WO2012077677A1 - 水漏れ検知方法、クロロシラン水素還元反応装置、および該装置を用いた製造方法 - Google Patents

水漏れ検知方法、クロロシラン水素還元反応装置、および該装置を用いた製造方法 Download PDF

Info

Publication number
WO2012077677A1
WO2012077677A1 PCT/JP2011/078175 JP2011078175W WO2012077677A1 WO 2012077677 A1 WO2012077677 A1 WO 2012077677A1 JP 2011078175 W JP2011078175 W JP 2011078175W WO 2012077677 A1 WO2012077677 A1 WO 2012077677A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
gas
chlorosilane
reactor
reduction reaction
Prior art date
Application number
PCT/JP2011/078175
Other languages
English (en)
French (fr)
Inventor
若松 智
卓也 間島
敬充 紙川
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to JP2012547872A priority Critical patent/JP5814939B2/ja
Priority to KR1020137006613A priority patent/KR20130138207A/ko
Priority to EP11847018.6A priority patent/EP2650260A1/en
Publication of WO2012077677A1 publication Critical patent/WO2012077677A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes

Definitions

  • the present invention relates to a method for detecting water leakage in a chlorosilane hydrogen reduction reactor having water cooling means to react with a chlorosilane compound and hydrogen, a reactor equipped with a water leak detector, and polycrystalline silicon using the reactor It relates to the manufacturing method.
  • Polycrystalline silicon is an industrial material useful as a raw material for producing solar cells and semiconductor chips.
  • a silicon seed crystal rod (core wire) placed inside a bell jar type reactor is used as a reaction substrate, and polycrystalline silicon is deposited on the core wire by a hydrogen reduction reaction.
  • the Siemens method (FIG. 1).
  • the core wire is energized and heated to about 1000 to 1100 ° C., and a chlorosilane compound typified by trichlorosilane and hydrogen are introduced into the reactor to cause a reaction on the core wire.
  • the present inventors introduce a chlorosilane compound and hydrogen into a cylinder of a cylindrical reaction base material heated by a high frequency induction heating method in the reactor, and react the above reaction.
  • Polycrystalline silicon is deposited on the vessel wall in the base material, and then the deposited polycrystalline silicon is heated continuously or intermittently to form a melt, and the melt is dropped into a collector located below.
  • a method for continuously producing high-purity silicon hereinafter also referred to as a melt precipitation method has been proposed (FIG. 2; Patent Document 1).
  • a water-cooling jacket having a structure in which cooling water circulates inside a double metal wall is usually used for a reactor that may be exposed to high temperatures.
  • the purpose of using the water-cooled jacket is that in the Siemens method, the inside of the bell jar type reactor receives radiant heat from the heated silicon seed crystal rod, so if the wall temperature is not cooled below a certain temperature, it will be due to deformation of the metal wall. This is because cracks and product contamination due to metal deterioration may occur.
  • the water-cooled jacket is used in a reactor containing a tubular reaction substrate. Furthermore, for the purpose of removing Joule heat from the high-frequency induction heating coil generated during energization, a method of circulating cooling water inside the coil may be employed.
  • a method of detecting leaked water itself can be considered, but as described above, it easily reacts with the chlorosilane compound and disappears, so that it cannot be a detection target.
  • the moisture meter and dew point meter which are generally known as methods for measuring moisture in gas, will rapidly deteriorate when the detector gas contains a chlorosilane compound or hydrogen chloride. A stable measurement cannot be performed.
  • the reaction product silica or hydrogen chloride is partially deposited on the reactor wall or outlet piping, so accurate quantification is difficult. The latter is also the reaction of the originally intended chlorosilane compound and hydrogen. Since they are indistinguishable, none of them are useful compounds as targets.
  • the present invention has a water cooling means, and in a chlorosilane hydrogen reduction reactor that reacts with a chlorosilane compound and hydrogen, by detecting early mixing of water into the reaction system due to water leakage, product quality deterioration due to by-product impurities
  • an object of the present invention is to provide a water leak detection method, a manufacturing apparatus equipped with a water leak detection device, and a manufacturing method using the device, in order to prevent a blockage of piping and a serious disaster on the operation side.
  • the present invention is applied to a chlorosilane hydrogen reduction reaction in which a chlorosilane compound and hydrogen react and an apparatus therefor.
  • the chlorosilane compound include tetrachlorosilane, trichlorosilane, dichlorosilane, and monosilane.
  • Specific reaction of these compounds with hydrogen includes polycrystalline silicon precipitation reaction by reaction of trichlorosilane and hydrogen, and trichlorosilane formation reaction by reaction of tetrachlorosilane and hydrogen.
  • the polycrystalline silicon deposition method there are a chemical vapor deposition method (Siemens method) using a bell jar type reactor, and a melt deposition method using a cylindrical reaction substrate.
  • the gas after the reaction mainly contains hydrogen, chlorosilane compounds such as monosilane, dichlorosilane, trichlorosilane, and tetrachlorosilane, and hydrogen chloride, and further contains high concentrations such as Si 2 Cl 6. It was confirmed that the following chlorosilane compound was also present.
  • a chlorosilane hydrogen reduction reaction in which a raw material gas containing a chlorosilane compound and hydrogen is introduced into a reaction portion formed in a reactor having a water cooling means and reacted, it is included in the gas after the reaction.
  • the concentration of Si 2 OCl 6 was measured to be, water leakage detection method characterized by detecting a water leak into the reactor by a change in the measured density is provided.
  • the invention of the water leak detection method is as follows: 1) a reaction in which the chlorosilane compound is trichlorosilane and the reduction target is polycrystalline silicon, 2) It is suitably employed for the reaction in which the chlorosilane compound is tetrachlorosilane and the reduction target is trichlorosilane.
  • the exhaust gas discharged from the reactor A method for producing polycrystalline silicon is provided, in which the concentration of Si 2 OCl 6 contained in the reactor is measured, water leakage into the reactor is detected based on the change in the measured concentration, and the reduction reaction is controlled. .
  • a reaction portion for reacting a chlorosilane compound and hydrogen inside, and a source gas supply means for supplying a source gas containing the chlorosilane compound and hydrogen, and a gas after reaction.
  • a chlorosilane hydrogen reduction reaction apparatus comprising a reactor having a gas discharge means for discharging and a water cooling means, comprising a detection device for measuring the concentration of Si 2 OCl 6 present in the reactor or in the gas discharge means
  • a chlorosilane hydrogen reduction reaction apparatus is provided.
  • a detecting device for detecting the concentration of Si 2 OCl 6 wherein the gas discharging means includes a heat retaining means or a heating means for separating a part of the exhaust gas and maintaining it at a temperature of 80 ° C. or higher and maintaining it in a gaseous state Is provided in the gas phase maintained in the gaseous state, 2)
  • the gas discharge means includes a cooling means for separating a part of the exhaust gas, cooling it to ⁇ 30 ° C.
  • a detection unit for detecting the concentration of Si 2 OCl 6 comprises: Being provided in the condensed liquid phase obtained by the condensation, 3) It is preferable that the chlorosilane compound is trichlorosilane and the reduction target is polycrystalline silicon.
  • minute water leakage can be detected with high sensitivity and high correlation.
  • mixing of water into the reaction system due to water leakage can be detected quickly and accurately, and the product quality is deteriorated due to contaminants and by-product impurities. This is an industrially extremely valuable technology that can prevent disasters.
  • This figure is a schematic view of the Siemens polycrystalline silicon manufacturing apparatus.
  • This figure is a schematic diagram of a chlorosilane hydrogen reduction reaction apparatus in the melt precipitation method.
  • This figure is a schematic diagram of a chlorosilane hydrogen reduction reaction apparatus in the melt precipitation method.
  • the present invention detects water leakage into a reactor in a chlorosilane hydrogen reduction reaction in which a raw material gas containing a chlorosilane compound and hydrogen is introduced into a reaction section formed in a reactor having a water cooling means.
  • a chlorosilane hydrogen reduction reaction device provided with a detection device for measuring the concentration is provided.
  • a reactor for trichlorosilane is produced by reaction of tetrachlorosilane and hydrogen
  • a reactor for trichlorosilane production silicon is precipitated by reaction of trichlorosilane and hydrogen
  • a reactor for producing silicon Specific examples of the reactor for generating silicon include a reactor for generating silicon, generally referred to as a “Bellger type reactor” (see FIG. 1).
  • a reactor 11 in FIG. 1 includes a metallic sealed container 1 having water cooling means, and a reaction base material 2 made of a silicon core wire in the metallic sealed container 1, and a power source (heating means 4) provided on the outside.
  • the surface of the reaction base material 2 is used as the reaction part 3, and polycrystalline silicon is deposited by chemical vapor deposition.
  • the metal sealed container 1 includes a raw material gas supply pipe 5 as a gas supply means and a gas discharge pipe 6 as a gas discharge means for discharging the reacted gas out of the reaction system.
  • a metal closed vessel 1 having water cooling means, a cylindrical reaction base material 2 in the metal closed vessel 1 and a heating means 4 are provided, and the above heating is performed.
  • the cylindrical reaction base material 2 is heated by means 4 to form a reaction portion 3 on the inner wall of the reaction base material, and polycrystalline silicon is deposited by chemical vapor deposition, and the deposited polycrystalline silicon is melted continuously or intermittently.
  • a reactor for silicon production called a “melting precipitation reactor” that drops and recovers (see FIG. 2).
  • the present invention has the greatest feature in that the concentration of Si 2 OCl 6 is measured by fractionating a part of the exhaust gas after the reaction in these reactors.
  • the structure and structural member of each said reactor can use a conventionally well-known thing without a restriction
  • the chlorosilane hydrogen reduction reaction apparatus of the present invention includes the reactor 11 and a detection device 12 that measures the concentration of Si 2 OCl 6 contained in the exhaust gas after the reaction.
  • the chlorosilane hydrogen reduction reaction apparatus by the melt precipitation method shown in FIG. 2 will be described as an embodiment, and the reaction apparatus, the Si 2 OCl 6 concentration measurement method, and the polycrystalline silicon production method will be specifically described.
  • the reactor for chlorosilane hydrogen reduction is equipped with a metal sealed container 1 having water cooling means.
  • the sealing means that it is cut off from the outside atmosphere.
  • the reactor shown in this embodiment is as follows: 1) A tubular reaction base 2 made of carbon that forms a reaction part 3 in which a chlorosilane hydrogen reduction reaction is performed. 2) Heating means 4 for heating the carbon tubular reaction base material 2 by, for example, high frequency 3) Raw material gas supply pipe 5 provided to open downward from the upper part of the reaction part 3 surrounded by the inner wall of the reaction base material. 4) Gas exhaust pipe 6 that is continuous with the reaction base material and exhausts the reacted gas to the outside of the reaction system. It has.
  • Metal sealed container 1 The material of the metal airtight container can be employed without particular limitation, such as iron material and stainless steel material. Also, metal spraying or coating can be used without particular limitation for the purpose of preventing corrosion caused by chlorosilane compounds or hydrogen chloride on the wall surface of the sealed container. Furthermore, a partition wall made of graphite, silicon carbide, silicon nitride, or the like can be used so as not to come into direct contact with the metal hermetic container at a portion that may come into contact with the silicon melt. Since the gas after the reaction is at a high temperature, a part of the inner wall surface of the metal hermetic container that can come into contact with the gas after the reaction may have a means / structure for thermal isolation.
  • a structure in which a carbon material is provided on the inner wall portion can be given.
  • the carbon material is provided on the inner wall surface portion
  • the carbon material and the inner wall surface portion may or may not be in contact.
  • a cooling means such as a water-cooled jacket structure is adopted for all or part of the metal sealed container. Is done.
  • reaction base material 2 In the reaction apparatus for reducing chlorosilane hydrogen shown in FIG. 2, a reaction substrate 2 is arranged in the reactor.
  • the reaction base material 2 is a heating body, and forms a reaction part 3 where a chlorosilane hydrogen reduction reaction proceeds on and near the base material surface.
  • the structure is not particularly limited as long as the above-described reduction reaction between the chlorosilane compound and hydrogen can be performed satisfactorily.
  • the reaction substrate 2 is heated by the heating means 4 described later, and the temperature suitable for the chlorosilane hydrogen reduction reaction, for example, the reaction substrate surface temperature is heated to 800 to 1700 ° C., preferably 1200 to 1400 ° C. or more. Is done.
  • reaction base material 2 comes into contact with the produced chlorosilane compound or silicon melt, it is preferable to select a material that can sufficiently withstand these temperature conditions and contact materials, such as a graphite material. Furthermore, the size of the reaction base material 2 can be appropriately set according to the purpose, and can be set in consideration of, for example, reaction efficiency and production efficiency.
  • Heating means 4 Any known means can be used as the heating means 4 as long as it can adjust the surface temperature of the reaction base material 1 to 1000 to 1700 ° C., preferably 1200 to 1400 ° C. or more.
  • a specific heating means an infrared heating method or the like can be adopted in addition to the high frequency induction heating method shown in FIG.
  • the heating means has a structure for cooling, for example, a structure in which water flows inside the coil.
  • the source gas supply pipe 5 is provided so as to open downward from the upper part of the reaction part 3 surrounded by the inner wall of the reaction base material 1, and the reaction part 3 is a mixed gas of a chlorosilane compound and hydrogen serving as a source gas. It is for supplying. Further, it is preferable that the inner wall of the tube is cooled to a temperature lower than the reaction temperature so that the raw material gas supply tube is heated by heat transfer from the reaction unit 3 and no reaction occurs inside the tube.
  • the mode of the cooling means is not particularly limited as long as the object can be achieved.
  • the source gas supply pipe is provided with a multiple ring nozzle more than a double pipe, a jacket structure for supplying cooling water inside the multiple ring, and a system for supplying a chlorosilane compound from the center is used. May be.
  • the gas discharge pipe 6 is continuously joined to the reaction base material 2 to collect and retain the reacted gas discharged from the reaction section 3 and discharge the reacted gas to the outside of the reaction system. It leads to a reaction gas cooling system, a processing system, and the like.
  • the temperature of the gas after the reaction that flows through the inside of the gas discharge pipe can be adjusted without any particular limitation, but it is preferable to maintain at least a temperature at which Si 2 OCl 6 contained in the gas does not liquefy after the reaction described later, at least 80 ° C. As described above, it is preferable to maintain at 130 ° C. or higher.
  • the detection device basically includes a detection unit that collects the exhaust gas after the reaction and a detector that quantifies Si 2 OCl 6 in the components of the exhaust gas collected by the detection unit.
  • sampling means as a detection unit is provided as necessary, and the collected exhaust gas is guided to the detector.
  • a connecting pipe such as a small diameter tube, a heat retaining means or a heating means for maintaining the exhaust gas in a gaseous state, or a cooling means for condensing the exhaust gas in a liquid state is provided, and the exhaust gas is collected in a gaseous or liquid state, and this is connected to the connecting pipe Send to the connected detector for quantitative analysis.
  • the measurement target gas is not particularly limited as long as it is a gas after the reaction, and may be a gas in the reactor. However, because of the structure of the apparatus, it is preferable to target the gas flowing in the gas discharge pipe 6. The concentration of Si 2 OCl 6 contained in the reacted gas discharged from the gas discharge pipe 6 is detected and the concentration thereof is detected. Capture change. Si 2 OCl 6 concentration measuring method is not limited in any way.
  • FIG. 1 shows specific measuring gas sampling methods.
  • Sampling method 1 A small-diameter tube for collection in which a part of the reacted gas circulated from the gas discharge pipe 6 is branched at the detection section, and is kept or heated above a certain temperature so that Si 2 OCl 6 contained in the reacted gas is not liquefied. Through 8, a part of the gas after the reaction is collected in a gaseous state.
  • FIG. 2 shows a mode in which the temperature is maintained by the heat insulating material 10 and is maintained in a gaseous state.
  • a detector 7 such as a gas chromatograph is connected to the detector with a small diameter tube 8 and can continuously analyze the collected gas.
  • the heat retention or heating temperature of the sampling small-diameter tube 8 is appropriately determined by the Si 2 OCl 6 partial pressure contained in the gas.
  • Si 2 OCl 6 contained in the gas is not particularly limited as long achieved that it does not liquefy in the small diameter tube, usually, 80 ° C. or higher, preferably 130 ° C. or higher.
  • the detection unit is a place where a sample is collected, and the sample may be sent to a detector connected to the detection unit and continuously measured, or batch processing may be performed using an independent detector. It may be measured.
  • Sampling method 2 In order to liquefy Si 2 OCl 6 contained in the reacted gas in part or all of the reacted gas circulated from the gas discharge pipe 6, it is connected to a cooling device that cools the reacted gas to a certain temperature or lower. To do. Exhaust gas, it is also possible to liquefy the Si 2 OCl 6 contained by cooling the whole, the case of performing only the detection of the present invention, the liquefaction of the Si 2 OCl 6 contained by preparative some minutes The embodiment to be made is preferable. Si 2 OCl 6 contained in the gas after the reaction is liquefied and collected at the detection unit. Thereafter, the collected liquid is injected into a gas chromatography as the detector 7 and analyzed.
  • the mode of the cooling means is not particularly limited as long as Si 2 OCl 6 contained in the gas can be liquefied and recovered, but the cooling temperature of the gas in the cooling device is usually ⁇ 30 ° C. or lower, preferably ⁇ 50 ° C. or lower. To do.
  • the method for separating Si 2 OCl 6 from other components by gas chromatography is not particularly limited.
  • the column is preferably a glass packed column with a high chemical stability, and the packing material is preferably a silicon earth support mainly composed of silica with a silicone oil system attached.
  • the carrier gas is preferably inert to the measurement gas such as helium, argon or nitrogen. Quantitative analysis can be performed by preparing a calibration curve from each peak area in advance using a standard sample of Si 2 OCl 6 with a known concentration and measuring each sample.
  • ⁇ Method for producing polycrystalline silicon As the method for producing polycrystalline silicon by the melt precipitation method using the chlorosilane hydrogen reduction reaction apparatus shown in FIG. 2, a conventionally known method can be adopted without any limitation.
  • the supply amount and supply ratio of trichlorosilane and hydrogen, the temperature of the reaction section, the supply amount and temperature of the cooling water, and other specific conditions are described in detail in Japanese Patent No. 4038110, Japanese Patent No. 4064918, Japanese Patent No. 4157281, Japanese Patent No. 4290647, etc. Therefore, it may be determined appropriately with reference to these.
  • the chlorosilane hydrogen reduction reaction is performed in the chlorosilane hydrogen reduction reaction apparatus, and the gas after the reaction is analyzed by the above-described detection method to quantify the amount of water contained in the exhaust gas.
  • the detected water is water caused by leaked cooling water or moisture in the raw material gas. Therefore, as a result of quantification, when the concentration of Si 2 OCl 6 , that is, the amount of water is not more than a specified value, the production is continued as a steady state.
  • This specified value is appropriately determined according to the product standard of the obtained polycrystalline silicon and the quality of the chlorosilane compound.
  • the reaction stop here means that the chlorosilane hydrogen reduction reaction stops.
  • a method of stopping heating control such as high-frequency induction heating shown in the heating means 4 or adjusting to a temperature region where the reaction stops, or a method of stopping supply of a chlorosilane compound supplied from the source gas supply pipe 5 Etc.
  • the method of transmitting information on the result of measuring the concentration of Si 2 OCl 6 to the manufacturing section and it may be online or offline.
  • the Siemens method shown in FIG. 1 the amount of moisture is measured in the same manner as the melt precipitation method, and the production is controlled based on the obtained value.
  • Example 1 Hereinafter, description will be made with reference to the schematic diagram of FIG.
  • a cylindrical container made of isotropic graphite was installed as a reaction substrate 2 in a metal (stainless steel) sealed container 1 having a water-cooled jacket structure.
  • a high frequency induction heating coil was installed as the heating means 4, and cooling water was circulated inside the coil.
  • the heating output of the high-frequency induction heating coil is controlled so that the surface temperature of the reaction substrate 2 is 1300 ° C. to 1400 ° C., and trichlorosilane 100 Nm 3 is supplied from the source gas supply pipe 5.
  • the gas was sampled through the tube 8 and the Si 2 OCl 6 concentration in the gas was measured by gas chromatography.
  • the concentration of Si 2 OCl 6 in the exhaust gas to be measured was measured by gas chromatography.
  • water was mixed in the sealed container at a supply rate of 20 cc / h, and the concentration of Si 2 OCl 6 in the exhaust gas was measured by gas chromatography.
  • the amount of water mixed was changed stepwise to 100 cc / h and 400 cc / h, and the concentration of Si 2 OCl 6 in the exhaust gas was measured in the same manner.
  • Table 1 The analysis results are shown in Table 1.
  • Comparative Examples 1 and 2 In each operation shown in Example 1, in the same manner except that the measurement object in the gas was changed from Si 2 OCl 6 to Si 2 Cl 6 and HCl, the concentration of the measurement object in the steady state and when each water was mixed. was measured. The results are shown in Table 1.
  • Example of operation Assuming that water leaked from the sealed container during the operation of depositing solid silicon by the operation described in Example 1, water was mixed into the sealed container at a supply rate of 20 cc / h. I let you. On the other hand, from the time of the above-mentioned steady operation to after mixing of water, the gas after reaction flowing in the gas discharge pipe 6 is partially branched as in Example 1, and Si 2 OCl 6 contained in the gas after reaction does not liquefy. The concentration of Si 2 OCl 6 in the gas was measured every 10 minutes by gas chromatography through a small-diameter tube 8 having a diameter of 8 mm that was heated to a temperature of 110 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

 クロロシラン類化合物と水素と反応させるクロロシラン水素還元反応器において、水の漏洩を厳密に管理して副生不純物による製品品質の低下、並びに、運転面における配管の閉塞や重大な災害を未然に防ぐための、水漏れ検知方法を提供する。 反応部に、トリクロロシラン、テトラクロロシランなどのクロロシラン類化合物と水素とを導入して反応させて多結晶シリコンなどを生成させ、該反応後のガスを反応部外に排出する手段を有し、且つ、水冷ジャケットなどの水冷手段を有するクロロシラン水素還元反応器において、反応後のガス中に含まれるSiOClの濃度をガスクロマトグラフィなどで測定し、該測定濃度の変化によって反応器内への水漏れを検知することを特徴とする水漏れ検知方法、該検知方法を実施する検出装置を具備したクロロシラン水素還元反応装置、該反応装置を用いた多結晶シリコンの製造方法。

Description

水漏れ検知方法、クロロシラン水素還元反応装置、および該装置を用いた製造方法
 本発明は、水冷手段を有しクロロシラン類化合物と水素と反応させるクロロシラン水素還元反応器における水漏れを検知する方法、水漏れ検出装置を具備した反応装置、並びに該反応装置を用いた多結晶シリコンの製造方法に関する。
 多結晶シリコンは、太陽電池や半導体チップを製造するための原料として有益な産業材料である。この多結晶シリコンの代表的な製造方法として、例えば、ベルジャー型反応器内部に配置されたシリコン種結晶棒(芯線)を反応基材として使用し、芯線上に水素還元反応によって多結晶シリコンを析出させる方法(以下、シーメンス法ともいう。)が挙げられる(図1)。具体的には、芯線に通電して1000~1100℃程度に加熱し、反応器内にトリクロロシランを代表とするクロロシラン化合物と水素を導入して芯線上で反応を起こさせる。
 また、本発明者らは、新規なシリコン製造方法として、反応器内において、高周波誘導加熱方式により加熱させた筒状の反応基材の筒内に、クロロシラン類化合物と水素を導入して上記反応基材内の器壁に多結晶シリコンを析出させ、次いで、この析出した多結晶シリコンを連続的或いは断続的に加熱して融液とし、該融液を下部に位置する回収器に落下させ、高純度のシリコンを連続的に製造する方法(以下、溶融析出法ともいう。)を提案している(図2;特許文献1)。
 上記の各種シリコン製造装置において高温に晒される可能性のある反応器には、通常、二重の金属壁内部に冷却水が流通する構造の水冷ジャケットが用いられる。
 水冷ジャケットを用いる目的は、シーメンス法においては、ベルジャー型反応器内部は加熱されたシリコン種結晶棒からの輻射熱を受ける為、壁面温度を一定温度以下に冷却していないと、金属壁の変形による割れや、金属劣化による製品汚染が発生する可能性があるためである。
 溶融析出法においては、同様の目的で、筒状の反応基材を収容する反応器に該水冷ジャケットが使用される。更に、通電時に発生する高周波誘導加熱コイルからのジュール熱を除去する目的で、コイル内部に冷却水を流通させる方式も採用されることもある。
 しかしながら、このような水が流通する構造の機材においては、局部的に生じる高温部位における長期的な金属劣化や、金属部材の溶接部等の接続部における昇降温による接続部の緩み等により、反応器内部で水漏れが生じる可能性が避けられない。
 反応系内に水が混入した場合、反応後のガスに含まれるクロロシラン類化合物と極めて容易に反応してシリカ(SiO)や塩化水素(HCl)等を生成する。これらの生成物は、製品の多結晶シリコン中に混入してその純度を低下させて品質を劣化させる。更に、水中の不純物、例えばリンやボロンなどが多結晶シリコン中に混入し製品価値が無くなる場合もあり、水の漏洩は厳格に防止されなければならない。
 また、上記生成したシリカは固形物である為、反応器の出口配管等を閉塞させる原因となりえる。更に、これらの反応器は高温で操作されるため、多量に水が混入した場合重大な災害につながる可能性もある。従って、軽度の水漏れ発生段階での早急、且つ、確実な検知方法が求められている。
 水を検知する方法としては、漏洩した水そのものを検出する方法が考えられるが、上記のとおりクロロシラン類化合物と容易に反応して消失するために、検出対象とすることはできない。また、通常、ガス中の水分を測定する手法として知られている水分計や露点計などは、測定ガス中にクロロシラン化合物や塩化水素が含まれていると、検出器が速やかに劣化する為、安定した測定を行うことができない。
 一方、反応生成物のシリカや塩化水素は、前者は反応器壁や出口配管などに一部沈着するので正確な定量が困難であること、後者は本来目的とするクロロシラン類化合物と水素の反応でも生成するので区別がつかないことから、何れも対象としては有用な化合物ではない。
 従来、多結晶シリコン製造分野においては、反応ガス中のHCl濃度を測定して水漏れの検知をする技術が知られているが、該技術は、上記のとおり、製造反応の過程でHClが副生する反応の場合はどちら由来のHClか区別がつかないので、特に多量のHClを副生する製造反応での微量の水漏れ検知には必ずしも適さないものである(特許文献2)。
特開20002-29726号公報 特許第3507842号公報
 本発明は、水冷手段を有し、クロロシラン類化合物と水素と反応させるクロロシラン水素還元反応器において、水漏れによる反応系への水の混入を早期検知することにより、副生不純物による製品品質の低下、並びに、運転面における配管の閉塞や重大な災害を未然に防ぐための水漏れ検知方法、水漏れ検出装置を具備した製造装置、該装置による製造方法を提供することを目的とする。
 本発明は、クロロシラン類化合物と水素とが反応するクロロシラン水素還元反応およびその装置に適用される。
 クロロシラン類化合物としては、テトラクロロシラン、トリクロロシラン、ジクロロシラン、モノシラン等が挙げられる。これらの化合物と水素との具体的な反応としては、トリクロロシランと水素との反応による多結晶シリコン析出反応、テトラクロロシランと水素との反応によるトリクロロシラン生成反応がある。多結晶シリコン析出法としては、ベルジャー型反応器を用いる化学気相析出法(シーメンス法)、筒状の反応基材を使用した溶融析出法がある。
 これらの反応において、反応後のガス中には、主として、水素及びモノシラン、ジクロロシラン、トリクロロシラン、テトラクロシラン等のクロロシラン化合物および塩化水素が含有され、更にはSiClをはじめとする高次のクロロシラン化合物も存在することを確認した。
 上記反応後におけるクロロシラン類化合物と水が反応した場合、代表的には、シリカ及び塩化水素が生成し、更に反応物として、SiClやSiOClが存在することを確認した。更にまた、これらの化合物の中で、SiClは、その検出量が漏洩した水の量と必ずしも明確な相関性を有しないが、一方、SiOClは十分な相関性を有することを見出した。
 即ち、本発明者等は、クロロシラン類化合物と水との反応メカニズムや反応生成物に付いて詳細に検討した結果、反応生成物の一つであるSiOClに着目し、この化合物が高感度で検出でき、しかも漏洩した水の量との相関性が極めて高いことを見出し、本発明を完成するに至った。
 本発明によれば、水冷手段を有する反応器内に形成された反応部に、クロロシラン類化合物と水素とを含む原料ガスを導入して反応させるクロロシラン水素還元反応において、反応後のガス中に含まれるSiOClの濃度を測定し、該測定濃度の変化によって反応器内への水漏れを検知することを特徴とする水漏れ検知方法が提供される。
 上記水漏れ検知方法の発明は、
1)クロロシラン類化合物がトリクロロシランであり、還元反応目的物が多結晶シリコンである反応、
2)クロロシラン類化合物がテトラクロロシランであり、還元反応目的物がトリクロロシランである反応
に好適に採用される。
 本発明によれば、また、水冷手段を有する反応器内に形成された反応部で、クロロシラン類化合物と水素との還元反応により多結晶シリコンを製造するに際し、前記反応器から排出される排ガス中に含まれるSiOClの濃度を測定し、該測定濃度の変化によって反応器内への水漏れを検知して還元反応を制御することを特徴とする多結晶シリコンの製造方法が提供される。
 本発明によれば、更に、内部にクロロシラン類化合物と水素とを反応せしめる反応部を有し、且つ、クロロシラン類化合物と水素とを含む原料ガスを供給する原料ガス供給手段、反応後のガスを排出するガス排出手段、および水冷手段を有する反応器を具備したクロロシラン水素還元反応装置であって、前記反応器内又はガス排出手段に存在するSiOClの濃度を測定するための検出装置を備えることを特徴とするクロロシラン水素還元反応装置が提供される。
 上記クロロシラン水素還元反応装置の発明において、
1)前記ガス排出手段が、排ガスの一部を分取してこれを80℃以上に保持して気体状態に維持する保温手段又は加熱手段を備え、SiOClの濃度を検出する検出装置の検出部が、上記気体状態に維持されたガス相に設けられること、
2)前記ガス排出手段が、排ガスの一部を分取してこれを-30℃以下に冷却して凝縮させる冷却手段を備え、SiOClの濃度を検出する検出装置の検出部が、上記凝縮により得られる凝縮液相に設けられること、
3)クロロシラン類化合物がトリクロロシランであり、還元反応目的物が多結晶シリコンであること
が好ましい。
 本発明によれば、微小の水漏れを高感度に、且つ、高い相関性でもって検知できる。この結果、水漏れによる反応系への水の混入を早期に、且つ、正確に検出することができ、汚染物質や副生不純物による製品品質の低下、並びに、運転面における配管の閉塞や重大な災害を未然に防ぐことができ、工業的に極めて価値の高い技術である。
本図は、シーメンス法多結晶シリコン製造装置の模式図である。 本図は、溶融析出法におけるクロロシラン水素還元反応装置の模式図である。 本図は、溶融析出法におけるクロロシラン水素還元反応装置の模式図である。
 本発明は、水冷手段を有する反応器内に形成された反応部に、クロロシラン類化合物と水素とを含む原料ガスを導入して反応させるクロロシラン水素還元反応において、反応器内への水漏れを検知するための水漏れ検知方法、前記反応器内への水漏れを検知して還元反応を制御する多結晶シリコンの製造方法、および、前記反応器内又はガス排出手段に存在するSiOClの濃度を測定するための検出装置を備えたクロロシラン水素還元反応装置を提供するものである。
 本発明において、クロロシラン水素還元用の前記反応器としては、テトラクロロシランと水素との反応によりトリクロロシランを生成する、トリクロロシラン生成用の反応器、トリクロロシランと水素との反応によりシリコンを析出させる、シリコン生成用の反応器とが挙げられる。
 上記シリコン生成用の反応器としては、具体的には、一般に、「ベルジャー型反応器」と称されるシリコン生成用の反応器が挙げられる(図1参照)。図1の反応器11は、水冷手段を有する金属性密閉容器1と、該金属性密閉容器1内に、シリコン芯線よりなる反応基材2を設け、これに外部に設けた電源(加熱手段4)より通電して発熱させることにより、該反応基材2の表面を反応部3とし、多結晶シリコンを化学気相析出させるものである。また、前記金属製密閉容器1は、ガス供給手段として原料ガス供給管5と、反応後のガスを反応系外へ排出するガス排出手段としてガス排出管6を備える。
 また、シリコン生成用の反応器として、水冷手段を有する金属性密閉容器1と、該金属性密閉容器1内に、筒状の反応基材2を用い、加熱手段4とを有し、上記加熱手段4により筒状の反応基材2を加熱して該反応基材内壁に反応部3を形成し、多結晶シリコンを化学気相析出させ、析出した多結晶シリコンを連続的或いは断続的に溶融落下して回収する、「溶融析出型反応器」と称する、シリコン生成用の反応器を挙げることができる(図2参照)。
 本発明は、これらの反応器内での反応後の排ガスの一部を分取して、SiOClの濃度を測定することに最大の特徴がある。尚、上記各反応器の構造や構造部材は、従来公知のものを何ら制限なく使用できる。
 本発明のクロロシラン水素還元反応装置は、前記反応器11と、反応後の排ガス中に含まれるSiOClの濃度を測定する検出装置12とを具備している。
 以下、図2に示す溶融析出法によるクロロシラン水素還元反応装置を一実施態様とし、反応装置、SiOClの濃度測定方法、並びに多結晶シリコンの製造方法を具体的に説明する。
<クロロシラン水素還元反応器11>
 本実施態様では、クロロシラン水素還元のための反応器は、水冷手段を有する金属製密閉容器1を具備している。ここで密閉とは外部の雰囲気からは遮断されていることを意味する。本実施態様に示す反応器は、以下に示すように、
1)内部にクロロシラン水素還元反応が行われる反応部3を形成するカーボン製の筒状反応基材2
2)上記カーボン製の筒状反応基材2を、例えば、高周波により加熱する加熱手段4
3)上記反応基材内壁で囲まれた反応部3の上部より下方に向かって開口するように設けられた原料ガス供給管5
4)該反応基材と連続し、反応後のガスを反応系外へ排出するガス排出管6
を備えている。
<金属製密閉容器1>
 金属製密閉容器の材質は、鉄材やステンレス鋼材など特に制限なく採用可能である。また、密閉容器の壁面におけるクロロシラン類化合物や塩化水素などによる腐食防止を目的に、金属溶射やコーティング塗装などが特に制限なく採用可能である。更に、シリコン融液と接触する可能性のある部位には直接金属製密閉容器と接触しないよう、グラファイト、炭化珪素、窒化珪素等の隔壁を使用することができる。
 反応後のガスは高温であるため、反応後のガスと接触しうる金属製密閉容器の内壁面部の一部には熱的に隔離する手段・構造を有していてもよい。具体的には内壁部にカーボン材が設けられた構造が挙げられる。内壁面部にカーボン材を設ける場合、カーボン材と内壁面部は接触していても接触していなくてもよく、例えば板状カーボン材を金属製密閉容器の内壁面部を覆うようにもうけることが好ましい。金属製密閉容器において上記反応後の高温ガスやその他何らかの要因による熱による変形や局部的な劣化を防止する為に金属製密閉容器の全て若しくは一部において、冷却する手段、例えば水冷ジャケット構造が採用される。
<反応基材2>
 図2に示すクロロシラン水素還元用の反応装置において、反応器内に反応基材2が配置されている。該反応基材2は加熱体であって、その基材表面及び近傍においてクロロシラン水素還元反応が進行する反応部3を形成する。上記クロロシラン類化合物と水素の還元反応を良好に行うことができれば、その構造は特に限定されるものではなく、例えば図2に示すように筒状の反応基材により構成することができる。
 上記反応基材2の加熱は、後述する加熱手段4にて行われ、クロロシラン水素還元反応に適した温度、例えば上記反応基材表面温度を800~1700℃、好ましくは1200~1400℃以上に加熱される。ここで反応基材2は、生成したクロロシラン類化合物やシリコン融液に接触する為、これら温度条件や接触物に対して十分に耐える材質、例えばグラファイト材などを選択することが好ましい。更に反応基材2の大きさは目的に応じて適宜設定することができ、例えば、反応効率や生産効率などを考慮して設定することができる。
<加熱手段4>
 上記加熱手段4は反応基材1の表面温度を1000~1700℃、好ましくは1200~1400℃以上に加熱調整可能な手段であれば、公知の手段が特に制限なく採用可能である。具体的な加熱手段を例示すれば、図2に示す高周波誘導加熱方式に加えて、赤外線加熱方式などが採用可能である。通常、該加熱手段は、冷却する手段、例えば、コイル内部に水が流通する構造を有する。高周波誘導加熱方式の場合には加熱効率などを考慮して、反応基材1と加熱手段4の間に断熱材などを介在させることが好ましい。
<原料ガス供給管5>
 原料ガス供給管5は、反応基材1内壁で囲まれた反応部3の上部より下方に向かって開口するように設けられ、反応部3に原料ガスとなるクロロシラン類化合物と水素との混合ガスを供給するためのものである。また、反応部3からの伝熱により原料ガス供給管が加熱されて管内部において反応が生じないように、管内壁を反応温度未満に冷却されることが好ましい。冷却手段の態様はかかる目的を達成することができれば特に問わない。例えば図示されてはいないが、該原料ガス供給管に二重管以上の多重環ノズルを設け、多重環内部に冷却水を供給するジャケット構造とし、中心部からクロロシラン類化合物を供給する方式を用いても良い。
<ガス排出管6>
 ガス排出管6は、上記反応基材2に連続して接合しており、該反応部3から排出される反応後のガスを回収・滞留させ、反応後のガスを反応系外へ排出するためのものであり、反応ガス冷却系統や処理系等などに通じる。
 このガス排出管内部を流通する反応後のガス温度は特に制限なく調整可能であるが、少なくとも後述する反応後にガスに含まれるSiOClが液化しない温度に維持することが好ましく、少なくとも80℃以上、好ましくは130℃以上に維持することが好ましい。
<検出装置12>
 検出装置は、反応後の排ガスを採取する検出部と検出部により採取された排ガスの成分中のSiOClを定量する検出器とにより基本構成される。検出を連続的に行う場合は、必要に応じて検出部としての採取手段を設け、採取した排ガスを検出器に導く。例えば、小径チューブなどの連結管、排ガスを気体状に維持する保温手段または加熱手段、或いは排ガスを液体状に凝縮する冷却手段を設けて、排ガスを気体状或いは液状で採取し、これを連結管により接続された検出器に送って定量分析する。一方、検出をバッチ方式で実施することも可能であり、その場合は、上記検出部において気体状或いは液状で採取された排ガスを、独立して設けられた検出器でもって定量分析する。
<水漏れ検知方法>
 上記反応部3より排出された反応後のガス中に、上記金属製密閉容器1若しくは加熱手段4若しくは原料ガス供給管5における水冷部より水が漏洩すると、直ちに反応して、シリカ、塩化水素その他特定の反応物を発生する。
 本発明において、測定対象ガスは反応後のガスであれば特に限定されず、反応器内のガスでも良い。しかし、装置の構造上、上記ガス排出管6中を流れるガスを対象とすることが好ましく、ガス排出管6より排出された反応後のガス中に含まれるSiOClを検出してその濃度変化をとらえる。
 SiOCl濃度の測定方法は何ら限定されない。検出器7としては、赤外分光分析装置やクロマトグラフィ装置が使用される。これらの中で、ガスクロマトグラフィ法が簡便で、且つ、正確に濃度変化を把握できるので好ましく採用される。図1、図2、および図3に具体的な測定ガスのサンプリング方法を示す。
サンプリング方法1:
 ガス排出管6より流通された反応後のガスを検出部において一部分岐させ、反応後のガスに含まれるSiOClが液化しないよう一定の温度以上に保温または加熱された採取用の小径チューブ8を通して、反応後のガスの一部を気体状で採取する。
 図2においては、保温材10により保温されて気体状に維持される態様が示されている。ガスクロマトグラフィなどの検出器7は、小径チューブ8でもって検出部と連結され、採取ガスを連続的に分析することができる。
 採取用の小径チューブ8の保温または加熱温度は、ガス中に含まれるSiOCl分圧により適宜決定される。ガス中に含まれるSiOClが小径チューブ内で液化しないことが達成できれば特に問わないが、通常、80℃以上、好ましくは130℃以上とする。上記検出部は検体を採取する箇所であり、該検体は検出部と接続されている検出器に送り込んで連続的に測定しても良いし、独立して存在する検出器を用いてバッチ処理で測定しても良い。
サンプリング方法2:
 ガス排出管6より流通された反応後のガスの一部若しくは全てにおいて、反応後のガスに含まれるSiOClを液化させる為、反応後のガスを一定温度以下に冷却する冷却装置に接続する。排ガスは、その全部を冷却して含まれるSiOClを液化させることも可能であるが、本発明の検出のみを行う場合は、一部を分取して含まれるSiOClを液化させる態様が好ましい。
 反応後のガスに含まれるSiOClは液化され、検出部において採取する。その後、採取液を検出器7であるガスクロマトグラフィに注入し、分析する。冷却手段の態様はガス中に含まれるSiOClが液化させ回収することが達成できれば特に問わないが、冷却装置におけるガスの冷却温度は、通常-30℃以下、好ましくは-50℃以下とする。
濃度測定方法:
 ガスクロマトグラフィ法によりSiOClを他の成分と分離する方法は、特に制限されるものではない。具体的なガスクロマトグラフィ条件としては、カラムは化学的安定性の高いガラス製パックドカラム、充填材はシリカを主成分とする珪素土系の担体にシリコーンオイル系が添着されたものが好ましく採用される。キャリアーガスはヘリウムやアルゴン、窒素などの測定ガスに対して不活性なものが好ましい。定量分析は、濃度既知のSiOClの標準試料を用いて、予めそれぞれのピーク面積から検量線を作成しておき、各試料の測定を行うことにより、定量が可能である。
<多結晶シリコンの製造方法>
 図2に示すクロロシラン水素還元反応装置を用いた溶融析出法による多結晶シリコンの製造方法は、従来公知の方法を何ら制限なく採用できる。トリクロロシランと水素の供給量や供給比率、反応部の温度、冷却水の供給量や温度その他の具体的条件は、特許4038110号、特許4064918号、特許4157281号、特許4290647号などに詳細に説明されているので、これらを参照して適宜決定すればよい。
 当該クロロシラン水素還元反応装置においてクロロシラン水素還元反応を行い、反応後のガスを前述の検出方法で分析して、排ガス中に含まれる水の量を定量する。検出される水は、漏れた冷却水や原料ガス中の水分に起因する水である。
 従って、定量した結果、SiOClの濃度、即ち水分量が規定値以下である場合は、定常状態として取り扱い製造を続行する。この規定値は、得られる多結晶シリコンの製品規格やクロロシラン類化合物の品質により、適宜決定される。
 SiOClの濃度、即ち、水分量が増加し規定値を超えた場合、若しくは濃度推移を確認し明らかに水漏れ等の異常と判断された場合には、直ちに反応を停止する方法が最も好ましい。ここでの反応停止とは、当該クロロシラン水素還元反応が停止することを意味する。具体的には、加熱手段4に示す高周波誘導加熱等の加熱制御を停止若しくは反応が停止する温度領域に調整する方法、或いは原料ガス供給管5より供給されるクロロシラン類化合物の供給を停止する方法等が挙げられる。
 SiOClの濃度測定した結果の情報を製造セクションに伝達する方法は特に制限されず、オンラインでもオフラインでも良い。
 図1に示すシーメンス法においても、上記溶融析出法と同様にして水分量を測定し、得られた値を基にして製造を制御する。
 以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
実施例1
 以下、図2の概略図に従って説明する。
 水冷ジャケット構造を有した金属製(ステンレス製)密閉容器1内に、反応基材2として等方性グラファイト製の円筒状容器を設置した。また、加熱手段4として高周波誘導加熱コイルを設置し、コイル内部に冷却水を流通させた。
 上記構造のクロロシラン水素還元反応器を用いて、反応基材2の表面温度が1300℃~1400℃になるように高周波誘導加熱コイルの加熱出力を制御し、原料ガス供給管5からトリクロロシラン100Nm/h及び水素1000Nm/hの混合ガス(合計1100Nm3/h)を供給して反応を開始し、反応基材2の内表面に固体状のシリコンを析出させた。このときの密閉容器内の圧力は約50kPaGであった。
 上記トリクロロシランの還元反応において、反応部3直後のガス温度は約1100℃であり、ガス排出管6におけるガス温度は約800℃であった。
 一方、反応器のガス排出管6中に流れる反応後の排ガスの一部を、反応後のガスに含まれるSiOClが液化しないよう110℃の温度に加熱された採取用のφ8mmの小径チューブ8を通して気体状で採取し、ガス中のSiOCl濃度をガスクロマトグラフィにて測定した。
 上記定常運転において、測定される排ガス中のSiOCl濃度をガスクロマトグラフィにて測定した。また、模擬的に密閉容器より水漏れが発生したと想定し、密閉容器内に水を20cc/hの供給速度で混入させて、排ガス中のSiOCl濃度をガスクロマトグラフィにて測定した。次いで、前記水の混入量を、100cc/h、400cc/hと段階的に変化させて、同様にして排ガス中のSiOCl濃度を測定した。
 分析結果を表1に示す。この結果より、水の混入量とSiOCl濃度とに相関があることが確認される。尚、上記測定の際には、反応器におけるガス温度及び圧力共に変動は確認されず、かかる項目のチェックは微量の水の混入には有効ではない。一方、本発明の検知方法によれば、微量の水の混入に対しても、精度よく検知することができることが判る。
 前記水添加の反応後、クロロシラン水素還元反応器を開放したところ、金属製密閉容器内壁面及びガス排出管の内側にはシリカが堆積していることが確認された。
比較例1、2
 実施例1に示す各操作において、ガス中の測定対象物をSiOClからSiCl及びHClに変更した以外は同様にして、定常状態、各水の混入時における測定対象物の濃度の測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、水の漏洩量(混入量)とSiOCl濃度との間には明確な相関が認められた。一方、水とSiCl濃度との間には相関が認められず、また、水とHCl濃度との相関は不明確であり、水の漏洩量が微量の場合には使用できないことが分かる。
操業例
 実施例1に記載の操作によって固体状のシリコンを析出させる操作中に、模擬的に密閉容器より水漏れが発生したと想定し、密閉容器内に水を20cc/hの供給速度で混入させた。
 一方、上記定常運転時から水の混入後に亘り、実施例1と同様に、ガス排出管6中に流れる反応後のガスを一部分岐させ、反応後のガスに含まれるSiOClが液化しないよう110℃の温度に加熱された採取用のφ8mmの小径チューブ8を通して、ガス中のSiOCl濃度をガスクロマトグラフィにて10分毎に測定した。
 上記水の混入から30分後、反応後のガスに含まれるSiOCl濃度の上昇が確認されたため、水の供給を停止すると共に、加熱手段4である高周波誘導加熱コイルの加熱出力を停止し、更に原料ガス供給管5からトリクロロシラン100Nm/hの供給を停止して反応を停止した。その後、反応器内を開放したところ、密閉容器内壁面及びガス排出管の内側においてシリカなど副生成物は確認されず、副生成物の生成を未然に防止することができた。
1 金属製密閉容器
2 反応基材
3 反応部 
4 加熱手段
5 原料ガス供給管
6 ガス排出管
7 検出器
8 小径チューブ
9 冷却装置
10 保温材
11 反応器
12 ガス検出装置

Claims (8)

  1.  水冷手段を有する反応器内に形成された反応部に、クロロシラン類化合物と水素とを含む原料ガスを導入して反応させるクロロシラン水素還元反応において、反応後のガス中に含まれるSiOClの濃度を測定し、該測定濃度の変化によって反応器内への水漏れを検知することを特徴とする水漏れ検知方法。
  2.  クロロシラン類化合物がトリクロロシランであり、還元反応目的物が多結晶シリコンであることを特徴とする請求項1に記載の水漏れ検知方法。
  3.  クロロシラン類化合物がテトラクロロシランであり、還元反応目的物がトリクロロシランであることを特徴とする請求項1に記載の水漏れ検知方法。
  4.  水冷手段を有する反応器内に形成された反応部で、クロロシラン類化合物と水素との還元反応により多結晶シリコンを製造するに際し、前記反応器から排出される排ガス中に含まれるSiOClの濃度を測定し、該測定濃度の変化によって反応器内への水漏れを検知して還元反応を制御することを特徴とする多結晶シリコンの製造方法。
  5.  内部にクロロシラン類化合物と水素とを反応せしめる反応部を有し、且つ、クロロシラン類化合物と水素とを含む原料ガスを供給する原料ガス供給手段、反応後のガスを排出するガス排出手段、および水冷手段を有する反応器を具備したクロロシラン水素還元反応装置であって、前記反応器内又はガス排出手段に存在するSiOClの濃度を測定するための検出装置を備えることを特徴とするクロロシラン水素還元反応装置。
  6.  前記ガス排出手段が、排ガスの一部を分取してこれを80℃以上に保持して気体状態に維持する保温手段又は加熱手段を備え、SiOClの濃度を検出する検出装置の検出部が、上記気体状態に維持されたガス相に設けられることを特徴とする請求項5に記載のクロロシラン水素還元反応装置。
  7.  前記ガス排出手段が、排ガスの一部を分取してこれを-30℃以下に冷却して凝縮させる冷却手段を備え、SiOClの濃度を検出する検出装置の検出部が、上記凝縮により得られる凝縮液相に設けられることを特徴とする請求項5に記載のクロロシラン水素還元反応装置。
  8.  クロロシラン類化合物がトリクロロシランであり、還元反応目的物が多結晶シリコンであることを特徴とする請求項5に記載のクロロシラン水素還元反応装置。
PCT/JP2011/078175 2010-12-10 2011-12-06 水漏れ検知方法、クロロシラン水素還元反応装置、および該装置を用いた製造方法 WO2012077677A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012547872A JP5814939B2 (ja) 2010-12-10 2011-12-06 水漏れ検知方法、クロロシラン水素還元反応装置、および該装置を用いた製造方法
KR1020137006613A KR20130138207A (ko) 2010-12-10 2011-12-06 누수 검지 방법, 클로로실란 수소 환원 반응 장치, 및 상기 장치를 이용한 제조 방법
EP11847018.6A EP2650260A1 (en) 2010-12-10 2011-12-06 Method for detecting water leak, device for chlorosilane hydrogen reduction reaction and production method using said device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010275740 2010-12-10
JP2010-275740 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012077677A1 true WO2012077677A1 (ja) 2012-06-14

Family

ID=46207165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078175 WO2012077677A1 (ja) 2010-12-10 2011-12-06 水漏れ検知方法、クロロシラン水素還元反応装置、および該装置を用いた製造方法

Country Status (5)

Country Link
EP (1) EP2650260A1 (ja)
JP (1) JP5814939B2 (ja)
KR (1) KR20130138207A (ja)
TW (1) TW201233989A (ja)
WO (1) WO2012077677A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105660A (ja) * 2015-12-08 2017-06-15 信越半導体株式会社 半導体単結晶棒の製造装置
CN109781888A (zh) * 2019-01-31 2019-05-21 内蒙古通威高纯晶硅有限公司 一种氯硅烷前处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029726A (ja) 2000-05-11 2002-01-29 Tokuyama Corp シリコン生成用反応装置
JP2003014573A (ja) * 2001-07-03 2003-01-15 Sumitomo Titanium Corp 水冷式反応容器における水漏れ検知方法
JP4038110B2 (ja) 2001-10-19 2008-01-23 株式会社トクヤマ シリコンの製造方法
JP4064918B2 (ja) 2001-06-06 2008-03-19 株式会社トクヤマ シリコンの製造方法
WO2009047238A1 (de) * 2007-10-09 2009-04-16 Wacker Chemie Ag Verfahren zur herstellung von hochreinem hexachlordisilan
JP4290647B2 (ja) 2002-06-18 2009-07-08 株式会社トクヤマ シリコン製造用反応装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029726A (ja) 2000-05-11 2002-01-29 Tokuyama Corp シリコン生成用反応装置
JP4157281B2 (ja) 2000-05-11 2008-10-01 株式会社トクヤマ シリコン生成用反応装置
JP4064918B2 (ja) 2001-06-06 2008-03-19 株式会社トクヤマ シリコンの製造方法
JP2003014573A (ja) * 2001-07-03 2003-01-15 Sumitomo Titanium Corp 水冷式反応容器における水漏れ検知方法
JP3507842B2 (ja) 2001-07-03 2004-03-15 住友チタニウム株式会社 水冷式反応容器における水漏れ検知方法
JP4038110B2 (ja) 2001-10-19 2008-01-23 株式会社トクヤマ シリコンの製造方法
JP4290647B2 (ja) 2002-06-18 2009-07-08 株式会社トクヤマ シリコン製造用反応装置
WO2009047238A1 (de) * 2007-10-09 2009-04-16 Wacker Chemie Ag Verfahren zur herstellung von hochreinem hexachlordisilan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017105660A (ja) * 2015-12-08 2017-06-15 信越半導体株式会社 半導体単結晶棒の製造装置
CN109781888A (zh) * 2019-01-31 2019-05-21 内蒙古通威高纯晶硅有限公司 一种氯硅烷前处理方法

Also Published As

Publication number Publication date
TW201233989A (en) 2012-08-16
EP2650260A1 (en) 2013-10-16
JP5814939B2 (ja) 2015-11-17
JPWO2012077677A1 (ja) 2014-05-19
KR20130138207A (ko) 2013-12-18

Similar Documents

Publication Publication Date Title
US8039412B2 (en) Crystalline composition, device, and associated method
US7935382B2 (en) Method for making crystalline composition
US7942970B2 (en) Apparatus for making crystalline composition
US6503563B1 (en) Method of producing polycrystalline silicon for semiconductors from saline gas
CA2795825C (en) Polycrystalline silicon
EP2479141B1 (en) System for producing polycrystalline silicon, and process for producing polycrystalline silicon
JP2009520678A (ja) 結晶性組成物、デバイスと関連方法
CN102565014B (zh) 一种用于测定硅中杂质的方法
WO2022123084A2 (en) Method and device for producing a sic solid material
JP5814939B2 (ja) 水漏れ検知方法、クロロシラン水素還元反応装置、および該装置を用いた製造方法
US20040091630A1 (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
US10605659B2 (en) Process for determining surface contamination of polycrystalline silicon
US8899827B2 (en) Thermal analysis apparatus and thermal analysis method
JP6870085B2 (ja) 多結晶シリコンの製造方法
JP6452475B2 (ja) 多結晶シリコン製造装置に用いる無機材料の評価用試料作製装置、評価用試料作製方法、及び評価方法
JP4545497B2 (ja) シリコンの製造方法およびシリコン製造装置
US20240035201A1 (en) Method and Device for Producing a SiC Solid Material
JPH047847A (ja) 気相成長装置
WO2024013049A1 (en) METHOD AND DEVICE FOR PRODUCING A SiC SOLID MATERIAL
JP2013014501A (ja) 高純度シリコン及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547872

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137006613

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011847018

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011847018

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE