増幅して出力させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記画素情報は、輝度値を含み、前記制御部は、前記読出し部に、前記第1の領域の画素の輝度値として、互いに隣り合う複数の画素で構成されるブロックに含まれる複数の画素の輝度値を加算してブロック単位で出力させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、白色光よりも狭い波長帯域の特殊光を照射する第1の照射部と、白色光を照射する第2の照射部と、をさらに備え、前記第1の光学系は、入射した光のうち赤色光および緑色光を透過させる第1の透過フィルタを備え、前記第2の光学系は、入射した光のうち青色光を透過させる第2の透過フィルタを備え、前記制御部は、前記取得対象の画像に対応させて、前記第1の照明部および前記第2の照明部による照明処理、前記設定部による読み出し対象の画素の設定処理、前記読出し部による読み出し処理、前記画像処理部による画像生成処理を制御することを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記取得対象の画像は、白色光照明による画像であり、前記制御部は、前記取得対象の画像が前記白色光照明による画像である場合、前記第2の照明部に白色光を照射させ、前記設定部に前記第1の領域の全画素および前記第2の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の全画素および前記第2の全画素をそれぞれ読み出させ、前記画像処理部に前記第1の領域の全画素の画素情報に対応する画像と前記第2の全画素の画素情報に対応する画像とを合成して1枚の画像を生成させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記取得対象の画像は、前記取得対象の画像が特定物質の分布を強調させた強調画像であり、前記制御部は、前記取得対象の画像が前記強調画像である場合、前記第1の照射部に前記特殊光として緑色光および青色光の波長帯域に含まれる光を照射させ、前記設定部に前記第1の領域の緑色光が入射する画素および前記第2の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の緑色光が入射する画素および前記第2の領域の全画素をそれぞれ読み出させ、前記画像処理部に前記第1の領域の緑色光が入射する画素の画素情報に対応する画像と前記第2の領域の全画素の画素情報に対応する画像とを合成して1枚の画像を生成させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記取得対象の画像は、蛍光観察用画像であり、前記制御部は、前記取得対象の画像が前記蛍光観察用画像である場合、前記第1の照射部に前記特殊光として赤色光および緑色光の波長帯域に含まれる蛍光を発する物質に対する励起光を照射させ、前記設定部に前記第1の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の全画素の画素情報を読み出させ、前記画像処理部に前記第1の領域の全画素の画素情報をもとに1枚の前記蛍光観察用画像を生成させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記制御部は、前記設定部に前記第1の領域の全画素とともに前記第2の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の全画素とともに前記第2の領域の全画素から画素情報をそれぞれ読み出させ、前記画像処理部に前記第2の領域の全画素の画素情報をもとに1枚の白黒画像を生成させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記画素情報は、輝度値を含み、前記制御部は、前記設定部に前記第1の領域の全画素とともに前記第2の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の全画素とともに前記第2の領域の全画素から画素情報をそれぞれ読み出させ、前記画像処理部に前記第1の領域の全画素の輝度値を前記第2の領域の全画素の輝度値を用いて補正させてから1枚の前記蛍光観察用画像を生成させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記第1の光学系の焦点距離は、前記第2の光学系の焦点距離と異なり、前記制御部は、前記設定部に前記第1の領域の画素と前記第2の領域の画素とを読み出し対象の画素として設定させて前記読出し部に前記第1の領域の画素および前記第2の領域の画素の画素情報をそれぞれ読み出させるとともに、前記画像処理部に前記読出し部によって読み出された前記第1の領域の画素の画素情報に対応する画像と前記第2の領域の画素の画素情報に対応する画像とを重ね合わせて1枚の画像を生成させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記画素情報は、輝度値を含み、前記制御部は、前記読出し部に、前記第1の領域の画素の輝度値を、前記第2の領域の画素の輝度値に対する増幅率と異なる増幅率で増幅して出力させることを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記画像処理部が生成した画像を表示する表示部をさらに備え、前記第1の光学系の視野角は、前記第2の光学系の視野角と異なり、前記制御部は、前記設定部に前記第1の領域の画素および前記第2の領域の画素を前記読み出し対象の画素として設定させて前記読出し部に前記第1の領域の画素および前記第2の領域の画素の画素情報をそれぞれ読み出させるとともに、前記画像処理部に前記読出し部によって読み出された前記第1の領域の画素の画素情報と前記第2の領域の画素の画素情報とのそれぞれに基づく2枚の画像を生成させ、前記表示部は、前記画像処理部が生成した2枚の画像を表示することを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、前記第1の光学系の視野角は、前記第2の光学系の視野角よりも広く、前記第1の領域は、前記第2の領域よりも狭いことを特徴とする。
 また、本発明にかかる撮像装置は、上記の発明において、当該撮像装置は、体内に導入される先端部と信号処理装置とを有し、前記先端部と前記信号処理装置とが伝送部によって接続されている内視鏡装置であって、前記先端部は、前記第1の光学系、前記第2の光学系、前記撮像部および前記読出し部を有し、前記信号処理装置は、前記設定部、前記制御部および前記画像処理部を有することを特徴とする。
 本発明にかかる撮像装置は、撮像用の複数の画素のうち読み出し対象として任意に指定された画素から輝度値を含む光電変換後の電気信号を画素情報として出力可能である撮像部を用い、取得対象の画像に対応させて、撮像部における第1の光学系に対応する第1の領域および第2の光学系に対応する第2の領域の少なくとも一方から画素情報を読出して画像を生成することによって、光学系を切り替えることなく、一つの撮像部で複数種の画像を取得できる。
図1は、実施の形態1における内視鏡部分の概略構成を示す図である。 図2は、図1に示す内視鏡の先端部の先端面を示す図である。 図3は、図2に示す先端部をA-A線で切断した切断面の一部を示す図である。 図4は、図2に示す先端部をB-B線で切断した切断面の一部を示す図である。 図5は、図3に示す受光部に設定される受光領域の一例を説明する図である。 図6は、実施の形態1にかかる内視鏡システムの構成を示すブロック図である。 図7は、図6に示す制御条件メモリが記憶する制御条件の一覧テーブルの一例を示す図である。 図8は、実施の形態1の変形例1における内視鏡の先端部の先端面の一例を示す図である。 図9は、図8に示す先端部をC-C線で切断した切断面の一部を示す図である。 図10は、実施の形態1の変形例2における内視鏡の先端部の先端面の一例を示す図である。 図11は、図10に示す先端部をD-D線で切断した切断面の一部を示す図である。 図12は、実施の形態2にかかる内視鏡システムの構成を示すブロック図である。 図13は、実施の形態2における内視鏡の先端部の先端面を示す図である。 図14は、図12に示す第1の光学系および第2の光学系を説明する図である。 図15は、図14に示す受光部に設定される受光領域の一例を説明する図である。 図16は、図12に示す制御条件メモリが記憶する制御条件の一覧テーブルの一例を示す図である。 図17は、図12に示す第1の光学系および第2の光学系の一例を説明する図である。 図18は、実施の形態3にかかる内視鏡システムの構成を示すブロック図である。 図19は、図18に示す第1の光学系および第2の光学系を説明する図である。 図20は、図19に示す受光部に設定される受光領域の一例を説明する図である。 図21は、図19に示すオンチップフィルタのフィルタ配列を示す平面図である。 図22は、図18に示す制御条件メモリが記憶する制御条件の一覧テーブルの一例を示す図である。 図23は、図18に示す制御条件メモリが記憶する制御条件の一覧テーブルの他の例を示す図である。 図24は、図18に示す制御条件メモリが記憶する制御条件の一覧テーブルの他の例を示す図である。 図25は、実施の形態4にかかる内視鏡システムの構成を示すブロック図である。 図26は、図25に示す近点用光学系および遠点用光学系の一例を説明する図である。 図27は、図25に示す受光部に設定される受光領域の一例を説明する図である。 図28は、図25に示す制御条件メモリが記憶する制御条件の一覧テーブルの一例を示す図である。 図29は、近点画像および遠点画像における照明からの距離と解像度との関係を示す図である。 図30は、実施の形態5にかかる内視鏡システムの構成を示すブロック図である。 図31は、図30に示す広角画像用光学系および主画像用光学系の一例を説明する図である。 図32は、図31に示す受光部に設定される受光領域の一例を説明する図である。 図33は、実施の形態6にかかる内視鏡システムの構成を示すブロック図である。 図34は、図33に示す右画像用光学系および左画像用光学系の一例を説明する図である。 図35は、図34に示す受光部に設定される受光領域の一例を説明する図である。
 以下に、本発明にかかる実施の形態として、挿入部先端に撮像素子を備え、患者等の被検体の体腔内の画像を撮像して表示する医療用の内視鏡システムについて説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。また、図面は模式的なものであり、各部材の厚みと幅との関係、各部材の比率などは、現実と異なることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている。
(実施の形態1)
 まず、実施の形態1における内視鏡システムについて説明する。図1は、本実施の形態1にかかる内視鏡システムの内視鏡部分の概略構成を示す図である。図1に示すように、本実施の形態1における内視鏡1は、細長な挿入部2と、この挿入部2の基端側であって内視鏡装置操作者が把持する操作部3と、この操作部3の側部より延伸する可撓性のユニバーサルコード4とを備える。ユニバーサルコード4は、ライトガイドケーブルや電気系ケーブルなどを内蔵する。
 挿入部2は、撮像素子としてCMOSセンサを内蔵した先端部5と、複数の湾曲駒によって構成され湾曲自在な湾曲部6と、この湾曲部6の基端側に設けられた長尺であって可撓性を有する長尺状の可撓管部7とを備える。
 ユニバーサルコード4の端部にはコネクタ部8が設けられている。コネクタ部8には、光源装置に着脱自在に接続されるライトガイドコネクタ9、CMOSセンサで光電変換した被写体像の電気信号を信号処理用の制御装置に伝送するため制御装置に接続される電気接点部10、先端部5のノズルに空気を送るための送気口金11などが設けられている。ここで、光源装置は、白色光源や特殊光源などを有し、白色光源あるいは特殊光源からの光を、ライトガイドコネクタ9を介して接続された内視鏡1へ照明光として供給する。また、制御装置は、撮像素子に電源を供給し、撮像素子から光電変換された電気信号が入力される装置であり、撮像素子によって撮像された電気信号を処理して接続する表示部に画像を表示させるとともに、撮像素子のゲイン調整などの制御および駆動を行なう駆動信号の出力を行なう。
 操作部3には、湾曲部6を上下方向および左右方向に湾曲させる湾曲ノブ12、体腔内に生検鉗子、レーザプローブ等の処置具16を挿入する処置具挿入部13、制御装置、光源装置あるいは送気、送水、送ガス手段などの周辺機器の操作を行なう複数のスイッチ14が設けられている。処置具挿入部13から挿入された処置具16は、内部に設けられた処置具用チャンネルを経て挿入部2先端の開口部15から表出する。たとえば処置具16が生検鉗子の場合には、生検鉗子によって患部組織を採取する生検などを行なう。
 次に、挿入部2の先端部5における構成について説明する。図2は、図1に示す内視鏡1の先端部5の先端面を示す図である。図3は、図2に示す先端部5をA-A線で切断した切断面の一部を示す図である。図4は、図2に示す先端部5をB-B線で切断した切断面の一部を示す図である。
 図2に示すように、図1に示す内視鏡1の先端部5の先端面には、処置具表出用の開口部15、洗浄用ノズル17、照明光が出射する照明窓18、観察窓21および観察窓22が設けられる。
 図3に示すように、照明窓18においては、グラスファイバ束等で構成されるライトガイド19を介して光源装置から供給された白色光あるいは特殊光が、照明レンズ18aから出射する。処置具表出用の開口部15は、処置具用チャンネル20と連通する。
 図4に示すように、観察窓21および観察窓22は、カバーガラス21a,22aを用いてそれぞれ閉塞されている。観察窓21を介して外部から入射した光は、第1の光学系23に入射し、集光される。観察窓22を介して外部から入射した光は、第1の光学系23とは異なる第2の光学系24に入射し、集光される。
 受光部28は、2次元的にマトリックス状に配置された撮像用の複数の画素を有し、第1の光学系23から出射した光および第2の光学系24から出射した光の双方が入射するように配置される。受光部28は、第1の光学系23および第2の光学系24を介して入射した光をそれぞれ受光して体腔内を撮像する。受光部28は、図5に示すように、第1の光学系23から出射した光が入射する領域S1と、領域S1と異なる領域であって第2の光学系24から出射した光が入射する領域S2とを有する受光面を備える。
 受光部28の受光面側には、カバーガラス25が設けられている。カバーガラス25と受光部28との間には、受光部28の画素の配列に対応してR,GあるいはBのフィルタが配列するオンチップフィルタ27が設けられる。受光部28は、受光部28に撮像タイミングを指示するとともに電源供給を行うドライバ29や、受光部28による画像信号を読み出して電気信号に変換する変換回路30などとともに、回路基板26に実装される。この回路基板26には、電極32が複数設けられる。電極32は、たとえば異方性導電性樹脂フィルムを介して、制御装置との間で電気信号を伝送する信号線31aと接続する。受光部28が出力した電気信号である画像信号を伝送する信号線あるいは制御装置から制御信号を伝送する信号線などの複数の信号線31aによって、集合ケーブル31が形成される。
 第1の光学系23は、レンズ23a~23cと、入射した光のうち第1の偏光面に偏光した成分のみを検出して透過させる観察窓側に設けられた検光部材23dとによって構成される。したがって、第1の光学系23は、観察窓21を介して入射した光のうち第1の偏光面に偏光した成分のみを受光部28の領域S1に出射している。第2の光学系24は、レンズ24a~24cによって構成され、観察窓22を介して入射した光をそのまま受光部28の領域S2に出射している。領域S1と領域S2とは、それぞれ異なる領域である。
 この実施の形態1にかかる内視鏡システムにおいては、撮像素子として、受光部28の画素のうち任意に設定したアドレスの画素のみを読み出し可能であるCMOS撮像センサ80を採用する。そして、実施の形態1にかかる内視鏡システムでは、取得対象の画像に応じて、読出アドレス設定部53は読み出し対象の画素を設定している。実施の形態1の場合では、第1の偏光面に偏光した成分のみを出射する第1の光学系23に対応する受光部28の領域S1の画素および無偏光で光を出射する第2の光学系に対応する受光部28の領域S2の画素からそれぞれ画素情報を読み出すことによって、所定面に偏光した成分による偏光画像と、無偏光の通常画像とを観察画像として同時に取得する。
 実施の形態1にかかる内視鏡システムの構成について詳細に説明する。図6は、本実施の形態1にかかる内視鏡システムの構成を示すブロック図である。図6に示すように、実施の形態1にかかる内視鏡システム100は、先端部5に設けられたCMOS撮像素子80と複数の信号線を有する集合ケーブル31を介して接続する制御装置40、白色光あるいは特殊光を供給する光源装置60、CMOS撮像素子80が撮像した体内画像を表示する表示部71を有し、体内観察に関する情報を出力する出力部73、体内観察に要する各種指示情報を入力する入力部72および体内画像等を記憶する記憶部74を備える。
 先端部5には、第1の光学系23、第2の光学系24およびCMOS撮像素子80が設けられる。CMOS撮像素子80は、受光部28、制御回路33、タイミングジェネレータ34、ノイズ除去部36とゲイン調整部37とA/D変換部38とによって構成されるAFE(Analog Front End)部35、および、入力したデジタル信号をパラレル信号からシリアル信号に変換するP/S変換部39によって構成される。CMOS撮像素子80を構成する受光部28およびCMOSセンサ周辺回路は、たとえば1チップ化されている。
 受光部28は、2次元的にマトリックス状に配置された撮像用の複数の画素のうち読み出し対象として任意に指定された画素から光電変換後の電気信号を画素情報として出力する。各画素情報は、輝度値を含む。受光部28は、特許請求の範囲における撮像部として機能する。
 制御回路33は、制御装置40から出力された設定データにしたがって、受光部28に対する撮像処理、受光部28の撮像速度、受光部28の画素からの画素情報の読み出し処理および読み出した画素情報の伝送処理を制御する。
 タイミングジェネレータ34は、制御装置40から出力されたタイミング信号にしたがって駆動し、読出アドレス設定部53の設定に応じた読み出し順にしたがって、受光部28を構成する複数の画素において読み出し対象として指定された位置(アドレス)の画素から光電変換後の電気信号を画素情報として出力させる。
 ノイズ除去部36は、受光部28の所定の画素から出力された画素情報の信号のノイズを除去する。ゲイン調整部37は、ノイズ除去部36から出力された画素情報の輝度値を、制御部55から出力された設定データにおいて指示された増幅率で増幅した後に、A/D変換部38に出力する。A/D変換部38は、ノイズ除去された画素情報の信号をアナログ信号からデジタル信号に変換し、P/S変換部39に出力する。タイミングジェネレータ34およびAFE部35によって受光部28から読み出された画素情報は、P/S変換部39によってシリアル信号の画像信号に変換された後、集合ケーブル31の所定の信号線を介して、制御装置40に伝送される。タイミングジェネレータ34およびAFE部35は、特許請求の範囲における読出し部として機能する。
 制御装置40は、画像信号を処理して表示部71に体内画像を表示させるとともに、内視鏡システム100の各構成部位を制御する。制御装置40は、S/P変換部41、画像処理部42、明るさ検出部51、調光部52、読出アドレス設定部53、CMOS駆動信号生成部54、制御部55、基準クロック生成部56および制御条件用メモリ57を有する。
 S/P変換部41は、先端部5から受信したデジタル信号である画像信号をシリアル信号からパラレル信号に変換する。
 画像処理部42は、S/P変換部41から出力されたパラレル形態の画像信号、すなわち、タイミングジェネレータ34およびAFE部35が読み出した画素の画素情報から、タイミングジェネレータ34およびAFE部35が読み出した受光部28の画素のアドレスをもとに表示部71に表示される体内画像を生成する。
 画像処理部42は、同時化部43、WB調整部44、ゲイン調整部45、γ補正部46、D/A変換部47、フォーマット変更部48、サンプル用メモリ49および静止画像用メモリ50を備える。
 同時化部43は、入力された各R,G,B画素の画像信号を画素ごとに設けられたメモリ(図示しない)に入力し、タイミングジェネレータ34およびAFE部35が読み出した受光部28の画素のアドレスに対応させて、各メモリの値を入力された各画像信号で順次更新しながら保持するとともに、これら3つのメモリの各画像信号をRGB画像信号として同時化する。同時化されたRGB画像信号は、WB調整部44に順次出力されるとともに、同時化されたRGB画像信号のうちのいくつかは明るさ検出などの画像解析用にサンプル用メモリ49にも出力され、保持される。
 WB調整部44は、RGB画像信号のホワイトバランスを調整する。ゲイン調整部45は、RGB画像信号のゲイン調整を行う。γ補正部46は、表示部71に対応させてRGB画像信号を階調変換する。
 D/A変換部47は、階調変換後のRGB画像信号をデジタル信号からアナログ信号に変換する。フォーマット変更部48は、アナログ信号に変換された画像信号をハイビジョン方式などのフォーマットに変更して表示部71に出力する。この結果、表示部71には、1枚の体内画像が表示される。なお、ゲイン調整部45によってゲイン調整されたRGB画像信号のうちの一部は、静止画像表示用、拡大画像表示用または強調画像表示用として、静止画像用メモリ50にも保持される。
 明るさ検出部51は、サンプル用メモリ49に保持されたRGB画像信号から、各画素に対応する明るさレベルを検出し、検出した明るさレベルを明るさ検出部51内部に設けられたメモリに記憶する。また、明るさ検出部51は、検出した明るさレベルをもとにゲイン調整値および光照射量を算出する。算出されたゲイン調整値はゲイン調整部45へ出力され、算出された光照射量は、調光部52に出力される。さらに、明るさ検出部51による検出結果は、制御部55にも出力される。
 調光部52は、制御部55の制御のもと、明るさ検出部51から出力された光照射量をもとに、各光源に供給する電流量、減光フィルタの駆動条件を設定して、設定条件を含む光源同期信号を光源装置60に出力する。調光部52は、光源装置60が発する光の種別、光量、発光タイミングを設定する。
 読出アドレス設定部53は、受光部28における読み出し対象の画素および読出し順序を任意に設定可能である。すなわち、読出アドレス設定部53は、タイミングジェネレータ34およびAFE部35が読み出す受光部28の画素のアドレスを任意に設定可能である。また、読出アドレス設定部53は、設定した読み出し対象の画素のアドレスを同時化部43に出力する。
 CMOS駆動信号生成部54は、受光部28とCMOSセンサ周辺回路とを駆動するための駆動用のタイミング信号を生成し、集合ケーブル31内の所定の信号線を介してタイミングジェネレータ34に出力する。なお、このタイミング信号は、読み出し対象の画素のアドレスを含むものである。
 制御部55は、CPUなどによって構成され、図示しないメモリに格納された各種プログラムを読み込み、プログラムに示された各処理手順を実行することで、各構成部の各駆動制御、これらの各構成部に対する情報の入出力制御、および、これらの各構成部との間で各種情報を入出力するための情報処理とを行う。制御装置40は、撮像制御のための設定データを、集合ケーブル31内の所定の信号線を介して先端部5の制御回路33に出力する。設定データは、受光部28の撮像速度、受光部28の任意の画素からの画素情報の読出し速度を指示する指示情報、読み出した画素情報の輝度値の増幅率を指示する指示情報、読み出した画素情報の伝送制御情報などを含む。
 制御部55は、読出アドレス設定部53が設定する読み出し対象の画素および読み出し順序を変更する。そして、制御部55は、取得対象の画像に応じて、読出アドレス設定部53が設定する読み出し対象の画素および読み出し順序を変更する。制御部55は、取得対象の画像に対応させて、読出アドレス設定部53による読み出し対象の画素の設定処理、タイミングジェネレータ34およびAFE部35の読み出し処理および画像処理部42による画像生成処理を制御する。
 制御条件用メモリ57は、制御部55による制御条件を各取得対象の画像に対応させてそれぞれ記憶する。制御部55は、制御条件用メモリ57に記憶された制御条件のうち取得対象の画像に対応した制御条件にしたがって、読出アドレス設定部53による読み出し対象の画素の設定処理、タイミングジェネレータ34およびAFE部35の読み出し処理および画像処理部42による画像生成処理を制御する。
 基準クロック生成部56は、内視鏡システム100の各構成部の動作基準となる基準クロック信号を生成し、内視鏡システム100の各構成部に生成した基準クロック信号を供給する。
 光源装置60は、制御部55の制御のもと光照射処理を行う。光源装置60は、LEDなどによって構成される白色光を照射する白色光源61、白色照射光とは波長帯域が異なる波長帯域の光であって狭帯域バンドパスフィルタによって狭帯域化したRGBいずれかの光を特殊光として照射する特殊光光源62、調光部52から送信された光源同期信号にしたがって白色光源61あるいは特殊光光源62に供給する電流量や減光フィルタの駆動を制御する光源駆動回路63、白色光源61あるいは特殊光光源62に光源駆動回路63の制御のもと所定量の電流を供給するLEDドライバ64を備える。白色光源61あるいは特殊光光源62から発せられた光は、ライトガイド19を介して挿入部2に供給され、先端部5先端から外部に出射する。
 この実施の形態1では、偏光画像および通常画像が取得対象の画像である。制御部55が、制御条件用メモリ57に保持された制御条件のうち、たとえば図7のテーブルT1に示す制御条件にしたがって、各構成部位を制御することによって、内視鏡システム100は、観察画像として偏光画像および通常画像の双方を同時取得している。
 具体的には、テーブルT1に示すように、制御部55は、偏光画像用として、所定の第1の偏光面に偏光した成分のみを出射する第1の光学系23に対応する受光部28の領域S1の画素と、無偏光画像用として、無偏光で光を出射する第2の光学系に対応する受光部28の領域S2の画素とを、読出アドレス設定部53が設定する読み出し対象の画素として変更する。これによって、読出アドレス設定部53は、制御部55の制御のもと、受光部28の画素のうち、偏光画像に対応した領域S1の画素と、無偏光画像に対応した領域S2の画素との双方を読み出し対象の画素として設定する。そして、タイミングジェネレータ34およびAFE部35は、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された領域S1の画素および領域S2の画素のそれぞれから画素情報を読み出す。なお、タイミングジェネレータ34およびAFE部35は、受光部28における領域S1,S2の画素以外の画素からは画素情報を読み出さない。
 制御部55は、画像処理部42に、タイミングジェネレータ34およびAFE部35によって読み出された領域S1の画素の画素情報と領域S2の領域の画素の画素情報とのそれぞれに基づく2枚の画像を生成させる。画像処理部42は、領域S1の画素の画素情報をもとに偏光画像を生成し、第2の領域の画素情報をもとに偏光画像を生成する。表示部71は、画像処理部42が生成した偏光画像および無偏光画像の2枚の画像を同時に表示する。
 このように、実施の形態1では、取得対象の偏光画像および無偏光画像に応じて第1の光学系23および第2の光学系24を設け、偏光画像用の第1の光学系23および無偏光画像用の第2の光学系24に対応する読み出し領域として、受光部28に、それぞれ異なる受光部28の読み出し領域を設定する。そして、実施の形態1では、各領域の画素からそれぞれ画素情報を読み出すことによって、トリミング処理を行うことなく、偏光画像のもととなる画素情報と無偏光画像のもととなる画素情報とのそれぞれを同時に取得している。したがって、実施の形態1によれば、一つのCMOS撮像素子80を有する簡易な構成のままで、効率的に複数種の画像を取得可能である。実施の形態1では、光学系に対する切替機構および調整機構や複数の受光部を設けずともよく、また、撮像素子周辺の回路や配線も削減可能であるため、内視鏡1の先端部5の細径化も実現できる。
 さらに、本実施の形態1では、取得対象の画像ごとに、取得対象の画像に対応させて、読み出し対象の画素を設定するほか、AFE部35のゲイン調整部37が行う増幅処理の増幅率を変更することによって、さらに適切な偏光画像および無偏光画像を取得する。第1の光学系23は、外部から入射した光のうち所定の第1の偏光面に偏光した成分のみを受光部28の第1の領域に出射する。このため、領域S1における受光量は、第2の光学系24によって外部から入射した光が無偏光で入射する領域S2と比較すると低くなる。
 そこで、制御部55は、ゲイン調整部37に、領域S1の画素の輝度値を領域S2の画素の輝度値に対する増幅率よりも高い増幅率で増幅して出力させる。たとえば、図7のテーブルT1に示すように、制御部55は、CMOS撮像素子80におけるゲイン調整条件を、無偏光の光が入射する領域S2は1倍のままとし、第1の偏光面に偏光した成分が入射する領域S1の増幅率は2倍に設定する。この結果、領域S2と比較して受光量が低い領域S1の画素の輝度値は、ゲイン調整部37によって、領域S2よりも高い増幅率で増幅されて、制御装置40に出力される。
 このように、ゲイン調整部37が領域ごとに増幅率を変えて画素情報の輝度値を増幅することによって、CMOS撮像素子80は、適切な輝度値を有する画素情報を出力している。これによって、制御装置40側の画像処理部42でゲイン調整を行わなくとも適切な明るさの無偏光画像を生成できるため、効率よく画像生成処理を行うことができる。
 また、実施の形態1では、偏光画像と無偏光画像との双方を同時表示した場合を例に説明したが、もちろん、偏光画像、無偏光画像のいずれかの表示に切り替えることも可能である。この場合、実施の形態1では、制御部55は、入力部72から制御装置40に入力された表示画像選択情報にしたがって、表示部71が表示する画像を切り替えればよい。また、実施の形態1では、偏光画像および無偏光画像の双方に対応する画素情報を同時に読み出すため、リアルタイムに表示画像を切り替えることができる。また、偏光画像および無偏光画像を解像度を合わせて取得したい場合には、同画素数とするために、受光部28の領域S2を、領域S1と同面積および同形状に設定すればよい。
(実施の形態1の変形例1)
 次に、実施の形態1の変形例1について説明する。図8は、実施の形態1の変形例1における内視鏡の先端部の先端面の一例を示す図である。図9は、図8に示す先端部5AをC-C線で切断した切断面の一部を示す図である。
 図8および図9に示すように、実施の形態1の変形例1においては、ライトガイド19と照明レンズ18aとの間に、入射した光のうち、第1の光学系23における検光部材23dによる第1の偏光面との直交面である第2の偏光面に偏光した成分のみを透過させる検光部材18bを設けることによって、白色光光源61から発せられた光のうち、検光部材23dによる第1の偏光面との直交面に偏光した成分を照明窓18Aから被写体に照射する。
 このように、被写体に照射する照明光に偏光をかけて、照明光の偏光面との直交面に偏光した成分を透過する検光部材23dを偏光画像取得用の第1の光学系23に設けることで、組織表面での反射を抑えたコントラストの高い偏光画像を取得できる。
(実施の形態1の変形例2)
 次に、実施の形態1の変形例2について説明する。図10は、実施の形態1の変形例2における内視鏡の先端部の先端面の一例を示す図である。図11は、図10に示す先端部5BをD-D線で切断した切断面の一部を示す図である。
 図10および図11に示すように、実施の形態1の変形例2における内視鏡の先端部5Bは、第2の光学系24に代えて、第2の光学系24Bを有する。第2の光学系24Bは、入射した光のうち、第1の光学系23における検光部材23dによる第1の偏光面および照明窓18Aとライトガイド19との間に設けられた検光部材18bによる第2の偏光面とのいずれとも異なる第3の偏光面に偏光した成分のみを透過させる検光部材24dをさらに備える。検光部材24dは、入射した光のうち、第1の光学系23における検光部材23dによる偏光面に対して45°回転した面に偏光した成分のみを透過させる。言い換えると、第2の光学系24Bは、観察窓22Bから入射した光のうち、第1の光学系23における検光部材23dによる偏光面に対して45°回転した面に偏光した成分のみを、受光部28の領域S2に出射する。
 この結果、それぞれ異なる偏光面に対する偏光画像を取得でき、深さ方向を変えて組織性状を観察できる。さらに、それぞれ異なる偏光面に対する偏光画像を用いて画像演算を行うことによって、組織性状の分布画像を取得することもできる。
(実施の形態2)
 次に、実施の形態2について説明する。実施の形態2では、取得対象の画像として、通常の白色光による通常画像とともに、特殊光として励起光の照射によって蛍光を発する蛍光物質を観察するための蛍光観察用画像を取得する。
 図12は、本実施の形態2にかかる内視鏡システムの構成を示すブロック図である。図12に示すように、実施の形態2にかかる内視鏡システム200は、先端部205に、図6に示す第1の光学系23に代えて、第1の光学系223を有する。内視鏡システム200の制御装置240は、図6に示す制御部55に代えて、制御部55と同様の機能を有する制御部255を有し、取得対象の通常画像および蛍光観察用画像に対応した制御条件を記憶する制御条件用メモリ257を有する。
 実施の形態2では、生体組織に本来存在する緑色ないし赤色の範囲にスペクトルを有する蛍光物質、または、被検体内に導入された赤色蛍光あるいは緑色蛍光を発する標識物質を検出するため、蛍光観察用画像取得時には、特殊光光源62は、青色または青色よりも短波長の紫色の励起光を照射する。なお、通常画像取得時には、白色光光源61が白色光を照射する。
 図13は、実施の形態2における内視鏡の先端部の先端面を示す図である。図13に示すように、内視鏡の先端部205の先端面には、実施の形態1と同様に、処置具表出用の開口部15、洗浄用ノズル17、照明光が出射する照明窓18、および、観察窓22が設けられるとともに観察窓221が設けられる。観察窓221を介して外部から入射した光は、第1の光学系223に入射し、集光される。また、観察窓22を介して外部から入射した光は、第1の光学系223に入射し、集光される。観察窓221は、図4と同様に、カバーガラス21aを閉塞されている。
 図14は、図12に示す第1の光学系223および第2の光学系24を説明する図である。図14は、図13に示すE-E線で切断した場合の先端部205における第1の光学系、第2の光学系、オンチップフィルタおよび受光部28の断面図を示し、図4に示すカバーガラス21a,22a,25、回路基板26、ドライバ29、変換回路30、集合ケーブル31および電極32の図示は省略している。
 第1の光学系223は、第1の光学系23における検光部材23dに代えて、分光フィルタ223dを備え、観察窓221を介して入射した光を分光後に集光した状態で受光部28の領域S21(図15参照)に出射している。第2の光学系24は、レンズ24a~24cによって構成されており、観察窓22を介して入射した光をそのまま集光して、領域S21とは異なる領域である受光部28の領域S22(図15参照)に出射している。
 制御部255は、白色光源61と特殊光光源62に交互に白色光と特殊光を照射させ、照射光の種別に応じて、1フレームごとに読み出し対象の画素を変更することによって、通常画像と蛍光観察用画像とをほぼ同時に取得している。制御部255は、たとえば図16に示すテーブルT2に示す制御条件にしたがい、取得対象の画像に対応させて、各光源の照明処理、タイミングジェネレータ34およびAFE部35の読み出し処理をそれぞれ制御する。このテーブルT2は、制御条件用メモリ257に保持される。
 まず、蛍光観察用画像を取得するフレームについて説明する。この場合には、テーブルT2に示すように、制御部255は、特殊光光源62に、特殊光として青色または青色よりも短波長の紫色の励起光を照射させる。そして、制御部255は、励起光によって励起された蛍光物質による蛍光の輝度を取得するため、第1の光学系223によって分光後に集光された光L21(図14参照)が入射する受光部28の領域S21を、読出アドレス設定部53が設定する読み出し対象の画素として変更する。
 これによって、読出アドレス設定部53は、制御部255の制御のもと、受光部28の画素のうち、第1の光学系223に対応する領域S21の画素を読み出し対象の画素として設定し、タイミングジェネレータ34およびAFE部35は、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された領域S21の画素から画素情報を読み出す。なお、このフレームにおいては、タイミングジェネレータ34およびAFE部35は、受光部28における領域S21の画素以外の画素からは画素情報を読み出さない。そして、画像処理部42は、タイミングジェネレータ34およびAFE部35が読み出した受光部28の領域S21の画素情報をもとに、蛍光観察用画像を生成する。
 また、通常画像を取得するフレームでは、テーブルT2(図16参照)に示すように、制御部255は、白色光光源61に白色光を照射させる。そして、制御部255は、通常画像生成時には、第2の光学系24によって集光された光L22(図14参照)が入射する受光部28の領域S22を、読出アドレス設定部53が設定する読み出し対象の画素として変更する。
 これによって、読出アドレス設定部53は、制御部255の制御のもと、受光部28の画素のうち、第2の光学系24に対応する領域S22の画素を読み出し対象の画素として設定し、タイミングジェネレータ34およびAFE部35は、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された領域S22の画素から画素情報を読み出す。なお、このフレームにおいては、タイミングジェネレータ34およびAFE部35は、受光部28における領域S22の画素以外の画素からは画素情報を読み出さない。そして、画像処理部42は、タイミングジェネレータ34およびAFE部35が読み出した受光部28の領域S22の画素情報をもとに、通常画像を生成する。
 ここで、微弱な蛍光を受光して蛍光観察用画像を生成している。このため、実施の形態2では、観察に適した明るい蛍光観察用画像を生成するために、制御部255は、蛍光観察用画像取得時と通常観察用画像取得時とで制御条件を変えて、各構成部位を制御している。
 具体的には、テーブルT2に示すように、制御部255は、特殊光光源62から照射される特殊光で照明された被写体を撮像して画素情報を出力するフレームにおける露光時間が、白色光光源61から照射される白色光で照明された被写体を撮像して画素情報を出力するフレームにおける露光時間よりも長くなるように、白色光光源61および特殊光光源62における照射処理と、タイミングジェネレータ34およびAFE部35における読み出し処理とを制御して、蛍光の実際の受光感度を高める。
 そして、制御部255は、ゲイン調整部37に対し、特殊光光源62から照射される特殊光で照明された被写体を撮像して画素情報を出力するフレームにおいては、領域S21の画素の輝度値を、白色光光源61から照射される白色光で照明された被写体を撮像して画素情報を出力するフレームにおける領域S21の画素の輝度値に対する標準増幅率よりも高い増幅率で増幅して出力させる。さらに、制御部255は、AFE部35に、領域S21の画素の輝度値として、互いに隣り合う複数の画素で構成されるブロックに含まれる複数の画素の輝度値を加算してブロック単位でビニング出力させる。これによって、制御部255は、蛍光を受光した領域S21の画素の輝度値を底上げする。
 制御部255によるこのような制御によって、画像処理部42は、蛍光観察用画像に対する画像処理時には、輝度値が高められた領域S21の画素の画素情報を用いることができるため、明るい蛍光観察用画像を生成することができる。
 このように、実施の形態2では、実施の形態1と同様の効果を奏するとともに、取得対象の画像に対応させて、露光時間、増幅処理およびビニング出力処理を制御することによって、観察に適した明るい蛍光観察用画像を取得することができる。
 さらに、実施の形態2では、観察対象の画像にそれぞれ対応させて光学系を固有のものに設定できるため、第1の光学系223および第2の光学系24を構成するレンズや分光フィルタを対応する画像に応じて最適化させることができる。たとえば、第1の光学系223における分光フィルタ223dを半値幅の狭い透過率を有するフィルタとして、蛍光の特異度を高めた画像が取得できるようにしてもよい。
 また、図17に示すように、蛍光観察時の光L21が入射する領域からはフィルタを除き、第2の光学系24によって集光された光L22が入射する受光部28の領域S22のみにオンチップフィルタ227を設けることによって、蛍光観察用画像取得時の読み出し対象である領域S21の画素の受光感度をさらに高めてもよい。また、蛍光画像と通常画像とを解像度を合わせて取得したい場合には、同画素数とするために、受光部28の領域S22を、領域S21と同面積および同形状に設定すればよい。
(実施の形態3)
 次に、実施の形態3について説明する。実施の形態3では、取得対象の画像として、通常の白色光による通常画像、蛍光観察用画像に加えて、血液中のヘモグロビンに吸収されやすい狭帯域化された青色光および緑色光の2種の帯域の光を照射することによって、粘膜表層の毛細血管および粘膜微細模様を強調表示したNBI観察用画像を取得する。
 図18は、実施の形態3にかかる内視鏡システムの構成を示すブロック図である。図18に示すように、実施の形態3にかかる内視鏡システム300は、先端部305に、図6に示す第1の光学系23に代えて第1の光学系323を有し、第2の光学系24に代えて第2の光学系324を有する。内視鏡システム300の制御装置340は、図6に示す制御部55に代えて、制御部55と同様の機能を有する制御部355を有し、取得対象の通常画像、蛍光観察用画像およびNBI観察用画像に対応した制御条件を記憶する制御条件用メモリ357を有し、2つの画像を合成して1枚の画像を生成する合成部358をさらに備えた画像処理部342を有する。
 実施の形態3では、実施の形態2と同様に、通常画像取得時には白色光光源61が白色光を照射し、蛍光観察用画像取得時には、特殊光光源62が、白色光よりも狭い波長帯域であって青色または青色よりも短波長の紫色の励起光を照射する。さらに、実施の形態3では、NBI観察用画像取得時には、特殊光光源62が、血液中のヘモグロビンに吸収されやすい狭帯域化された青色光および緑色光の2種の帯域のNBI照明光を照射する。
 次に、図18に示す第1の光学系323および第2の光学系324について説明する図19は、先端部305における第1の光学系、第2の光学系、オンチップフィルタおよび受光部28の断面図を示す。図19では、先端部305におけるカバーガラス21a,22a,25、回路基板26、ドライバ29、変換回路30、集合ケーブル31および電極32の図示は省略している。
 図19に示すように、第1の光学系323は、レンズ23a~23cとともに、入射した光のうち赤色光および緑色光を透過させるフィルタ323dを有し、観察窓を介して入射した光のうち赤色光および緑色光のみを集光して受光部28の領域S31(図20参照)に出射している。
 第2の光学系324は、レンズ24a~24cとともに、入射した光のうち青色光を透過させるフィルタ324dを有し、観察窓を介して入射した光のうち青色光のみを集光して、領域S31とは異なる領域である受光部28の領域S32(図20参照)に出射している。なお、取得対象の各画像を解像度を合わせて取得したい場合には、同画素数とするために、受光部28の領域S32を、領域S31と同面積および同形状に設定すればよい。
 次に、図19に示すオンチップフィルタ327について説明する。図21は、図19に示すオンチップフィルタ327のフィルタ配列を示す平面図である。図21に示すように、オンチップフィルタ327のうち、受光部28の領域S31上に位置する領域S31aのうち画素P11上にはRフィルタが位置し、画素P11の図中右側に隣り合う画素P12上にはフィルタが設けられていない。また、画素P11の図中下側に隣り合う画素P21上にはフィルタが設けられておらず、画素P21の図中右側に隣り合う画素P22上にはRフィルタが位置する。このように、領域S31aにおいては、Rフィルタが上下左右の1画素おきに設けられる。したがって、第2の光学系324から出射した赤色光および緑色光のうち、Rフィルタが設けられる画素(たとえば、図21の画素P11,P22)には赤色光が入射し、フィルタが設けられていない画素(たとえば、図21の画素P12,P21)には、赤色光および緑色光のいずれもがそのまま入射する。
 また、オンチップフィルタ327のうち、受光部28の領域S32上に位置する領域S32aにおいては、いずれのフィルタも設けられていない。したがって、第2の光学系324から出射した青色光が、全画素にそのまま入射する。
 実施の形態3では、制御部355は、取得対象の画像に対応させて、白色光源61と特殊光光源62による照明処理、読出アドレス設定部53による読み出し対象の画素の設定処理、タイミングジェネレータ34およびAFE部35による読み出し処理および画像処理部342による画像生成処理を制御する。制御部355は、たとえば図22に示すテーブルT3に示す制御条件にしたがい、取得対象の画像に対応させて、各光源、読出アドレス設定部53、タイミングジェネレータ34、AFE部35および画像処理部342をそれぞれ制御する。このテーブルT3は、制御条件用メモリ357に保持される。
 まず、通常画像を取得する場合について説明する。この場合には、テーブルT3に示すように、制御部355は、白色光光源61に白色光を照射させる。そして、制御部355は、通常画像生成時には、第1の光学系323によって集光された光L31(図19参照)が入射する受光部28の領域S31の全画素と、第2の光学系324によって集光されたL32が入射する受光部28の領域S32の全画素とを、読出アドレス設定部53が設定する読み出し対象の画素として変更する。
 これによって、読出アドレス設定部53は、制御部355の制御のもと、受光部28の画素のうち、領域S31の全画素および領域S32の全画素を読み出し対象の画素として設定し、タイミングジェネレータ34およびAFE部35は、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された領域S31の全画素および領域S32の全画素から画素情報を読み出す。
 このとき、受光部28の領域S31には、外部から入射した白色光のうち、第1の光学系323によって集光された赤色光および緑色光のみが入射する。このとき、オンチップフィルタ327の領域S31aにおけるフィルタ配列にしたがって、Rフィルタが設けられる領域S31のR画素には赤色光のみが入射し、領域S31のフィルタが設けられていない画素には赤色光および緑色光のいずれもがそのまま入射する。したがって、画像処理部342は、同時化部43において、領域S31の全画素から読み出された画素情報をもとにR画像およびG画像を生成する。
 また、受光部28の領域S32には、外部から入射した白色光のうち、第2の光学系324によって集光された青色光のみが入射する。このとき、オンチップフィルタ327の領域S32aにはフィルタが設けられていないため、領域S32の全画素に青色光が入射する。したがって、画像処理部342は、同時化部43において、領域S32の全画素から読み出された画素情報をもとにB画像を生成する。
 そして、画像処理部342では、合成部358が、領域S31の全画素の画素情報に対応するR画像およびG画像と、領域S32の全画素の画素情報に対応するB画像とを合成して、通常画像を生成する。表示部71は、このように生成された白色光観察時の通常画像を表示する。
 次に、NBI観察用画像を取得する場合について説明する。この場合には、テーブルT3に示すように、制御部355は、特殊光光源62に、狭帯域化された青色光および緑色光の2種の帯域のNBI照明光を照射させる。そして、制御部355は、NBI画像生成時には、第1の光学系323によって集光された光L31(図19参照)が入射する受光部28の領域S31のうちR画素以外の画素と、第2の光学系324によって集光されたL32が入射する受光部28の領域S32の全画素とを、読出アドレス設定部53が設定する読み出し対象の画素として変更する。
 これによって、読出アドレス設定部53は、制御部355の制御のもと、受光部28の画素のうち、領域S31のR画素以外の画素および領域S32の全画素を読み出し対象の画素として設定し、タイミングジェネレータ34およびAFE部35は、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された領域S31のR画素以外の画素および領域S32の全画素から画素情報を読み出す。
 このとき、受光部28の領域S31には、外部から入射した緑色光および青色光のうち、第1の光学系323によって集光された緑色光のみが入射する。このとき、オンチップフィルタ327の領域S31aにおけるフィルタ配列にしたがって、Rフィルタが設けられる領域S31のR画素には光が入射せず、領域S31のフィルタが設けられていない画素には緑色光がそのまま入射する。したがって、この場合には、タイミングジェネレータ34およびAFE部35は、領域S31のR画素以外の画素から画素情報を読み出して、G画像のもととなる画素情報を取得する。そして、画像処理部342は、同時化部43において、読み出された画素情報をもとにG画像を生成する。
 また、受光部28の領域S32には、外部から入射した緑色光および青色光のうち、第2の光学系324によって集光された青色光のみが入射する。このとき、オンチップフィルタ327の領域S32aにはフィルタが設けられていないため、領域S32の全画素に青色光が入射する。したがって、画像処理部342は、同時化部43において、領域S32の全画素から読み出された画素情報をもとにB画像を生成する。
 そして、画像処理部342では、合成部358が、領域S31のR画素以外の画素の画素情報に対応するG画像と、領域S32の全画素の画素情報に対応するB画像とを合成して、NBI観察用画像を生成する。表示部71は、このように生成されたNBI観察用画像を表示する。
 さらに、制御部355は、NBI観察用画像取得時には、通常画像取得時における標準の露光時間よりも長い露光時間となるように、タイミングジェネレータ34の読み出しタイミングを制御することによって、受光部28における青色光および緑色光の受光感度を高める。また、制御部355は、ゲイン調整部37に対し、NBI観察用画像取得時には、通常画像取得時における標準増幅率よりも高い増幅率で、領域S31および領域S32の画素の輝度値を増幅して出力させる。
 このように制御することによって、制御部355は、青色光および緑色光を受光した画素の輝度値を底上げして、観察に適した明るいNBI観察用画像を取得する。なお、制御部355は、領域S32上からはオンチップフィルタ自体を取り除き、さらに、AFE部35に領域S32の画素の輝度値としてブロック単位でビニング出力させて、感度および照明光量が低い青色光の受光感度を高めてもよい。
 次に、蛍光観察用画像を取得する場合について説明する。この場合には、図22のテーブルT3に示すように、制御部355は、特殊光光源62に、青色または青色よりも短波長の紫色の励起光を照射させる。この結果、観察対象の蛍光物質は励起されて赤色蛍光および緑色蛍光を発する。そして、制御部355は、蛍光観察画像生成時には、第1の光学系323によって集光された赤色光および緑色光が入射する受光部28の領域S31の前画を、読出アドレス設定部53が設定する読み出し対象の画素として変更する。
 これによって、読出アドレス設定部53は、制御部355の制御のもと、受光部28の画素のうち、領域S31の全画素を読み出し対象の画素として設定し、タイミングジェネレータ34およびAFE部35は、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された領域S31の全画素から画素情報を読み出す。なお、先端部305には、青色光は入射しないため、領域S32の画素には光が入射しない。このため、タイミングジェネレータ34およびAFE部35は、領域S32の画素からは画素情報を読み出さない。
 領域S31のR画素には赤色光のみが入射し、領域S31のフィルタが設けられていない画素には赤色光および緑色光のいずれもがそのまま入射する。したがって、画像処理部342は、領域S31の全画素から読み出された画素情報をもとにR画像およびG画像を生成して、このR画像およびG画像をもとに、赤色蛍光および緑色蛍光観察用の蛍光観察用画像を生成する。表示部71は、このように生成された蛍光観察用画像を表示する。
 さらに、制御部355は、蛍光観察用画像取得時には、通常画像取得時における標準の露光時間よりも長い露光時間となるように、タイミングジェネレータ34の読み出しタイミングを制御することによって、受光部28における赤色蛍光および緑色蛍光の受光感度を高めている。また、制御部355は、ゲイン調整部37に対し、蛍光観察用画像取得時には、通常画像取得時における標準増幅率よりも高い増幅率で、領域S31の全画素の輝度値を増幅して出力させる。このように制御することによって、制御部355は、赤色蛍光および緑色蛍光を受光した画素の輝度値を底上げして、観察に適した明るい蛍光観察用画像を取得する。
 このように、実施の形態3では、実施の形態1と同様の効果を奏するとともに、取得対象の画像に対応させて、照明処理、読み出し対象の画素の設定および画像処理を行うことによって、通常画像、蛍光観察用画像およびNBI観察用画像の3種の画像を取得することができる。また、実施の形態3では、取得外相の画像に対応させて、露光時間、増幅処理およびビニング出力処理を制御することによって、観察に適した明るいNBI観察用画像および蛍光観察用画像を取得することができる。
(実施の形態3の変形例1)
 実施の形態3の変形例1として、蛍光観察用画像とともに、形状観察用のモノクロ画像を取得する場合について説明する。
 図23のテーブルT31に示すように、制御部355は、特殊光光源62に励起光を照射させる。そして、制御部355は、モノクロ画像用に、読出アドレス設定部53に青色光のみが入射する領域S32の全画素を読み出し対象の画素として設定させてタイミングジェネレータ34およびAFE部35に、領域S31とともに領域S32の全画素の画素情報を読み出させる。そして、制御部355は、画像処理部342に、領域S32の全画素の画素情報をもとに1枚の白黒画像を生成させる。このように制御することによって、蛍光観察用画像とともに、形状観察用のモノクロ画像も同時に取得可能であり、さらに円滑な観察を実現できる。
(実施の形態3の変形例2)
 次に、実施の形態3の変形例2として、蛍光観察用画像を、光が入射しない領域S32の画素の輝度値をもとに補正して、規格化した蛍光観察用画像を取得する場合について説明する。
 図24のテーブルT32に示すように、制御部355は、読出アドレス設定部53に領域S31の全画素とともに光が入射しない領域S32の全画素を読み出し対象の画素として設定させてタイミングジェネレータ34およびAFE部35に領域S31の全画素とともに領域S32の全画素から画素情報をそれぞれ読み出させる。なお、ゲイン調整部37は、領域S32の画素情報の輝度値についても、領域S31と同じ高い増幅率で増幅してから出力する。
 そして、制御部355は、画像処理部342に、R画像およびG画像を形成する領域S31の全画素の輝度値を、光が入射しない領域S31の全画素の輝度値を用いて補正させてから、1枚の蛍光観察用画像を生成させる。このように制御することによって、規格化した蛍光観察用画像を取得でき、さらに適切な観察を実現できる。
(実施の形態4)
 次に、実施の形態4について説明する。実施の形態4では、焦点距離が異なるように2つの光学系を構成し、焦点距離の異なる2つの画像を同時に取得し合成することによって、近点から遠点まで合焦する被写界深度を拡大させた画像を取得する。
 図25は、実施の形態4にかかる内視鏡システムの構成を示すブロック図である。図25に示すように、実施の形態4にかかる内視鏡システム400は、先端部405に、図6に示す第1の光学系23に代えて近点用光学系423を有し、第2の光学系24に代えて遠点用光学系424を有する。内視鏡システム400の制御装置440は、図6に示す制御部55に代えて、制御部55と同様の機能を有する制御部455を有し、被写界深度を拡大させた画像取得のための制御条件を記憶する制御条件用メモリ457を有し、2つの画像を合成して1枚の画像を生成する合成部458をさらに備えた画像処理部442を有する。
 次に、図25に示す近点用光学系423および遠点用光学系424について説明する図26は、先端部405における近点用光学系423、遠点用光学系424、オンチップフィルタ27および受光部28の断面図を示す。図25では、先端部405におけるカバーガラス21a,22a,25、回路基板26、ドライバ29、変換回路30、集合ケーブル31および電極32の図示は省略している。
 図26に示すように、近点用光学系423と遠点用光学系424とは、それぞれ異なる焦点距離となるように、レンズ423a~423dおよびレンズ424a~424dの構成が設定される。近点用光学系423における焦点位置は、遠点用光学系424における焦点位置よりも観察窓側に近くなるように設定され、近点用光学系423は、近点画像形成のための光L41を、受光部28の領域S41(図27参照)に出射する。遠点用光学系424は、遠点画像形成のための光L42を、領域S41とは異なる領域である受光部の領域S42(図27参照)に出射している。なお、後述する合成部458による重ね合わせ処理のため、受光部28の領域S42を、領域S41と同面積および同形状に設定することが望ましい。
 制御部455は、たとえば図28に示すテーブルT4に示す制御条件にしたがい、読出アドレス設定部53、タイミングジェネレータ34、AFE部35、画像処理部442をそれぞれ制御する。このテーブルT4は、制御条件用メモリ457に保持される。
 具体的には、制御部455は、テーブルT4に示すように、近点用光学系423に対応する領域S41の画素および遠点用光学系424に対応する領域S42の画素の双方を読出アドレス設定部53が設定する読み出し対象の画素として変更する。
 これによって、読出アドレス設定部53は、制御部455の制御のもと、受光部28の画素のうち、領域S41の画素および領域S42の画素の双方を読み出し対象の画素として設定し、タイミングジェネレータ34およびAFE部35は、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された領域S41の画素および領域S42の画素のそれぞれから画素情報を読み出す。なお、タイミングジェネレータ34およびAFE部35は、受光部28における領域S41,S42の画素以外の画素からは画素情報を読み出さない。
 また、近点用光学系423の方が遠点光学系424よりも観察窓に近く露出オーバー気味となるため、制御部455は、ゲイン調整部37に、近点画像に対応する領域S41の画素のゲインが低くなるように、領域S41の画素の輝度値については低い増幅率で増幅させる。また、遠点光学系424の方が近点用光学系423よりも観察窓から遠く露出アンダーとなるため、制御部455は、ゲイン調整部37に、遠点画像に対応する領域S42の画素のゲインが高くなるように、領域S42の画素の輝度値については高い増幅率で増幅させる。このように、制御部455は、ゲイン調整部37に、領域S41の画素の輝度値に対する増幅率を、領域S42の画素の輝度値に対する増幅率と異なる増幅率で増幅して出力させて、輝度値を調整することで、画像全体のダイナミックレンジを拡大している。
 そして、画像処理部442は、制御部455の制御のもと、合成部458において、タイミングジェネレータ34およびAFE部35によって読み出された領域S41の画素の画素情報に対応する近点画像と、領域S42の画素の画素情報に対応する遠点画像とを重ね合わせて、1枚の画像を生成する。
 図29は、近点画像および遠点画像における照明からの距離と解像度との関係を示す図である。近点画像は、図29の曲線C1に示すように、観察窓よりの近い距離で解像度が高くなる。これに対して、遠点画像は、図29のC2に示すように、観察窓よりも遠い距離で解像度が高くなる。したがって、領域S41の画素の画素情報に対応する近点画像と、領域S42の画素の画素情報に対応する遠点画像とを重ね合わせることによって、遠点から近点まで合焦した画像を取得できる。
 このように、実施の形態4では、一つのCMOS撮像素子80を有する簡易な構成のままで、近点画像および遠点画像を同時に取得でき、近点から遠点まで合焦する被写界深度を拡大させた画像を適切に取得できる。また、実施の形態4では、近点画像に対応する領域S41の画素の画素情報と遠点画像に対応する領域S42の画素の画素情報とに対してそれぞれ適切な増幅率で増幅処理を行ってから画像合成を行うことによって、明るさ深度も適切に確保した画像を取得できる。
(実施の形態5)
 次に、実施の形態5について説明する。実施の形態5では、視野角が異なるように2つの光学系を構成し、視野角の異なる2つの画像を同時に取得して、それぞれ表示することによって、高精細な主画像と、外科的処置等を補助する広角画像とを同時に観察できるようにしている。
 図30は、実施の形態5にかかる内視鏡システムの構成を示すブロック図である。図30に示すように、実施の形態5にかかる内視鏡システム500は、先端部505に、図6に示す第1の光学系23に代えて広角画像用光学系523を有し、第2の光学系24に代えて主画像用光学系524を有する。内視鏡システム500の制御装置540は、図6に示す制御部55に代えて、制御部55と同様の機能を有する制御部555を有し、詳細な観察用の高精細画像である主画像と、補助画像である広角画像との2つの画像取得のための制御条件を記憶する制御条件用メモリ557を有する。
 次に、図30に示す広角画像用光学系523および主画像用光学系524について説明する。図31は、先端部505における広角画像光学系523、主画像用光学系524、オンチップフィルタ27および受光部28の断面図を示す。図31では、先端部505におけるカバーガラス21a,22a,25、回路基板26、ドライバ29、変換回路30、集合ケーブル31および電極32の図示は省略している。
 図31に示すように、広角画像用光学系523は、凹レンズ、凸レンズに加え、広角レンズやリレーレンズを含むレンズ523a~523fによって構成されており、レンズ524a~524dで構成される主画像用光学系524よりも広い視野角を有する。広角画像用光学系523は、広角画像形成のための光L51を、受光部28の領域S51(図32参照)に出射する。主画像用光学系524は、主画像形成のための光L52を、領域S51とは異なる領域である受光部の領域S52(図32参照)に出射している。
 ここで、広角画像は、外科的処置等を補助する補助画像であるため、処置範囲よりも広い範囲を常に観察できれば足りるものである。したがって、補助画像である広角画像には、処置範囲よりも広い範囲が確認できれば足りるため、高精細化を求められる主画像よりも解像度が低くて特に問題はない。このため、広角画像用光学系523によって出射された光が入射する領域S51は、主画像用光学系524によって出射された光が入射する領域S52よりも小さくできる。このように領域S51および領域S52を設定することによって、主画像形成のための読み出し領域を広く確保して、高精細な主画像を取得できるようにしている。
 制御部555は、広角画像用光学系523に対応する領域S51の画素および主画像用光学系524に対応する領域S52の画素の双方を読み出し読出アドレス設定部53が設定する読み出し対象の画素として変更する。
 これによって、読出アドレス設定部53は、制御部555の制御のもと、受光部28の画素のうち、領域S51の画素および領域S52の画素の双方を読み出し対象の画素として設定し、タイミングジェネレータ34およびAFE部35は、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された領域S51の画素および領域S52の画素のそれぞれから画素情報を読み出す。なお、タイミングジェネレータ34およびAFE部35は、受光部28における領域S51,S52の画素以外の画素からは画素情報を読み出さない。そして、画像処理部42は、制御部555の制御のもと、タイミングジェネレータ34およびAFE部35が読み出した受光部28の領域S51の画素情報をもとに補助画像である広角画像を生成し、タイミングジェネレータ34およびAFE部35が読み出した受光部28の領域S52の画素情報をもとに高精細画像である主画像を生成する。表示部71は、画像処理部542が生成した主画像および広角画像を表示する。
 従来において、広角画像を取得するために、内視鏡装置とは別の撮像装置を用いたり、術野周辺領域を確認するためにスコープを外側に引いたりしていたが、この実施の形態5によれば、1台の内視鏡のみで、主画像と補助画像である広角画像とを同時に取得できる。
 なお、実施の形態1~5において設定される受光部28の2つの領域は、たとえば製造後の出荷検査時に撮像動作を行い、明るさ検出を行って、各光学系に対応した光が実際に入射する画素領域をそれぞれ求めた上で、各制御条件における読み出し対象の画素領域を微調整することによって、光が入射しない画素を無駄に読み出すことを確実に防止できる。また、使用継続によって、光学系などがずれた場合であっても、読み出し対象の画素領域を電気的に行えば足りるため、光学系の位置調整を行わなくともよい。
 また、実施の形態1~5では、制御装置40,240,340,440,540における制御条件用メモリ57,257,357,457,557に制御条件を記憶させた場合を例に説明したが、これに限らず、先端部5,205,305,405,505のCMOS撮像素子80内の図示しないメモリに、各制御条件を保持させておいてもよい。この場合、制御部55,255,355,455,555は、使用する制御条件を示す指示条件を制御回路33に通知し、制御回路33がCMOS撮像素子80内の図示しないメモリから、指示条件において示された制御条件を選択して、受光部28、タイミングジェネレータ34、AFE部35を制御してもよい。
(実施の形態6)
 実施の形態6では、2つの光学系を設け、CMOS撮像素子の受光部の受光面に、右画像および左画像を同時投影し、右画像および左画像を合成することによって、いわゆる立体画像を生成する。
 図33は、実施の形態6にかかる内視鏡システムの構成を示すブロック図である。図33に示すように、実施の形態6にかかる内視鏡システム600は、先端部605に、右画象用光学系623と左画像用光学系624を有する。内視鏡システム600の制御装置640は、図6に示す制御部55に代えて、制御部55と同様の機能を有する制御部655を有し、いわゆる立体画像生成のため制御条件を記憶する制御条件用メモリ657を有し、同時に取得された右画像および左画像の2つの画像を合成して1枚の立体画像を生成する合成部658をさらに備えた画像処理部642を有する。
 図34に示すように、レンズ623a~623dによって構成される右画像用光学系623は、右画像形成のための光L61を、受光部28の右側領域S61(図35参照)に出射する。レンズ624a~624dによって構成される左画像用光学系624は、左画像形成のための光L62を、受光部の左側領域S62(図35参照)に出射している。なお、合成部658による合成処理のため、受光部28の領域S62を、領域S61と同面積および同形状に設定することが望ましい。
 制御部655は、読出アドレス設定部53に、右画像用光学系623に対応する右側領域S61の画素および左画像用光学系624に対応する左側領域S62の画素の双方を読み出し読み出し対象の画素として設定させて、タイミングジェネレータ34およびAFE部35に、受光部28における撮像用の複数の画素のうち読出アドレス設定部53により読み出し対象として設定された右側領域S61の画素および左側領域S62の画素のそれぞれから画素情報を読み出させる。そして、画像処理部642では、合成部658において、同時に取得された右画像および左画像の2つの画像を合成して1枚の立体画像を生成する。
 このように、実施の形態6では、一つのCMOS撮像素子80を有する簡易な構成のままで、右画像および左画像を同時取得して、立体画像を生成することができる。また、実施の形態6では、図35の矢印に示すように、たとえば右側領域S61を基準に、もう一方の左側領域S62を変更することで、右画像と左画像との位置合わせを行うことができるとともに、擬似的に視差を調整することもできる。
 また、本実施の形態は、内視鏡システムに限らず、デジタルカメラ、デジタル一眼レフカメラ、デジタルビデオカメラ又はカメラ付き携帯電話等の撮影装置に適用しても、効率化が可能である。
 1 内視鏡
 2 挿入部
 3 操作部
 4 ユニバーサルコード
 5,205,305,405,505,605 先端部
 6 湾曲部
 7 可撓管部
 8 コネクタ部
 9 ライトガイドコネクタ
 10 電気接点部
 11 送気口金
 12 湾曲ノブ
 13 処置具挿入部
 14 スイッチ
 15 開口部
 16 処置具
 17 洗浄用ノズル
 18,18A 照明窓
 18a 照明レンズ
 19 ライトガイド
 20 処置具用チャンネル
 21,22,22B,221 観察窓
 21a,22a,25 カバーガラス
 23,223,323 第1の光学系
 23a~23c,24a~24c,423a~423d,424a~424d,523a~523f,524a~524d レンズ
 23d,24d 検光部材
 24,324 第2の光学系
 26 回路基板
 27,227 オンチップフィルタ
 28 受光部
 29 ドライバ
 30 変換回路
 31 集合ケーブル
 31a 信号線
 32 電極
 33 制御回路
 34 タイミングジェネレータ
 35 AFE部
 36 ノイズ除去部
 37 ゲイン調整部
 38 A/D変換部
 39 P/S変換部
 40,240,340,440,540,640 制御装置
 41 S/P変換部
 42,442,642 画像処理部
 43 同時化部
 44 WB調整部
 45 ゲイン調整部
 46 γ補正部
 47 D/A変換部
 48 フォーマット変更部
 49 サンプル用メモリ
 50 静止画像用メモリ
 51 明るさ検出部
 52 調光部
 53 読出アドレス設定部
 54 CMOS駆動信号生成部
 55,255,355,455,555,655 制御部
 56 基準クロック生成部
 57,257,357,457,557,657 制御条件用メモリ
 60 光源装置
 61 白色光源
 62 特殊光光源
 63 光源駆動回路
 64 LEDドライバ
 71 表示部
 72 入力部
 73 出力部
 74 記憶部
 100,200,300,400,500,600 内視鏡システム
 223d 分光フィルタ
 323d,324d フィルタ
 423 近点用光学系
 424 遠点用光学系
 458,658 合成部
 523 広角画像用光学系
 524 主画像用光学系
 623 右画像用光学系
 624 左画像用光学系

Claims (21)

  1.  入射した光を集光して出射する第1の光学系と、
     入射した光を集光して出射する光学系であって前記第1の光学系とは異なる第2の光学系と、
     前記第1の光学系から出射した光が入射する領域である第1の領域と、前記第1の領域と異なる領域であって前記第2の光学系から出射した光が入射する領域である第2の領域とを有し、撮像用の複数の画素のうち読み出し対象として任意に設定された画素から光電変換後の電気信号を画素情報として出力可能である撮像部と、
     前記撮像部における読み出し対象の画素を任意に設定可能であって、前記第1の領域の画素および前記第2の領域の画素の少なくとも一方を読み出し対象の画素として設定する設定部と、
     前記撮像部における前記撮像用の複数の画素のうち前記設定部により読み出し対象として設定された画素から画素情報を読み出す読出し部と、
     前記設定部が設定する読み出し対象の画素を取得対象の画像に応じて変更する制御部と、
     前記読出し部によって読み出された画素の画素情報の少なくとも一方をもとに前記取得対象の画像を生成する画像処理部と、
     を備えたことを特徴とする撮像装置。
  2.  前記制御部は、前記取得対象の画像に対応させて、前記設定部による読み出し対象の画素の設定処理、前記読出し部による読み出し処理および前記画像処理部による画像生成処理を制御することを特徴とする請求項1に記載の撮像装置。
  3.  前記制御部による制御条件を各取得対象の画像に対応させて記憶する制御条件記憶部をさらに備え、
     前記制御部は、前記制御条件記憶部に記憶された制御条件のうち前記取得対象の画像に対応した制御条件にしたがって、前記設定部による読み出し対象の画素の設定処理、前記読出し部の読み出し処理および前記画像処理部による画像生成処理を制御することを特徴とする請求項1に記載の撮像装置。
  4.  前記画像処理部が生成した画像を表示する表示部をさらに備え、
     前記画素情報は、輝度値を含み、
     前記第1の光学系は、入射した光のうち第1の偏光面に偏光した成分のみを前記撮像部の第1の領域に出射し、
     前記制御部は、前記設定部に前記第1の領域の画素および前記第2の領域の画素を前記読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の画素および前記第2の領域の画素の画素情報をそれぞれ読み出させるとともに前記第1の領域の画素の輝度値を前記第2の領域の画素の輝度値に対する増幅率よりも高い増幅率で増幅して出力させ、前記画像処理部に、前記読出し部によって読み出された前記第1の領域の画素の画素情報と前記第2の領域の画素の画素情報とのそれぞれに基づく2枚の画像を生成させ、
     前記表示部は、前記画像処理部が生成した2枚の画像を表示することを特徴とする請求項1に記載の撮像装置。
  5.  光源と、
     前記光源によって発せられた光のうち第2の偏光面に偏光した成分を前記被写体に出射する偏光部と、
     を有することを特徴とする請求項4に記載の撮像装置。
  6.  前記第2の光学系は、入射した光のうち、前記第1の偏光面と異なる第3の偏光面に偏光した成分のみを前記撮像部の第2の領域に出射することを特徴とする請求項4に記載の撮像装置。
  7.  第1の光を照射する第1の照射部と、     
     前記第1の光よりも広い波長帯域の光である第2の光を照射する第2の照射部と、
     をさらに備え、
     前記第1の光学系は、前記第1の光に対応して外部から入射した光を分光する分光部材を有し、
     前記制御部は、前記第1の照射部および前記第2の照射部に交互に光を照射させるとともに、前記第1の照射部から照射される第1の光で照明された被写体を撮像して画素情報を出力させる第1のフレームにおいては、前記設定部に前記第1の領域の画素を前記読み出し対象の画素として設定させて前記読出し部に前記第1の領域の画素の画素情報を読み出させ、前記第2の照射部から照射される第2の光で照明された前記被写体を撮像して画素情報を出力させる第2のフレームにおいては、前記設定部に前記第2の領域の画素を読み出し対象の画素として設定させて前記読出し部に前記第2の領域の画素の画素情報を読み出させることを特徴とする請求項1に記載の撮像装置。
  8.  前記制御部は、前記第1のフレームにおける露光時間が前記第2のフレームにおける露光時間よりも長くなるように前記第1の照射部および前記第2の照射部における照射処理と前記読出し部における読み出し処理とを制御することを特徴とする請求項7に記載の撮像装置。
  9.  前記画素情報は、輝度値を含み、
     前記制御部は、前記読出し部に、前記第1のフレームにおいては、前記第1の領域の画素の輝度値を、前記第2のフレームにおける前記第2の領域の画素の輝度値に対する増幅率よりも高い増幅率で増幅して出力させることを特徴とする請求項7に記載の撮像装置。
  10.  前記画素情報は、輝度値を含み、
     前記制御部は、前記読出し部に、前記第1の領域の画素の輝度値として、互いに隣り合う複数の画素で構成されるブロックに含まれる複数の画素の輝度値を加算してブロック単位で出力させることを特徴とする請求項7に記載の撮像装置。
  11.  白色光よりも狭い波長帯域の特殊光を照射する第1の照射部と、
     白色光を照射する第2の照射部と、
     をさらに備え、
     前記第1の光学系は、入射した光のうち赤色光および緑色光を透過させる第1の透過フィルタを備え、
     前記第2の光学系は、入射した光のうち青色光を透過させる第2の透過フィルタを備え、
     前記制御部は、前記取得対象の画像に対応させて、前記第1の照明部および前記第2の照明部による照明処理、前記設定部による読み出し対象の画素の設定処理、前記読出し部による読み出し処理、前記画像処理部による画像生成処理を制御することを特徴とする請求項1に記載の撮像装置。
  12.  前記取得対象の画像は、白色光照明による画像であり、
     前記制御部は、前記取得対象の画像が前記白色光照明による画像である場合、前記第2の照明部に白色光を照射させ、前記設定部に前記第1の領域の全画素および前記第2の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の全画素および前記第2の全画素をそれぞれ読み出させ、前記画像処理部に前記第1の領域の全画素の画素情報に対応する画像と前記第2の全画素の画素情報に対応する画像とを合成して1枚の画像を生成させることを特徴とする請求項11に記載の撮像装置。
  13.  前記取得対象の画像は、前記取得対象の画像が特定物質の分布を強調させた強調画像であり、
     前記制御部は、前記取得対象の画像が前記強調画像である場合、前記第1の照射部に前記特殊光として緑色光および青色光の波長帯域に含まれる光を照射させ、前記設定部に前記第1の領域の緑色光が入射する画素および前記第2の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の緑色光が入射する画素および前記第2の領域の全画素をそれぞれ読み出させ、前記画像処理部に前記第1の領域の緑色光が入射する画素の画素情報に対応する画像と前記第2の領域の全画素の画素情報に対応する画像とを合成して1枚の画像を生成させることを特徴とする請求項11に記載の撮像装置。
  14.  前記取得対象の画像は、蛍光観察用画像であり、
     前記制御部は、前記取得対象の画像が前記蛍光観察用画像である場合、前記第1の照射部に前記特殊光として赤色光および緑色光の波長帯域に含まれる蛍光を発する物質に対する励起光を照射させ、前記設定部に前記第1の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の全画素の画素情報を読み出させ、前記画像処理部に前記第1の領域の全画素の画素情報をもとに1枚の前記蛍光観察用画像を生成させることを特徴とする請求項11に記載の撮像装置。
  15.  前記制御部は、前記設定部に前記第1の領域の全画素とともに前記第2の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の全画素とともに前記第2の領域の全画素から画素情報をそれぞれ読み出させ、前記画像処理部に前記第2の領域の全画素の画素情報をもとに1枚の白黒画像を生成させることを特徴とする請求項14に記載の撮像装置。
  16.  前記画素情報は、輝度値を含み、
     前記制御部は、前記設定部に前記第1の領域の全画素とともに前記第2の領域の全画素を読み出し対象の画素として設定させ、前記読出し部に前記第1の領域の全画素とともに前記第2の領域の全画素から画素情報をそれぞれ読み出させ、前記画像処理部に前記第1の領域の全画素の輝度値を前記第2の領域の全画素の輝度値を用いて補正させてから1枚の前記蛍光観察用画像を生成させることを特徴とする請求項14に記載の撮像装置。
  17.  前記第1の光学系の焦点距離は、前記第2の光学系の焦点距離と異なり、
     前記制御部は、前記設定部に前記第1の領域の画素と前記第2の領域の画素とを読み出し対象の画素として設定させて前記読出し部に前記第1の領域の画素および前記第2の領域の画素の画素情報をそれぞれ読み出させるとともに、前記画像処理部に前記読出し部によって読み出された前記第1の領域の画素の画素情報に対応する画像と前記第2の領域の画素の画素情報に対応する画像とを重ね合わせて1枚の画像を生成させることを特徴とする請求項1に記載の撮像装置。
  18.  前記画素情報は、輝度値を含み、
     前記制御部は、前記読出し部に、前記第1の領域の画素の輝度値を、前記第2の領域の画素の輝度値に対する増幅率と異なる増幅率で増幅して出力させることを特徴とすることを特徴とする請求項17に記載の撮像装置。
  19.  前記画像処理部が生成した画像を表示する表示部をさらに備え、
     前記第1の光学系の視野角は、前記第2の光学系の視野角と異なり、
     前記制御部は、前記設定部に前記第1の領域の画素および前記第2の領域の画素を前記読み出し対象の画素として設定させて前記読出し部に前記第1の領域の画素および前記第2の領域の画素の画素情報をそれぞれ読み出させるとともに、前記画像処理部に前記読出し部によって読み出された前記第1の領域の画素の画素情報と前記第2の領域の画素の画素情報とのそれぞれに基づく2枚の画像を生成させ、
     前記表示部は、前記画像処理部が生成した2枚の画像を表示することを特徴とする請求項1に記載の撮像装置。
  20.  前記第1の光学系の視野角は、前記第2の光学系の視野角よりも広く、
     前記第1の領域は、前記第2の領域よりも狭いことを特徴とする請求項19に記載の撮像装置。
  21.  当該撮像装置は、体内に導入される先端部と信号処理装置とを有し、前記先端部と前記信号処理装置とが伝送部によって接続されている内視鏡装置であって、
     前記先端部は、前記第1の光学系、前記第2の光学系、前記撮像部および前記読出し部を有し、
     前記信号処理装置は、前記設定部、前記制御部および前記画像処理部を有することを特徴とする請求項1に記載の撮像装置。
PCT/JP2011/078905 2010-12-14 2011-12-14 撮像装置 WO2012081618A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012548809A JP5274720B2 (ja) 2010-12-14 2011-12-14 撮像装置
CN201180059907.XA CN103262522B (zh) 2010-12-14 2011-12-14 摄像装置
EP11849632.2A EP2629504B1 (en) 2010-12-14 2011-12-14 Imaging apparatus
US13/728,381 US8823788B2 (en) 2010-12-14 2012-12-27 Imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-278350 2010-12-14
JP2010278350 2010-12-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/728,381 Continuation US8823788B2 (en) 2010-12-14 2012-12-27 Imaging apparatus

Publications (1)

Publication Number Publication Date
WO2012081618A1 true WO2012081618A1 (ja) 2012-06-21

Family

ID=46244715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078905 WO2012081618A1 (ja) 2010-12-14 2011-12-14 撮像装置

Country Status (5)

Country Link
US (1) US8823788B2 (ja)
EP (1) EP2629504B1 (ja)
JP (1) JP5274720B2 (ja)
CN (1) CN103262522B (ja)
WO (1) WO2012081618A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233533A (ja) * 2013-06-04 2014-12-15 富士フイルム株式会社 内視鏡システム
WO2015033915A1 (ja) * 2013-09-03 2015-03-12 オリンパスメディカルシステムズ株式会社 光学測定装置
JP2015066063A (ja) * 2013-09-27 2015-04-13 富士フイルム株式会社 内視鏡システム及びその作動方法
WO2015190147A1 (ja) * 2014-06-11 2015-12-17 オリンパス株式会社 クロック信号出力装置、制御装置および内視鏡
WO2018012096A1 (ja) * 2016-07-12 2018-01-18 ソニー株式会社 内視鏡装置及び内視鏡装置の画像合成方法
WO2018105396A1 (ja) * 2016-12-06 2018-06-14 オリンパス株式会社 内視鏡装置
WO2018220908A1 (ja) * 2017-05-31 2018-12-06 オリンパス株式会社 内視鏡システム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2633678A4 (en) * 2010-10-29 2015-05-20 Univ California CELLSCOPE DEVICE AND IMAGING METHOD THEREFOR
JP6270339B2 (ja) * 2013-05-22 2018-01-31 オリンパス株式会社 撮像装置、撮像装置の製造方法、及び内視鏡システム
WO2015035229A2 (en) 2013-09-05 2015-03-12 Cellscope, Inc. Apparatuses and methods for mobile imaging and analysis
JP5841699B2 (ja) * 2013-10-17 2016-01-13 オリンパス株式会社 内視鏡
WO2015136963A1 (ja) * 2014-03-12 2015-09-17 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
CN106999021B (zh) * 2014-06-05 2021-06-04 海德堡大学 用于多光谱成像的方法和部件
US20170035280A1 (en) * 2015-08-07 2017-02-09 Reinroth Gmbh Stereoscopic endoscope system with concurrent imaging at visible and infrared wavelengths
CN107924107B (zh) * 2015-08-19 2020-09-18 富士胶片株式会社 摄像装置
EP3275360A4 (en) * 2015-12-17 2019-02-06 Olympus Corporation STEREOSCOPIC IMAGING UNIT
EP3473157A4 (en) * 2016-06-17 2019-09-04 Sony Corporation Image Processing Device, Image Processing Method, Program and Image Processing System
CN110121289B (zh) * 2016-12-28 2022-02-08 奥林巴斯株式会社 摄像装置、内窥镜以及内窥镜系统
US10438332B2 (en) * 2017-05-18 2019-10-08 Semiconductor Components Industries, Llc Methods and apparatus for selective pixel readout for image transformation
TWI646939B (zh) * 2017-11-10 2019-01-11 沅聖科技股份有限公司 微內視鏡裝置
CN113395928A (zh) * 2019-01-25 2021-09-14 直观外科手术操作公司 增强医疗视觉系统和方法
CN110367910A (zh) * 2019-08-23 2019-10-25 重庆金山科技(集团)有限公司 内窥镜接头、内窥镜镜体、内窥镜冷光源及内窥镜系统
CN110798605B (zh) * 2019-11-29 2021-05-28 维沃移动通信有限公司 摄像模组及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221961A (ja) * 2000-02-09 2001-08-17 Olympus Optical Co Ltd 双眼光学アダプタ
JP2002336196A (ja) 2001-05-16 2002-11-26 Olympus Optical Co Ltd 内視鏡装置
JP2003005096A (ja) * 2001-06-27 2003-01-08 Olympus Optical Co Ltd 内視鏡装置
JP2003333432A (ja) * 2002-05-15 2003-11-21 Matsushita Electric Ind Co Ltd 撮像装置
JP2006288821A (ja) * 2005-04-12 2006-10-26 Olympus Medical Systems Corp 電子内視鏡
JP2006325973A (ja) * 2005-05-26 2006-12-07 Olympus Medical Systems Corp 画像生成装置
JP2007090044A (ja) * 2005-08-31 2007-04-12 Olympus Corp 光イメージング装置
JP2009034224A (ja) 2007-07-31 2009-02-19 Olympus Medical Systems Corp 医療装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041099B2 (ja) * 1991-02-01 2000-05-15 オリンパス光学工業株式会社 電子内視鏡装置
NZ529432A (en) * 1999-01-26 2005-07-29 Newton Lab Inc Autofluorescence imaging system for endoscopy
JP4285641B2 (ja) * 2002-08-30 2009-06-24 富士フイルム株式会社 撮像装置
US7301134B2 (en) * 2005-07-07 2007-11-27 The Aerospace Corporation Electro-optical focal plane array digital sensor system
JP2009056240A (ja) * 2007-09-03 2009-03-19 Olympus Corp 内視鏡システム
JP2011151776A (ja) * 2009-12-25 2011-08-04 Canon Inc 情報処理装置及び検証装置、並びにそれらの制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221961A (ja) * 2000-02-09 2001-08-17 Olympus Optical Co Ltd 双眼光学アダプタ
JP2002336196A (ja) 2001-05-16 2002-11-26 Olympus Optical Co Ltd 内視鏡装置
JP2003005096A (ja) * 2001-06-27 2003-01-08 Olympus Optical Co Ltd 内視鏡装置
JP2003333432A (ja) * 2002-05-15 2003-11-21 Matsushita Electric Ind Co Ltd 撮像装置
JP2006288821A (ja) * 2005-04-12 2006-10-26 Olympus Medical Systems Corp 電子内視鏡
JP2006325973A (ja) * 2005-05-26 2006-12-07 Olympus Medical Systems Corp 画像生成装置
JP2007090044A (ja) * 2005-08-31 2007-04-12 Olympus Corp 光イメージング装置
JP2009034224A (ja) 2007-07-31 2009-02-19 Olympus Medical Systems Corp 医療装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2629504A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014233533A (ja) * 2013-06-04 2014-12-15 富士フイルム株式会社 内視鏡システム
WO2015033915A1 (ja) * 2013-09-03 2015-03-12 オリンパスメディカルシステムズ株式会社 光学測定装置
JP2015066063A (ja) * 2013-09-27 2015-04-13 富士フイルム株式会社 内視鏡システム及びその作動方法
WO2015190147A1 (ja) * 2014-06-11 2015-12-17 オリンパス株式会社 クロック信号出力装置、制御装置および内視鏡
JPWO2015190147A1 (ja) * 2014-06-11 2017-04-20 オリンパス株式会社 クロック信号出力装置、制御装置および内視鏡
WO2018012096A1 (ja) * 2016-07-12 2018-01-18 ソニー株式会社 内視鏡装置及び内視鏡装置の画像合成方法
WO2018105396A1 (ja) * 2016-12-06 2018-06-14 オリンパス株式会社 内視鏡装置
WO2018220908A1 (ja) * 2017-05-31 2018-12-06 オリンパス株式会社 内視鏡システム

Also Published As

Publication number Publication date
JP5274720B2 (ja) 2013-08-28
CN103262522A (zh) 2013-08-21
US20130222562A1 (en) 2013-08-29
EP2629504B1 (en) 2017-07-12
EP2629504A1 (en) 2013-08-21
CN103262522B (zh) 2016-11-23
US8823788B2 (en) 2014-09-02
EP2629504A4 (en) 2016-01-13
JPWO2012081618A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5274720B2 (ja) 撮像装置
JP5259882B2 (ja) 撮像装置
JP5191090B2 (ja) 内視鏡装置
JP5496852B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
JP6435275B2 (ja) 内視鏡装置
JP5306447B2 (ja) 透過率調整装置、観察装置、及び観察システム
JP5245022B1 (ja) 撮像装置
JP2012213612A (ja) 電子内視鏡システム及び電子内視鏡システムの校正方法
US9414739B2 (en) Imaging apparatus for controlling fluorescence imaging in divided imaging surface
KR20080102317A (ko) 생체 관측 시스템
JP2012085916A (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び蛍光画像の高感度化方法
JP5334952B2 (ja) 画像処理装置
JP5554288B2 (ja) 内視鏡システム、プロセッサ装置及び画像補正方法
JP4716801B2 (ja) 内視鏡撮像システム
JP2012081048A (ja) 電子内視鏡システム、電子内視鏡、及び励起光照射方法
JP5371702B2 (ja) 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び電子内視鏡システムの作動方法
WO2018073959A1 (ja) 内視鏡スコープ、内視鏡プロセッサおよび内視鏡用アダプタ
JPH01136629A (ja) 蛍光観察用内視鏡装置
JP6396717B2 (ja) 感度調整方法および撮像装置
JP2011177532A (ja) 内視鏡装置
JP2012085917A (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び蛍光画像の高感度化方法
JP2013102897A (ja) 内視鏡診断装置
JP2011177247A (ja) 内視鏡用撮像光学系及び内視鏡システム
JP4643253B2 (ja) 蛍光観察システム
JP2011188928A (ja) 蛍光内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849632

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012548809

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011849632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011849632

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE