WO2012081296A1 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
WO2012081296A1
WO2012081296A1 PCT/JP2011/072968 JP2011072968W WO2012081296A1 WO 2012081296 A1 WO2012081296 A1 WO 2012081296A1 JP 2011072968 W JP2011072968 W JP 2011072968W WO 2012081296 A1 WO2012081296 A1 WO 2012081296A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
battery
terminal
charger
voltage
Prior art date
Application number
PCT/JP2011/072968
Other languages
English (en)
French (fr)
Inventor
昌彰 岡田
昌樹 池田
則宏 岩村
元治 武藤
Original Assignee
パナソニック電工パワーツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工パワーツール株式会社 filed Critical パナソニック電工パワーツール株式会社
Priority to EP11848852.7A priority Critical patent/EP2654167B1/en
Priority to US13/885,742 priority patent/US9257853B2/en
Publication of WO2012081296A1 publication Critical patent/WO2012081296A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack, and more particularly to a battery pack that incorporates a secondary battery and a charge / discharge control circuit.
  • lithium ion secondary batteries As battery packs used for rechargeable load devices with large current consumption, such as power tools, lithium ion secondary batteries have recently been attracting attention because of their high energy density and light weight. Yes. However, since lithium-ion batteries are vulnerable to overcharge and overdischarge, a protection circuit that monitors each cell voltage is placed in the battery pack from the viewpoint of reliability and safety, and charge / discharge control by cell voltage is performed. It is common.
  • the protection circuit normally uses an IC created for this purpose, but when it is not connected to a charger or when a load device using the battery pack as a power source is in an off state. When the protection circuit is operating, the current consumed by the protection circuit itself reduces the remaining battery level.
  • the protection circuit when the battery pack is not connected to the charger, or when the load device to which the battery pack is connected is in the off state, the protection circuit is put into a sleep state or a standby state with low current consumption, and the charger is Document 1 (Japanese Patent Publication No. 2008-199827) and the like that activates the protection circuit by a start signal input from the charger or the load device when the load device is connected or turned on. Has been.
  • the present invention has been made in view of these points, and an object of the present invention is to provide a battery pack in which a protection circuit operates at the time of charging even when no activation signal is input from the outside.
  • a battery pack is a battery pack that can be recharged by a charger, and includes a charging terminal, a battery, a protection circuit, a starting terminal, a starting circuit, an auxiliary starting circuit, Is provided.
  • the charging terminal is configured to receive power from the charger when connected to the charger.
  • the battery is connected to the charging terminal, and is configured to be charged with electric power supplied from the charger via the charging terminal.
  • the said protection circuit is comprised so that the protection operation
  • the activation terminal is configured to receive an activation signal from the charger when connected to the charger.
  • the start circuit is connected to the start terminal.
  • the auxiliary activation circuit is connected to the charging terminal.
  • the start circuit is configured to output the drive signal to the protection circuit while receiving the start signal from the charger via the start terminal.
  • the protection circuit is configured to perform the protection operation while receiving the drive signal, and to stop the protection operation when the drive signal is not received.
  • the auxiliary activation circuit determines whether or not electric power is received from the charger via the charging terminal, and the power is supplied to the protection circuit while receiving electric power from the charger via the charging terminal. Configured to provide a signal.
  • the battery pack according to a second aspect of the present invention is the battery pack according to the first aspect, wherein the auxiliary activation circuit receives power from the charger via the charging terminal when the voltage of the charging terminal is equal to or higher than a predetermined threshold value. It is configured to determine that it is received.
  • the predetermined threshold is equal to a voltage when the battery is fully charged.
  • the activation circuit has an input terminal connected to the activation terminal, and a voltage applied to the input terminal is the predetermined value. If the voltage is equal to or higher than the voltage, the drive signal is output.
  • the auxiliary starting circuit is a series circuit of a Zener diode and a resistor. The Zener diode has a cathode connected to the charging terminal and an anode connected to the input terminal of the activation circuit via the resistor.
  • the voltage drop due to the series circuit is determined by the breakdown voltage of the Zener diode and the resistance value of the resistor, and when the voltage of the charging terminal becomes equal to or higher than the predetermined threshold, the voltage of the input terminal is The voltage is selected to be equal to or higher than the voltage.
  • a protection element inserted between the battery and the charging terminal, and a cutoff circuit are provided.
  • the protection circuit is configured to output an overcharge detection signal to the cutoff circuit when detecting overcharge of the battery.
  • the interruption circuit is configured to control the protection element and disconnect the battery from the charging terminal when receiving the overcharge detection signal.
  • the battery pack shown in the figure is a battery cell in which a plurality of lithium ion type secondary battery cells (five in the example shown in FIG. 2) are connected in series.
  • the battery cell group B is connected to the positive electrode side of the battery cell group B with a power supply terminal S1 and a charging terminal S3 via a fusing resistor 5.
  • a ground-side power supply terminal S2 is connected to the negative electrode side of the battery cell group.
  • the fusing resistor 5 is a non-returning element that cuts off the electric circuit by cutting a fuse by passing a current through the heater resistor.
  • a protection circuit 4 that operates using a battery cell group as a power source, an overdischarge control output circuit 6, a charge control output circuit 7, a starting circuit 8, and a fusing resistance fusing time adjusting circuit 9 are disposed. ing.
  • the protection circuit 4 includes a voltage detection circuit that detects a voltage for each battery cell B, a charge / discharge control circuit, and an overcharge detection circuit.
  • the overdischarge control output circuit 6 and the charge control output are provided.
  • the signal terminal unit 3 is connected via a circuit 7 and a starting circuit 8. When the battery pack is connected to the charger or the load device, the signal terminal unit 3 is connected to the control circuit on the charger side or the control circuit on the load device side, so that the signal between the charger and the load device can be transmitted. Perform input / output.
  • the protection circuit 4 is in a normal state, in a rest state, or in a standby state with a small current consumption, but when connected to a charger, the protection circuit 4 receives a start signal output from the charger side and outputs a battery by the output of the start circuit 8.
  • the cell group is operated as a power source.
  • the start circuit 8 receives a start signal output from the load device when operating the load device, and enters the operation state by the output of the start circuit 8.
  • the protection circuit 4 detects the voltage of the battery cell during charging and outputs an output for charge control to the charger side through the charge control output circuit 7.
  • the charger side shifts from constant current charging to constant voltage charging or stops charging according to this output.
  • the charging path is cut off by cutting the fuse of the fusing resistor 9 through the fusing resistor fusing time adjusting circuit 9.
  • the load device side When discharging with the load device connected, the voltage of the battery cell B is detected, and when the voltage drops below a predetermined value, the load device side is notified through the overdischarge control output circuit 6 and the control circuit on the load device side is shut down. Let the action take place.
  • protection circuit 4 the overdischarge control output circuit 6, the charge control output circuit 7, and the start-up circuit 8 are the same as those in the above-described conventional example, and thus description thereof is omitted here.
  • 1 and 2 indicates a circuit module in the battery pack.
  • the start-up signal is not input to the battery pack due to a failure of the charger when connected to the charger or due to poor contact of the signal terminal portion 3, and thus a protection circuit is provided.
  • the internal startup circuit 2 When the charging current is supplied through the charging terminal S3 and charging is started while the 4 is not operating, the internal startup circuit 2 generates an internal startup signal and operates the protection circuit 4 through the startup circuit 8 It is something to be made.
  • the internal starting circuit 2 a circuit that turns on the transistor of the starting circuit 8 when the voltage of the charging terminal S3 (the voltage of the battery cell group B) is equal to or higher than a predetermined value is used. Specifically, as shown in FIG. 2, a series circuit of a Zener diode ZD and a resistor R is provided between the charging terminal S3 (the high potential side of the battery cell group B) and the signal terminal unit 3 side of the starting circuit 8. Provided.
  • the charger is due to a failure or a poor contact with the signal terminal unit 3, it is assumed that charging control based on the signal from the protection circuit 4 is not performed, but at this time the voltage of the battery cell further increases. Accordingly, the fuse of the fusing resistor 5 is cut off by melting the fuse.
  • the battery pack of this embodiment is a battery pack that can be recharged by a charger (not shown), and includes a battery B and a circuit module M.
  • Battery B is an assembled battery including five secondary batteries (battery cells) 10 (11, 12, 13, 14, 15) connected in series as shown in FIG. Therefore, the voltage of the battery B is equal to the sum of the voltages of the five secondary batteries 10.
  • the positive electrode of the battery B is the positive electrode of the secondary battery 11
  • the negative electrode of the battery B is the negative electrode of the secondary battery 15.
  • Each secondary battery 10 is, for example, a lithium ion battery.
  • the secondary battery 10 is a lithium ion battery having a nominal voltage (rated) of 3.6V and a maximum voltage (voltage at full charge) of 4.2V. Therefore, the nominal voltage (voltage between terminals) of the battery B is 18V. The voltage when the battery B is fully charged is 21V.
  • the secondary battery 10 is not limited to a lithium ion battery, and may be a nickel cadmium battery, a nickel hydrogen battery, or the like.
  • the number of secondary batteries 10 is not limited to five, and the secondary batteries 10 may be connected in parallel, or may be connected in parallel and in series.
  • the circuit module M includes a power supply terminal (positive terminal) S1 electrically connected to the positive electrode of the battery B (positive electrode of the secondary battery 11), and the negative electrode of the battery B (of the secondary battery 15).
  • the circuit module M further includes a charging terminal S3 connected to the battery B (the positive electrode of the battery B).
  • the charging terminal S3 is connected to the power supply terminal of the charger when the battery pack is connected to the charger.
  • the power supply terminal is a terminal for supplying the battery pack with electric power for charging the battery B by the charger. That is, the charging terminal S3 is configured to receive power from the charger when connected to the charger.
  • Charging terminal S3 is electrically connected to the positive electrode of battery B. Therefore, the battery B is configured to be charged with power supplied from the charger via the charging terminal S3.
  • the circuit module M further includes an auxiliary activation circuit (internal activation circuit) 2, a signal terminal unit 3, a protection circuit 4, a protection element (fusing resistor) 5, an overdischarge control output circuit 6, and a charge control output.
  • a circuit 7, a starting circuit (main starting circuit) 8, and a cutoff circuit (fusing resistance fusing time adjusting circuit) 9 are provided.
  • the signal terminal unit 3 includes an activation terminal 31, an overdischarge detection terminal 32, a charge control terminal 33, and a ground terminal 34.
  • the start terminal 31, the charge control terminal 33, and the ground terminal 34 are connected to the corresponding charger terminals.
  • the start terminal 31, the overdischarge control terminal 33, and the ground terminal 34 are connected to the corresponding load device terminals, respectively.
  • the activation terminal 31 is configured to receive an activation signal from the charger when connected to the charger.
  • the activation signal is, for example, a voltage signal having a predetermined voltage.
  • the activation terminal 31 is configured to receive an activation signal from the load device even when connected to the load device.
  • the protection circuit 4 is configured to perform a protection operation for detecting overcharge of the battery B by using electric power obtained from the battery B.
  • the protection circuit 4 is configured to measure each voltage of the secondary battery 10 of the battery B.
  • the protection circuit 4 is configured to compare the measured voltage of the secondary battery 10 with a first threshold value in a protection operation.
  • the first threshold value is a threshold value for determining whether or not the secondary battery 10 is in an overcharged state, and is 4.35 V in the present embodiment.
  • the protection circuit 4 causes the interruption circuit (fusing resistance fusing time adjustment circuit) 9 to An overcharge detection signal is output.
  • the protection circuit 4 is configured to compare the measured voltage of the secondary battery 10 with the second threshold value and the third threshold value in the protection operation.
  • the second threshold value is a threshold value for determining whether or not the secondary battery 10 is fully charged, and is equal to the voltage of the secondary battery 10 at the time of full charge (4.2 V in the present embodiment). This second threshold is smaller than the first threshold.
  • the protection circuit 4 outputs a charge control signal to the charge control output circuit 7 when at least one of the measured voltages of the secondary battery 10 (11, 12, 13, 14, 15) becomes equal to or higher than the second threshold value. Configured.
  • the third threshold value is a threshold value for determining whether or not the secondary battery 10 is in an overdischarged state, and is 2.0 V in this embodiment. This third threshold is smaller than the second threshold.
  • the protection circuit 4 outputs an overdischarge detection signal to the overdischarge control output circuit 6 when at least one of the measured voltages of the secondary battery 10 (11, 12, 13, 14, 15) falls below the third threshold value. Configured to do.
  • the protection circuit 4 is configured to perform the above-described protection operation while receiving a drive signal, and stop the protection operation when no drive signal is received.
  • the state of the protection circuit 4 when the protection operation is performed is referred to as an operation state, and the state of the protection circuit 4 when the protection operation is not performed is referred to as a sleep state or a standby state.
  • the overdischarge control output circuit 6 is configured to output a voltage signal to the overdischarge detection terminal 32 when receiving the overdischarge detection signal from the protection circuit 4. For example, when the load device connected to the battery pack receives a voltage signal from the overdischarge detection terminal 32, the load device determines that the power of the battery pack is insufficient and stops the load.
  • the charge control output circuit 7 is configured to output a voltage signal to the charge control terminal 33 when receiving the charge control signal from the protection circuit 4.
  • the charger supplies a constant current to the battery B through the charging terminal S3, and charges the battery B by applying a constant current to the battery B through the charging terminal S3.
  • Voltage charging is selectively performed.
  • the charger is configured to perform constant current charging until a voltage signal is received from the charging control terminal 33, and to perform constant voltage charging when a voltage signal is received from the charging control terminal 33.
  • the protective element 5 is inserted between the battery B and the charging terminal S3.
  • the protection element 5 has a series circuit of two fuses F51 and F52 inserted between the battery B and the charging terminal S3.
  • the protection element 5 includes a resistor (heater resistor) R51 disposed near the fuse F51 and a resistor (heater resistor) R52 disposed near the fuse F52.
  • the heater resistors R51 and R52 generate heat when a current flows, thereby blowing the corresponding fuses F51 and F52.
  • a resettable fuse or the like may be used instead of the fuses F51 and F52.
  • the cutoff circuit 9 is configured to control the protection element 5 and disconnect the battery B from the charging terminal S3.
  • the interruption circuit 9 receives the overcharge detection signal from the protection circuit 4
  • current is supplied to the resistors R51 and R52 of the protection element 5 to cause the resistors R51 and R52 to generate heat. Is configured to be disconnected from the charging terminal S3.
  • the activation circuit 8 is connected to the activation terminal 31 and configured to output a drive signal to the protection circuit 4 while receiving an activation signal from the charger (or load device) via the activation terminal 31.
  • the activation circuit 8 has an input terminal 81 connected to the activation terminal 31, and the drive signal is protected when the voltage applied to the input terminal 81 is equal to or higher than a predetermined voltage (voltage of the activation signal). 4 is configured.
  • the starting circuit 8 includes an NPN transistor T8 and a resistor R8.
  • the NPN transistor T8 has a base (input terminal) 81 connected to the start terminal 31, an emitter 82 grounded, and a collector 83 connected to the protection element 4 via a resistor R8.
  • the NPN transistor T8 is turned on while the activation signal is applied to the activation terminal 31, and the drive signal is applied from the activation circuit 8 to the protection circuit 4.
  • the auxiliary activation circuit 2 is connected to the charging terminal S3, determines whether or not power is received from the charger via the charging terminal S3, and protects while receiving power from the charger via the charging terminal S.
  • the circuit 4 is configured to provide a drive signal.
  • the auxiliary activation circuit 2 is configured to determine that electric power is received from the charger via the charging terminal S3 when the voltage at the charging terminal S3 becomes equal to or higher than a predetermined threshold value.
  • the predetermined threshold is not limited to the voltage when the battery B is fully charged. That is, the predetermined threshold is determined in consideration of the timing at which the protection circuit 4 is activated by the auxiliary activation circuit 2.
  • the auxiliary starting circuit 2 is a series circuit of a Zener diode ZD and a resistor R as shown in FIG.
  • the Zener diode ZD has a cathode connected to the charging terminal S3 and an anode connected to the input terminal 81 of the activation circuit 8 via the resistor R.
  • the Zener diode ZD is connected to the charging terminal S ⁇ b> 3 through the protection element 5.
  • the voltage drop due to this series circuit (that is, the auxiliary starting circuit 2) is determined by the breakdown voltage of the Zener diode ZD and the resistance value of the resistor R.
  • the voltage drop due to the series circuit is such that the voltage at the input terminal 81 becomes equal to or higher than the predetermined voltage (the voltage of the start signal) when the voltage at the charging terminal S3 becomes equal to or higher than the predetermined threshold (21 V in this embodiment). Selected.
  • the auxiliary activation circuit 2 is configured to apply a voltage equal to the voltage of the activation signal to the input terminal 81 of the activation circuit 8.
  • the auxiliary starting circuit 2 gives a voltage equal to the voltage of the starting signal to the input terminal 81 of the starting circuit 8.
  • the NPN transistor T8 of the activation circuit 8 is turned on, and a drive signal is output from the activation circuit 8 to the protection circuit 4.
  • the auxiliary activation circuit 2 is configured to control the activation circuit 8 and supply a drive signal to the protection circuit 4.
  • the auxiliary activation circuit 2 itself may output a drive signal to the protection circuit 4.
  • the auxiliary activation circuit 2 determines whether or not electric power is received from the charger via the charging terminal S3 based on the voltage of the charging terminal S3. However, the auxiliary activation circuit 2 may determine whether electric power is received from the charger via the charging terminal S3 based on the current flowing between the charging terminal S3 and the battery B. Generally, as the battery B approaches full charge, the current supplied from the charger to the battery B decreases. Therefore, the auxiliary activation circuit 2 may determine that the power is received from the charger via the charging terminal S3 when the current flowing between the charging terminal S3 and the battery B is equal to or less than a predetermined threshold value.
  • the battery pack of the present embodiment includes a battery cell group B composed of a plurality of secondary battery cells, a charging terminal S3 connected to a charger for charging the battery cell group B, and a charger.
  • a signal terminal unit 3 for transmitting and receiving signals between them, a protection circuit 4 for individually monitoring the voltage of each battery cell and controlling charging according to the monitoring result, and a start signal from the charger side as a signal terminal unit 3 is a battery pack having an activation circuit 8 that receives the power supply from the charging terminal S3 and receives an internal activation signal from the charging terminal S3. Is provided with an internal activation circuit 2 that transmits the protection circuit 4 to the operating state.
  • the battery pack of the present embodiment is a battery pack that can be recharged by a charger, and includes a charging terminal S3, a battery B, a protection circuit 4, a starting terminal 31, a starting circuit 8, and an auxiliary device. And a starting circuit 2.
  • the charging terminal S3 is configured to receive power from the charger when connected to the charger.
  • the battery B is connected to the charging terminal S3 and is configured to be charged with electric power supplied from the charger via the charging terminal S3.
  • the protection circuit 4 is configured to perform a protection operation for detecting overcharge of the battery B using electric power obtained from the battery B.
  • the activation terminal 31 is configured to receive an activation signal from the charger when connected to the charger.
  • the activation circuit 8 is connected to the activation terminal 31.
  • the auxiliary activation circuit 2 is connected to the charging terminal S3.
  • the activation circuit 8 is configured to output a drive signal to the protection circuit 4 while receiving an activation signal from the charger via the activation terminal 31.
  • the protection circuit 4 is configured to perform a protection operation while receiving a drive signal, and stop the protection operation when no drive signal is received.
  • the auxiliary activation circuit 2 determines whether or not power is received from the charger via the charging terminal S3, and gives a drive signal to the protection circuit 4 while receiving power from the charger via the charging terminal S3. Configured as follows.
  • the protection circuit 4 is shifted from the sleep state or standby state to the operating state by the internal activation signal from the internal activation circuit (auxiliary activation circuit) 2. It is something to be made.
  • the auxiliary activation circuit 2 is configured to determine that power is received from the charger via the charging terminal S3 when the voltage at the charging terminal S3 becomes equal to or higher than a predetermined threshold value.
  • the predetermined threshold is equal to the voltage when the battery B is fully charged (21 V in this embodiment).
  • the internal starting circuit 2 can suitably use the one that transmits an internal starting signal to the starting circuit 8 when the voltage on the high potential side of the charging terminal S3 exceeds a predetermined threshold value. It is preferable to use a voltage value at which the voltage of the battery cell is regarded as an overcharged state.
  • the activation circuit 8 has an input terminal 81 connected to the activation terminal 31 and outputs a drive signal if the voltage applied to the input terminal 81 is equal to or higher than a predetermined voltage.
  • the auxiliary activation circuit 2 is a series circuit of a Zener diode ZD and a resistor (resistance) R.
  • the Zener diode ZD has a cathode connected to the charging terminal S3 and an anode connected to the input terminal 81 of the activation circuit 8 via the resistor R.
  • the voltage drop due to the series circuit is determined by the breakdown voltage of the Zener diode ZD and the resistance value of the resistor R, and when the voltage at the charging terminal S3 exceeds a predetermined threshold value, the voltage at the input terminal 81 exceeds the predetermined voltage. Is selected.
  • the internal starting circuit 2 can be suitably used by connecting a series circuit of a Zener diode ZD and a resistor R between the charging terminal S3 and the signal terminal portion side of the starting circuit 8.
  • the battery pack of the present embodiment includes a protection element 5 inserted between the battery B and the charging terminal S3, and a cutoff circuit 9.
  • the protection circuit 4 is configured to output an overcharge detection signal to the cutoff circuit 9.
  • the cutoff circuit 9 is configured to control the protection element 5 and disconnect the battery B from the charging terminal S3.
  • the battery pack of the present embodiment it is possible to prevent the overcharge by operating the protection circuit 4 at the time of charging without receiving an activation signal from the outside.
  • the secondary battery cell (secondary battery) 10 can be prevented from being deteriorated due to overcharging, and at the same time, charging can be performed safely.
  • the internal startup circuit 2 does not turn on the startup circuit 8 until the voltage (the voltage when the battery B is fully charged) (the voltage derived from the battery cell is lower than the voltage of the charging terminal S3).
  • the internal start-up circuit 2 does not turn on the start-up circuit 8 at the time of discharging when the load device is connected. Further, since the voltage at which the battery cell (secondary battery) 10 is overcharged is set as a threshold value, the operation of the protection circuit 4 is not promoted until overcharge occurs, and power consumption can be suppressed. .
  • the internal starting circuit 2 formed as a Zener diode ZD and a resistor R connected in series is connected between the power supply terminal S1 and the signal terminal section 3 side of the starting circuit 8, The cost increase by providing the internal starting circuit 2 is very small.

Abstract

 電池パックは、充電器との接続時に上記充電器から電力を受け取る充電端子と、上記充電端子に接続され上記充電端子を介して上記充電器から供給される電力により充電されるバッテリと、駆動信号を受け取っている間は上記バッテリの過充電を検出する保護動作を上記バッテリより得た電力を用いて行い上記駆動信号を受け取らなくなると上記保護動作を停止する保護回路と、上記充電器との接続時に上記充電器から起動信号を受け取る起動端子と、上記起動端子に接続され上記起動端子を介して上記充電器から上記起動信号を受け取っている間は上記駆動信号を上記保護回路に出力する起動回路と、上記充電端子に接続され上記充電端子を介して上記充電器から電力を受け取ると上記保護回路に上記駆動信号を与える補助起動回路と、を備える。

Description

電池パック
 本発明は、電池パックに関し、特に二次電池を内蔵するとともに充放電制御回路を内蔵している電池パックに関する。
 電動工具などの消費電流が大きい充電式負荷機器に使用される電池パックとして、近年、リチウムイオン型二次電池を用いたものがエネルギー密度が高いことや軽量であることなどの点で注目されている。しかし、リチウムイオン電池は過充電や過放電に弱いために、信頼性や安全性の点から各セル電圧を監視する保護回路を電池パック内に配し、セル電圧による充放電制御を行うのが一般的である。
 そして上記保護回路には、通常、この用途のために作成されたICを用いているが、充電器に接続されていない時、あるいは該電池パックを電源として用いる負荷機器がオフ状態にある時にも保護回路が動作していると、この保護回路自体の消費電流が電池残量を低下させてしまうことになる。
 このために電池パックが充電器に接続されていない時、あるいは該電池パックが接続された負荷機器がオフ状態にある時には、保護回路を休止状態もしくは低消費電流の待機状態としておき、充電器が接続されたり、負荷機器がオンになる時、充電器あるいは負荷機器から入力される起動信号によって保護回路を動作状態とするものが文献1(日本国公開特許公報第2008-199827号)などに示されている。
 この場合、故障あるいは起動信号伝達用のコネクタ部分の接触不良等が原因で、充電器から本来送られてくるべき起動信号が電池パックに入力されない状態で充電が開始されると、保護回路による保護動作が働かず、このために過充電の状態に陥る可能性がある。
 本発明はこのような点に鑑みなされたものであって、外部から起動信号が入らなくても充電時には保護回路が動作する電池パックを提供することを課題とする。
 本発明に係る電池パックの第1の形態は、充電器により再充電可能な電池パックであって、充電端子と、バッテリと、保護回路と、起動端子と、起動回路と、補助起動回路と、を備える。上記充電端子は、上記充電器との接続時に上記充電器から電力を受け取るように構成される。上記バッテリは、上記充電端子に接続され、上記充電端子を介して上記充電器から供給される電力により充電されるように構成される。上記保護回路は、上記バッテリの過充電を検出する保護動作を上記バッテリより得た電力を用いて行うように構成される。上記起動端子は、上記充電器との接続時に上記充電器から起動信号を受け取るように構成される。上記起動回路は、上記起動端子に接続される。上記補助起動回路は、上記充電端子に接続される。上記起動回路は、上記起動端子を介して上記充電器から上記起動信号を受け取っている間は上記駆動信号を上記保護回路に出力するように構成される。上記保護回路は、上記駆動信号を受け取っている間は上記保護動作を行い、上記駆動信号を受け取らなくなると上記保護動作を停止するように構成される。上記補助起動回路は、上記充電端子を介して上記充電器から電力を受け取っているか否かを判断し、上記充電端子を介して上記充電器から電力を受け取っている間は上記保護回路に上記駆動信号を与えるように構成される。
 本発明に係る電池パックの第2の形態は、第1の形態において、上記補助起動回路は、上記充電端子の電圧が所定の閾値以上になると、上記充電端子を介して上記充電器から電力を受け取っていると判断するように構成される。
 本発明に係る電池パックの第3の形態は、第2の形態において、上記所定の閾値は、上記バッテリの満充電時の電圧に等しい。
 本発明に係る電池パックの第4の形態は、第2または第3の形態において、上記起動回路は、上記起動端子に接続される入力端子を有し、上記入力端子に与えられる電圧が上記所定の電圧以上であれば上記駆動信号を出力するように構成される。上記補助起動回路は、ツェナーダイオードと抵抗器との直列回路である。上記ツェナーダイオードは、カソードが上記充電端子に接続され、アノードが上記抵抗器を介して上記起動回路の上記入力端子に接続される。上記直列回路による電圧降下は、上記ツェナーダイオードの降伏電圧と上記抵抗器の抵抗値とで決定され、上記充電端子の電圧が上記所定の閾値以上となった際に上記入力端子の電圧が上記所定の電圧以上となるように選択される。
 本発明に係る電池パックの第5の形態は、第1~第4の形態のうちいずれか1つにおいて、上記バッテリと上記充電端子との間に挿入される保護素子と、遮断回路と、を備える。上記保護回路は、上記バッテリの過充電を検出すると、過充電検出信号を上記遮断回路に出力するように構成される。上記遮断回路は、上記過充電検出信号を受け取ると、上記保護素子を制御して上記バッテリを上記充電端子から切り離すように構成される。
本発明の一実施形態の電池パックのブロック図である。 上記電池パックの回路図である。
 以下本発明の実施の形態の一例を図に基づいて説明すると、図に示す電池パックは、リチウムイオン型の二次電池セルを複数(図2に示す例では5個)直列に接続した電池セル群Bを有するもので、該電池セル群Bの正極側には電源端子S1が接続されているとともに、ヒュージング抵抗5を介して充電端子S3が接続されている。また、電池セル群の負極側にはグラウンド側の電源端子S2が接続されている。上記ヒュージング抵抗5は、ヒータ抵抗に電流を流すことによりヒューズを切断して電路を遮断する非復帰型の素子である。
 そしてこの電池パック内には、電池セル群を電源として動作する保護回路4と、過放電制御出力回路6及び充電制御出力回路7、起動回路8、ヒュージング抵抗溶断時間調整回路9が配設されている。ここにおける保護回路4は、各電池セルB毎の電圧を検出する電圧検出回路と、充放電制御回路と、過充電検出回路とを備えたもので、上記過放電制御出力回路6と充電制御出力回路7と起動回路8を介して信号端子部3に接続されている。この信号端子部3は、充電器や負荷機器に電池パックが接続された時、充電器側の制御回路もしくは負荷機器側の制御回路に接続されて、充電器や負荷機器との間の信号の入出力を行う。
 上記保護回路4は、通常時、休止状態、もしくは消費電流が微少な待機状態にあるが、充電器に接続された時には充電器側から出力される起動信号を受けた起動回路8の出力によって電池セル群を電源として動作する状態となる。また、負荷機器に接続された時には、負荷機器を動作させる時に負荷機器から出力される起動信号を起動回路8が受けて、起動回路8の出力によって動作状態となる。そして保護回路4は、充電時には電池セルの電圧を検出して充電制御用の出力を充電制御出力回路7を通じて充電器側に出力する。充電器側ではこの出力に応じて定電流充電から定電圧充電への移行や充電の停止を行う。
 また、充電時に電池セルの電圧が所要の電圧を越えれば、ヒュージング抵抗溶断時間調整回路9を介してヒュージング抵抗9のヒューズを切断して充電路を遮断する。
 負荷機器が接続された放電時には、電池セルBの電圧を検出して該電圧が所定値より低下した時、過放電制御出力回路6を通じて負荷機器側に通知して負荷機器側の制御回路にシャットダウン動作を行わせる。
 なお、保護回路4や過放電制御出力回路6及び充電制御出力回路7並びに起動回路8の具体回路及び動作詳細については、上記従来例と同じであるために、ここでは説明を省略する。図1及び図2中のMは電池パック内の回路モジュールを示している。
 そして、この電池パックにおいては、充電器に接続された時に充電器の故障が原因で、もしくは信号端子部3の接触不良が原因で上記起動信号が電池パックに入力されず、このために保護回路4が動作していない状態のままで充電端子S3を通じて充電電流が供給されて充電が開始されてしまった場合、内部起動回路2が内部起動信号を生成して起動回路8を通じて保護回路4を動作させるものとなっている。
 内部起動回路2として、ここでは充電端子S3の電圧(電池セル群Bの電圧)が所定値以上となれば、起動回路8のトランジスタをオンさせるものを用いている。具体的には図2に示すように、ツェナーダイオードZDと抵抗Rとの直列回路を、充電端子S3(電池セル群Bの高電位側)と起動回路8の信号端子部3側との間に設けている。
 そして保護回路4が動作していない状態で充電が開始されてしまった場合、電池セル群Bの総和電圧が所定電圧(定格3.6Vの電池セルが5個直列の場合は4.2V×5=21V)以上となれば、内部起動回路2が起動回路8のトランジスタをオンとするために、保護回路4は動作状態となり、以降は保護回路4による充電制御下で充電が続行されることになる。もっとも、充電器が故障や信号端子部3の接触不良が原因である場合、保護回路4からの信号に基づく充電制御がなされないことが想定されるが、この時には更なる電池セルの電圧上昇に伴い、前述のヒュージング抵抗5のヒューズの溶断による遮断がなされることになる。
 以下、本発明の一実施形態の電池パックについて詳細に説明する。本実施形態の電池パックは充電器(図示せず)により再充電可能な電池パックであって、バッテリBと、回路モジュールMとを備える。
 バッテリBは、図2に示すように、直列に接続された5つの二次電池(電池セル)10(11,12,13,14,15)を備える組電池である。したがって、バッテリBの電圧は、5つの二次電池10の電圧の合計に等しい。本実施形態では、バッテリBの正極は二次電池11の正極であり、バッテリBの負極は二次電池15の負極である。
 各二次電池10は、たとえば、リチウムイオン電池である。本実施形態では、二次電池10は、公称電圧(定格)が3.6Vであり、最大電圧(満充電時の電圧)が4.2Vのリチウムイオン電池である。よって、バッテリBの公称電圧(端子間電圧)は、18Vである。また、バッテリBの満充電時の電圧は、21Vである。
 なお、二次電池10は、リチウムイオン電池に限定されず、ニッケルカドミウム電池や、ニッケル水素電池などであってもよい。また、二次電池10の数は5つに限定されず、また、二次電池10は並列に接続されていてもよいし、並列および直列に接続されていてもよい。
 回路モジュールMは、図2に示すように、バッテリBの正極(二次電池11の正極)に電気的に接続される電源端子(正極端子)S1と、バッテリBの負極(二次電池15の負極)に電気的に接続される電源端子(負極端子)S2と、を備える。電源端子S1,S2は、電池パックを負荷機器に接続した際に、それぞれ対応する負荷機器の端子に接続され、これによって、電池パックのバッテリBから負荷機器に電力が供給される。
 回路モジュールMは、さらに、バッテリB(バッテリBの正極)に接続される充電端子S3を備える。充電端子S3は、電池パックを充電器に接続した際に、充電器の給電端子に接続される。給電端子は、充電器がバッテリBを充電するための電力を電池パックに供給するための端子である。すなわち、充電端子S3は、充電器との接続時に充電器から電力を受け取るように構成される。充電端子S3は、バッテリBの正極に電気的に接続される。よって、バッテリBは、充電端子S3を介して充電器から供給される電力により充電されるように構成される。
 回路モジュールMは、さらに、補助起動回路(内部起動回路)2と、信号端子部3と、保護回路4と、保護素子(ヒュージング抵抗)5と、過放電制御出力回路6と、充電制御出力回路7と、起動回路(主起動回路)8と、遮断回路(ヒュージング抵抗溶断時間調整回路)9と、を備える。
 信号端子部3は、起動端子31と、過放電検出端子32と、充電制御端子33と、接地端子34と、を備える。起動端子31と、充電制御端子33と、接地端子34とは、電池パックを充電器に接続した際に、それぞれ対応する充電器の端子に接続される。また、起動端子31と、過放電制御端子33と、接地端子34とは、電池パックを負荷機器に接続した際に、それぞれ対応する負荷機器の端子に接続される。起動端子31は、充電器との接続時に充電器から起動信号を受け取るように構成される。起動信号は、たとえば、所定の電圧を有する電圧信号である。なお、起動端子31は、負荷機器との接続時にも負荷機器から起動信号を受け取るように構成される。
 保護回路4は、バッテリBの過充電を検出する保護動作を、バッテリBより得た電力を用いて行うように構成される。
 本実施形態では、保護回路4は、バッテリBの二次電池10のそれぞれの電圧を測定するように構成される。保護回路4は、保護動作において、測定された二次電池10の電圧を第1の閾値と比較するように構成される。第1の閾値は、二次電池10が過充電状態かどうかを判定するための閾値であり、本実施形態では、4.35Vである。保護回路4は、測定された二次電池10(11,12,13,14,15)の電圧の少なくとも1つが第1の閾値以上になると、遮断回路(ヒュージング抵抗溶断時間調整回路)9に過充電検出信号を出力するように構成される。
 また、保護回路4は、保護動作において、測定された二次電池10の電圧を第2の閾値および第3の閾値と比較するように構成される。
 第2の閾値は、二次電池10が満充電状態かどうかを判定するための閾値であり、満充電時の二次電池10の電圧(本実施形態では、4.2V)に等しい。この第2の閾値は第1の閾値より小さい。
 保護回路4は、測定された二次電池10(11,12,13,14,15)の電圧の少なくとも1つが第2の閾値以上になると、充電制御出力回路7に充電制御信号を出力するように構成される。
 第3の閾値は、二次電池10が過放電状態かどうかを判定するための閾値であり、本実施形態では、2.0Vである。この第3の閾値は第2の閾値より小さい。
 保護回路4は、測定された二次電池10(11,12,13,14,15)の電圧の少なくとも1つが第3の閾値以下になると、過放電制御出力回路6に過放電検出信号を出力するように構成される。
 ここで、保護回路4は、駆動信号を受け取っている間は上述の保護動作を行い、駆動信号を受け取らなくなると保護動作を停止するように構成される。保護動作を行っているときの保護回路4の状態を動作状態といい、保護動作を行っていないときの保護回路4の状態を休止状態または待機状態という。
 過放電制御出力回路6は、保護回路4から過放電検出信号を受け取ると、過放電検出端子32に電圧信号を出力するように構成される。電池パックに接続された負荷機器は、たとえば、過放電検出端子32より電圧信号を受け取ると、電池パックの電力が不足していると判断して、負荷を停止させる。
 充電制御出力回路7は、保護回路4から充電制御信号を受け取ると、充電制御端子33に電圧信号を出力するように構成される。たとえば、充電器は、充電端子S3を通じてバッテリBに定電流を供給することでバッテリBを充電する定電流充電と、充電端子S3を通じてバッテリBに定電圧を印加することでバッテリBを充電する定電圧充電と、を選択的に行うように構成されている。充電器は、充電制御端子33より電圧信号を受け取るまでは定電流充電を行い、充電制御端子33より電圧信号を受け取ると定電圧充電を行うように構成される。
 保護素子5は、バッテリBと充電端子S3との間に挿入される。保護素子5は、バッテリBと充電端子S3との間に挿入される2つのヒューズF51,F52の直列回路を有する。また、保護素子5は、ヒューズF51の近傍に配置される抵抗器(ヒータ抵抗)R51と、ヒューズF52の近傍に配置される抵抗器(ヒータ抵抗)R52とを有する。ヒータ抵抗R51,R52は電流が流れた際に発熱し、これによって、対応するヒューズF51,F52を溶断する。なお、保護素子5では、ヒューズF51,F52の代わりに、リセッタブルヒューズなどを用いてもよい。
 遮断回路9は、保護回路4から過充電検出信号を受け取ると、保護素子5を制御してバッテリBを充電端子S3から切り離すように構成される。本実施形態では、遮断回路9は、保護回路4から過充電検出信号を受け取ると、保護素子5の抵抗器R51,R52に電流を流して抵抗器R51,R52を発熱させ、これによって、バッテリBを充電端子S3から切り離すように構成される。
 起動回路8は、起動端子31に接続され、起動端子31を介して充電器(または負荷機器)から起動信号を受け取っている間は駆動信号を保護回路4に出力するように構成される。本実施形態では、起動回路8は、起動端子31に接続される入力端子81を有し、入力端子81に与えられる電圧が所定の電圧(起動信号の電圧)以上であれば駆動信号を保護回路4に与えるように構成される。たとえば、起動回路8は、NPNトランジスタT8と、抵抗器R8とを備える。NPNトランジスタT8は、ベース(入力端子)81が起動端子31に接続され、エミッタ82が接地され、コレクタ83が抵抗器R8を介して保護素子4に接続されている。本実施形態では、起動端子31に起動信号が与えられている間、NPNトランジスタT8がオンとなって、起動回路8から保護回路4に駆動信号が与えられる。
 補助起動回路2は、充電端子S3に接続され、充電端子S3を介して充電器から電力を受け取っているか否かを判断し、充電端子Sを介して充電器から電力を受け取っている間は保護回路4に駆動信号を与えるように構成される。
 本実施形態では、補助起動回路2は、充電端子S3の電圧が所定の閾値以上になると、充電端子S3を介して充電器から電力を受け取っていると判断するように構成される。ここで、所定の閾値は、バッテリBの満充電時の電圧に等しく、本実施形態では21Vである。なお、バッテリBの満充電時の電圧は、二次電池10の種類によって変わる。たとえば、満充電時の二次電池10の電圧が4.1Vであれば、バッテリBの満充電時の電圧は、20.5V(=4.1V×5)である。この場合、所定の閾値は20.5Vに設定される。
 なお、所定の閾値は、バッテリBの満充電時の電圧に限定されない。すなわち、所定の閾値は、補助起動回路2によって保護回路4を起動させるタイミングを考慮して決定される。
 補助起動回路2は、図2に示すように、ツェナーダイオードZDと抵抗器Rとの直列回路である。ツェナーダイオードZDは、カソードが充電端子S3に接続され、アノードが抵抗器Rを介して起動回路8の入力端子81に接続される。なお、図2では、ツェナーダイオードZDは、保護素子5を介して充電端子S3に接続されている。
 この直列回路(すなわち補助起動回路2)による電圧降下は、ツェナーダイオードZDの降伏電圧と抵抗器Rの抵抗値とで決定される。そして、直列回路による電圧降下は、充電端子S3の電圧が所定の閾値(本実施形態では21V)以上となった際に入力端子81の電圧が所定の電圧(起動信号の電圧)以上となるように選択される。本実施形態では、補助起動回路2は、起動信号の電圧と等しい電圧を起動回路8の入力端子81に与えるよう構成される。
 よって、補助起動回路2は、充電端子S3の電圧(換言すれば、バッテリBの正極の電圧)が21Vになると、起動回路8の入力端子81に起動信号の電圧と等しい電圧を与える。これによって、起動回路8のNPNトランジスタT8がオンとなって、起動回路8から保護回路4に駆動信号が出力される。すなわち、補助起動回路2は、起動回路8を制御して保護回路4に駆動信号を与えるように構成されている。なお、補助起動回路2自身が、駆動信号を保護回路4に出力してもよい。
 なお、本実施形態では、補助起動回路2は、充電端子S3の電圧に基づいて、充電端子S3を介して充電器から電力を受け取っているか否かを判断している。しかしながら、補助起動回路2は、充電端子S3とバッテリBとの間に流れる電流に基づいて、充電端子S3を介して充電器から電力を受け取っているか否かを判断してもよい。一般に、バッテリBが満充電に近付くほど、充電器からバッテリBに供給される電流は小さくなる。よって、補助起動回路2は、充電端子S3とバッテリBとの間に流れる電流が所定の閾値以下になれば、充電端子S3を介して充電器から電力を受け取っていると判断してもよい。
 以上述べたように、本実施形態の電池パックは、複数の二次電池セルからなる電池セル群Bと,この電池セル群Bの充電用の充電器と接続される充電端子S3及び充電器との間で信号の授受を行う信号端子部3と、各電池セルの電圧を個別に監視して監視結果に応じて充電制御を行う保護回路4と,充電器側からの起動信号を信号端子部3を介して受けて休止状態もしくは待機状態にある保護回路4を動作状態とする起動回路8とを有する電池パックであって、充電端子S3からの電力供給を受けて起動回路8に内部起動信号を送信して保護回路4を動作状態に移行させる内部起動回路2を備えていることに特徴を有している。
 換言すれば、本実施形態の電池パックは、充電器により再充電可能な電池パックであって、充電端子S3と、バッテリBと、保護回路4と、起動端子31と、起動回路8と、補助起動回路2と、を備える。充電端子S3は、充電器との接続時に充電器から電力を受け取るように構成される。バッテリBは、充電端子S3に接続され、充電端子S3を介して充電器から供給される電力により充電されるように構成される。保護回路4は、バッテリBの過充電を検出する保護動作をバッテリBより得た電力を用いて行うように構成される。起動端子31は、充電器との接続時に充電器から起動信号を受け取るように構成される。起動回路8は、起動端子31に接続される。補助起動回路2は、充電端子S3に接続される。起動回路8は、起動端子31を介して充電器から起動信号を受け取っている間は駆動信号を保護回路4に出力するように構成される。保護回路4は、駆動信号を受け取っている間は保護動作を行い、駆動信号を受け取らなくなると保護動作を停止するように構成される。補助起動回路2は、充電端子S3を介して充電器から電力を受け取っているか否かを判断し、充電端子S3を介して充電器から電力を受け取っている間は保護回路4に駆動信号を与えるように構成される。
 そのため、本実施形態の電池パックでは、充電器から起動信号が入らなくても、内部起動回路(補助起動回路)2からの内部起動信号によって保護回路4を休止状態または待機状態から動作状態に移行させるものである。
 また、本実施形態の電池パックでは、補助起動回路2は、充電端子S3の電圧が所定の閾値以上になると、充電端子S3を介して充電器から電力を受け取っていると判断するように構成される。ここで、所定の閾値は、バッテリBの満充電時の電圧(本実施形態では21V)に等しい。
 すなわち、内部起動回路2は,充電端子S3の高電位側の電圧が予め定めた閾値を超える場合に,起動回路8に内部起動信号を送信するものを好適に用いることができ、閾値としては,電池セルの電圧が過充電状態とみなす電圧値を用いることが好ましい。
 また、本実施形態の電池パックでは、起動回路8は、起動端子31に接続される入力端子81を有し、入力端子81に与えられる電圧が所定の電圧以上であれば駆動信号を出力するように構成される。補助起動回路2は、ツェナーダイオードZDと抵抗器(抵抗)Rとの直列回路である。ツェナーダイオードZDは、カソードが充電端子S3に接続され、アノードが抵抗器Rを介して起動回路8の入力端子81に接続される。直列回路による電圧降下は、ツェナーダイオードZDの降伏電圧と抵抗器Rの抵抗値とで決定され、充電端子S3の電圧が所定の閾値以上となった際に入力端子81の電圧が所定の電圧以上となるように選択される。
 すなわち、内部起動回路2は,ツェナーダイオードZDと抵抗Rとの直列回路を、充電端子S3と起動回路8の信号端子部側との間に接続したものを好適に用いることができる。
 また、本実施形態の電池パックは、バッテリBと充電端子S3との間に挿入される保護素子5と、遮断回路9と、を備える。保護回路4は、バッテリBの過充電を検出すると、過充電検出信号を遮断回路9に出力するように構成される。遮断回路9は、過充電検出信号を受け取ると、保護素子5を制御してバッテリBを充電端子S3から切り離すように構成される。
 以上述べたように、本実施形態の電池パックによれば、外部から起動信号が入らなくても充電時には保護回路4を動作させて過充電となってしまうことを防止することができ、このために二次電池セル(二次電池)10の過充電による劣化を防ぐことができると同時に充電を安全に行うことができる。
 なお、内部起動回路2は上記電圧(バッテリBの満充電時の電圧)になるまで起動回路8をオンさせることはない(電池セル由来の電圧は充電端子S3の電圧よりも低い)ために、負荷機器が接続された放電時に内部起動回路2が起動回路8をオンさせてしまうことはない。また、電池セル(二次電池)10が過充電となる電圧を閾値に設定しているために、過充電となるまでは保護回路4の動作を促すことはなく、消費電力を抑えることができる。また、ツェナーダイオードZDと抵抗Rとを直列接続したものとして形成した内部起動回路2を、電源端子S1と起動回路8の信号端子部3側との間に接続するという簡単な構成であるために、内部起動回路2を設けることによるコストアップは微小である。

Claims (5)

  1.  充電器により再充電可能な電池パックであって、上記充電器との接続時に上記充電器から電力を受け取る充電端子と、上記充電端子に接続され、上記充電端子を介して上記充電器から供給される電力により充電されるバッテリと、上記バッテリの過充電を検出する保護動作を上記バッテリより得た電力を用いて行う保護回路と、上記充電器との接続時に上記充電器から起動信号を受け取る起動端子と、上記起動端子に接続される起動回路と、上記充電端子に接続される補助起動回路と、を備え、上記起動回路は、上記起動端子を介して上記充電器から上記起動信号を受け取っている間は上記駆動信号を上記保護回路に出力するように構成され、上記保護回路は、上記駆動信号を受け取っている間は上記保護動作を行い、上記駆動信号を受け取らなくなると上記保護動作を停止するように構成され、上記補助起動回路は、上記充電端子を介して上記充電器から電力を受け取っているか否かを判断し、上記充電端子を介して上記充電器から電力を受け取っている間は上記保護回路に上記駆動信号を与えるように構成されることを特徴とする電池パック。
  2.  上記補助起動回路は、上記充電端子の電圧が所定の閾値以上になると、上記充電端子を介して上記充電器から電力を受け取っていると判断するように構成されることを特徴とする請求項1記載の電池パック。
  3.  上記所定の閾値は、上記バッテリの満充電時の電圧に等しいことを特徴とする請求項2記載の電池パック。
  4.  上記起動回路は、上記起動端子に接続される入力端子を有し、上記入力端子に与えられる電圧が上記所定の電圧以上であれば上記駆動信号を出力するように構成され、上記補助起動回路は、ツェナーダイオードと抵抗器との直列回路であり、上記ツェナーダイオードは、カソードが上記充電端子に接続され、アノードが上記抵抗器を介して上記起動回路の上記入力端子に接続され、上記直列回路による電圧降下は、上記ツェナーダイオードの降伏電圧と上記抵抗器の抵抗値とで決定され、上記充電端子の電圧が上記所定の閾値以上となった際に上記入力端子の電圧が上記所定の電圧以上となるように選択されることを特徴とする請求項2または3記載の電池パック。
  5.  上記バッテリと上記充電端子との間に挿入される保護素子と、遮断回路と、を備え、上記保護回路は、上記バッテリの過充電を検出すると、過充電検出信号を上記遮断回路に出力するように構成され、上記遮断回路は、上記過充電検出信号を受け取ると、上記保護素子を制御して上記バッテリを上記充電端子から切り離すように構成されることを特徴とする請求項1~4のうちいずれか1項記載の電池パック。
PCT/JP2011/072968 2010-12-13 2011-10-05 電池パック WO2012081296A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11848852.7A EP2654167B1 (en) 2010-12-13 2011-10-05 Battery pack
US13/885,742 US9257853B2 (en) 2010-12-13 2011-10-05 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010276790A JP5712357B2 (ja) 2010-12-13 2010-12-13 電池パック
JP2010-276790 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012081296A1 true WO2012081296A1 (ja) 2012-06-21

Family

ID=46244411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072968 WO2012081296A1 (ja) 2010-12-13 2011-10-05 電池パック

Country Status (4)

Country Link
US (1) US9257853B2 (ja)
EP (1) EP2654167B1 (ja)
JP (1) JP5712357B2 (ja)
WO (1) WO2012081296A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202632B2 (ja) * 2012-09-18 2017-09-27 Necエナジーデバイス株式会社 蓄電システムおよび電池保護方法
KR20150077666A (ko) * 2013-12-30 2015-07-08 삼성전자주식회사 배터리 팩, 이를 포함하는 전자 장치 및 충전 제어 방법
JP6510674B2 (ja) 2015-11-25 2019-05-08 ヤマハ発動機株式会社 リチウムイオン二次電池の保護回路及び電池パック
CN106159356B (zh) * 2016-06-30 2019-07-26 联想(北京)有限公司 一种电池及电子设备
US10759295B2 (en) 2018-02-08 2020-09-01 Lear Corporation Proximity detection circuit for on-board vehicle charger
US20210169551A1 (en) * 2019-12-10 2021-06-10 Covidien Lp System and method for temporarily and permanently disabling electronics in a disposable surgical tool
CN114188921B (zh) * 2020-09-14 2023-11-21 凹凸电子(武汉)有限公司 可移动设备、电池包和电池包的保护方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320334A (ja) * 2001-04-19 2002-10-31 Nec Tokin Tochigi Ltd 無線制御電池パック
JP2007141572A (ja) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd 電池パック
JP2007295713A (ja) * 2006-04-25 2007-11-08 Matsushita Electric Ind Co Ltd 二次電池パック
JP2008148369A (ja) * 2006-12-06 2008-06-26 Nec Tokin Corp 簡易過充電保護機能付二次電池パック
JP2008199827A (ja) 2007-02-14 2008-08-28 Matsushita Electric Works Ltd 電池パック
JP2008271690A (ja) * 2007-04-19 2008-11-06 Nec Tokin Corp 二次電池パック

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676965A (ja) * 1992-08-25 1994-03-18 Matsushita Electric Works Ltd 放電灯点灯装置
JP3341553B2 (ja) * 1995-11-20 2002-11-05 株式会社明電舎 電力用半導体素子ゲート駆動回路用の信号伝送回路
JP3670522B2 (ja) * 1999-07-30 2005-07-13 富士通株式会社 バッテリパック
JP2004222438A (ja) * 2003-01-16 2004-08-05 Toshiba Corp 電気二重層キャパシタの電圧バランス均等化回路
JP4291629B2 (ja) 2003-06-20 2009-07-08 三菱電機株式会社 バッテリ装置
JP4598815B2 (ja) 2007-11-27 2010-12-15 株式会社タムラ製作所 二次電池用充電回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320334A (ja) * 2001-04-19 2002-10-31 Nec Tokin Tochigi Ltd 無線制御電池パック
JP2007141572A (ja) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd 電池パック
JP2007295713A (ja) * 2006-04-25 2007-11-08 Matsushita Electric Ind Co Ltd 二次電池パック
JP2008148369A (ja) * 2006-12-06 2008-06-26 Nec Tokin Corp 簡易過充電保護機能付二次電池パック
JP2008199827A (ja) 2007-02-14 2008-08-28 Matsushita Electric Works Ltd 電池パック
JP2008271690A (ja) * 2007-04-19 2008-11-06 Nec Tokin Corp 二次電池パック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2654167A4

Also Published As

Publication number Publication date
EP2654167A1 (en) 2013-10-23
JP2012130097A (ja) 2012-07-05
EP2654167A4 (en) 2014-01-01
EP2654167B1 (en) 2017-06-14
US9257853B2 (en) 2016-02-09
US20130229151A1 (en) 2013-09-05
JP5712357B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
US9859548B2 (en) Shared control of thermistor and dual purpose thermistor line
US6777915B2 (en) Charger, battery pack, and charging system using the charger and battery pack
WO2012081296A1 (ja) 電池パック
EP1788687B1 (en) Rechargeable battery pack for a power tool
US7688038B2 (en) Battery charging apparatus
CN101807801B (zh) 充电控制器
JP5488877B2 (ja) 電動工具
TWI625910B (zh) 鋰離子二次電池之保護電路及電池組
EP1788686A2 (en) Rechargeable battery pack for a power tool
US20110291619A1 (en) Battery power source device, and battery power source system
EP2211441A2 (en) Secondary battery protection circuit
KR20080017824A (ko) 하이브리드 배터리 팩 및 그것의 충전 방법과 방전 방법
JP2007215310A (ja) パック電池の制御方法
TW201251263A (en) Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method
JP4785708B2 (ja) パック電池の制御方法
KR101684736B1 (ko) 전력 소모를 최소화한 과충전 방지 장치
KR101093982B1 (ko) 배터리 팩 및 그의 구동 방법
KR20090126098A (ko) 배터리 팩 및 그 충전 방법
KR100959612B1 (ko) 하이브리드 전지
JP2009238538A (ja) 電池パック
JP2010233358A (ja) 電池保護回路、電池保護方法、電源装置およびプログラム
WO2011122696A1 (en) Battery pack and power tool using the same
JP2009195036A (ja) パック電池の制御方法
CN111095719A (zh) 蓄电池装置
JP2009044923A (ja) 電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13885742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011848852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011848852

Country of ref document: EP