WO2012077849A1 - 세포표면에서 발현되는 항균 펩타이드 다중합체 - Google Patents

세포표면에서 발현되는 항균 펩타이드 다중합체 Download PDF

Info

Publication number
WO2012077849A1
WO2012077849A1 PCT/KR2010/009434 KR2010009434W WO2012077849A1 WO 2012077849 A1 WO2012077849 A1 WO 2012077849A1 KR 2010009434 W KR2010009434 W KR 2010009434W WO 2012077849 A1 WO2012077849 A1 WO 2012077849A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimicrobial
antimicrobial peptide
peptide
polypolymer
amino acid
Prior art date
Application number
PCT/KR2010/009434
Other languages
English (en)
French (fr)
Inventor
김선창
신주리
임기정
김다정
이영웅
장수아
성봉현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to JP2013543065A priority Critical patent/JP5795079B2/ja
Priority to EP10860601.3A priority patent/EP2650304B1/en
Priority to US13/991,825 priority patent/US20130345119A1/en
Priority to CN2010800711681A priority patent/CN103459411A/zh
Publication of WO2012077849A1 publication Critical patent/WO2012077849A1/ko
Priority to US14/846,637 priority patent/US10406204B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/255Salmonella (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4723Cationic antimicrobial peptides, e.g. defensins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/035Fusion polypeptide containing a localisation/targetting motif containing a signal for targeting to the external surface of a cell, e.g. to the outer membrane of Gram negative bacteria, GPI- anchored eukaryote proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site

Definitions

  • the present invention provides an antimicrobial peptide polymer comprising at least one monomer cleaved by pepsin, an antimicrobial peptide polypolymer having a cell surface expression parent coupled thereto, and an antimicrobial microorganism expressing the same, an antimicrobial composition comprising the same, and the antimicrobial composition. It relates to a method for treating an infectious disease caused by bacteria, yeast or fungi and a method for producing the antimicrobial microorganisms.
  • Antimicrobial peptides can be cited as representative candidates that can meet these needs.
  • Antimicrobial peptides unlike conventional antibiotics, have strong antimicrobial activity against a wide range of microorganisms, have strong physicochemical stability against heat, acids, and alkalis, and are easily decomposed after antibacterial action because they consist of 5 to 50 amino acids. It does not remain in the body and does not cause toxicity in vivo. Therefore, since the antimicrobial peptide is available as a next-generation antibiotic, there is a high possibility of industrial application in the pharmaceutical and food fields.
  • the present inventors have already received a domestic registration patent for an antimicrobial peptide having a strong antimicrobial activity against a wide range of species (registration number 0441402).
  • the host cell is lysed to obtain an insoluble fusion protein, which is then cut between the fusion protein and the antimicrobial peptide and subjected to chromatography or ion-exchange column. Pure water must be separated), and in this process, a large amount of antimicrobial peptides are lost and the yield is very low, thereby causing a fatal problem that the price of antimicrobial peptides is significantly increased.
  • the present inventors have made diligent efforts to develop antimicrobial peptides that exhibit antimicrobial activity in vivo by using microorganisms expressing them in a viable state without separating and purifying antimicrobial peptides, resulting in monomers cleaved by pepsin.
  • the antimicrobial peptide polypolymer was expressed on the cell surface of Escherichia coli, it was confirmed that it exhibits antimicrobial activity in vivo without separation and purification of the antimicrobial peptide expressed from Escherichia coli, thereby completing the present invention.
  • Another object of the present invention is to provide an antimicrobial peptide polymer comprising at least one monomer cleaved by pepsin.
  • Another object of the present invention is to provide a polynucleotide encoding the antimicrobial peptide polypolymer or polymer.
  • Another object of the present invention is to provide a recombinant vector comprising the polynucleotide.
  • Still another object of the present invention is to provide an antimicrobial microorganism expressing the antimicrobial peptide polypolymer on the cell surface.
  • Still another object of the present invention is to provide an antimicrobial pharmaceutical composition and quasi-drug composition comprising an antimicrobial microorganism expressing the antimicrobial peptide polypolymer, antimicrobial peptide polymer or antimicrobial peptide polypolymer as an active ingredient.
  • Another object of the present invention is to provide a method for producing an antimicrobial microorganism expressing the antimicrobial peptide polypolymer on the cell surface.
  • Another object of the present invention is to provide a method for treating an infectious disease caused by bacteria, yeast or fungi by administering the pharmaceutical composition for antibacterial.
  • the antimicrobial peptide polypolymer or antimicrobial peptide polymer of the present invention is cleaved by an in vivo enzyme pepsin to be separated into an antimicrobial peptide monomer, and because of the excellent antimicrobial activity of the isolated monomer, the treatment of infectious diseases caused by pathogenic bacteria, yeast or fungi For this purpose, it is useful to replace existing antibiotics.
  • FIG. 1 is a view showing the principle of action of antimicrobial microorganisms expressing the antimicrobial peptide polypolymer of the present invention on the cell surface.
  • Figure 2 is a schematic diagram showing the manufacturing process of the antimicrobial peptide polypolymer expressed on the cell surface of the present invention.
  • Figure 3 is an agarose gel picture showing the size of the Lpp-OmpA-Hinge2Ln DNA fragment.
  • FIG. 4 is a schematic diagram of the recombinant vector pLHn into which the Lpp-OmpA-Hinge2Ln DNA fragment is inserted.
  • FIG. 5 is an SDS-PAGE photograph showing the Lpp-OmpA-Hinge2Ln DNA fragment size expressed in transformed Escherichia coli
  • FIG. 6 is a confocal micrograph showing that the antimicrobial peptide polypolymer was expressed on the cell surface of transformed Escherichia coli.
  • M in Figure 5 represents the molecular weight standard marker
  • LH0 in Figures 5 and 6 shows that only the cell surface expression parent is induced by IPTG
  • the arrows in LH1, LH2 and LH3 are antimicrobial linked to cell surface expression parent
  • Monomers, dimers, and trimers of the peptide Hinge2L indicate that expression was induced by IPTG.
  • FIG. 7 is a graph showing the antimicrobial activity of Escherichia coli expressing the antimicrobial peptide polypolymer, the activity of 0. E. coli BL21 (DE3) that does not express the antimicrobial peptide was designated as a negative control value (negative control) value, synthesis When the activity of one antimicrobial peptide monomer Hinge2L was designated as a positive control value and 100% of activity, the antimicrobial activity of each of the antimicrobial peptide monomers LH0, LH1 and LH3 cleaved by pepsin was observed.
  • the present invention provides an antimicrobial peptide polypolymer comprising an antimicrobial peptide polymer comprising at least one monomer represented by the following formula 1 or 2 and a cell surface expression parent linked to the polymer to provide.
  • the antimicrobial peptide consists of pepsin cleaved amino acid linker and other amino acids.
  • the present invention provides an antimicrobial peptide polymer comprising at least one monomer represented by Formula 1 or 2.
  • the term "antimicrobial peptide polymer” means a polymer in which one or more monomers cleaved by pepsin are repeatedly connected through a pepsin cleaved amino acid linker, and the term “multimeric antimicrobial peptide" When the cell surface expression parent is linked to the antimicrobial peptide polymer to express it in a microorganism, it refers to a polypolymer that can be expressed on the cell surface of the microorganism.
  • the antimicrobial peptide multipolymer of the present invention is cleaved by the pepsin cleavage amino acid linker in the antimicrobial peptide monomer by pepsin which is a digestive enzyme in vivo, so that it is separated into an antibacterial peptide monomer having antimicrobial activity,
  • pepsin which is a digestive enzyme in vivo
  • injecting microorganisms expressing them directly into a living organism in vivo can produce effects such as combating pathogens and immune cell activity directly in vivo through the antimicrobial activity of the antimicrobial peptides.
  • the monomer has a form in which a pepsin cleavage amino acid linker is linked to the N terminus or C terminus of the antimicrobial peptide.
  • the antimicrobial peptide penetrates into fungal cells and acts as a peptide or derivative thereof that exhibits strong antimicrobial activity against a wide range of microorganisms including bacteria and fungi, and does not include amino acids constituting the pepsin cleavage amino acid linker. This is to prevent the antimicrobial peptide itself from being cleaved by pepsin.
  • the antimicrobial peptide includes a peptide having an antimicrobial activity or a derivative thereof, but preferably, an antimicrobial peptide or a combination thereof, which does not include an amino acid constituting a pepsin cleavage amino acid linker among the antimicrobial peptides disclosed in Patent No. 0441402. It may be a derivative, more preferably, an antimicrobial peptide having an amino acid sequence of any one of SEQ ID NO: 9 to 24 or a derivative thereof, and even more preferably, an antimicrobial peptide having an amino acid sequence of SEQ ID NO: 9 or It may be a derivative thereof.
  • the pepsin cleavage amino acid linker is composed of one or more amino acids, and is cleaved by pepsin, a linker and in vivo enzyme that connects each antimicrobial peptide to each other through peptide bonds, so that the antimicrobial peptide polymer is separated into each antimicrobial peptide monomer. It plays a role.
  • Antimicrobial peptide polypolymer or antimicrobial peptide polymer of the present invention may include one or more monomers represented by the formula 1 or 2, the number of monomers that can be transformed microorganism or vector is not limited, but preferred Preferably 1 to 4 monomers.
  • the pepsin cleavage amino acid linker is linked to the end of the antimicrobial peptide and the peptide end of the linker, the peptide bond formed between the end of the linker and the antimicrobial peptide N terminal when the pepsin, the digestive enzyme acts Consisting of amino acid sequences that are torn off.
  • the pepsin cleaved amino acid linker is any one or more amino acids selected from the group consisting of leucine (Leu), phenylalanine (Phe) and tyrosine (Tyr) such as one or more leucine, one or more phenylalanine, one or more tyrosine or It may consist of a combination thereof comprising one or more amino acids, more preferably one leucine, one phenylalanine or one tyrosine.
  • the cell surface expression parent is linked to the antimicrobial peptide polymer serves to allow the antimicrobial peptide polypolymer to be expressed on the cell surface of the microorganism.
  • the cell surface expressing matrix may be selected from the group consisting of outer membrane proteins, lipoproteins, autotranspoters, and S-layers of surface appendages, preferably, It may be an outer membrane protein, and more preferably, the outer membrane protein OmpA of E. coli, the outer membrane protein OmpA of E. coli, linked to the leader sequence of the lipoprotein E. coli, the outer membrane protein OmpS of E.
  • Outer membrane protein LamB Escherichia coli outer membrane protein PhoE, Escherichia coli outer membrane protein OmpC, Escherichia coli outer membrane protein FadL, Salmonella strain outer membrane protein OprF and outer membrane protein OprF may be selected from the group consisting of, more than Preferably, it consists of the outer membrane protein OmpA of Escherichia coli, which is linked to the leader sequence of E. coli lipoprotein.
  • the antimicrobial peptide polymers Hinge2L 1 , Hinge2L 2 , Hinge2L 3 and Hinge2L 4 which consist of an antimicrobial peptide monomer (Hinge2L) to which one leucine is added as a pepsin cleavage amino acid linker at the C terminus of the antimicrobial peptide, are described.
  • Example 2 the antimicrobial peptide polypolymer Lpp-OmpA-Hinge2L 1 , Lpp-OmpA-Hinge2L linked to the cell surface expression matrix (Lpp-OmpA) consisting of the amino acid of SEQ ID NO: 8 at the N terminus of the antimicrobial peptide polymer 2 , Lpp-OmpA-Hinge2L 3 and Lpp-OmpA-Hinge2L 4 were prepared (Example 3).
  • the present invention provides a polynucleotide encoding the antimicrobial peptide polypolymer or antimicrobial peptide polymer of the present invention and a recombinant vector comprising the same.
  • the polynucleotide is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds, and have a predetermined length or more of DNA (deoxyribonucleic acid) or RNA (ribonucleic acid) strands.
  • the polynucleotide encoding the antimicrobial peptide polypolymer is a base of any one of SEQ ID NOs: 25 (Lpp-OmpA-Hinge2L 2 ), 26 (Lpp-OmpA-Hinge2L 3 ), and 27 (Lpp-OmpA-Hinge2L 4 ). It may be a polynucleotide having a sequence.
  • polynucleotide encoding the antimicrobial peptide polymer may be a polynucleotide having any one of the nucleotide sequence of SEQ ID NO: 28 (Hinge2L 2 ), 29 (Hinge2L 3 ) and 30 (Hinge2L 4 ).
  • the recombinant vector is a means for expressing the antimicrobial peptide polypolymer or the antimicrobial peptide polymer in the microorganism by introducing DNA into the host cell to make a microorganism expressing the antimicrobial peptide polypolymer or antimicrobial peptide polymer of the present invention.
  • a well-known expression vector such as a plasmid vector, a cosmid vector, and a bacteriophage vector, can be used, and the vector can be easily prepared by those skilled in the art according to any known method using DNA recombination techniques.
  • the recombinant vector may use a pGEM T-easy vector or a pET21c vector, and preferably, a pET21c vector.
  • the recombinant vector of the present invention is a recombinant vector operably linked to the antimicrobial peptide polypolymer or polynucleotide encoding the antimicrobial peptide polymer of the present invention.
  • operably linked refers to that expression control sequences are linked to regulate transcription and translation of the antimicrobial peptide polypolymer or polynucleotide sequence encoding the antimicrobial peptide polymer, and under the control of the expression control sequence (including the promoter) Maintaining the correct translation frame such that the expressed and encoded antimicrobial peptide polypolymer or antimicrobial peptide polymer encoded by the polynucleotide sequence is produced.
  • the present invention provides an antimicrobial microorganism transformed with the recombinant vector to express the antimicrobial peptide polypolymer on the cell surface.
  • the "antimicrobial microorganism” refers to a microorganism capable of expressing the antimicrobial peptide on the cell surface
  • the antimicrobial microorganism of the present invention is an antimicrobial that can be cleaved into monomeric antimicrobial peptide by pepsin which is a digestive enzyme in the cell.
  • pepsin which is a digestive enzyme in the cell.
  • the antimicrobial microorganism itself performs a function of directly killing pathogens in the body, and thus can be used as an alternative to antibiotics.
  • the term “transformation” refers to introducing a gene into a host cell so that the gene can be expressed in the host cell, and the transformed gene can be expressed in the host cell within the chromosome of the host cell. Anything located outside the insertion or chromosome is included without limitation.
  • the gene also includes DNA and RNA as polynucleotides capable of encoding a polypeptide.
  • the gene may be introduced in any form as long as it can be expressed by being introduced into a host cell.
  • the gene may be introduced into a host cell in the form of an expression cassette, which is a polynucleotide construct containing all the elements necessary for its expression.
  • the expression cassette typically includes a promoter, transcription termination signal, ribosomal binding site, and translation termination signal operably linked to the gene.
  • the expression cassette may be in the form of an expression vector capable of self replication.
  • the gene may be introduced into the host cell in the form of a polynucleotide structure itself or operably linked to a sequence required for expression in the host cell.
  • the antimicrobial microorganism is a microorganism capable of expressing the antimicrobial peptide polypolymer on the cell surface by transformation with a recombinant vector comprising a polynucleotide encoding the antimicrobial peptide polypolymer, for example, the genus Escherichia, Bacillus Genus, Aerobacter genus, Serratia genus, Providencia genus Erwinia genus, Schizosaccharomyces genus, enterobacteria genus, genus genus The genus Zygosaccharomyces, the genus Leptospira, the genus Deinococcus, the genus Pichia, the genus Kluyveromyces, the genus Candida, the genus Hansenula, Genus Debaryomyces, genus Muco, genus Torulopsis, genus Methylobacter, genus Salmonella, genus
  • the antimicrobial microorganism may be Escherichia microorganism, more preferably E. coli, and even more preferably E. coli BL21 (DE3).
  • the antimicrobial peptide polypolymer was expressed on the cell surface.
  • the monomer, dimer, and trimer of the antimicrobial peptide Hinge2L connected to the cell surface expression parent were expressed on the cell surface of Escherichia coli (Example 5 and FIG. 6).
  • the present invention provides an antimicrobial pharmaceutical composition
  • an antimicrobial pharmaceutical composition comprising the antimicrobial peptide multipolymer, antimicrobial peptide polymer or microbial microorganism of the present invention as an active ingredient.
  • the present invention provides a method for treating an infectious disease caused by a pathogenic bacterium, yeast or fungus, comprising administering the antimicrobial pharmaceutical composition to a subject having an infectious disease caused by a pathogenic bacterium, yeast or fungus. Provide treatment.
  • the pathogenic bacteria are all microorganisms that cause disease or harm while invading the living organisms of animals and plants, including Gram-positive bacteria and Gram-negative bacteria, and are preferably Gram-positive bacteria Staphylococcus aureus. (Staphylococus aureus), Escherichia coli, a Gram-negative bacterium.
  • the pathogenic yeast and fungi are not limited to the yeast and fungi having pathogenicity, for example, Candida albicans, Aspergillus humigatus, Saccharomyces cerevisiae Saccharomyces cerevisiae and Cryptococcus neoformans.
  • the infectious disease caused by pathogenic bacteria is cholera caused by cholera bacteria; Bacterial lysing by erythrocytes; Pertussis by pertussis; Typhoid fever caused by typhoid fever; Laryngeal diphtheria and non-diphtheria caused by diphtheria bacteria; Plague plague and pulmonary plague caused by plague bacteria; Scarlet fever caused by hemolytic streptococci, isolated, sepsis, dermatitis; Pulmonary tuberculosis, joint tuberculosis, kidney tuberculosis, tuberculous meningitis caused by Mycobacterium tuberculosis; Bacterial foods by Salmonella and enteritis Vibrio and the like can be Germany.
  • infectious diseases caused by pathogenic yeast and fungi include cryptococcosis, candidasis, dermatophytosis, superficial mycoses, meningitis, brain abscess, brain tumor, histoplasmosis ( Histoplasmosis), pneumonia pneumonia or aspergillosis.
  • treatment refers to any action that improves or advantageously changes the symptoms caused by an infectious disease caused by a pathogenic bacterium, yeast or fungus by administration of an antimicrobial pharmaceutical composition, and the term “individual” in the present invention. Means any animal, including humans, who may or may have developed an infectious disease caused by pathogenic bacteria, yeast or fungi.
  • Infectious diseases caused by pathogenic bacteria, yeast or fungi can be treated by administering to a human suffering from an infectious disease caused by pathogenic bacteria, yeast or fungi with the antimicrobial pharmaceutical composition of the present invention.
  • the route of administration of the pharmaceutical composition for antimicrobial may be administered through any general route as long as it can reach the target tissue.
  • the pharmaceutical composition of the present invention may be administered as desired, but is not limited to intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, intranasal administration, pulmonary administration, rectal administration.
  • the pharmaceutical composition may be administered by any device in which the active substance may migrate to the target cell.
  • the antimicrobial pharmaceutical composition comprising the antimicrobial microorganism of the present invention
  • the antimicrobial peptide polypolymer expressed on the cell surface of the antimicrobial microorganism is cleaved by pepsin, an in vivo digestive enzyme, to prevent antimicrobial activity. Since the branch is separated into the antimicrobial peptide monomer, not only the purification and separation process of the antimicrobial peptide is required, but also the antimicrobial activity of the antimicrobial peptide cleaved with the monomer by pepsin can be effective to effectively eradicate pathogens.
  • the antimicrobial activity of the antimicrobial peptide monomer separated by pepsin was measured after treatment with pepsin to E. coli expressing the antimicrobial peptide polypolymer on the cell surface. As a result of the measurement, it was confirmed that it possesses excellent antibacterial activity against Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria E. coli and yeast Saccharomyces cerevisiae (Example 6 and FIG. 7).
  • the antimicrobial pharmaceutical composition of the present invention may include an acceptable carrier.
  • the antimicrobial pharmaceutical composition comprising a pharmaceutically acceptable carrier may be various oral or parenteral formulations. When formulated, diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents and surfactants are usually used. Solid form preparations for oral administration include tablet pills, powders, granules, capsules, and the like, which form at least one excipient such as starch, calcium carbonate, sucrose or lactose in one or more compounds. ) And gelatin.
  • Liquid preparations for oral administration include suspensions, solution solutions, emulsions, and syrups, and various excipients, such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin, may be included.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories.
  • the non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • the antimicrobial microorganisms contained in the pharmaceutical composition for antimicrobial may contain nutrients required to express the antimicrobial peptide polypolymer on the cell surface.
  • the antimicrobial pharmaceutical composition is selected from the group consisting of tablets, pills, powders, granules, capsules, suspensions, liquid solutions, emulsions, syrups, sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations and suppositories. It can have either formulation.
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and an effective dose level is determined by the type and severity of the subject, age, sex, activity of the drug, drug Sensitivity, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts.
  • the pharmaceutical compositions of the present invention may be administered as individual therapeutic agents or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple doses. In consideration of all the above factors, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects.
  • composition of the present invention can be used alone or in combination with methods using surgery, hormonal therapy, drug treatment and biological response modifiers for the treatment of infectious diseases caused by pathogenic bacteria, yeast or fungi.
  • the present invention provides an antimicrobial quasi-drug composition comprising the antimicrobial microorganism of the present invention as an active ingredient. That is, the present invention provides a quasi-drug composition for the purpose of preventing or improving infectious diseases caused by pathogenic bacteria, yeast or fungi.
  • the quasi-drug composition can be used together with other quasi-drugs or quasi-drug components, and can be suitably used in accordance with conventional methods.
  • the mixed amount of the active ingredient may be appropriately determined depending on the purpose of use (prevention, health or therapeutic treatment).
  • the quasi-drug composition may be a disinfectant cleaner, a shower foam, gagreen, wet tissue, detergent soap, hand wash, humidifier filler, mask, ointment or filter filler.
  • the present invention provides a method for producing an antimicrobial microorganism expressing the antimicrobial peptide polypolymer of the present invention on the cell surface.
  • the method comprises the steps of (a) preparing a recombinant vector comprising a polynucleotide encoding the antimicrobial peptide polypolymer of the present invention; (b) introducing the recombinant vector into a host cell and transforming the transformant with a transformant; And (c) culturing the transformant to induce expression of the antimicrobial peptide polypolymer.
  • the transformation method by introducing the recombinant vector into the host cell is a method known in the art, such as, but not limited to, a recombinant vector comprising the DNA of the present invention, transient transfection, micro-injection Transduction, cell fusion, calcium phosphate precipitation, liposome-mediated transfection, DEAE Dextran-mediated transfection, polybrene-mediated transfection It can be transformed by introducing into a host cell by a known method such as (polybrene-mediated transfection), electroporation (electroporation).
  • the method of inducing the expression of the antimicrobial peptide polypolymer by culturing the transformant may use any method known in the art, for example, 37 ° C., aerobic conditions, LB medium, Induction of expression by IPTG addition is mentioned.
  • the antimicrobial microorganism produced by this method expresses the antimicrobial peptide polypolymer which is cleaved by pepsin on the cell surface, cell disintegration, because it is separated into an antimicrobial peptide monomer having antimicrobial activity by pepsin when administered in vivo in a live state. Not only does the separation and purification process of the antimicrobial peptides are necessary, but the separated antimicrobial peptides exhibit excellent antimicrobial activity and thus can effectively combat pathogens.
  • Example 1 Determination of pepsin cleaved amino acid linker and determination of antimicrobial activity of antimicrobial peptide monomer comprising the same
  • the antimicrobial peptide polymer of SEQ ID NO: 1 disclosed in Korean Patent No. 0413402 (SEQ ID NO. 9: RVVRQWPIGRVVRRVVRRVVR) was linked using an amino acid as a linker.
  • the amino acid sequence of the amino acid linker cleaved by pepsin to be separated into individual monomers was determined using the computer program tool ExPAsy (Expert protein analysis system, Switzerland).
  • the program predicts the amino acid sequence of the antimicrobial peptide polymer with the amino acid cleaved by pepsin to the antimicrobial peptide, and confirms that pepsin works behind leucine, phenylalanine and tyrosine.
  • the antimicrobial peptide of 95% purity was obtained through chemical synthesis of the peptide.
  • the antimicrobial activity of the prepared antimicrobial peptides was determined by 96-well microdilution minimal inhibitory concentration assay. Bacteria and fungi were grown overnight in trypticase soy broth (TSB) at 37 ° C and 30 ° C, respectively, and then inoculated in fresh medium for 2 hours so that the strains were logarithmic, then 1 ml Diluted to 10 5 strains per 10 ⁇ l of 96-well plate, and sequentially diluted antimicrobial peptide 10 ⁇ l to each well. The 96-well plate was incubated for 12 hours to measure the absorbance of each well to determine the minimum concentration to prevent the growth of the strain at the minimum inhibitory concentration, the results are shown in Table 1. Hinge2L, Hinge2F and Hinge2Y in Table 1 are antimicrobial peptides in which leucine, phenylalanine and tyrosine are added to the antimicrobial peptide of SEQ ID NO.
  • the peptide with leucine attached to the antimicrobial peptide was Gram-positive bacteria Staphylococus aureus, Gram-negative bacterium Escherichia coli, and yeast Saccharomyces. Cerevisiae. 2 ⁇ l / ml was found to have the best antimicrobial activity ().
  • DNA fragments encoding the antimicrobial peptide monomer (Hinge2L) added to the C terminus of the pepsin cleaved amino acid linker (leucine) determined in Example 1 were prepared and cloned into the vector.
  • the primers of the C-terminal 9 were used to perform the cleavage of the peptides using a primer of SEQ ID NO: 1 (5'-GAAGACCCCGTGTTGTTCGTCAGTGGCCGATTGGTCGTGTCGTTCGCCGTGTTGTTCG-3 ') and SEQ ID NO: 2 (5'-GGATGGATCCTAAGCACGCAGACGAACGACGCGACGAACAACACGGCGAACGACACG-3') using a peptide of the terminal C.
  • the double stranded DNA fragment encoding the antimicrobial peptide monomer consisting of 22 amino acids added with the amino acid linker leucine was completed.
  • PCR conditions were DNA denaturation at 94 ° C. for 30 seconds, annealing at 56 ° C. for 30 seconds, and DNA synthesis at 72 ° C. for 30 seconds, and this was repeated 30 times.
  • the completed DNA fragments were then inserted into the pGEM T-easy vector and named pMBT-H.
  • DNA fragments encoding the antimicrobial peptide monomer Hinge2L prepared by PCR were digested with restriction enzymes BbsI and FokI, and then inserted into the pMBT-H vector digested with restriction enzymes BbsI. Two linked pMBT-H 2 vectors were constructed. This process was repeated to prepare pMBT-H 3 , pMBT-H 4... PMBT-H n (FIG. 2).
  • E. coli lipoprotein as a cell surface expression matrix
  • E. coli outer membrane protein that is stably attached to the outer membrane
  • An Lpp-OmpA DNA fragment having a nucleotide sequence of SEQ ID NO: 7 using a portion of the sequence of A (OmpA) was prepared and cloned into a vector.
  • SEQ ID NO: 3 (5'-CGCCATATGAAAGCTACTAAACTGGTACTGGGCAACAACAATGGCCCGACC-3 ')
  • SEQ ID NO: 4 (5'-GCAAACACCGGAGAAACGCCGGTG-3')
  • SEQ ID NO: 5 (5'-TTCTCCGGTGTTTGCTGGCGGTGTTG-3 ')
  • a primer of SEQ ID NO: 6 (5'-CGGGATCCTAGTGATGGTGATGGTGATGAACACGCAGTCTTCCACGGGTAG-3 ') was synthesized and genomic DNA of Escherichia coli MG1655 was used as a template, DNA denaturation at 94 ° C for 30 seconds, annealing at 54 ° C for 30 seconds, and 1 minute 30 at 72 ° C.
  • a DNA fragment (369 nucleotides) encoding the Lpp-OmpA polypeptide consisting of 123 amino acids was completed by recombinant PCR method of repeating DNA synthesis 30 times
  • the completed DNA fragment was inserted into the pGEM T-easy vector, which was named pLO vector.
  • the pLO vector was digested with BbsI
  • the pMBT-Hn prepared in Example 2 was digested with restriction enzymes BbsI and FokI to ligate the DNA fragment of the antimicrobial peptide polymer Hinge2Ln with the pLO vector digested with restriction enzymes.
  • a pLO-Hinge2Ln vector was prepared in which a DNA fragment (Lpp-OmpA-Hinge2Ln) in which LBP-OmpA was connected to an antimicrobial peptide polymer DNA was inserted (n represents the number of antibacterial peptide monomer Hinge2L, FIG. 2).
  • each pLO-Hinge2Ln vector was treated with restriction enzyme NotI to confirm the Lpp-OmpA-Hinge2Ln DNA fragment size inserted into the vector, and the results are shown in FIG. 3.
  • Electrophoresis was added to 0.3 g of 1% agarose gel in 30 ml of 1X TBE (Tris, Boric acid, EDTA) buffer, boiled in a microwave oven, poured into a mold and left for 30 minutes to harden.
  • 1X TBE Tris, Boric acid, EDTA
  • Figure 3 is an electrophoresis picture showing the Lpp-OmpA-Hinge2Ln DNA fragment size
  • M in Figure 3 is a DNA size marker
  • LH0 represents Lpp-OmpA
  • LH1, LH2, LH3 and LH4 each represent the number of antimicrobial peptide monomers linked to Lpp-OmpA, the cell surface expression parent.
  • Lpp-OmpA-Hinge2Ln DNA fragments were obtained by treating the pLO-Hinge2Ln vector prepared in Example 3 with restriction enzymes NdeI and BamHI, and using a gel extraction kit (Gel extraction kit, Qiagen, Germany). DNA fragments were isolated.
  • PBS phosphate buffered saline
  • BSA bovine serum albumin
  • Example 6 Confirming the antimicrobial activity of the antimicrobial peptide polypolymer expressed on the cell surface
  • the antimicrobial effect of Escherichia coli expressing the antimicrobial peptide polypolymer on the cell surface prepared in Example 4 was measured.
  • NAPB sodium phosphate buffer
  • pepsin was dissolved in an aqueous solution of HCl (SGF, sitimulated gastirc fluid; 0.084N HCl, 35mM NaCl, pH 1.2 or 2.0) at a concentration similar to that of the living body, incubated for 30 minutes after treatment with E. coli. After incubation, in order to prevent the activity of pepsin and neutralize the pH, the mixture was mixed with an aqueous NaOH solution at the same concentration as the aqueous HCl solution, and centrifuged to remove cell debris other than the antibacterial peptide monomer cut by pepsin.
  • SGF sitimulated gastirc fluid
  • Antimicrobial activity was determined using Gram-positive bacteria Staphylococus aureus, Gram-negative bacteria Escherichia coli and yeast Saccharomyces cerevisiae with antimicrobial peptide monomers cut by pepsin. It was.
  • Each of the bacteria was collected during the log phase of the culture, washed twice with NAPB and then resuspended, and the number of all bacteria was adjusted to 1 ⁇ 10 5 cfu / ml.
  • 10 microliters of the aqueous solution of the antimicrobial peptide monomer cut by each bacterium and pepsin were mixed in a 96-well plate, mixed well, and incubated at 37 ° C. for 3 hours. After 3 hours, 2X TSB (Trypticase Soy Broth) medium was added thereto, followed by further incubation at a temperature of 37 ° C. for 12 hours to measure OD595 values.
  • the antimicrobial activity of LH3 was 17.95% for Gram-positive bacteria Staphylococcus aureus, 30% for Gram-negative bacteria Escherichia coli, and 33.17% for Saccharomyces cerevisiae yeast. Excellent antimicrobial activity was shown (FIG. 7). These results indicate that the more the antimicrobial peptide monomer is included in the antimicrobial peptide polypolymer, the better the antimicrobial activity is.
  • the antimicrobial microorganism expressing the antimicrobial peptide polypolymer on the cell surface is administered to the body, the pathogen is eliminated and immunized. It can show antimicrobial activity such as cell activity.
  • the antimicrobial peptide can be used without separating and purifying the antimicrobial peptide, thereby obtaining an advantage of inducing the diffusion of the antimicrobial peptide.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 펩신에 의해 절단되는 단량체를 1개 이상 포함하는 항균 펩타이드 중합체, 상기 중합체에 세포표면 발현 모체가 연결된 항균 펩타이드 다중합체 및 이를 발현하는 항균 미생물, 이를 포함하는 항균용 조성물, 상기 항균용 조성물을 투여하여 세균, 효모 또는 진균에 의한 감염성 질환을 치료하는 방법 및 상기 항균 미생물의 제조 방법을 제공한다. 본 발명에 의하면, 항균 펩타이드를 생산하기 위하여 세포 파쇄, 항균 펩타이드의 분리 및 정제과정을 거칠 필요 없이 이를 세포표면에 발현하는 미생물을 생균 상태로 직접 생체 내에 투여하여 항균활성을 나타내도록 함으로써, 항균 펩타이드의 생산비용을 현저히 낮추어 항균 펩타이드의 보급화를 유도할 수 있는 효과가 있다.

Description

세포표면에서 발현되는 항균 펩타이드 다중합체
본 발명은 펩신에 의해 절단되는 단량체를 1개 이상 포함하는 항균 펩타이드 중합체, 상기 중합체에 세포표면 발현 모체가 연결된 항균 펩타이드 다중합체 및 이를 발현하는 항균 미생물, 이를 포함하는 항균용 조성물, 상기 항균용 조성물을 투여하여 세균, 효모 또는 진균에 의한 감염성 질환을 치료하는 방법 및 상기 항균 미생물의 제조 방법에 관한 것이다.
병원균으로부터 인류를 보호하기 위해 많은 항생제들이 발견 및 개발되어 사용되어 왔으나, 항생제의 오남용의 결과로 오히려 항생제 내성 균주들이 급속히 늘어나게 됨에 따라 사용 가능한 항생제의 수가 줄어들고 있는 문제가 발생하고 있다. 따라서, 기존의 항생제와는 다른 활성 기작으로 항생제 내성균에 활성을 가지고 내성의 문제를 일으키지 않으며, 항생제가 잔류하지 않는 새로운 물질이 요구되고 있다. 이러한 요구에 부응할 수 있는 대표적인 후보물질로 항균 펩타이드를 들 수 있다.
항균 펩타이드는 기존의 항생제와는 달리 광범위한 미생물에 대하여 강력한 항균력을 가지며, 열, 산 또는 알칼리 등에 강한 이화학적 안정성을 가지고, 아미노산이 5 내지 50개로 적은 수의 아미노산으로 이루어져 있기 때문에 항균 작용 후 쉽게 분해되어 체내에 잔류하지 않아 생체 내 독성을 유발하지 않는다는 여러 가지 장점을 가지고 있다. 따라서, 항균 펩타이드는 차세대 항생 물질로 이용가능 하므로 제약 및 식품 분야 등에서의 산업적 응용 가능성이 매우 높다.
본 발명자들은 이미 광범위한 균종에 대하여 강력한 항균활성을 가지는 항균 펩타이드에 대하여 국내 등록 특허를 받은바 있다(등록번호 제0441402호).
이들 항균 펩타이드의 산업적 이용을 위해서는 경제적으로 대량생산 할 수 있는 방법이 필수적으로 요구되는데, 기존의 펩타이드 생산 방법으로는 항균 펩타이드를 값싸게 대량으로 공급할 수 없다. 즉, 대표적인 펩타이드 생산방법인 화학합성을 이용하는 경우에는 경제성이 낮고, 유전 공학 기술을 이용하여 미생물로부터 생산할 경우에는 항균 펩타이드의 발현율이 낮으며, 숙주에 대한 항균 활성을 나타낼 뿐만 아니라, 발현된 항균 펩타이드가 숙주 내 단백질 효소들에 의해 분해된다는 문제점이 있었다.
또한, 항균 펩타이드를 미생물에서 대량으로 발현시키고 수득하기 위해서 종래에는 융합 단백질(fusion partner)을 이용하여 숙주세포를 죽이지 않으면서 숙주인 미생물로부터 원하는 펩타이드를 생산하는 방법이 일반적으로 쓰여졌다.
그러나, 상기 방법에서 항균 펩타이드를 얻기 위해서는 숙주세포를 용해하여 불용성(insoluble) 상태의 융합 단백질을 얻어낸 후, 상기 융합 단백질과 항균 펩타이드 사이를 자르고 크로마토그래피(chromatography) 또는 이온 교환 칼럼(ion-exchange column)으로 순수 분리하여야 하는데, 이 과정에서 많은 양의 항균 펩타이드가 소실되어 수득률이 매우 낮아져서 항균 펩타이드의 가격이 현저히 올라가게 되는 치명적인 문제가 있었다.
이러한 문제를 해결하기 위하여, 세포표면 발현 단백질을 항균 펩타이드와 융합하여 항균 펩타이드를 세포의 표면에 발현(cell surface display)시키려는 시도가 이루어졌다. 그 결과, 항균 펩타이드를 세포의 표면에 발현시킴으로써 세포의 파쇄 과정을 생략할 수 있었으나, 항균 펩타이드를 순수 분리하기 위해서는 세포표면 발현 단백질에 별도의 효소를 처리하여야 하고, 불순물을 제거하기 위해서 크로마토그래피 또는 이온 교환 칼럼을 사용해야만 하는 단점이 여전히 존재하였다.
또한, 항균 펩타이드의 분리 및 정제를 거치지 않기 위해서 세포표면에 발현된 항균 펩타이드를 그대로 사용하는 방법이 있으나, 이와 같은 방법으로 제작된 세포표면에 부착한 상태의 항균 펩타이드는 항균활성이 현저히 줄어드는 치명적인 단점이 존재하였다.
이에, 본 발명자들은 항균 펩타이드의 분리 및 정제과정 없이 이를 발현하는 미생물을 생균 상태로 사용하여 생체 내에서 항균 활성을 나타내도록 하는 항균 펩타이드를 개발하기 위하여 예의 노력한 결과, 펩신에 의해 절단되는 단량체로 이루어진 항균 펩타이드 다중합체를 대장균의 세포표면에 발현시킨 경우에, 대장균으로부터 발현된 항균 펩타이드에 대한 분리 및 정제과정 없이도 생체 내에서 항균 활성을 나타냄을 확인하고, 본 발명을 완성하였다.
본 발명의 목적은 펩신에 의해 절단되는 단량체를 1개 이상 포함하는 항균 펩타이드 중합체 및 상기 중합체에 연결된 세포표면 발현 모체를 포함하는 항균 펩타이드 다중합체를 제공하는 것이다.
본 발명의 다른 목적은 펩신에 의해 절단되는 단량체를 1개 이상 포함하는 항균 펩타이드 중합체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 항균 펩타이드 다중합체 또는 중합체를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 항균 펩타이드 다중합체를 세포표면에 발현하는 항균 미생물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 항균 펩타이드 다중합체, 항균 펩타이드 중합체 또는 항균 펩타이드 다중합체를 세포표면에 발현하는 항균 미생물을 유효성분으로 포함하는 항균용 약학 조성물 및 의약외품 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 항균 펩타이드 다중합체를 세포표면에 발현하는 항균 미생물의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 항균용 약학 조성물을 투여하여 세균, 효모 또는 진균에 의한 감염성 질환을 치료하는 방법을 제공하는 것이다.
본 발명에 의하면, 항균 펩타이드를 생산하기 위하여 세포 파쇄, 항균 펩타이드의 분리 및 정제과정을 거칠 필요 없이, 이를 세포표면에 발현하는 미생물을 생균 상태로 직접 생체 내에 투여하여 항균활성을 나타내도록 함으로써, 항균 펩타이드의 생산비용을 현저히 낮추어 항균 펩타이드의 보급화를 유도할 수 있는 효과가 있다. 또한, 본 발명의 항균 펩타이드 다중합체 또는 항균 펩타이드 중합체는 생체 내 효소인 펩신에 의해 절단되어 항균 펩타이드 단량체로 분리되고, 분리된 단량체의 항균력이 우수하므로 병원성 세균, 효모 또는 진균에 의한 감염성 질환의 치료용으로, 기존의 항생제를 대체하여 유용하게 사용할 수 있다.
도 1은 본 발명의 항균 펩타이드 다중합체를 세포표면에 발현하는 항균 미생물의 작용원리를 보인 도면이다.
도 2는 본 발명의 세포표면에서 발현되는 항균 펩타이드 다중합체의 제작과정을 보인 모식도이다.
도 3은 Lpp-OmpA-Hinge2Ln DNA 절편의 사이즈를 나타낸 아가로스 젤 사진이다.
도 4는 Lpp-OmpA-Hinge2Ln DNA 절편이 삽입된 재조합 벡터 pLHn의 모식도이다.
도 5는 형질전환된 대장균에서 발현된 Lpp-OmpA-Hinge2Ln DNA 절편 사이즈를 나타낸 SDS-PAGE 사진이고, 도 6은 항균 펩타이드 다중합체가 형질전환된 대장균의 세포 표면에서 발현되었음을 보인 공초점 현미경 사진이다. 도 5의 M은 분자량 표준 마커를 나타내며, 도 5 및 도 6의 LH0는 세포 표면발현 모체만이 IPTG로 발현이 유도된 것을 나타내고, LH1, LH2 및 LH3에서의 화살표는 세포표면 발현 모체에 연결된 항균 펩타이드 Hinge2L의 단량체(monomer), 이량체(dimer), 삼량체(trimer)가 IPTG로 발현이 유도되었음을 나타낸다.
도 7은 항균 펩타이드 다중합체를 발현하는 대장균의 항균력을 보인 그래프로서, 항균 펩타이드를 발현하지 않는 E.coli BL21(DE3)을 음성 대조군(negative control) 값으로 하여 활성을 0%로 지정하고, 합성한 항균 펩타이드 단량체 Hinge2L의 활성을 양성 대조군(positive control) 값으로 하여 활성을 100%로 지정하였을 때, 펩신에 의해 절단된 각각의 항균 펩타이드 단량체 LH0, LH1 및 LH3의 항균력을 관찰한 결과를 나타낸다.
상기의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 하기 식 1 또는 2로 표현되는 단량체를 1개 이상 포함하는 항균 펩타이드 중합체 및 상기 중합체에 연결된 세포표면 발현 모체를 포함하는 항균 펩타이드 다중합체를 제공한다.
식 (1) : N 말단-[항균 펩타이드-펩신 절단 아미노산 링커]-C 말단
식 (2) : N 말단-[펩신 절단 아미노산 링커-항균 펩타이드]-C 말단
단, 상기 항균 펩타이드는 펩신 절단 아미노산 링커와 다른 아미노산으로 이루어진다.
또한, 다른 하나의 양태로서, 본 발명은 상기 식 1 또는 2로 표현되는 단량체를 1개 이상 포함하는 항균 펩타이드 중합체를 제공한다.
본 발명에 있어서, 용어 "항균 펩타이드 중합체"는 펩신에 의해 절단되는 1개 이상의 단량체가 펩신 절단 아미노산 링커를 통하여 반복적으로 연결된 중합체를 의미하며, 용어, "항균 펩타이드 다중합체(multimeric antimicrobial peptide)"는 상기 항균 펩타이드 중합체에 세포표면 발현 모체가 연결되어 이를 미생물에서 발현시키는 경우, 미생물의 세포표면에서 발현될 수 있는 다중합체를 의미한다.
따라서, 도 1에 도시된 바와 같이, 본 발명의 항균 펩타이드 다중합체는 항균 펩타이드 단량체 내의 펩신 절단 아미노산 링커가 생체 내 소화효소인 펩신에 의해 절단됨으로써, 항균 활성을 가지는 항균 펩타이드 단량체로 분리되기 때문에, 항균 펩타이드를 미생물로부터 분리 및 정제할 필요 없이 이를 발현하는 미생물을 직접 생균 상태로 생체 내로 주입하면, 항균 펩타이드의 항균 활성을 통하여 병원균 퇴치 및 면역세포 활성 등의 효과를 생체 내에서 직접적으로 발생시킬 수 있는 장점이 있다.
본 발명에 있어서, 상기 단량체는 항균 펩타이드의 N 말단 또는 C 말단에 펩신 절단 아미노산 링커가 연결된 형태를 갖는다.
상기 항균 펩타이드는 균 세포 내로 침투하여 작용함으로써, 박테리아와 진균을 포함하는 광범위한 미생물에 대하여 강력한 항균활성을 나타내는 펩타이드 또는 이들의 유도체로서, 펩신 절단 아미노산 링커를 구성하는 아미노산은 포함하지 않는다. 이는 항균 펩타이드 자체가 펩신에 의해 절단되는 것을 방지하기 위한 것이다.
또한, 상기 항균 펩타이드는 항균 활성을 가지는 펩타이드 또는 이들의 유도체는 포함되나, 바람직하게는, 등록특허 제0441402호에 개시된 항균 펩타이드 중 펩신 절단 아미노산 링커를 구성하는 아미노산을 포함하지 않는 항균 펩타이드 또는 이들의 유도체일 수 있고, 보다 바람직하게는, 서열번호 9 내지 24중 어느 하나의 아미노산 서열을 갖는 항균 펩타이드 또는 이들의 유도체일 수 있으며, 보다 더 바람직하게는, 서열번호 9의 아미노산 서열을 갖는 항균 펩타이드 또는 이의 유도체일 수 있다.
상기 펩신 절단 아미노산 링커는 1개 이상의 아미노산으로 이루어져 있어, 펩티드 결합을 통하여 각각의 항균 펩타이드를 서로 연결시켜 주는 링커이자 생체내 효소인 펩신에 의해서 절단되어 항균 펩타이드 중합체가 각각의 항균 펩타이드 단량체로 분리되도록 하는 역할을 한다. 본 발명의 항균 펩타이드 다중합체 또는항균 펩타이드 중합체는 상기 식 1 또는 2로 표현되는 단량체를 1개 이상 포함할 수 있으며, 형질전환된 미생물 또는 벡터가 포함할 수 있는 단량체의 개수는 제한이 없으나, 바람직하게는 1개 내지 4개의 단량체를 포함할 수 있다.
본 발명에 있어서, 상기 펩신 절단 아미노산 링커는 링커의 양말단이 항균 펩타이드의 말단과 펩티드 결합을 통하여 연결되어 있는데, 소화효소인 펩신이 작용하면 링커의 말단과 항균 펩타이드 N 말단 사이에 형성된 펩티드 결합이 끊어지도록 하는 아미노산 서열로 이루어진다.
바람직하게는, 상기 펩신 절단 아미노산 링커는 류신(Leu), 페닐알라닌(Phe) 및 타이로신(Tyr)으로 이루어진 군에서 선택된 어느 하나 이상의 아미노산 예컨대, 1개 이상의 류신, 1개 이상의 페닐알라닌, 1개 이상의 타이로신 또는 1개 이상의 아미노산을 포함하는 이들의 조합으로 이루어질 수 있으며, 보다 바람직하게는, 1개의 류신, 1개의 페닐알라닌 또는 1개의 타이로신으로 이루어질 수 있다.
본 발명의 일 실시예를 보면, 컴퓨터 프로그램을 이용하여 항균 펩타이드의 C 말단에 임의의 아미노산 링커를 통하여 연결한 항균 펩타이드 중합체에서 펩신에 의해 절단되는 부위를 예측하였으며, 그 결과 아미노산 링커 중 1개의 류신, 1개의 페닐알라닌 또는 1개의 타이로신의 말단과 항균 펩타이드의 N 말단 사이에 형성된 펩티드 결합이 끊어지면서 항균 펩타이드 단량체로 분리될 수 있음을 확인하였다(실시예 1).
본 발명에 있어서, 상기 세포표면 발현 모체는 항균 펩타이드 중합체에 연결되어 항균 펩타이드 다중합체가 미생물의 세포표면에서 발현되도록 하는 역할을 한다.
상기 세포표면 발현 모체는 외막단백질, 지질단백질(lipoprotein), 자기전달체(autotranspoters) 및 표면 부속물(surface appendage)의 S층(S-layer)으로 구성된 군에서 선택되는 것 일 수 있으며, 바람직하게는, 외막단백질(outer membrane protein) 일 수 있으며, 보다 바람직하게는, 대장균의 외막단백질 OmpA, 대장균 지질단백질(lipoprotein)의 리더 서열(leader sequence)에 연결된 대장균의 외막단백질 OmpA, 대장균의 외막 단백질 OmpS, 대장균의 외막단백질 LamB, 대장균의 외막단백질 PhoE, 대장균의 외막단백질 OmpC, 대장균의 외막단백질 FadL, 살모넬라 균주의 외막단백질 OmpC 및 슈도모나스 균주의 외막단백질 OprF로 구성된 군에서 선택되는 외막단백질 일 수 있으며, 보다 더 바람직하게는 대장균 지질단백질(lipoprotein)의 리더 서열(leader sequence)에 연결된 대장균의 외막단백질 OmpA 로 이루어진 서열번호 8의 세포표면 발현 모체(Lpp-OmpA) 일 수 있다.
본 발명의 일 실시예에서는 예시적으로 항균 펩타이드의 C 말단에 펩신 절단 아미노산 링커로 1개의 류신이 부가된 항균 펩타이드 단량체(Hinge2L)로 이루어진 항균 펩타이드 중합체 Hinge2L1, Hinge2L2, Hinge2L3 및 Hinge2L4를 제작하였고(실시예 2), 항균 펩타이드 중합체의 N 말단에 사열번호 8의 아미노산으로 이루어진 세포표면 발현 모체(Lpp-OmpA)가 연결된, 항균 펩타이드 다중합체 Lpp-OmpA-Hinge2L1, Lpp-OmpA-Hinge2L2, Lpp-OmpA-Hinge2L3 및 Lpp-OmpA-Hinge2L4를 제작하였다(실시예 3).
다른 하나의 양태로서, 본 발명은 본 발명의 항균 펩타이드 다중합체 또는 항균 펩타이드 중합체를 코딩하는 폴리뉴클레오티드 및 이를 포함하는 재조합 벡터를 제공한다.
본 발명에 있어서, 상기 폴리뉴클레오티드는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA(deoxyribonucleic acid) 또는 RNA(ribonucleic acid) 가닥으로서, 상기 항균 펩타이드 다중합체 또는 항균 펩타이드 중합체를 코딩하는 폴리뉴클레오티드이다.
상기 항균 펩타이드 다중합체를 코딩하는 폴리뉴클레오티드는 서열번호 25(Lpp-OmpA-Hinge2L2), 26(Lpp-OmpA-Hinge2L3) 및 27(Lpp-OmpA-Hinge2L4)의 염기서열 중 어느 하나의 염기서열을 갖는 폴리뉴클레오티드 일 수 있다.
또한, 상기 항균 펩타이드 중합체를 코딩하는 폴리뉴클레오티드는 서열번호 28(Hinge2L2), 29(Hinge2L3) 및 30(Hinge2L4)의 염기서열 중 어느 하나의 염기서열을 갖는 폴리뉴클레오티드 일 수 있다.
본 발명에 있어서, 상기 재조합 벡터는 본 발명의 항균 펩타이드 다중합체 또는 항균 펩타이드 중합체를 발현시키는 미생물을 만들기 위하여 숙주세포에 DNA를 도입하여 항균 펩타이드 다중합체 또는 항균 펩타이드 중합체를 미생물에서 발현시키기 위한 수단으로서, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 등 공지의 발현벡터를 사용할 수 있으며, 벡터는 DNA 재조합 기술을 이용한 임의의 공지된 방법에 따라 당업자가 용이하게 제조할 수 있다.
상기 재조합 벡터는 pGEM T-easy 벡터 또는 pET21c 벡터를 사용할 수 있으며, 바람직하게는, pET21c 벡터를 사용할 수 있다.
본 발명의 재조합 벡터는 본 발명의 항균 펩타이드 다중합체 또는 항균 펩타이드 중합체를 코딩하는 폴리뉴클레오티드가 작동 가능하게 연결된 재조합 벡터이다. 상기 "작동 가능하게 연결된"은 발현 조절 서열이 항균 펩타이드 다중합체 또는 항균 펩타이드 중합체를 코딩하는 폴리뉴클레오티드 서열의 전사 및 해독을 조절하도록 연결된 것을 말하며, 발현 조절 서열(프로모터 포함)의 조절하에 폴리뉴클레오티드 서열이 발현되어 폴리뉴클레오티드 서열에 의해 코딩되는 항균 펩타이드 다중합체 또는 항균 펩타이드 중합체가 생성되도록 정확한 해독 프레임을 유지시키는 것을 포함한다.
또 다른 하나의 양태로서, 본 발명은 상기 재조합 벡터로 형질전환되어 항균 펩타이드 다중합체를 세포표면에 발현하는 항균 미생물을 제공한다.
본 발명에 있어서, 상기 "항균 미생물"이란 항균 펩타이드를 세포 표면에 발현시킬 수 있는 미생물을 의미하며, 본 발명의 항균 미생물은 세포 내에서 소화 효소인 펩신에 의해 단량체 항균 펩타이드로 절단될 수 있는 항균 펩타이드 다중합체를 세포 표면에 발현시켜서 상기 항균 미생물 자체가 체내 병원균을 직접 죽이는 작용을 수행하므로, 항생제의 대체제로 사용할 수 있다.
본 발명에 있어서, “형질전환”이란 용어는 유전자를 숙주세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것을 의미하며, 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함된다.
또한, 상기 유전자는 폴리펩티드를 코딩할 수 있는 폴리뉴클레오티드로 DNA 및 RNA를 포함한다. 상기 유전자는 숙주세포 내로 도입되어 발현될 수 있는 것이면 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 유전자는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 폴리뉴클레오티드 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 유전자에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결 신호, 리보좀 결합부위 및 번역 종결신호를 포함한다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 유전자는 그 자체 또는 폴리뉴클레오티드 구조체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있다.
상기 항균 미생물은 항균 펩타이드 다중합체를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터로 형질전환되어 항균 펩타이드 다중합체를 세포표면에 발현할 수 있는 미생물로서, 예컨대, 에스케리키아(Escherichia)속, 바실러스(Bacilus)속, 에어로박터(Aerobacter)속, 세라티아(Serratia)속, 프로비덴시아(Providencia)속 어위니아(Erwinia)속 쉬조사카로마이세스(Schizosaccharomyces)속, 엔테로박테리아(enterobacteria)속, 지고사카로마이세스(Zygosaccharomyces)속, 렙토스피라 (Leptospira)속, 데이노코쿠스(Deinococcus)속, 피치아(Pichia)속, 클루이베로마이세스(Kluyveromyces)속, 칸디다(Candida)속, 한세눌라(Hansenula)속, 데바리오마이세스(Debaryomyces)속, 뮤코(Mucor)속, 토룰롭시스(Torulopsis)속, 메틸로박터(Methylobacter)속, 살모넬라(Salmonella)속, 바실러스(Bacillus)속, 스트렙토마이세스(Streptomyces)속, 슈도모나스(Pseudomonas)속, 브레비박테리움 (Brevibacterium)속 및 코리네박테리움(Corynebacterium)속의 미생물 일 수 있다.
바람직하게는 상기 항균 미생물은 에스케리키아속 미생물 일 수 있으며, 보다 바람직하게는 대장균 일 수 있으며, 보다 더 바람직하게는 대장균 BL21(DE3) 일 수 있다.
본 발명의 일 실시예에서는, 예시적으로 항균 펩타이드 다중합체를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터로 형질전환된 대장균을 제작하고(실시예 4), IPTG를 사용하여 형질전환된 대장균에서 항균 펩타이드 다중합체의 발현을 유도한 후, 세포표면에서 항균 펩타이드 다중합체가 발현되었는지 여부를 확인하였다. 확인 결과, 세포표면 발현 모체에 연결된 항균 펩타이드 Hinge2L의 단량체(monomer), 이량체(dimer), 삼량체(trimer)가 대장균의 세포표면에서 발현되었음을 확인할 수 있었다(실시예 5 및 도 6).
또 다른 하나의 양태로서, 본 발명은 본 발명의 항균 펩타이드 다중합체, 항균 펩타이드 중합체 또는 본 발명의 항균 미생물을 유효성분으로 포함하는 항균용 약학 조성물을 제공한다.
또한, 또 다른 하나의 양태로서, 본 발명은 상기 항균용 약학 조성물을 병원성 세균, 효모 또는 진균에 의한 감염성 질환이 발병한 개체에게 투여하는 단계를 포함하는 병원성 세균, 효모 또는 진균에 의한 감염성 질환의 치료방법을 제공한다.
본 발명에 있어서, 상기 병원성 세균은 동식물의 생체에 침입하여 기생하면서 병을 일으키거나 위해를 주는 모든 미생물로서, 그람 양성균 및 그람 음성균을 포함하고, 바람직하게는, 그람 양성균인 스타필로코커스 아우레우스(Staphylococus aureus), 그람 음성균인 대장균(Escherichia coli)일 수 있다.
또한, 상기 병원성 효모 및 진균은 병원성을 가지는 효모 및 진균으로서, 이에 제한되지는 않으나, 그 예로, 칸디다 알비칸스(Candida albicans), 아스퍼질러스 휴미거투스(Aspergillus humigatus), 사카로마이세스 세리비지에(Saccharomyces cerevisiae) 및 크립토코커스 네오포만스(Cryptococcus neoformans)를 포함한다.
본 발명에 있어서, 상기 병원성 세균에 의한 감염성 질환은 콜레라균에 의한 콜레라; 적리균에 의한 세균성 적리; 백일해균에 의한 백일해; 장티푸스균에 의한 장티푸스; 디프테리아균에 의한 후두디프테리아, 비(鼻)디프테리아; 페스트균에 의한 선(腺)페스트, 폐(肺)페스트; 용혈성 연쇄구균에 의한 성홍열, 단독(丹毒), 패혈증, 피부화농증; 결핵균에 의한 폐결핵, 관절결핵, 신장결핵, 결핵성 수막염; 살모넬라균 및 장염 비브리오 등에 의한 세균성 식중독일 수 있다. 또한, 상기 병원성 효모 및 진균에 의한 감염성 질환은 크립토코커스증(cryptococcosis), 칸디다증(candidasis), 피부사상균증(Dermatophytosis), 표재성 피부 곰팡이증(superficial mycoses), 뇌수막염, 뇌농양, 뇌종양, 히스토플라즈마증(Histoplasmosis), 뉴모시스티스 폐렴 또는 아스퍼질러스증(aspergillosis)일 수 있다.
본 발명에서 용어, "치료"란 항균용 약학 조성물의 투여에 의해 병원성 세균, 효모 또는 진균에 의한 감염성 질환에 의한 증세가 호전되거나 이롭게 변경하는 모든 행위를 의미하며, 본 발명에서 용어, "개체"란 병원성 세균, 효모 또는 진균에 의한 감염성 질환이 발병하였거나 발병할 수 있는 인간을 포함한 모든 동물을 의미한다.
본 발명의 항균용 약학 조성물로 병원성 세균, 효모 또는 진균에 의한 감염성 질환을 앓고 있는 인간에게 투여함으로써 병원성 세균, 효모 또는 진균에 의한 감염성 질환을 치료할 수 있다.
상기 항균용 약학 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 본 발명의 약학 조성물은 목적하는 바에 따라 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 비내 투여, 폐내 투여, 직장내 투여될 수 있으나, 이에 제한되지는 않는다. 또한, 상기 약학 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
이러한 방법에 의해, 본 발명의 항균 미생물을 포함하는 항균용 약학 조성물을 생체 내 투여하는 경우, 항균 미생물의 세포표면에 발현된 항균 펩타이드 다중합체가 생체 내 소화효소인 펩신에 의해 절단되어 항균 활성을 가지는 항균 펩타이드 단량체로 분리되기 때문에 항균 펩타이드의 정제 및 분리과정이 필요 없을 뿐 아니라, 펩신에 의해 단량체로 절단된 항균 펩타이드의 항균 활성이 우수하여 효과적으로 병원균을 퇴치할 수 있는 효과를 거둘 수 있다.
본 발명이 일 실시예에서는, 예시적으로 항균 펩타이드 다중합체를 세포표면에서 발현하는 대장균에 펩신을 처리한 후, 펩신에 의해 분리된 항균 펩타이드 단량체의 항균 활성을 측정하였다. 측정 결과, 그람 양성균인 스타필로코커스 아우레우스, 그람 음성균인 대장균 및 효모인 사카로마이세스 세리비지에에 대한 우수한 항균력을 보유하고 있음을 확인할 수 있었다(실시예 6 및 도 7).
본 발명에 있어서, 본 발명의 항균용 약학 조성물은 허용 가능한 담체를 포함할 수 있다. 약학적으로 허용 가능한 담체를 포함하는 상기 항균용 약학 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석 제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 하나 이상의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로오스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제된다. 경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테로 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다. 또한, 항균용 약학 조성물에 포함된 항균 미생물이 항균 펩타이드 다중합체를 세포표면에 발현하는데 필요한 영양분을 포함할 수 있다.
상기 항균용 약학 조성물은 정제, 환제, 산제, 과립제, 캡슐제, 현탁제, 내용액제, 유제, 시럽제, 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제 및 좌제로 이루어진 군으로부터 선택되는 어느 하나의 제형을 가질 수 있다.
상기 본 발명의 약학 조성물은 약학적으로 유효한 양으로 투여한다. 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.
본 발명의 조성물은 병원성 세균, 효모 또는 진균에 의한 감염성 질환의 치료를 위하여 단독으로, 수술, 호로몬 치료, 약물 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.
또 다른 하나의 양태로서, 본 발명은 본 발명의 항균 미생물을 유효성분으로 포함하는 항균용 의약외품 조성물을 제공한다. 즉, 본 발명은 병원성 세균, 효모 또는 진균에 의한 감염성 질환의 예방 또는 개선을 목적으로 의약외품 조성물을 제공하는 것이다.
본 발명에 있어서, 상기 의약외품 조성물은 다른 의약외품 또는 의약외품 성분과 함께 사용할 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효성분의 혼합양은 사용 목적(예방, 건강 또는 치료적 처치)에 따라 적합하게 결정될 수 있다.
상기 의약외품 조성물은 소독청결제, 샤워폼, 가그린, 물티슈, 세제비누, 핸드워시, 가습기 충진제, 마스크, 연고제 또는 필터충진제 일 수 있다.
또 하나의 양태로서, 본 발명은 본 발명의 항균 펩타이드 다중합체를 세포표면에 발현하는 항균 미생물의 제조방법을 제공한다.
본 발명에 있어서, 상기 제조방법은 (a) 본 발명의 항균 펩타이드 다중합체를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 제조하는 단계; (b) 상기 재조합 벡터를 숙주세포에 도입하여 형질전환체로 형질전환하는 단계; 및 (c) 상기 형질전환체를 배양하여 항균 펩타이드 다중합체의 발현을 유도하는 단계를 포함한다.
상기 재조합 벡터를 숙주세포에 도입하여 형질전환하는 방법은 본 발명의 DNA를 포함하는 재조합 벡터를 당업계에 공지된 방법, 예를 들어 이에 한정되지는 않으나, 일시적인 형질감염(transient transfection), 미세 주사, 형질도입(transduction), 세포 융합, 칼슘 포스페이트 침전법, 리포좀 매개된 형질감염(liposem-mediated transfection), DEAE 덱스트란-매개된 형질 감염(DEAE Dextran-mediated transfection), 폴리브렌-매개된 형질 감염(polybrene-mediated transfection), 전기 침공법(electroporation) 등의 공지 방법으로 숙주세포에 도입하여 형질전환 시킬 수 있다.
상기 형질전환체를 배양하여 항균 펩타이드 다중합체의 발현을 유도하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있는데, 예를 들면, 대장균을 키우는 일반적인 조건인 37℃, 호기조건, LB 배지, IPTG 첨가에 의한 발현 유도를 들 수 있다.
본 발명의 일 실시예에서는, 예시적으로 CaCl2를 이용한 형질전환 방법으로 대장균 BL21(DE3)에 재조합 벡터 pLH0, pLH1, pLH2 및 pLH3로 형질전환하여 본 발명의 항균 펩타이드 다중합체를 발현시켰다(실시예 4). 또한, 도 6을 보면, 상기 재조합 벡터에 의해 형질전환된 대장균에서 항균 펩타이드 다중합체가 세포표면에 발현되었음을 알 수 있었다(도 6).
이러한 방법에 의해 생산된 항균 미생물은 세포표면에 펩신에 의해 절단되는 항균 펩타이드 다중합체를 발현하기 때문에, 생균 상태로 생체 내에 투여하면 펩신에 의해 항균 활성을 가지는 항균 펩타이드 단량체로 분리되기 때문에 세포 파쇄, 항균 펩타이드의 분리 및 정제과정이 필요하지 않을 뿐만 아니라, 분리된 항균 펩타이드가 우수한 항균력을 나타내므로 병원균을 효과적으로 퇴치할 수 있는 효과를 거둘 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1 : 펩신 절단 아미노산 링커의 서열 결정 및 이를 포함하는 항균 펩타이드 단량체의 항균력 측정
1-1 : 펩신 절단 아미노산 링커의 서열 결정
펩신에 의해 단량체로 분리되는 항균 펩타이드 중합체를 제조하기 위하여, 한국 등록 특허 제0441402호에 개시된 서열번호 1의 항균 펩타이드(서열번호 9 : RVVRQWPIGRVVRRVVRRVVR)를 임의의 아미노산을 링커로 사용하여 연결한 항균 펩타이드 중합체에 있어서, 펩신에 의해 아미노산 링커가 절단되어 각각의 단량체로 분리되도록 하는 아미노산 서열을 컴퓨터 프로그램툴인 ExPAsy(Expert protein analysis system, 스위스)를 사용하여 결정하였다. 그 결과, 류신, 페닐알라닌 및 타이로신의 C 말단과 항균 펩타이드의 N 말단 사이에 형성된 펩티드 결합이 펩신에 의해 절단됨을 확인하고, 상기 아미노산 각각을 펩신 절단 아미노산 링커로 결정하였다.
1-2 : 펩신 절단 아미노산 링커가 부가된 항균 펩타이드 단량체의 항균력 측정
항균 펩타이드에 펩신에 의해 절단되는 아미노산을 첨가한 항균 펩타이드 중합체의 아미노산 서열을 프로그램을 통하여 예측한 결과 류신(luecine), 페닐알라닌(phenylalanine), 타이로신(tyrosine) 뒤에서 펩신이 작용하는 것을 확인하고 이들 3가지 펩타이드에 대하여 화학 합성을 통하여 순도 95%의 항균 펩타이드를 얻었다.
제조한 항균 펩타이드의 미생물에 대한 항균 활성을 96-웰 마이크로다이루션 최소저해농도 측정법(minimal inhibitory concentration assay)으로 측정하였다. 박테리아와 곰팡이를 트립티케이즈 콩육즙 배지(trypticase soy broth ; TSB)에서 각각 37℃와 30℃에서 밤새워 키운 후, 이들을 새 배지에 접종하여 2시간 동안 키워 균주들이 대수기가 되도록 한 후, 1 ml 당 105 균주가 되도록 희석하여 96-웰 플레이트에 10 ㎕ 씩 접종하고, 순차적으로 희석되어 있는 항균 펩타이드를 각 웰에 10 ㎕ 씩 처리하였다. 96-웰 플레이트를 12시간 동안 배양하여 각 웰의 흡광도를 측정하여 균주를 전혀 자라지 못하게 하는 최소농도를 최소저해농도로 정하였으며, 그 결과를 표 1에 나타내었다. 표 1의 Hinge2L, Hinge2F 및 Hinge2Y는 서열번호 9의 항균 펩타이드에 각각 류신, 페닐알라닌 및 타이로신이 부가된 항균 펩타이드이다.
표 1
Figure PCTKR2010009434-appb-T000001
항균력 실험 결과, 항균 펩타이드에 류신이 붙은 펩타이드가 그람 양성균인 스타필로코커스 아우레우스(Staphylococus. aureus), 그람 음성균인 대장균(Escherichia. coli), 효모인 사카로마이세스 세리비지에(Saccharomyces. cerevisiae)에 대해서 2 μl/ml로 가장 우수한 항균력을 보유하고 있음을 알 수 있었다(표 1).
실시예 2 : 펩신에 의해 절단되는 항균 펩타이드 중합체 제조
상기 실시예 1에서 결정된 펩신 절단 아미노산 링커(류신)를 항균 펩타이드의 C 말단에 첨가한 항균 펩타이드 단량체(Hinge2L)를 코딩하는 DNA 절편을 제작하고, 벡터에 클로닝하였다. 이를 위하여, 서열번호 1(5'-GAAGACCCCGTGTTGTTCGTCAGTGGCCGATTGGTCGTGTCGTTCGCCGTGTTGTTCG-3') 및 서열번호 2(5'-GGATGGATCCTAAGCACGCAGACGAACGACGCGACGAACAACACGGCGAACGACACG-3')의 프라이머를 사용하여 PCR을 수행함으로써, 서열번호 9의 항균펩타이드의 C 말단에 펩신 절단 아미노산 링커인 류신이 부가된 22개의 아미노산으로 구성된 항균 펩타이드 단량체를 코딩하는 이중 가닥의 DNA 절편을 완성하였다. PCR 조건은 94℃에서 30초 동안 DNA 변성, 56℃에서 30초 동안 어닐링, 72℃에서 30초간 DNA 합성이며, 이를 30회 반복하였다. 클로닝을 위하여 항균 펩타이드 단량체의 N 말단에 제한효소 BbsI의 인식부위(5'-GAAGAC(N)₂▼-3', 3'-CTTCTG(N)6▲-5') 및 C 말단에 FokI의 인식부위(5‘-GGATG(N)9▼-3', 3'- CCTAC(N)13▲-5')를 도입하였다.
이후, 완성된 DNA 절편을 pGEM T-easy 벡터에 삽입하고, pMBT-H라 명명하였다.
또한, 항균 펩타이드 중합체를 제작하기 위하여, PCR을 통하여 제작된 항균 펩타이드 단량체 Hinge2L을 코딩하는 DNA 절편을 제한효소 BbsI 및 FokI으로 절단한 후, 제한효소 BbsI으로 절단된 pMBT-H 벡터에 삽입하여 Hinge2L이 2개 연결된 pMBT-H2벡터를 제작하였다. 이러한 과정을 반복하여 pMBT-H3, pMBT-H4···pMBT-Hn를 제작하였다(도 2).
실시예 3 : 세포표면 발현 모체와 연결된 항균 펩타이드 중합체의 DNA 절편 제조 및 클로닝
3-1 : Lpp-OmpA와 연결된 항균 펩타이드 중합체 DNA 제작 및 클로닝
항균 펩타이드 중합체를 숙주세포의 세포표면에서 발현되도록 하기 위하여, 세포표면 발현 모체로서 대장균(E. coli) 지질단백질(lipoprotein)의 선도서열(leader sequence) 및 세포 외막에 안정적으로 부착되어 있는 대장균 외막단백질 A(OmpA)의 서열 일부를 사용한 서열번호 7의 염기서열을 가지는 Lpp-OmpA DNA 절편을 제작하고, 이를 벡터에 클로닝을 하고자 하였다.
먼저, Lpp-OmpA DNA 절편을 제작하기 위하여 서열번호 3(5'-CGCCATATGAAAGCTACTAAACTGGTACTGGGCAACAACAATGGCCCGACC-3'), 서열번호 4(5'-GCAAACACCGGAGAAACGCCGGTG-3'), 서열번호 5(5'-TTCTCCGGTGTTTGCTGGCGGTGTTG-3') 및 서열번호 6(5'-CGGGATCCTAGTGATGGTGATGGTGATGAACACGCAGTCTTCCACGGGTAG-3')의 프라이머를 합성하고, 대장균 MG1655의 genomic DNA를 주형으로 하여, 94℃에서 30초 동안 DNA 변성, 54℃에서 30초간 어닐링, 72℃에서 1분 30초 동안 DNA 합성과정을 30회 반복하는 재조합 PCR 방법을 통하여 123개의 아미노산으로 구성된 Lpp-OmpA 폴리펩티드를 코딩하는 DNA 절편(369개의 뉴클레오티드)을 완성하였다.
이후, 발현시 아미노산의 변화가 일어나지 않도록 함과 동시에 효과적인 클로닝을 위하여, 재조합 PCR 방법을 통하여 완성된 Lpp-OmpA DNA 서열 사이에 있는 제한효소 BbsI의 인식부위 중, 321번째 서열의 C를 G로, 324번째 서열의 C를 T로 치환하여 Lpp-OmpA DNA 절편(서열번호 7)을 제작하였다. 이후, 제작된 Lpp-OmpA DNA 절편을 벡터에 클로닝 하기 위하여 Lpp-OmpA의 N 말단에 제한효소 NdeI의 인식부위(CATATG)를 도입하고, C 말단에는 실시예 2에서 제작된 항균 펩타이드 중합체 DNA 절편이 연결될 수 있도록 제한효소 BbsI의 인식부위(5'-GAAGAC(N)₂▼-3', 3'-CTTCTG(N)6▲-5')를 삽입하고, 제한효소 BamHI의 인식부위(GGATCC) 역시 도입하였다. 또한, HIS tag를 삽입하여 발현 확인을 할 수 있도록 하였다.
완성된 DNA 절편을 pGEM T-easy vector에 삽입하고, 이를 pLO 벡터라 명명하였다. pLO 벡터는 BbsI 절단하고, 상기 실시예 2에서 제작한 pMBT-Hn을 제한효소 BbsI과 FokI으로 절단하여 항균 펩타이드 중합체 Hinge2Ln의 DNA 절편을 제한효소에 의해 절단된 pLO 벡터와 라이게이션(ligation)하여, Lpp-OmpA에 항균 펩타이드 중합체 DNA가 연결된 DNA 절편(Lpp-OmpA-Hinge2Ln)이 삽입된 pLO-Hinge2Ln 벡터를 제작하였다(n은 항균 펩타이드 단량체 Hinge2L의 개수를 나타낸다, 도 2).
3-2 : Lpp-OmpA-Hinge2Ln DNA 절편의 사이즈 측정
클로닝 되었는지 여부를 확인하기 위하여, 상기 실시예 3-1에서 제작된 각각의 pLO-Hinge2Ln 벡터에 삽입된 Lpp-OmpA-Hinge2Ln DNA 절편의 사이즈를 측정하였다.
이를 위하여, 각각의 pLO-Hinge2Ln 벡터를 제한효소 NotI으로 처리하여 벡터에 삽입된 Lpp-OmpA-Hinge2Ln DNA 절편 사이즈를 확인하고 , 그 결과를 도 3에 나타내었다. 전기영동은 1X TBE(Tris, Boric acid, EDTA) 버퍼 30 ml에 1% 아가로스 젤 0.3 g을 넣고 전자레인지에서 끓인 후, 틀에 붓고 30분간 방치하여 굳게 하였다. 이후, Lpp-OmpA-Hinge2Ln DNA 용액 10 ㎕에 6X loading dye 2 ㎕를 섞어 젤에 로딩하고, 100 V로 40분 동안 전기영동 한 후, EtBr 용액에 젤을 20분 동안 담궈 염색하고, 다시 젤을 수돗물에 15분 동안 담궈 탈색하였다.
도 3은 Lpp-OmpA-Hinge2Ln DNA 절편 사이즈를 나타낸 전기영동 사진으로서, 도 3의 M은 DNA 사이즈 마커이고, 레인(lane) LH0, LH1, LH2, LH3 및 LH4는 Lpp-OmpA-Hinge2Ln DNA 절편 사이즈를 나타낸다. 구체적으로, LH0은 Lpp-OmpA를 나타내며, LH1, LH2, LH3 및 LH4는 각각 세포표면 발현 모체인 Lpp-OmpA에 연결된 항균 펩타이드 단량체의 개수를 나타낸다.
따라서, 도 3에 나타난 바와 같이, 세포표면 발현 모체인 Lpp-OmpA에 항균 펩타이드 중합체가 연결된 항균 펩타이드 다중합체, Lpp-OmpA-Hinge2Ln DNA가 효과적으로 벡터에 클로닝 되었음을 확인할 수 있었다(도 3).
실시예 4 : 세포표면에 항균 펩타이드 다중합체(Lpp-OmpA-Hinge2Ln)를 발현하는 미생물 제작
도 4에 도시된 바와 같이, Lpp-OmpA DNA에 항균 펩타이드 다중합체 및 His tag를 연결하여, 이와 같은 형태로 발현될 수 있도록 재조합 벡터를 제조하였다. 이를 위하여, 상기 실시예 3에서 제작한 pLO-Hinge2Ln 벡터에 제한효소 NdeI과 BamHI을 처리하여 Lpp-OmpA-Hinge2Ln DNA 절편을 얻고, 겔 추출 키트(Gel extraction kit, Qiagen, 독일)를 사용하여 원하는 크기의 DNA 조각을 분리하였다.
이후, 분리된 DNA 조각을 NdeI과 BamHI으로 절단한 pET21c 벡터에 연결시켜 pLHn (pLH0, pLH1, pLH2···, n=Hinge2L 단량체의 개수) 벡터를 제조하였다(도 4). 이후, CaCl2를 이용한 형질전환 방법으로 pLH0, pLH1, pLH2 및 pLH3 벡터 각각을 E.coli BL21(DE3)에 각각 도입하였다.
실시예 5 : 항균 펩타이드 다중합체(Lpp-OmpA-Hinge2Ln)의 세포표면 발현 확인
상기 실시예 4의 형질전환된 대장균의 세포표면에 항균 펩타이드 다중합체가 발현되는지 여부를 확인하고자 하였다. 이를 위하여, LB 배지(Luria Botani, 트립톤 1%, 효모 추출물 0.5%, NaCl 0.5%)를 사용하여 형질전환된 대장균을 배양하고, 배양액이 OD600=0.5∼0.6 사이일 때, 0.2mM의 IPTG(isopropyl-β-Dthiogalactopyranoside)를 첨가하여 항균 펩타이드 다중합체의 세포표면 발현을 유도하였다. 발현을 유도한 후, 4시간 뒤 배양액을 제거하고 PBS(phosphate buffered saline)로 2번 세척하고, 0.2%의 BSA(bovine serum albumin)가 포함된 PBS 및 His-tag 1차 항체(His-tag primary antibody)를 함께 넣은 후, 얼음에서 30분 동안 배양하였다. 배양한 후, PBS로 2번 세척하고 FITC(fluorescein isothiocyanate)가 표지된 His-tag 2차 항체(FITC conjugated his tag secondary antibody)를 넣은 후, 빛이 들어가지 않도록 하면서 얼음에서 30분 동안 배양하였다. 이후, PBS로 다시 세척을 하고 대장균 세포들을 PBS로 재부유(resuspension) 시키고, 이를 공초점 현미경(confocal microscope)을 이용하여 관찰하였다.
그 결과, 항균 펩타이드 단량체가 없는 세포표면 발현 모체가 IPTG로 발현이 유도된 것을 확인하였으며(LH0), 세포표면 발현 모체와 항균 펩타이드 단량체, 세포표면 발현 모체와 이량체, 세포표면 발현 모체와 삼량체가 IPTG로 발현이 유도되었음을 확인하였다(도 5).
또한, 형질전환된 대장균에서 IPTG로 발현이 유도된 각각의 세포표면 발현 모체에 연결된 항균 펩타이드 다중합체 LH1, LH2, 및 LH3가 대장균의 세포 표면에서 발현되었음을 확인할 수 있었다(도 6).
실시예 6 : 세포 표면에 발현된 항균 펩타이드 다중합체의 항균력 확인
상기 실시예 4에서 제작된 세포 표면에 항균 펩타이드 다중합체를 발현시키는 대장균의 항균 효과를 측정하였다. 형질전환된 E. coli BL21(DE3)를 100ml의 LB 배지에서 배양하고, 배양액의 현탁액이 OD600=0.5∼0.6 사이일 때 0.2mM IPTG를 첨가하여 세포표면 발현 모체에 연결된 항균 펩타이드 다중합체의 발현을 유도하였다. 발현을 유도한 후, 4시간 뒤 배양액을 제거하고 NAPB(sodium phosphate buffer)로 2번 세척한 후, 동일 버퍼로 재부유(resuspension) 시키고 모든 샘플 대장균은 1X1010 cfu/ml로 수를 동일하게 맞추어 주었다. 다음으로 생체의 위와 유사한 농도의 HCl 수용액(SGF, sitimulated gastirc fluid ; 0.084N HCl, 35mM NaCl, pH 1.2 or 2.0)에 펩신을 녹이고 대장균에 처리 한 뒤 30분간 배양하였다. 배양한 후, 펩신의 활성을 막고 pH를 중화시키기 위해 HCl 수용액과 동일한 농도의 NaOH 수용액과 섞고, 원심분리 하여 펩신에 의해 잘린 항균 펩타이드 단량체 이외의 세포 찌꺼기들을 제거하였다.
펩신에 의해 잘린 항균 펩타이드 단량체로 그람 양성균인 스타필로코커스 아우레우스(Staphylococus aureus), 그람 음성균인 대장균(Escherichia coli) 및 효모인 사카로마이세스 세리비지에(Saccharomyces cerevisiae)를 이용하여 항균력을 측정하였다.
각각의 균들은 배양 중 대수기 때 채취하여 NAPB로 2번 세척한 뒤 재부유(resuspension) 시키고, 모든 균의 수를 1X105 cfu/ml로 맞추어 주었다. 96-well 플레이트에 각각의 균 및 펩신에 의해 잘린 항균 펩타이드 단량체 수용액을 10μl씩 분주하여 잘 섞어주고, 37℃의 온도에서 3시간 동안 배양하였다. 3시간 후, 2X TSB(Trypticase Soy Broth) 배지를 넣고, 다시 37℃의 온도에서 12시간 동안 배양한 후 OD595 값을 측정하였다.
그 결과, 항균펩타이드 다중합체 중 LH3의 항균력이 그람 양성균인 스타필로코커스 아우레우스에 대하여 17.95%, 그람 음성균인 대장균에 대해서 30%, 효모인 사카로마이세스 세리비지에에 대하여 33.17%로 가장 우수한 항균력을 나타내었다(도 7). 이러한 결과는 항균 펩타이드 다중합체에 항균 펩타이드 단량체가 많이 포함될수록 더 우수한 항균 활성을 나타낼 수 있음을 나타내며, 이러한 항균 펩타이드 다중합체를 세포 표면에 발현하는 항균 미생물을 체내에 투여하였을 때, 병원균 퇴치 및 면역세포 활성 등의 항균 활성을 보일 수 있음을 나타낸다. 이로써, 항균 펩타이드의 분리 및 정제과정 없이 항균 펩타이드를 이용할 수 있어 항균 펩타이드의 보급화를 유도할 수 있는 이점을 거둘 수 있다.

Claims (23)

  1. 하기 식 1 또는 2로 표현되는 단량체를 1개 이상 포함하는 항균 펩타이드 중합체 및 상기 중합체에 연결된 세포표면 발현 모체를 포함하는, 항균 펩타이드 다중합체.
    식 (1) : N 말단-[항균 펩타이드-펩신 절단 아미노산 링커]-C 말단
    식 (2) : N 말단-[펩신 절단 아미노산 링커-항균 펩타이드]-C 말단
    단, 상기 항균 펩타이드는 펩신 절단 아미노산 링커와 다른 아미노산으로 이루어진다.
  2. 제 1항에 있어서, 상기 항균 펩타이드는 서열번호 9 내지 24 중 어느 하나의 아미노산 서열을 갖는 것인 다중합체.
  3. 제 1항에 있어서, 상기 펩신 절단 아미노산 링커는 류신, 페닐알라닌 및 타이로신으로 이루어진 군에서 선택되는 어느 하나 이상의 아미노산인 것인 다중합체.
  4. 제 1항에 있어서, 상기 세포표면 발현 모체는 중합체의 N 말단에 연결된 것인 다중합체.
  5. 제 1항에 있어서, 상기 세포표면 발현 모체는 외막단백질인 것인 다중합체.
  6. 제 5항에 있어서, 상기 외막단백질은 대장균의 외막단백질 OmpA, 대장균 지질단백질(lipoprotein)의 리더 서열(leader sequence)에 연결된 대장균의 외막단백질 OmpA, 대장균의 외막 단백질 OmpS, 대장균의 외막단백질 LamB, 대장균의 외막단백질 PhoE, 대장균의 외막단백질 OmpC, 대장균의 외막단백질 FadL, 살모넬라 균주의 외막단백질 OmpC 및 슈도모나스 균주의 외막단백질 OprF로 구성된 군에서 선택되는 것인 다중합체.
  7. 제 6항에 있어서, 상기 대장균 지질단백질(lipoprotein)의 리더 서열(leader sequence)에 연결된 대장균의 외막단백질 OmpA는 서열번호 8의 아미노산서열로 이루어진 것인 다중합체.
  8. 제 1항에 있어서, 상기 항균 펩타이드는 서열번호 9의 아미노산 서열을 갖고, 상기 펩신 절단 아미노산 링커는 류신이며, 상기 세포표면 발현 모체는 서열번호 8의 아미노산 서열을 갖는 것인 다중합체.
  9. 하기 식 1 또는 2로 표현되는 단량체를 1개 이상 포함하는 항균 펩타이드 중합체.
    식 (1) : N 말단-[항균 펩타이드-펩신 절단 아미노산 링커]-C 말단
    식 (2) : N 말단-[펩신 절단 아미노산 링커-항균 펩타이드]-C 말단
    단, 상기 항균 펩타이드는 펩신 절단 아미노산 링커와 다른 아미노산으로 이루어진다.
  10. 제 1항 내지 제 8항 중 어느 한 항의 다중합체를 코딩하는 폴리뉴클레오티드.
  11. 제 9항의 중합체를 코딩하는 폴리뉴클레오티드.
  12. 제 10항에 있어서, 상기 폴리뉴클레오티드는 서열번호 25 내지 27 중 어느 하나의 염기서열을 갖는 것인 폴리뉴클레오티드.
  13. 제 11항에 있어서, 상기 폴리뉴클레오티드는 서열번호 28 내지 30 중 어느 하나의 염기서열을 갖는 것인 폴리뉴클레오티드.
  14. 제 10항 내지 제 13항 중 어느 한 항의 폴리뉴클레오티드를 포함하는 재조합 벡터.
  15. 제 14항의 재조합 벡터로 형질전환되어 항균 펩타이드 다중합체를 세포표면에 발현하는 항균 미생물.
  16. 제 15항에 있어서, 상기 항균 미생물은 생체 내에서 항균 펩타이드 다중합체를 세포표면에 발현하는 것인 미생물.
  17. 제 1항 내지 제 8항 중 어느 한 항 이상의 다중합체를 유효성분으로 포함하는 항균용 약학 조성물.
  18. 제 9항의 중합체를 유효성분으로 포함하는 항균용 약학 조성물.
  19. 제 15항 또는 제 16항의 항균 미생물을 유효성분으로 포함하는 항균용 약학 조성물.
  20. 제 15항 또는 제 16항의 항균 미생물을 유효성분으로 포함하는 항균용 의약외품 조성물.
  21. (a) 제 1항 내지 제 8항 중 어느 한 항의 항균 펩타이드 다중합체를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 제조하는 단계; (b) 상기 재조합 벡터를 숙주세포에 도입하여 형질전환체로 형질전환하는 단계; 및 (c) 상기 형질전환체를 배양하여 항균 펩타이드 다중합체의 발현을 유도하는 단계를 포함하는, 항균 펩타이드 다중합체를 세포표면에 발현하는 항균 미생물의 제조방법.
  22. 제 17항 내지 제 19항 중 어느 한 항 이상의 항균용 약학 조성물을 병원성 세균, 효모 또는 진균에 의한 감염성 질환이 발병한 개체에게 투여하는 단계를 포함하는 병원성 세균, 효모 또는 진균에 의한 감염성 질환의 치료방법.
  23. 제 22항에 있어서, 상기 감염성 질환은 콜레라, 세균성 적리, 백일해, 장티푸스, 후두디프테리아, 비(鼻)디프테리아, 선(腺)페스트, 폐(肺)페스트, 성홍열, 단독(丹毒), 패혈증, 피부화농증, 폐결핵, 관절결핵, 신장결핵, 결핵성 수막염, 세균성 식중독, 크립토코커스증(cryptococcosis), 칸디다증(candidasis), 피부사상균증(Dermatophytosis), 표재성 피부 곰팡이증(superficial mycoses), 뇌수막염, 뇌농양, 뇌종양, 히스토플라즈마증(Histoplasmosis), 뉴모시스티스 폐렴 및 아스퍼질러스증(aspergillosis)으로 이루어진 군에서 선택되는 어느 하나 이상의 감염성 질환인 것인 치료방법.
PCT/KR2010/009434 2010-12-06 2010-12-28 세포표면에서 발현되는 항균 펩타이드 다중합체 WO2012077849A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013543065A JP5795079B2 (ja) 2010-12-06 2010-12-28 細胞表面で発現される抗菌ペプチド多重合複合体
EP10860601.3A EP2650304B1 (en) 2010-12-06 2010-12-28 Antimicrobial peptide multiblock copolymer to be expressed on surface of cells
US13/991,825 US20130345119A1 (en) 2010-12-06 2010-12-28 Multimeric antimicrobial peptide complex which is displayed on cell surface
CN2010800711681A CN103459411A (zh) 2010-12-06 2010-12-28 在细胞表面上表达的抗微生物肽多嵌段共聚物
US14/846,637 US10406204B2 (en) 2010-12-06 2015-09-04 Multimeric antimicrobial peptide complex which is displayed on cell surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0123792 2010-12-06
KR1020100123792A KR101286733B1 (ko) 2010-12-06 2010-12-06 세포표면에서 발현되는 항균 펩타이드 다중합체

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/991,825 A-371-Of-International US20130345119A1 (en) 2010-12-06 2010-12-28 Multimeric antimicrobial peptide complex which is displayed on cell surface
US14/846,637 Division US10406204B2 (en) 2010-12-06 2015-09-04 Multimeric antimicrobial peptide complex which is displayed on cell surface

Publications (1)

Publication Number Publication Date
WO2012077849A1 true WO2012077849A1 (ko) 2012-06-14

Family

ID=46207322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009434 WO2012077849A1 (ko) 2010-12-06 2010-12-28 세포표면에서 발현되는 항균 펩타이드 다중합체

Country Status (6)

Country Link
US (2) US20130345119A1 (ko)
EP (1) EP2650304B1 (ko)
JP (1) JP5795079B2 (ko)
KR (1) KR101286733B1 (ko)
CN (1) CN103459411A (ko)
WO (1) WO2012077849A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101830792B1 (ko) 2016-01-27 2018-02-21 건국대학교 산학협력단 항균 펩타이드를 포함하는 불용성 융합단백질 및 이를 이용한 항균 펩타이드의 제조 방법
CA3072620A1 (en) * 2017-08-29 2019-03-07 San Diego State University (SDSU) Foundation, dba San Diego State University Research Foundation Compositions and methods using methanotrophic s-layer proteins for expression of heterologous proteins

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008195A (en) * 1996-02-16 1999-12-28 The Regents Of University Of California Antimicrobial peptides and methods of use
US6713062B1 (en) * 1999-05-17 2004-03-30 The Regents Of The University Of Michigan Acinetobacter outer membrane protein and gene sequence compositions and methods
KR100441402B1 (ko) 2002-03-26 2004-07-23 한국과학기술원 항균 활성을 갖는 펩타이드, 이들의 유도체 및 이들을포함하는 항균 조성물
US20060259995A1 (en) * 2002-10-10 2006-11-16 Diversa Corporation Proteases, nucleic acids encoding them and methods for making and using them
WO2009108406A2 (en) * 2008-01-10 2009-09-03 Trustees Of Boston University Engineered bacteriophages as adjuvants for antimicrobial agents and compositions and methods of use thereof
WO2010114797A1 (en) * 2009-03-31 2010-10-07 Innopharma, Llc Protein-assisted drug delivery system for the targeted administration of active agents for overcoming blood-brain barrier

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024636A1 (en) * 1992-05-29 1993-12-09 The University Of British Columbia Use of protein oprf for bacterial cell surface expression of oligopeptides
CA2351737A1 (en) * 1998-11-20 2000-06-02 Micrologix Biotech Inc. Efficient methods for producing antimicrobial cationic peptides in host cells
WO2004089986A1 (en) * 2003-04-14 2004-10-21 Stichting Voor De Technische Wetenschappen Antimicrobial peptide from transferrin family
US20050019720A1 (en) * 2003-07-24 2005-01-27 Toshio Harima Orthodontic wire retainer
US7255855B2 (en) * 2004-02-27 2007-08-14 Bioleaders Corporation Surface expression method of peptides P5 and Anal3 using the gene encoding poly-gamma-glutamate synthetase
US20100055244A1 (en) * 2006-08-09 2010-03-04 Henriques Adriano O Spore surface displays of bioactive molecules
JP5775260B2 (ja) * 2006-09-06 2015-09-09 シー3 ジアン インコーポレイテッド 選択的に標的化された抗菌性ペプチドおよびその使用
US20100215670A1 (en) * 2006-10-30 2010-08-26 Jeannick Cizeau Immunotoxin Fusions Comprising An Antibody Fragment and a Plant Toxin Linked by Protease Cleavable Linkers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008195A (en) * 1996-02-16 1999-12-28 The Regents Of University Of California Antimicrobial peptides and methods of use
US6713062B1 (en) * 1999-05-17 2004-03-30 The Regents Of The University Of Michigan Acinetobacter outer membrane protein and gene sequence compositions and methods
KR100441402B1 (ko) 2002-03-26 2004-07-23 한국과학기술원 항균 활성을 갖는 펩타이드, 이들의 유도체 및 이들을포함하는 항균 조성물
US20060259995A1 (en) * 2002-10-10 2006-11-16 Diversa Corporation Proteases, nucleic acids encoding them and methods for making and using them
WO2009108406A2 (en) * 2008-01-10 2009-09-03 Trustees Of Boston University Engineered bacteriophages as adjuvants for antimicrobial agents and compositions and methods of use thereof
WO2010114797A1 (en) * 2009-03-31 2010-10-07 Innopharma, Llc Protein-assisted drug delivery system for the targeted administration of active agents for overcoming blood-brain barrier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650304A4 *

Also Published As

Publication number Publication date
EP2650304A4 (en) 2014-05-21
JP5795079B2 (ja) 2015-10-14
KR101286733B1 (ko) 2013-07-16
EP2650304B1 (en) 2017-04-19
KR20120062504A (ko) 2012-06-14
US20130345119A1 (en) 2013-12-26
CN103459411A (zh) 2013-12-18
US20150366992A1 (en) 2015-12-24
EP2650304A1 (en) 2013-10-16
US10406204B2 (en) 2019-09-10
JP2014502164A (ja) 2014-01-30

Similar Documents

Publication Publication Date Title
US10744192B2 (en) Vaccine
JPH0657154B2 (ja) 所望のポリペプチドを発現させるためのクローニングビーイクル
Liu et al. Identification and analysis of a Sciaenops ocellatus ISG15 homologue that is involved in host immune defense against bacterial infection
JPH07506725A (ja) ウェルシュ菌ワクチン
RU2646137C2 (ru) КОМПОЗИЦИЯ ПО ПРЕДУПРЕЖДЕНИЮ ИНФЕКЦИИ Mycoplasma spp.
Haigh et al. Carbon dioxide regulated secretion of the EaeB protein of enteropathogenic Escherichia coli
KR20180114010A (ko) 항균 조성물 및 항균 조성물로 스태필로코커스 감염들을 치료하는 방법
CN108066755B (zh) 一种抗羊包虫病感染的基因工程亚单位疫苗及其制备方法和应用
US20130236948A1 (en) Recombinant microorganisms and uses thereof
WO2012077849A1 (ko) 세포표면에서 발현되는 항균 펩타이드 다중합체
WO2011025344A2 (ko) 소의 병원성 대장균의 부착인자가 형질전환된 약독화 살모넬라균 변이주 및 이를 포함하는 소의 대장균증 및 살모넬라균증의 예방 및 치료용 백신조성물
Cullen et al. Construction and evaluation of a plasmid vector for the expression of recombinant lipoproteins in Escherichia coli
KR101765394B1 (ko) 돼지 유행성설사 바이러스의 에피토프 단백질, 이를 암호화하는 유전자를 포함하는 재조합 벡터, 이를 발현하는 형질전환체 및 이를 포함하는 돼지 유행성설사 바이러스 예방 또는 치료용 조성물
CN115894641B (zh) A型肉毒素突变体及其基因工程菌的构建
WO2019235705A1 (en) Vaccine composition comprising recombinant protein of staphylococcus aureus attenuated enterotoxin and cytotoxin
WO2018066948A2 (ko) 다수의 에피토프로 구성된 재조합 항원 단백질 및 이의 제조방법
Perez-Casal et al. A GapC chimera retains the properties of the Streptococcus uberis wild-type GapC protein
JP2002503106A (ja) 細菌フェロモンおよびその使用
WO2019054699A1 (ko) 트립토파닐-tRNA 합성효소 유전자를 포함하는 재조합 벡터 및 이의 용도
WO2023229053A1 (ko) 코로나바이러스 질환의 예방 또는 치료용 조성물
KR101642499B1 (ko) 수용성 파스튜렐라 멀토시다 독소를 포함하는 재조합 융합 단백질, 면역원성 조성물 및 이의 제조방법
WO2024085480A1 (ko) 세포외막 지질단백질 PrsA 발현계를 이용한 세포표면 대량발현 기술
WO2022260468A1 (ko) 신규 fgf21 변이체 개발 및 이의 생산기법과 용도
WO2022114521A1 (ko) 기능성 펩티드가 결합된 생체적합 폴리펩티드를 포함하는 염증 질환의 억제용 조성물
JP3693900B2 (ja) 1a5b構造を有する蛋白質の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013543065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010860601

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010860601

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13991825

Country of ref document: US