CN102565014B - 一种用于测定硅中杂质的方法 - Google Patents

一种用于测定硅中杂质的方法 Download PDF

Info

Publication number
CN102565014B
CN102565014B CN201110353075.4A CN201110353075A CN102565014B CN 102565014 B CN102565014 B CN 102565014B CN 201110353075 A CN201110353075 A CN 201110353075A CN 102565014 B CN102565014 B CN 102565014B
Authority
CN
China
Prior art keywords
silicon
rod
dilution
single crystal
sleeve pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110353075.4A
Other languages
English (en)
Other versions
CN102565014A (zh
Inventor
库尔特·邦奥尔-克莱普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Polymer Systems GmbH and Co KG
Original Assignee
Wacker Polymer Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Polymer Systems GmbH and Co KG filed Critical Wacker Polymer Systems GmbH and Co KG
Publication of CN102565014A publication Critical patent/CN102565014A/zh
Application granted granted Critical
Publication of CN102565014B publication Critical patent/CN102565014B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/04Homogenisation by zone-levelling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3568Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor applied to semiconductors, e.g. Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Abstract

本发明涉及一种用于测定硅中杂质的方法,其中由待测硅通过区域精制制备单晶棒;在至少一个稀释步骤中,将该单晶硅棒引入由具有限定的碳和掺杂物浓度的单晶硅或多晶硅制成的套管中,然后由单晶硅棒和套管通过区域精制而制备稀释的单晶硅棒;其中,通过光致发光法或者FTIR或者二者借助于稀释的单晶硅棒进行待测硅中的杂质的测定。即使掺杂物浓度极高,该方法仍能允许采用光致发光法量化测定掺杂元素。

Description

一种用于测定硅中杂质的方法
技术领域
本发明涉及一种用于测定硅中杂质的方法。
背景技术
在工业规模,粗硅是在电弧炉中大约2000℃下用碳还原二氧化硅得到的。
纯度约98-99%的所谓冶金硅(Simg,“冶金级”)就是这么制得的。
为了应用于光伏和微电子领域,还需要对冶金硅进行纯化。为此,例如,在流化床反应器内其与气体氯化氢在300-350℃反应形成含硅气体,例如三氯硅烷。然后经过蒸馏步骤,以便纯化该含硅气体。
然后,这种含有高纯硅的气体用作起始原料来生产高纯多晶硅。
通常多晶体硅(还常简写为多晶硅)是通过西门子法制备的。在这种情况下,细丝硅棒在一个钟形反应器(“西门子反应器”)内被直接通过的电流加热,并引入包括含硅成分和氢气的反应气。
在西门子法中,丝棒通常被垂直固定到位于反应器底部的电极上,由此建立至供电系统的连接。各对丝棒通过水平桥(由同样的硅制成)连接,形成了硅沉积的支撑体。支撑体是典型的U形,也称之为细棒,由桥连接制得。
高纯多晶硅沉积在加热硅棒和桥上,使得棒直径随时间逐渐增大(CVD=化学气相沉积)。
沉积结束后,通常要对这些多晶硅棒通过机械加工进行进一步处理以形成不同大小种类的块,可选地湿化学清洗,最后包装。
然而,多晶硅也可以在棒或杆段的形状下被进一步处理。这特别适用于多晶硅应用在FZ方法中。
反应气体的含硅成分一般是单硅烷或化学组成为SiHnX4-n(n=0,1,2,3,X=Cl,Br,I)的卤代硅烷。其优选为氯硅烷,尤其优选是三氯硅烷。SiH4或SiHCl3(三氯硅烷,TCS)与氢气的混合物是最经常使用的。
除此之外,还已知在流化床反应器中将小硅粒直接暴露于这样的反应气。由此制得的多晶硅具有的形式为颗粒(颗粒多晶硅)。
多晶体硅(简称多晶硅)被用作通过坩埚提拉(提拉法(Czochralski)或CZ法)或区熔(浮区法(float zone)或FZ法)生产单晶硅的起始原料。这样的单晶硅被切成晶片,经过机械、化学和化学-机械多重加工处理后,在半导体工业中用来制造电子元件(芯片)。
特别的,然而,通过提拉法或浇铸法生产单晶硅或多晶硅对多晶硅的需求越来越大,该单晶硅或多晶硅被用于制造光伏太阳能电池。
由于对多晶硅的质量要求越来越高,整个工艺链中的质量控制是必不可少的。例如,要对材料进行金属或掺杂物污染的测定。对多晶硅块或杆段的块污染和表面污染也要进行区别。
为了质量控制,通常还将制得的多晶硅转化成单晶硅材料。在这种情况下,要对单晶材料进行测定。在这里,金属污染尤为重要,其对半导体工业的客户来说是尤其关键的。然而,对硅还要进行碳以及掺杂物如铝、硼、磷和砷的测定。
由多晶硅材料(SEMI MF 1723)制成FZ单晶,根据SEMI MF 1398采用光致发光(荧光)法进行掺杂物分析。作为另一种替代方法,采用低温FTIR(傅立叶变换红外光谱法)(SEMI MF 1630)。
FTIR(SEMI MF 1188,SEMI MF 1391)使得可以确定碳和氧的浓度。
FZ方法的基础知识在相关文献中有描述,例如DE-3007377A。
在FZ方法中,多晶硅种棒在射频线圈的作用下逐渐融化,融化的材料用单晶籽晶引晶转化成单晶,随后进行重结晶。在重结晶过程中,所产生的单晶的直径首先以锥状增加(锥形成),直到达到所需最终直径(杆形成)。在锥的形成阶段,单晶也是有机械支撑的以减轻细籽晶上的负载压力。
然而,已经发现,外来物质浓度高的多晶硅和污染重的材料是不易采用光致发光(荧光)法(photoluminescence)或FTIR进行分析的,例如冶金硅(“升级冶金级”,UMG),它被转化成FZ单晶。对于光致发光(荧光)法或FTIR能够测量的范围来说污染太高。对于掺杂物,ppta数量级浓度可通过PL(光致发光法)进行测量,对于碳ppba数量级浓度可以通过FTIR进行测量。
DE-4137521B4描述了一种分析硅颗粒中杂质浓度的方法,其特征在于将颗粒硅放置在硅容器中,颗粒硅和硅容器在浮区经处理形成单晶硅,测定杂质(其存在于单晶硅中)的浓度。
该方法的优点是样品几乎不会被该方法污染。颗粒硅可以达到电子产品的质量或者等同的质量。颗粒硅可以是多晶硅或者单晶硅的颗粒或碎片。
如果待测硅已经达到了电子产品的质量,在现有技术中提到的采用光致发光法进行测定时出现的问题就不复存在了,这是因为污染在一个足够低的水平。在这里,为了能够进行这样的测定,采用浮区法将不同的形状(即棒状)赋予硅颗粒是极为重要的。
该方法的缺点是,必需使颗粒和硅容器之间之间充分接触,以便确保有足够的热传递。由此带来的风险是接下来要分析的硅会被污染。
发明内容
本发明的目的由所描述的问题产生。
本发明的目的是通过一种用于测定硅中杂质的方法实现:其中由待测硅通过区域精制(zone refining)制备单晶棒;在至少一个稀释步骤中,将该单晶硅棒引入由具有限定的碳和掺杂物浓度的单晶硅或多晶硅制成的套管(壳套,casing)中,然后通过区域精制由该棒和套管而制备稀释的单晶硅棒;其中,通过光致发光法(photoluminescence)或者FTIR或者二者借助于稀释的单晶棒进行待测硅中的杂质的测定。
优选地,在该至少一个稀释步骤之前,待测硅具有的碳含量为1ppma,杂质物含量为至少1ppba。
优选地,在至少一个稀释步骤后,用前面稀释步骤之后分别得到的新单晶硅棒和由具有限定的碳和掺杂物浓度的单晶硅或多晶硅制成的进一步套管进行进一步的稀释步骤,以便制备稀释的单晶硅棒。
优选地,进行进一步的稀释步骤直到稀释的硅棒具有的碳含量小于1ppma,掺杂物含量小于1ppba。
具体实施方式
该方法的起点是被碳和掺杂物污染了的加工的冶金硅或多晶硅。该材料是已经被碳和/或掺杂物污染的,以至于最初不可能采用光致发光法测定杂质。
起始原料优选是细棒形式,如在西门子反应器中在细丝棒上沉积后得到的。
通过FZ(浮区)区域精制法由该细棒生长单晶。
该单晶硅棒有圆形截面,直径优选为2-35mm。
FZ生长期间在达到2-35mm的最终直径之前,优选拉制所谓的细颈(thin neck),以便实现无位错生长,得到合适的棒作为用于稀释步骤的套管的填料。
由初始材料生长的单晶棒随后被引入由单晶硅或者多晶硅制成的套管里面。
然后,容纳在硅套管中的单晶(或多晶)棒通过FZ方法被转化成单晶棒。这里,再一次地,优选拉制所谓的细颈(thin neck),以便实现无位错生长,得到合适的棒作为用于后续稀释步骤的套管的填料。
优选地,套管的内部直径大约对应于之前制成的单晶棒的直径。
但是,棒直径小于套管的内部直径也是可以并且是特别优选的。
具体来说,已经发现,即使套管内壁和单晶棒外表面之间有空隙,也可以无位错生长。
优选地,套管和圆柱形晶体之间没有接触。这样的设置提供了无缺陷的单晶,该单晶也能用作进一步稀释步骤的起始材料,这是令人惊奇的。
如果套管和圆柱形晶体之间没有接触,另外对圆柱形晶体的任何机械加工都可以省却。这是非常有利的,至少因为这种机械加工总是产生额外污染的一个原因。
硅套管可以由单晶硅或多晶硅棒经钻孔制备。
通过从初始的单晶(或多晶)棒和硅套管制备新的单晶硅棒,可以稀释硅中外来物质的浓度。
套管的单晶或多晶材料中具有限定的碳和掺杂物的污染浓度。理想情况是,硅套管中的杂质浓度比待测硅中的杂质浓度低得多。
因此,杂质的稀释是由套管和原来的棒生长新硅棒而实现的。
还优选这样的稀释步骤进行数次。
对于高度污染的起始原料的情况,为了使其能够达到采用光致发光方法进行测量的范围,这样的重复稀释操作是绝对必要的。
这可以通过以下进行:将第一次稀释步骤后得到的单晶棒再次引入硅套管中,使该棒/套管再次经历FZ工序。
杂质浓度的进一步稀释是通过各附加的稀释步骤实现的。
如果第一个稀释步骤后,杂质的浓度已经达到了允许通过光致发光法进行浓度测定的水平,优选不进行进一步的稀释步骤。
当碳含量小于1ppma并且掺杂物含量小于1ppba的时候,那么杂质浓度就在可以通过光致发光(荧光)法进行浓度测定的水平了。
当通过光致发光法(荧光)测定浓度时,稀释当然必须予以考虑。然而由于硅套管材料的污染程度是已知的,即它处于可以采用光致发光法进行测量的范围内,对于本领域技术人员来讲,通过由(棒/套管)制备的单晶中的或者n个稀释步骤之后由(棒/n*套管)制备的单晶中的杂质浓度来确定待测硅中的污染物精确浓度是没有问题的。
当晶体的高生长速率超过10mm/min时,这是优选的生长速度,因为高离析系数的发生,离析(segregation)可以被忽略为一级近似。使用的圆柱形单晶,其优选晶体直径为2-35毫米,优选是在这样的高提拉速率和低效的熔体高度下制得。对于硼和磷,几乎没有任何离析效应发生,这使得该方法不太复杂,而在现有技术中一直必须考虑离析效应(SEMI MF1723-1104)。
已经发现,即使掺杂物浓度极高,该方法仍能允许采用光致发光(荧光)法量化测定掺杂元素。
实施例
对多晶硅和冶金硅的棒状样品进行了测试。
样品的直径约5mm。
采用FZ方法由这些样品生长直径约12mm的单晶棒。
未掺杂的多晶硅套管(直径约19mm)被用来作为套管。
进行4个稀释步骤。
前三次稀释步骤后,硼和磷的浓度还不在可测量的范围内。
第四次稀释步骤后,掺杂物浓度在可测量范围内。
为此,从单晶限定的位置取测量晶片并进行光致发光(荧光)测量。
发现磷为79ppta,硼为479ppta。
由此可以确定初始样品的浓度。确定磷为1.0ppma,硼为6.3ppma。
对于碳,在第三稀释步骤后其浓度就已经处于可测量范围内了。其为87ppba。
对于初始样品,计算得到碳为833ppma。

Claims (4)

1.一种用于测定硅中杂质的方法,其中由待测硅通过区域精制来制备单晶硅棒;在至少一个稀释步骤中,将该单晶硅棒引入由具有限定的碳和掺杂物浓度的单晶硅或多晶硅制成的套管中,然后由该单晶硅棒和套管通过区域精制而制备稀释的单晶硅棒;其中,通过光致发光法或者FTIR或者二者并借助于稀释的单晶硅棒进行所述待测硅中的杂质的测定;其中所述单晶硅棒的直径小于所述套管的内部直径。
2.根据权利要求1中所述的方法,其中,在所述至少一个稀释步骤之前,所述待测硅具有的碳含量为至少1ppma,掺杂物含量为至少1ppba。
3.根据权利要求1或2所述的方法,其中,在所述至少一个稀释步骤后,用由具有限定的碳和掺杂物浓度的单晶硅或多晶硅制成的套管和前面稀释步骤之后得到的新单晶硅棒进行进一步的稀释步骤,以便制备稀释的单晶硅棒。
4.根据权利要求3所述的方法,其中,进行稀释步骤直到稀释的单晶硅棒具有的碳含量小于1ppma,掺杂物含量小于1ppba。
CN201110353075.4A 2010-11-10 2011-11-09 一种用于测定硅中杂质的方法 Expired - Fee Related CN102565014B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010043702A DE102010043702A1 (de) 2010-11-10 2010-11-10 Verfahren zur Bestimmung von Verunreinigungen in Silicium
DE102010043702.6 2010-11-10

Publications (2)

Publication Number Publication Date
CN102565014A CN102565014A (zh) 2012-07-11
CN102565014B true CN102565014B (zh) 2015-04-08

Family

ID=45002653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110353075.4A Expired - Fee Related CN102565014B (zh) 2010-11-10 2011-11-09 一种用于测定硅中杂质的方法

Country Status (7)

Country Link
US (1) US20120111263A1 (zh)
EP (1) EP2453042B1 (zh)
JP (1) JP5259805B2 (zh)
KR (1) KR101359076B1 (zh)
CN (1) CN102565014B (zh)
CA (1) CA2756474C (zh)
DE (1) DE102010043702A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012000210T5 (de) * 2012-02-23 2014-01-16 Fuji Electric Co., Ltd Verfahren zur Herstellung eines Halbleiterbauelements
DE102013207251A1 (de) * 2013-04-22 2014-10-23 Wacker Chemie Ag Verfahren zur Herstellung von polykristallinem Silicium
JP6300104B2 (ja) * 2014-12-02 2018-03-28 信越半導体株式会社 シリコン結晶の炭素濃度測定方法、シリコン結晶の炭素関連準位測定方法
CN105092511A (zh) * 2015-08-12 2015-11-25 南京秀科仪器有限公司 一种测量单晶硅代位碳和间隙氧含量的方法
JP6472768B2 (ja) * 2016-04-08 2019-02-20 信越化学工業株式会社 フォトルミネッセンス法によるシリコン結晶中の不純物定量方法および多結晶シリコンの選別方法
JP6693485B2 (ja) * 2017-08-18 2020-05-13 信越半導体株式会社 炭素濃度測定方法
JP6852703B2 (ja) * 2018-03-16 2021-03-31 信越半導体株式会社 炭素濃度評価方法
EP4018019B1 (de) * 2020-07-21 2022-12-21 Wacker Chemie AG Verfahren zur bestimmung von spurenmetallen in silicium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200621A (en) * 1978-07-18 1980-04-29 Motorola, Inc. Sequential purification and crystal growth
DE3007377A1 (de) 1980-02-27 1981-09-03 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum tiegelfreien zonenschmelzen eines siliciumstabes
JP2562579B2 (ja) * 1986-03-27 1996-12-11 コマツ電子金属株式会社 単結晶の製造方法
US4921026A (en) * 1988-06-01 1990-05-01 Union Carbide Chemicals And Plastics Company Inc. Polycrystalline silicon capable of yielding long lifetime single crystalline silicon
US5436164A (en) 1990-11-15 1995-07-25 Hemlock Semi-Conductor Corporation Analytical method for particulate silicon
JP2922078B2 (ja) * 1993-03-17 1999-07-19 株式会社トクヤマ シリコンロッドの製造方法
EP0724028A3 (en) * 1994-12-27 1997-04-16 Shinetsu Chemical Co Process for producing wire-like silicon a crystal
JP3705623B2 (ja) * 1995-03-24 2005-10-12 株式会社トクヤマ シラン類の分解・還元反応装置および高純度結晶シリコンの製造方法
US7520932B2 (en) * 2006-04-05 2009-04-21 Dow Corning Corporation Method of analyzing carbon concentration in crystalline silicon
DE102007023041A1 (de) * 2007-05-16 2008-11-20 Wacker Chemie Ag Polykristalliner Siliciumstab für das Zonenziehen und ein Verfahren zu dessen Herstellung
EP2567939A3 (en) * 2008-09-30 2014-07-09 Hemlock Semiconductor Corporation Method of determining an amount of impurities that a contaminating material contributes to high purity silicon and furnace for treating high purity silicon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S Binetti et al.Dislocation luminescence in nitrogen-doped Czochralski and float zone silicon.《JOURNAL OF PHYSICS:CONDENSED MATTER》.2002,第14卷(第48期), *

Also Published As

Publication number Publication date
JP2012102009A (ja) 2012-05-31
KR101359076B1 (ko) 2014-02-06
CA2756474A1 (en) 2012-05-10
KR20120050383A (ko) 2012-05-18
CA2756474C (en) 2013-07-02
EP2453042B1 (de) 2013-03-13
US20120111263A1 (en) 2012-05-10
JP5259805B2 (ja) 2013-08-07
CN102565014A (zh) 2012-07-11
EP2453042A1 (de) 2012-05-16
DE102010043702A1 (de) 2012-05-10

Similar Documents

Publication Publication Date Title
CN102565014B (zh) 一种用于测定硅中杂质的方法
CA2700757C (en) Polycrystalline silicon and method for the production thereof
US9073756B2 (en) Low-dopant polycrystalline silicon chunk
JP4891861B2 (ja) 低下されたドーパント含量を有する高純度多結晶シリコンを製造するための方法及び装置
JP6067758B2 (ja) 多結晶シリコン
US8658118B2 (en) High purity crystalline silicon, high purity silicon tetrachloride for processes for producing the same
US9446957B2 (en) Polycrystalline silicon rod and method for producing polysilicon
US10605659B2 (en) Process for determining surface contamination of polycrystalline silicon
Hashim et al. High purity polycrystalline silicon growth and characterization
JP6870085B2 (ja) 多結晶シリコンの製造方法
WO2020204143A1 (ja) 多結晶シリコン原料
WO2011071032A1 (ja) 多結晶シリコンの製造方法及び多結晶シリコン製造用の反応炉
US20130206056A1 (en) Methods of producing crystalline semiconductor materials
JP2013014501A (ja) 高純度シリコン及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150408

Termination date: 20181109