WO2012074196A2 - 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법 - Google Patents

비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법 Download PDF

Info

Publication number
WO2012074196A2
WO2012074196A2 PCT/KR2011/007624 KR2011007624W WO2012074196A2 WO 2012074196 A2 WO2012074196 A2 WO 2012074196A2 KR 2011007624 W KR2011007624 W KR 2011007624W WO 2012074196 A2 WO2012074196 A2 WO 2012074196A2
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
formula
surfactant
based polymer
vinylidene fluoride
Prior art date
Application number
PCT/KR2011/007624
Other languages
English (en)
French (fr)
Other versions
WO2012074196A3 (ko
Inventor
이수복
박인준
하종욱
김수한
이광원
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100121958A external-priority patent/KR101207422B1/ko
Priority claimed from KR1020100121959A external-priority patent/KR101207421B1/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2012074196A2 publication Critical patent/WO2012074196A2/ko
Publication of WO2012074196A3 publication Critical patent/WO2012074196A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride

Definitions

  • the present invention relates to a method for producing a fluorine-based polymer by polymerizing a fluorine-based monomer containing vinylidene fluoride (VDF), and more particularly, to an aqueous emulsion polymerization method using an environmentally friendly fluorine-based surfactant.
  • VDF vinylidene fluoride
  • Fluorine-based polymers have been used industrially for various purposes because they have good physical properties such as thermal stability, chemical resistance, weather resistance, UV stability, and the like.
  • the aqueous dispersion emulsion polymerization is polymerized in the presence of a fluorine-based surfactant used for stabilizing the polymer particles formed, and conventionally perfluoroalkanoic acids or salts thereof (PFOA) as such surfactant Was carried out.
  • PFOA perfluoroalkanoic acids or salts thereof
  • Alternative surfactants should have good chemical and thermal stability over a wide range of temperature and pressure conditions and should provide high polymerization rates, good dispersion stability, good yields and copolymer properties.
  • US 3,271,341 discloses perfluoropolyethers of formula A in place of PFOA as novel surfactants used in the preparation of aqueous colloidal polymer dispersions.
  • US Pat. No. 4,621,116 discloses a process for the preparation of copolymers of tetrafluoroethylene in the presence of fluorine-based surfactants of perfluoroalkoxy benzene sulphonic acids and salts of the general formula (B).
  • US 4,990,283 discloses microemulsions in which perfluoropolyether (PFPE) is emulsified using perfluoropolyether carboxylic acid. Techniques for utilizing this microemulsion for emulsion polymerization of various fluorine-based polymers are disclosed in US 4,789,717, US 4,864,006, US 7,122,608, EP 624426 and the like.
  • PFPE perfluoropolyether
  • US Pat. No. 5,804,650 discloses a technique of using a fluorine-based surfactant having a double bond of any one of Formulas C to H as a reactive surfactant.
  • CF 2 CF- (CF 2 ) a -Y
  • CF 2 CF- (CF 2 CFX) b -Y
  • CF 2 CF-O- (CFX) c -Y
  • CF 2 CF-O- (CF 2 CFXO) d -CF 2 CF 2 -Y
  • CF 2 CFCF 2 -O- (CF (CF 3 ) CF 2 O) f -CF (CF 3 ) -Y
  • EP 1,334,996 and US Pat. No. 6,878,772 show the use of a perfluoropolyether (bifunctional) having two substituents of a carboxylic acid substituent and a carboxylic salt substituent of the formula (I) at the same time in the sock end as a surfactant. .
  • F is a fluorinated aliphatic group partially containing at least one oxygen atom
  • Q CF 3 or F
  • R is an aliphatic or aromatic hydrocarbon group
  • G is a carboxylic or sulfonic acid or salt thereof
  • t is 0 or 1
  • JP 2008-297528 and JP 2008-297529 a technique of using a non-fluorine-based surfactant or a malonic acid or an ester without using a fluorine-based surfactant is proposed.
  • an object of the present invention is to provide an emulsion polymerization method characterized by using a new environmentally friendly fluorine-based surfactant having low toxicity and little human accumulation in the production of fluorine-based polymers by polymerization of vinylidene-containing fluorine-based monomers.
  • This new surfactant has good chemical and thermal stability, provides high polymerization rate, good dispersion stability and good yield in emulsion polymerization and provides a fluorine-based polymer having good physical properties such as molecular weight and particle size.
  • the present invention is a step of dissolving a fluorosulfonate-based surfactant represented by the formula (1) or a polyfluorocarboxylic acid salt surfactant represented by the formula (2) in water to the polymerization reactor (step 1 );
  • step 2 Initiating an emulsion polymerization reaction by adding a vinylidene fluoride-containing fluorinated monomer to the polymerization reactor and adding an initiator (step 2);
  • step 3 Adding a chain transfer agent to the polymerization reactor to perform a polymerization reaction to produce a vinylidene fluoride-containing fluorine-based polymer (step 3);
  • a method for producing a vinylidene fluoride-containing fluorine-based polymer comprising the step of evacuating the reactor and the dispersion (step 4).
  • Fluorosulfonate-based surfactants or polyfluorocarboxylic acid salt surfactants according to the present invention have little human accumulation and are safe because they are low toxicity, and thus are safer than conventional perfluoroalkanoic acid or salt (PFOA) surfactants. Since the post-treatment process is simplified, production costs are reduced, and high polymerization rate, good dispersion stability and good yield during emulsion polymerization are provided, and the prepared fluorine-based polymer exhibits good molecular weight and particle size.
  • PFOA perfluoroalkanoic acid or salt
  • the fluorosulfonate-based surfactants or polyfluorocarboxylic acid salt surfactants according to the present invention meet all of the requirements as fluorine-based surfactants that can replace the perfluoroalkanoic acid or salt (PFOA) mentioned above.
  • PFOA perfluoroalkanoic acid or salt
  • the vinylidene fluoride fluorinated monomer may be usefully used for the dispersion polymerization of water-soluble emulsions of the vinyl fluoride-containing fluorinated monomer mixture.
  • the present invention comprises the steps of dissolving a fluorosulfonate-based surfactant represented by the formula (1) or a polyfluorocarboxylic acid salt surfactant represented by the formula (2) in water to the polymerization reactor (step 1);
  • step 2 Initiating an emulsion polymerization reaction by adding a vinylidene fluoride-containing fluorinated monomer to the polymerization reactor and adding an initiator (step 2);
  • step 3 Adding a chain transfer agent to the polymerization reactor to perform a polymerization reaction to produce a vinylidene fluoride-containing fluorine-based polymer (step 3);
  • a method for producing a vinylidene fluoride-containing fluorine-based polymer comprising the step of evacuating the reactor and the dispersion (step 4).
  • R f is CF 3 or C 2 F 5 ,
  • X is O, C 6 H 4 O or CF 3 N
  • M is a metal ion
  • n is an integer of 4-12.
  • R f is C 2 F 5 or C 4 F 9 ,
  • M is a metal ion
  • n is an integer from 1-6.
  • M is an ion of sodium, potassium, ammonium or the like.
  • step 1 is a step of dissolving a fluorosulfonate-based surfactant or a surfactant of a polyfluorocarboxylic acid salt in water and introducing it into the polymerization reactor.
  • the fluorosulfonate-based surfactant or polyfluorocarboxylic acid salt surfactant may be commercially available, or may be synthesized by a method commonly used in the art.
  • the amount of the fluorosulfonate-based surfactant or polyfluorocarboxylic acid salt surfactant used depends on the required physical properties such as solid content and particle size of the prepared fluorine-based polymer, For good physical properties of the fluorine-based polymer is preferably 0.01 to 2% by weight based on the amount of the fluorine-based polymer to be prepared.
  • the fluorosulfonate-based surfactant or polyfluorocarboxylic acid salt surfactant may be used alone or in combination with one or more other perfluoropolyether-based fluorine-based surfactants. Can be used.
  • the preferred perfluoropolyether-based fluorine-based surfactant may be selected from the group consisting of compounds represented by the following Chemical Formulas 3 to 5.
  • n is an integer from 1 to 6
  • n is an integer of 0 to 3
  • L is -CF (CF 3 )-, -CF 2- , or -CF 2 CF 2- ,
  • R f ′ is a C 1 -C 4 straight or branched perfluoroalkyl group
  • the mixing ratio of the fluorosulfonate surfactant or polyfluorocarboxylic acid salt surfactant and the perfluoropolyether fluorine surfactant is preferably 1:10 to 10: 1 by weight.
  • step 2 is a step of starting the emulsion polymerization by adding a vinylidene fluoride-containing fluorinated monomer to the polymerization reactor and adding an initiator.
  • the fluorine-based monomer is tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), vinyl fluoride (VF) and vinylidene Fluorine monomers of fluoride (VDF).
  • the fluorinated monomer may use vinylidene fluoride (VDF), and the vinylidene fluoride may be used alone or in tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), and hexafluoropropylene (HFP).
  • vinyl fluoride (VF) can be used as a mixture mixed with one or more selected from the group consisting of.
  • the initiator may include a peroxide, an azo compound, and a redox based initiator.
  • peroxide initiators include hydrogen peroxide, sodium or barium peroxide, diacetyl peroxide, disuccinyl peroxide.
  • Minerals include ammonium persulfate and alkaline salt persulfate.
  • Persulfate initiators such as ammonium persulfate (APS) can be used alone or in combination with other reducing agents.
  • Suitable reducing agents include ammonium bisulfite or sodium metabisulfite, thiosulfates such as ammonium, potassium, sodium, hydrazine, and the like.
  • the amount of the initiator is preferably 0.05 to 0.5% by weight relative to the monomer.
  • the emulsion polymerization reaction is preferably carried out in a temperature range of 20 ⁇ 110 °C and a pressure range of 5 ⁇ 40 bar.
  • the pH of the aqueous medium for emulsion polymerization is preferably 5-10.
  • step 3 is a step of preparing a vinylidene fluoride-containing fluorine-based polymer by performing a polymerization reaction by adding a chain transfer agent to the polymerization reactor.
  • examples of the chain transfer agent include esters such as diethylmalonate, dimethyl ether, ethers such as methyl t-butyl ether, ethane, propane and n-pentane Alkanes such as, and halogenated hydrocarbons such as CCl 4 , CHCl 3 and CH 2 Cl 2 , and carbon fluoride compounds such as CH 2 FCF 3 (HCFC-134a).
  • step 4 is a step of evacuating the reactor and discharging the dispersion after completion of the reaction.
  • the reactor is evacuated and the dispersion is discharged to obtain the produced fluorine-based polymer.
  • the solid content of the fluorine-based polymer in the dispersion is preferably in the range of 10 to 25%
  • the particle size (volume average diameter) of the fluorine-based polymer is preferably having a value in the range of 40-450 nm.
  • the fluorine-based polymer may be separated from the dispersion by flocculation when the polymer in the solid form is desired.
  • Fluorosulfonate-based surfactants or polyfluorocarboxylic acid surfactants according to the present invention have little human accumulation and are safe because they are low toxicity, thus simplifying the post-treatment process compared to the conventional PFOA surfactant use process. It saves, and provides high polymerization rate, good dispersion stability and good yield in emulsion polymerization, and the produced fluorine-based polymer shows good molecular weight and particle size.
  • the fluorosulfonate-based surfactants or polyfluorocarboxylic acid salt surfactants according to the present invention meet all of the requirements as fluorine-based surfactants that can replace the perfluoroalkanoic acid or salt (PFOA) mentioned above.
  • the vinylidene fluoride fluorinated monomer may be usefully used for the dispersion polymerization of water-soluble emulsions of the vinyl fluoride-containing fluorinated monomer mixture.
  • VDF vinylidene fluoride
  • TFE tetrafluoroethylene
  • HEP hexafluoropropylene
  • Example 5 Same as Example 5 except that C 4 F 9 (CH 2 CF 2 ) 3 CH 2 COONa is used as the polyfluorocarboxylic acid fluorine-based surfactant instead of C 2 F 5 (CH 2 CF 2 ) 3 CH 2 COONa
  • the fluorine-based polymer was polymerized by the method. The solids content of the resulting dispersion after polymerization was 20% and particle size was 390 nm.
  • VDF vinylidene fluoride
  • TFE tetrafluoroethylene
  • HEP hexafluoropropylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제를 물에 용해시켜 중합 반응기에 투입하는 단계(단계 1); 상기 중합 반응기에 비닐리덴 플루오라드 함유 불소계 단량체를 넣고 개시제를 첨가하여 에멀젼 중합반응을 개시하는 단계(단계 2); 상기 중합 반응기에 사슬 이동제를 첨가하여 중합반응을 진행하여 비닐리덴 플루오라드 함유 불소계 고분자를 제조하는 단계(단계 3); 및 반응 종결 후, 반응기를 배기하고 분산액을 배출하는 단계(단계 4)를 포함하는 비닐리덴 플루오라드 함유 불소계 고분자의 제조방법에 관한 것이다.

Description

비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법
본 발명은 비닐리덴 플루오라이드(Vinylidene Fluoride, VDF)를 함유하는 불소계 단량체를 중합하여 불소계 고분자를 제조하는 방법에 관한 것으로, 특히 친환경 불소계 계면활성제를 사용하는 수분산 에멀젼 중합방법에 관한 것이다.
불소계 고분자는 열안정성, 화학적 내성, 내후성, UV 안정성 등과 같은 양호한 물성을 갖기 때문에 여러 가지 용도로 산업적으로 사용되어 왔다.
불소계 고분자를 제조하는 방법으로는 현탁 중합, 수분산 에멀젼 중합, 용액 중합, 초임계 CO2 사용 중합, 기상 중합 등과 같은 여러가지 방법이 있다. 이중, 현재 가장 보편적으로 채택하고 있는 중합 방법은 현탁 중합과 수분산 에멀젼 중합이다.
상기 수분산 에멀젼 중합은 형성된 고분자 입자를 안정화시키는 목적으로 사용되는 불소계 계면활성제 존재 하에 중합이 이루어지며, 종래에는 이러한 계면활성제로서 퍼플루오로알칸산 또는 이의 염(perfluoroalkanoic acids or salts thereof, PFOA)을 사용하여 수행하였다. 이러한 불소계 계면활성제를 사용함으로써 불소계 고분자 제조시 높은 중합 속도, 불소계 올레핀의 공단량체와의 양호한 공중합 물성, 분산액의 작은 입자 크기, 높은 중합 수율, 양호한 분산 안정성 등을 얻을 수 있다.
그러나, 종래에 사용하던 퍼플루오로알칸산 또는 이의 염(PFOA)의 불소계 계면활성제는 인체에 누적되어 환경문제를 야기하며, 가격이 높은 문제가 있다. 따라서 종래의 퍼플루오로알칸 산 또는 이의 염(PFOA) 등의 불소계 계면활성제를 대체할 수 있는 계면활성제를 찾아야만 한다. 특히, 저독성을 가지며 인체축적이 거의 없는 새로운 친환경적 계면활성제를 찾아야 한다.
대체 계면활성제는 넓은 범위의 온도와 압력 조건에서 양호한 화학적 및 열적 안정성을 가져야 하며, 고중합속도, 양호한 분산 안정성, 양호한 수율과 공중합체 물성 등을 제공해야 한다.
이러한 목적을 달성하기 위하여, 최근 PFOA 불소계 계면활성제를 대체하기 위한 에멀젼 중합기술에 대한 연구가 매우 활발히 이루어지고 있다. 종래의 연구들을 살펴보면 하기와 같다.
먼저, US 3,271,341에는 수성 콜로이달 고분자 분산액의 제조에 사용되는 신규 계면활성제로서 PFOA 대신 하기 화학식 A의 퍼플루오로폴리에테르를 개시하였다.
[화학식 A]
F-(CF2)m-O-[CFX-CF2-O}n-CFX-COOA
(A=양이온, X=F 또는 CF3, m=1-5, n=0-10)
다음으로, US 4,621,116에는 하기 화학식 B의 퍼플루오로알콕시 벤젠 설포닉 산 및 염(perfluoroalkoxy benzene sulphonic acids and salts)의 불소계 계면활성제의 존재하에서의 테트라플루오로에틸렌의 공중합체의 제조방법이 개시되어 있다.
[화학식 B]
Figure PCTKR2011007624-appb-I000001
(Rf = 퍼플루오로알킬기, M= 양이온)
다음으로, US 4,990,283에는 퍼플로오로폴리에테르 카복실릭 산(perfluoropolyether carboxylic acid)을 이용하여 퍼플루오로폴리에테르(PFPE)를 유화시킨 마이크로에멀젼에 대하여 개시되어 있다. 이 마이크로에멀젼을 여러 가지 불소계 고분자의 에멀젼 중합에 활용하는 기술이 US 4,789,717, US 4,864,006, US 7,122,608, EP 624426 등에 개시되어 있다.
다음으로, US 5,804,650에는 하기 화학식 C 내지 화학식 H 중 어느 하나의 이중결합을 갖는 불소계 계면활성제를 반응성 계면활성제로 사용하는 기술이 개시되어 있다.
[화학식 C]
CF2=CF-(CF2)a-Y
(a=1-10, Y=SO3M 또는 COOM, M=H, NH4 또는 알칼리금속)
[화학식 D]
CF2=CF-(CF2CFX)b-Y
(X=F 또는 CF3, b=1-5, Y=SO3M 또는 COOM, M=H, NH4 또는 알칼리금속)
[화학식 E]
CF2=CF-O-(CFX)c-Y
(X=F 또는 CF3, c=1-10, Y=SO3M 또는 COOM, M=H, NH4 또는 알칼리금속)
[화학식 F]
CF2=CF-O-(CF2CFXO)d-CF2CF2-Y
(X=F 또는 CF3, d=1-10, Y=SO3M 또는 COOM, M=H, NH4 또는 알칼리금속)
[화학식 G]
CH2=CFCF2-O-(CF(CF3)CF2O)e-CF(CF3)-Y
(e=0-10, Y=SO3M 또는 COOM, M=H, NH4 또는 알칼리금속)
[화학식 H]
CF2=CFCF2-O-(CF(CF3)CF2O)f-CF(CF3)-Y
(f=1-10, Y=SO3M 또는 COOM, M=H, NH4 또는 알칼리금속)
다음으로, EP 1,334,996과 US 6,878,772에는 하기 화학식 I의 카복실릭 산 치환기와 카복실릭 염 치환기의 2개의 치환기를 양말단에 동시에 갖는 퍼플루오로폴리에테르(bifunctional)를 계면활성제로 사용하는 것을 제시하고 있다.
[화학식 I]
A-Rf-B
(Rf = 퍼플루오로알킬기, A 및 B = -(O)pCFX-COOM, M=NH4, H 또는 알칼리금속, X=F 또는 CF3, p=0 또는 1)
다음으로, US 7,659,333에는 하기 화학식 J의 불소계 계면활성제가 출원되어 있다.
[화학식 J]
[Rf-(O)t-CQH-CF2-O]n-R-G
(Rf = 1 이상의 산소 원자가 부분적으로 포함된 불소계 지방족기, Q = CF3 또는 F, R은 지방족 또는 방향족 탄화수소기, G는 카복실릭 또는 설포닉 산 또는 이의 염, t는 0 또는 1, n은 1-3, MW<500)
다음으로, JP 2008-297528과 JP 2008-297529에는 불소계 계면활성제를 사용하지 않고 비불소계 계면활성제 또는 말로닉 산 또는 에스테르를 사용하는 기술이 제안되어 있다.
그러나, 저독성을 가지며 인체축적이 거의 없는 새로운 친환경적 계면활성제를 이용한 불소계 고분자의 제조방법은 여전히 요구되고 있다.
따라서, 본 발명의 목적은 비닐리덴 함유 불소계 단량체의 중합에 의한 불소계 고분자 제조에 있어서 저독성을 가지며 인체축적이 거의 없는 새로운 친환경 불소계 계면활성제를 사용하는 것을 특징으로 하는 에멀젼 중합방법을 제공하는데 있다. 이 새로운 계면활성제는 양호한 화학적 및 열적 안정성을 가지며, 에멀젼 중합시 고중합속도, 양호한 분산 안정성과 양호한 수율을 제공하며 분자량과 입자크기 등의 양호한 물성을 갖는 불소계 고분자를 제공한다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 플루오로설포네이트계 계면활성제 또는 화학식 2로 표시되는 폴리플루오로카복실산 염 계면활성제를 물에 용해시켜 중합 반응기에 투입하는 단계(단계 1);
상기 중합 반응기에 비닐리덴 플루오라드 함유 불소계 단량체를 넣고 개시제를 첨가하여 에멀젼 중합반응을 개시하는 단계(단계 2);
상기 중합 반응기에 사슬 이동제를 첨가하여 중합반응을 진행하여 비닐리덴 플루오라드 함유 불소계 고분자를 제조하는 단계(단계 3); 및
반응 종결 후, 반응기를 배기하고 분산액을 배출하는 단계(단계 4)를 포함하는 비닐리덴 플루오라드 함유 불소계 고분자의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2011007624-appb-I000002
(상기 화학식 1에서, Rf=CF3 또는 C2F5, X=O, C6H4O 또는 CF3N, M=금속이온, n=4-12)
[화학식 2]
Figure PCTKR2011007624-appb-I000003
(상기 화학식 2에서, Rf=C2F5 또는 C4F9, M=금속이온, n=1-6)
본 발명에 따른 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제는 인체 축적이 거의 없으며, 저독성이므로 안전하고, 이에 따라 종래 퍼플루오로알칸산 또는 염(PFOA) 계면활성제 사용공정에 비해 후처리 공정이 간소화되므로 생산비용이 절감되며, 에멀젼 중합시 고중합속도, 양호한 분산 안정성과 양호한 수율을 제공하고, 제조된 불소계 고분자는 양호한 분자량 및 입자크기를 나타낸다. 이와 같이, 본 발명에 따른 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제는 상기에서 언급한 퍼플루오로알칸산 또는 염(PFOA)을 대체할 수 있는 불소계 계면활성제로서의 요구사항을 모두 만족시켜주므로 비닐리덴 플루오라이드 불소계 단량체는 물론 비닐 플루오라이드 함유 불소계 단량체 혼합물의 수분산 에멀젼 중합에 유용하게 사용될 수 있다.
본 발명은 하기 화학식 1로 표시되는 플루오로설포네이트계 계면활성제 또는 화학식 2로 표시되는 폴리플루오로카복실산 염 계면활성제를 물에 용해시켜 중합 반응기에 투입하는 단계(단계 1);
상기 중합 반응기에 비닐리덴 플루오라드 함유 불소계 단량체를 넣고 개시제를 첨가하여 에멀젼 중합반응을 개시하는 단계(단계 2);
상기 중합 반응기에 사슬 이동제를 첨가하여 중합반응을 진행하여 비닐리덴 플루오라드 함유 불소계 고분자를 제조하는 단계(단계 3); 및
반응 종결 후, 반응기를 배기하고 분산액을 배출하는 단계(단계 4)를 포함하는 비닐리덴 플루오라드 함유 불소계 고분자의 제조방법을 제공한다.
[화학식 1]
Figure PCTKR2011007624-appb-I000004
(상기 화학식 1에서,
Rf는 CF3 또는 C2F5이고,
X는 O, C6H4O 또는 CF3N이고,
M은 금속이온이고,
n은 4-12의 정수이다.)
[화학식 2]
Figure PCTKR2011007624-appb-I000005
(상기 화학식 2에서,
Rf는 C2F5 또는 C4F9이고,
M은 금속이온이고,
n은 1-6의 정수이다.)
바람직하게는 상기 M은 나트륨, 칼륨, 암모늄 등의 이온이다.
이하, 본 발명을 단계별로 상세하게 설명한다.
먼저, 단계 1은 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염의 계면활성제를 물에 용해시켜 중합 반응기에 투입하는 단계이다.
본 발명에 따른 불소계 고분자의 제조방법에 있어서, 상기 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제는 시판되는 것을 사용하거나, 당업계에서 통상적으로 사용되는 방법으로 합성하여 사용할 수 있다.
본 발명에 따른 불소계 고분자의 제조방법에 있어서, 사용되는 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제의 양은 제조된 불소계 고분자의 고체 함량과 입자 크기 등과 같은 요구 물성에 따라 달라지나, 불소계 고분자의 양호한 물성을 위하여 제조할 불소계 고분자 양을 기준으로 0.01~2 중량%인 것이 바람직하다.
본 발명에 따른 불소계 고분자의 제조방법에 있어서, 상기 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제는 단독으로 사용하거나, 다른 1종 이상의 퍼플루오로폴리에테르계 불소계 계면활성제와 조합하여 사용할 수 있다.
이때, 바람직한 퍼플루오로폴리에테르계 불소계 계면활성제는 하기 화학식 3 내지 화학식 5의 화합물로 이루어지는 군으로부터 선택될 수 있다.
[화학식 3]
Figure PCTKR2011007624-appb-I000006
(상기 화학식 3에서,
n은 1~6의 정수이고,
X는 -COOH 또는 -COOM(M=Na, K 또는 NH4이다.)
[화학식 4]
Figure PCTKR2011007624-appb-I000007
(상기 화학식 4에서,
m은 0~3의 정수이고,
L은 -CF(CF3)-, -CF2-, 또는 -CF2CF2-이고,
X는 -COOH 또는 -COOM(M=Na, K 또는 NH4이다.)
[화학식 5]
Figure PCTKR2011007624-appb-I000008
(상기 화학식 5에서,
Rf'는 C1-C4의 직쇄 또는 측쇄 퍼플루오로알킬기이고,
X는 -COOH 또는 -COOM(M=Na, K 또는 NH4이다.)
이때, 상기 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제와 상기 퍼플루오로폴리에테르계 불소계 계면활성제와의 혼합비는 무게비로서 1:10 내지 10:1인 것이 바람직하다.
다음으로, 단계 2는 상기 중합 반응기에 비닐리덴 플루오라드 함유 불소계 단량체를 넣고 개시제를 첨가하여 에멀젼 중합반응을 개시하는 단계이다.
본 발명에 따른 불소계 고분자의 제조방법에 있어서, 상기 불소계 단량체는 테트라플루오로에틸렌(TFE), 클로로트리플루오로에틸렌(CTFE), 헥사플루오로프로필렌(HFP), 비닐 플루오라이드(VF) 및 비닐리덴 플루오라이드(VDF)의 불소계 단량체를 포함한다. 바람직하게는 상기 불소계 단량체는 비닐리덴 플루오라이드(VDF)를 사용할 수 있으며, 상기 비닐리덴 플루오라이드는 단독 또는 테트라플루오로에틸렌(TFE), 클로로트리플루오로에틸렌(CTFE), 헥사플루오로프로필렌(HFP) 및 비닐 플루오라이드(VF)로 이루어지는 군으로부터 선택되는 1종 이상과 혼합한 혼합물로 사용할 수 있다.
본 발명에 따른 불소계 고분자의 제조방법에 있어서, 상기 개시제로는 과산화물(peroxide), 아조 화합물, 및 레독스(redox) 기반 개시제를 포함할 수 있다. 과산화물 개시제의 예로는 과산화수소, 나트륨 또는 바륨 퍼옥사이드, 디아세틸퍼옥사이드, 디석시닐퍼옥사이드. 디프로피오닐퍼옥사이드, 디부티릴퍼옥사이드, 디벤조일퍼옥사이드, 벤조일아세틸퍼옥사이드, 디글루타릭 산 퍼옥사이드, 및 디라우릴퍼옥사이드와 같은 디아실퍼옥사이드(diacylperoxide) 등을 포함한다. 무기물로는 암모니움 퍼설페이트(ammonium persulfate), 알칼리염 퍼설페이트(alkalii persulfate)를 포함한다. 암모니움 퍼설페이트(APS)와 같은 퍼설페이트 개시제는 단독으로 사용하거나 다른 환원제와 조합하여 사용할 수 있다. 적합한 환원제는 암모니움 바이설파이트(ammonium bisulfite) 또는 소디움 메타바이설파이트(sodium metabisulfite), 암모니움, 포타시움, 소디움 등의 티오설페이트(thiosulfate), 히드라진 등을 포함한다. 상기 개시제의 양은 단량체 대비 0.05~0.5 중량%인 것이 바람직하다.
본 발명에 따른 불소계 고분자의 제조방법에 있어서, 상기 에멀젼 중합반응은 20~110 ℃의 온도 범위 및 5~40 bar의 압력 범위에서 수행되는 것이 바람직하다. 또한, 에멀젼 중합을 위한 수성 매질의 pH는 5~10인 것이 바람직하다.
다음으로, 단계 3은 상기 중합 반응기에 사슬 이동제를 첨가하여 중합반응을 진행하여 비닐리덴 플루오라드 함유 불소계 고분자를 제조하는 단계이다.
본 발명에 따른 불소계 고분자의 제조방법에 있어서, 상기 사슬이동제(chain transfer agent)의 예로는 디에틸말론네이트와 같은 에스테르, 디메틸에테르, 메틸 t-부틸 에테르와 같은 에테르, 에탄, 프로판과 n-펜탄 등과 같은 알칸, CCl4, CHCl3과 CH2Cl2 등과 같은 할로겐화 탄화수소, CH2FCF3(HCFC-134a)과 같은 탄소불화화합물 등을 포함한다.
다음으로, 단계 4는 반응 종결 후, 반응기를 배기하고 분산액을 배출하는 단계이다.
본 발명에 따른 불소계 고분자의 제조방법에 있어서, 적절한 분자량의 불소계 고분자가 중합되면, 반응을 종결한 후, 반응기를 배기하고 분산액을 배출하여 제조된 불소계 고분자를 수득한다.
이때, 분산액 내 불소계 고분자의 고체 함량은 10~25% 범위인 것이 바람직하며, 불소계 고분자의 입자 크기(부피 평균 직경)는 40-450 nm 범위의 값을 갖는 것이 바람직하다. 이때, 불소계 고분자는 고체 형태의 고분자를 원하는 경우에 응집에 의하여 분산액으로부터 분리해 낼 수 있다.
본 발명에 따른 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제는 인체 축적이 거의 없으며, 저독성이므로 안전하고, 이에 따라 종래 PFOA 계면활성제 사용공정에 비해 후처리 공정이 간소화되므로 생산비용이 절감되며, 에멀젼 중합시 고중합속도, 양호한 분산 안정성과 양호한 수율을 제공하고, 제조된 불소계 고분자는 양호한 분자량 및 입자크기를 나타낸다. 이와 같이, 본 발명에 따른 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제는 상기에서 언급한 퍼플루오로알칸산 또는 염(PFOA)을 대체할 수 있는 불소계 계면활성제로서의 요구사항을 모두 만족시켜주므로 비닐리덴 플루오라이드 불소계 단량체는 물론 비닐 플루오라이드 함유 불소계 단량체 혼합물의 수분산 에멀젼 중합에 유용하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<실시예 1> 플루오로설포네이트계 계면활성제를 이용한 불소계 고분자 제조 1
플루오로설포네이트계 계면활성제인 CF3O(CH2)10SO3Na 0.06 g이 용해되어 있는 600 ml 탈이온수를 1,000 ml 중합 반응기에 투입하고, 50 rpm으로 교반하면서 질소로 4 bar까지 가압과 탈기를 반복하여 공기를 몰아내었다. 이후, 반응기의 온도를 80 ℃로 가열한 후 비닐리덴 플루오라이드(VDF) 기체를 공급하면서 30 bar로 가압하였다. 다음으로, 0.72 g 암모니움 퍼셀페이트(APS)가 용해되어 있는 탈이온수 2 ml와 0.12 g Na2S2O5가 용해된 1 ml 탈이온수를 반응기에 주입하여 중합을 개시하였다. 교반속도는 240 rpm로 설정하였다. 이후, VDF를 연속적으로 공급하여 반응 압력을 30 bar로 유지하였다. 0.6 g의 VDF가 반응한 후에 사슬이동제로서 HCFC-123을 1.2 g 투입하였다. VDF가 1 g 반응한 후 반응온도를 100 ℃로 조절하여 이 온도에서 반응을 계속하였다. 원하는 양인 150 g의 VDF가 반응한 후에 반응을 종결하였다. 중합 총시간은 480분이었다. 반응기를 배기하고 분산액을 배출하였다. 중합 후 생성된 분산액의 고체 함량은 20%이고 입자 크기는 385 nm이었다.
<실시예 2> 플루오로설포네이트계 계면활성제를 이용한 불소계 고분자 제조 2
플루오로설포네이트계 계면활성제로서
Figure PCTKR2011007624-appb-I000009
를 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 불소계 고분자를 중합하였다. 중합 후 생성된 분산액의 고체 함량은 20%이고 입자 크기는 430 nm이었다.
<실시예 3> 플루오로설포네이트계 계면활성제를 이용한 불소계 고분자 제조 3
플루오로설포네이트계 계면활성제로서 CF3O(CH2)10SO3Na와 퍼플루오로폴리에테르계 계면활성제로서 CF3(OCF2)3CF2COONa의 혼합물(0.04 g/0.02 g)의 혼합물을 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 불소계 고분자를 중합하였다. 중합 후 생성된 분산액의 고체 함량은 20%이고 입자 크기는 240 nm이었다.
<실시예 4> 플루오로설포네이트계 계면활성제를 이용한 불소계 고분자 제조 4
반응물로서 비닐리덴 플루오라이드(VDF) 단독 대신 비닐리덴 플루오라이드(VDF)/테트라플루오로에틸렌(TFE)/헥사플루오로프로필렌(HEP) 혼합물을 1.0/0.4/0.6의 일정한 비율로 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 불소계 고분자를 중합하였다. 중합 총 시간은 520분이었다. 중합 후 생성된 분산액의 고체 함량은 20%이고, 입자크기는 340 nm이었다.
<실시예 5> 폴리플루오로카복실산 염 불소계 계면활성제를 이용한 불소계 고분자 제조 1
폴리플루오로카복실산 염 불소계 계면활성제인 C2F5(CH2CF2)3CH2COONa 0.08 g이 용해되어 있는 600 ml 탈이온수를 1,000 ml 중합 반응기에 투입하고, 50 rpm으로 교반하면서 질소로 4 bar까지 가압과 탈기를 반복하여 공기를 몰아내었다. 이후, 반응기의 온도를 80 ℃로 가열한 후 비닐리덴 플루오라이드(VDF) 기체를 공급하면서 30 bar로 가압하였다. 다음으로, 0.72 g 암모니움 퍼셀페이트(APS)가 용해되어 있는 탈이온수 2 ml와 0.12 g Na2S2O5가 용해된 1 ml 탈이온수를 반응기에 주입하여 중합을 개시하였다. 교반속도는 240 rpm로 설정하였다. 이후, VDF를 연속적으로 공급하여 반응 압력을 30 bar로 유지하였다. 0.6 g의 VDF가 반응한 후에 사슬이동제로서 HCFC-123을 1.2 g 투입하였다. VDF가 1 g 반응한 후 반응온도를 100 ℃로 조절하여 이 온도에서 반응을 계속하였다. 원하는 양인 150 g의 VDF가 반응한 후에 반응을 종결하였다. 중합 총시간은 480분이었다. 반응기를 배기하고 분산액을 배출하였다. 중합 후 생성된 분산액의 고체 함량은 20%이고 입자 크기는 285 nm이었다.
<실시예 6> 폴리플루오로카복실산 염 불소계 계면활성제를 이용한 불소계 고분자 제조 2
폴리플루오로카복실산 염 불소계 계면활성제로서 C2F5(CH2CF2)3CH2COONa 대신 C4F9(CH2CF2)3CH2COONa를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 불소계 고분자를 중합하였다. 중합 후 생성된 분산액의 고체 함량은 20%이고 입자 크기는 390 nm이었다.
<실시예 7> 폴리플루오로카복실산 염 불소계 계면활성제를 이용한 불소계 고분자 제조 3
폴리플루오로카복실산 염 불소계 계면활성제로서 C2F5(CH2CF2)3CH2COONa와 CF3(OCF2)3CF2COONa(0.06 g/0.02 g)의 혼합물을 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 불소계 고분자를 중합하였다. 중합 후 생성된 분산액의 고체 함량은 20%이고 입자 크기는 260 nm이었다.
<실시예 8> 폴리플루오로카복실산 염 불소계 계면활성제를 이용한 불소계 고분자 제조 4
반응물로서 비닐리덴 플루오라이드(VDF) 단독 대신 비닐리덴 플루오라이드(VDF)/테트라플루오로에틸렌(TFE)/헥사플루오로프로필렌(HEP) 혼합물을 1.0/0.4/0.6의 일정한 비율로 투입하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 불소계 고분자를 중합하였다. 중합 총 시간은 520분이었다. 중합 후 생성된 분산액의 고체 함량은 20%이고, 입자크기는 380 nm이었다.

Claims (9)

  1. 하기 화학식 1로 표시되는 플루오로설포네이트계 계면활성제 또는 화학식 2로 표시되는 폴리플루오로카복실산 염 계면활성제를 물에 용해시켜 중합 반응기에 투입하는 단계(단계 1);
    상기 중합 반응기에 비닐리덴 플루오라드 함유 불소계 단량체를 넣고 개시제를 첨가하여 에멀젼 중합반응을 개시하는 단계(단계 2);
    상기 중합 반응기에 사슬 이동제를 첨가하여 중합반응을 진행하여 비닐리덴 플루오라드 함유 불소계 고분자를 제조하는 단계(단계 3); 및
    반응 종결 후, 반응기를 배기하고 분산액을 배출하는 단계(단계 4)를 포함하는 비닐리덴 플루오라드 함유 불소계 고분자의 제조방법.
    [화학식 1]
    Figure PCTKR2011007624-appb-I000010
    (상기 화학식 1에서,
    Rf는 CF3 또는 C2F5이고,
    X는 O, C6H4O 또는 CF3N이고,
    M은 금속이온이고,
    n은 4-12의 정수이다.)
    [화학식 2]
    Figure PCTKR2011007624-appb-I000011
    (상기 화학식 2에서,
    Rf는 C2F5 또는 C4F9이고,
    M은 금속이온이고,
    n은 1-6의 정수이다.)
  2. 제1항에 있어서, 상기 M은 나트륨, 칼륨 및 암모늄 등의 이온으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 불소계 고분자의 제조방법.
  3. 제1항에 있어서, 상기 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제의 양은 제조할 불소계 고분자 양을 기준으로 0.01~2 중량%인 것을 특징으로 하는 불소계 고분자의 제조방법.
  4. 제1항에 있어서, 상기 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제는 단독 또는 하기 화학식 3 내지 5로 이루어지는 군으로부터 선택되는 1종 이상의 퍼플루오로폴리에테르계 불소계 계면활성제와 조합하여 사용되는 것을 특징으로 하는 불소계 고분자의 제조방법.
    [화학식 3]
    Figure PCTKR2011007624-appb-I000012
    (상기 화학식 3에서,
    n은 1~6의 정수이고,
    X는 -COOH 또는 -COOM(M=Na, K 또는 NH4이다.)
    [화학식 4]
    Figure PCTKR2011007624-appb-I000013
    (상기 화학식 4에서,
    m은 0~3의 정수이고,
    L은 -CF(CF3)-, -CF2-, 또는 -CF2CF2-이고,
    X는 -COOH 또는 -COOM(M=Na, K 또는 NH4이다.)
    [화학식 5]
    Figure PCTKR2011007624-appb-I000014
    (상기 화학식 5에서,
    Rf'는 C1-C4의 직쇄 또는 측쇄 퍼플루오로알킬기이고,
    X는 -COOH 또는 -COOM(M=Na, K 또는 NH4이다.)
  5. 제4항에 있어서, 상기 플루오로설포네이트계 계면활성제 또는 폴리플루오로카복실산 염 계면활성제와 상기 퍼플루오로폴리에테르계 불소계 계면활성제와의 혼합비는 무게비로서 1:10 내지 10:1인 것을 특징으로 하는 불소계 고분자의 제조방법.
  6. 제1항에 있어서, 상기 불소계 단량체는 비닐리덴 플루오라이드(VDF) 단독 또는 테트라플루오로에틸렌(TFE), 클로로트리플루오로에틸렌(CTFE), 헥사플루오로프로필렌(HFP) 및 비닐 플루오라이드(VF)로 이루어지는 군으로부터 선택되는 1종 이상과 상기 비닐리덴 플루오라이드(VDF)를 혼합한 혼합물인 것을 특징으로 하는 불소계 고분자의 제조방법.
  7. 제1항에 있어서, 단계 2의 에멀젼 중합반응은 20~110 ℃의 온도 범위 및 5~40 bar의 압력 범위에서 수행되는 것을 특징으로 하는 불소계 고분자의 제조방법.
  8. 제1항에 있어서, 단계 2의 에멀젼 중합을 위한 수성매질의 pH는 5~10인 것을 특징으로 하는 불소계 고분자의 제조방법.
  9. 제1항에 있어서, 단계 4의 분산액 내 불소계 고분자의 고체 함량은 10~25%이고, 불소계 고분자의 입자 크기(부피 평균 직경)는 40-450 nm인 것을 특징으로 하는 불소계 고분자의 제조방법.
PCT/KR2011/007624 2010-12-02 2011-10-13 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법 WO2012074196A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020100121958A KR101207422B1 (ko) 2010-12-02 2010-12-02 폴리플루오로카복실산 염의 불소계 계면활성제를 사용하는 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법
KR10-2010-0121959 2010-12-02
KR1020100121959A KR101207421B1 (ko) 2010-12-02 2010-12-02 플루오로설포네이트계 불소계 계면활성제를 사용하는 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법
KR10-2010-0121958 2010-12-02

Publications (2)

Publication Number Publication Date
WO2012074196A2 true WO2012074196A2 (ko) 2012-06-07
WO2012074196A3 WO2012074196A3 (ko) 2012-07-26

Family

ID=46172336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007624 WO2012074196A2 (ko) 2010-12-02 2011-10-13 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법

Country Status (1)

Country Link
WO (1) WO2012074196A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126889B2 (en) 2013-09-04 2015-09-08 Honeywell International Inc. Fluorosurfactants having improved biodegradability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037985A1 (en) * 2000-09-22 2002-03-28 Lyons Donald F. Process for producing fluoroelastomers
JP2002308914A (ja) * 2001-04-17 2002-10-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
KR20020089791A (ko) * 2001-05-24 2002-11-30 에스케이케미칼주식회사 불소수지의 제조방법
JP2007045970A (ja) * 2005-08-11 2007-02-22 Daikin Ind Ltd フルオロエラストマーの製造方法
US20090281241A1 (en) * 2008-05-09 2009-11-12 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using a Mixture of Fluoropolyether Acids or Salts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037985A1 (en) * 2000-09-22 2002-03-28 Lyons Donald F. Process for producing fluoroelastomers
JP2002308914A (ja) * 2001-04-17 2002-10-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
KR20020089791A (ko) * 2001-05-24 2002-11-30 에스케이케미칼주식회사 불소수지의 제조방법
JP2007045970A (ja) * 2005-08-11 2007-02-22 Daikin Ind Ltd フルオロエラストマーの製造方法
US20090281241A1 (en) * 2008-05-09 2009-11-12 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using a Mixture of Fluoropolyether Acids or Salts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOSTOV,G. ET AL.: 'Original Fluorinated Surfactants Potentially Non-bioaccumulable' JOURNAL OF FLUORINE CHEMISTRY vol. 130, 2009, pages 1192 - 1199 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126889B2 (en) 2013-09-04 2015-09-08 Honeywell International Inc. Fluorosurfactants having improved biodegradability

Also Published As

Publication number Publication date
WO2012074196A3 (ko) 2012-07-26

Similar Documents

Publication Publication Date Title
US6103843A (en) (Co) polymerization process of fluoro-containing monomers for obtaining hydrogen containing polymers
US4360652A (en) Method of preparing high quality vinylidene fluoride polymer in aqueous emulsion
EP0625526B1 (en) (Co)polymerization process in aqueous emulsion of fluorinated olefinic monomers
US8080621B2 (en) Aqueous process for making fluoropolymers
US5959026A (en) Microemulsions of fluoropolyoxyalklenes in admixture with hydrocarocarbons, and their use in (co)polymerization processes of fluorinated monomers
US6096795A (en) (CO) polymerization process of fluorinated olefinic monomers in aqueous emulsion
EP0633274B1 (en) Thermoprocessable copolymers of tetrafluoroethylene
US6639011B2 (en) Polymerization process of sulphonic monomers
US6677414B2 (en) Aqueous emulsion polymerization process for the manufacturing of fluoropolymers
JPH1060054A (ja) フッ化ビニリデンの重合方法
US11401352B2 (en) Method for making fluoropolymers
US8765890B2 (en) Aqueous process for making fluoropolymers
KR20010034623A (ko) 퍼플루오르 탄성중합체 조성물
JP4184088B2 (ja) フルオロポリマーを製造するための改善された水系乳化重合法
WO2012074196A2 (ko) 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법
EP1244715B1 (en) Aqueous emulsion polymerization process for the manufacturing of fluoropolymers
TWI242017B (en) Aqueous suspension polymerization of vinyl chloride alone or mixed with another vinyl monomer, using a stable free radical of nitroxide type as polymerization terminator
JPH03122106A (ja) 含フッ素ブロック共重合体の製造法
EP0626395B1 (en) Radical (co)polymerization process of fluorinated olefinic monomers in aqueous emulsion
KR101207422B1 (ko) 폴리플루오로카복실산 염의 불소계 계면활성제를 사용하는 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법
WO2016013887A1 (ko) 불소계 유화제를 포함하는 불소계 단량체의 중합방법 및 이에 따라 제조되는 불소계 고분자
KR101207421B1 (ko) 플루오로설포네이트계 불소계 계면활성제를 사용하는 비닐리덴 플루오라이드 함유 불소계 단량체의 수분산 에멀젼 중합방법
WO2013183895A1 (ko) 수분산 할로겐-캡핑 폴리알킬아크릴레이트, 염화비닐계 블록 공중합체 및 그 제조방법
KR20240118784A (ko) 플루오로단량체의 유화 중합 방법
JP2003520287A (ja) フルオロポリマー製造のための水性エマルジョン重合プロセス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844103

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11844103

Country of ref document: EP

Kind code of ref document: A2