WO2012081158A1 - 回路シミュレーション方法及び半導体集積回路 - Google Patents

回路シミュレーション方法及び半導体集積回路 Download PDF

Info

Publication number
WO2012081158A1
WO2012081158A1 PCT/JP2011/005932 JP2011005932W WO2012081158A1 WO 2012081158 A1 WO2012081158 A1 WO 2012081158A1 JP 2011005932 W JP2011005932 W JP 2011005932W WO 2012081158 A1 WO2012081158 A1 WO 2012081158A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit simulation
area ratio
mask layout
simulation method
Prior art date
Application number
PCT/JP2011/005932
Other languages
English (en)
French (fr)
Inventor
智之 石津
山下 恭司
鈴木 学
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012509803A priority Critical patent/JPWO2012081158A1/ja
Priority to US13/471,061 priority patent/US8555224B2/en
Publication of WO2012081158A1 publication Critical patent/WO2012081158A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Definitions

  • the present invention relates to a circuit simulation method and a semiconductor integrated circuit designed using the circuit simulation method, and in particular, the electrical characteristics of a transistor change with the layout pattern of a metal film or an insulating film deposited during a manufacturing process.
  • the present invention relates to a method for performing circuit simulation with high accuracy in consideration of the effect of the above, and a semiconductor integrated circuit designed using the method.
  • Non-Patent Document 1 reports a phenomenon in which the wafer temperature during the heat treatment changes according to the area ratio of the element isolation region around the transistor and the delay of the transistor fluctuates.
  • the electrical characteristics of the transistor may vary greatly depending on the mask layout pattern for forming the metal film or the insulating film.
  • many pairs of transistors that require a relatively small difference in characteristics are used. Therefore, characteristic variations due to the layout pattern described above affect circuit performance and yield. May have an impact. For this reason, it is necessary to estimate the characteristic variation caused by the layout pattern with high accuracy at the design stage.
  • Patent Document 1 in order to execute a circuit simulation taking into account a variation in strain due to mechanical stress caused by a layout pattern, the width of an element isolation region, element isolation, or the like is used as an index of distortion applied to a transistor.
  • the shape of the active region around the transistor such as the length of the active region adjacent to the transistor through the region, and propose a highly accurate circuit simulation method using a mathematical model that uses these shape parameters for electrical characteristics Has been.
  • FIG. 17 is a plan view of a circuit to be simulated for explaining parameters used in a mathematical model representing the electrical characteristics of a transistor in the circuit simulation method of the prior art.
  • a transistor 25 surrounded by an element isolation region is formed on a semiconductor substrate, and an adjacent active region 26 is formed around the transistor 25 across the element isolation region.
  • mechanical stress is generated due to a difference in thermal expansion coefficient between the element isolation region and the active region, and a change in electrical characteristics occurs.
  • the length 27 from the end of the active region of the transistor 25 to the end of the active region 26 facing the transistor 25 is defined as a parameter and is used in an approximate expression representing the electrical characteristics.
  • the mechanical stress has a peak at the boundary between the element isolation region and the active region, and since the influence of the mechanical stress is determined by the distance from the boundary, the electrical stress is determined by the length parameters 27 and 28 as in the prior art. Changes in characteristics can be expressed with high accuracy.
  • the substrate temperature distribution during the heat treatment varies depending on the layout pattern of the metal film deposited during the manufacturing process of the transistor, the layout pattern of the active region and the gate electrode, and the electrical characteristics such as the threshold voltage of the transistor. There is a phenomenon that changes. For these phenomena, not only the distance to the layout pattern but also the area ratio of the layout pattern affects the change in electrical characteristics.
  • the present invention solves the above-mentioned problems of the prior art, and its purpose is to simulate a circuit simulation method with a small simulation error and to estimate a variation in electrical characteristics due to a layout pattern at the design stage, thereby avoiding a decrease in circuit performance and yield.
  • An object of the present invention is to provide a semiconductor integrated circuit.
  • a heat treatment is performed by a mask layout pattern located around the transistor, such as a metal film deposited during the transistor manufacturing process, an active region, and a gate electrode.
  • the change in the electrical characteristics of the transistor due to the variation in temperature distribution of the semiconductor substrate is converted into the area ratio of the mask layout pattern around the transistor and the distance-dependent data indicating the degree of influence according to the distance from the transistor. Calculate based on.
  • the circuit simulation method is a method for simulating the electrical characteristics of a transistor formed on a semiconductor substrate with a computer having a memory, the computer including a mask layout.
  • the computer further takes into account the change in the electrical characteristics of the transistor calculated in the characteristic change calculation step.
  • a circuit simulation step for performing circuit simulation of electrical characteristics is provided.
  • a circuit simulation method is a method for circuit simulation of electrical characteristics of a transistor formed on a semiconductor substrate with a computer having a memory, the computer comprising: mask layout data; and An input step of capturing distance-dependent data indicating the degree of influence according to the distance from the transistor; an area ratio calculating step in which the calculator calculates an area ratio of a layout pattern of a predetermined mask from the mask layout data; A parameter calculation step of calculating a parameter ⁇ based on the calculated area ratio and the distance-dependent data; and the calculator determines an electrical characteristic of the transistor based on the calculated parameter ⁇ .
  • Circuit simulation step for circuit simulation It is characterized by having.
  • a predetermined mask layout pattern is deposited when the transistor is formed.
  • a mask layout pattern of the metal film is extracted, and an area ratio of the extracted mask layout pattern of the metal film is calculated.
  • the parameter calculating step an area ratio of the extracted mask layout pattern of the metal film and the metal film are calculated.
  • the parameter ⁇ is calculated based on the distance-dependent data corresponding to the mask layout pattern.
  • the invention according to claim 5 is the circuit simulation method according to claim 4, wherein the mask layout pattern of the metal film is a mask layout pattern of a TiN film.
  • a sixth aspect of the present invention is the circuit simulation method according to any one of the first to third aspects, wherein in the area ratio calculation step, a mask layout pattern of an active region is extracted as a predetermined mask layout pattern. Then, the area ratio of the extracted active region mask layout pattern is calculated. In the parameter calculation step, the area ratio of the extracted active region mask layout pattern and the distance corresponding to the active region mask layout pattern are calculated. The parameter ⁇ is calculated based on the dependency data.
  • a mask layout pattern of a gate electrode is extracted as a predetermined mask layout pattern. Then, the area ratio of the extracted mask layout pattern of the gate electrode is calculated.
  • the parameter calculation step the area ratio of the extracted mask layout pattern of the gate electrode and the distance corresponding to the mask layout pattern of the gate electrode The parameter ⁇ is calculated based on the dependency data.
  • a layout pattern of a predetermined mask is determined for each region unit having a predetermined area.
  • the area ratio is calculated.
  • a distance from the transistor to the region unit is added to the area ratio of the region unit calculated in the area ratio calculation step. Multiplying the distance-dependent data according to each region is performed for each region, and the multiplication result for each region unit is added to obtain the parameter ⁇ .
  • the computer in the circuit simulation method according to any one of the first to third aspects, includes a position information capturing step for capturing position information of the transistor, and the area ratio calculating step. Is characterized in that the area ratio of the layout pattern of the predetermined mask is calculated within a predetermined distance from the position of the transistor.
  • the range of the predetermined distance is based on a maximum range in which the predetermined mask layout pattern affects the transistor, and a process from the transistor is performed. It is characterized by being about 10 times or more the distance to the mask layout pattern located at the minimum dimensional distance in manufacturing.
  • the invention according to claim 12 is the circuit simulation method according to any one of claims 1 to 11, wherein the electrical characteristic of the transistor is a current flowing through the transistor or a threshold voltage of the transistor. It is characterized by that.
  • the invention according to claim 13 is the circuit simulation method according to any one of claims 1 to 12, wherein there are a plurality of the computers, and each of the computers executes different steps.
  • a semiconductor integrated circuit according to a fourteenth aspect of the present invention is designed by using the circuit simulation method according to any one of the first to thirteenth aspects.
  • the parameter ⁇ is calculated by weighting the area ratio data of the specific mask layout pattern around the predetermined transistor based on the distance dependency data. Then, by determining the variation of the electrical characteristics of the transistor based on this parameter ⁇ and considering it in the circuit simulation, it becomes possible to reflect the variation in the electrical characteristics according to a specific mask layout pattern around the predetermined transistor, Highly accurate simulation verification at the circuit level becomes possible.
  • circuit simulation method of the present invention it is possible to perform circuit simulation in consideration of the influence of the mask layout pattern of the metal film, the active region, and the gate electrode located around the transistor. It is possible to improve.
  • FIG. 1 is a flowchart showing a circuit simulation method according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram for dividing the mask layout data of the circuit to be simulated into rectangular area units.
  • FIG. 3 is a diagram for explaining a method for calculating the parameter ⁇ in the circuit simulation method.
  • FIG. 4 is a diagram showing a specific example of calculation of the parameter ⁇ .
  • FIG. 5 is a view corresponding to FIG. 3 when the layout mask is an active region.
  • FIG. 6 corresponds to FIG. 3 when the layout mask is a gate electrode.
  • FIG. 7 is a view corresponding to FIG. 3 when the layout mask is a metal film.
  • FIG. 5 is a view corresponding to FIG. 3 when the layout mask is an active region.
  • FIG. 6 corresponds to FIG. 3 when the layout mask is a gate electrode.
  • FIG. 7 is a view corresponding to FIG. 3 when the layout mask is a metal film.
  • FIG. 8 is a diagram comparing an actual measurement result of a threshold voltage change of a transistor with respect to a mask layout pattern for forming a metal film and a result of executing the circuit simulation method according to the first embodiment of the present invention.
  • FIG. 9 is a view corresponding to FIG. 3 showing a modification of the first embodiment of the present invention.
  • FIG. 10 is a flowchart showing a circuit simulation method according to the second embodiment of the present invention.
  • FIG. 11 is a flowchart showing a circuit simulation method according to the third embodiment.
  • FIG. 12 is a flowchart showing a circuit simulation method according to the fourth embodiment.
  • FIG. 13 is a flowchart showing a circuit simulation method according to the fifth embodiment.
  • FIG. 14 is a flowchart showing a circuit simulation method according to the sixth embodiment.
  • FIG. 15 is a flowchart showing a circuit simulation method according to the seventh embodiment.
  • FIG. 16 is a flowchart showing a circuit simulation method according to the eighth embodiment.
  • a circuit simulation method according to a first embodiment of the present invention will be described with reference to the drawings.
  • the present embodiment is a method for considering a change in electrical characteristics due to a mask layout pattern affecting transistor characteristics in circuit design, and will be described with reference to FIG.
  • the circuit simulation method in this embodiment includes a computer A and a memory 1.
  • the computer A first takes in mask layout data 2 having design information of a circuit to be simulated (input step), and divides the mask layout data 2 into rectangular area units each having a side of about 1 ⁇ m. Then, the mask layout area ratio data 3 obtained by calculating the area ratio of the target mask layout 10 for each rectangular area is stored in the memory 1.
  • the target mask layout refers to a mask layout used when forming a pattern of a metal film or an insulating film deposited during a process manufacturing process.
  • it is a mask layout pattern for forming a metal film used as a hard mask for adjusting the threshold voltage of a transistor for each device in a metal gate.
  • a mask pattern for forming an active region of a transistor and a mask layout pattern used for forming a gate electrode of a transistor are also targeted.
  • the mask layout area rate data 3 includes the coordinate information of each rectangular area and the area ratio information of each rectangular area.
  • the size of the rectangular region it is desirable to extract the area ratio for each minute region whose one side is at least 10 ⁇ m or less.
  • the circuit simulation method in this embodiment includes a computer B and a memory 4.
  • the computer B fetches and inputs the mask layout area ratio data 3 and transistor coordinate data (position information) 5 indicating the position of the target transistor into the memory 4 (position information fetching step), and the mask layout around the target transistor.
  • the area ratio calculation step 6 for calculating the area ratio is executed, and the area ratio data 11 obtained by the calculation is stored in the memory 4.
  • the computer B fetches and inputs the distance dependency data 7 indicating the degree of influence according to the distance from the target transistor (input step), and then, based on the calculated area ratio data 11 and the distance dependency data 7. Then, the parameter calculation step 12 for calculating the parameter ⁇ depending on the distance and area ratio of the mask layout around the target transistor is executed.
  • the details of the area ratio calculation step 6 and the parameter calculation step 12 will be described.
  • the area ratio calculation step 6 will be described.
  • the mask layout area ratio data 3 calculated by the computer A and the transistor coordinate data 5 are used to determine from the arrangement position of the target transistor 8 based on the position coordinate data 5 as shown in FIG.
  • the area ratio information of the target mask layout 10 is extracted in a rectangular area 9 having a predetermined distance, for example, a rectangular area 9 of about 100 ⁇ m.
  • the range of the rectangular region 9 is about 100 ⁇ m
  • the optimum range as the range of the predetermined distance is based on the maximum range in which the target mask layout 10 affects the target transistor.
  • the rectangular region 9 having a size of about 100 ⁇ m is divided into regions having the same distance from the target transistor 8 with the target transistor 8 as the center, and a mask layout area ratio 11 for each divided region.
  • the rectangular area 9 is divided into at least two, and the larger the number of divisions, the better. This specific example will be described.
  • the rectangular area 9 is divided into, for example, five, and the divided areas are divided into divided areas [1] to [5] from the side closer to the target transistor 8.
  • the area ratio of the layout mask 10 is calculated for each of the divided regions [1] to [5].
  • the mask layout area ratio for each of the divided regions [1] to [5] is based on the distance from the target transistor 8 and the distance-dependent data 7 corresponding to the distance from the target transistor 8. 11 is weighted.
  • This distance-dependent data 7 is data expressed as a function of the magnitude of the electrical characteristic variation due to the target mask layout 10.
  • the weighting based on the distance-dependent data 7 is set so that the influence becomes larger in the region closer to the target transistor 8.
  • the sum of the mask layout area ratios 11 for each of the divided regions subjected to this weighting is defined as a parameter ⁇ .
  • the parameter ⁇ is calculated for each target transistor and stored in the memory 4.
  • a specific example of the calculation method of the parameter ⁇ will be described as follows.
  • the function in the distance dependency data 7 corresponding to the distance from the target transistor is expressed by the relationship as in the following equation 1.
  • R represents a parameter representing weighting
  • L Tr Indicates a distance from the target transistor
  • X, Y, and Z are fitting coefficients.
  • the weighting parameter R obtained from the equation 1 corresponding to the distance from the target transistor 8 to the divided region is calculated.
  • the weighting parameter R is calculated as a in the area [1], b in the area [2], c in the area [3], d in the area [4], and e in the area [5].
  • the calculated weighting parameter R has a larger value (higher sensitivity) as the value a of the region [1] closer to the target transistor 8 and a smaller value e as the value e of the region [5] farther away. (Low sensitivity) (a> b> c> d> e).
  • the area ratio of the layout mask 10 calculated for each of the regions [1] to [5] (in the figure, 0% for the region [1], 10% for the region [2], 17% for the region [3]. , Region [4] is multiplied by 28% and region [5] is multiplied by 23%) by the corresponding weighting parameter R, and the weighted area ratio (region [1] Is calculated as 0, 10 ⁇ b in the region [2], 17 ⁇ c in the region [3], 28 ⁇ d in the region [4], and 23 ⁇ e in the region [5]. Thereafter, the weighted area ratio for each of the regions [1] to [5] is added and summed to obtain the parameter ⁇ .
  • the mask layout 10 is simply used.
  • layout masks of active regions, gate electrodes, or metal films as types of layout masks.
  • the mechanism that affects the characteristics of the target transistor 8 varies depending on the type of the layout mask, and the distance dependency of the degree of influence of the characteristic change according to the distance from the target transistor 8 varies. Therefore, the parameter ⁇ is calculated for each active region, gate electrode, and metal film layout mask.
  • FIG. 6 and FIG. 7 show the calculation method of the parameter ⁇ in the layout mask of the active region, the gate electrode and the metal film, respectively.
  • the target layout mask 10 is the layout mask of the active region of the transistor, and corresponds to the hatched region in FIG.
  • the area ratio of the active area is calculated for each of the five divided areas, and the area ratio of each area is weighted as described above based on the distance-dependent data 7 corresponding to the layout mask of the active area, and the parameter ⁇ is set. calculate.
  • FIG. 6 exemplifies the case where the target layout mask 10 is a layout mask of a gate electrode, and corresponds to the hatched region in FIG. Similarly, the area ratio of the layout mask of the gate electrode is calculated for each of the five divided areas, and the area ratio of each area is weighted as described above based on the distance-dependent data 7 corresponding to the layout mask of the gate electrode. And calculate the parameter ⁇ .
  • FIG. 7 exemplifies the case where the target layout mask 10 is a metal film mask layout pattern, and corresponds to the hatched region in FIG.
  • the metal film is, for example, a TiN film deposited when used as a hard mask in order to adjust the threshold voltage of the transistor for each device when forming the metal gate electrode.
  • the metal film mask layout pattern M is covered only by the PMOS transistor region in order to adjust the work function of the gate electrode by distinguishing between the NMOS transistor and the PMOS transistor.
  • the area ratio of the metal film is calculated for each of the five divided areas, and the area ratio of each area is calculated in the distance dependent data 7 corresponding to the metal film layout mask. Based on the above, weighting is performed as described above, and the parameter ⁇ is calculated.
  • the computer B depends on the influence of the mask layout pattern by the calculated parameter ⁇ and the conversion parameter ⁇ (13) used when calculating the electrical characteristic change ⁇ P from the parameter ⁇ .
  • a characteristic change calculation step 14 for calculating the electric characteristic change ⁇ P of the target transistor 8 is executed.
  • the electrical characteristic change ⁇ P is calculated from the relationship of the following equation (2).
  • the conversion parameter ⁇ is included in the conversion parameter 13 for converting the parameter ⁇ into the electrical characteristic change ⁇ P, and the conversion parameter ⁇ is obtained empirically from the actual measurement result of a known evaluation pattern.
  • the electrical parameters of the target transistor 8 calculated as the electrical characteristic change ⁇ P include a transistor current, a threshold voltage, and the like.
  • FIG. 8 shows a result of a change in threshold voltage of a transistor with respect to a mask layout pattern for forming a metal film in a transistor using a metal film as a hard mask in an annealing process at the time of forming a metal gate.
  • FIG. 6 shows results of a plurality of transistors having various mask layout patterns around them, dots are actual measurement results, and lines are estimated values of threshold voltage change ⁇ Vth obtained by the circuit simulation method according to the first embodiment of the present invention. .
  • the horizontal axis of the figure is the parameter ⁇ depending on the area ratio and distance of the mask layout around each target transistor, and the vertical axis is the transistor threshold voltage change ⁇ Vth. Further, the size and layout of all the transistors to be evaluated are the same, and influences other than the target mask layout are eliminated. As shown in FIG. 8, the conversion parameter ⁇ is an inclination in the relationship between the parameter ⁇ and the threshold voltage change ⁇ Vth of the transistor.
  • FIG. 8 shows that the estimated value of the threshold change according to the first embodiment of the present invention is in good agreement with the actual measurement result.
  • the rectangular region 9 is about 100 ⁇ m around the target transistor 8, but in this modification, the area is changed to a circular region 15 around about 100 ⁇ m around the target transistor 8. Extract information.
  • the circular region 15 is divided into concentric circles with the position of the target transistor 8 as the center, and the area ratio 11 of the mask layout is extracted for each divided region, or the area ratio 11 of the mask layout for each divided region.
  • the distance ⁇ is multiplied by the distance-dependent data 7 and weighted, and the sum of the mask layout area ratios 11 for each divided region subjected to the weighting is used as the parameter ⁇ .
  • the circuit simulation method according to the second embodiment is the same as that of the first embodiment up to the characteristic change calculation step 14 for calculating the electrical characteristic change ⁇ P of the transistor due to the influence of the mask layout pattern.
  • the circuit simulation method includes a computer C and a memory 16.
  • the computer C stores in the memory 16 the transistor electrical parameter change ⁇ P obtained by using the computer B and the transistor model parameter (pre-correction model parameter) 17 that determines the electrical property of the target transistor 8.
  • the transistor model parameter 17 is extracted from the electrical characteristics of the transistor when the shape of the mask layout 10 around the target transistor 8 is fixed to a predetermined pattern, and before the mask layout dependency is taken into account. This is a transistor model parameter.
  • the computer C reflects the change in electrical characteristics ⁇ P of the transistor due to the influence of the mask layout pattern in the corrected transistor model parameter 18 and executes the circuit simulation step 29 for executing the circuit simulation. To do.
  • a change in electrical characteristics according to a desired pattern of the mask layout 10 can be taken into consideration at the circuit design stage, so that highly accurate circuit design is possible.
  • the electrical parameters of the transistor 17 calculated as the electrical characteristic change ⁇ P include a transistor current and a threshold voltage.
  • Id is expressed by the following equation (3) including a carrier mobility parameter U0, a source / drain parasitic resistance parameter RDSW, and a saturation speed parameter VSAT.
  • the threshold voltage Vth is represented by a threshold voltage parameter VTH0 when the gate-drain voltage is 0 and the V gate length is large, and is represented by the following equation (4).
  • the transistor model parameters 17 such as the transistor current Id and the threshold voltage Vth as described above are determined based on the transistor current change ⁇ P_Id and the threshold voltage change ⁇ P_Vth calculated as the electrical characteristic change ⁇ P.
  • the correction is made according to the pattern of the mask layout 10 around the transistor. Specifically, if the corrected parameters are U0 ′, RDSW ′, VSAT ′, and VTH0 ′, they are corrected as shown in the following equation (5).
  • the corrected model parameter 18 is created as described above.
  • the computer C executes a circuit simulation using the corrected model parameter 18 stored in the memory 16, whereby the electrical characteristics corresponding to the pattern of the peripheral mask layout 10 for each transistor in the circuit. Variations can be reflected, and simulation verification with high accuracy at the circuit level becomes possible.
  • the sharing of calculation and data storage by a plurality of computers is changed.
  • the computer A is the same as that of the first embodiment.
  • the area ratio calculation step 6 and the parameter calculation step 12 are executed, and the transistor coordinates Data 5, area ratio data 11 for each divided region, and distance-dependent data 7 are stored in a memory 19 included therein.
  • the computer E executes the characteristic change calculation step 14 and the circuit simulation step 29, and stores the parameter ⁇ , the conversion parameter ⁇ (13), the pre-correction transistor model parameter 17 and the post-correction transistor model parameter 18 in the memory 20 having the parameter ⁇ . Hold.
  • the circuit simulation method shown in FIG. 1 includes a computer F and a memory 21.
  • the computer F fetches and stores the calculated parameter ⁇ and the transistor model parameter 22 that determines the electrical characteristics of the target transistor 8 in the memory 21.
  • the transistor model parameter 22 stored in the memory 21 is extracted from the electrical characteristics of the transistor when the shape of the mask layout 10 around the target transistor 8 is fixed to a predetermined pattern. Is a transistor model parameter before.
  • the circuit simulation is performed by calculating in the MOSFET model the transistor electrical characteristic change ⁇ P defined by the parameter ⁇ depending on the mask layout distance and area ratio around the transistor. Therefore, a change in electrical characteristics according to a desired pattern of the mask layout 10 can be taken into consideration at the circuit design stage.
  • the electrical characteristics of the transistor defined by the parameter ⁇ include a transistor current and a threshold voltage, and the electrical characteristics depend on the pattern of the mask layout 10 around the target transistor based on the parameter ⁇ . Reflected.
  • U.S. Pat. C In MOSFET models such as BSIM3 and BSIM4 developed by Berkeley, the transistor current Ids ′ and the threshold voltage Vth ′ after reflection are expressed by the following equation (6).
  • Ids and Vth are the transistor current and threshold voltage before correction
  • ⁇ and ⁇ are fitting parameters.
  • the parameters ⁇ and ⁇ are included in the transistor model parameter 22 and are used for calculation of the MOSFET model when the circuit simulation is executed.
  • the computer F executes the circuit simulation step 29 using the MOSFET model that incorporates the function of calculating the electrical characteristic change ⁇ P of the transistor defined by the parameter ⁇ . It becomes possible to reflect the electric characteristic variation according to the pattern of the surrounding mask layout 10 for each transistor, and high-precision simulation verification can be performed at the circuit level.
  • the mask layout data 2 fetched and inputted as shown in FIG. 1 showing the first embodiment is calculated without calculating the target mask layout area ratio data 3 for each rectangular area shown in FIG.
  • the area ratio calculation step 6 after extracting the area ratio information of the mask layout 10 in the rectangular region 9 around about 100 ⁇ m around the target transistor 8, the rectangle is formed so that the distances are equal with the target transistor 8 as the center.
  • the area 9 is divided into a plurality of areas, and the mask layout area ratio 11 for each divided area is calculated.
  • the circuit simulation method according to the present embodiment is almost the same as that of FIG. 10 showing the second embodiment. Similar to the fifth embodiment, the difference is that in the area ratio calculation step 6, the area ratio information of the mask layout 10 in the rectangular region 9 around about 100 ⁇ m around the target transistor 8 is directly extracted, and then the target The rectangular area 9 is divided into a plurality of parts so that the distances are equal around the transistor 8, and the mask layout area ratio 11 for each divided area is calculated.
  • the area ratio calculation step 6, the parameter calculation step 12 and the characteristic change calculation step 14 the mask layout data 2, the transistor coordinate data 5, the area ratio data 11 for each divided region, the distance dependent data 7, the parameter ⁇ and the conversion parameter.
  • the storage of ⁇ (13) is performed by the computer G and its memory 23.
  • the circuit simulation method according to this embodiment is almost the same as that of FIG. 11 showing the third embodiment.
  • the difference is that, similarly to the fifth embodiment, the mask layout area ratio 11 for each divided region is directly calculated in the area ratio calculation step 6.
  • the area ratio calculation step 6 and the parameter calculation step 12 are stored in the computer H and its memory 24. Configured to do.
  • the circuit simulation method according to this embodiment is almost the same as that of FIG. 12 showing the fourth embodiment.
  • the difference is that, similarly to the fifth embodiment, the mask layout area ratio 11 for each divided region is directly calculated in the area ratio calculation step 6.
  • the area ratio calculation step 6 and the parameter calculation step 12, and the mask layout data 2, the transistor coordinate data 5, and the area ratio data 11 for each divided region are stored in the computer H and the memory 24 included therein. is doing.
  • the present invention can perform circuit simulation in consideration of the influence of the mask layout pattern of the metal film, the active region, and the gate electrode located around the transistor, so that the design of a miniaturized semiconductor integrated circuit can be performed. Is useful as a circuit simulation method capable of improving accuracy.

Abstract

 半導体基板上に形成されるトランジスタの電気的特性を、メモリを備えた計算機で回路シミュレーションする回路シミュレーション方法であって、計算機Aは、マスクレイアウトデータ2と、対象トランジスタからの距離依存データ6とを取り込む。その後、計算機Bは、前記取り込んだマスクレイアウトデータ2から所定のマスクのレイアウトパターンの面積率10を計算し、その面積率と前記距離依存データとに基づいてパラメータαを計算する。その後、計算機Bは、前記パラメータαから前記トランジスタの電気的特性の変化ΔPを計算する。従って、トランジスタ製造工程中に堆積される金属膜や、活性領域、ゲート電極などの、トランジスタの周囲に位置するマスクレイアウトパターンによって、熱処理中の半導体基板の温度分布がばらつくことに起因するトランジスタの電気的特性が高精度に回路シミュレーションされる。

Description

回路シミュレーション方法及び半導体集積回路
 本発明は、回路のシミュレーション方法及びその回路シミュレーション方法を使って設計された半導体集積回路に関し、特に製造工程中に堆積される金属膜や絶縁膜のレイアウトパターンに伴い、トランジスタの電気的特性が変化する影響を考慮して高精度に回路シミュレーションを行う方法、及びその方法を使って設計された半導体集積回路に関する。
 近年、システムLSIなどの開発において、回路シミュレータのシミュレーション精度のより一層の向上が要求されている。半導体プロセスの微細化が進むに連れて、回路素子のレイアウトパターンや配置などが半導体集積回路の性能に大きく影響するようになってきている。
 特に、プロセス製造工程中に堆積される金属膜や絶縁膜の面積率や形状により、熱処理工程中においてウェハ基板の熱分布がばらつき、それに伴ってトランジスタのしきい値電圧も変動する現象がある。例えば、トランジスタ周囲の素子分離領域の面積率に応じて、熱処理中のウェハ温度が変化し、トランジスタの遅延が変動する現象が例えば非特許文献1に報告されている。
 このように、金属膜や絶縁膜を形成するマスクレイアウトパターンにより、トランジスタの電気的特性が大きく変動する可能性がある。特に、差動増幅回路やカレントミラー回路等においては、相対的に小さい特性差が必要な対を成すトランジスタが数多く使用されることから、上記のレイアウトパターンによる特性変動は回路の性能や歩留まり等に影響を与える可能性がある。このため、設計段階でこのレイアウトパターンに起因する特性変動を高精度に見積もる必要がある。
 また、特許文献1では、レイアウトパターンに起因した機械的応力に伴う歪みの変動を考慮に入れた回路シミュレーションを実行するために、トランジスタに加わる歪みの指標として、素子分離領域の幅や、素子分離領域を介してトランジスタに隣接する活性領域の長さなど、トランジスタの周囲に位置する活性領域の形状を定義し、電気的特性についてそれら形状パラメータを使った数式モデルによる高精度な回路シミュレーション方法が提案されている。
特開2008-85030号公報
I. Ahsan et al., "RTA-Driven Intra-Die Variations in Stage Delay, and Parametric Sensitivities for 65nm Technology," Symp. on VLSI Technology, pp. 170--171, 2006.
 図17は、従来技術の回路シミュレーション方法において、トランジスタの電気的特性を表わす数式モデルで使用されるパラメータについて説明した、シミュレーション対象回路の平面図を示す。
 同図において、半導体基板上に周囲を素子分離領域で囲まれたトランジスタ25が形成されており、また素子分離領域を挟んで、前記トランジスタ25の周囲には隣接する活性領域26が形成されている。トランジスタ25のチャネル領域には、素子分離領域と活性領域との熱膨張係数の差などに起因した機械的応力が発生し、電気的特性の変化が生じる。
 従来の技術では、前記隣接する活性領域26のレイアウトパターンによる特性変動に対し、前記トランジスタ25の活性領域の端から対向する活性領域26の端までの長さ27と、前記隣接する活性領域26の長さ28をパラメータとして定義し、電気的特性を表わす近似式に使用している。
 機械的応力は素子分離領域と活性領域との境界部でピークを持ち、その境界部からの距離によって機械的応力の影響が決まるため、従来技術のように、長さパラメータ27、28により電気的特性の変化を精度良く表すことができる。
 しかしながら、トランジスタの製造工程中に堆積される金属膜のレイアウトパターンや、活性領域やゲート電極のレイアウトパターンによって、熱処理中の基板温度分布にばらつきが生じ、トランジスタのしきい値電圧などの電気的特性が変化する現象がある。これらの現象に対しては、レイアウトパターンとの距離だけでなく、レイアウトパターンの面積率も電気的特性変化に影響を及ぼす。
 このことから、従来技術において、隣接する活性領域までの長さ27や隣接する活性領域の長さ28といった距離パラメータのみを定義し、考慮しただけでは、十分な回路シミュレーションの精度が得られず、回路の性能や歩留まり低下を引き起こす可能性がある。
 本発明は、前記従来技術の課題を解決するものであり、その目的は、シミュレーション誤差が小さい回路シミュレーション方法と、レイアウトパターンによる電気的特性変動を設計段階で見積もり、回路性能や歩留まりの低下を回避した半導体集積回路を提供することにある。
 上述の課題を解決するため、本発明に係る回路シミュレーション方法では、トランジスタ製造工程中に堆積される金属膜や、活性領域、ゲート電極などの、トランジスタの周囲に位置するマスクレイアウトパターンによって、熱処理中の半導体基板の温度分布がばらつくことに起因するトランジスタの電気的特性の変化を、前記トランジスタ周囲のマスクレイアウトパターンの面積率と、そのトランジスタからの距離に応じた影響度合いを示す距離依存データとに基づいて計算する。
 具体的に、請求項1記載の発明の回路シミュレーション方法は、半導体基板上に形成されるトランジスタの電気的特性を、メモリを備えた計算機で回路シミュレーションする方法であって、前記計算機が、マスクレイアウトデータと、前記トランジスタからの距離に応じた影響度合いを示す距離依存データとを取り込む入力ステップと、前記計算機が、前記マスクレイアウトデータから所定のマスクのレイアウトパターンの面積率を計算する面積率計算ステップと、前記計算機が、前記計算された面積率と、前記距離依存データとに基づいて、パラメータαを計算するパラメータ計算ステップと、前記計算機が、前記計算されたパラメータαに基づいて、前記トランジスタの電気的特性の変化を計算する特性変化計算ステップとを備えたことを特徴とする。
 請求項2記載の発明は、前記請求項1記載の回路シミュレーション方法において、更に、前記計算機が、前記特性変化計算ステップで計算された前記トランジスタの電気的特性の変化を考慮して、前記トランジスタの電気的特性の回路シミュレーションを行う回路シミュレーションステップを備えたことを特徴とする。
 請求項3記載の発明の回路シミュレーション方法は、半導体基板上に形成されるトランジスタの電気的特性を、メモリを備えた計算機で回路シミュレーションする方法であって、前記計算機が、マスクレイアウトデータと、前記トランジスタからの距離に応じた影響度合いを示す距離依存データとを取り込む入力ステップと、前記計算機が、前記マスクレイアウトデータから所定のマスクのレイアウトパターンの面積率を計算する面積率計算ステップと、前記計算機が、前記計算された面積率と、前記距離依存データとに基づいて、パラメータαを計算するパラメータ計算ステップと、前記計算機が、前記計算されたパラメータαに基づいて、前記トランジスタの電気的特性の回路シミュレーションを行う回路シミュレーションステップとを備えたことを特徴とする。
 請求項4記載の発明は、前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、前記面積率計算ステップでは、所定のマスクのレイアウトパターンとして、前記トランジスタの形成時に堆積される金属膜のマスクレイアウトパターンを抽出して、その抽出した金属膜のマスクレイアウトパターンの面積率を計算し、前記パラメータ計算ステップでは、前記抽出した金属膜のマスクレイアウトパターンの面積率と、その金属膜のマスクレイアウトパターンに対応した距離依存データとに基づいて、パラメータαを計算することを特徴とする。
 請求項5記載の発明は、前記請求項4記載の回路シミュレーション方法において、前記金属膜のマスクレイアウトパターンは、TiN膜のマスクレイアウトパターンであることを特徴とする。
 請求項6記載の発明は、前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、前記面積率計算ステップでは、所定のマスクのレイアウトパターンとして、活性領域のマスクレイアウトパターンを抽出して、その抽出した活性領域のマスクレイアウトパターンの面積率を計算し、前記パラメータ計算ステップでは、前記抽出した活性領域のマスクレイアウトパターンの面積率と、その活性領域のマスクレイアウトパターンに対応した距離依存データとに基づいて、パラメータαを計算することを特徴とする。
 請求項7記載の発明は、前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、前記面積率計算ステップでは、所定のマスクのレイアウトパターンとして、ゲート電極のマスクレイアウトパターンを抽出して、その抽出したゲート電極のマスクレイアウトパターンの面積率を計算し、前記パラメータ計算ステップでは、前記抽出したゲート電極のマスクレイアウトパターンの面積率と、そのゲート電極のマスクレイアウトパターンに対応した距離依存データとに基づいて、パラメータαを計算することを特徴とする。
 請求項8記載の発明は、前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、前記面積率計算ステップでは、予め定めた面積の領域単位毎に所定のマスクのレイアウトパターンの面積率を計算することを特徴とする。
 請求項9記載の発明は、前記請求項8記載の回路シミュレーション方法において、前記パラメータ計算ステップでは、前記面積率計算ステップで計算された領域単位の面積率に、前記トランジスタからその領域単位までの距離に応じた距離依存データを乗算することを、各領域単位で行い、それ等の領域単位別の乗算結果を加算して、前記パラメータαを得ることを特徴とする。
 請求項10記載の発明は、前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、前記計算機が、前記トランジスタの位置情報を取り込む位置情報取り込みステップを備え、前記面積率計算ステップは、前記所定のマスクのレイアウトパターンの面積率を、前記トランジスタの位置から所定の距離の範囲内で計算することを特徴とする。
 請求項11記載の発明は、前記請求項10記載の回路シミュレーション方法において、前記所定の距離の範囲は、前記所定のマスクレイアウトパターンが前記トランジスタに影響を及ぼす最大の範囲に基づき、前記トランジスタからプロセス製造上の最小寸法距離に位置するマスクレイアウトパターンまでの距離の約10倍以上であることを特徴とする。
 請求項12記載の発明は、前記請求項1~11の何れか1項に記載の回路シミュレーション方法において、前記トランジスタの電気的特性は、前記トランジスタに流れる電流又は前記トランジスタのしきい値電圧であることを特徴とする。
 請求項13記載の発明は、前記請求項1~12の何れか1項に記載の回路シミュレーション方法において、前記計算機は複数あり、前記各計算機は、互いに異なるステップを実行することを特徴とする。
 請求項14記載の発明の半導体集積回路は、前記請求項1~13の何れか1項に記載の回路シミュレーション方法を用いて設計されたことを特徴とする。
 以上により、本発明の回路シミュレーション方法では、所定のトランジスタ周辺における特定のマスクレイアウトパターンの面積率データを、距離依存性データに基づいて重み付けしてパラメータαを計算する。そして、このパラメータαに基づいてトランジスタの電気的特性の変動を求め、回路シミュレーションに考慮することにより、所定トランジスタ周辺の特定のマスクレイアウトパターンに応じた電気的特性変動を反映することが可能となり、回路レベルで高精度なシミュレーション検証が可能となる。
 以上説明したように、本発明の回路シミュレーション方法によれば、トランジスタ周りに位置する金属膜や活性領域、ゲート電極のマスクレイアウトパターンの影響を考慮した回路シミュレーションを行うことができ、そのシミュレーション精度の向上を図ることが可能である。
図1は本発明の第1の実施形態にかかる回路シミュレーション方法を示すフローチャート図である。 図2はシミュレーション対象回路のマスクレイアウトデータを矩形領域単位に区切る説明図である。 図3は同回路シミュレーション方法におけるパラメータαの計算方法を説明する図である。 図4は同パラメータαの計算の具体例を示す図である。 図5はレイアウトマスクが活性領域である場合の図3相当図である。 図6はレイアウトマスクがゲート電極である場合の図3相当図である。 図7はレイアウトマスクが金属膜である場合の図3相当図である。 図8は金属膜を形成するマスクレイアウトパターンに対するトランジスタのしきい値電圧変化の実測結果と、本発明の実施形態1の回路シミュレーション方法を実行した結果とを比較した図である。 図9は本発明の第1の実施形態の変形例を示す図3相当図である。 図10は本発明の第2の実施形態にかかる回路シミュレーション方法を示すフローチャート図である。 図11は同第3の実施形態にかかる回路シミュレーション方法を示すフローチャート図である。 図12は同第4の実施形態にかかる回路シミュレーション方法を示すフローチャート図である。 図13は同第5の実施形態にかかる回路シミュレーション方法を示すフローチャート図である。 図14は同第6の実施形態にかかる回路シミュレーション方法を示すフローチャート図である。 図15は同第7の実施形態にかかる回路シミュレーション方法を示すフローチャート図である。 図16は同第8の実施形態にかかる回路シミュレーション方法を示すフローチャート図である。 図17は従来の回路シミュレーション方法を示す図である。
 (第1の実施形態)
 本発明の第1の実施形態にかかる回路シミュレーション方法について図面を参照して説明する。本実施形態は、トランジスタ特性に影響を及ぼすマスクレイアウトのパターンによる電気的特性の変化を回路設計に考慮する方法であり、図1により説明する。
 同図において、本実施形態における回路シミュレーション方法は、計算機Aとメモリ1とを有する。前記計算機Aは、先ず、図2に示すように、シミュレーション対象回路の設計情報を有するマスクレイアウトデータ2を取り込み(入力ステップ)、そのマスクレイアウトデータ2を1辺が約1μmの矩形領域単位に区切り、その矩形領域毎に対象のマスクレイアウト10の面積率を算出したマスクレイアウト面積率データ3を前記メモリ1に格納する。
 ここで、対象のマスクレイアウトとは、プロセス製造工程中に堆積される金属膜や絶縁膜のパターンを形成する際に使用されるマスクレイアウトをいう。例えば、メタルゲートにおいて、トランジスタのしきい値電圧をデバイス毎に調整するためにハードマスクとして使用される金属膜形成用マスクレイアウトパターンである。また、その他としては、トランジスタの活性領域を形成するマスクパターンや、トランジスタのゲート電極を形成する際に使用するマスクレイアウトパターンを対象とする。
 前記マスクレイアウト面積率データ3には、前記各矩形領域の座標情報と共に、各座標の矩形領域における面積率情報とを含む。ここで、前記矩形領域のサイズは、1辺が少なくとも10μm以下の微小な領域毎に面積率を抽出するのが望ましい。
 更に、本実施形態における回路シミュレーション方法は、計算機Bとメモリ4とを有する。前記計算機Bは、前記マスクレイアウト面積率データ3と、対象のトランジスタの位置を示すトランジスタ座標データ(位置情報)5をメモリ4に取り込み入力し(位置情報取り込みステップ)、その対象トランジスタ周辺におけるマスクレイアウト面積率を計算する面積率計算ステップ6を実行し、その計算により得た面積率データ11をメモリ4に格納する。
 また、計算機Bは、対象トランジスタからの距離に応じた影響度合いを示す距離依存データ7を取り込み入力し(入力ステップ)、その後、前記計算した面積率データ11と前記距離依存データ7とに基づいて、対象トランジスタ周辺のマスクレイアウトの距離、面積率に依存したパラメータαを計算するパラメータ計算ステップ12を実行する。
 ここで、前記面積率計算ステップ6とパラメータ計算ステップ12との詳細を説明する。先ず、面積率計算ステップ6について説明する。面積率ステップ6では、先ず、前記計算機Aにより計算したマスクレイアウト面積率データ3と、前記トランジスタ座標データ5とにより、図3に示すように、位置座標データ5に基づく対象トランジスタ8の配置位置から所定の距離の範囲内、例えば周囲約100μm程度の矩形領域9における対象のマスクレイアウト10の面積率情報を抽出する。ここで、矩形領域9の範囲を約100μmとしたが、前記所定の距離の範囲として、最適な範囲は、前記対象マスクレイアウト10が前記対象トランジスタに影響を及ぼす最大の範囲に基づき、前記対象トランジスタ8からプロセス製造上の所定の設計制約下の最小距離に位置するマスクレイアウトパターンまでの距離の約10倍以上の範囲である。前記対象マスクレイアウト10の対象トランジスタの特性への影響が前記最小寸法距離の約10倍程度にまで及ぶためである。
 図3のように、前記~100μmの矩形領域9を、前記対象トランジスタ8を中心に、前記対象トランジスタ8からの距離が等しくなるように領域分割を行い、その分割領域毎のマスクレイアウト面積率11を抽出する。ここで、矩形領域9の分割は最低2つ以上とし、分割する数が多いほど望ましい。この具体例を説明すると、図3に示すように、矩形領域9を例えば5分割し、その5分割した領域を、対象のトランジスタ8との距離が近い方から分割領域[1]~[5]と定義し、その各分割領域[1]~[5]毎に前記レイアウトマスク10の面積率を計算する。
 次に、パラメータ計算ステップ12の詳細を説明する。このパラメータ計算ステップ12では、対象トランジスタ8からの距離と、前記対象トランジスタ8からの距離に応じた距離依存データ7とに基づいて、前記分割領域[1]~[5]毎のマスクレイアウト面積率11に重み付けを行う。この距離依存データ7は、対象のマスクレイアウト10による電気的特性変動の大きさの関数で表されるデータである。前記距離依存データ7に基づいた重み付けは、前記対象トランジスタ8に近い領域ほど影響が大きくなるように設定されている。この重み付けを行った前記分割領域毎のマスクレイアウト面積率11の総和をパラメータαと定義する。対象トランジスタ毎にパラメータαが計算され、メモリ4に格納される。以下、パラメータαの計算方法の具体例を説明すると、次の通りである。
 先ず、前記対象トランジスタからの距離に応じた距離依存性データ7における関数は、次式1のような関係で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、Rは重み付けを表すパラメータを示し、LTr.は対象トランジスタからの距離を示し、X、Y、Zはフィッティング係数である。
 そして、前記各分割領域[1]~[5]について、対象トランジスタ8からその分割領域までの距離に応じた前記式1から得られる重み付けパラメータRを演算する。図4に例示するように、重み付けパラメータRは、領域[1]ではa、領域[2]ではb、領域[3]ではc、領域[4]ではd、領域[5]ではeと演算されている。この演算された重み付けパラメータRは、対象トランジスタ8に距離が近い側の領域[1]の値aほど大値(感度大)であり、距離が遠い側の領域[5]の値eほど小値(感度小)(a>b>c>d>e)である。そして、前記各領域[1]~[5]別に計算されたレイアウトマスク10の面積率(同図では、領域[1]では0%、領域[2]では10%、領域[3]では17%、領域[4]では28%、領域[5]では23%)に前記対応する重み付けパラメータRを乗算して、各領域[1]~[5]毎に重み付け後の面積率(領域[1]では0、領域[2]では10×b、領域[3]では17×c、領域[4]では28×d、領域[5]では23×e)を演算する。その後、前記領域[1]~[5]毎の重み付け後の面積率を加算総和して、前記パラメータαを得る。
 前記図3に示した対象トランジスタ8の周辺のマスクレイアウト例では、単にマスクレイアウト10としたが、レイアウトマスクの種類には、既述の通り、活性領域やゲート電極又は金属膜のレイアウトマスクが存在する。そして、それ等のレイアウトマスクの種類に応じて対象トランジスタ8の特性に影響を及ぼすメカニズムが異なって、対象トランジスタ8からの距離に応じた特性変化の影響度合いの距離依存性が異なる。従って、前記パラメータαは、活性領域やゲート電極、金属膜のレイアウトマスク別にそれぞれ計算する。
 図5、図6及び図7は、それぞれ、活性領域、ゲート電極、金属膜のレイアウトマスクにおけるパラメータαの計算方法を示す。
 図5に示したレイアウト例では、対象となるレイアウトマスク10がトランジスタの活性領域のレイアウトマスクであり、同図のハッチングを施した領域が相当する。5分割した領域毎に活性領域の面積率を計算し、その各領域の面積率について、その活性領域のレイアウトマスクに対応した距離依存データ7に基づいて既述の通り重み付けを行い、パラメータαを計算する。
 図6は、対象となるレイアウトマスク10がゲート電極のレイアウトマスクの場合を例示し、同図のハッチングを施した領域が相当する。同様に、5分割した領域毎にゲート電極のレイアウトマスクの面積率を計算し、その各領域の面積率について、ゲート電極のレイアウトマスクに対応した距離依存データ7に基づいて既述の通り重み付けを行い、パラメータαを計算する。
 図7は、対象となるレイアウトマスク10が金属膜マスクレイアウトパターンの場合を例示し、同図のハッチングを施した領域が相当する。金属膜はメタルゲート電極形成時において、トランジスタのしきい値電圧をデバイス毎に調整するためにハードマスクとして使用する際に堆積される、例えばTiN膜などである。図7の例示では、金属膜マスクレイアウトパターンMは、ゲート電極の仕事関数をNMOSトランジスタとPMOSトランジスタとで区別して調整するために、PMOSトランジスタ領域のみに覆われている。前記活性領域、ゲート電極のレイアウトマスクの場合と同様に、5分割した領域毎に金属膜の面積率を計算し、その各領域の面積率について、金属膜レイアウトマスクに対応した距離依存データ7に基づいて既述の通り重み付けを行い、パラメータαを計算する。
 次に、図1において、前記計算機Bは、前記計算したパラメータαと、そのパラメータαから電気的特性変化ΔPを計算する際に使用する変換パラメータβ(13)とにより、マスクレイアウトパターンの影響による対象トランジスタ8の電気的特性変化ΔPを計算する特性変化計算ステップ14を実行する。電気的特性変化ΔPは、次式(2)の関係より計算される。
Figure JPOXMLDOC01-appb-M000002
 ここで、前記変換パラメータβは、前記パラメータαを電気的特性変化ΔPに変換するための変換パラメータ13に含まれ、この変換パラメータβは、既知の評価パターンの実測結果などから経験的に求められる。ここで、前記電気的特性変化ΔPとして計算される対象トランジスタ8の電気的パラメータは、トランジスタ電流、しきい値電圧などを含む。
 前記電気的特性変化ΔPが計算されることにより、所望のマスクレイアウト10のパターンに応じた電気的特性を設計段階で把握することができる。尚、前記電気的特性変化ΔPを回路シミュレーションに反映することにより、高精度な回路設計が可能になる。例えば、代表的なMOSFETモデルであるBSIM4において、しきい値電圧の変化はdelvtoパラメータ機能を使用することにより、回路シミュレーションに反映することが可能である。
 図8に、メタルゲートの形成時のアニール工程で、ハードマスクとして金属膜を使用するトランジスタにおいて、金属膜を形成するマスクレイアウトパターンに対するトランジスタのしきい値電圧変化の結果を示す。周囲に様々なマスクレイアウトパターンを有する複数トランジスタの結果であり、ドットは実測結果、ラインは本発明の第1の実施形態にかかる回路シミュレーション方法により求めたしきい値電圧変化ΔVthの見積り値である。
 同図の横軸は、各対象トランジスタ周辺のマスクレイアウトの面積率と距離とに依存したパラメータαであり、縦軸はトランジスタしきい値電圧変化ΔVthである。また、評価対象の全てのトランジスタのサイズ、レイアウトは同一であり、対象とするマスクレイアウト以外の影響を排除している。尚、前記変換パラメータβは、図8に示すように、パラメータαとトランジスタのしきい値電圧変化ΔVthとの関係での傾きである。
 図8の結果より、実測結果に対して、本発明の第1の実施形態にかかるしきい値変化の見積り値は良い一致を示している。このしきい値電圧変化の見積りを設計段階で考慮することにより、高精度な回路設計が可能となり、回路性能や歩留まりの低下を回避した半導体集積回路を実現できる。
 (変形例)
 本発明の第1の実施形態にかかる回路シミュレーション方法の変形例を図9に示す。
 前記実施形態1では対象トランジスタ8の周囲約100μm程度の矩形領域9としたが、本変形例では、対象トランジスタ8の周囲約100μm程度の円状領域15に変更し、この円形領域15における面積率情報を抽出する。この円形領域15を対象トランジスタ8の位置を中心とする同心円状に分割し、この各分割領域毎にマスクレイアウトの面積率11を抽出したり、それ等の分割領域毎のマスクレイアウトの面積率11に距離依存データ7を乗じて重み付けを行い、その重み付けを行った分割領域毎のマスクレイアウト面積率11の総和をパラメータαとすることは実施形態1と同様である。
 このように、矩形領域以外にも円状領域でマスクレイアウト面積率を抽出し、パラメータαを求める方法でも可能である。
 (第2の実施形態)
 本発明の第2の実施形態にかかる回路シミュレーション方法について図10を参照して説明する。
 本第2の実施形態にかかる回路シミュレーション方法は、マスクレイアウトパターンの影響によるトランジスタの電気的特性変化ΔPを計算する特性変化計算ステップ14までは、前記第1の実施形態と同じである。
 図10において、本実施形態における回路シミュレーション方法は、計算機Cとメモリ16とを有する。前記計算機Cは、前記計算機Bを用いて得られたトランジスタの電気的特性変化ΔPと、対象トランジスタ8の電気的特性を決めるトランジスタモデルパラメータ(補正前モデルパラメータ)17とを、前記メモリ16に格納する。前記トランジスタモデルパラメータ17は、対象トランジスタ8の周辺のマスクレイアウト10の形状が予め定めたパターンに固定された場合のトランジスタの電気的特性から抽出されており、マスクレイアウト依存性が考慮される前のトランジスタモデルパラメータである。
 本実施形態にかかる回路シミュレーション方法では、計算機Cは、マスクレイアウトパターンの影響によるトランジスタの前記電気的特性変化ΔPを補正後トランジスタモデルパラメータ18に反映し、回路シミュレーションを実行する回路シミュレーションステップ29を実施する。これにより、所望のマスクレイアウト10のパターンに応じた電気的特性変化を回路設計段階で考慮することができるので、高精度な回路設計が可能になる。
 例えば、U.C.Berkeleyで開発されたBSIM3やBSIM4といったMOSFETモデルを使用した回路シミュレーションにおいて、前記電気的特性変化ΔPを反映させることにより、回路レベルでの影響を確認することが可能である。
 ここで、前記電気的特性変化ΔPとして計算されるトランジスタ17の電気的パラメータは、トランジスタ電流、しきい値電圧を含む。
 具体的に、BSIM3やBSIM4といったMOSFETモデルにおいて、トランジスタの電気的特性を決めるトランジスタ電流、しきい値電圧を決めるモデルパラメータを含んだ前記トランジスタモデルパラメータ17を用意した場合に、MOSFETモデルでは、トランジスタ電流Idは、キャリア移動度パラメータU0、ソース・ドレイン寄生抵抗パラメータRDSW、飽和速度パラメータVSATを含む下記式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 また、しきい値電圧Vthは、ゲート-ドレイン電圧が0でVゲート長が大きい場合のしきい値電圧パラメータVTH0で表され、次式(4)のように表される。
Figure JPOXMLDOC01-appb-M000004
 そして、以上のようなトランジスタ電流Id、しきい値電圧Vthなどのトランジスタモデルパラメータ17は、前記電気的特性変化ΔPとして計算されたトランジスタ電流変化ΔP_Id、しきい値電圧変化ΔP_Vthに基づいて、対象となるトランジスタ周辺のマスクレイアウト10のパターンに応じて補正される。具体的に、補正後の各パラメータをU0’、RDSW’、VSAT’、VTH0’とすると、次式(5)のように補正される。
Figure JPOXMLDOC01-appb-M000005
 以上のようにして補正後モデルパラメータ18が作成される。このメモリ16に格納された補正後のモデルパラメータ18を用いて前記計算機Cが回路シミュレーションを実行することにより、回路中の各トランジスタに対し各々の周辺のマスクレイアウト10のパターンに応じた電気的特性変動を反映することが可能となり、回路レベルで高精度なシミュレーション検証が可能となる。
 (第3の実施形態)
 続いて、本発明の第3の実施形態にかかる回路シミュレーション方法について図11を参照して説明する。
 本実施形態では、複数個の計算機による計算やデータ格納の分担を変更したものである。具体的には、3つの計算機A、D及びEのうち、計算機Aは第1の実施形態と同一であるが、計算機Dでは、面積率計算ステップ6及びパラメータ計算ステップ12を実行し、トランジスタ座標データ5、分割領域毎の面積率データ11及び距離依存データ7とを、その有するメモリ19に格納する。また、計算機Eでは、特性変化計算ステップ14及び回路シミュレーションステップ29を実行し、パラメータα、変換パラメータβ(13)及び補正前トランジスタモデルパラメータ17並びに補正後トランジスタモデルパラメータ18を、その有するメモリ20に保持する。
 その他、面積率の計算やパラメータαの計算などは前記第1の実施形態と同様であるので、その説明を省略する。
 (第4の実施形態)
 次に、本発明の第4の実施形態にかかる回路シミュレーション方法について図12を参照して説明する。
 同図の回路シミュレーション方法では、パラメータ計算ステップ12までの過程は前記第3の実施形態と同じである。
 同図の回路シミュレーション方法では、計算機Fとメモリ21とを有する。前記計算機Fは、前記計算されたパラメータαと、対象トランジスタ8の電気的特性を決めるトランジスタモデルパラメータ22とを前記メモリ21に取り込み格納する。
 前記メモリ21に格納されるトランジスタモデルパラメータ22は、対象トランジスタ8の周辺のマスクレイアウト10の形状が予め定めたパターンに固定された場合のトランジスタの電気的特性から抽出されており、マスクレイアウト依存性が考慮される前のトランジスタモデルパラメータである。
 本実施形態にかかる回路シミュレーション方法では、トランジスタ周辺のマスクレイアウトの距離、面積率に依存したパラメータαで定義されるトランジスタの電気的特性変化ΔPをMOSFETモデル内で計算し、回路シミュレーションを実施することにより、所望のマスクレイアウト10のパターンに応じた電気的特性変化を回路設計段階で考慮することができる。
 ここで、パラメータαで定義されるトランジスタの電気的特性は、トランジスタ電流、しきい値電圧を含み、パラメータαに基づいて対象となるトランジスタ周辺のマスクレイアウト10のパターンに応じて前記電気的特性が反映される。
例えば、U.C.Berkeleyで開発されたBSIM3やBSIM4といったMOSFETモデルにおいて、反映後のトランジスタ電流Ids‘、しきい値電圧Vth’は、次式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
 ここで、Ids、Vthは補正前のトランジスタ電流、しきい値電圧であり、γ、δはフィッティングパラメータである。パラメータγ、δは前記トランジスタモデルパラメータ22に含まれ、回路シミュレーションの実行時に、MOSFETモデルの計算に使用される。
 以上のようにして、前記パラメータαで定義されるトランジスタの電気的特性変化ΔPを計算する機能を組み込んだMOSFETモデルを用いて、前記計算機Fが回路シミュレーションステップ29を実行することにより、回路中の各トランジスタに対し各々の周辺のマスクレイアウト10のパターンに応じた電気的特性変動を反映することが可能となり、回路レベルで高精度なシミュレーション検証が可能となる。
 (第5の実施形態)
 本発明の第5の実施形態にかかる回路シミュレーション方法について図13を参照して説明する。
 同図の回路シミュレーション方法では、第1の実施形態を示す図1のように取り込み入力したマスクレイアウトデータ2を図2に示す矩形領域単位毎に対象のマスクレイアウト面積率データ3を算出することなく、直接に、面積率計算ステップ6において、対象トランジスタ8の周囲約100μm程度の矩形領域9におけるマスクレイアウト10の面積率情報を抽出した後、対象トランジスタ8を中心に距離が等しくなるようにその矩形領域9を複数に分割して、その各分割領域毎のマスクレイアウト面積率11を計算する点である。
 そして、前記面積率計算ステップ6を含む全ての計算、及びデータのメモリへの格納を1つの計算機G及びその有するメモリ23で行うように構成している。
 その他の面積率の計算やパラメータαの計算などは前記第1の実施形態と同様であるので、その説明を省略する。
 (第6の実施形態)
 本発明の第6の実施形態にかかる回路シミュレーション方法について図14を参照して説明する。
 本実施形態にかかる回路シミュレーション方法は、前記第2の実施形態を示す図10とほぼ同様である。異なる点は、前記第5の実施形態と同様に、面積率計算ステップ6において、直接に、対象トランジスタ8の周囲約100μm程度の矩形領域9におけるマスクレイアウト10の面積率情報を抽出した後、対象トランジスタ8を中心に距離が等しくなるようにその矩形領域9を複数に分割して、その各分割領域毎のマスクレイアウト面積率11を計算する点である。
 そして、前記面積率計算ステップ6、パラメータ計算ステップ12及び特性変化計算ステップ14と、マスクレイアウトデータ2、トランジスタ座標データ5、分割領域毎の面積率データ11、距離依存データ7、パラメータα及び変換パラメータβ(13)の格納を、計算機G及びその有するメモリ23で行うように構成している。
 その他の面積率の計算やパラメータαの計算などは前記第1の実施形態と同様であるので、その説明を省略する。
 (第7の実施形態)
 本発明の第7の実施形態にかかる回路シミュレーション方法について図15を参照して説明する。
 本実施形態にかかる回路シミュレーション方法は、前記第3の実施形態を示す図11とほぼ同様である。異なる点は、前記第5の実施形態と同様に、面積率計算ステップ6において、直接に、各分割領域毎のマスクレイアウト面積率11を計算する点である。
 そして、前記面積率計算ステップ6及びパラメータ計算ステップ12と、マスクレイアウトデータ2、トランジスタ座標データ5、分割領域毎の面積率データ11及び距離依存データ7の格納を、計算機H及びその有するメモリ24で行うように構成している。
 その他の面積率の計算やパラメータαの計算などは前記第1の実施形態と同様であるので、その説明を省略する。
 (第8の実施形態)
 本発明の第8の実施形態にかかる回路シミュレーション方法について図16を参照して説明する。
 本実施形態にかかる回路シミュレーション方法は、前記第4の実施形態を示す図12とほぼ同様である。異なる点は、前記第5の実施形態と同様に、面積率計算ステップ6において、直接に、各分割領域毎のマスクレイアウト面積率11を計算する点である。
 そして、前記面積率計算ステップ6及びラメータ計算ステップ12と、マスクレイアウトデータ2、トランジスタ座標データ5及び分割領域毎の面積率データ11の格納とを、計算機H及びその有するメモリ24で行うように構成している。
 その他の面積率の計算やパラメータαの計算などは前記第1の実施形態と同様であるので、その説明を省略する。
 以上説明したように、本発明は、トランジスタ周辺に位置する金属膜や活性領域、ゲート電極のマスクレイアウトパターンの影響を考慮した回路シミュレーションを行うことができるので、微細化された半導体集積回路の設計において、精度の向上を図り得る回路シミュレーション方法として有用である。
1、4、16、19、
 20、21、23、24  メモリ
2             マスクレイアウトデータ
3、11          マスクレイアウト面積率データ
5             トランジスタ座標データ
6             面積率計算ステップ
7             距離依存データ
8、25          トランジスタ
9、15          面積率計算領域
10            対象マスクレイアウトパターン
12             パラメータ計算ステップ
13            変換パラメータ
14             特性変化計算ステップ
17            補正前トランジスタモデルパラメータ
18            補正後トランジスタモデルパラメータ
22            トランジスタモデルパラメータ
26            活性領域
27、28         長さパラメータ
29            回路シミュレーションステップ

Claims (14)

  1.  半導体基板上に形成されるトランジスタの電気的特性を、メモリを備えた計算機で回路シミュレーションする方法であって、
     前記計算機が、マスクレイアウトデータと、前記トランジスタからの距離に応じた影響度合いを示す距離依存データとを取り込む入力ステップと、
     前記計算機が、前記マスクレイアウトデータから所定のマスクのレイアウトパターンの面積率を計算する面積率計算ステップと、
     前記計算機が、前記計算された面積率と、前記距離依存データとに基づいて、パラメータαを計算するパラメータ計算ステップと、
     前記計算機が、前記計算されたパラメータαに基づいて、前記トランジスタの電気的特性の変化を計算する特性変化計算ステップと
     を備えたことを特徴とする回路シミュレーション方法。
  2.  前記請求項1記載の回路シミュレーション方法において、
     更に、
     前記計算機が、前記特性変化計算ステップで計算された前記トランジスタの電気的特性の変化を考慮して、前記トランジスタの電気的特性の回路シミュレーションを行う回路シミュレーションステップ
     を備えたことを特徴とする回路シミュレーション方法。
  3.  半導体基板上に形成されるトランジスタの電気的特性を、メモリを備えた計算機で回路シミュレーションする方法であって、
     前記計算機が、マスクレイアウトデータと、前記トランジスタからの距離に応じた影響度合いを示す距離依存データとを取り込む入力ステップと、
     前記計算機が、前記マスクレイアウトデータから所定のマスクのレイアウトパターンの面積率を計算する面積率計算ステップと、
     前記計算機が、前記計算された面積率と、前記距離依存データとに基づいて、パラメータαを計算するパラメータ計算ステップと、
     前記計算機が、前記計算されたパラメータαに基づいて、前記トランジスタの電気的特性の回路シミュレーションを行う回路シミュレーションステップと
     を備えたことを特徴とする回路シミュレーション方法。
  4.  前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、
     前記面積率計算ステップでは、
     所定のマスクのレイアウトパターンとして、前記トランジスタの形成時に堆積される金属膜のマスクレイアウトパターンを抽出して、その抽出した金属膜のマスクレイアウトパターンの面積率を計算し、
     前記パラメータ計算ステップでは、
     前記抽出した金属膜のマスクレイアウトパターンの面積率と、その金属膜のマスクレイアウトパターンに対応した距離依存データとに基づいて、パラメータαを計算する
     ことを特徴とする回路シミュレーション方法。
  5.  前記請求項4記載の回路シミュレーション方法において、
     前記金属膜のマスクレイアウトパターンは、TiN膜のマスクレイアウトパターンである
     ことを特徴とする回路シミュレーション方法。
  6.  前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、
     前記面積率計算ステップでは、
     所定のマスクのレイアウトパターンとして、活性領域のマスクレイアウトパターンを抽出して、その抽出した活性領域のマスクレイアウトパターンの面積率を計算し、
     前記パラメータ計算ステップでは、
     前記抽出した活性領域のマスクレイアウトパターンの面積率と、その活性領域のマスクレイアウトパターンに対応した距離依存データとに基づいて、パラメータαを計算する
     ことを特徴とする回路シミュレーション方法。
  7.  前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、
     前記面積率計算ステップでは、
     所定のマスクのレイアウトパターンとして、ゲート電極のマスクレイアウトパターンを抽出して、その抽出したゲート電極のマスクレイアウトパターンの面積率を計算し、
     前記パラメータ計算ステップでは、
     前記抽出したゲート電極のマスクレイアウトパターンの面積率と、そのゲート電極のマスクレイアウトパターンに対応した距離依存データとに基づいて、パラメータαを計算する
     ことを特徴とする回路シミュレーション方法。
  8.  前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、
     前記面積率計算ステップでは、
     予め定めた面積の領域単位毎に所定のマスクのレイアウトパターンの面積率を計算する
     ことを特徴とする回路シミュレーション方法。
  9.  前記請求項8記載の回路シミュレーション方法において、
     前記パラメータ計算ステップでは、
     前記面積率計算ステップで計算された領域単位の面積率に、前記トランジスタからその領域単位までの距離に応じた距離依存データを乗算することを、各領域単位で行い、それ等の領域単位別の乗算結果を加算して、前記パラメータαを得る
     ことを特徴とする回路シミュレーション方法。
  10.  前記請求項1~3の何れか1項に記載の回路シミュレーション方法において、
     前記計算機が、前記トランジスタの位置情報を取り込む位置情報取り込みステップを備え、
     前記面積率計算ステップは、
     前記所定のマスクのレイアウトパターンの面積率を、前記トランジスタの位置から所定の距離の範囲内で計算する
     ことを特徴とする回路シミュレーション方法。
  11.  前記請求項10記載の回路シミュレーション方法において、
     前記所定の距離の範囲は、
     前記所定のマスクレイアウトパターンが前記トランジスタに影響を及ぼす最大の範囲に基づき、前記トランジスタからプロセス製造上の最小寸法距離に位置するマスクレイアウトパターンまでの距離の約10倍以上である
     ことを特徴とする回路シミュレーション方法。
  12.  前記請求項1~11の何れか1項に記載の回路シミュレーション方法において、
     前記トランジスタの電気的特性は、
     前記トランジスタに流れる電流又は前記トランジスタのしきい値電圧である
     ことを特徴とする回路シミュレーション方法。
  13.  前記請求項1~12の何れか1項に記載の回路シミュレーション方法において、
     前記計算機は複数あり、
     前記各計算機は、互いに異なるステップを実行する
     ことを特徴とする回路シミュレーション方法。
  14.  前記請求項1~13の何れか1項に記載の回路シミュレーション方法を用いて設計された
     ことを特徴とする半導体集積回路。
PCT/JP2011/005932 2010-12-13 2011-10-24 回路シミュレーション方法及び半導体集積回路 WO2012081158A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012509803A JPWO2012081158A1 (ja) 2010-12-13 2011-10-24 回路シミュレーション方法及び半導体集積回路
US13/471,061 US8555224B2 (en) 2010-12-13 2012-05-14 Circuit simulation method and semiconductor integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010277012 2010-12-13
JP2010-277012 2010-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/471,061 Continuation US8555224B2 (en) 2010-12-13 2012-05-14 Circuit simulation method and semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
WO2012081158A1 true WO2012081158A1 (ja) 2012-06-21

Family

ID=46244278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005932 WO2012081158A1 (ja) 2010-12-13 2011-10-24 回路シミュレーション方法及び半導体集積回路

Country Status (3)

Country Link
US (1) US8555224B2 (ja)
JP (1) JPWO2012081158A1 (ja)
WO (1) WO2012081158A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841613A (zh) * 2017-11-27 2019-06-04 格芯公司 利用具有模拟电路的系统产生动态空乏晶体管的模型

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8935146B2 (en) * 2007-03-05 2015-01-13 Fujitsu Semiconductor Limited Computer aided design apparatus, computer aided design program, computer aided design method for a semiconductor device and method of manufacturing a semiconductor circuit based on characteristic value and simulation parameter
JPWO2012081158A1 (ja) * 2010-12-13 2014-05-22 パナソニック株式会社 回路シミュレーション方法及び半導体集積回路
US9646124B2 (en) * 2015-06-24 2017-05-09 International Business Machines Corporation Modeling transistor performance considering non-uniform local layout effects
US11010532B2 (en) 2019-04-29 2021-05-18 Samsung Electronics Co., Ltd. Simulation method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294852A (ja) * 2005-04-13 2005-10-20 Matsushita Electric Ind Co Ltd 回路パラメータ抽出方法、半導体集積回路の設計方法および装置
JP2007140764A (ja) * 2005-11-16 2007-06-07 Fujitsu Ltd 検証支援装置、検証支援方法、検証支援プログラムおよび記録媒体
JP2008085030A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd 回路シミュレーション方法及び回路シミュレーション装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3790966B2 (ja) * 2002-05-01 2006-06-28 株式会社ルネサステクノロジ 半導体素子表面の検査方法および検査装置
JP4095101B2 (ja) * 2005-09-13 2008-06-04 株式会社アドバンテスト 製造システム、製造方法、管理装置、管理方法、およびプログラム
WO2011142066A1 (ja) * 2010-05-13 2011-11-17 パナソニック株式会社 回路シミュレーション方法及び半導体集積回路
JPWO2012081158A1 (ja) * 2010-12-13 2014-05-22 パナソニック株式会社 回路シミュレーション方法及び半導体集積回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294852A (ja) * 2005-04-13 2005-10-20 Matsushita Electric Ind Co Ltd 回路パラメータ抽出方法、半導体集積回路の設計方法および装置
JP2007140764A (ja) * 2005-11-16 2007-06-07 Fujitsu Ltd 検証支援装置、検証支援方法、検証支援プログラムおよび記録媒体
JP2008085030A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd 回路シミュレーション方法及び回路シミュレーション装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOROZ, VICTOR ET AL.: "Stress-Aware Design Methodology", PROCEEDINGS OF THE 7TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, IEEE COMPUTER SOCIETY, 2006, pages 807 - 812 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109841613A (zh) * 2017-11-27 2019-06-04 格芯公司 利用具有模拟电路的系统产生动态空乏晶体管的模型
CN109841613B (zh) * 2017-11-27 2023-07-25 格芯(美国)集成电路科技有限公司 利用具有模拟电路的系统产生动态空乏晶体管的模型

Also Published As

Publication number Publication date
JPWO2012081158A1 (ja) 2014-05-22
US8555224B2 (en) 2013-10-08
US20120227016A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
KR100510035B1 (ko) 핫캐리어열화추정방법
JP5390154B2 (ja) 回路シミュレーション装置、回路シミュレーション方法及びプログラム
JP2008027940A (ja) 半導体集積回路の設計方法および回路シミュレーション方法
US11288426B2 (en) Analyzing delay variations and transition time variations for electronic circuits
JP4874207B2 (ja) 回路シミュレーション方法、回路シミュレーション装置、及びプログラム
US9646127B2 (en) 3D resist profile aware etch-bias model
US10740525B2 (en) Semiconductor device simulation
US20070136705A1 (en) Timing analysis method and device
WO2012081158A1 (ja) 回路シミュレーション方法及び半導体集積回路
JP2006178907A (ja) 回路シミュレーション方法および装置
US10747916B2 (en) Parameter generation for modeling of process-induced semiconductor device variation
US20070266357A1 (en) Timing analysis method and timing analysis apparatus
US8275596B2 (en) Method for robust statistical semiconductor device modeling
JP2006343217A (ja) 回路シミュレーション方法および回路シミュレーション装置
US20080072199A1 (en) Method for designing semiconductor integrated circuit
JP2008053692A (ja) トランジスタのbt劣化のシミュレーションモデルおよびシミュレーションモデル化方法
CN108763830B (zh) 半导体器件的闪烁噪声模型及其提取方法
JP2009140265A (ja) 半導体装置に対する同時動作信号ノイズ見積り方法における同時動作信号ノイズ基礎特性取得方法、及びプログラム
CN113779910B (zh) 产品性能分布预测方法及装置、电子设备及存储介质
US8185369B2 (en) Method and apparatus for characterizing properties of electronic devices depending on device parameters
US20110238393A1 (en) Spice model parameter output apparatus and method, and recording medium
CN108875200B (zh) 通用型wpe优化模型及其提取方法
US20060047492A1 (en) Circuit simulation methods and systems
US8145442B2 (en) Fast and accurate estimation of gate output loading
JP2005191301A (ja) モデルパラメータ抽出方法、回路シミュレーションシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012509803

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848669

Country of ref document: EP

Kind code of ref document: A1