WO2012077558A1 - 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、および電子放出素子の製造方法 - Google Patents

電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、および電子放出素子の製造方法 Download PDF

Info

Publication number
WO2012077558A1
WO2012077558A1 PCT/JP2011/077699 JP2011077699W WO2012077558A1 WO 2012077558 A1 WO2012077558 A1 WO 2012077558A1 JP 2011077699 W JP2011077699 W JP 2011077699W WO 2012077558 A1 WO2012077558 A1 WO 2012077558A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
thin film
electrode
emitting device
electrode substrate
Prior art date
Application number
PCT/JP2011/077699
Other languages
English (en)
French (fr)
Inventor
金子 俊博
岩松 正
彩絵 長岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2012547804A priority Critical patent/JP5795330B2/ja
Priority to US13/991,653 priority patent/US9035548B2/en
Publication of WO2012077558A1 publication Critical patent/WO2012077558A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/312Cold cathodes, e.g. field-emissive cathode having an electric field perpendicular to the surface, e.g. tunnel-effect cathodes of Metal-Insulator-Metal [MIM] type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/39Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material using multi-stylus heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133625Electron stream lamps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/02Irradiation devices having no beam-forming means

Definitions

  • the present invention relates to an electron-emitting device that emits electrons by applying a voltage.
  • Field electron emission applies a voltage between two electrodes to emit electrons. This is a method in which electrons are emitted from one electrode (emitter) by a tunnel effect by forming a high electric field between both electrodes by this applied voltage.
  • field electron emission devices such as Spindt type and carbon nanotube (CNT) type are known.
  • an electron-emitting device using field electron emission is generally used after being sealed in a vacuum.
  • an electron transmission window that separates the vacuum layer from the atmosphere so that the electrons are transmitted from the vacuum layer to the atmosphere.
  • an electron-emitting device called an MIM type or an MIS type is known as an electron-emitting device that can be stably operated in the atmosphere (see Patent Document 1).
  • the MIM type electron-emitting device is composed of three layers: a thin film metal electrode, an insulator layer, and a metal electrode substrate.
  • the MIS type electron-emitting device is composed of three layers: a thin film metal electrode, an insulator layer, and a semiconductor electrode substrate.
  • the insulator layer is hereinafter referred to as an electron acceleration layer.
  • MIM-type and MIS-type electron-emitting devices and electron-emitting devices using field electron emission are the same in that electrons are accelerated by an electric field formed between electrodes and electrons are emitted outside the device. .
  • it differs greatly from an electron-emitting device using field electron emission in that the electric field formed is limited within the device.
  • the fact that the electric field generated during operation is limited within the device enables stable operation of the MIM type and MIS type electron-emitting devices in the atmosphere.
  • the MIM type and MIS type electron-emitting devices can operate stably in the atmosphere and are surface-emitting type electron-emitting devices.
  • An object of the present invention is to provide an electron-emitting device having a high electron-emitting efficiency, in which the amount of current in the device is small even when the amount of electron emission is large.
  • An electron-emitting device includes an electrode substrate and a thin film electrode, and a voltage is applied between the electrode substrate and the thin film electrode, whereby electrons are generated between the electrode substrate and the thin film electrode.
  • An electron-emitting device that is accelerated and emitted from the thin-film electrode, Between the electrode substrate and the thin film electrode, an electron acceleration layer composed of at least insulating fine particles is provided, The surface on which the electron acceleration layer of the electrode substrate is provided has irregularities, An opening is formed in the thin film electrode on the convex portion of the electrode substrate.
  • the electron-emitting device having the above configuration, when a voltage is applied between the electrode substrate and the thin film electrode, an electric field is formed in the electron acceleration layer, and at the same time, electrons flow as a current bearer. A part of the electrons are accelerated by the electric field formed by the applied voltage, emitted as ballistic electrons from the electron acceleration layer, pass through the opening formed in the thin film electrode, or tunnel through the thin film electrode. From the side to the outside of the device.
  • Ballistic electrons emitted from the electron acceleration layer are emitted to the outside of the device through one of two processes of passing through the opening of the thin film electrode or tunneling with the thin film electrode.
  • the amount of electron emission to the outside of the device is significantly reduced depending on the tunnel probability depending on the thickness of the thin film electrode.
  • a flat electron acceleration layer is formed on an electrode substrate having irregularities during the manufacture of the electron-emitting device
  • a thick electron acceleration layer is formed on the concave portion of the electrode substrate.
  • a thin electron acceleration layer is formed on the convex portion of the electrode substrate.
  • This electron field causes dielectric breakdown of the electron acceleration layer on the convex portion of the electrode substrate.
  • an opening corresponding to the shape of the convex portion of the electrode substrate is formed in the thin film electrode. Since the electrode substrate can be formed with irregularities in any shape, the shape of the opening formed in the thin film electrode can also be arbitrarily formed.
  • the opening can be easily formed in the thin film electrode with good controllability. Further, by providing an opening in the thin film electrode of the electron-emitting device, the electron emission efficiency can be improved as compared with a conventional electron-emitting device that does not have an opening.
  • Electron emission comprising an electrode substrate and a thin film electrode, and accelerating electrons between the electrode substrate and the thin film electrode by applying a voltage between the electrode substrate and the thin film electrode and emitting the electron from the thin film electrode
  • a method for manufacturing an element comprising: Forming an electron acceleration layer comprising at least insulating fine particles on the electrode substrate; Forming a thin film electrode on the electron acceleration layer; Forming an opening in the thin film electrode,
  • the substrate electrode has irregularities on the surface on which the electron acceleration layer is provided,
  • an opening is formed in the thin film electrode on the convex portion of the electrode substrate by applying a voltage between the substrate electrode having the unevenness and the thin film electrode. It is characterized by doing.
  • a flat electron acceleration layer is formed on an electrode substrate having irregularities when an electron-emitting device is manufactured
  • a thick electron acceleration layer is formed on the recess of the electrode substrate.
  • a thin electron acceleration layer is formed on the convex portion of the electrode substrate.
  • This electron field causes dielectric breakdown of the electron acceleration layer on the convex portion of the electrode substrate.
  • an opening corresponding to the shape of the convex portion of the electrode substrate is formed in the thin film electrode. Since the electrode substrate can be formed with irregularities in any shape, the shape of the opening formed in the thin film electrode can also be arbitrarily formed.
  • an opening can be easily formed in the thin film electrode with good controllability.
  • an electron-emitting device with improved electron emission efficiency can be manufactured.
  • the electron-emitting device according to the present invention has an opening in the thin film electrode, and is effective in improving electron emission efficiency.
  • the opening of the thin film electrode can be easily formed with good controllability.
  • FIG. 1 is a cross-sectional view showing a configuration of an electron emission device 10 using an electron emission element 1 according to an embodiment of the present invention.
  • FIG. 2 is a top view showing a configuration of an electron emission apparatus 10 using the electron emission element 1 of one embodiment according to the present invention.
  • an electron emission device 10 includes an electron emission element 1 according to an embodiment of the present invention and a power source 7 (power source unit).
  • the electron-emitting device 1 includes an electrode substrate 2 serving as a lower electrode, a thin film electrode 3 serving as an upper electrode, and an electron acceleration layer 4 sandwiched therebetween.
  • the electrode substrate 2 has an uneven shape shown in FIG.
  • the electron acceleration layer 4 is composed of a layer in which monodispersed insulating fine particles are aligned and filled, that is, an insulating fine particle layer.
  • the electron-emitting device 1 having the above structure exhibits semiconductive transport characteristics.
  • the power source 7 is a power source for applying a voltage between the electrode substrate 2 and the thin film electrode 3.
  • a voltage is applied between the electrode substrate 2 and the thin film electrode 3
  • electrons flow in the electron acceleration layer 4 as a current bearer.
  • a high electric field is formed in the electron acceleration layer 4 sandwiched between the electrode substrate 2 and the thin film electrode 3 by the applied voltage.
  • Electrons flowing between the electrode substrate 2 and the thin film electrode 3 are accelerated by this high electric field, and some of the electrons are emitted from the electron acceleration layer 4 as ballistic electrons.
  • Ballistic electrons emitted from the electron acceleration layer 4 pass through the opening 6 formed in the thin film electrode 3 on the convex portion of the electrode substrate 2 or are tunneled through the thin film electrode 3 and emitted outside the device.
  • the electron acceleration layer 4 has a thick portion formed on the concave portion of the electrode substrate 2 and a thickness formed on the convex portion of the electrode substrate 2. A thin portion.
  • the film thickness of the electron acceleration layer 4 is defined as the thickness of the electron acceleration layer 4 formed on the concave portion of the electrode substrate 2.
  • the electrode substrate 2 is an electrode for applying a voltage in the electron acceleration layer 4 in a pair with the thin film electrode 3. In addition to this, it also serves as a support for the electron-emitting device 1. Therefore, the substance used as the electrode substrate 2 is required to have a certain level of strength, good adhesion with a substance that is in direct contact with the substance, and appropriate conductivity. Specific examples of the electrode substrate 2 include metal substrates such as stainless steel, aluminum, titanium, and copper, and semiconductor substrates such as silicon, germanium, and gallium arsenide.
  • the height (depth) of the irregularities formed on the surface of the electrode substrate 2 is preferably 50 to 80% with respect to the film thickness of the electron acceleration layer 4.
  • the height (depth) of the unevenness on the surface of the electrode substrate 2 is preferably 50 to 80% of the film thickness of the electron acceleration layer 4, so that the electrode substrate can be formed when the opening 6 is formed in the thin film electrode 3. The risk of a short circuit between 2 and the thin film electrode 3 is avoided.
  • the shape of the opening 6 is determined in a self-forming manner corresponding to the uneven shape formed on the electrode substrate 2. Therefore, by patterning a pattern desired to be formed as the opening 6 as a convex portion of the electrode substrate 2, the opening 6 having an arbitrary shape, size, and density can be realized.
  • the shape and size of the electrode substrate 2 are not limited. However, since there are a large number of openings 6, electrons can be efficiently emitted from the electron-emitting device 1. It is preferable to form a large number in the substrate surface.
  • an insulating substrate such as a glass substrate or a plastic substrate can be used as the electrode substrate 2.
  • the insulator substrate having a concavo-convex shape formed on the surface functions as a support for the electron-emitting device 1. Therefore, when an insulator substrate is used as the electrode substrate 2, it is necessary to form a conductive substance such as a metal as a thin film electrode on the surface of the concavo-convex insulator substrate (interface with the electron acceleration layer 4).
  • the substance to be formed as a thin film electrode is not particularly limited as long as it has excellent conductivity and can form a thin film.
  • a conductor having a high antioxidant power as the material for film formation, and it is more preferable to use a noble metal.
  • a tin-added indium oxide (ITO) thin film that is widely used for transparent electrodes as an oxide conductive material is also useful.
  • a metal thin film in which a titanium film having a thickness of 200 nm and a copper film having a thickness of 1000 nm are stacked may be used as the electrode thin film.
  • a metal thin film in which a titanium film having a thickness of 200 nm and a copper film having a thickness of 1000 nm are stacked may be used as the electrode thin film.
  • the thin film electrode 3 is an electrode that is paired with the electrode substrate 2 and applies a voltage to the electron acceleration layer 4. Accordingly, the substance used for the conductive electrode 3 is not particularly limited as long as it is conductive and can be applied with voltage. However, in the case where the operating environment of the electron-emitting device 1 is assumed to be in the atmosphere, gold having no oxide and sulfide forming reaction is the optimum material for the thin film electrode 3. In addition, silver, palladium, tungsten, and the like, which have a relatively small oxide formation reaction, are materials that can withstand actual use without problems.
  • the thin film electrode 3 is provided with an opening 6 shown in FIGS. Due to the opening 6, ballistic electrons accelerated in the electron acceleration layer 4 are emitted to the outside of the device without having to tunnel through the thin film electrode 3. Therefore, providing the opening 6 in the thin film electrode 3 improves the electron emission efficiency of the electron-emitting device.
  • the film thickness of the thin-film electrode 3 is important as a condition for efficiently emitting electrons from the electron-emitting device 1 to the outside, and is preferably in the range of 10 to 55 nm.
  • the minimum film thickness for causing the thin film electrode 3 to function as a planar electrode is 10 nm.
  • the maximum film thickness of the thin-film electrode 3 allowed to enable electron emission from the electron-emitting device 1 to the outside is 55 nm.
  • the film thickness of the thin film electrode 3 is larger than 55 nm, the tunnel probability of ballistic electrons is remarkably reduced, or recapture to the electron acceleration layer 4 occurs due to reflection at the interface with the electron acceleration layer 4. The efficiency of electron emission from the emitter 1 to the outside is reduced.
  • the electron acceleration layer 4 only needs to include at least the insulating fine particles 5.
  • the diameter (average diameter) of the insulating fine particles 5 is preferably 5 to 1000 nm, and more preferably 15 to 500 nm.
  • silicon oxide, aluminum oxide, titanium oxide, and the like are practical.
  • colloidal silica manufactured and sold by Nissan Chemical Industries, Ltd. can be used.
  • the layer thickness of the electron acceleration layer 4 is preferably 8 to 3000 nm. Thereby, the surface of the electron acceleration layer 4 can be flattened and the resistance value of the electron acceleration layer 4 in the layer thickness direction can be controlled.
  • the layer thickness of the electron acceleration layer 4 is more preferably 30 to 1000 nm.
  • the manufacturing process of the electron-emitting device 1 includes the formation of uneven shapes on the surface of the electrode substrate 2, the hydrophilic treatment of the electrode substrate 2, the formation of the electron acceleration layer 4, the formation of the thin film electrode 3, and the thin film electrode 3.
  • the opening 6 is formed.
  • the electrode substrate 2 one of a metal substrate, a semiconductor substrate, and an insulator substrate is used. (Formation of uneven shape on the surface of the electrode substrate 2) An uneven shape is formed on the surface of the electrode substrate 2.
  • RIE reactive ion etching
  • an electrode substrate 2 is formed by forming a conductive material after forming an uneven shape on the substrate surface.
  • the electron acceleration layer 4 is formed on the surface of the electrode substrate 2.
  • the electron acceleration layer 4 includes an insulating fine particle layer formed of at least the insulating fine particles 5, and may include conductive fine particles in addition to the insulating fine particles 5.
  • the electron-emitting device 1 illustrated in Embodiment 1 includes only an insulating fine particle layer made of the insulating fine particles 5 as the electron acceleration layer 4. The hydrophilic treatment of the electrode substrate 2 and the formation of the insulating fine particle layer will be described below.
  • a thin film of insulating fine particles 5 is formed on the electrode substrate 2 using an insulating fine particle dispersion.
  • the insulating fine particle dispersion is obtained by dispersing monodispersed insulating fine particles 5 in a solvent such as water.
  • a spin coating method is used.
  • the electrode substrate 2 is hydrophobic, and the insulating fine particle dispersion is hydrophilic. Since the polarities of the electrode substrate 2 and the insulating fine particle dispersion are different, when the insulating fine particle dispersion is applied onto the bare electrode substrate 2, the insulating fine particle dispersion becomes water repellent on the surface of the electrode substrate 2. Become. Even if spin coating is performed in this state, the insulating fine particles 5 are not deposited on the electrode substrate 2.
  • the surface of the electrode substrate 2 is subjected to ultraviolet treatment.
  • ultraviolet treatment for example, the surface of the electrode substrate 2 is irradiated with ultraviolet rays for 10 minutes under a degree of vacuum of 20 Pa.
  • the solid content concentration of the insulating fine particle dispersion used for spin coating for forming the insulating fine particle layer is preferably 10 wt% or more and 50 wt% or less. If the solid content concentration is less than 10 wt%, the clay of the insulating fine particle dispersion is too low to deposit the insulating fine particles 5 on the electrode substrate 2. On the other hand, when the solid content concentration is higher than 50 wt%, the insulating fine particle dispersion liquid is too high, and the insulating fine particles 5 aggregate. As a result, it is not possible to form a thin film of flat insulating fine particles 5 on the electrode substrate 2.
  • the conditions for spin coating the insulating fine particle dispersion on the electrode substrate 2 are not limited. For example, after rotating for 5 seconds at a rotation speed of 500 rotations / minute (rpm), the rotation speed of 3000 to 4500 rpm is maintained for 10 seconds. To do. There is no limitation on the coating amount of the insulating fine particle dispersion, but it may be 0.2 mL / cm 2 or more, for example.
  • the film thickness of the insulating fine particle layer formed under these conditions is appropriate for use as the electron-emitting device 1. Further, since the insulator particles 5 are filled flat on the electrode substrate 2, the electron acceleration layer 4 is formed thick in the concave portion and thin in the convex portion of the electrode substrate 2. The surface of the electron acceleration layer 4 has flatness necessary and sufficient for producing the electron-emitting device 1.
  • Examples of the insulating fine particle dispersion used for forming the insulating fine particle layer include colloidal silica MP-4540 (average particle size 450 nm, 40 wt%), which is a dispersion of hydrophilic silica manufactured by Nissan Chemical Industries, Ltd., MP -3040 (average particle size 300 nm, 40 wt%), MP-1040 (average particle size 100 nm, 40 wt%), Snowtex 20 (average particle size 15 nm, 20 wt%), and Snowtex SX (average particle size 5 nm, 20 wt%) ).
  • colloidal silica MP-4540 average particle size 450 nm, 40 wt%)
  • MP-1040 average particle size 100 nm, 40 wt%)
  • Snowtex 20 average particle size 15 nm, 20 wt%)
  • Snowtex SX Snowtex SX
  • the thin film electrode 3 is formed on the surface of the electron acceleration layer 4 by using, for example, a magnetron sputtering method, and the element before the opening is formed is completed.
  • a cross-sectional view of the element before the opening is formed is shown in FIG.
  • the method for forming the thin film electrode 3 is not limited to the magnetron sputtering method, and for example, an ink jet method, a spin coating method, a vapor deposition method, or the like can be used.
  • the thickness of the electron acceleration layer 4 on the convex portion is thinner than the thickness of the electron acceleration layer 4 on the concave portion. Therefore, the electric field strength formed in the electron acceleration layer 4 on the convex portion is stronger than the electric field strength formed on the electron acceleration layer 4 on the concave portion. For this reason, the electron acceleration layer 4 on the convex portion breaks down, and the opening 6 is self-formed in the thin film electrode 3 corresponding to the shape of the convex portion of the substrate electrode 2.
  • the opening 6 can be easily formed at any place with good controllability. Therefore, the electron-emitting device 1 in which ballistic electrons are efficiently emitted from the opening 6 can be manufactured.
  • Example 1 Examples of the electron-emitting device 1 according to the present invention will be described below.
  • the electrode substrate 2 a 25 mm ⁇ 25 mm square aluminum substrate was used. Aluminum was etched by an RIE method using a mixed gas of BCl 3 gas and Cl 2 gas to form an uneven shape with a depth of 600 nm on the surface of the electrode substrate 2. The planar shape of the convex portion was a square and the area was 0.01 mm 2 . Furthermore, as a hydrophilic treatment of the substrate electrode 2, ultraviolet rays were irradiated for 10 minutes under a degree of vacuum of 20 Pa.
  • colloidal silica MP-1040 (average particle diameter: 100 nm, 40 wt%) manufactured by Nissan Chemical Industries, Ltd. was dropped onto the electrode substrate 2 as an insulating fine particle dispersion, and applied by spin coating.
  • the spin coating conditions are as follows. The number of revolutions was increased from 0 revolutions / minute (rpm) to 3000 rpm over 5 seconds, and then held at 3000 rpm for 10 seconds.
  • an electron acceleration layer 4 having an insulating particle layer in which monodispersed insulating fine particles 5 are aligned and filled is obtained.
  • the film thickness of the electron acceleration layer 4 formed here was 900 nm.
  • a thin film electrode 3 was formed on the surface of the electron acceleration layer 4 using a magnetron sputtering apparatus. Gold was used as a film forming material for the thin film electrode 3, the film thickness of the thin film electrode 3 was 40 nm, and the area was 0.01 cm 2 .
  • the electron-emitting device 1 manufactured by the method described above includes a large number of openings 6 in the thin film electrode 3 and a flat surface of the electron acceleration layer 4 in association with a large number of irregularities on the surface of the electrode substrate 2. By providing, it was confirmed that electrons were efficiently emitted from any position on the entire surface of the electron-emitting device with good controllability. That is, in the electron-emitting device 1, good electron emission characteristics were realized over the entire surface of the device.
  • FIG. 4 shows an example of a charging device according to the present invention including the electron emission device 10 according to the embodiment described in the first embodiment.
  • the charging device 90 includes an electron emission device 10 including the electron emission element 1 and a power source 7 for applying a voltage thereto, and a photosensitive drum 11.
  • the image forming apparatus according to the present invention includes the charging device 90.
  • the electron-emitting device 1 in the charging device 90 is installed to face the photosensitive drum 11 that is a member to be charged.
  • the electron-emitting device 1 emits electrons and charges the surface of the photosensitive drum 11.
  • the electron-emitting devices 1 provided in the charging device 90 are arranged with an interval of, for example, 3 to 5 mm from the surface of the photosensitive drum 11.
  • the applied voltage to the electron-emitting device 1 is preferably about 25V.
  • the electron acceleration layer 4 in the electron-emitting device 1 may be configured to emit electrons of 1 ⁇ A / cm 2 per unit time when a voltage of 25 V is applied from the power source 7, for example.
  • constituent members other than the charging device 90 may be conventionally known ones. Since the electron emission element 1 has a high electron emission efficiency, the charging device 90 charges the photosensitive drum 11 efficiently.
  • the electron-emitting device 1 used as the charging device 90 does not form an electric field outside the device, it does not discharge even if it operates in the atmosphere. Therefore, ozone is not generated even when the charging device 90 is used in the atmosphere. Ozone is harmful to the human body and is regulated by various environmental standards. Therefore, the fact that the charging device 90 is not accompanied by the generation of ozone is effective for increasing the degree of freedom in the design of the image forming apparatus.
  • the conventional charging device is designed to have a structure in which ozone is not released outside the device, the ozone generated in the device oxidizes and deteriorates organic materials in the device, such as the photosensitive drum 11 and the belt.
  • the problem relating to ozone generation in the image forming apparatus can be solved by using the electron emitting device 10 including the electron emitting element 1 according to the present invention for the charging device 90.
  • the electron-emitting device 1 provided in the charging device 90 is a surface electron emission source that emits electrons from the entire surface of the device. Therefore, the charging device 90 can be charged with a width with respect to the rotation direction of the photosensitive drum 11. This means that there are many opportunities to charge a specific portion of the photosensitive drum 11.
  • the charging device 90 including the surface electron emission source realizes more uniform charging as compared with a wire charger that charges linearly.
  • the applied voltage required by the electron-emitting device 1 is about 10V.
  • an applied voltage of several kV is required to charge the photosensitive drum.
  • the charging device 90 including the electron-emitting device 1 realizes an operation with a remarkably low applied voltage as compared with a wire charger including a corona discharger.
  • FIG. 5 shows an example of an electron beam curing device including the electron emission device 10 according to an embodiment of the present invention described in the first embodiment.
  • the electron beam curing device 100 includes an electron emission device 10 including an electron emission element 1 and a power source 7 that applies a voltage to the electron emission device 1, and an acceleration electrode 21 that accelerates the emitted electrons.
  • the electron beam curing apparatus 100 includes the electron-emitting device 1 as an electron emission source, and accelerates the emitted electrons by the acceleration electrode 21 to collide with the resist 22. As a result, the resist 22 is cured by absorbing the energy of the electron beam.
  • the energy required for curing a general resist is 10 eV or less. Since the emitted electrons have an energy of 10 eV or more, it is not necessary to further accelerate the electrons in terms of simply curing the resist. However, it is known that the penetration depth of the electron beam into the resist depends on the energy of the electrons. For example, in order to completely cure the resist 22 having a thickness of 1 ⁇ m in the thickness direction, an acceleration voltage of about 5 kV is required. As described above, the acceleration electrode 21 is required to give necessary and sufficient energy to the emitted electrons according to the film thickness of the resist 22.
  • a conventional general electron beam curing apparatus discharges electrons by vacuum-sealing an electron emission source and applying a high voltage (50 to 100 kV) to the electron emission source.
  • a high voltage 50 to 100 kV
  • the resist is cured in the atmosphere, it is necessary to separately install an electron transmission window that separates the vacuum phase from the atmosphere. Then, after the electrons are transmitted from the vacuum to the atmosphere through the electron transmission window, the irradiated object is irradiated with the electrons.
  • this electron irradiation method when emitted electrons are transmitted through the electron transmission window, a large amount of energy is absorbed by the electron transmission window.
  • a field emission type element is used as the electron emission source, the electrons reaching the resist have higher energy than necessary.
  • the field emission type electron-emitting device is a point electron emission source, the range that can be irradiated at one time is narrow and the throughput is low.
  • the electron beam curing device 100 according to the present invention using the electron emission device 10 can operate in the atmosphere and does not need to be vacuum sealed. Moreover, since the electron emission element 1 has high electron emission efficiency, the electron beam curing device 100 can efficiently irradiate the electron beam. Further, since the electron transmission window is not passed, there is no energy loss, and the acceleration voltage for the emitted electrons can be lowered. Further, since it is a surface electron emission source, the throughput is remarkably increased. Further, if electrons are emitted according to the pattern, maskless exposure can be performed.
  • FIGS. 6 to 8 show examples of the self-luminous devices 31, 31a, and 31b according to the present invention each including the electron emission apparatus 10 according to the embodiment described in the first embodiment.
  • a self-luminous device 31 shown in FIG. 6 includes an electron emitting device 10 including an electron emitting element 1 and a power source 7 that applies a voltage to the electron emitting element 1, and a base material at a position facing the electron emitting element 1 with a predetermined distance.
  • a light emitting unit 36 including a glass substrate 34, an ITO thin film 33, and a phosphor 32 (light emitter), and a power source 35 are provided.
  • the power source 35 is provided in the self-luminous device 31 in order to apply a voltage between the electrode substrate 2 in the electron-emitting device 1 and the ITO thin film 33.
  • an electron excitation type material corresponding to red, green and blue light emission is suitable.
  • Y 2 O 3 Eu and (Y, Gd) BO 3 : Eu as red phosphors
  • Zn 2 SiO 4 Mn as green phosphors
  • BaAl 12 O 19 Mn
  • BaMgAl 10 O 17 as blue phosphors : Eu 2+ or the like can be used.
  • the thickness of the phosphor 32 formed in the light emitting part 36 is preferably about 1 ⁇ m.
  • the thickness of the ITO thin film 33 is no problem as long as the conductivity can be ensured, and is 150 nm in this embodiment.
  • a coating liquid made of a kneaded product of an epoxy resin serving as a binder and finely divided phosphor particles is prepared. Using this coating solution, a film may be formed on the ITO thin film 33 by a known method such as a bar coater method or a dropping method.
  • a voltage is applied between the electrode substrate 2 and the ITO thin film 33 using the power source 35 to accelerate the electrons emitted from the electron-emitting device 1.
  • the distance between the phosphor 32 and the electron-emitting device 1 is preferably 0.3 to 1 mm.
  • the voltage applied from the power source 7 to the electron-emitting device 1 is preferably 18V, and the voltage applied from the power source 35 to the electrode substrate 2 and the ITO thin film 33 is preferably 500 to 2000V.
  • a self-luminous device 31a shown in FIG. 7 includes an electron-emitting device 1, a power source 7 that applies a voltage to the electron-emitting device 1, and a phosphor 32.
  • the phosphor 32 has a planar shape and is disposed on the surface of the upper electrode of the electron-emitting device 1.
  • the layer of the phosphor 32 is formed on the surface of the upper electrode of the electron-emitting device 1 using a coating liquid composed of finely divided phosphor particles and an epoxy resin as a binder.
  • the electron-emitting device 1 itself has a structure that is weak against external force, there is a risk that the device may be broken if a film forming means using a bar coater method is used. For this reason, as a method for forming the phosphor layer 32, a dropping method, a spin coating method, or the like is suitable.
  • a self-luminous device 31b shown in FIG. 8 includes an electron-emitting device 1 and a power source 7 that applies a voltage to the electron-emitting device 1, and this configuration is the same as that of the electron-emitting device 10.
  • the self-luminous device 31 is mixed with phosphor fine particles in the electron acceleration layer 4 of the electron-emitting device 1.
  • fluorescent fine particles may be mixed instead of part of the insulating fine particles 5.
  • the mixing ratio is limited with a certain upper limit for the following reasons.
  • the phosphor fine particles have a low resistivity. Therefore, when the mixing ratio of the phosphor fine particles in the electron acceleration layer 4 increases, the resistivity of the electron acceleration layer 4 decreases.
  • the electron acceleration layer 4 In order for the electron acceleration layer 4 to function as an electron acceleration layer, it is necessary to have a resistivity higher than a predetermined resistivity.
  • the phosphor fine particles are mixed instead of a part of the insulator fine particles 5 in the electron acceleration layer 4, there is an optimum value for the mixing ratio.
  • the weight mixing ratio is optimally about 3: 1.
  • the self-light-emitting devices 31 and 31a the electrons emitted from the electron-emitting device 1 collide with the phosphor 32 to become self-light-emitting devices.
  • the self-light-emitting device 31b becomes a self-light-emitting device when electrons accelerated in the electron acceleration layer 4 collide with the phosphor fine particles.
  • the self-light emitting devices 31, 31a, 31b can emit light efficiently. Since the self-luminous devices 31, 31a and 31b use the electron-emitting device 1 as an electron-emitting source, they can be operated in the atmosphere, but the electron-emitting current is increased by vacuum-sealing, and the efficiency is higher. Realize light emission.
  • An image display device 140 shown in FIG. 9 includes a self-luminous device 31b and a liquid crystal panel 330.
  • the self-luminous device 31b is installed behind the liquid crystal panel 330 and used as a backlight.
  • the voltage applied to the self light emitting device 31b by the power source 7 is preferably 20 to 35V.
  • the self-luminous device 31b may be configured to emit, for example, 10 ⁇ A / cm 2 of electrons per unit time when a voltage of 20 to 35 V is applied.
  • the distance between the self light emitting device 31b and the liquid crystal panel 330 is preferably about 0.1 mm.
  • an image display apparatus By arranging the self-light emitting devices 31 shown in FIG. 6 in a matrix, an image display apparatus is realized.
  • This image display device utilizes light emission of a phosphor by electrons emitted from an electron-emitting device, and can be said to be a field emission display (FED) in a broad sense.
  • the voltage applied to the self-light emitting device 31 by the power source 6 is preferably 20 to 35V.
  • the self-luminous device 31 may be configured to emit, for example, 10 ⁇ A / cm 2 of electrons per unit time when a voltage of 20 to 35 V is applied.
  • Embodiment 5 10 and 11 show an example of a blower device according to the present invention provided with the electron emission device 10 according to the present invention described in the first embodiment. Below, the case where the air blower which concerns on this invention is used as a cooling device is demonstrated. However, the use of the blower is not limited to the cooling device.
  • blower 150 blower 150, Blower 160
  • the flow velocity of air on the surface of the object to be cooled becomes zero. That is, the air that can take most heat from the object to be cooled is not replaced and the cooling efficiency is poor.
  • it is effective to blow air containing charged particles such as electrons and ions instead of normal air to the object to be cooled. This is because the air containing charged particles blown in the vicinity of the object to be cooled is attracted to the surface of the object to be cooled by electrostatic force, and is replaced with the air already existing on the surface of the object to be cooled. .
  • blower device 10 An example of a blower device according to the present invention provided with the electron emission device 10 according to the present invention is shown below.
  • a blower 150 shown in FIG. 10 includes an electron-emitting device 10 including the electron-emitting device 1 and a power source 7 that applies a voltage thereto.
  • the electron emission device 10 emits electrons toward the cooled object 41 that is electrically grounded.
  • the applied voltage to the electron-emitting device 1 is preferably about 18V.
  • the electron-emitting device 1 is preferably configured to emit, for example, 1 ⁇ A / cm 2 of electrons per unit time when a voltage of 18 V is applied.
  • a blower 160 shown in FIG. 11 is a combination of the blower 150 shown in FIG. 10 and a blower fan 42.
  • the electron emission device 10 emits electrons toward the cooled object 41 that is electrically grounded to generate an ion wind. Further, when the blower fan 42 blows air toward the body 41 to be cooled, the blower 160 cools the body 41 to be cooled.
  • the air volume by the blower fan 42 is preferably 0.9 to 2 L / (min ⁇ cm 2 ).
  • the air blower 150 and the air blower 160 since the charged air such as electrons and ions is contained in the air to be blown, the cooling efficiency is remarkably improved as compared with the cooling device using only air blowing. . Furthermore, since the electron emission element 1 has high electron emission efficiency, the air blower 150 and the air blower 160 can be further efficiently cooled. Moreover, the air blower 150 and the air blower 160 can operate for a long time in the atmosphere.
  • the insulating fine particles are preferably monodispersed and aligned and filled.
  • the contacts and conduction paths between the insulating fine particles are uniformly formed in the electron acceleration layer. Therefore, it is possible to conduct electrons while efficiently trapping electrons in the entire plane of the electron acceleration layer. As a result, ballistic electrons are increased under the thin film electrode, and a large amount of electrons can be emitted. Therefore, the electron emission efficiency of the electron emitter can be further increased.
  • the insulating fine particles constituting the electron acceleration layer include at least one of silicon oxide, aluminum oxide, and titanium oxide.
  • the resistance value of the electron acceleration layer can be controlled within an arbitrary range.
  • the average particle diameter of the insulating fine particles is preferably 5 to 1000 nm. Further, the average diameter of the insulating fine particles is more preferably 15 to 500 nm.
  • Joule heat generated when a current flows in the element can be efficiently released, and the electron emitting element can be prevented from being destroyed by heat generated during operation. Furthermore, the resistance value in the electron acceleration layer can be easily controlled.
  • the electron acceleration layer preferably has a thickness of 8 to 3000 nm. Thereby, the surface of the electron acceleration layer can be flattened and the resistance value of the electron acceleration layer in the layer thickness direction can be controlled.
  • the layer thickness of the electron acceleration layer is more preferably 30 to 1000 nm.
  • the height of the unevenness of the electrode substrate is preferably 50 to 80% of the layer thickness of the electron acceleration layer.
  • the height of the unevenness of the electrode substrate is preferably 50 to 80% of the thickness of the electron acceleration layer, thereby avoiding the risk of short-circuiting the electrode substrate and the thin film electrode when forming the opening. be able to.
  • An electron-emitting device includes any one of the electron-emitting devices described above and a power supply unit that applies a voltage between the electrode substrate and the thin-film electrode.
  • a self-luminous device includes the above-described electron emission device and a light emitter, and emits electrons from the electron emission device to cause the light emitter to emit light.
  • An image display device includes the above-described self-light-emitting device.
  • the electron-emitting device is used for a self-luminous device and an image display device including the self-luminous device, thereby realizing stable operation and long-life surface light emission.
  • a self-luminous device and an image display apparatus can be provided.
  • a blower device includes the above-described electron emission device, and emits electrons from the electron emission device to blow air.
  • a cooling device includes the above-described electron emission device, and emits electrons from the electron emission device to cool an object to be cooled.
  • a charging device includes the above-described electron emission device, and discharges electrons from the electron emission device to charge the photosensitive member.
  • An image forming apparatus includes the above-described charging device.
  • the electron-emitting device is used in a charging device and an image forming apparatus including the charging device, so that ozone and nitrogen oxides can be used without discharge.
  • the object to be charged can be stably charged for a long period of time without generating harmful substances.
  • An electron beam curing apparatus includes any one of the electron-emitting devices described above.
  • the electron-emitting device is characterized by being a surface electron emission source.
  • a conventional field electron emission device is a point electron emission source
  • the electron emission device can irradiate a wide range of electrons at once. Therefore, an electron beam curing apparatus including the electron-emitting device according to one embodiment of the present invention enables two-dimensional irradiation with an electron beam to cure the resist.
  • masklessness can be achieved at the time of resist curing, realizing low cost and high throughput.
  • the step of forming the electron acceleration layer further includes a step of forming an insulating fine particle layer made of the insulating fine particles on the electrode substrate,
  • the step of forming the insulating fine particle layer is performed by applying an insulating fine particle dispersion obtained by dispersing the insulating fine particles in a solvent onto the substrate electrode using a spin coating method. It is preferable to form a fine particle layer.
  • the spin coating method is used in the step of applying the insulating fine particle dispersion.
  • the insulator fine particles can be applied over a wide range very easily. Therefore, an electron-emitting device that can be applied to a device that needs to emit electrons in a wide range can be easily manufactured.
  • the electron-emitting device can ensure electrical continuity, flow a sufficient current in the device, and emit ballistic electrons from the thin film electrode. Therefore, for example, it can be applied to a charging device of an image forming apparatus such as an electrophotographic copying machine, a printer, and a facsimile. Further, the present invention can be applied to an electron beam curing device, an image display device by combining with a phosphor, a cooling device using ion wind generated by emitted electrons, and the like.
  • Electron emission apparatus 1 Electron emission element 2 Electrode substrate 3 Thin film electrode 4 Electron acceleration layer 5 Insulator fine particle 6 Aperture 7 Power supply (power supply part) DESCRIPTION OF SYMBOLS 10 Electron emission apparatus 11 Photosensitive drum 21 Acceleration electrode 22 Resist 31,31a, 31b Self-light-emitting device 32 Phosphor (light-emitting body) 33 ITO thin film 34 Glass substrate 35 Power source 36 Light emitting part 41 Cooled body 42 Blower fan 90 Charging device 100 Electron beam curing device 140 Image display device 150 Blower device 160 Blower device 330 Liquid crystal panel

Abstract

電子放出素子(1)は、電極基板(2)と薄膜電極(3)とを備え、電極基板(2)と薄膜電極(3)との間に電圧を印加することによって、電子を薄膜電極(3)から放出する。電極基板(2)と薄膜電極(3)との間には、少なくとも絶縁体微粒子(5)からなる電子加速層(4)が設けられている。電極基板(2)は凹凸を備えており、電極基板(2)の凸部上の薄膜電極(3)に開口部(6)が形成されている。

Description

電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、および電子放出素子の製造方法
 本発明は、電圧を印加することにより電子を放出する電子放出素子に関する。
 従来知られている電子放出素子として、電界電子放出を利用したものがある。電界電子放出は、電子を放出させるために2つの電極間に電圧を印加する。この印加電圧により両電極間に高電界を形成することで、一方の電極(エミッタ)からトンネル効果により電子を放出させる方法である。エミッタの構造の違いにより、スピント型、カーボンナノチューブ(CNT)型などの電界電子放出素子が知られている。
 また、電子放出素子を大気中で使いたいという要望がかねてから存在する。しかし、上記の電界電子放出を用いた電子放出素子を、大気中で動作させることには原理的な困難を伴う。なぜなら、電界電子放出を実現するためには高電界が必要であり、放出された電子は高いエネルギーを有する。高エネルギーの電子が大気中の気体分子と衝突すると、気体分子を電離させる。電離により生じた陽イオンは、素子近傍に形成されている高電界により素子表面へ向かって加速され衝突しスパッタリングを起こす。このスパッタリングにより、電子放出素子が破壊される。また、高エネルギーの電子が、酸素分子に衝突した場合は、電離せずにオゾンを生成することが知られている。オゾンは非常に活性が高く、有害物質であり、加えて様々な物質を劣化させる。
 上記の理由から、一般的に電界電子放出を用いた電子放出素子は、真空中に封止して使用する。電子を真空中から取り出す必要がある場合には、真空層と大気を隔てる電子透過窓を設置して、電子を真空層から大気中へ透過させる必要がある。
 一方、大気中にて安定して動作させることの可能な電子放出素子として、MIM型、あるいはMIS型と呼ばれる電子放出素子が知られている(特許文献1参照)。MIM型電子放出素子は、薄膜金属電極、絶縁体層、金属電極基板の3層から構成される。MIS型電子放出素子は、薄膜金属電極、絶縁体層、半導体電極基板の3層から構成される。これらの素子において、絶縁体層において電子は加速されるので、以下では、絶縁体層のことを電子加速層と呼ぶ。電子加速層を挟む両電極に電圧を印加すると、電子加速層内にて加速された電子の一部が素子表面の薄膜電極を透過し、素子全面より二次元的に放出される。
 電極間に形成される電界により電子が加速され、電子が素子外に放出される、という点において、MIM型、及びMIS型電子放出素子と、電界電子放出を利用した電子放出素子は同様である。しかし、形成される電界が素子内に限定される、という点において電界電子放出を利用した電子放出素子とは大きく異なる。動作時に生じる電界が素子内に限定されることが、MIM型、及びMIS型電子放出素子の大気中における安定動作を可能としている。
 上記のように、MIM型、およびMIS型の電子放出素子は、大気中にて安定動作が可能であり、かつ面放出型の電子放出素子である。
日本国公開特許公報「特開2009-146891号公報(公開日:2009年7月2日)」
 しかし、特許文献1の電子放出素子において、電子放出量が多い素子は、素子内部を流れる素子内電流の量も多くなる傾向があり、駆動時の消費電力が高いといった改善の余地を有している。
 本発明の目的は、電子放出量が多くとも素子内電流量は小さい、電子放出効率の高い電子放出素子を提供することにある。
 本発明の一態様に係る電子放出素子は、電極基板と薄膜電極とを備え、当該電極基板と薄膜電極との間に電圧を印加することによって、当該電極基板と薄膜電極との間において電子を加速させて、当該薄膜電極から放出させる電子放出素子であって、
 上記電極基板と上記薄膜電極との間には、少なくとも絶縁体微粒子からなる電子加速層が設けられており、
 上記電極基板の電子加速層が設けられる面に凹凸を備えており、
 上記電極基板の凸部上の上記薄膜電極に開口部が形成されていることを特徴としている。
 上記の構成による電子放出素子において、電極基板と薄膜電極との間に電圧が印加されると、電子加速層内に電界が形成されると同時に、電流の担い手として電子が流れる。その電子の一部が、印加電圧の形成する電界により加速され、弾道電子として電子加速層から放出され、薄膜電極に形成された開口部を通過して、または薄膜電極をトンネルして、薄膜電極側より素子外部へ放出される。
 電子加速層から放出された弾道電子は、薄膜電極の開口部を通過する、または薄膜電極とトンネルする、という2つの課程のいずれかを経て素子外部へ放出される。薄膜電極をトンネルする場合には、薄膜電極の厚みに依存したトンネル確率に依存して素子外への電子放出量が著しく減少する。一方、薄膜電極の開口部を通過する場合は弾道電子を遮るものがなく、電子加速層から放出された電子はすべて素子外へ放出される。すなわち、電子放出量が減少しない。
 ここで、電子放出素子の製造時に、凹凸を備えた電極基板上に平坦な電子加速層を形成した場合、電極基板の凹部上には厚さの厚い電子加速層が形成される。一方、電極基板の凸部上には厚さの薄い電子加速層が形成される。ここで、凹凸を備えた電極基板と、薄膜電極との間に電圧を印加すると、電極基板の凹凸部分にある電子加速層に電界が形成される。その際、電極基板の凸部上のより薄い電子加速層には、凹部上に形成される電界よりも強い電界が形成される。
 この強い電界によって、電極基板の凸部上の電子加速層は絶縁破壊される。その結果、電極基板の凸部の形状に対応した開口部が薄膜電極に形成される。電極基板には任意の形状で凹凸を形成することが可能なので、薄膜電極に形成する開口部の形状も任意に形成することが可能である。
 以上のように、電子放出素子に凹凸を備えた上記電極基板を用いることによって、薄膜電極に制御性よく、かつ簡便に開口部を形成することができる。また、電子放出素子の薄膜電極に開口部を設けることにより、従来の開口部を備えない電子放出素子と比較して、電子放出効率を向上させることができる。
 本発明の一態様に係る電子放出素子の製造方法は、上記の課題を解決するために、
 電極基板と薄膜電極とを備え、当該電極基板と薄膜電極との間に電圧を印加することによって、当該電極基板と薄膜電極との間で電子を加速させて、当該薄膜電極から放出させる電子放出素子の製造方法であって、
 上記電極基板上に、少なくとも絶縁体微粒子からなる電子加速層を形成する工程と、
 上記電子加速層上に、薄膜電極を形成する工程と、
 上記薄膜電極に開口部を形成する工程とを含み、
 上記基板電極は、電子加速層が設けられる面に凹凸を備えており、
 上記薄膜電極に開口部を形成する工程において、上記凹凸を備えた基板電極と、上記薄膜電極との間に電圧を印加することによって、当該電極基板の凸部上の薄膜電極に開口部を形成することを特徴としている。
 上記の構成によれば、電子放出素子の製造時に、凹凸を備えた電極基板上に平坦な電子加速層を形成した場合、電極基板の凹部上には厚さの厚い電子加速層が形成される。一方、電極基板の凸部上には厚さの薄い電子加速層が形成される。ここで、凹凸を備えた電極基板と、薄膜電極との間に電圧を印加すると、電極基板の凹凸部分にある電子加速層に電界が形成される。その際、電極基板の凸部上のより薄い電子加速層には、凹部上に形成される電界よりも強い電界が形成される。
 この強い電界によって、電極基板の凸部上の電子加速層は絶縁破壊される。その結果、電極基板の凸部の形状に対応した開口部が薄膜電極に形成される。電極基板には任意の形状で凹凸を形成することが可能なので、薄膜電極に形成する開口部の形状も任意に形成することが可能である。
 以上のように、電子放出素子の製造時に凹凸を備えた電極基板を用いることによって、薄膜電極に制御性よく、かつ簡便に開口部を形成することができる。また、電子放出効率を向上させた電子放出素子を製造することができる。
 以上のように、本発明に係る電子放出素子は、薄膜電極に開口部を備えており電子放出効率の向上に効果を奏する。また、凹凸を備えた電極基板を用いることにより、制御性よく、かつ簡便に上記薄膜電極の開口部を形成することを可能とする。
本発明の一実施形態の電子放出素子を用いた電子放出装置の構成を示す断面図である。 本発明の一実施形態の電子放出素子を用いた電子放出装置の構成を示す上面図である。 本発明の一実施形態の電子放出素子を用いた電子放出装置の構成を示す断面図(開口部形成前)である。 図1の電子放出装置を用いた帯電装置の一例を示す図である。 図1の電子放出装置を用いた電子線硬化装置の一例を示す図である。 図1の電子放出装置を用いた自発光デバイスの一例を示す図である。 図1の電子放出装置を用いた自発光デバイスの他の一例を示す図である。 図1の電子放出装置を用いた自発光デバイスのさらに別の一例を示す図である。 図1の電子放出装置を用いた自発光デバイスを具備する画像表示装置の他の一例を示す図である。 図1の電子放出装置を用いた送風装置及びそれを具備した冷却装置の一例を示す図である。 図1の電子放出装置を用いた送風装置及びそれを具備した冷却装置の別の一例を示す図である。
 以下、本発明に係る電子放出素子、電子放出装置の実施形態及び実施例について、図1~図11を参照して説明する。なお、以下に記述する実施の形態及び実施例は、本発明の具体的な一例に過ぎず、本発明はこれらによって何ら限定されるものではない。
 〔実施形態1〕
 図1は、本発明に係る一実施形態の電子放出素子1を用いた電子放出装置10の構成を示す断面図である。図2は、本発明に係る一実施形態の電子放出素子1を用いた電子放出装置10の構成を示す上面図である。
 図1および図2に示すように、電子放出装置10は、本発明に係る一実施形態の電子放出素子1と電源7(電源部)とを備えている。
 (電子放出素子1の構成)
 図1に示すように、電子放出素子1は、下部電極となる電極基板2と、上部電極となる薄膜電極3と、その間に挟まれた電子加速層4とを備えている。電極基板2は、図1に示す凹凸形状を備えている。また、電子加速層4は、図1に示すように、単分散の絶縁体微粒子が整列して充填した層、すなわち絶縁体微粒子層からなる。上記の構造からなる電子放出素子1は、半導電性の輸送特性を示す。
 電源7は、電極基板2と薄膜電極3との両電極間に電圧を印加するための電源である。電極基板2と薄膜電極3との両電極間に電圧が印加されると、電子加速層4に電流の担い手として電子が流れる。それと同時に、電極基板2と薄膜電極3に挟まれた電子加速層4には、印加された電圧により高電界が形成される。電極基板2と薄膜電極3との間を流れる電子は、この高電界により加速され、その電子の一部が弾道電子として電子加速層4から放出される。電子加速層4から放出された弾道電子は、電極基板2の凸部上の薄膜電極3に形成された開口部6を通過して、または、薄膜電極3をトンネルして素子外部へと放出される。
 なお、電極基板2が凹凸形状を備えているため、電子加速層4は電極基板2の凹部上に形成された厚さの厚い部分と、電極基板2の凸部上に形成された厚さの薄い部分とを備える。ここで、電子加速層4の膜厚は、電極基板2の凹部上に形成された電子加速層4の厚さと定義する。
 (電極基板2)
 電極基板2は、薄膜電極3と対になり電子加速層4内に電圧を印加するための電極である。これに加え、電子放出素子1の支持体としての役割も担う。したがって、電極基板2として用いる物質には、ある程度の強度を有すること、直に接する物質との接着性が良好なこと、および適度な導電性を有することが求められる。電極基板2の具体的な例としては、ステンレス、アルミニウム、チタン、および銅などの金属基板、ならびにシリコン、ゲルマニウム、およびガリウム砒素などの半導体基板を挙げることができる。
 電極基板2の表面に形成する凹凸の高さ(深さ)は、電子加速層4の膜厚に対して50~80%であることが好ましい。電極基板2表面の凹凸の高さ(深さ)を、好ましくは電子加速層4の膜厚の、50~80%とすることにより、薄膜電極3に開口部6を形成する際に、電極基板2と薄膜電極3とが短絡する危険性を回避する。
 また、開口部6の形状は、電極基板2に形成する凹凸形状に対応して自己形成的に決定される。よって、開口部6として形成したいパターンを電極基板2の凸部としてパターニングすることにより、任意の形状、大きさ、および密度の開口部6を実現できる。
 このとき、電極基板2の形状や大きさに制限はないが、開口部6が多数存在することにより、電子放出素子1から効率良く電子放出させることが可能となるので、電極基板2の凸部は基板面内に多数形成することが好ましい。
 金属基板および半導体基板以外に、電極基板2として、ガラス基板やプラスティック基板などの絶縁体基板を用いることも可能である。表面に凹凸形状を形成された絶縁体基板は、電子放出素子1の支持体として機能する。したがって、電極基板2として絶縁体基板を用いる場合は、凹凸形状の絶縁体基板の表面(電子加速層4との界面)に、金属などの導電性物質を薄膜電極として成膜する必要がある。
 薄膜電極として成膜する物質は、優れた導電性を有し、薄膜形成することが可能であれば特に限定されない。ただし、電子放出素子1に対して、大気中における安定動作を望む場合は、成膜する物質として抗酸化力の高い導電体を用いることが好ましく、貴金属を用いることがより好ましい。
 電子放出素子1の用途に応じて、酸化物導電材料として透明電極に広く利用されているスズ添加酸化インジウム(ITO)薄膜も有用である。
 また、強靭な薄膜を形成できるという点において、例えば、ガラス基板表面にチタンを200nm成膜し、さらに重ねて銅を1000nm成膜した金属薄膜を電極薄膜として用いてもよい。ただし、これら材料および数値に限定されることはない。
 (薄膜電極3)
 薄膜電極3は、電極基板2と対になり電子加速層4内に電圧を印加するための電極である。したがって、導電電極3に用いる物質は、導電性を有し電圧印加が可能となる物質であれば特に制限されない。ただし、電子放出素子1の動作環境として大気中を想定する場合は、薄膜電極3として、酸化物および硫化物形成反応のない金が最適な物質となる。また、酸化物形成反応の比較的小さい銀、パラジウム、タングステンなども問題なく実使用に耐える物質である。
 電子放出素子1において、薄膜電極3には図1および図2に示す開口部6が設けられている。この開口部6があることにより、電子加速層4において加速された弾道電子は、薄膜電極3をトンネルする必要なしに素子外部へ放出される。よって、薄膜電極3に開口部6を設けることにより、電子放出素子の電子放出効率が向上する。
 また、薄膜電極3の膜厚は、電子放出素子1から外部へ電子を効率良く放出させる条件として重要であり、10~55nmの範囲とすることが好ましい。電子放出素子1において、薄膜電極3を平面電極として機能させるための最低膜厚は10nmである。薄膜電極3の膜厚が10nm未満の場合、平面電極として電気的導通を十分に確保できない。一方、電子放出素子1から外部へ電子放出を可能とするために許容される、薄膜電極3の最大膜厚は55nmである。薄膜電極3の膜厚が55nmより厚くなると、弾道電子のトンネル確率が著しく減少するために、あるいは、電子加速層4との界面における反射により電子加速層4への再捕獲が生じるために、電子放出素子1から外部への電子放出効率が低下する。
 (電子加速層4)
 電子加速層4は、少なくとも絶縁体微粒子5を含んでいればよい。絶縁体微粒子5の直径(平均径)は5~1000nmであることが好ましく、15~500nmがより好ましい。これによって、電子加速層4内を電流が流れる際に発生するジュール熱を効率よく逃がす。したがって、電子放出素子1が動作時の発熱により破壊されることを防止する。さらに、電子加速層4の膜厚を変更することにより、電子放出素子1の抵抗値を任意かつ容易に調整することが可能となる。
 絶縁体微粒子5に用いる物質としては、酸化シリコン、酸化アルミニウム、および酸化チタンといったものが実用的である。販売されている製品としては、例えば日産化学工業株式会社の製造販売するコロイダルシリカが利用可能である。
 電子加速層4の層厚は、8~3000nmであるのが好ましい。これにより、電子加速層4の表面を平坦化すること、および層厚方向における電子加速層4の抵抗値の制御が可能となる。電子加速層4の層厚は、30~1000nmとすることがより好ましい。
 (電子放出素子1の製造方法)
 次に、電子放出素子1の製造方法の一実施形態について説明する。電子放出素子1の製造工程は、電極基板2表面への凹凸形状の形成と、電極基板2の親水性処理と、電子加速層4の形成と、薄膜電極3の形成と、薄膜電極3への開口部6の形成とからなる。
 電極基板2には、金属基板、半導体基板、ならびに絶縁体基板のいずれかを使用する。
(電極基板2表面への凹凸形状の形成)
 電極基板2表面へ凹凸形状を形成する。例えば、電極基板2としてアルミニウム金属基板を用いる場合、BClガスとClガスとの混合ガスを用いた反応性イオンエッチング(RIE)法によりアルミニウムのエッチングが可能である。エッチングする部分としない部分をパターニングすることによって、電極基板2の表面に任意の凹凸形状を形成する。
 電極基板2として絶縁体基板を用いる場合は、基板表面に凹凸形状を形成した後に、導電物質を成膜することにより電極基板2とする。
 (電子加速層4の形成)
 電極基板2の表面に、電子加速層4を形成する。電子加速層4は少なくとも絶縁体微粒子5によって形成される絶縁体微粒子層からなり、絶縁体微粒子5に加えて導電微粒子を備えてもよい。実施の形態1において例示する電子放出素子1は、電子加速層4として絶縁体微粒子5からなる絶縁体微粒子層のみを備える。電極基板2の親水性処理、および絶縁体微粒子層の形成について以下に示す。
 (電極基板2の親水性処理と絶縁体粒子層の形成)
 電極基板2上に、絶縁体微粒子分散液を用いて、絶縁体微粒子5の薄膜を形成する。絶縁体微粒子分散液は、単分散の絶縁体微粒子5を水などの溶媒中に分散させたものである。絶縁体微粒子分散液を電極基板2上に塗布し、絶縁体微粒子5を層状に堆積するためにはスピンコート法を用いる。
 この際、電極基板2の極性に留意する必要がある。一般的に、電極基板2は疎水性であり、絶縁体微粒子分散液は親水性である。電極基板2と絶縁体微粒子分散液との極性が異なるために、素の電極基板2上に絶縁体微粒子分散液を塗布すると、絶縁体微粒子分散液は電極基板2表面において撥水された状態になる。その状態においてスピンコートを実施しても、絶縁体微粒子5は電極基板2上に堆積しない。
 そこで、絶縁体微粒子分散液の電極基板2への濡れ性を改善するために、電極基板2の表面を親水性に処理する必要がある。電極基板2の表面を親水性処理するためには、電極基板2表面に紫外線処理を施す。紫外線処理の方法に限定はないが、例えば、真空度20Pa下において電極基板2表面に、紫外線を10分間照射する。
 絶縁体微粒子層を形成するためのスピンコートに用いる絶縁体微粒子分散液の固形分濃度は、10wt%以上50wt%以下が好ましい。固形分濃度が10wt%未満であると、絶縁体微粒子分散液の粘土が低すぎて電極基板2上に絶縁体微粒子5を堆積することができない。一方、固形分濃度が50wt%より高い場合は、絶縁体微粒子分散液の粘度が高すぎるために、絶縁体微粒子5の凝集が起こる。その結果、電極基板2上に平坦な絶縁体微粒子5の薄膜を形成することができない。
 電極基板2上に絶縁体微粒子分散液をスピンコートする際の条件に限定はないが、例えば回転数500回転/分(rpm)において5秒間回転させたのち、回転数3000~4500rpmを10秒間保持する。絶縁体微粒子分散液の塗布量に限定はないが、例えば0.2mL/cm以上あればよい。
 この条件において形成した絶縁体微粒子層の膜厚は、電子放出素子1として用いるために適正である。また、電極基板2上に絶縁体粒子5が平坦に充填されるため、電極基板2の凹部には厚い、そして凸部には薄い電子加速層4が形成される。電子加速層4の表面は、電子放出素子1を作製するために必要十分な平坦性を有している。
 なお、絶縁体微粒子層形成に用いる絶縁体微粒子分散液の例としては、日産化学工業株式会社製の親水性シリカの分散液であるコロイダルシリカMP-4540(平均粒子径450nm、40wt%)、MP-3040(平均粒子径300nm、40wt%)、MP-1040(平均粒子径100nm、40wt%)、スノーテックス20(平均粒子径15nm、20wt%)、およびスノーテックスSX(平均粒子径5nm、20wt%)が挙げられる。
 (薄膜電極3の成膜)
 電子加速層4の表面に、例えばマグネトロンスパッタリング法を用いて薄膜電極3を成膜し、開口部形成前の素子が完成する。開口部形成前の素子の断面図を図3に示す。
 薄膜電極3の成膜方法は、マグネトロンスパッタリング法に限定されず、例えばインクジェット法、スピンコート法、蒸着法等を用いることもできる。
 (開口部6の形成)
 上記の方法にて製造した開口部形成前の電子放出素子において、開口部6を形成するために、電極基板2と薄膜電極3との間に電圧印加する。開口部6が形成される機構は、次の通りである。
 図3に示す電子放出素子において、凸部上の電子加速層4の厚さは、凹部上の電子加速層4の厚さより薄い。よって、凸部上の電子加速層4に形成される電界強度は、凹部上の電子加速層4に形成される電界強度よりも強い。このため、凸部上の電子加速層4が絶縁破壊し、基板電極2の凸部の形状に対応して薄膜電極3に開口部6が自己形成される。
 上記の方法によって、開口部6を簡便に、かつ任意の場所に制御性よく形成することが可能となる。よって、開口部6から弾道電子が効率よく放出される電子放出素子1を製造することができる。
 〔実施例1〕
 以下、本発明に係る電子放出素子1の実施例について説明する。
 電極基板2として25mm×25mm角のアルミニウム基板を用いた。BClガスとClガスとの混合ガスを用いたRIE法によりアルミニウムをエッチングし、電極基板2の表面に深さ600nmの凹凸形状を形成した。凸部の平面形状は正方形とし、その面積は0.01mmとした。さらに、基板電極2の親水性処理として、真空度20Pa下において、紫外線を10分間照射した。
 次に、絶縁体微粒子分散液として日産化学工業株式会社製のコロイダルシリカMP-1040(平均粒子径100nm、40wt%)を1mL、電極基板2上に滴下し、スピンコート法を用いて塗布した。スピンコート条件は、次の通りである。回転数を0回転/分(rpm)から3000rpmまで5秒間かけて上昇させた後、3000rpmで10秒間保持した。
 上記の方法により、単分散の絶縁体微粒子5が整列して充填された絶縁体粒子層を備える電子加速層4を得た。ここで形成された電子加速層4の膜厚は900nmであった。
 電子加速層4の表面に、マグネトロンスパッタリング装置を用いて薄膜電極3を成膜した。薄膜電極3の成膜物質として金を使用し、薄膜電極3の膜厚は40nm、同面積は0.01cmとした。
 最後に、電極基板2と薄膜電極3の間に電圧を印加することにより、基板電極凸部上の薄い電子加速層4および薄膜電極3に開口部6を形成した。
 上記の方法により製造された電子放出素子1は、電極基板2の表面に凹凸形状を多数備えることに伴い薄膜電極3に多数の開口部6を備えること、および平坦な電子加速層4の表面を備えることにより、電子放出素子全面の任意の位置から制御性よく、かつ効率よく電子を放出することを確認した。すなわち、電子放出素子1において、素子全面にわたって良好な電子放出特性が実現された。
 〔実施形態2〕
 (帯電装置90)
 図4に、実施の形態1において説明した本発明に係る一実施形態の電子放出装置10を備えた本発明に係る帯電装置の一例を示す。帯電装置90は、電子放出素子1とこれに電圧を印加するための電源7とを備える電子放出装置10と、感光体ドラム11とからなる。本発明に係る画像形成装置は、この帯電装置90を備えている。
 本発明に係る画像形成装置において、帯電装置90における電子放出素子1は、被帯電体である感光体ドラム11に対向して設置される。電源7を用いて電子放出素子1に電圧を印加することにより、電子放出素子1は電子を放出し感光体ドラム11の表面を帯電させる。ここで、帯電装置90に備えられる電子放出素子1は、感光体ドラム11の表面から、例えば3~5mmの間隔をもって配置するのが好ましい。また、電子放出素子1への印加電圧は25V程度が好ましい。電子放出素子1における電子加速層4は、例えば電源7より25Vの電圧を印加された時に、単位時間当たり1μA/cmの電子が放出されるように構成されていればよい。
 なお、本発明に係る画像形成装置において、帯電装置90以外の構成部材は従来公知のものを用いればよい。電子放出素子1は電子放出効率が高いため、帯電装置90は効率よく感光体ドラム11を帯電させる。
 帯電装置90として用いられる電子放出素子1は、素子外に電界を形成しないので、大気中において動作しても放電を伴わない。したがって、帯電装置90を大気中にて使用してもオゾンを発生しない。オゾンは人体に有害であり、環境に対する各種規格によって規制されている。よって、帯電装置90がオゾン発生を伴わないことは、画像形成装置の設計において自由度を増すことに功を奏する。
 従来の帯電装置において、オゾンが装置外に放出されない構造に設計しても、装置内において発生したオゾンは、装置内の有機材料、例えば感光体ドラム11やベルトなどを酸化し劣化させてしまう。上記の画像形成装置におけるオゾン発生に関する問題を、本発明に係る電子放出素子1を備える電子放出装置10を帯電装置90に用いることで解決することができる。
 また、帯電装置90に備えられる電子放出素子1は、素子表面の全面から電子を放出する面電子放出源である。よって、帯電装置90は感光体ドラム11の回転方向に対して幅を持って帯電させることを可能とする。このことは、感光体ドラム11の特定箇所を帯電させる機会を多く有することを意味する。面電子放出源を備える帯電装置90は、線状に帯電するワイヤ帯電器などと比較して、より均一な帯電を実現する。
 また、帯電装置90を用いて感光体ドラム11を帯電させる際に、電子放出素子1が必要とする印加電圧は10V程度である。一方、コロナ放電器を利用したワイヤ帯電器の場合は、感光体ドラムを帯電するために数kVの印加電圧を必要とする。このように、電子放出素子1を備えた帯電装置90は、コロナ放電器を備えたワイヤ帯電器と比較して、格段に低い印加電圧による動作を実現している。
 〔実施形態3〕
 (電子線硬化装置100)
 図5に、実施形態1において説明した本発明に係る一実施形態の電子放出装置10を備えた電子線硬化装置の一例を示す。電子線硬化装置100は、電子放出素子1とこれに電圧を印加する電源7とをからなる電子放出装置10と、放出された電子を加速させる加速電極21とを備えている。
 電子線硬化装置100は、電子放出源として電子放出素子1を備え、放出された電子を加速電極21によって加速してレジスト22へと衝突させる。その結果、レジスト22は電子線のエネルギーを吸収することにより硬化する。
 一般的なレジストを硬化させるために必要とされるエネルギーは10eV以下である。放出電子は10eV以上のエネルギーを有しているので、レジストを単純に硬化させるという観点においては、電子をさらに加速する必要はない。ただし、電子線のレジストへの浸透深さは電子のエネルギーに依存することが知られている。例えば厚さ1μmのレジスト22を厚さ方向に対して完全に硬化させるには、約5kVの加速電圧が必要となる。このように、レジスト22の膜厚に応じて、必要十分なエネルギーを放出電子に与えるために加速電極21が必要となる。
 従来からある一般的な電子線硬化装置は、電子放出源を真空封止し、電子放出源に高電圧(50~100kV)を印加することによって電子を放出させる。大気中にてレジストを硬化させる場合は、真空相と大気を隔てる電子透過窓を別途設置する必要がある。そして、電子透過窓を通じて真空中より大気中に電子を透過させた後に、電子を被照射物に照射する。この電子照射方法においては、放出電子が電子透過窓を透過する際に、大きなエネルギーが電子透過窓に吸収されてしまう。また、電子放出源に電界放出型の素子を用いるために、レジストに到達した電子は必要以上の高エネルギーを有する。そのため、多くの電子がレジストの膜厚を透過してしまい、エネルギー利用効率が低くなる。さらに、電界放出型の電子放出素子は点電子放出源であるため、一度に照射できる範囲が狭くスループットが低い。
 これに対し、電子放出装置10を用いた本発明に係る電子線硬化装置100は、大気中にて動作可能であり真空封止の必要がない。また、電子放出素子1は電子放出効率が高いため、電子線硬化装置100は効率よく電子線を照射できる。また、電子透過窓を通さないのでエネルギーのロスも無く、放出電子に対する加速電圧を下げることが可能となる。さらに面電子放出源であるためスループットが格段に高くなる。また、パターンに従って電子を放出させれば、マスクレス露光も可能となる。
 〔実施形態4〕
 図6~8に、実施の形態1において説明した本発明に係る一実施形態の電子放出装置10を備えた本発明に係る自発光デバイス31、31a、31bの例をそれぞれ示す。
 (自発光デバイス31)
 図6に示す自発光デバイス31は、電子放出素子1とこれに電圧を印加する電源7とを備える電子放出装置10と、電子放出素子1から所定の間隔を有し対向した位置に、基材となるガラス基板34、ITO薄膜33、および蛍光体32(発光体)を備える発光部36と、電源35とを備える。電源35は、電子放出素子1における電極基板2と、ITO薄膜33との間に電圧を印加するために自発光デバイス31に備えられる。
 蛍光体32としては赤、緑、青色発光に対応した電子励起タイプの材料が適している。例えば、赤色蛍光体としてY:Eu、および(Y,Gd)BO:Eu、緑色蛍光体としてZnSiO:Mn、BaAl1219:Mn、青色蛍光体としてBaMgAl1017:Eu2+などが使用可能である。
 発光部36に形成される蛍光体32の厚みは1μm程度が好ましい。また、ITO薄膜33の膜厚は、導電性を確保できる膜厚であれば問題なく、本実施形態においては150nmとする。蛍光体32の成膜には、バインダーとなるエポキシ系樹脂と微粒子化した蛍光体粒子との混練物から成る塗布液を準備する。この塗布液を用いて、ITO薄膜33上にバーコーター法あるいは滴下法などの公知な方法によって成膜するとよい。
 蛍光体32の発光輝度を上げるためには、電子放出素子1から放出された電子を蛍光体へ向けて加速する必要がある。そのために電源35を用いて、電極基板2とITO薄膜33との間に電圧を印加し、電子放出素子1から放出された電子を加速する。このとき、蛍光体32と電子放出素子1との間隔は0.3~1mmが好ましい。また、電源7からの電子放出素子1への印加電圧は18V、電源35からの電極基板2とITO薄膜33とへの印加電圧は500~2000Vが好ましい。
 (自発光デバイス31a)
 図7に示す自発光デバイス31aは、電子放出素子1とこれに電圧を印加する電源7とさらに蛍光体32とを備えている。自発光デバイス31aでは、蛍光体32は平面状であり、電子放出素子1の上部電極表面に配置されている。ここで、蛍光体32の層は、微粒子化した蛍光体粒子とバインダーであるエポキシ系樹脂とからなる塗布液を用いて、電子放出素子1の上部電極表面に成膜される。ただし、電子放出素子1そのものは外力に対して弱い構造なので、バーコーター法による成膜手段を利用すると素子が壊れる恐れがある。このため、蛍光体32の層を成膜する方法としては、滴下法またはスピンコート法などが適している。
 (自発光デバイス31b)
 図8に示す自発光デバイス31bは、電子放出素子1とこれに電圧を印加する電源7とを備えており、この構成は電子放出装置10と同様である。これに加えて、自発光デバイス31には、電子放出素子1の電子加速層4に蛍光体微粒子を混合している。この場合、絶縁体微粒子5の一部を代替して、蛍光体微粒子を混合してもよい。
 自発光デバイス31bにおける発光輝度を向上するためには、電子加速層4における蛍光体微粒子の絶縁体微粒子5に対する混合比率を高くしたい。しかし、以下に示す理由により、その混合比率はある上限をもって制限される。一般的に、蛍光体微粒子は低い抵抗率を有する。そのため、電子加速層4において蛍光体微粒子の混合比率が増加していくと、電子加速層4の抵抗率は減少していく。電子加速層4が電子加速層として機能するためには、所定の抵抗率より高い抵抗率を有する必要がある。以上の理由によって、電子加速層4において絶縁体微粒子5の一部に代替して蛍光体微粒子を混合する場合、その混合比には最適値が存在する。例えば、絶縁体微粒子5として球状シリカ粒子(平均径110nm)、蛍光体微粒子としてZnS:Mg(平均径500nm)を用いた場合、その重量混合比は3:1程度が最適となる。
 (自発光デバイスのまとめ)
 上記自発光デバイス31,31aにおいては、電子放出素子1より放出させた電子が蛍光体32に衝突することにより自発光デバイスとなる。上記自発光デバイス31bにおいては、電子加速層4内において加速された電子が蛍光体微粒子に衝突することによって自発光デバイスとなる。
 電子放出素子1は電子放出効率が高いため、自発光デバイス31,31a,31bは、効率よく発光を行える。なお、自発光デバイス31,31a,31bは、電子放出源として電子放出素子1を用いているため、大気中にて動作可能だが、真空封止することにより電子放出電流が上がり、さらに高効率な発光を実現する。
 (画像表示装置140)
 本発明に係る自発光デバイスを備えた本発明に係る画像表示装置の一例を示す。図9に示す画像表示装置140は、自発光デバイス31bと液晶パネル330とを備えている。画像表示装置140においては、自発光デバイス31bを液晶パネル330の後方に設置し、バックライトとして用いる。自発光デバイス31bを画像表示装置140に用いる場合、電源7による自発光デバイス31bへの印加電圧は、20~35Vが好ましい。また、自発光デバイス31bは、20~35Vの電圧を印加された際に、例えば単位時間当たり10μA/cmの電子が放出されるように構成されていればよい。また、自発光デバイス31bと液晶パネル330との距離は、0.1mm程度が好ましい。
 (その他の画像表示装置)
 また、図6に示す自発光デバイス31をマトリックス状に配置することによって、画像表示装置を実現する。この画像表示装置は、電子放出素子より放出された電子による蛍光体の発光を利用しており、広義の意味において電界放出ディスプレイ(FED)といえる。この場合、電源6による自発光デバイス31への印加電圧は、20~35Vが好ましい。自発光デバイス31は、20~35Vの電圧を印加された際に、例えば単位時間当たり10μA/cmの電子が放出されるように構成されていればよい。
 〔実施形態5〕
 図10及び図11に、実施の形態1において説明した本発明に係る電子放出装置10を備えた本発明に係る送風装置の例を示す。以下において、本願発明に係る送風装置を、冷却装置として用いた場合について説明する。しかし、送風装置の利用は冷却装置に限定されることはない。
 (送風装置150,送風装置160)
 従来の送風装置あるいは冷却装置のように、送風のみを用いて被冷却体を冷却する場合、被冷却体の表面における空気の流速が0となる。すなわち、被冷却体から最も熱を奪える部分の空気が置換されず冷却効率が悪い。この問題を解消するためには、被冷却体に通常の空気ではなく、電子やイオンといった荷電粒子を含んだ空気を送風することが効果的である。なぜなら、被冷却体近傍に送風された荷電粒子を含んだ空気は、静電的な力によって被冷却体表面に引き寄せられ、すでに被冷却体表面に存在していた空気と置換されるからである。
 本発明に係る電子放出装置10を備えた、本発明に係る送風装置の例を以下に示す。
 図10に示す送風装置150は、電子放出素子1とこれに電圧を印加する電源7とからなる電子放出装置10を備える。送風装置150において、電子放出装置10は電気的に接地された被冷却体41に向かって電子を放出する。このことにより、イオン風を発生させて被冷却体41を冷却する。この場合、電子放出素子1への印加電圧は18V程度が好ましい。また、電子放出素子1は電圧18Vを印加された際に、例えば単位時間当たり1μA/cmの電子を放出するように構成されていることが好ましい。
 図11に示す送風装置160は、図10に示す送風装置150に、さらに送風ファン42を組み合わせたものである。電子放出装置10が電気的に接地された被冷却体41に向かって電子を放出し、イオン風を発生させる。さらに送風ファン42が被冷却体41に向かって送風することにより送風装置160は被冷却体41を冷却する。この場合、送風ファン42による風量は、0.9~2L/(分・cm)とするのが好ましい。
 本発明に係る送風装置150および送風装置160においては、送風する空気中に電子やイオンといった荷電粒子を含んでいるから、送風のみによる冷却装置と比較して、冷却効率の格段の向上を実現する。さらに、電子放出素子1は電子放出効率が高いため、送風装置150および送風装置160は、さらに高効率な冷却が可能となる。また、送風装置150および送風装置160は大気中における長時間の動作も可能である。
 本発明の一態様に係る電子放出素子においては、上記絶縁体微粒子は単分散であり、かつ整列して充填していることが好ましい。
 上記構成によれば、電子加速層内において、絶縁体微粒子間の接点および導通路が均等に形成される。そのため、電子加速層の全平面内において電子を効率的にトラップしながら伝導させることが可能である。その結果、弾道電子が薄膜電極下において増産され、多量の電子を放出されることが可能となる。したがって、電子放出素子の電子放出効率をより一層高めることができる。
 本発明の一態様に係る電子放出素子においては、上記電子加速層を構成する絶縁体微粒子は、酸化シリコン、酸化アルミニウム、および酸化チタンの少なくとも1つを含んでいることが好ましい。
 これらの物質の抵抗率(絶縁性)が高いことにより、上記電子加速層の抵抗値を任意の範囲に制御することが可能となる。
 本発明の一態様に係る電子放出素子においては、上記絶縁体微粒子の平均径は、5~1000nmであることが好ましい。さらには、絶縁体微粒子の平均径を15~500nmとすることがより好ましい。
 上記構成によれば、素子内を電流が流れる際に発生するジュール熱を効率よく逃がすことができ、電子放出素子が動作時の発熱により破壊されることを防ぐことができる。さらに、上記電子加速層における抵抗値の制御を容易にすることができる。
 本発明の一態様に係る電子放出素子においては、上記電子加速層の層厚は、8~3000nmであるのが好ましい。これにより、電子加速層の表面を平坦化すること、および層厚方向における電子加速層の抵抗値の制御が可能となる。また、上記電子加速層の層厚は、30~1000nmとすることがより好ましい。
 本発明の一態様に係る電子放出素子においては、上記電極基板の凹凸の高さは、上記電子加速層の層厚の、50~80%であるのが好ましい。上記電極基板の凹凸の高さを、好ましくは上記電子加速層の層厚の、50~80%とすることにより、開口部形成時に上記電極基板と上記薄膜電極とが短絡する危険性を回避することができる。
 上記電極基板の凹凸を面内に多数形成すること、電子加速層の表面を平坦化することにより、電子放出素子表面の全面の任意の位置から制御性よく、かつ効率よく電子を放出させることができる。
 本発明の一態様に係る電子放出装置は、上記いずれか1つの電子放出素子と、上記電極基板と上記薄膜電極との間に電圧を印加する電源部と、を備えたことを特徴としている。
 上記構成によると、電気的導通を確保して十分な素子内電流を流し、薄膜電極から弾道電子を効率よく安定して放出させることができる。
 本発明の一態様に係る自発光デバイスは、上述した電子放出装置と発光体とを備え、該電子放出装置から電子を放出して該発光体を発光させることを特徴としている。また、本発明の一態様に係る画像表示装置は、上述した自発光デバイスを備えていることを特徴としている。
 上記の構成によれば、本発明の一態様に係る電子放出素子を自発光デバイス、およびこの自発光デバイスを備えた画像表示装置に用いることにより、安定した動作と長寿命な面発光とを実現する自発光デバイスおよび画像表示装置を提供することができる。
 本発明の一態様に係る送風装置は、上述した電子放出装置を備え、該電子放出装置から電子を放出して送風することを特徴としている。また、本発明の一態様に係る冷却装置は、上述した電子放出装置を備え、該電子放出装置から電子を放出して被冷却体を冷却することを特徴としている。
 上記の構成によれば、本発明の一態様に係る電子放出素子を、送風装置あるいは冷却装置に用いることにより、放電を伴わず、オゾンや窒素酸化物を始めとする有害な物質の発生がなく、被冷却体表面におけるスリップ効果を利用することにより冷却効率の高い冷却を実現する。
 本発明の一態様に係る帯電装置は、上述した電子放出装置を備え、該電子放出装置から電子を放出して感光体を帯電することを特徴としている。また、本発明の一態様に係る画像形成装置は、上述した帯電装置を備えていることを特徴としている。
 上記の構成によれば、本発明の一態様に係る電子放出素子を、帯電装置、およびこの帯電装置を備えた画像形成装置に用いることにより、放電を伴わず、オゾンや窒素酸化物を始めとする有害な物質を発生させることなく、長期間安定して被帯電体を帯電させることができる。
 本発明の一態様に係る電子線硬化装置は、上述したいずれかの電子放出素子を備えていることを特徴としている。
 上記の構成によれば、電子放出素子は、面電子放出源であるという特徴を備える。従来の電界電子放出素子が点電子放出源であることに対し、上記電子放出素子は、一度に広範囲に電子を照射することを可能とする。そのため、本発明の一態様に係る電子放出素子を備える電子線硬化装置は、二次元的に電子線を照射しレジストを硬化することを可能とする。また、レジスト硬化時におけるマスクレス化を可能とし、低価格化および高スループット化を実現する。
 上記電子加速層を形成する工程が、上記絶縁体微粒子からなる絶縁体微粒子層を上記電極基板上に形成する工程をさらに含んでおり、
 上記絶縁体微粒子層を形成する工程は、溶媒中に上記絶縁体微粒子を分散させて得られる絶縁体微粒子分散液を、スピンコート法を用いて上記基板電極上に塗布することによって、上記絶縁体微粒子層を形成することをが好ましい。
 上記の構成によれば、絶縁体微粒子分散液を塗布する工程においてスピンコート法を用いる。これにより、絶縁体微粒子を非常に簡便に広範囲に塗布することができる。よって、広範囲で電子放出する必要のあるデバイスに適用できる電子放出素子を容易に製造できる。
 本発明は、上述した各実施の形態および各実施例に限定されず、請求項に示した範囲において種々の変更が可能である。すなわち、請求項に示した範囲において適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明に係る電子放出素子は、電気的導通を確保して十分な素子内電流を流し、薄膜電極から弾道電子を放出させることが可能である。よって、例えば、電子写真方式の複写機、プリンタ、およびファクシミリなどの画像形成装置の帯電装置に適用可能である。また、電子線硬化装置、蛍光体と組み合わせることにより画像表示装置、および放出された電子が発生させるイオン風を利用する冷却装置などに、適用することができる。
1 電子放出素子
2 電極基板
3 薄膜電極
4 電子加速層
5 絶縁体微粒子
6 開口部
7 電源(電源部)
10 電子放出装置
11 感光体ドラム
21 加速電極
22 レジスト
31,31a,31b 自発光デバイス
32 蛍光体(発光体)
33 ITO薄膜
34 ガラス基板
35 電源
36 発光部
41 被冷却体
42 送風ファン
90 帯電装置
100 電子線硬化装置
140 画像表示装置
150 送風装置
160 送風装置
330 液晶パネル

Claims (16)

  1.  電極基板と薄膜電極とを備え、当該電極基板と薄膜電極との間に電圧を印加することによって、当該電極基板と薄膜電極との間において電子を加速させて、当該薄膜電極から放出させる電子放出素子であって、
     上記電極基板と上記薄膜電極との間には、少なくとも絶縁体微粒子からなる電子加速層が設けられており、
     上記電極基板の電子加速層が設けられる面には凹凸を備えており、
     上記電極基板の凸部上の上記薄膜電極に開口部が形成されていることを特徴とする電子放出素子。
  2.  上記絶縁体微粒子は単分散であり、かつ整列して充填していることを特徴とする請求項1に記載の電子放出素子。
  3.  上記絶縁体微粒子は、酸化シリコン、酸化アルミニウム、および酸化チタンの少なくとも1つを含んでいることを特徴とする、請求項1または2に記載の電子放出素子。
  4.  上記絶縁体微粒子の平均径は、5~1000nmであることを特徴とする、請求項1から3のいずれか1項に記載の電子放出素子。
  5.  上記電子加速層の層厚は、8~3000nmであることを特徴とする、請求項1から4のいずれか1項に記載の電子放出素子。
  6.  上記電極基板の凹凸の高さは、上記電子加速層の層厚の、50~80%であることを特徴とする、請求項1から5のいずれか1項に記載の電子放出素子。
  7.  請求項1~6のいずれか1項に記載の電子放出素子と、上記電極基板と上記薄膜電極との間に電圧を印加する電源部とを備えたことを特徴とする電子放出装置。
  8.  請求項7に記載の電子放出装置と発光体とを備え、該電子放出装置から電子を放出して該発光体を発光させることを特徴とする自発光デバイス。
  9.  請求項8に記載の自発光デバイスを備えたことを特徴とする画像表示装置。
  10.  請求項7に記載の電子放出装置を備え、該電子放出装置から電子を放出して送風することを特徴とする送風装置。
  11.  請求項7に記載の電子放出装置を備え、該電子放出装置から電子を放出して被冷却体を冷却することを特徴とする冷却装置。
  12.  請求項7に記載の電子放出装置を備え、該電子放出装置から電子を放出して感光体を帯電することを特徴とする帯電装置。
  13.  請求項12に記載の帯電装置を備えたことを特徴とする画像形成装置。
  14.  請求項7に記載の電子放出装置を備えたことを特徴とする電子線硬化装置。
  15.  電極基板と薄膜電極とを備え、当該電極基板と薄膜電極との間に電圧を印加することによって、当該電極基板と薄膜電極との間で電子を加速させて、当該薄膜電極から放出させる電子放出素子の製造方法であって、
     上記電極基板上に、少なくとも絶縁体微粒子からなる電子加速層を形成する工程と、
     上記電子加速層上に、薄膜電極を形成する工程と、
     上記薄膜電極に開口部を形成する工程とを含み、
     上記電極基板は、上記電子加速層が設けられる面に凹凸を備えており、
     上記薄膜電極に開口部を形成する工程において、上記凹凸を備えた基板電極と、上記薄膜電極との間に電圧を印加することによって、当該電極基板の凸部上の薄膜電極に開口部を形成することを特徴とする電子放出素子の製造方法。
  16.  上記電子加速層を形成する工程が、上記絶縁体微粒子からなる絶縁体微粒子層を上記電極基板上に形成する工程をさらに含んでおり、
     上記絶縁体微粒子層を形成する工程は、溶媒中に上記絶縁体微粒子を分散させて得られる絶縁体微粒子分散液を、スピンコート法を用いて上記電極基板上に塗布することによって、上記絶縁体微粒子層を形成することを特徴とする請求項15に記載の電子放出素子の製造方法。
PCT/JP2011/077699 2010-12-07 2011-11-30 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、および電子放出素子の製造方法 WO2012077558A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012547804A JP5795330B2 (ja) 2010-12-07 2011-11-30 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、および電子放出素子の製造方法
US13/991,653 US9035548B2 (en) 2010-12-07 2011-11-30 Electron emission element, electron emission device, charge device, image forming device, electron radiation curing device, light-emitting device, image display device, blower device, cooling device, and manufacturing method for electron emission element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010272779 2010-12-07
JP2010-272779 2010-12-07

Publications (1)

Publication Number Publication Date
WO2012077558A1 true WO2012077558A1 (ja) 2012-06-14

Family

ID=46207048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077699 WO2012077558A1 (ja) 2010-12-07 2011-11-30 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、および電子放出素子の製造方法

Country Status (3)

Country Link
US (1) US9035548B2 (ja)
JP (1) JP5795330B2 (ja)
WO (1) WO2012077558A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144607A (ja) * 1997-11-10 1999-05-28 Nec Corp Mim又はmis電子源の構造及びその製造方法
JP2002279892A (ja) * 2001-03-21 2002-09-27 Ricoh Co Ltd 電子放出素子の製造方法、電子放出素子、帯電装置及び画像形成装置
WO2009066723A1 (ja) * 2007-11-20 2009-05-28 Sharp Kabushiki Kaisha 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の製造方法
JP2010257717A (ja) * 2009-04-23 2010-11-11 Sharp Corp 電子放出装置、自発光デバイス、画像表示装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の駆動方法
JP2011175843A (ja) * 2010-02-24 2011-09-08 Sharp Corp 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の製造方法
JP2011222452A (ja) * 2010-04-14 2011-11-04 Sharp Corp 電子放出素子及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291965B2 (ja) * 2001-05-24 2009-07-08 株式会社リコー 電子放出表示装置の製造方法
US20040251841A1 (en) * 2001-12-06 2004-12-16 Nobuyasu Negishi Electron emitting device and method of manufacturing the same and display apparatus using the same
JP2003331712A (ja) * 2002-05-10 2003-11-21 Nippon Hoso Kyokai <Nhk> 電界放出型電子源およびその製造方法ならびに表示装置
TWI297163B (en) * 2006-03-21 2008-05-21 Ind Tech Res Inst Cathode plate of field emission display and fabrication method thereof
JP4303308B2 (ja) 2007-11-20 2009-07-29 シャープ株式会社 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の製造方法
CN101814405B (zh) * 2009-02-24 2012-04-25 夏普株式会社 电子发射元件及其制造方法、使用电子发射元件的各装置
CN101930884B (zh) * 2009-06-25 2012-04-18 夏普株式会社 电子发射元件及其制造方法、电子发射装置、自发光设备、图像显示装置
JP4880740B2 (ja) * 2009-12-01 2012-02-22 シャープ株式会社 電子放出素子及びその製造方法、並びに、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144607A (ja) * 1997-11-10 1999-05-28 Nec Corp Mim又はmis電子源の構造及びその製造方法
JP2002279892A (ja) * 2001-03-21 2002-09-27 Ricoh Co Ltd 電子放出素子の製造方法、電子放出素子、帯電装置及び画像形成装置
WO2009066723A1 (ja) * 2007-11-20 2009-05-28 Sharp Kabushiki Kaisha 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の製造方法
JP2010257717A (ja) * 2009-04-23 2010-11-11 Sharp Corp 電子放出装置、自発光デバイス、画像表示装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の駆動方法
JP2011175843A (ja) * 2010-02-24 2011-09-08 Sharp Corp 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の製造方法
JP2011222452A (ja) * 2010-04-14 2011-11-04 Sharp Corp 電子放出素子及びその製造方法

Also Published As

Publication number Publication date
US9035548B2 (en) 2015-05-19
JP5795330B2 (ja) 2015-10-14
JPWO2012077558A1 (ja) 2014-05-19
US20130249386A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP4303308B2 (ja) 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の製造方法
JP4990380B2 (ja) 電子放出素子及びその製造方法
JP5033892B2 (ja) 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の製造方法
US8547007B2 (en) Electron emitting element, electron emitting device, light emitting device, image display device, air blowing device, cooling device, charging device, image forming apparatus, electron-beam curing device, and method for producing electron emitting element
JP4777448B2 (ja) 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、及び電子線硬化装置
US8476818B2 (en) Electron emitting element including a fine particle layer containing insulating particles, and devices and methods related thereto
JP4732534B2 (ja) 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置
JP4880740B2 (ja) 電子放出素子及びその製造方法、並びに、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置
JP5783798B2 (ja) 電子放出素子およびそれを備えた装置
JP5784354B2 (ja) 電子放出素子およびそれを備えた電子放出装置
JP5133295B2 (ja) 電子放出装置、自発光デバイス、画像表示装置、帯電装置、画像形成装置、電子線硬化装置、および電子放出素子の駆動方法
JP4932864B2 (ja) 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置、電子放出素子の製造方法
JP5860412B2 (ja) 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、電子放出素子の製造方法、電子放出素子の修復方法
JP5795330B2 (ja) 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、および電子放出素子の製造方法
JP6008594B2 (ja) 電子放出素子およびそれを備えた装置
JP4680305B2 (ja) 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、冷却装置、および帯電装置
US8421331B2 (en) Electron emitting element and method for producing the same
JP2010267491A (ja) 電子放出素子の製造方法、電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置
JP4768050B2 (ja) 電子放出素子、電子放出装置、自発光デバイス、画像表示装置、送風装置、冷却装置、帯電装置、画像形成装置、電子線硬化装置、電子放出素子の製造方法
JP2011040250A (ja) 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置自発光デバイス、画像表示装置、送風装置、冷却装置、電子放出素子の製造方法
JP2010272260A (ja) 電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、冷却装置、電子放出素子の製造方法
JP2010272259A (ja) 電子放出素子の製造方法、電子放出素子、電子放出装置、帯電装置、画像形成装置、電子線硬化装置、自発光デバイス、画像表示装置、送風装置、および冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547804

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13991653

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11846466

Country of ref document: EP

Kind code of ref document: A1