WO2012077804A1 - (トリフルオロメチル)アルキルケトンの製造方法 - Google Patents

(トリフルオロメチル)アルキルケトンの製造方法 Download PDF

Info

Publication number
WO2012077804A1
WO2012077804A1 PCT/JP2011/078610 JP2011078610W WO2012077804A1 WO 2012077804 A1 WO2012077804 A1 WO 2012077804A1 JP 2011078610 W JP2011078610 W JP 2011078610W WO 2012077804 A1 WO2012077804 A1 WO 2012077804A1
Authority
WO
WIPO (PCT)
Prior art keywords
dialkyl ether
formula
compound represented
trifluoromethyl
mgbr
Prior art date
Application number
PCT/JP2011/078610
Other languages
English (en)
French (fr)
Inventor
尾川 元
智之 淺井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012547931A priority Critical patent/JPWO2012077804A1/ja
Publication of WO2012077804A1 publication Critical patent/WO2012077804A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/42Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrolysis

Definitions

  • the present invention relates to a method for producing a (trifluoromethyl) alkyl ketone.
  • (Trifluoromethyl) alkylketone is a useful compound as an intermediate for pharmaceuticals and agricultural chemicals, and as an intermediate for the production of various functional materials.
  • (trifluoromethyl) alkyl ketone methods described in Non-Patent Documents 1 to 3 have been proposed so far.
  • Non-Patent Document 1 describes a method of synthesizing (trifluoromethyl) alkyl ketone via Claisen condensation.
  • Non-Patent Document 2 describes a method for producing a (trifluoromethyl) alkyl ketone in which a glycerin reagent having a lower alkyl group is reacted with trifluoroacetic acid in dibutyl ether at 10 to 15 ° C. and then subjected to a hydrolysis reaction. Has been.
  • Non-Patent Document 3 describes a method for producing a (trifluoromethyl) alkyl ketone in which a hydrolysis reaction is performed after reacting a glycerin reagent having an alkyl group with trifluoroacetic acid ethyl ester.
  • Non-Patent Document 1 has many reaction steps and is disadvantageous for industrial implementation.
  • the methods described in Non-Patent Documents 2 and 3 have a low yield of 25 to 63% and are not sufficient for industrial implementation.
  • the object of the present invention is to provide a method for producing a (trifluoromethyl) alkylketone with high yield and high purity under a mild reaction condition with a small number of steps.
  • the present inventor adopted a Grignard reaction using a specific reaction solvent and a trifluoroacetic acid ester, The inventors have found that a (trifluoromethyl) alkylketone can be produced with a small number of reaction steps, a high reaction yield, and a high distillation yield, thereby completing the present invention.
  • the present invention is as follows.
  • the manufacturing method of the (trifluoromethyl) alkyl ketone represented by the following Formula (A) characterized by performing the following (i), the following (ii), and the following (iii) in order.
  • a compound represented by the formula R 1 MgBr is obtained by reacting magnesium with a compound represented by the formula R 1 Br (where R 1 represents an alkyl group) in the presence of a dialkyl ether. Process.
  • step (Iii) A step of obtaining a (trifluoromethyl) alkylketone represented by the following formula (A) by hydrolyzing the compound represented by the following formula (B). [4] The process according to any one of [1] to [3], wherein the (trifluoromethyl) alkylketone is obtained with a reaction yield of 80% or more from the ester compound represented by the formula CF 3 COOR 2 . [5] In step (iii), after obtaining a dialkyl ether solution of (trifluoromethyl) alkyl ketone, the obtained solution is distilled to obtain (trifluoromethyl) alkyl ketone having a purity of 90% or more. 4].
  • step (ii) The method according to any one of [1] to [5], wherein in step (ii), a dialkyl ether solution of R 1 MgBr and a dialkyl ether solution of a compound represented by the formula CF 3 COOR 2 are used. [7] In the step (ii), a dialkyl ether solution of a compound represented by the formula CF 3 COOR 2 is gradually added to a dialkyl ether solution of a compound represented by the formula R 1 MgBr to react. ] The manufacturing method in any one of.
  • a dialkyl ether in a dialkyl ether solution of a compound represented by the formula R 1 MgBr and a dialkyl ether in a dialkyl ether solution of an ester compound represented by the formula CF 3 COOR 2 are both produced from (trifluoromethyl) alkyl ketone [6] or [7], which is a dialkyl ether having a high boiling point of 40 ° C. or higher.
  • the dialkyl ether in the dialkyl ether solution of the compound represented by the formula R 1 MgBr and the dialkyl ether in the dialkyl ether solution of the ester compound represented by the formula CF 3 COOR 2 are the same dialkyl ether. 8].
  • (trifluoromethyl) alkyl which is useful as a synthetic intermediate for pharmaceuticals, agricultural chemicals and the like, and a production intermediate for various functional materials, etc. under a mild reaction condition with a small number of steps.
  • Ketones can be produced in high yield.
  • step (i) magnesium and a compound represented by the formula R 1 Br (where R 1 represents an alkyl group) are reacted in the presence of a dialkyl ether to form the formula.
  • a step of obtaining a compound represented by R 1 MgBr (hereinafter also referred to as step (i)) is performed.
  • R 1 is an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms. Specifically, R 1 is preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, and particularly preferably an ethyl group.
  • This step is a step of obtaining a compound represented by the formula R 1 MgBr (hereinafter also referred to as R 1 MgBr) by a reaction represented by the following reaction formula (I).
  • R 1 is as described above.
  • the dialkyl ether (hereinafter, also referred to as dialkyl ether (1)), which is the solvent in step (i), can be obtained as a commercial product.
  • the dialkyl ether (1) having a purity which can be usually obtained may be used as it is without purification or may be used after purification.
  • the same dialkyl ether can be used as the dialkyl ether.
  • the amount of the dialkyl ether (1) used is preferably 1 to 10 mol, more preferably 2 to 8 mol, relative to 1 mol of the compound represented by the formula R 1 Br (hereinafter also referred to as R 1 Br).
  • Magnesium and R 1 Br which are starting materials in the present invention can be obtained as commercially available products, and it is preferable to use those which are usually available as they are without purification.
  • R 1 MgBr in the step (i) is obtained by reacting magnesium with R 1 Br in the presence of a dialkyl ether (1) as a solvent.
  • a dialkyl ether (1) as a solvent.
  • R 1 Br and magnesium are reacted directly without using a solvent, there is a risk that R 1 MgBr will decompose due to high temperature, but by carrying out the reaction in the presence of dialkyl ether (1), R 1 1 MgBr can be obtained with good yield.
  • the dialkyl ether (1) solution of R 1 MgBr produced in the reaction of step (i) is preferably used as it is in the next step (ii).
  • the mass of magnesium with respect to the mass of the solution consisting of dialkyl ether (1) and magnesium is 1% by mass or more and 20% by mass or less. It is preferable. By setting it as this range, the heat generation in the reaction formula (I) can be stably controlled.
  • the mass of R 1 Br relative to the mass of the solution consisting of R 1 Br and dialkyl ether (1) is 10% by mass or more. It is preferable that it is 50 mass% or less.
  • the reaction temperature in step (i) is usually preferably ⁇ 20 ° C. to 30 ° C., and particularly preferably ⁇ 10 ° C. to 20 ° C. in consideration of the selectivity of the target product and the conversion rate of the raw material.
  • the reaction temperature is a temperature measured not as a temperature in the reaction atmosphere but as a temperature in the reaction vessel (internal temperature).
  • the reaction time is preferably 30 minutes to 10 hours in view of the balance between the selectivity of the target product and the conversion rate of the raw material.
  • the reaction pressure is preferably 0 to 0.1 MPa (gauge pressure; the same applies hereinafter) in view of the selectivity of the target product and the conversion of the raw material.
  • R 1 MgBr that is a reaction product of step (i) may be used as it is in the reaction of step (ii), and a product obtained by subjecting a normal post-treatment step or purification step to the reaction of step (ii). It may be used.
  • a dialkyl ether (1) solution of R 1 MgBr is used in step (ii).
  • R 1 MgBr in step (ii) may be prepared by the reaction of step (i) may be prepared by other methods, it may be a commercially available product.
  • a compound represented by the formula R 1 MgBr and an ester compound represented by the formula CF 3 COOR 2 are reacted in the presence of a dialkyl ether. And obtaining a compound represented by formula (B).
  • R 2 is an organic group obtained by removing a hydroxyl group from an organic hydroxy compound, and is particularly preferably an organic group obtained by removing a hydroxyl group from an alcohol.
  • R 1 has the same meaning as described above.
  • R 2 is preferably an alkyl group or an alkyl group containing an etheric oxygen atom, particularly preferably an alkyl group, and particularly preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms is preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a pentyl group or a hexyl group, and R 2 is particularly preferably an ethyl group.
  • the use of the trifluoroacetate ester represented by the formula CF 3 COOR 2 enables the Grineer reaction to be carried out in a high yield.
  • Step (ii) is a step of obtaining a compound represented by the formula (B) by a reaction represented by the following reaction formula (II).
  • the ester compound represented by the formula CF 3 COOR 2 (hereinafter, also referred to as CF 3 COOR 2 ) can be obtained as a commercial product or by an ordinary synthesis method.
  • the reaction between CF 3 COOR 2 and R 1 MgBr is carried out in the presence of a dialkyl ether having a boiling point higher than that of the (trifluoromethyl) alkyl ketone to be produced.
  • R 1 MgBr and CF 3 COOR 2 are used for the reaction temperature control by gradually bringing them into contact with each other rather than mixing them all in a dialkyl ether and reacting them in a dialkyl ether. Is preferable.
  • dialkyl ether solution of R 1 MgBr or a dialkyl ether solution of CF 3 COOR 2 it is preferable to use a dialkyl ether solution of R 1 MgBr or a dialkyl ether solution of CF 3 COOR 2, and a dialkyl ether is used as a reaction solvent separately from a solvent for dissolving these compounds in advance. You can also.
  • the dialkyl ether which is the reaction solvent in the step (ii), that is, the dialkyl ether having a higher boiling point than the (trifluoromethyl) alkyl ketone to be produced is also referred to as dialkyl ether (2) below.
  • the dialkyl ether (2) is a dialkyl ether (1).
  • the dialkyl ether of the solvent may be the same dialkyl ether as the dialkyl ether (1) or a different dialkyl ether.
  • CF 3 COOR 2 can also be used without previously dissolving in a solvent.
  • the dialkyl ether (2) as the reaction solvent may be composed of one kind of dialkyl ether or a mixture of different dialkyl ethers.
  • dialkyl ether (2) is a mixture of different dialkyl ethers
  • any of those dialkyl ethers is a higher boiling dialkyl ether than the (trifluoromethyl) alkyl ketone produced.
  • step (ii) it is preferable to use the dialkyl ether (1) solution of R 1 MgBr and the dialkyl ether solution of CF 3 COOR 2 , and the dialkyl ethers in the two solutions are the same. preferable.
  • the concentration of CF 3 COOR 2 in the solution is not particularly limited, but is preferably 5% by mass or more and 50% by mass or less.
  • the amount of dialkyl ether (2) in step (ii) is preferably such that the proportion of the total amount of CF 3 COOR 2 used in the reaction with respect to the total amount of dialkyl ether in the reaction system is 5% by mass or more and 50% by mass or less. .
  • the amount of R 1 MgBr in the step (ii) is preferably 0.5 to 2 times by mole with respect to CF 3 COOR 2 , and more preferably 1 to 2 times by mole in view of the balance between the selectivity of the target product and the conversion of the raw material. preferable.
  • the reaction temperature (the temperature measured as the internal temperature) is preferably ⁇ 40 ° C. or higher and + 20 ° C. or lower, and ⁇ 70 ° C. or higher and higher +10 degrees C or less is more preferable.
  • the reaction time is preferably 2 to 10 hours in view of the balance between the selectivity of the target product and the conversion rate of the raw material.
  • the reaction pressure is preferably 0 to 0.1 MPa in view of the balance between the selectivity of the target product and the conversion rate of the raw material.
  • step (ii) using a dialkyl ether as a solvent can be carried out in a higher yield compared to the conventional method facilitates low-cost production and reduces the amount of waste liquid generated. Contribute and reduce environmental impact.
  • the reaction product of step (ii) may be used for the reaction of step (iii) as it is, or a product subjected to a normal post-treatment step or a purification step may be used for the reaction of step (iii).
  • the reaction product of step (ii) that is, the compound represented by the formula (B)
  • the reaction product of step (iii) is used in the reaction of step (iii) in a state dissolved in the dialkyl ether (2).
  • Step (iii) is a step of obtaining the (trifluoromethyl) alkyl ketone represented by the formula (A) by hydrolyzing the compound represented by the formula (B).
  • the reaction in the step (iii) is a step of carrying out a reaction for obtaining the (trifluoromethyl) alkyl ketone represented by the formula (A) by the reaction represented by the following reaction formula (III).
  • step (iii) known hydrolysis reaction conditions and techniques can be applied, and in the present invention, a hydrolysis reaction carried out in the presence of water or water and an acid is preferred.
  • the water-insoluble magnesium salt (compound represented by the formula HOMgBr) produced by hydrolysis is dissolved to facilitate subsequent separation operation (for example, liquid separation operation). be able to.
  • subsequent separation operation for example, liquid separation operation
  • the amount of water used for the hydrolysis is preferably 2 to 10 moles relative to magnesium.
  • As the acid in the case of using an acid hydrochloric acid, sulfuric acid and nitric acid are preferable, and hydrochloric acid is particularly preferable.
  • the amount of the acid is preferably 2 to 4 times mol with respect to magnesium.
  • the reaction time of the hydrolysis reaction in the step (iii) is preferably 30 minutes to 10 hours in view of the balance between the selectivity of the target product and the conversion rate of the raw material.
  • the reaction pressure is preferably 0 to 0.1 MPa in view of the balance between the selectivity of the target product and the conversion rate of the raw material.
  • the temperature of the hydrolysis reaction in the step (iii) is preferably ⁇ 20 ° C. or higher and + 20 ° C. or lower, and is particularly preferably ⁇ 20 ° C. or higher and + 10 ° C. or lower in view of the selectivity of the target product and the raw material conversion rate. Is more preferable.
  • step (iii) when a dialkyl ether (2) solution of the reaction product of step (ii) is used, a dialkyl ether (2) solution of (trifluoromethyl) alkyl ketone as the reaction product is usually obtained. It is done. Therefore, in order to isolate the (trifluoromethyl) alkyl ketone, distillation separation is usually performed. When (trifluoromethyl) alkylketone is isolated from a solution of (trifluoromethyl) alkylketone dialkylether (2) by distillation, the boiling point difference between (trifluoromethyl) alkylketone and dialkylether (2) is large. It is preferable.
  • the solvent in the solute solution has a lower boiling point than the solute, and when the solute and the solvent are separated from the solution by distillation, the solvent is vaporized.
  • the (trifluoromethyl) alkyl ketone which is the object of the present invention, is a compound having a relatively low boiling point, and it is difficult to use a dialkyl ether (2) having a lower boiling point and a large boiling point difference. There are many.
  • a dialkyl ether having a boiling point higher than that of (trifluoromethyl) alkyl ketone and having a sufficient boiling point difference as the dialkyl ether (2). Since the boiling point of the dialkyl ether (2) is higher than that of the (trifluoromethyl) alkyl ketone produced, the (trifluoromethyl) alkyl ketone is vaporized and separated from the dialkyl ether (2) in the distillation separation. The larger the difference in boiling point between the (trifluoromethyl) alkyl ketone and the dialkyl ether (2), the better.
  • the boiling point difference is preferably 20 ° C. or higher, more preferably 40 ° C.
  • the dialkyl ether (2) is more preferably a dialkyl ether having a boiling point of about 80 ° C. or more. Particularly preferred are dialkyl ethers having a boiling point of about 120 ° C. or higher.
  • dialkyl ether (2) is a mixture, it is preferable that the dialkyl ether on the low boiling point side has a sufficient boiling point difference as described above with (trifluoromethyl) alkyl ketone.
  • both of the two alkyl groups are alkyl groups having 3 to 6 carbon atoms. Dialkyl ethers are preferred.
  • the two alkyl groups constituting the dialkyl ether may be different, but are usually the same alkyl group.
  • Each of the two alkyl groups of the dialkyl ether may be a substituted alkyl group in which a part of the hydrogen atom is substituted with a phenyl group or a halogen atom (for example, benzyldichloroethyl group).
  • all are alkyl groups having no substituent.
  • n-propyl group, isopropyl group, n-butyl group, t-butyl group pentyl group and hexyl group are preferable, and n-butyl group is particularly preferable.
  • di-n-butyl ether is particularly preferable.
  • the boiling point of the dialkyl ether is preferably 60 ° C. or higher, more preferably 85 ° C. or higher, and particularly preferably 120 ° C. or higher. The higher the boiling point of the dialkyl ether, the greater the difference in boiling point from the (trifluoromethyl) alkyl ketone.
  • step (iii) after completion of the hydrolysis reaction, the reaction system is allowed to stand to separate into an aqueous layer and a dialkyl ether layer, and the aqueous layer is removed to remove the (trifluoromethyl) alkyl ketone dialkyl ether (2) solution. Is obtained.
  • the (trifluoromethyl) alkylketone is isolated by distilling the solution. Since the dialkyl ether (2) has a sufficiently high boiling point compared to the (trifluoromethyl) alkylketone, a (trifluoromethyl) alkylketone having a high purity can be obtained. This distillation is not limited to simple distillation, and can be carried out by precision distillation or a combination thereof.
  • a sufficiently high purity (trifluoromethyl) alkylketone can be obtained without purifying the following isolated (trifluoromethyl) alkylketone.
  • the purity of the (trifluoromethyl) alkyl ketone isolated by distillation is preferably 90% or more, particularly preferably 95% or more.
  • (Trifluoromethyl) alkyl ketone obtained in step (iii) may be used as it is for the intended purpose.
  • the purification method include, but are not limited to, filtration, distillation, column chromatography, high performance liquid chromatography, and liquid separation.
  • the (trifluoromethyl) alkyl ketone is stored, it is preferably stored by a method such as storage at a low temperature and storage under light shielding in order to store it stably.
  • (trifluoromethyl) alkyl ketone can be obtained in high yield.
  • (trifluoromethyl) alkylketone can be obtained in a high yield of 80% or more from CF 3 COOR 2 .
  • the reaction yield is a value obtained by analyzing the extracted oil layer before distilling the product by an internal standard analysis method using GC, and is a yield from trifluoroacetic acid ester or trifluoroacetic acid. is there.
  • Example 1 Magnesium (14 g) and di-n-butyl ether (300 mL) were added to a 500 mL four-necked flask. Thereto was added dropwise a mixture of ethyl bromide (62 g) and di-n-butyl ether (110 mL) while stirring at a temperature of -5 to 10 ° C. over 2 hours.
  • Example 2 Magnesium (14 g) and di-n-butyl ether (300 mL) were added to a 500 mL four-necked flask. Thereto was added dropwise a mixture of methyl bromide (54 g) and di-n-butyl ether (110 mL) while stirring at a temperature of -5 to 10 ° C. over 2 hours.
  • the organic layer was obtained by simple distillation of a 40 ° C. to 48 ° C. fraction under a pressure of 0.1 MPa, and this was further packed in a distillation column having a length of 200 mm and an inner diameter of 25 mm under a pressure of 0.1 Mpa, “Helipak No. 1” (The product was purified by distillation using a distillation column packed with a product name) to obtain a fraction at 41 to 42 ° C. in a yield of 88%, which was used as a product. The purity of the product was 99%, and the yield from the reaction to obtaining a product having a purity of 90% or more was 81%. The obtained product was refrigerated at 4 ° C. or lower under light shielding.
  • Example 3 (comparative example)
  • magnesium 14 g
  • di-n-butyl ether ether 300 mL
  • ethyl bromide 62 g
  • di-n-butyl ether 110 mL
  • Example 4 (comparative example)
  • magnesium 27 g
  • di-n-butyl ether ether 300 mL
  • ethyl bromide 124 g
  • di-n-butyl ether 110 mL
  • the organic layer is obtained by subjecting a 30 ° C. to 45 ° C. fraction under normal pressure by simple distillation, and further purifying it by distillation using a distillation column having a length of 200 mm and an inner diameter of 25 mm packed with Helipac R at a normal pressure, A fraction of 39-45 ° C. was obtained with a yield of 83%.
  • the yield from the reaction to obtaining a product having a purity of 90% or more was 17%.
  • the obtained product was refrigerated at 4 ° C. or lower under light shielding.
  • Examples 1 and 2 according to the present invention can produce high-purity 1,1,1-trifluoro-2-butanone with a high reaction yield and a high distillation yield.
  • the (trifluoromethyl) alkylketone obtained by the production method of the present invention is a useful compound as an intermediate for pharmaceuticals and agricultural chemicals, and as a production intermediate for various functional materials.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2010-275283 filed on Dec. 10, 2010 are incorporated herein as the disclosure of the specification of the present invention. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 少ない工程かつ温和な反応条件で、高純度の(トリフルオロメチル)アルキルケトンを高収率で製造できる製造方法の提供。 の提供。 以下の工程を含む式(A)で表される(トリフルオロメチル)アルキルケトンの製造方法。 (ii)製造する(トリフルオロメチル)アルキルケトンよりも高沸点のジアルキルエーテルの存在下で、式RMgBrで表される化合物と、式CFCOORで表されるエステル化合物(ただし、Rは有機基を示す。)とを反応させて式(B)で表される化合物を得る工程。 (iii)式(B)で表される化合物を加水分解することにより式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程。

Description

(トリフルオロメチル)アルキルケトンの製造方法
 本発明は、(トリフルオロメチル)アルキルケトンの製造方法に関する。
 (トリフルオロメチル)アルキルケトンは医薬・農薬等の中間体として、また各種の機能材料の製造中間体として有用な化合物である。(トリフルオロメチル)アルキルケトンの製造方法に関しては、これまでに非特許文献1から3に記載の方法が提案されている。
 非特許文献1には、クライゼン縮合を経由して(トリフルオロメチル)アルキルケトンを合成する方法が記載されている。非特許文献2には、トリフルオロ酢酸に低級アルキル基を有するグリニア試薬をジブチルエーテル中で10~15℃で反応させた後に、加水分解反応を行う(トリフルオロメチル)アルキルケトンの製造方法が記載されている。
 非特許文献3にはトリフルオロ酢酸エチルエステルにアルキル基を有するグリニア試薬を反応させた後に、加水分解反応を行う(トリフルオロメチル)アルキルケトンの製造方法が記載されている。
Burdon, J.; McLoughlin, V. C. R., Tetrahedron (1964), 20(10), pp.2163-2166 Sykes, A.; Tatlow, J. C.; Thomas, C. R.,Chemistry & Industry (London, United Kingdom) (1955),pp.630-631 Creary, Xavier ; J.Org.Chem.(1987),52(22),pp.5026-5030
 しかし、上記の方法には、次の欠点がある。非特許文献1に記載の方法は反応工程が多く工業的な実施には不利である。また、非特許文献2、3に記載の方法は、収率が25~63%と低く、工業的な実施には十分な方法ではない。
 本発明は、少ない工程数でありかつ温和な反応条件で、高収率かつ高純度で(トリフルオロメチル)アルキルケトンを製造する方法の提供を目的とする。
 本発明者は工業的な実施に有利な反応条件で(トリフルオロメチル)アルキルケトンを製造する方法を検討した結果、特定の反応溶媒とトリフルオロ酢酸エステルを用いたグリニャール反応を採用することにより、少ない反応工程数であり、かつ、高い反応収率、かつ高い蒸留収率で(トリフルオロメチル)アルキルケトンができることを見出し、本発明を完成させた。
 すなわち本発明は、以下である。
[1]
 下記(i)、下記(ii)、および下記(iii)の工程を順に行うことを特徴とする下式(A)で表される(トリフルオロメチル)アルキルケトンの製造方法。
(i)ジアルキルエーテルの存在下で、マグネシウムと、式RBrで表される化合物(ただし、Rはアルキル基を示す。)とを反応させて式RMgBrで表される化合物を得る工程。
(ii)製造する(トリフルオロメチル)アルキルケトンよりも高沸点のジアルキルエーテルの存在下で、式RMgBrで表される化合物と、式CFCOORで表されるエステル化合物(ただし、Rは有機基を示す。)とを反応させて下式(B)で表される化合物を得る工程。
(iii)下式(B)で表される化合物を加水分解することにより下式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
[2]
 工程(i)においてRMgBrのジアルキルエーテル溶液を得、工程(ii)において前記RMgBrのジアルキルエーテル溶液を使用する、[1]の製造方法。
[3]
 下記(ii)、および下記(iii)の工程を順に行うことを特徴とする下式(A)で表される(トリフルオロメチル)アルキルケトンの製造方法。
(ii)製造する(トリフルオロメチル)アルキルケトンよりも高沸点のジアルキルエーテルの存在下で、式RMgBr(ただし、Rはアルキル基を示す。)で表される化合物と、式CFCOORで表されるエステル化合物(ただし、Rは有機基を示す。)とを反応させて下式(B)で表される化合物を得る工程。
(iii)下式(B)で表される化合物を加水分解することにより下式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
[4] 式CFCOORで表されるエステル化合物からの反応収率80%以上で(トリフルオロメチル)アルキルケトンを得る、[1]~[3]のいずれかの製造方法。
[5]
 工程(iii)において、(トリフルオロメチル)アルキルケトンのジアルキルエーテル溶液を得た後、得られた溶液を蒸留して純度90%以上の(トリフルオロメチル)アルキルケトンを得る、[1]~[4]のいずれかの製造方法。
[6]
 工程(ii)において、RMgBrのジアルキルエーテル溶液と、式CFCOORで表される化合物のジアルキルエーテル溶液とを使用する、[1]~[5]のいずれかの製造方法。
[7]
 工程(ii)において、式RMgBrで表される化合物のジアルキルエーテル溶液に、式CFCOORで表される化合物のジアルキルエーテル溶液を徐々に添加して反応させる、[1]~[6]のいずれかの製造方法。
[8]
 式RMgBrで表される化合物のジアルキルエーテル溶液におけるジアルキルエーテルおよび式CFCOORで表されるエステル化合物のジアルキルエーテル溶液におけるジアルキルエーテルが、いずれも、製造する(トリフルオロメチル)アルキルケトンよりも40℃以上高沸点のジアルキルエーテルである、[6]または[7]の製造方法。
[9]
 式RMgBrで表される化合物のジアルキルエーテル溶液におけるジアルキルエーテルと式CFCOORで表されるエステル化合物のジアルキルエーテル溶液におけるジアルキルエーテルとが、同一のジアルキルエーテルである、[6]~[8]のいずれかの製造方法。
[10]
 ジアルキルエーテルにおける2つのアルキル基がいずれも炭素数3~6のアルキル基である、[1]~[9]のいずれかの製造方法。
[11]
 ジアルキルエーテルが、ジ-n-ブチルエーテルである、[10]の製造方法。
[12]
 Rが炭素数1~3のアルキル基である、[1]~[11]のいずれかの製造方法。
[13]
 Rが炭素数1~6のアルキル基である、[1]~[12]のいずれかの製造方法。
[14]
 下記(ii)の工程を行うことを特徴とする下式(B)で表される化合物の製造方法。
(ii)ジアルキルエーテルの存在下で、式RMgBr(ただし、Rはアルキル基を示す。)で表される化合物と、式CFCOORで表されるエステル化合物(ただし、Rは有機基を示す。)とを反応させて下式(B)で表される化合物を得る工程。
Figure JPOXMLDOC01-appb-C000010
 本発明の製造方法によれば、少ない工程数で、温和な反応条件下で、医薬・農薬等の合成中間体、および、各種機能材料などの製造中間体、として有用な(トリフルオロメチル)アルキルケトンを高収率で製造できる。
 以下に本発明の製造方法における(トリフルオロメチル)アルキルケトンの製造工程を(i)、(ii)、(iii)の各工程にしたがって説明するが、本発明の製造方法は、(ii)の工程のみであっても、(ii)および(iii)の工程のみであってもよい。また、本発明の製造方法においては、(i)、(ii)、(iii)の各工程の間に、他の工程を行ってもよい。
 本発明の製造方法においては、まず、(i)ジアルキルエーテルの存在下で、マグネシウムと、式RBrで表される化合物(ただし、Rはアルキル基を示す。)とを反応させて式RMgBrで表される化合物を得る工程(以下、工程(i)とも言う)を行う。
 ここで、Rは、アルキル基であり、好ましくは炭素数1~3のアルキル基である。Rとしては、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基が好ましく、エチル基が特に好ましい。
 この工程は、下記反応式(I)で表される反応により、式RMgBrで表される化合物(以下、RMgBrとも記す)を得る工程である。
Figure JPOXMLDOC01-appb-C000011
 上記反応式(I)において、Rは上記の通りである。
 工程(i)における溶媒であるジアルキルエーテル(以下、ジアルキルエーテル(1)ともいう)は、市販品として入手できる。ジアルキルエーテル(1)は、通常入手できる純度のものを、精製等を行わずにそのまま使用してもよく、精製して使用してもよい。なお、工程(ii)において新たなジアルキルエーテルを使用する場合も、そのジアルキルエーテルとして同様のジアルキルエーテルを使用できる。ジアルキルエーテル(1)の使用量は、式RBrで表される化合物(以下、RBrとも記す)の1モルに対して1~10モルが好ましく、2~8モルがより好ましい。
 本発明における出発原料であるマグネシウム及びRBrは、市販品として入手でき、通常入手できる純度のものを、精製等を行わずにそのまま使用するのが好ましい。
 工程(i)におけるRMgBrは、溶媒としてのジアルキルエーテル(1)の存在下で、マグネシウムと、RBrとを反応させることにより得られる。RBrとマグネシウムとを溶媒を用いずに直接反応させると高温を発してRMgBrが分解してしまう恐れがあるが、ジアルキルエーテル(1)の存在下で反応を実施することにより、RMgBrを収率よく得ることができる。工程(i)の反応で生成するRMgBrのジアルキルエーテル(1)溶液は、そのまま次の工程(ii)で用いるのが好ましい。
 マグネシウム及びRBrとの反応においては、あらかじめ各々をジアルキルエーテル(1)に混合した溶液にした上で反応させることが好ましい。具体的には、ジアルキルエーテル(1)を溶媒とするマグネシウム溶液に、ジアルキルエーテル(1)を溶媒とするRBrの溶液を滴下して反応させる方法が挙げられる。それぞれの溶液におけるジアルキルエーテル(1)は異なっていてもよいが、通常は同一のジアルキルエーテルを使用する。
 マグネシウムとRBrとが直接反応することを避ける他の方法としては、RBrをジアルキルエーテルに混合した溶液に、マグネシウムを混合して反応させる方法も採用できる。
 反応前に、ジアルキルエーテル(1)を溶媒とするマグネシウム溶液を調製する場合には、ジアルキルエーテル(1)とマグネシウムからなる、溶液の質量に対するマグネシウムの質量が1質量%以上20質量%以下であることが好ましい。この範囲とすることで反応式(I)における発熱を安定に制御することができる。
 反応前に、ジアルキルエーテル(1)を溶媒とするRBrの溶液を調整する場合には、RBrとジアルキルエーテル(1)からなる溶液の質量に対するRBrの質量が10質量%以上50質量%以下であることが好ましい。RBrの量を当該範囲とすることにより、反応式(I)における発熱を安定に制御することができる。
 工程(i)の反応温度は、通常-20℃~30℃が好ましく、特に目的物の選択率と原料の転化率との兼ね合いから-10℃~20℃であることが好ましい。反応温度は、反応雰囲気における温度ではなく、反応容器内の温度(内部温度)として測定される温度である。反応時間は、目的物の選択率と原料の転化率との兼ね合いから30分から10時間が好ましい。反応圧力は目的物の選択率と原料の転化率との兼ね合いから0~0.1MPa(ゲージ圧。以下同様。)が好ましい。
 工程(i)の反応生成物であるRMgBrは、そのまま工程(ii)の反応に用いてもよく、通常の後処理工程や、精製工程を施したものを、工程(ii)の反応に用いてもよい。好ましくは、RMgBrのジアルキルエーテル(1)溶液を工程(ii)で使用する。また、本発明においては、工程(ii)におけるRMgBrは、工程(i)の反応で製造してもよく、他の方法で製造してもよく、市販品を用いてもよい。
 工程(ii)は、ジアルキルエーテルの存在下で、式RMgBrで表される化合物と、式CFCOORで表されるエステル化合物(ただし、Rは有機基を示す。)とを反応させて式(B)で表される化合物を得る工程、である。
 なお、Rは有機ヒドロキシ化合物から水酸基を除いた有機基であり、特にアルコールから水酸基を除いた有機基であることが好ましい。
 ここで、Rは前記と同じ意味を示す。また、Rはアルキル基、エーテル性酸素原子を含むアルキル基が好ましく、アルキル基が特に好ましく、炭素数1~6のアルキル基がとりわけ好ましい。炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、ペンチル基、ヘキシル基が好ましく、Rはエチル基が特に好ましい。本発明においては、式CFCOORで表されるトリフルオロ酢酸エステルを用いることにより、高収率でグリニア反応を実施できる。
 工程(ii)は、下記反応式(II)で表される反応により、式(B)で表される化合物を得る工程である。
Figure JPOXMLDOC01-appb-C000012
 上記反応式(II)において、R及びRは上記の通りである。
 式CFCOORで表されるエステル化合物(以下、CFCOORとも記す)は市販品として、または通常の合成方法で入手できる。
 CFCOORとRMgBrとの反応は、製造する(トリフルオロメチル)アルキルケトンよりも高沸点のジアルキルエーテルの存在下に行う。RMgBrとCFCOORとは、反応に使用するそれらの全量を一度に混合してジアルキルエーテル中で反応させるよりも、両者を徐々に接触させて反応させることが反応温度の制御の面で好ましい。また、少なくとも一方をジアルキルエーテルに溶解し、その溶液に他方を徐々に添加することが好ましい。さらに、両者ともそれぞれジアルキルエーテル溶液で使用し、一方の溶液に他方の溶液を徐々に添加する(例えば、滴下する)方法がより好ましい。
 工程(ii)において、RMgBrのジアルキルエーテル溶液やCFCOORのジアルキルエーテル溶液を使用することが好ましく、またこれら化合物をあらかじめ溶解させる溶媒とは別に、ジアルキルエーテルを反応溶媒として使用することもできる。
 なお、工程(ii)における反応溶媒であるジアルキルエーテル、すなわち、製造する(トリフルオロメチル)アルキルケトンよりも高沸点のジアルキルエーテル、を以下ジアルキルエーテル(2)ともいう。
 RMgBrのジアルキルエーテル溶液として前記RMgBrのジアルキルエーテル(1)溶液を使用する場合は、ジアルキルエーテル(2)の少なくとも一部はジアルキルエーテル(1)である。また、CFCOORのジアルキルエーテル溶液を使用する場合は、その溶媒のジアルキルエーテルはジアルキルエーテル(1)と同一のジアルキルエーテルでもよく、異なるジアルキルエーテルでもよい。CFCOORをあらかじめ溶媒に溶解させることなく使用することもできる。このように、反応溶媒であるジアルキルエーテル(2)は、1種のジアルキルエーテルからなっていてもよく、異なるジアルキルエーテルの混合物であってもよい。ジアルキルエーテル(2)が異なるジアルキルエーテルの混合物である場合、それらのジアルキルエーテルはいずれも製造する(トリフルオロメチル)アルキルケトンよりも高沸点のジアルキルエーテルである。
 工程(ii)においては、前記RMgBrのジアルキルエーテル(1)溶液とCFCOORのジアルキルエーテル溶液を使用することが好ましく、また、それら2つの溶液におけるジアルキルエーテルは同一であることがさらに好ましい。
 工程(ii)において、CFCOORのジアルキルエーテル溶液を使用する場合、その溶液中のCFCOORの濃度は特に限定されないが、5質量%以上50質量%以下が好ましい。
 工程(ii)におけるジアルキルエーテル(2)の量は、反応系におけるジアルキルエーテル全量に対する反応に使用したCFCOORの全量の割合が5質量%以上50質量%以下となる量であることが好ましい。
 工程(ii)におけるRMgBrの量はCFCOORに対して0.5~2倍モルが好ましく、特に目的物の選択率と原料の転化率との兼ね合いから1~2倍モルがより好ましい。
 工程(ii)において、CFCOORをRMgBrと反応させる際、反応温度(該温度は、内部温度として測定した温度)は-40℃以上+20℃以下が好ましく、-70℃以上℃以上+10℃以下がより好ましい。反応時間は、目的物の選択率と原料の転化率との兼ね合いから2時間から10時間が好ましい。また、反応圧力は目的物の選択率と原料の転化率との兼ね合いから0~0.1MPaが好ましい。
 溶媒としてジアルキルエーテルを用いた工程(ii)の反応を、従来法に比較して、高い収率で実施できることは、低コストでの製造を容易なものとするとともに発生する廃液量の低減にも貢献し環境負荷を抑制する。
 工程(ii)の反応生成物は、そのまま工程(iii)の反応に用いてもよく、通常の後処理工程や、精製工程を施したものを、工程(iii)の反応に用いてもよい。好ましくは、工程(ii)の反応生成物(すなわち、前記式(B)で表される化合物)はジアルキルエーテル(2)に溶解した状態で工程(iii)の反応に用いる。
 工程(iii)は、式(B)で表される化合物を加水分解することにより式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程である。
 工程(iii)における反応は、下記反応式(III)で表される反応により、式(A)で表される(トリフルオロメチル)アルキルケトンを得る反応を実施する工程である。
Figure JPOXMLDOC01-appb-C000013
 上記反応式(III)において、R及びRは上記の通りである。
 工程(iii)における加水分解反応は、公知の加水分解反応の条件および手法を適用することができ、本発明においては、水または水と酸との存在下で行う加水分解反応が好ましい。水と酸を存在させた場合、加水分解により生成する、水に不溶なマグネシウム塩(式HOMgBrで表される化合物)を溶解させて、後の分離操作(たとえば、分液操作)を容易にすることができる。水と酸の存在下に実施する場合には、中和熱による発熱が顕著であるため、まず水を加え、つぎに酸を加えて加水分解反応を実施する方法が好ましい。
 加水分解に用いる水の量は、マグネシウムに対して2倍モル~10倍モルが好ましい。
酸を用いる場合の酸としては、塩酸、硫酸、硝酸が好ましく、塩酸が特に好ましい。酸の量はマグネシウムに対して2倍モル~4倍モルが好ましい。
 工程(iii)における加水分解反応の反応時間は、目的物の選択率と原料の転化率との兼ね合いから30分から10時間が好ましい。また、反応圧力は目的物の選択率と原料の転化率との兼ね合いから0~0.1MPaが好ましい。
 工程(iii)における加水分解反応の温度は、-20℃以上+20℃以下とすることが好ましく、特に目的物の選択率と原料の転化率との兼ね合いから-20℃以上+10℃以下とすることがより好ましい。
 工程(iii)において、工程(ii)の反応生成物のジアルキルエーテル(2)溶液を使用した場合は、通常、反応生成物である(トリフルオロメチル)アルキルケトンのジアルキルエーテル(2)溶液が得られる。したがって、(トリフルオロメチル)アルキルケトンを単離するためには、通常蒸留分離が行われる。
 (トリフルオロメチル)アルキルケトンのジアルキルエーテル(2)溶液から蒸留により(トリフルオロメチル)アルキルケトンを単離する場合は、(トリフルオロメチル)アルキルケトンとジアルキルエーテル(2)との沸点差が大きいことが好ましい。
 多くの場合、溶質溶液における溶媒は溶質よりも低沸点であり、その溶液から蒸留により溶質と溶媒を分離する場合は溶媒を気化させる。しかし、本発明における目的物である(トリフルオロメチル)アルキルケトンは、比較的低沸点の化合物であり、それよりも低沸点でかつ沸点差の大きいジアルキルエーテル(2)の使用は困難であることが少なくない。
 本発明においては、ジアルキルエーテル(2)として(トリフルオロメチル)アルキルケトンよりも高沸点であり、かつ充分沸点差のあるジアルキルエーテルを使用することが好ましい。ジアルキルエーテル(2)の沸点が製造する(トリフルオロメチル)アルキルケトンよりも高沸点であることより、蒸留分離では(トリフルオロメチル)アルキルケトンを気化させてジアルキルエーテル(2)から分離する。(トリフルオロメチル)アルキルケトンとジアルキルエーテル(2)の沸点差は大きいほど好ましく、沸点差は20℃以上が好ましく、40℃以上がより好ましく、80℃以上が特に好ましい。例えば、1,1,1-トリフルオロ-2-ブタノンを製造する場合、その沸点は約42℃であることより、ジアルキルエーテル(2)としては、沸点約80℃以上のジアルキルエーテルがより好ましく、沸点約120℃以上のジアルキルエーテルが特に好ましい。
 なお、ジアルキルエーテル(2)が混合物の場合、その低沸点側のジアルキルエーテルが(トリフルオロメチル)アルキルケトンと上記のような充分な沸点差を有することが好ましい。
 前記ジアルキルエーテル(1)やジアルキルエーテル(2)として使用するジアルキルエーテル(混合物の場合はそれを構成する各ジアルキルエーテル)としては、2つのアルキル基がいずれも炭素数3~6のアルキル基であるジアルキルエーテルが好ましい。ジアルキルエーテルを構成する2つのアルキル基は異なっていてもよいが、通常は同一のアルキル基である。
 ジアルキルエーテルの2つのアルキル基は、それぞれ、その水素原子の一部がフェニル基やハロゲン原子に置換された置換アルキル基(例えば、ベンジルジクロロエチル基)であってもよい。好ましくは、いずれも置換基を有しないアルキル基である。具体的には、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基ペンチル基およびヘキシル基が好ましく、n-ブチル基が特に好ましい。ジアルキルエーテルとしては、ジ-n-ブチルエーテルが特に好ましい。
 また、ジアルキルエーテルの沸点は60℃以上が好ましく、85℃以上がより好ましく、120℃以上が特に好ましい。ジアルキルエーテルの沸点が高いほど、(トリフルオロメチル)アルキルケトンとの沸点差を大きくすることができる。
 工程(iii)において、加水分解反応終了後、反応系を静置して水層とジアルキルエーテル層に分離させ、水層を除去することにより(トリフルオロメチル)アルキルケトンのジアルキルエーテル(2)溶液が得られる。前記のように、この溶液を蒸留することにより(トリフルオロメチル)アルキルケトンが単離される。ジアルキルエーテル(2)が(トリフルオロメチル)アルキルケトンに比較して充分に高沸点であることにより、純度の高い(トリフルオロメチル)アルキルケトンが得られる。この蒸留は単蒸留に限られず、精密蒸留で行うこともでき、それらを組み合わせることもできる。このような蒸留により、下記単離された(トリフルオロメチル)アルキルケトンの精製を行わなくても、充分に高純度の(トリフルオロメチル)アルキルケトンが得られる。蒸留により単離された(トリフルオロメチル)アルキルケトンの純度は90%以上であることが好ましく、95%以上が特に好ましい。
 工程(iii)で得られる(トリフルオロメチル)アルキルケトンは、そのまま目的とする用途に用いてもよい。通常の場合には、(トリフルオロメチル)アルキルケトンの反応生成物は、精製を行い、所望の純度としたものを、目的とする用途に用いるのが好ましい。精製方法としては、ろ過、蒸留、カラムクロマトグラフィー、高速液体クロマトグラフィー、分液等の方法が挙げられるが、これらに限定されない。また(トリフルオロメチル)アルキルケトンを保存する場合には、安定に保存するために、低温で保管、遮光下に保管等の方法で保存するのが好ましい。
 本発明の製造方法で生成する(トリフルオロメチル)アルキルケトンとしては、(トリフルオロメチル)エチルケトンが好ましい。
 本発明の製造方法によれば、(トリフルオロメチル)アルキルケトンを高収率で得ることできる。特に本発明の製造方法では、(トリフルオロメチル)アルキルケトンをCFCOORからの反応収率が80%以上の高収率で得ることができる。
 なお、トリフルオロ酢酸エステルを用いた場合に比較して、トリフルオロ酢酸を用いた場合、(トリフルオロメチル)アルキルケトンの反応収率が低い。これは、トリフルオロ酢酸を用いた場合は、上記式(B)で表される化合物においてR=MgBrに相当する活性種を形成するために、RMgBrが2等量必要となることに起因すると考えられる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらにより限定されない。また、反応収率は、生成物を蒸留する前の抽出油層を、GCを用いた内部標準分析法で分析することによって求めた値であり、トリフルオロ酢酸エステルあるいはトリフルフルオロ酢酸からの収率である。
[例1(実施例)]
 500mLの4つ口フラスコに、マグネシウム(14g)およびジ-n-ブチルエーテル(300mL)を加えた。そこに温度-5~10℃を保ちつつ撹拌下に臭化エチル(62g)をジ-n-ブチルエーテル(110mL)に混合した混合液を2時間で滴下した。
 発熱がなくなったことを確認した後、撹拌を継続しながら、トリフルオロ酢酸エチル(73g)をジ-n-ブチルエーテル(100mL)に溶解させた混合液を、内部温度を-5℃~10℃の反応温度を保ちながら滴下速度を調節しつつ2時間かけて滴下した。発熱がなくなったことを確認した後、水(100mL)を滴下しグリニャール塩を分解した。更に5mol/Lの塩酸水溶液(113mL)を添加した後、有機層と水層を分離した。
 有機層をガスクロマトグラフにより分析した結果、1,1,1-トリフルオロ-2-ブタノンが確認され、反応収率は98%であった。有機層は常圧下、30℃~80℃留分を単蒸留により得、それを更に常圧において長さ200mm、内径25mmの蒸留塔に充填物「ヘリパックNo.1」(商品名)[“HELI PACK No.1” トウトクエンジ株式会社(TO-TOKU Engineering Corporation)販売]を充填した蒸留塔により精製蒸留を行うことにより、44~45℃の留分を83%の収率で得、これを製品とした。製品の純度は94%であり、反応から90%以上の純度の製品を得るまでの収率は81%であった。尚、得られた製品は遮光下にて4℃以下の冷蔵保管を行った。
[例2(実施例)]
 500mLの4つ口フラスコに、マグネシウム(14g)およびジ-n-ブチルエーテル(300mL)を加えた。そこに温度-5~10℃を保ちつつ撹拌下に臭化メチル(54g)をジ-n-ブチルエーテル(110mL)に混合した混合液を2時間で滴下した。
 発熱がなくなったことを確認した後、撹拌を継続しながら、トリフルオロ酢酸エチル(73g)をジ-n-ブチルエーテル(100mL)に溶解させた混合液を、内部温度を-5℃~10℃の反応温度を保ちながら滴下速度を調節しつつ2時間かけて滴下した。発熱がなくなったことを確認した後、水(100mL)を滴下しグリニャール塩を分解した。更に5mol/Lの塩酸水溶液(113mL)を添加した後、有機層と水槽層を分離した。
 有機層をガスクロマトグラフにより分析した結果、1,1,1-トリフルオロアセトンが確認され、反応収率は92%であった。有機層は0.1MPa加圧下、40℃~48℃留分を単蒸留により得、それを更に0.1Mpa加圧において長さ200mm、内径25mmの蒸留塔に充填物「ヘリパックNo.1」(商品名)を充填した蒸留塔により精製蒸留を行うことにより、41~42℃の留分を88%の収率で得、これを製品とした。製品の純度は99%であり、反応から90%以上の純度の製品を得るまでの収率は81%であった。尚、得られた製品は遮光下にて4℃以下の冷蔵保管を行った。
[例3(比較例)]
 500mLの4つ口フラスコに、マグネシウム(14g)およびジ-n-ブチルエーテルエーテル(300mL)を加えた。そこに温度-5~10℃を保ちつつ撹拌下に臭化エチル(62g)をジ-n-ブチルエーテル(110mL)に混合した混合液を2時間で滴下した。
 発熱がなくなったことを確認した後、撹拌を継続しながら、トリフルオロ酢酸(29g)をジ-n-ブチルエーテル(100mL)に溶解させた混合液を、内部温度を-5℃~10℃の反応温度を保ちながら滴下速度を調節しつつ2時間かけて滴下した。
 発熱がなくなったことを確認した後、水(100mL)を滴下しグリニャール塩を分解した。更に5mol/Lの塩酸水溶液(113mL)を添加した後、有機層と水槽層を分離した。有機層をガスクロマトグラフにより分析した結果、1,1,1-トリフルオロ-2-ブタノンが確認され、反応収率は68%であった。
[例4(比較例)]
 500mLの4つ口フラスコに、マグネシウム(27g)およびジ-n-ブチルエーテルエーテル(300mL)を加えた。そこに温度-5~10℃を保ちつつ撹拌下に臭化エチル(124g)をジ-n-ブチルエーテル(110mL)に混合した混合液を2時間で滴下した。
 発熱がなくなったことを確認した後、撹拌を継続しながら、トリフルオロ酢酸(58g)をジ-n-ブチルエーテル(100mL)に溶解させた混合液を、内部温度を-5℃~10℃の反応温度を保ちながら滴下速度を調節しつつ2時間かけて滴下した。
 発熱がなくなったことを確認した後、水(100mL)を滴下しグリニャール塩を分解した。更に5mol/Lの塩酸水溶液(113mL)を添加した後、有機層と水槽層を分離した。有機層をガスクロマトグラフにより分析した結果、1,1,1-トリフルオロ-2-ブタノンが確認され、反応収率は59%であった。
[例5(比較例)]
 500mLの4つ口フラスコに、マグネシウム(14g)およびジエチルエーテル(300mL)を加えた。そこに温度-5~10℃を保ちつつ撹拌下に臭化エチル(62g)をジエチルエーテル(110mL)に混合した混合液を2時間で滴下した。
 発熱がなくなったことを確認した後、撹拌を継続しながら、トリフルオロ酢酸エチル(73g)をジエチルエーテル(100mL)に溶解させた混合液を、内部温度を-5℃~10℃の反応温度を保ちながら滴下速度を調節しつつ2時間かけて滴下した。発熱がなくなったことを確認した後、水(100mL)を滴下しグリニャール塩を分解した。更に5mol/Lの塩酸水溶液(113mL)を添加した後、有機層と水槽層を分離した。
 有機層をガスクロマトグラフにより分析した結果、1,1,1-トリフルオロ-2-ブタノンが確認され、反応収率は97%であった。有機層は常圧下、30℃~45℃留分を単蒸留により得、それを更に常圧において長さ200mm、内径25mmの蒸留塔にヘリパックRを充填した蒸留塔により精製蒸留を行うことにより、39~45℃の留分を83%の収率で得た。反応から90%以上の純度の製品を得るまでの収率は17%であった。尚、得られた製品は遮光下にて4℃以下の冷蔵保管を行った。
 以上の結果から、本発明による例1および例2は、高純度の1,1,1-トリフルオロ-2-ブタノンを高い反応収率かつ高い蒸留収率で製造できることが分かった。
 本発明の製造方法で得られた(トリフルオロメチル)アルキルケトンは、医薬・農薬等の中間体として、また各種の機能材料の製造中間体として有用な化合物である。
 なお、2010年12月10日に出願された日本特許出願2010-275283号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  下記(i)、下記(ii)、および下記(iii)の工程を順に行うことを特徴とする下式(A)で表される(トリフルオロメチル)アルキルケトンの製造方法。
    (i)ジアルキルエーテルの存在下で、マグネシウムと、式RBrで表される化合物(ただし、Rはアルキル基を示す。)とを反応させて式RMgBrで表される化合物を得る工程。
    (ii)製造する(トリフルオロメチル)アルキルケトンよりも高沸点のジアルキルエーテルの存在下で、式RMgBrで表される化合物と、式CFCOORで表されるエステル化合物(ただし、Rは有機基を示す。)とを反応させて下式(B)で表される化合物を得る工程。
    (iii)下式(B)で表される化合物を加水分解することにより下式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  2.  工程(i)においてRMgBrのジアルキルエーテル溶液を得、工程(ii)において前記RMgBrのジアルキルエーテル溶液を使用する、請求項1に記載の製造方法。
  3.  下記(ii)、および下記(iii)の工程を順に行うことを特徴とする下式(A)で表される(トリフルオロメチル)アルキルケトンの製造方法。
    (ii)製造する(トリフルオロメチル)アルキルケトンよりも高沸点のジアルキルエーテルの存在下で、式RMgBr(ただし、Rはアルキル基を示す。)で表される化合物と、式CFCOORで表されるエステル化合物(ただし、Rは有機基を示す。)とを反応させて下式(B)で表される化合物を得る工程。
    (iii)下式(B)で表される化合物を加水分解することにより下式(A)で表される(トリフルオロメチル)アルキルケトンを得る工程。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
  4.  式CFCOORで表されるエステル化合物からの反応収率80%以上で(トリフルオロメチル)アルキルケトンを得る、請求項1~3のいずれか1項に記載の製造方法。
  5.  工程(iii)において、(トリフルオロメチル)アルキルケトンのジアルキルエーテル溶液を得た後、得られた溶液を蒸留して純度90%以上の(トリフルオロメチル)アルキルケトンを得る、請求項1~4のいずれか1項に記載の製造方法。
  6.  工程(ii)において、RMgBrのジアルキルエーテル溶液と、式CFCOORで表される化合物のジアルキルエーテル溶液とを使用する、請求項1~5のいずれか1項に記載の製造方法。
  7.  工程(ii)において、式RMgBrで表される化合物のジアルキルエーテル溶液に、式CFCOORで表される化合物のジアルキルエーテル溶液を徐々に添加して反応させる、請求項1~6のいずれか1項に記載の製造方法。
  8.  式RMgBrで表される化合物のジアルキルエーテル溶液におけるジアルキルエーテルおよび式CFCOORで表されるエステル化合物のジアルキルエーテル溶液におけるジアルキルエーテルが、いずれも、製造する(トリフルオロメチル)アルキルケトンよりも40℃以上高沸点のジアルキルエーテルである、請求項6または7に記載の製造方法。
  9.  式RMgBrで表される化合物のジアルキルエーテル溶液におけるジアルキルエーテルと式CFCOORで表されるエステル化合物のジアルキルエーテル溶液におけるジアルキルエーテルとが、同一のジアルキルエーテルである、請求項6~8のいずれか1項に記載の製造方法。
  10.  ジアルキルエーテルにおける2つのアルキル基がいずれも炭素数3~6のアルキル基である、請求項1~9のいずれか1項に記載の製造方法。
  11.  ジアルキルエーテルが、ジ-n-ブチルエーテルである、請求項10に記載の製造方法。
  12.  Rが炭素数1~3のアルキル基である、請求項1~11のいずれか1項に記載の製造方法。
  13.  Rが炭素数1~6のアルキル基である、請求項1~12のいずれか1項に記載の製造方法。
  14.  下記(ii)の工程を行うことを特徴とする下式(B)で表される化合物の製造方法。
    (ii)ジアルキルエーテルの存在下で、式RMgBr(ただし、Rはアルキル基を示す。)で表される化合物と、式CFCOORで表されるエステル化合物(ただし、Rは有機基を示す。)とを反応させて下式(B)で表される化合物を得る工程。
    Figure JPOXMLDOC01-appb-C000005
PCT/JP2011/078610 2010-12-10 2011-12-09 (トリフルオロメチル)アルキルケトンの製造方法 WO2012077804A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012547931A JPWO2012077804A1 (ja) 2010-12-10 2011-12-09 (トリフルオロメチル)アルキルケトンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010275283 2010-12-10
JP2010-275283 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012077804A1 true WO2012077804A1 (ja) 2012-06-14

Family

ID=46207286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078610 WO2012077804A1 (ja) 2010-12-10 2011-12-09 (トリフルオロメチル)アルキルケトンの製造方法

Country Status (2)

Country Link
JP (1) JPWO2012077804A1 (ja)
WO (1) WO2012077804A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942393A (zh) * 2019-04-14 2019-06-28 赵博佑 1,1,1-三氟丙酮的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335538A (ja) * 1986-07-25 1988-02-16 ロ−ヌ プラン シミ ペルフルオロアルキルケトンの製法
JPH02282340A (ja) * 1989-04-25 1990-11-19 Showa Shell Sekiyu Kk 第2級アルコールの不斉合成法
JP2011190216A (ja) * 2010-03-15 2011-09-29 Asahi Glass Co Ltd (トリフルオロメチル)アルキルケトンの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335538A (ja) * 1986-07-25 1988-02-16 ロ−ヌ プラン シミ ペルフルオロアルキルケトンの製法
JPH02282340A (ja) * 1989-04-25 1990-11-19 Showa Shell Sekiyu Kk 第2級アルコールの不斉合成法
JP2011190216A (ja) * 2010-03-15 2011-09-29 Asahi Glass Co Ltd (トリフルオロメチル)アルキルケトンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DISHART, KENNETH T. ET AL.: "A new synthesis of ketones containing one perfluoroalkyl group", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 78, 1956, pages 2268 - 2270, XP002112596, DOI: doi:10.1021/ja01591a065 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942393A (zh) * 2019-04-14 2019-06-28 赵博佑 1,1,1-三氟丙酮的制备方法
CN109942393B (zh) * 2019-04-14 2021-11-19 赵博佑 1,1,1-三氟丙酮的制备方法

Also Published As

Publication number Publication date
JPWO2012077804A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
EP2262756B1 (en) Process for preparing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrates
WO2016001383A1 (fr) Nouveau procédé de fabrication du (e,z)-7,9 dodécandiényl-1-acétate
WO2012077804A1 (ja) (トリフルオロメチル)アルキルケトンの製造方法
EP2522648B1 (en) Process for producing difluorocyclopropane compound
JP4372091B2 (ja) 3,3,3−トリフルオロプロピオンアルデヒドの保存安定性の向上方法
EP3196183B1 (en) Method for producing 2'-trifluoromethyl group-substituted aromatic ketone
JP2011190216A (ja) (トリフルオロメチル)アルキルケトンの製造方法
JP2007290973A (ja) 亜鉛−マグネシウムアート錯体を含む求核試薬及びそれを使用する求核付加体の製造方法
JP2014214152A (ja) 非対称ジアルキルアミン化合物の製造方法
TWI522155B (zh) 從β-二酮化合物萃取非對稱β-二酮化合物之方法
JP5029000B2 (ja) ハロゲン置換ベンゼンジメタノールの製造法
JP2006001925A (ja) 3,4,5−トリフルオロベンジルアルコールの製造方法
JP2010077110A (ja) α−ヒドロキシエステル類の製造方法
JP2007291044A (ja) 含フッ素アルコール誘導体の製造方法
JP2010195745A (ja) γ−ケトアセタール化合物及びピロール誘導体の製造方法
JP6723817B2 (ja) (トリフルオロメチル)マロン酸エステルの製造方法
JP5750667B2 (ja) 光学活性アルコールの製造方法
CN105688984A (zh) 用于2-辛酮的丁烯醛化的方法
JP5817574B2 (ja) cis−3−ヘキセナールの蒸留方法
KR101990384B1 (ko) 고순도 알릴 알코올의 제조 방법 및 고순도 알릴 알코올 제조 공정 시스템
WO2005014519A1 (en) Process for the preparation of geminal difluoroalkanes
JP6556476B2 (ja) ジフルオロメチル亜鉛化合物
RU2519950C1 (ru) Способ получения первичных или вторичный спиртов
JP2007131600A (ja) 含フッ素乳酸誘導体の製造方法および含フッ素乳酸誘導体の中間体
JP2009013119A (ja) プロパン化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846686

Country of ref document: EP

Kind code of ref document: A1