WO2012073989A1 - 無機繊維およびその製造方法 - Google Patents

無機繊維およびその製造方法 Download PDF

Info

Publication number
WO2012073989A1
WO2012073989A1 PCT/JP2011/077612 JP2011077612W WO2012073989A1 WO 2012073989 A1 WO2012073989 A1 WO 2012073989A1 JP 2011077612 W JP2011077612 W JP 2011077612W WO 2012073989 A1 WO2012073989 A1 WO 2012073989A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
water
group
raw material
spinning
Prior art date
Application number
PCT/JP2011/077612
Other languages
English (en)
French (fr)
Inventor
和貴 村山
純 及川
佐藤 清
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Priority to EP11845580.7A priority Critical patent/EP2647747B1/en
Priority to US13/990,364 priority patent/US9156730B2/en
Priority to JP2012546904A priority patent/JP5655094B2/ja
Priority to CN201180057688.1A priority patent/CN103298986B/zh
Priority to KR1020137013547A priority patent/KR101922241B1/ko
Publication of WO2012073989A1 publication Critical patent/WO2012073989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • C04B35/62245Fibres based on silica rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62263Fibres based on magnesium oxide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers

Definitions

  • the present invention relates to an inorganic fiber and a method for producing the same.
  • Inorganic fibers are mainly composed of fibers composed of inorganic compounds and are expected as constituent materials such as heat insulating materials and refractory materials. Particularly, those having an average fiber diameter of 1 ⁇ m or less are filter materials and sealing materials. Use as a constituent material is expected.
  • asbestos (asbestos) has been conventionally known as an inorganic fiber having a small fiber diameter. Since this asbestos has a small fiber diameter and high chemical resistance to body fluids, It is said that it affects the human body by giving long-term stimulation to cells in the alveoli. Also in the inorganic fibers other than asbestos, inorganic fibers with improved heat resistance composed mainly of SiO 2, when the SiO 2 has reached the lungs inner part by generating breathing cristobalite was crystallized in a high temperature environment It is said that it affects the human body.
  • an inorganic fiber having biosolubility and low chemical resistance to body fluids a spinning solution composed of a solution containing aluminum oxychloride, colloidal silica, and a thickener is drawn out from a large number of spinning holes.
  • An inorganic fiber composed of 65% by weight to 99% by weight of Al 2 O 3 and 1% by weight to 35% by weight of SiO 2 is proposed, which is obtained by subjecting the precursor to a rapid heating and rapid cooling treatment ( Patent Document 1 (see Japanese Patent No. 3979494).
  • the first object of the present invention is to provide an inorganic fiber having a high biological dissolution rate and high heat resistance, and to provide a method for easily producing the inorganic fiber. This is the second purpose.
  • the first object can be achieved by an inorganic fiber containing 40% by mass of SiO 2 and having a total content of Al 2 O 3 , MgO and SiO 2 of 98% by mass or more of the entire fiber.
  • the present invention (1) Al 2 O 3 of 30% by mass or more and less than 81% by mass, MgO of more than 19% by mass and 65% by mass or less and 0% by mass to 40% by mass of SiO 2 total content of 98% by mass % Inorganic fiber, (2)
  • the inorganic fiber comprises a water-soluble basic acid aluminum as an Al 2 O 3 raw material, a water-soluble magnesium compound as an MgO raw material, and a water-soluble or water-dispersible silicon compound as an SiO 2 raw material,
  • the water-soluble basic acid aluminum in an amount of 30% by mass to less than 81% by mass and the water-soluble magnesium compound in excess of 19% by mass to 65% by mass with respect to the total amount of the respective raw materials
  • a crude inorganic fiber is obtained by spinning the spinning raw material aqueous solution, Next
  • the water-soluble basic aluminum acid has the following composition formula (I) Al (OH) X Y Z (I) (However, X is a positive number greater than 0 and less than 3, Y is any one selected from Cl atom, NO 3 group, SO 4 group, and RCOO group, Z is Y atom as Cl atom, NO 3 group, RCOO group 3-X, Y is SO 4 group (3-X) / 2, and R is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a hydroxyl group-containing carbon In the case where there are a plurality of RCOO groups, each R may be the same or different)
  • the method for producing an inorganic fiber according to the above (4) which is one or more selected from the compounds represented by: (6)
  • an inorganic fiber having a high biological dissolution rate and high heat resistance it is possible to provide an inorganic fiber having a high biological dissolution rate and high heat resistance, and a method for easily producing the inorganic fiber can be provided.
  • the inorganic fiber of the present invention contains 30% by mass or more and less than 81% by mass of Al 2 O 3 , 19% by mass to 65% by mass of MgO and 0% by mass to 40% by mass of SiO 2 , and Al 2 O 3
  • the total content of MgO and SiO 2 is 98% by mass or more of the entire fiber.
  • the inorganic fiber of the present invention contains 30% by mass or more and less than 81% by mass of Al 2 O 3 and preferably contains 33% by mass to 78% by mass. When the content ratio of Al 2 O 3 is within the above range, desired heat resistance can be easily obtained.
  • the inorganic fiber of the present invention contains MgO more than 19% by mass and 65% by mass or less, and preferably contains 22% by mass to 62% by mass.
  • MgO more than 19% by mass and 65% by mass or less, and preferably contains 22% by mass to 62% by mass.
  • the inorganic fiber of the present invention contains 0 to 40% by mass of SiO 2 and preferably contains 0 to 37% by mass.
  • the inorganic fiber of the present invention can obtain the desired biosolubility without containing SiO 2 , but the desired biosolubility can be more easily exhibited by the content ratio of SiO 2 being in the above range. Become.
  • the composition of the inorganic fibers is preferably in a predetermined range depending on the fiber diameter. Since the longer the fiber diameter, the longer it takes to dissolve and disappear in vivo, it is preferable to have a composition that increases the dissolution rate as the diameter of the inorganic fiber increases.
  • the total content of Al 2 O 3 , MgO and SiO 2 is 98% by mass or more of the entire fiber, and more preferably 99% by mass or more of the entire fiber.
  • the total content of Al 2 O 3 , MgO and SiO 2 is 98% by mass or more of the entire fiber, desired biosolubility and heat resistance can be obtained.
  • the inorganic fiber of the present invention can contain less than 2% by mass of unavoidable components, and the unavoidable component means an impurity component mixed during the preparation of the inorganic fiber.
  • the inorganic fiber of the present invention contains 30% by mass or more and less than 81% by mass of Al 2 O 3 , 19% by mass to 65% by mass of MgO and 0% by mass to 40% by mass of SiO 2 , and Al 2 O 3 When the total content of MgO and SiO 2 is 98% by mass or more of the entire fiber, desired biosolubility and heat resistance can be exhibited.
  • the content ratio (mass%) of each component is a powder obtained by taking a part from the spinning raw material aqueous solution used at the time of fiber production described later, drying it, and then firing it at 1000 ° C. for 2 hours. It means a value when measured using a fluorescent X-ray analyzer (RIX2000 manufactured by Rigaku) as a measurement sample.
  • RIX2000 fluorescent X-ray analyzer manufactured by Rigaku
  • correction calculation shall be performed so that the total value of the metal oxide excluding the balance component is 100% by mass.
  • the inorganic fiber of the present invention has the above composition, and the inorganic fiber is water-soluble basic aluminum acid as an Al 2 O 3 raw material, a water-soluble magnesium compound as an MgO raw material, and water-soluble as an SiO 2 raw material.
  • a water-dispersible silicon compound is used and converted to a metal oxide, 30% by mass or more and less than 81% by mass of a water-soluble basic aluminum acid and 19% by mass with respect to the total amount of each raw material.
  • An aqueous solution of a spinning raw material is prepared by dissolving a water-soluble magnesium compound exceeding 65% by mass and 0% by mass to 40% by mass of a water-soluble or water-dispersible silicon compound in an aqueous medium. It is preferable that the raw material for spinning is spun to obtain coarse inorganic fibers, and then the coarse inorganic fibers are fired.
  • the above spinning raw material aqueous solution contains, as a metal oxide raw material, a water-soluble basic aluminum acid, a water-soluble magnesium compound, and optionally a water-soluble or water-dispersible silicon compound.
  • the total metal oxide raw material preferably contains 30% by weight or more and less than 81% by weight of a water-soluble basic aluminum acid, and 33% by weight to 78% by weight of a water-soluble basic aluminum acid is preferably added. It is more preferable that it is included.
  • the concentration of the water-soluble basic aluminum acid in the spinning raw material aqueous solution is preferably 0.75% by mass to 19.5% by mass and more preferably 1.5% by mass to 13% by mass in terms of metal oxide. .
  • the aqueous solution for spinning raw material preferably contains more than 19% by mass and 65% by mass or less of a water-soluble magnesium compound in terms of metal oxides, from 22% by mass to More preferably, it contains 62% by mass of a water-soluble magnesium compound.
  • the concentration of the water-soluble magnesium compound in the spinning raw material aqueous solution is preferably 1% by mass to 18% by mass and more preferably 1.5% by mass to 12% by mass in terms of metal oxide.
  • the aqueous solution for spinning raw material preferably contains 0% by mass to 40% by mass of a water-soluble or water-dispersible silicon compound in terms of metal oxides, and 0% by mass. It is more preferable to contain a water-soluble or water-dispersible silicon compound in an amount of from 37% to 37% by mass.
  • the concentration of the water-soluble or water-dispersible silicon compound in the spinning raw material aqueous solution is preferably 0% by mass to 10.5% by mass and more preferably 0% by mass to 7% by mass in terms of metal oxide.
  • conversion of water-soluble basic aluminum acid to metal oxide means conversion to Al 2 O 3 and conversion of water-soluble magnesium compound to metal oxide means conversion to MgO. And converting a water-soluble or water-dispersible silicon compound into a metal oxide means to convert it into SiO 2 .
  • the water-soluble basic acid aluminum is represented by the following formula (I): Al (OH) X Y Z (I) (However, X is a positive number greater than 0 and less than 3, Y is any one selected from Cl atom, NO 3 group, SO 4 group, and RCOO group, Z is Y atom as Cl atom, NO 3 group, RCOO group 3-X, Y is SO 4 group (3-X) / 2, and R is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a hydroxyl group-containing carbon In the case where there are a plurality of RCOO groups, each R may be the same or different) It is preferable that it is 1 or more types chosen from the compound represented by these.
  • the inorganic fiber of the present invention is preferably one that is spun by an electrostatic spinning method described later.
  • the inorganic fiber of the present invention can exhibit biosolubility even when the average fiber diameter is less than 4 ⁇ m, and the average fiber diameter of the inorganic fiber is preferably 3 ⁇ m or less, and is 1 ⁇ m or less. More preferable is 0.5 ⁇ m or less.
  • the average fiber diameter of the inorganic fibers is 1 ⁇ m or less, it can be suitably used as a constituent material for the filter material and the sealing material.
  • Inorganic fibers having an average fiber diameter of 1 ⁇ m or less are manufactured by adjusting the atmosphere and applied voltage during electrostatic spinning by the electrostatic spinning method described later, and adjusting the concentration and viscosity of the spinning raw material aqueous solution. Can do.
  • the inorganic fiber of the present invention has a dissolution rate of 0 ng to 24 hours after the start of the test or a dissolution rate of 20 ng / cm 2 ⁇ 24 hours to 48 hours after the start of the test when evaluated by the biosolubility evaluation method described later. What is h or more is preferable, and what is 40 ng / cm 2 ⁇ h or more is more preferable.
  • the upper limit of the dissolution rate is not particularly limited, but is usually about 5400 ng / cm 2 ⁇ h.
  • the inorganic fiber of the present invention has a high biological dissolution rate and excellent biological solubility, even if the average fiber diameter is small, the influence on the living environment is small, and it can be easily performed by the manufacturing method described later. Can be made into fine fibers. For this reason, for example, a fine fiber product having an average fiber diameter of 1 ⁇ m or less can be used in various industrial fields as a constituent material of a filter material and a sealing material.
  • the average fiber diameter of the inorganic fibers is 30 to 122 fibers randomly selected from a photograph (magnification 2000 to 5000 times) taken with a scanning electron microscope (JSM-5800LV manufactured by JEOL). Means the average value calculated from these widths.
  • the inorganic fiber of the present invention preferably has a melting point of 1300 ° C. or higher, more preferably 1350 ° C. or higher.
  • the inorganic fiber of the present invention can be suitably used as a filter material, a sealing material, or the like when it has a high heat resistance with a melting point of 1350 ° C. or higher.
  • various methods can be exemplified, and a method of dry spinning a spinning raw material solution having a desired composition, or a melt having a desired composition is drawn from a spinning nozzle and cooled.
  • a continuous spinning method for spinning while winding a winder a spinner method (external centrifugal method) in which a melt having a desired composition is collided with a high-speed rotating body and fiberized by the centrifugal force, and a melt having a desired composition
  • Examples thereof include an internal centrifugal method of discharging from a rotating body and fiberizing by centrifugal force, and a melt blowing method of converting a melt having a desired composition into fiber by compressed air.
  • the dry spinning method includes a dry continuous spinning method in which a spinning raw material solution having a desired composition is discharged from a nozzle and then dried while being wound and stretched by a winder, or a spinning raw material solution having a desired composition is centrifuged by an air flow. Examples thereof include a method of drying to obtain discontinuous fibers and an electrospinning method to be described later.
  • the viscosity of the spinning raw material solution can be adjusted by changing the amount of the spinning aid to be added, concentrating by heating or decompressing, or adding water. Can be performed by a dilution operation.
  • the viscosity may be about several tens Pa ⁇ s to several hundred Pa ⁇ s. 60 Pa ⁇ s to 200 Pa ⁇ s is more preferable.
  • the viscosity is less than several tens of Pa ⁇ s, the spinning solution extruded from the nozzle loses surface tension and is easily broken by a capillary, making spinning difficult.
  • a spinning raw material solution is spun by spinning and spinning by spinning from a large number of holes or spinning and spinning the spinning solution by blowing air.
  • the viscosity of the spinning raw material solution is preferably about several Pa ⁇ s to several tens Pa ⁇ s.
  • the viscosity is less than a few Pa ⁇ s, the spinning raw material solution is not made into a fiber but splashes as a droplet, or even if it can be made into a fiber, when the spinning solution is stretched and broken, a spherical shape called a shot A large amount of particles are produced.
  • the viscosity is excessive, the fiber cannot be produced because it cannot be drawn by centrifugal force or blowing.
  • the desired inorganic fibers can be obtained by appropriately calcination of the coarse inorganic fibers obtained by the above-described dry spinning methods to eliminate organic substances in the coarse inorganic fibers.
  • the firing conditions and the like are as described later.
  • a production method using a dry spinning method particularly a production method using an electrostatic spinning method, is preferable because the target inorganic fiber can be produced easily and at low cost. is there.
  • the method for producing the inorganic fiber of the present invention is a method for producing the above-described inorganic fiber of the present invention, which is a water-soluble basic aluminum acid as the Al 2 O 3 raw material, a water-soluble magnesium compound as the MgO raw material, and SiO 2.
  • the water-soluble basic aluminum acid is 30% by mass or more and less than 81% by mass with respect to the total amount of each raw material, and 19% by mass %
  • a water-soluble magnesium compound is 0% by mass to 40% by mass of a water-soluble or water-dispersible silicon compound in an aqueous medium to prepare a spinning raw material aqueous solution
  • the spinning raw material aqueous solution is spun to obtain coarse inorganic fibers, and then the coarse inorganic fibers are fired.
  • the water-soluble basic aluminum acid used as a raw material is represented by the following formula (I): Al (OH) X Y Z (I) (However, X is a positive number greater than 0 and less than 3, Y is any one selected from Cl atom, NO 3 group, SO 4 group, and RCOO group, Z is Y atom as Cl atom, NO 3 group, RCOO group 3-X, Y is SO 4 group (3-X) / 2, and R is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a hydroxyl group-containing carbon In the case where there are a plurality of RCOO groups, each R may be the same or different) The compound represented by these can be mentioned.
  • Such basic aluminum acid is an octahedrally coordinated aluminum polynuclear complex (inorganic ionic polymer) crosslinked with a hydroxy group, and can take the form of a dimer or an oligomer.
  • X is preferably a positive number of 1 or more and less than 3, and more preferably 1 or more and 2.5 or less.
  • composition formula (I) can be calculated from the composition ratio of the acid added during the synthesis of the basic acid aluminum.
  • the basic acid aluminum represented by the composition formula (I) by using a basic aluminum carboxylate (Al (OH) x (RCOO) 3-x ), chlorine or nitric acid, which has a large environmental impact during firing, which will be described later, is used. Since generation
  • R constituting the RCOO group is a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group-containing hydrocarbon. It is a group.
  • R is a hydrocarbon group or a hydroxyl group-containing hydrocarbon group
  • the carbon number thereof is 1 to 10, preferably 1 to 5.
  • the basic acid aluminum represented by the formula (I) becomes difficult to show water solubility.
  • the hydrocarbon group portion may be linear or branched, and may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • R is a hydrocarbon group
  • examples of the hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, and an alkylcycloalkyl group.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group (if these alkyl groups can be branched, the alkyl group may be linear or branched);
  • An alkenyl group such as a propenyl group or a butenyl group (when these alkenyl groups can be branched, the alkenyl group may be linear or branched, and the position of the double bond is arbitrary);
  • Examples thereof include a cycloalkyl group such as a cyclopropyl group and a cyclobutyl group; an alkylcycloalkyl group such as a methylcyclopropyl group and a methylcyclobutyl group (the substitution position of the alkyl group to the cycloalkyl group is also arbitrary), and the like.
  • R is a hydroxyl group-containing hydrocarbon group
  • examples of the hydroxyl group-containing hydrocarbon group include a hydroxyalkyl group, a hydroxyalkenyl group, and a hydroxycycloalkyl group.
  • a hydroxyalkyl group such as a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, or a hydroxybutyl group (if these hydroxyalkyl groups can be branched, the alkyl group constituting the hydroxyalkyl group) May be linear or branched); a hydroxyalkenyl group such as a hydroxybutenyl group (the alkenyl group constituting the hydroxyalkenyl group may be linear or branched, and the position of the double bond is arbitrary) And a hydroxycycloalkyl group such as a hydroxycyclopropyl group and a hydroxycyclobutyl group (the substitution position of a hydroxyl group or an alkyl group to a cycloalkyl group is also arbitrary).
  • the RCOO group is preferably a reaction residue of a carboxylic acid selected from formic acid, acetic acid, lactic acid, etc. (HCOO group, CH 3 COO group, CH 3 CH (OH) COO group). .
  • a water-soluble magnesium compound is used as a magnesia raw material, and the magnesium compound is water-soluble and can be dissolved in a desired amount in a spinning raw material aqueous solution described later. It is not particularly limited, and examples thereof include magnesium carbonate, nitrate, sulfate, acetate, hydroxide, chloride, fluoride, borate, and phosphate.
  • the magnesium compound to be dissolved in the spinning raw material aqueous solution is a basic aluminum carboxylate
  • the magnesium compound is also preferably a carboxylate
  • Magnesium acetate tetrahydrate is more preferable from the viewpoint of solubility in the raw material aqueous solution and availability of the material.
  • a water-soluble or water-dispersible silicon compound is used as the silica raw material, and the silicon compound is not particularly limited as long as it is dissolved or dispersed in the spinning raw material aqueous solution.
  • water-soluble silicon compounds include water-soluble silicates, water-soluble silicon alkoxides (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, etc.), and water dispersible silicon compounds.
  • silica sol collloidal silica.
  • silica sol is preferable from the viewpoint of viscosity stability of the spinning raw material aqueous solution.
  • the silica sol is preferably one in which silica having a particle size of 4 to 100 nm is dispersed in a medium having a solid content of 5% by mass to 30% by mass, and the silica sol is a sol-gel method produced from alkoxysilane, It can be produced by the sodium silicate method produced from sodium acid.
  • a spinning aid can be further used as necessary.
  • the spinning aid is not particularly limited as long as it can produce a desired inorganic fiber, but is preferably a water-soluble organic polymer in view of ease of handling and solubility. Examples thereof include polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyvinyl ether, polyvinyl ester, polyacrylic acid ester and copolymers thereof, and among these, polyacrylic acid ester is preferable.
  • the method for producing an inorganic fiber of the present invention by adding a spinning aid, dispersion of the fiber diameter can be suppressed and stable spinning can be performed. In addition, the strength of the unsintered fiber after the electrospinning is increased and the handling property is excellent.
  • the water-soluble basic aluminum acid, the water-soluble magnesium compound, the water-soluble or water-dispersible silicon compound, and, if necessary, a spinning aid are dissolved in an aqueous medium, An aqueous solution for spinning is prepared.
  • aqueous medium water is preferable, and in order to improve the stability of the solution or to improve the spinning stability, other media that are water-soluble and soluble in water, such as alcohols, ketones, amines, etc. , Amides, carboxylic acids and the like may be added. Further, an organic salt such as ammonium chloride may be added to these media.
  • the above spinning raw material aqueous solution contains, as a metal oxide raw material, a water-soluble basic aluminum acid, a water-soluble magnesium compound, and optionally a water-soluble or water-dispersible silicon compound.
  • the total metal oxide raw material preferably contains 30% by weight or more and less than 81% by weight of a water-soluble basic aluminum acid, and 33% by weight to 78% by weight of a water-soluble basic aluminum acid is preferably added. It is more preferable that it is included.
  • the concentration of the water-soluble basic aluminum acid in the spinning raw material aqueous solution is preferably 0.75% by mass to 19.5% by mass and more preferably 1.5% by mass to 13% by mass in terms of metal oxide. .
  • the solid content concentration (raw material solid content concentration) of the water-soluble basic aluminum acid in the spinning raw material aqueous solution is preferably 2% by mass to 59% by mass, and preferably 5% by mass to 44% by mass. It is more preferable. It becomes easy to obtain the inorganic fiber which has desired heat resistance because the content rate of water-soluble basic acid aluminum exists in the said range.
  • the aqueous solution for spinning raw material preferably contains more than 19% by mass and 65% by mass or less of a water-soluble magnesium compound in terms of metal oxides, from 22% by mass to More preferably, it contains 62% by mass of a water-soluble magnesium compound.
  • the concentration of the water-soluble magnesium compound in the spinning raw material aqueous solution is preferably 1% by mass to 18% by mass and more preferably 1.5% by mass to 12% by mass in terms of metal oxide.
  • the solid content concentration (raw material solid content concentration) of the water-soluble magnesium compound in the spinning raw material aqueous solution is preferably 4% by mass to 79% by mass, and more preferably 8% by mass to 60% by mass. More preferred. When the content ratio of the water-soluble magnesium compound is within the above range, it becomes easy to obtain inorganic fibers having desired biological solubility.
  • the aqueous solution for spinning raw material preferably contains 0% by mass to 40% by mass of a water-soluble or water-dispersible silicon compound in terms of metal oxides, and 0% by mass. It is more preferable to contain a water-soluble or water-dispersible silicon compound in an amount of from 37% to 37% by mass.
  • the concentration of the water-soluble or water-dispersible silicon compound contained in the spinning raw material aqueous solution is preferably 0% by mass to 10.5% by mass and more preferably 0% by mass to 7% by mass in terms of metal oxide. .
  • the solid content concentration (raw material solid content concentration) of the water-soluble or water-dispersible silicon compound in the spinning raw material aqueous solution is preferably 0% by mass to 14% by mass, and preferably 0% by mass to 10% by mass. It is more preferable that
  • an inorganic fiber having a desired biosolubility can be obtained without using a water-soluble or water-dispersible silicon compound, but a water-soluble or water-dispersible silicon compound is used. This makes it easier to obtain the desired biological solubility.
  • the mass ratio (mass%) of each metal oxide raw material in terms of metal oxide is water-soluble basic aluminum acid Al 2 O 3 and water-soluble magnesium compound.
  • MgO a water-soluble or water-dispersible silicon compound means a mass ratio (mass%) when converted to SiO 2 .
  • the concentration of the spinning aid in the spinning raw material aqueous solution is preferably 0.1% by mass to 10% by mass, and more preferably 0.1% by mass to 8% by mass.
  • the spinning aid is preferably as small as possible because the fibers are densified after firing and the strength is maintained. However, since the form at the time of fiber preparation may not be stable with a small amount, the amount added may be increased as necessary. It is preferable to adjust.
  • the method for producing the spinning raw material aqueous solution is not particularly limited, and for example, an aqueous medium, a water-soluble basic aluminum acid, a water-soluble magnesium compound, a water-soluble or water-dispersible silicon compound, and, if necessary, a spinning aid.
  • other optional components may be prepared by mixing each component to a desired concentration, an aqueous solution of a water-soluble basic aluminum acid, an aqueous solution of a water-soluble magnesium compound, It may be prepared by mixing an aqueous solution of a water-soluble or water-dispersible silicon compound and, if necessary, an aqueous solution of a spinning aid and other optional components so that each component has a desired concentration. .
  • the viscosity of the spinning raw material aqueous solution is preferably about 0.01 to 5.0 Pa ⁇ s, more preferably about 0.05 to 3.0 Pa ⁇ s.
  • the spinning raw material aqueous solution may not form a filament during spinning, and spherical particles may be formed, and the spinning raw material aqueous solution has a viscosity of 5.0 Pa ⁇ s. If it is super, fiberizing treatment becomes difficult.
  • the viscosity of the spinning raw material aqueous solution can be adjusted by adjusting the amount of the spinning aid added or by appropriately performing a concentration operation by heat treatment or reduced pressure treatment.
  • the viscosity of the spinning raw material aqueous solution means a value measured by the method described below.
  • the viscosity was measured using a viscoelasticity measuring apparatus (Physica MCR301 manufactured by Anton Paar).
  • the viscosity of the spinning solution in the present application was defined as the shear viscosity at a shear rate of 10 s ⁇ 1 .
  • the viscosity was measured in a state where the temperature of the spinning solution was maintained at 25 ° C.
  • the viscosity measured under the above conditions is defined as the viscosity of the present application document.
  • the method for spinning the spinning raw material aqueous solution is not particularly limited, but various methods described above can be employed.
  • the aqueous solution for spinning material is preferably spun by an electrostatic spinning method to obtain coarse inorganic fibers.
  • the electrostatic spinning method is a method of applying a voltage to a spinning raw material aqueous solution containing a fiber-forming compound and discharging the spinning raw material aqueous solution into fibers using electrostatic repulsion.
  • any method can be used.
  • the spinning raw material aqueous solution is placed at an appropriate position in the electrostatic field.
  • the spinning raw material aqueous solution is spun by an electric field from the nozzle and made into a fiber.
  • FIG. 1 is a diagram showing an example of a spinning device used for electrostatic spinning.
  • the spinning device 1 includes a syringe 2, a nozzle 3, a high voltage generator 4, and a sample collection stand 5.
  • the spinning raw material aqueous solution is fed into the syringe 2 and then fed to the tip of the nozzle 3.
  • the high voltage generator 4 is electrically connected to a conductive fixing part provided around the nozzle 3 and a conductive sample collection base 5, respectively, and the nozzle 3 passes through the fixing part provided around the nozzle 3.
  • the spinning raw material aqueous solution is ejected from the tip of the nozzle 3 to be fiberized to obtain coarse inorganic fibers.
  • the obtained crude inorganic fiber is collected on the sample collection stand 5 which is a counter electrode.
  • a plurality of nozzles 2 may be used, and the nozzles 2 may be arranged in parallel to increase the production rate of the fibrous material.
  • the voltage applied at the time of electrostatic spinning depends on conditions such as the distance between the nozzle tip and the counter electrode (distance between the electrodes), the viscosity of the spinning raw material aqueous solution, and the concentration of the spinning raw material aqueous solution. In consideration, it is preferably 1 to 100 kV, more preferably 3 to 30 kV.
  • the distance between the electrodes depends on the charge amount, the nozzle size, the ejection amount of the spinning raw material aqueous solution from the nozzle, the concentration of the spinning raw material aqueous solution, etc., but is preferably 20 to 500 mm, more preferably 50 to 300 mm, and more preferably 100 to 200 mm. Is more preferable.
  • the coarse inorganic fiber obtained by electrostatic spinning preferably has an average fiber diameter of 10 nm to 2000 nm, and more preferably 50 nm to 1000 nm.
  • the average fiber diameter of the coarse inorganic fibers is randomly selected from 30 to 122 locations from a photograph (magnification 2000 to 5000 times) taken with a scanning electron microscope (JSM-5800LV manufactured by JEOL). It means the average value calculated from the widths of the fibers measured.
  • the coarse inorganic fiber obtained by the electrostatic spinning method is then fired.
  • the firing temperature is preferably 500 ° C. or higher and lower than the liquid phase generation temperature.
  • the baking temperature is preferably 500 ° C. or higher and 1300 ° C. or lower and does not generate a liquid phase.
  • organic components such as organic polymers used as a spinning aid may remain in the obtained inorganic fiber, and when the firing temperature exceeds 1300 ° C., crystal grains In some cases, the inorganic fibers obtained by this growth become very brittle or react with the hearth by forming a liquid phase.
  • the firing temperature be in a predetermined range according to the composition of the inorganic fiber to be obtained.
  • excellent biosolubility can be imparted to the resulting inorganic fiber by controlling the firing temperature within a desired range.
  • Firing can be performed using a known electric furnace or the like, and the atmosphere during firing is preferably air or an oxidizing atmosphere in order to decompose organic substances used as a spinning aid or the like.
  • an inert atmosphere such as nitrogen may be used.
  • the inorganic fiber of this invention can be manufactured simply and at low cost.
  • the physiological saline that has passed through the evaluation sample is collected in a tank provided at the lower part of the filter unit, but the inorganic fiber components are also eluted by the physiological saline passing through the evaluation sample.
  • the physiological saline solution during the evaluation test was maintained at 37 ° C., which is the temperature of the biological fluid, and the inorganic fiber component eluate stored in the tank was taken out 24 hours and 48 hours after the start of the test. The elution amount of the component was quantified, and the solubility was calculated from the value.
  • the fiber surface area is obtained by separately measuring the fiber diameter, and the measured value of the solubility, the true density of the fiber, the use of the sample.
  • the solubility per unit time and unit fiber surface area (ng / cm 2 ⁇ h) was calculated from the amount and used as the dissolution rate.
  • the dissolution rate was determined from the rate at 24 to 48 hours after the start of the test together with the rate at 0 to 24 hours after the start of the test.
  • the surface area of the inorganic fiber was calculated by determining the total area of the inorganic fiber as a cylindrical shape.
  • the mass of the inorganic fiber is M (g)
  • the total length of the inorganic fiber is L (m)
  • the average fiber diameter of the inorganic fiber is d (m)
  • the true density of the inorganic fiber is ⁇ (kg / m 3 )
  • M ⁇ ⁇ d 2 ⁇ L ⁇ ⁇ / 4
  • the surface area A (m 2 ) of the inorganic fiber is represented by the formula (2).
  • A ⁇ ⁇ d ⁇ L (2)
  • L A / ( ⁇ ⁇ d) from the equation (2), when this L is substituted into the equation (1) and summarized for A, the following equation (3) is obtained.
  • A 4M / d ⁇ (3)
  • the average fiber diameter d (m) of the inorganic fiber was measured using a scanning electron microscope (JSM-5800LV, manufactured by JEOL) as described above.
  • JSM-5800LV scanning electron microscope
  • the surface area A (m 2 ) of the inorganic fiber can be calculated.
  • the dissolution rate in physiological saline obtained by the above evaluation is an index of chemical resistance to body fluids. The higher this value, the lower the chemical resistance to body fluids, and the harmfulness to living organisms is. It is said to be low.
  • Example 1 As the basic acid aluminum, a basic aluminum carboxylate represented by Al (OH) X (RCOO) 3-X (wherein X is a value of 1.7 and R has a carbon number of 0 to 2) is used.
  • a spinning raw material aqueous solution was prepared as follows.
  • This aqueous solution of spinning raw material is obtained by converting basic aluminum carboxylate to Al 2 O 3 , magnesium acetate to MgO, and silica sol to SiO 2 (when converted to metal oxide), when basic aluminum carboxylate and acetic acid are converted. It contains 54.0% by mass of basic aluminum carboxylate, 36.0% by mass of magnesium acetate, and 10.0% by mass of silica sol based on the total amount of magnesium and silica sol.
  • the spinning raw material aqueous solution was spun using the spinning device 1 shown in FIG.
  • the above spinning raw material aqueous solution was filled in the syringe 2 under a temperature condition of 25 ° C. in a constant temperature and humidity chamber, and then fed to the tip of the nozzle 3 and provided around the nozzle 3.
  • the spinning raw material aqueous solution is ejected from the tip of the nozzle 3 to form a fiber, and the nozzle 3 It collected on the sample collection stand 5 which adjusted the distance from a front-end
  • the obtained crude inorganic fiber was baked by raising the temperature to 700 ° C. at 500 ° C./hour in an electric furnace in an air atmosphere and holding it for 2 hours to obtain inorganic fiber.
  • the average fiber diameter of the obtained inorganic fiber was 1.4 ⁇ m, contained 53.6% by mass of Al 2 O 3 , 36.9% by mass of MgO, and 9.5% by mass of SiO 2 . .
  • the dissolution rate of the obtained inorganic fiber was measured by the method described above.
  • the dissolution rate in 0 to 24 hours after the start of the test was 2317 ng / cm 2 ⁇ h.
  • the dissolution rate from 24 to 48 hours after the start of the test was 747 ng / cm 2 ⁇ h.
  • the results are shown in Table 2.
  • fusing point was computed from the thermodynamic equilibrium calculation using the compositional analysis result of the obtained inorganic fiber, melting
  • Example 2 Comparative Example 1
  • the amount of the basic aluminum carboxylate aqueous solution, the amount of magnesium acetate aqueous solution and the amount of silica sol in the spinning raw material aqueous solution so that the amount of Al 2 O 3 in the obtained inorganic fiber, the amount of MgO and the amount of SiO 2 are as shown in Table 2.
  • An inorganic fiber was produced in the same manner as in Example 1 except that was adjusted. About the obtained inorganic fiber, it calculated
  • Example 2 when the melting points of the inorganic fibers obtained in Examples 2 to 8 were measured in the same manner as in Example 1, they were all 1350 ° C. or higher. In Comparative Example 1, spinning was not possible because a spinning raw material aqueous solution was prepared and a precipitate was formed at the stage where the viscosity was adjusted. These results are shown in Table 2.
  • the inorganic fibers obtained in Examples 1 to 8 exhibit excellent biosolubility because the dissolution rate is 80 ng / cm 2 ⁇ h or more, and Since any inorganic fiber has a melting point of 1350 ° C. or higher, it can be seen that it has high heat resistance. On the other hand, it turns out that the spinning raw material aqueous solution of the comparative example 1 cannot be fiberized.
  • an inorganic fiber having a high biological dissolution rate and excellent biosolubility and high heat resistance, and the inorganic fiber can be easily produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Fibers (AREA)

Abstract

 人体や生活環境に及ぼす影響が抑制された、高い生体溶解性を発揮するとともに、フィルター材やシール材等の構成材料として好適な耐熱性を発揮する無機繊維を提供する。30質量%以上81質量%未満のAl、19質量%を超え65質量%のMgOおよび0質量%~40質量%のSiOを含み、Al、MgOおよびSiOを合計した含有割合が繊維全体の98質量%以上であることを特徴とする無機繊維である。

Description

無機繊維およびその製造方法
 本発明は、無機繊維およびその製造方法に関する。
 無機繊維は、無機化合物より成る繊維を主構成成分とするものであり、断熱材や耐火材等の構成材料として期待されており、特に平均繊維径1μm以下であるものは、フィルター材及びシール材の構成材料としての用途が期待される。
 ところで、繊維径の小さな無機繊維としては、従来よりアスベスト(石綿)が知られており、このアスベストは、繊維径が小さく、体液に対する化学的抵抗性が高いものであるために、呼吸によって肺奥部に達し、肺胞内の細胞に長期間の刺激を与え、人体に影響するとされている。また、アスベスト以外の無機繊維においても、SiOを主成分とする耐熱性を向上させた無機繊維は、高温環境下でSiOが結晶化してクリストバライトを生成し呼吸によって肺奥部に達した場合には、人体に影響するとされている。
 このため、生体溶解性を有し、体液に対する化学的な抵抗性が低い無機繊維として、オキシ塩化アルミニウムとコロイダルシリカと増粘剤とを含む溶液からなる紡糸液を多数の紡糸孔から引き出して繊維前駆体とした後、これを急速加熱および急速冷却処理してなる、65重量%~99重量%のAlおよび1重量%~35重量%SiOからなる無機繊維が提案されている(特許文献1(特許第3979494号公報)参照)。
特許第3979494号公報
 しかしながら、本発明者等が鋭意検討を行ったところ、特許文献1記載の無機繊維は必ずしも生体溶解性を示すものでないことが判明した。また、無機繊維の用途によっては、特許文献1記載の無機繊維よりも、さらに生体溶解速度の速いものが求められるようになっている。
 このような状況下、本発明は、生体溶解速度が大きく耐熱性が高い無機繊維を提供することを第1の目的とするものであり、上記無機繊維を簡便に製造する方法を提供することを第2の目的とするものである。
 上記技術課題を解決すべく、本発明者等が鋭意検討を行ったところ、30質量%以上81質量%未満のAl、19質量%を超え65質量%以下のMgOおよび0質量%~40質量%のSiOを含み、Al、MgOおよびSiOを合計した含有割合が繊維全体の98質量%以上であることを特徴とする無機繊維により第1の目的を達成し得ることを見出し、さらに、金属酸化物換算したときに、全金属酸化物中、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムと、19質量%を超え65質量%以下の水溶性のマグネシウム化合物と、0質量%~40質量%の水溶性または水分散性のケイ素化合物とを、水性媒体中に溶解して紡糸原料水性溶液を作製した後、該紡糸原料水性溶液を紡糸して粗無機繊維を得、次いで、該粗無機繊維を焼成することにより、第2の目的を達成し得ることを見出して、本発明を完成するに至った。
 すなわち、本発明は、
(1)30質量%以上81質量%未満のAl、19質量%を超え65質量%以下のMgOおよび0質量%~40質量%のSiOを合計した含有割合が繊維全体の98質量%以上であることを特徴とする無機繊維、
(2)前記無機繊維が、Al原料として水溶性の塩基性酸アルミニウム、MgO原料として水溶性のマグネシウム化合物、SiO原料として水溶性または水分散性のケイ素化合物を用いてなり、
 金属酸化物換算したときに、前記各原料の総量に対し、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムと、19質量%を超え65質量%以下の水溶性のマグネシウム化合物と、0質量%~40質量%の水溶性または水分散性のケイ素化合物とを、水性媒体中に溶解して紡糸原料水性溶液を作製した後、
 該紡糸原料水性溶液を紡糸して粗無機繊維を得、
 次いで、該粗無機繊維を焼成してなるものである
上記(1)に記載の無機繊維、
(3)前記水溶性の塩基性酸アルミニウムが、下記組成式(I)
     Al(OH)    (I)
(ただし、Xは0を超え3未満の正の数であり、Yは、Cl原子、NO基、SO基、RCOO基から選ばれるいずれか一種であり、Zは、YがCl原子、NO基、RCOO基である場合3-X、YがSO基である場合(3-X)/2であり、前記Rは水素原子または炭素数1~10の炭化水素基若しくは水酸基含有炭化水素基であって、RCOO基が複数存在する場合、各Rは同一であっても異なっていてもよい)
で表される化合物から選ばれる一種以上である上記(2)に記載の無機繊維、
(4)上記(1)に記載の無機繊維を製造する方法であって、
 Al原料として水溶性の塩基性酸アルミニウム、MgO原料として水溶性のマグネシウム化合物、SiO原料として水溶性または水分散性のケイ素化合物を用い、
 金属酸化物換算したときに、前記各原料の総量に対し、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムと、19質量%を超え65質量%以下の水溶性のマグネシウム化合物と、0質量%~40質量%の水溶性または水分散性のケイ素化合物とを、水性媒体中に溶解して紡糸原料水性溶液を作製した後、
 該紡糸原料水性溶液を紡糸して粗無機繊維を得、
 次いで、該粗無機繊維を焼成する
ことを特徴とする無機繊維の製造方法、
(5)前記水溶性の塩基性酸アルミニウムが、下記組成式(I)
     Al(OH)    (I)
(ただし、Xは0を超え3未満の正の数であり、Yは、Cl原子、NO基、SO基、RCOO基から選ばれるいずれか一種であり、Zは、YがCl原子、NO基、RCOO基である場合3-X、YがSO基である場合(3-X)/2であり、前記Rは水素原子または炭素数1~10の炭化水素基若しくは水酸基含有炭化水素基であって、RCOO基が複数存在する場合、各Rは同一であっても異なっていてもよい)
で表される化合物から選ばれる一種以上である上記(4)に記載の無機繊維の製造方法、
(6)前記焼成する温度が、500℃以上液相生成温度未満である上記(4)または(5)のいずれかに記載の無機繊維の製造方法、
を提供するものである。
 本発明によれば、生体溶解速度が大きく耐熱性が高い無機繊維を提供することができ、また、上記無機繊維を簡便に製造する方法を提供することができる。
静電紡糸に供する紡糸装置の一例を示す図である。
 先ず、本発明の無機繊維について説明する。
 本発明の無機繊維は、30質量%以上81質量%未満のAl、19質量%を超え65質量%以下のMgOおよび0質量%~40質量%のSiOを含み、Al、MgOおよびSiOを合計した含有割合が繊維全体の98質量%以上であることを特徴とするものである。
 本発明の無機繊維は、Alを30質量%以上81質量%未満含むものであり、33質量%~78質量%含むものであることが好ましい。Alの含有割合が上記範囲内にあることにより、所望の耐熱性を得やすくなる。
 また、本発明の無機繊維は、MgOを19質量%を超え65質量%以下含むものであり、22質量%~62質量%含むものであることが好ましい。MgOの含有割合が上記範囲内にあることにより、所望の生体溶解性を得やすくなる。
 本発明の無機繊維は、SiOを0質量%~40質量%含むものであり、0質量%~37質量%含むものであることが好ましい。本発明の無機繊維は、SiOを含まなくても所望の生体溶解性を得ることができるが、SiOの含有割合が上記範囲内にあることにより、所望の生体溶解性を一層発揮しやすくなる。
 生体溶解性の観点からは、無機繊維の組成は、繊維径に応じて所定の範囲にすることが好ましい。繊維径が大きいほど生体内で溶解し消失するまでに時間を要するため、無機繊維の径が大きいものほど溶解速度が大きくなる組成を有することが好ましい。
 本発明の無機繊維は、Al、MgOおよびSiOを合計した含有割合が繊維全体の98質量%以上であり、繊維全体の99質量%以上であることより好ましい。Al、MgOおよびSiOを合計した含有割合が繊維全体の98質量%以上であることにより、所望の生体溶解性と耐熱性を得ることができる。
 本発明の無機繊維は、不可避的成分を2質量%未満含み得るものであり、ここで、不可避的成分とは、無機繊維の調製時に混入する不純物成分を意味する。
 本発明の無機繊維は、30質量%以上81質量%未満のAl、19質量%を超え65質量%以下のMgOおよび0質量%~40質量%のSiOを含み、Al、MgOおよびSiOを合計した含有割合が繊維全体の98質量%以上であることにより、所望の生体溶解性と耐熱性を発揮することができる。
 本発明の無機繊維において、各成分の含有割合(質量%)は、後述する繊維作製時に使用した紡糸原料水性溶液から一部取り出して乾燥させ、次いで1000℃にて2時間焼成を行った粉末を測定試料として、蛍光X線分析装置(Rigaku社製 RIX2000)を用いて測定した際の値を意味する。なお、得られる無機繊維にはバランス成分が含まれる場合があるが、この場合はバランス成分を除いた金属酸化物の合計値が100質量%となるように、補正計算を行うものとする。
 本発明の無機繊維は、上記組成を有するものであって、該無機繊維が、Al原料として水溶性の塩基性酸アルミニウム、MgO原料として水溶性のマグネシウム化合物、SiO原料として水溶性または水分散性のケイ素化合物を用いてなり、金属酸化物換算したときに、前記各原料の総量に対し、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムと、19質量%を超え65質量%以下の水溶性のマグネシウム化合物と、0質量%~40質量%の水溶性または水分散性のケイ素化合物とを、水性媒体中に溶解して紡糸原料水性溶液を作製した後、該紡糸原料水性溶液を紡糸して粗無機繊維を得、次いで、該粗無機繊維を焼成してなるものであることが好ましい。
 上記紡糸原料水性溶液は、金属酸化物原料として、水溶性の塩基性酸アルミニウム、水溶性のマグネシウム化合物および所望により水溶性または水分散性のケイ素化合物を含んでなるものであり、金属酸化物換算したときに、全金属酸化物原料中、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムを含むものであることが好ましく、33質量%~78質量%の水溶性の塩基性酸アルミニウムを含むものであることがより好ましい。
 上記紡糸原料水性溶液中における水溶性の塩基性酸アルミニウムの濃度は、金属酸化物換算で、0.75質量%~19.5質量%が好ましく、1.5質量%~13質量%がより好ましい。
 また、上記紡糸原料水性溶液は、金属酸化物換算したときに、全金属酸化物原料中、19質量%を超え65質量%以下の水溶性のマグネシウム化合物を含むものであることが好ましく、22質量%~62質量%の水溶性のマグネシウム化合物を含むものであることがより好ましい。
 上記紡糸原料水性溶液中における水溶性のマグネシウム化合物の濃度は、金属酸化物換算で、1質量%~18質量%が好ましく、1.5質量%~12質量%がより好ましい。
 また、上記紡糸原料水性溶液は、金属酸化物換算したときに、全金属酸化物原料中、0質量%~40質量%の水溶性または水分散性のケイ素化合物を含むものであることが好ましく、0質量%~37質量%の水溶性または水分散性のケイ素化合物を含むものであることがより好ましい。
 上記紡糸原料水性溶液中における水溶性または水分散性のケイ素化合物の濃度は、金属酸化物換算で、0質量%~10.5質量%が好ましく、0質量%~7質量%がより好ましい。
 本出願書類において、水溶性の塩基性酸アルミニウムを金属酸化物換算するとは、Al換算することを意味し、水溶性のマグネシウム化合物を金属酸化物換算するとは、MgO換算することを意味し、水溶性または水分散性のケイ素化合物を金属酸化物換算するとは、SiO換算することを意味する。
 本発明の無機繊維において、上記水溶性の塩基性酸アルミニウムが、下記式(I)
     Al(OH)    (I)
(ただし、Xは0を超え3未満の正の数であり、Yは、Cl原子、NO基、SO基、RCOO基から選ばれるいずれか一種であり、Zは、YがCl原子、NO基、RCOO基である場合3-X、YがSO基である場合(3-X)/2であり、前記Rは水素原子または炭素数1~10の炭化水素基若しくは水酸基含有炭化水素基であって、RCOO基が複数存在する場合、各Rは同一であっても異なっていてもよい)
で表される化合物から選ばれる一種以上であることが好ましい。
 上記紡糸原料水性溶液を構成する各原料や、紡糸方法や、焼成条件等の詳細は、後述するとおりである。
 本発明の無機繊維は、後述する静電紡糸法により紡糸されてなるものであることが好ましい。
 本発明の無機繊維は、平均繊維径4μm未満でも生体溶解性を発揮することができるものであり、無機繊維の平均繊維径は、3μm以下であるものが好適であり、1μm以下であるものがより好適であり、0.5μm以下であるものがさらに好適である。
 無機繊維の平均繊維径が1μm以下であることにより、フィルター材及びシール材の構成材料として好適に使用することができる。平均繊維径が1μm以下である無機繊維は、後述する静電紡糸法による静電紡糸時の雰囲気や印加電圧を調整したり、紡糸原料水性溶液の濃度や粘度を調整すること等によって製造することができる。
 本発明の無機繊維は、後述する生体溶解性の評価方法により評価したときに、試験開始後0時間~24時間における溶解速度または試験開始後24時間~48時間における溶解速度が20ng/cm・h以上であるものが好適であり、40ng/cm・h以上であるものがより好適である。溶解速度の上限については、特に制限はないが、通常、5400ng/cm・h程度である。
 本発明の無機繊維は、生体溶解速度が大きく、生体溶解性に優れたものであるので、平均繊維径が小さいものであっても生活環境に与える影響が小さく、また、後述する製造方法によって容易に細繊維化することができる。このため、例えば、平均繊維径が1μm以下の細繊維化物を、フィルター材及びシール材の構成材料等として、種々の産業分野で利用することができる。
 なお、本出願書類において、無機繊維の平均繊維径は、走査型電子顕微鏡(日本電子製 JSM‐5800LV)により撮影した写真(倍率2000~5000倍)から無作為に選定した30~122箇所の繊維の幅を計測し、これ等の幅から算出した平均値を意味する。
 本発明の無機繊維は、融点が1300℃以上であるものが好適であり、1350℃以上であるものがより好適である。本発明の無機繊維が、融点が1350℃以上の耐熱性の高いものであることにより、フィルター材及びシール材等として好適に使用することができる。
 本発明の無機繊維を製造する方法としては、種々の方法を挙げることができ、所望組成を有する紡糸原料溶液を乾式紡糸する方法や、所望組成を有する溶融物を紡糸ノズルから引き出し、冷却した後、ワインダ巻取りしながら紡糸する溶融連続紡糸法や、所望組成を有する溶融物を高速回転体に衝突させその遠心力によって繊維化するスピナー法(外部遠心法)や、所望組成を有する溶融物を回転体から吐出し、遠心力によって繊維化する内部遠心法や、所望組成を有する溶融物を圧縮空気により繊維化するメルトブロー法が挙げられる。また、上記乾式紡糸法としては、所望組成を有する紡糸原料溶液をノズルから吐出した後、ワインダで巻取り延伸しながら乾燥する乾式連続紡糸法や、所望組成を有する紡糸原料溶液を空気流で遠心しながら乾燥し不連続繊維を得る方法や、後述する静電紡糸法を挙げることができる。
 乾式紡糸法においては、紡糸原料溶液の粘度を適宜調整することが好ましく、紡糸原料溶液の粘度調整は、例えば、添加する紡糸助剤の量を変更したり、加熱や減圧による濃縮や水を添加することによる希釈操作によって行うことができる。
 例えば、平均繊維径数μm~数十μmの繊維を得ることを目的として紡糸原料溶液を連続紡糸法により紡糸する場合、その粘度は数十Pa・s~数百Pa・s程度であることが好ましく、60Pa・s~200Pa・sであることがより好ましい。上記粘度が数十Pa・s未満であると、ノズルから押し出された紡糸液が表面張力に負けて毛管破断しやすくなり紡糸が困難になる。また、上記粘度が数百Pa・s超であると、繊維を延伸する際に凝集破断がおきて繊維径を小さくし難くなるとともに、ノズルから紡糸液を押し出す際に高い圧力が必要になって繊維製造装置が大型化してしまう。
 また、例えば、平均繊維径数μmの繊維を得ることを目的として紡糸原料溶液を多数の孔から遠心により噴き出し引き伸ばして紡糸する回転遠心円板法や空気を吹き付けることによって紡糸液を引き伸ばして紡糸するブローイング法により紡糸する場合、紡糸原料溶液の粘度は数Pa・s~数十Pa・s程度が好ましい。上記粘度が数Pa・s未満であると、紡糸原料溶液が繊維化されずに液滴のまま飛散したり、繊維化できても紡糸液が引き伸ばされて破断した際に、ショットと呼ばれる球状の粒子が多量に生成する。一方、粘度が過大であると、遠心力やブローイングによって延伸することができず、繊維を作製することができなくなる。
 上記各乾式紡糸法により得られた粗無機繊維を適宜焼成処理することにより、粗無機繊維中の有機物を消失させて所望の無機繊維を得ることができる。焼成条件等については、後述するとおりである。
 上記無機繊維の製造方法のうち、乾式紡糸法を用いた製造方法、特に静電紡糸法を用いた製造方法が、目的とする無機繊維を簡便かつ低コストに製造することができるため、好適である。
 次に、本発明の無機繊維の製造方法について説明する。
 本発明の無機繊維の製造方法は、上述した本発明の無機繊維を製造する方法であって、Al原料として水溶性の塩基性酸アルミニウム、MgO原料として水溶性のマグネシウム化合物、SiO原料として水溶性または水分散性のケイ素化合物を用い、金属酸化物換算したときに、前記各原料の総量に対し、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムと、19質量%を超え65質量%以下の水溶性のマグネシウム化合物と、0質量%~40質量%の水溶性または水分散性のケイ素化合物とを、水性媒体中に溶解して紡糸原料水性溶液を作製した後、該紡糸原料水性溶液を紡糸して粗無機繊維を得、次いで、該粗無機繊維を焼成することを特徴とするものである。
 本発明の製造方法において、原料として用いられる水溶性の塩基性酸アルミニウムとしては、下記式(I)
    Al(OH)    (I)
(ただし、Xは0を超え3未満の正の数であり、Yは、Cl原子、NO基、SO基、RCOO基から選ばれるいずれか一種であり、Zは、YがCl原子、NO基、RCOO基である場合3-X、YがSO基である場合(3-X)/2であり、前記Rは水素原子または炭素数1~10の炭化水素基若しくは水酸基含有炭化水素基であって、RCOO基が複数存在する場合、各Rは同一であっても異なっていてもよい)
で表される化合物を挙げることができる。
 なお、こうした塩基性酸アルミニウムは、ヒドロキシ基で架橋された8面体配位のアルミニウム多核錯体(無機イオン性ポリマー)で、2量体やオリゴマーの形をとり得る。
 組成式(I)で表される塩基性酸アルミニウムにおいて、Xは1以上3未満の正の数であることが好ましく、1以上2.5以下の正の数であることがより好ましい。
 組成式(I)において、Xは、塩基性酸アルミニウムの合成時に、添加した酸等の組成比から算出することができる。
 組成式(I)で表わされる塩基性酸アルミニウムとしては、塩基性カルボン酸アルミニウム(Al(OH)(RCOO)3-x)を用いることにより、後述する焼成時において環境負荷の大きい塩素や硝酸の発生を抑制することができるため、好適に使用することができる。
 また、組成式(I)で表わされる塩基性酸アルミニウムが、塩基性カルボン酸アルミニウムである場合、RCOO基を構成するRは、水素原子または炭素数1~10の炭化水素基若しくは水酸基含有炭化水素基である。
 Rが炭化水素基若しくは水酸基含有炭化水素基である場合、その炭素数は1~10であり、1~5であることが好ましい。炭素数が5を超えると、式(I)で表される塩基性酸アルミニウムが水溶性を示し難くなる。また、Rが炭化水素基若しくは水酸基含有炭化水素基である場合、炭化水素基部分は、直鎖状でも分枝状でもよく、また、飽和炭化水素基でも不飽和炭化水素基でもよい。
 Rが炭化水素基である場合、炭化水素基としては、アルキル基、アルケニル基、シクロアルキル基、アルキルシクロアルキル基等が挙げられる。
 具体的には、メチル基、エチル基、プロピル基、ブチル基等のアルキル基(これらのアルキル基が分枝状になり得る場合には、アルキル基は直鎖状でも分枝状でもよい);プロペニル基、ブテニル基等のアルケニル基(これらのアルケニル基が分枝状になり得る場合には、アルケニル基は直鎖状でも分枝状でもよく、また二重結合の位置も任意である);シクロプロピル基、シクロブチル基等のシクロアルキル基;メチルシクロプロピル基、メチルシクロブチル基等のアルキルシクロアルキル基(アルキル基のシクロアルキル基への置換位置も任意である)等を例示することができる。
 Rが水酸基含有炭化水素基である場合、水酸基含有炭化水素基としては、ヒドロキシアルキル基、ヒドロキシアルケニル基、ヒドロキシシクロアルキル基等が挙げられる。
 具体的には、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基等のヒドロキシアルキル基(これらのヒドロキシアルキル基が分枝状になり得る場合には、ヒドロキシアルキル基を構成するアルキル基は直鎖状でも分枝状でもよい);ヒドロキシブテニル基等のヒドロキシアルケニル基(ヒドロキシアルケニル基を構成するアルケニル基は直鎖状でも分枝状でもよく、また二重結合の位置も任意である);ヒドロキシシクロプロピル基、ヒドロキシシクロブチル基等のヒドロキシシクロアルキル基(ヒドロキシル基やアルキル基のシクロアルキル基への置換位置も任意である)等を例示することができる。
 水中での安定性等を考慮すると、RCOO基としては、ギ酸、酢酸、乳酸等から選ばれるカルボン酸の反応残基(HCOO基、CHCOO基、CHCH(OH)COO基)が好ましい。
 本発明の製造方法においては、マグネシア原料として、水溶性のマグネシウム化合物が用いられ、該マグネシウム化合物としては、水溶性を示すとともに、後述する紡糸原料水性溶液中に所望量溶解し得るものであれば特に制限されず、例えば、マグネシウムの炭酸塩、硝酸塩、硫酸塩、酢酸塩、水酸化物、塩化物、フッ化物、ホウ酸塩、リン酸塩などが挙げられる。
 これ等のマグネシウム化合物のうち、本発明の製造方法においては、紡糸原料水性溶液中に溶解させるアルミニウム化合物が塩基性カルボン酸アルミニウムを用いた場合、マグネシウム化合物もカルボン酸塩であることが好ましく、紡糸原料水性溶液への溶解性や材料の入手の容易さから酢酸マグネシウム四水和物であることがより好ましい。
 本発明の製造方法において、シリカ原料としては、水溶性または水分散性のケイ素化合物が用いられ、該ケイ素化合物としては、紡糸原料水溶液に溶解または分散するものであれば特に制限されず、例えば、水溶性のケイ素化合物としては、水溶性のケイ酸塩、水溶性のケイ素のアルコキシド(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等)等を挙げることができ、水分散性のケイ素化合物としては、シリカゾル(コロイダルシリカ)等を挙げることができ、これ等のケイ素化合物のうち、紡糸原料水溶液の粘度安定性等の観点から、シリカゾル(コロイダルシリカ)が好ましい。
 シリカゾルとしては、4~100nmの粒子径のシリカを、固形分5質量%~30質量%媒体中に分散してなるものが好ましく、シリカゾルは、アルコキシシランから製造されるゾル-ゲル法や、ケイ酸ナトリウムから製造されるケイ酸ソーダ法により製造することができる。
 本発明の無機繊維の製造方法においては、必要に応じて、さらに紡糸助剤を用いることもできる。紡糸助剤としては、所望の無機繊維を作製し得るものであれば特に制限されないが、取扱いの容易性や溶解性を考慮すると水溶性の有機高分子であることが好ましい。例えば、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルアルコール、ポリビニルエーテル、ポリビニルエステル、ポリアクリル酸エステルならびにこれらの共重合体が挙げられ、これ等のうち、ポリアクリル酸エステルが好ましい。
 本発明の無機繊維の製造方法においては、紡糸助剤を添加することにより、繊維径のばらつきを抑制し、安定して紡糸することができる。また、静電紡糸後の未焼成繊維の強度が増し、ハンドリング性に優れる。
 本発明の製造方法においては、上記水溶性の塩基性酸アルミニウムと水溶性のマグネシウム化合物と水溶性または水分散性のケイ素化合物と、必要に応じ紡糸助剤とを水性媒体中に溶解させて、紡糸原料水性溶液を調製する。
 水性媒体としては、水が好ましく、溶液の安定性を向上させたり、紡糸の安定性を向上させるために、水を主成分として水に可溶な他の媒体、例えばアルコール類、ケトン類、アミン類、アミド類、カルボン酸類などを添加したものであってもよい。また、これらの媒体に対して塩化アンモニウムなどの有機塩を添加したものであってもよい。
 上記紡糸原料水性溶液は、金属酸化物原料として、水溶性の塩基性酸アルミニウム、水溶性のマグネシウム化合物および所望により水溶性または水分散性のケイ素化合物を含んでなるものであり、金属酸化物換算したときに、全金属酸化物原料中、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムを含むものであることが好ましく、33質量%~78質量%の水溶性の塩基性酸アルミニウムを含むものであることがより好ましい。
 上記紡糸原料水性溶液中における水溶性の塩基性酸アルミニウムの濃度は、金属酸化物換算で、0.75質量%~19.5質量%が好ましく、1.5質量%~13質量%がより好ましい。
 また、上記紡糸原料水性溶液中における水溶性の塩基性酸アルミニウムの固形分濃度(原料固形分濃度)は、2質量%~59質量%であることが好ましく、5質量%~44質量%であることがより好ましい。
 水溶性の塩基性酸アルミニウムの含有割合が上記範囲内にあることにより、所望の耐熱性を有する無機繊維を得やすくなる。
 また、上記紡糸原料水性溶液は、金属酸化物換算したときに、全金属酸化物原料中、19質量%を超え65質量%以下の水溶性のマグネシウム化合物を含むものであることが好ましく、22質量%~62質量%の水溶性のマグネシウム化合物を含むものであることがより好ましい。
 上記紡糸原料水性溶液中における水溶性のマグネシウム化合物の濃度は、金属酸化物換算で、1質量%~18質量%が好ましく、1.5質量%~12質量%がより好ましい。
 また、上記紡糸原料水性溶液中における水溶性のマグネシウム化合物の固形分濃度(原料固形分濃度)は、4質量%~79質量%であることが好ましく、8質量%~60質量%であることがより好ましい。
 水溶性のマグネシウム化合物の含有割合が上記範囲内にあることにより、所望の生体溶解性を有する無機繊維を得やすくなる。
 また、上記紡糸原料水性溶液は、金属酸化物換算したときに、全金属酸化物原料中、0質量%~40質量%の水溶性または水分散性のケイ素化合物を含むものであることが好ましく、0質量%~37質量%の水溶性または水分散性のケイ素化合物を含むものであることがより好ましい。
 上記紡糸原料水性溶液中に含まれる水溶性または水分散性のケイ素化合物の濃度は、金属酸化物換算で、0質量%~10.5質量%が好ましく、0質量%~7質量%がより好ましい。
 また、上記紡糸原料水性溶液中における水溶性または水分散性のケイ素化合物の固形分濃度(原料固形分濃度)は、0質量%~14質量%であることが好ましく、0質量%~10質量%であることがより好ましい。
 本発明の製造方法においては、水溶性または水分散性のケイ素化合物を用いなくても所望の生体溶解性を有する無機繊維を得ることができるが、水溶性または水分散性のケイ素化合物を用いることにより所望の生体溶解性を一層得やすくなる。
 なお、上述したように、本出願書類において、各金属酸化物原料の金属酸化物換算による質量割合(質量%)は、水溶性の塩基性酸アルミニウムをAl、水溶性のマグネシウム化合物をMgO、水溶性または水分散性のケイ素化合物はSiOに換算したときの質量割合(質量%)を意味する。
 紡糸原料水性溶液が紡糸助剤を含む場合、紡糸原料水性溶液中における紡糸助剤の濃度は、0.1質量%~10質量%が好ましく、0.1質量%~8質量%がより好ましい。紡糸助剤は、焼成後に繊維が緻密化し、強度が保持されるために可能な限り少ない方が好ましいが、少量では繊維作製時の形態が安定しない場合があるため、必要に応じて添加量を調整することが好ましい。
 紡糸原料水性溶液の作製方法は、特に制限されず、例えば、水性媒体と、水溶性の塩基性酸アルミニウム、水溶性のマグネシウム化合物、水溶性または水分散性のケイ素化合物および必要に応じ紡糸助剤やその他の任意成分を、各成分がそれぞれ所望濃度になるように混合することにより作製してもよいし、水溶性の塩基性酸アルミニウムの水性溶液と、水溶性のマグネシウム化合物の水性溶液と、水溶性または水分散性のケイ素化合物の水性溶液と、さらに必要に応じ紡糸助剤の水性溶液やその他の任意成分とを、各成分が所望濃度になるように混合することにより作製してもよい。
 紡糸原料水性溶液の粘度は、0.01~5.0Pa・s程度が好ましく、0.05~3.0Pa・s程度がより好ましい。紡糸原料水性溶液の粘度が0.01Pa・s未満であると、紡糸時に紡糸原料水性溶液が糸状化せずに球状の粒を生ずる場合があり、紡糸原料水性溶液の粘度が5.0Pa・s超であると、繊維化処理が困難となる。紡糸原料水性溶液の粘度は、紡糸助剤の添加量を調整したり、適宜、加熱処理や減圧処理による濃縮操作を行うことによって調整することもできる。
 なお、本出願において、紡糸原料水性溶液の粘度は、以下に説明する方法により測定した値を意味する。粘度は粘弾性測定装置(AntonPaar社製 Physica MCR301)を用いて測定した。本出願における紡糸液の粘度は、せん断速度10s-1の時のせん断粘度を粘度とした。また、粘度の測定は紡糸液の液温を25℃に維持した状態で測定した。以降、上記の条件で測定した粘度を本出願書類の粘度とする。
 本発明の製造方法において、上記紡糸原料水性溶液を紡糸する方法は特に制限されないが、上述した種々の方法を採用することができる。上記紡糸原料水性溶液は、静電紡糸法により紡糸して粗無機繊維を得ることが好ましい。 
 静電紡糸法とは、繊維形成性化合物を含む紡糸原料水性溶液に対して電圧を印加し、静電反発力を利用して紡糸原料水性溶液を吐出し繊維化する方法である。
 紡糸原料水性溶液を電圧を印加した静電場中に吐出する方法としては、任意の方法を用いることができ、例えば、紡糸原料水性溶液をノズルに供給した状態で、静電場中の適切な位置に置き、そのノズルから紡糸原料水性溶液を電界によって曳糸して繊維化する方法を挙げることができる。
 以下、本発明の製造方法における静電紡糸法による紡糸の具体的態様を図1を参照しつつ説明する。
 図1は、静電紡糸に供する紡糸装置の一例を示す図である。図1において、紡糸装置1は、シリンジ2と、ノズル3と、高電圧発生装置4と、試料捕集台5から構成されている。
 図1に示す紡糸装置1において、紡糸原料水性溶液は、シリンジ2内に充填された後、ノズル3の先端部まで送液される。高電圧発生装置4は、それぞれノズル3周囲に設けられた導電性の固定部と導電性の試料捕集台5に電気的に接続されており、ノズル3周囲に設けられた固定部を通じてノズル3に電圧を印加することにより、ノズル3の先端から紡糸原料水性溶液を噴出し、繊維化して、粗無機繊維とする。得られた粗無機繊維は、対向電極である試料捕集台5上に捕集される。
 紡糸原料水性溶液をノズル2から静電場中に供給する場合、複数のノズル2を用い、ノズル2を並列に配置して繊維状物質の生産速度を上げてもよい。
 本発明の製造方法において、静電紡糸時に印加する電圧は、ノズル先端と対向電極との距離(電極間の距離)や、紡糸原料水性溶液の粘度や、紡糸原料水性溶液の濃度等の条件を考慮しつつ、1~100kVとすることが好ましく、3~30kVとすることがより好ましい。
 電極間の距離は、帯電量、ノズル寸法、紡糸原料水性溶液のノズルからの噴出量、紡糸原料水性溶液濃度等に依存するが、20~500mmが好ましく、50~300mmがより好ましく、100~200mmがさらに好ましい。
 静電紡糸により得られる粗無機繊維は、平均繊維径が10nm~2000nmであることが好ましく、50nm~1000nmであることがより好ましい。
 なお、本出願書類において、粗無機繊維の平均繊維径は、走査型電子顕微鏡(日本電子製 JSM‐5800LV)により撮影した写真(倍率2000~5000倍)から無作為に30~122箇所選定して繊維の幅を計測し、これ等の幅から算出した平均値を意味する。
 本発明の製造方法においては、次いで、静電紡糸法により得られた粗無機繊維を焼成する。
 焼成温度は、500℃以上液相生成温度未満が好ましく、具体的には、500℃以上1300℃以下であって液相生成しない温度であることが好適である。
 焼成温度が500℃未満であると、紡糸助剤として用いた有機高分子などの有機成分が得られる無機繊維中に残留する場合があり、また、焼成温度が1300℃超であると、結晶粒の成長が生じて得られる無機繊維が非常に脆くなったり、液相を生じて炉床と反応する場合がある。
 また、上記焼成温度は、得ようとする無機繊維の組成に応じて所定範囲にすることが望ましい。本発明の製造方法においては、焼成温度を所望範囲内に制御することによって、得られる無機繊維により優れた生体溶解性を付与することができる。
 焼成は、公知の電気炉等を用いて行うことができ、焼成時の雰囲気は、紡糸助剤等として用いた有機物を分解するために、大気または酸化性雰囲気とすることが好ましい。残留有機物の分解能を考慮しなくてよい場合には、窒素等の不活性雰囲気であってもよい。
 このようにして、本発明の製造方法においては、本発明の無機繊維を、簡便かつ低コストに製造することができる。
 以下、本発明を実施例および比較例によりさらに詳細に説明するが、本発明は以下の例により何ら限定されるものではない。
 なお、以下の実施例および比較例において、生体溶解性は、以下に示す方法により評価した。
(生体溶解性の評価方法)
 得られた無機繊維のうち、評価試料として25mgの範囲に収まる量を精秤した。
 次に、この評価試料を孔径0.1μmのPTFE(ポリテトラフルオロエチレン)製メンブレンフィルタ上に置き、さらに評価試料上部に孔径1μmのPTFE製メンブレンフィルタを乗せてフィルタユニットとして固定した。このフィルタユニットに対し、表1に記載したpH5.0の生理食塩水を0.15ml/minの割合で流通させた。
Figure JPOXMLDOC01-appb-T000001
 評価試料を流通した生理食塩水は、フィルタユニット下部に設けたタンク内に溜まるが、生理食塩水が評価試料を通ることによって無機繊維成分も溶出する。評価試験中の生理食塩水は生体液の温度である37℃に維持しつつ、タンクに貯めた無機繊維成分溶出液を試験開始から24時間後と48時間後に取り出し、ICP発光分析装置により、繊維成分の溶出量を定量し、その値から溶解度を算出した。
 ここで、単純な溶解度では、繊維径の違いによる繊維表面積の差が出てくるため、繊維径を別途計測して繊維表面積を求め、これと溶解度の測定値、繊維の真密度、試料の使用量より単位時間、単位繊維表面積あたりの溶解度(ng/cm・h)を算出し溶解速度とした。溶解速度は、試験開始後0~24時間における速度とともに試験開始後24時間~48時間における速度を求めた。
 なお、得られた無機繊維の外形が概略円柱状であることから、無機繊維の表面積は、無機繊維形状が円柱状であるとしてその全側面積を求めることにより算出した。
 すなわち、無機繊維の質量をM(g)、無機繊維の全長をL(m)、無機繊維の平均繊維径をd(m)、無機繊維の真密度をρ(kg/m)とすると、下記(1)式が成り立つ。
  M=π×d×L×ρ/4  (1)
 また、無機繊維の表面積A(m)は式(2)で表わされる。
  A=π×d×L       (2)
 式(2)よりL=A/(π×d)であることから、このLを式(1)に代入してAについてまとめると、以下の式(3)のとおりとなる。
  A=4M/dρ       (3)
 無機繊維の質量M(g)を実測するとともに、上述したように走査型電子顕微鏡(日本電子製 JSM‐5800LV)を用いて無機繊維の平均繊維径d(m)を測定し、無機繊維の真密度ρとしてスピネル型MgAlの理論上の真密度3.5g/cm(=3.5×10kg/m)を用いて、上記式(3)にそれぞれ代入することにより、無機繊維の表面積A(m)を算出することができる。
 なお、上記評価によって得られた生理食塩水への溶解速度は、体液への化学的抵抗性の指標であり、この値が高いほど体液への化学的抵抗性は低く、生体への有害性は低いとされる。
(実施例1)
 塩基性酸アルミニウムとして、Al(OH)(RCOO)3-X(Xが1.7の値、Rの炭素数が0~2の値である)で表わされる塩基性カルボン酸アルミニウムを用いて、以下のとおり紡糸原料水溶液を調製した。
 すなわち、Al換算した濃度が10.5質量%である塩基性カルボン酸アルミニウム水溶液100質量部に対して、MgO換算した濃度が5.7質量%である酢酸マグネシウム水溶液123.8質量部と、SiO換算したケイ素濃度が20.5質量%であるシリカゾル9.5質量部とを添加、混合した後、適宜濃縮することにより、粘度が0.8Pa・sの紡糸原料水性溶液を調製した。
 この紡糸原料水性溶液は、塩基性カルボン酸アルミニウムをAl、酢酸マグネシウムをMgO、シリカゾルをSiOにそれぞれ換算したときに(金属酸化物換算したときに)、塩基性カルボン酸アルミニウムと酢酸マグネシウムとシリカゾルの総量に対し、塩基性カルボン酸アルミニウムを54.0質量%、酢酸マグネシウムを36.0量%、シリカゾルを10.0質量%含むものである。
 次いで、図1に示す紡糸装置1を用いて、上記紡糸原料水性溶液を紡糸した。紡糸処理に際しては、恒温、恒湿室内において、25℃の温度条件下、上記紡糸原料水性溶液をシリンジ2内に充填した後、ノズル3の先端部まで送液し、ノズル3周囲に設けられた固定部と試料捕集台5に電気的に接続した高電圧発生装置4から6~13kVの電圧を印加することにより、ノズル3の先端から紡糸原料水性溶液を噴出させ、繊維化して、ノズル3先端からの距離を150mmに調整した試料捕集台5上に捕集して、粗無機繊維を得た。
 得られた粗無機繊維を、大気雰囲気下、電気炉中で500℃/時で700℃まで昇温し、2時間保持することによって焼成して、無機繊維を得た。
 得られた無機繊維の平均繊維径は1.4μmであり、Alを53.6質量%含むとともに、MgOを36.9質量%、SiOを9.5質量%含むものであった。
 この無機繊維の生体溶解性を評価するために、上述した方法により、得られた無機繊維の溶解速度を測定したところ、試験開始後0~24時間における溶解速度は2317ng/cm・hであり、試験開始後24時間~48時間における溶解速度は747ng/cm・hであった。結果を表2に示す。
 また、得られた無機繊維の組成分析結果を用いて、熱力学平衡計算から融点を算出したところ、融点は1625℃であった。
(実施例2~実施例8、比較例1)
 得られる無機繊維中のAl量、MgO量およびSiO量が表2に示す割合になるように、紡糸原料水性溶液中の塩基性カルボン酸アルミニウム水溶液量、酢酸マグネシウム水溶液量およびシリカゾル量を調整した以外は、実施例1と同様にして無機繊維を作製した。
 得られた無機繊維について、実施例1と同様にして平均繊維径を求めるともに、生体溶解性を評価した。なお、実施例6においては、試験開始後0~24時間における溶解速度のみ測定した。
 また、実施例2~実施例8で得られた無機繊維の融点を実施例1と同様にして測定したところ、いずれも1350℃以上であった。
 なお、比較例1においては、紡糸原料水溶液を作製し、粘度調整した段階で沈殿が生成したため、紡糸できなかった。
 これ等の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果より、実施例1~実施例8で得られた無機繊維は、溶解速度が80ng/cm・h以上であることから、優れた生体溶解性を示すものであり、また、いずれの無機繊維も融点が1350℃以上であることから、高い耐熱性を有するものであることが分かる。
 これに対し、比較例1の紡糸原料水溶液は、繊維化できないものであることが分かる。
 本発明によれば、生体溶解速度が大きく生体溶解性に優れるとともに、耐熱性の高い無機繊維を提供することができ、該無機繊維を簡便に製造することができる。
 1  紡糸装置
 2  シリンジ
 3  ノズル
 4  高電圧発生装置
 5  試料捕集台

Claims (6)

  1.  30質量%以上81質量%未満のAl、19質量%を超え65質量%以下のMgOおよび0質量%~40質量%のSiOを含み、Al、MgOおよびSiOを合計した含有割合が繊維全体の98質量%以上であることを特徴とする無機繊維。
  2.  前記無機繊維が、Al原料として水溶性の塩基性酸アルミニウム、MgO原料として水溶性のマグネシウム化合物、SiO原料として水溶性または水分散性のケイ素化合物を用いてなり、
     金属酸化物換算したときに、前記各原料の総量に対し、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムと、19質量%を超え65質量%以下の水溶性のマグネシウム化合物と、0質量%~40質量%の水溶性または水分散性のケイ素化合物とを、水性媒体中に溶解して紡糸原料水性溶液を作製した後、
     該紡糸原料水性溶液を紡糸して粗無機繊維を得、
     次いで、該粗無機繊維を焼成してなるものである
    請求項1に記載の無機繊維。
  3.  前記水溶性の塩基性酸アルミニウムが、下記組成式(I)
         Al(OH)    (I)
    (ただし、Xは0を超え3未満の正の数であり、Yは、Cl原子、NO基、SO基、RCOO基から選ばれるいずれか一種であり、Zは、YがCl原子、NO基、RCOO基である場合3-X、YがSO基である場合(3-X)/2であり、前記Rは水素原子または炭素数1~10の炭化水素基若しくは水酸基含有炭化水素基であって、RCOO基が複数存在する場合、各Rは同一であっても異なっていてもよい)
    で表される化合物から選ばれる一種以上である請求項2に記載の無機繊維。
  4.  請求項1に記載の無機繊維を製造する方法であって、
     Al原料として水溶性の塩基性酸アルミニウム、MgO原料として水溶性のマグネシウム化合物、SiO原料として水溶性または水分散性のケイ素化合物を用い、
     金属酸化物換算したときに、前記各原料の総量に対し、30質量%以上81質量%未満の水溶性の塩基性酸アルミニウムと、19質量%を超え65質量%以下の水溶性のマグネシウム化合物と、0質量%~40質量%の水溶性または水分散性のケイ素化合物とを、水性媒体中に溶解して紡糸原料水性溶液を作製した後、
     該紡糸原料水性溶液を紡糸して粗無機繊維を得、
     次いで、該粗無機繊維を焼成する
    ことを特徴とする無機繊維の製造方法。
  5.  前記水溶性の塩基性酸アルミニウムが、下記組成式(I)
         Al(OH)    (I)
    (ただし、Xは0を超え3未満の正の数であり、Yは、Cl原子、NO基、SO基、RCOO基から選ばれるいずれか一種であり、Zは、YがCl原子、NO基、RCOO基である場合3-X、YがSO基である場合(3-X)/2であり、前記Rは水素原子または炭素数1~10の炭化水素基若しくは水酸基含有炭化水素基であって、RCOO基が複数存在する場合、各Rは同一であっても異なっていてもよい)
    で表される化合物から選ばれる一種以上である請求項4に記載の無機繊維の製造方法。
  6.  前記焼成する温度が、500℃以上液相生成温度未満である請求項4または請求項5のいずれかに記載の無機繊維の製造方法。
PCT/JP2011/077612 2010-11-30 2011-11-30 無機繊維およびその製造方法 WO2012073989A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11845580.7A EP2647747B1 (en) 2010-11-30 2011-11-30 Inorganic fiber and method for manufacturing same
US13/990,364 US9156730B2 (en) 2010-11-30 2011-11-30 Inorganic fiber and method for manufacturing the same
JP2012546904A JP5655094B2 (ja) 2010-11-30 2011-11-30 無機繊維およびその製造方法
CN201180057688.1A CN103298986B (zh) 2010-11-30 2011-11-30 无机纤维及其制造方法
KR1020137013547A KR101922241B1 (ko) 2010-11-30 2011-11-30 무기 섬유 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010266381 2010-11-30
JP2010-266381 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073989A1 true WO2012073989A1 (ja) 2012-06-07

Family

ID=46171917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/077612 WO2012073989A1 (ja) 2010-11-30 2011-11-30 無機繊維およびその製造方法

Country Status (6)

Country Link
US (1) US9156730B2 (ja)
EP (1) EP2647747B1 (ja)
JP (1) JP5655094B2 (ja)
KR (1) KR101922241B1 (ja)
CN (1) CN103298986B (ja)
WO (1) WO2012073989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115550A1 (ja) * 2013-01-23 2014-07-31 ニチアス株式会社 生体溶解性無機繊維及びその組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107313130B (zh) * 2017-08-17 2020-02-07 深圳市正佳科建科技有限公司 高硅铝钙增强纤维及其制备方法与铝钙超塑合金基复合铝
CN107313129B (zh) * 2017-08-17 2020-02-07 深圳市正佳科建科技有限公司 铝铜锆增强纤维及其制备方法与铝铜锆超塑合金基复合铝
CN109112721A (zh) * 2018-06-22 2019-01-01 西安工程大学 一种柔性氧化锆纳米纤维磷酸化肽富集材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1098595A (en) * 1964-02-19 1968-01-10 Babcock & Wilcox Co Process of manufacturing refractory fibers
JPS506823A (ja) * 1973-06-02 1975-01-24
JP3979494B2 (ja) 2002-12-04 2007-09-19 サンゴバン・ティーエム株式会社 加熱後に遊離ケイ酸を生成しない生体溶解性無機繊維とその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322865A (en) * 1966-11-10 1967-05-30 Babcock & Wilcox Co Process of manufacturing refractory fibers
US4010233A (en) * 1970-11-06 1977-03-01 Bayer Aktiengesellschaft Production of inorganic fibers
US4101615A (en) * 1973-02-20 1978-07-18 Sumitomo Chemical Company, Limited Process for producing alumina fiber or alumina-silica fiber
US5041512A (en) * 1986-09-04 1991-08-20 E. I. Du Pont De Nemours And Company Melt-formable organoaluminum polymer
US5424260A (en) 1994-02-07 1995-06-13 Aluminum Waste Technology, Inc. Method of recycling aluminum dross
JP2642906B2 (ja) 1995-05-19 1997-08-20 工業技術院長 スピネル単結晶繊維の製造方法
DE602006014268D1 (de) * 2005-05-31 2010-06-24 Teijin Ltd Keramikfaser und herstellungsverfahren dafür
US8163377B2 (en) * 2005-11-10 2012-04-24 The Morgan Crucible Company Plc High temperature resistant fibres
DE102006045816A1 (de) * 2006-09-28 2008-04-03 Clariant International Limited Polykristalline Korundfasern und Verfahren zu deren Herstellung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1098595A (en) * 1964-02-19 1968-01-10 Babcock & Wilcox Co Process of manufacturing refractory fibers
JPS506823A (ja) * 1973-06-02 1975-01-24
JP3979494B2 (ja) 2002-12-04 2007-09-19 サンゴバン・ティーエム株式会社 加熱後に遊離ケイ酸を生成しない生体溶解性無機繊維とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2647747A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115550A1 (ja) * 2013-01-23 2014-07-31 ニチアス株式会社 生体溶解性無機繊維及びその組成物

Also Published As

Publication number Publication date
US9156730B2 (en) 2015-10-13
KR20140006798A (ko) 2014-01-16
JP5655094B2 (ja) 2015-01-14
JPWO2012073989A1 (ja) 2014-05-19
CN103298986A (zh) 2013-09-11
CN103298986B (zh) 2016-01-27
KR101922241B1 (ko) 2018-11-26
US20130327976A1 (en) 2013-12-12
EP2647747A1 (en) 2013-10-09
EP2647747A4 (en) 2014-08-20
EP2647747B1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP5883227B2 (ja) 無機繊維
WO2012114565A1 (ja) 無機繊維
US9816206B2 (en) Carbonaceous metal/ceramic nanofibers
JP5655094B2 (ja) 無機繊維およびその製造方法
JP6228461B2 (ja) 無機繊維及びその製造方法
Dai et al. Electrospinning of hydroxyapatite fibrous mats
WO2012090455A1 (ja) 生体溶解性無機繊維
JP5642956B2 (ja) 無機繊維の製造方法
RU2465247C2 (ru) Волокна из поликристаллического корунда и способ их получения
WO2012114566A1 (ja) 無機繊維の製造方法
JP5649297B2 (ja) 無機繊維
JP6361418B2 (ja) 無機繊維、無機繊維集合体及び無機繊維成形体
JP2017048477A (ja) アルミナ繊維集合体及びその製造方法
Tunç et al. Fabrication and characterization of boron doped BaZrO 3 nanofibers via an electrospinning technique
CN113151932B (zh) 一种硅酸钇纳米纤维的制备方法及其制备材料
Liang et al. Preparation of superhydrophobic silicon-based net-like hollow nanostructure using electrospinning
Dai Calcium Phosphate Scaffolds from Electrospun PVA/inorganic Sol Precursors
JPH08503027A (ja) 多結晶質リチウム金属酸化物繊維とその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546904

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137013547

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13990364

Country of ref document: US