WO2012073536A1 - 生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体 - Google Patents

生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体 Download PDF

Info

Publication number
WO2012073536A1
WO2012073536A1 PCT/JP2011/056898 JP2011056898W WO2012073536A1 WO 2012073536 A1 WO2012073536 A1 WO 2012073536A1 JP 2011056898 W JP2011056898 W JP 2011056898W WO 2012073536 A1 WO2012073536 A1 WO 2012073536A1
Authority
WO
WIPO (PCT)
Prior art keywords
production
state
physical quantity
power
environmental change
Prior art date
Application number
PCT/JP2011/056898
Other languages
English (en)
French (fr)
Inventor
齋藤 宏
向川 信一
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201180055441.6A priority Critical patent/CN103221892B/zh
Priority to US13/884,757 priority patent/US20130282415A1/en
Publication of WO2012073536A1 publication Critical patent/WO2012073536A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31414Calculate amount of production energy, waste and toxic release
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a production management apparatus, a production management system, a production management apparatus control method, a control program, and a recording medium that monitor the production apparatus and determine the state of the production apparatus.
  • Such production management technology can detect abnormalities and prevent accidents, suppress the discharge of defective products, and increase production efficiency by eliminating waste.
  • the production management technology is an important element that is indispensable for a person who operates a production line to improve safety and productivity, and various ideas have been made so far.
  • Patent Document 1 discloses a method of determining the operating state (stop state, operating state, etc.) of a machine tool or detecting an abnormality of the machine tool by monitoring the power consumption of the machine tool. Has been.
  • the operation apparatus is configured to determine whether the production apparatus is operating or not based on the amount of power used.
  • the positioning of consumption resources in terms of extracting waste is to determine resource consumption in terms of whether or not “consumption” of the resources contributed to the production of goods. For example, if the consumption of the resource contributes to production (necessary consumption necessary for producing goods), it is determined that the resource consumption is not wasteful and the consumption of the resource If it does not contribute (does not affect normal production, is unnecessary consumption, conversely causes damage), then the resource consumption must be judged as wasted.
  • the present invention has been made in view of the above problems, and its purpose is to appropriately set the state of the production apparatus without depending on the operation / non-operation of the production apparatus (or only operation / non-operation). By determining, it is to realize a production management apparatus, a production management system, a control method for the production management apparatus, a control program, and a recording medium that can correctly determine waste of consumption resources.
  • a production management apparatus is a production management apparatus that monitors the state of a production apparatus that performs production by changing a physical quantity of a production environment by consuming resources.
  • the environment change physical quantity acquisition means for acquiring the physical quantity of the production environment changed by consuming the resource as the environment change physical quantity, and the environment change physical quantity acquired by the environment change physical quantity acquisition means, the state of the production apparatus is changed.
  • a state determination means for determining.
  • the environmental change physical quantity acquired in exchange for the consumption resource in the production apparatus is monitored, and the state determination unit is configured to change the state of the production apparatus according to the environmental change physical quantity acquired by the environmental change physical quantity acquisition unit. Determine the state.
  • the state of the production device is determined based on the environmental change physical quantity obtained in exchange for the consumed resource, not whether or not the production device is actually performing the production action on the work target. Can do.
  • the state determination as described above it is possible to appropriately determine the state of the production apparatus from the viewpoint of wasteful extraction of consumed resources, rather than the state determination based on the operation / non-operation of the production apparatus.
  • the state of the production device can be properly determined, it can be properly determined whether or not the resources consumed by the production device are useless.
  • the resource consumption is determined by appropriately determining the state of the production device without depending on the operation / non-operation of the production device (or only on the operation / non-operation). There is an effect that it becomes possible to correctly discriminate waste.
  • the production management system of the present invention includes a production apparatus that performs production by changing a physical quantity of a production environment by consuming resources, and a production management apparatus that monitors the state of the production apparatus. And an environmental change physical quantity measuring unit that measures a physical quantity that is changed by the production device consuming the resource as an environmental change physical quantity, and the production management device is configured to acquire the environmental change physical quantity acquired by the environmental change physical quantity measurement unit.
  • the state of the production apparatus is determined according to the above.
  • the production management apparatus control method of the present invention is a production management apparatus control method that monitors the state of a production apparatus that performs production by changing the physical quantity of the production environment by consuming resources. In accordance with the environment change physical quantity acquired in the environment change physical quantity acquisition step, and the environment change physical quantity acquisition step of acquiring the physical quantity of the production environment changed by consuming the resource as the environment change physical quantity. And a state determination step of determining the state of the production apparatus.
  • the production management apparatus may be realized by a computer.
  • a control program for the production management apparatus that causes the production management apparatus to be realized by a computer by causing the computer to operate as the respective means, and A computer-readable recording medium on which is recorded also falls within the scope of the present invention.
  • a production management apparatus is a production management apparatus that monitors the state of a production apparatus that performs production by changing a physical quantity of a production environment by consuming resources.
  • the environment change physical quantity acquisition means for acquiring the physical quantity of the production environment changed by consuming the resource as the environment change physical quantity, and the environment change physical quantity acquired by the environment change physical quantity acquisition means, the state of the production apparatus is changed.
  • a state determination means for determining.
  • the production management system of the present invention in order to solve the above problems, a production apparatus that performs production by changing the physical quantity of the production environment by consuming resources, a production management apparatus that monitors the state of the production apparatus, An environment change physical quantity measurement unit that measures a physical quantity that is changed by the production device as it consumes the resource as an environment change physical quantity, and the production management device responds to the environment change physical quantity acquired by the environment change physical quantity measurement unit.
  • the state of the production apparatus is determined.
  • the production management apparatus control method of the present invention is a production management apparatus control method that monitors the state of a production apparatus that performs production by changing the physical quantity of the production environment by consuming resources. In accordance with the environment change physical quantity acquired in the environment change physical quantity acquisition step, and the environment change physical quantity acquisition step of acquiring the physical quantity of the production environment changed by consuming the resource as the environment change physical quantity. And a state determination step of determining the state of the production apparatus.
  • Embodiment 1 An embodiment of the present invention will be described below with reference to FIGS.
  • production management for correctly determining waste of power consumption when a drying furnace as a production apparatus consumes electric power (resources, physical quantities consumed) to produce a product.
  • the apparatus and the production management system to which they belong will be described.
  • FIG. 2 is a diagram showing an overview of the production management system 100 in one embodiment of the present invention.
  • the production management system 100 includes a production management device 1, a power meter 2, a production control device 3, a pulse counter 4, a power source 5, and a drying furnace 6 as a production device.
  • the drying furnace 6 is a production facility for producing an object by drying an object to be dried in the furnace.
  • the drying furnace 6 includes an electric heater 8 in a drying layer 9 composed of a heat-resistant material and a heat insulating material, and removes moisture contained in the material to be dried by increasing the temperature in the drying layer 9.
  • the drying layer 9 includes an intake port, an exhaust port, and a fan, and efficiently exhausts the humid air that fills the drying layer 9 without lowering the temperature in the furnace (while keeping the temperature constant). It is possible.
  • a hot air heater for sending hot air or hot air may be provided.
  • the drying furnace 6 is connected to the roller conveyor 13, and the work 14 (14 a to 14 e) that is an object to be dried is conveyed by the roller conveyor 13.
  • the workpiece 14 is input into the dry layer 9 from the input port 10, passes through the dry layer 9 over a predetermined time, and is sequentially discharged from the discharge port 11 by a first-in first-out method.
  • the work 14 is transported from the left to the right over a certain period of time, as indicated by the double line arrows.
  • the workpiece 14a is a workpiece before being loaded
  • the workpiece 14b is a workpiece being loaded into the dry layer 9
  • the workpieces 14c and d are being dried, that is, a workpiece being produced
  • the workpiece 14e is a workpiece after being discharged. Show.
  • the moisture contained in the workpiece 14 can be removed without passing the workpiece 14 by damaging the workpiece 14 by passing through the dried layer 9 maintained at a certain temperature over a certain period of time.
  • the discharged work 14e is transported to the next production process or packed as a finished product.
  • the thermometer 7 is provided in the dry layer 9, and it is the structure which can monitor the temperature (environment change physical quantity) in a furnace.
  • the thermometer 7 supplies an analog signal or digital signal indicating the detected temperature information in the layer to the production control device 3 that controls the drying furnace 6.
  • the production control device 3 may include an analog input device.
  • the in-layer temperature information d2 is an analog signal
  • the analog input device performs A / D conversion
  • Data of the temperature information d2 may be supplied to the production management device 1.
  • the production management apparatus 1 may include an analog input device and acquire the in-layer temperature information d2 directly from the thermometer 7.
  • the in-layer temperature information d2 supplied from the thermometer 7 is a digital signal
  • the data of the in-layer temperature information d2 is supplied from the thermometer 7 directly or via the production control device 3 to the production management device 1. .
  • the power source 5 supplies necessary power to the drying furnace 6.
  • the drying furnace 6 changes the electric power to an amount of heat for maintaining the inside of the drying layer 9 at a high temperature. That is, the drying furnace 6 consumes a consumption resource called “electric power” and changes a production environment called “temperature”.
  • the amount of change in the production environment (here, the amount of change in temperature) can be expressed as an “environmental change physical quantity”. It can be said that the drying furnace 6 is a production device that consumes resources and acquires environmental change physical quantities for production.
  • the power meter 2 measures the amount of power consumed by the drying furnace 6. For example, the power consumption of the drying furnace 6 is measured at predetermined intervals (1 second, 10 seconds, 1 minute, etc.). The wattmeter 2 supplies the acquired power consumption data (power consumption d1) to the production management device 1.
  • the production control device 3 controls the drying furnace 6.
  • the drying furnace 6 is, for example, a numerically controlled machine tool (NC; Numeral Control machine).
  • NC numerically controlled machine tool
  • the production control device 3 can control the drying furnace 6 to maintain the inside of the drying layer 9 at the target temperature by transmitting a numerical value indicating the target temperature to the drying furnace 6 as an instruction signal. Further, the production control device 3 supplies the in-layer temperature information d2 acquired from the thermometer 7 to the production management device 1.
  • the pulse counter 4 communicates with the sensor 12 that monitors the operation of the drying furnace 6, acquires the production pulse signal d 3 output from the sensor 12, and supplies it to the production management device 1.
  • the sensor 12 is a photoelectric sensor, for example, and is connected to the pulse counter 4 via an input terminal in a wired manner or wirelessly.
  • the sensor 12 is provided at the insertion port 10, and when the workpiece 14 flowing on the roller conveyor 13 is passing through the insertion port 10, this is detected and output as an ON signal.
  • one pulse from the time when the OFF signal is switched to the ON signal to the time when the ON signal is switched to the OFF signal can be recognized as the input of one workpiece.
  • the pulse counter 4 may count pulses indicating that the workpiece 14 has passed from the production pulse signal d3, calculate the number of workpieces input per unit time, and transmit it to the production management device 1.
  • the pulse counter 4 may be built in the production management device 1 so that the production management device 1 directly acquires the production pulse signal d3 from the sensor 12.
  • the wattmeter 2 and the pulse counter 4 may be realized by a single device having these functions.
  • the configuration of the sensor 12 and the pulse counter 4 is not limited to the above example. Any known technique for monitoring the operation of the drying furnace 6 can be employed as appropriate.
  • an IC tag is embedded in the work 14, and a tag reader provided in the insertion port 10 can be configured to read when the work 14 passes through the insertion port 10.
  • the production pulse signal d3 capable of recognizing the time when the IC tag is read as a pulse is supplied from the tag reader to the pulse counter 4
  • the number of passing workpieces 14 can be counted.
  • the number of passages can be counted even in a configuration in which a barcode attached to the work 14 is read.
  • the production management device 1, the wattmeter 2, the production control device 3, and the pulse counter 4 are connected to each other via a wired or wireless communication means so as to communicate with each other.
  • the production management apparatus 1 of the present invention can determine the operating state of the drying furnace 6 in view of extracting waste of the consumed resources (electric power) by considering the environmental change physical quantity (in-layer temperature information d2). Is possible.
  • This process (function) of the production management apparatus 1 is hereinafter referred to as a state determination process (function). Furthermore, the production management apparatus 1 of the present invention performs the state determination process of the drying furnace 6 more accurately by using the production pulse signal d3 supplied from the pulse counter 4 in addition to the in-layer temperature information d2. be able to.
  • the production management device 1 can sort the physical consumption (power consumption d1) supplied from the above-described power meter 2 according to the result of the state determination process. That is, it is possible to sort the power consumption (resources) of the production apparatus (drying furnace 6) from the viewpoint of whether or not it is useless.
  • this process (function) of the production management apparatus 1 is referred to as a power discrimination process (function).
  • FIG. 1 is a block diagram showing a main configuration of a production management apparatus 1 according to an embodiment of the present invention.
  • the production management device 1 includes a control unit 20, a storage unit 21, a communication unit 22, and a display unit 23.
  • the production management device 1 may be provided with an operation unit for a user to input an instruction signal to the production management device 1.
  • the operation unit includes, for example, an appropriate input device such as a keyboard, a mouse, a button (cross key, determination key, character input key, etc.), a touch panel, a touch sensor, and a touch pen.
  • the communication unit 22 communicates with an external device.
  • the communication unit 22 transmits / receives data to / from each device (the wattmeter 2, the production control device 3, the pulse counter 4) of the production management system 100 in the premises via, for example, the premises LAN.
  • the production management device 1 may be connected to each of the wattmeter 2, the production control device 3, and the pulse counter 4 in a one-to-one relationship by wire or wireless.
  • the communication unit 22 is configured to identify each of the wattmeter 2, the production control device 3, and the pulse counter 4 and to grasp which device is communicating.
  • the display unit 23 displays an analysis result obtained by the production management apparatus 1 analyzing data acquired from the outside. For example, it is assumed that the production management device 1 displays the result of the state determination process and the result of the power determination process plotted on a graph or the like.
  • the display unit 23 is configured by an appropriate display device such as an LCD (liquid crystal display).
  • the storage unit 21 includes (1) a control program executed by the control unit 20, (2) an OS program, (3) an application program for the control unit 20 to execute various functions of the production management apparatus 1, and ( 4) Stores various data read when the application program is executed.
  • the storage unit 21 stores various programs and data read when executing the state determination function and the power determination function executed by the production management device 1.
  • the storage unit 21 includes an electric energy storage unit 40, a temperature information storage unit 41, a production pulse storage unit 42, and a condition storage unit 43.
  • a result storage unit that stores a result graph obtained as a result of the production management device 1 executing the state determination process or the power determination process may be included.
  • the production management device 1 includes a temporary storage unit (not shown).
  • the temporary storage unit is a so-called working memory that temporarily stores data used for calculation, calculation results, and the like in the course of various processes executed by the production management device 1, and includes a RAM or the like.
  • the control unit 20 performs overall control of each unit included in the production management apparatus 1, and includes at least a state determination unit 30, a power determination unit 31, and a result graph generation unit 32 as functional blocks. Further, the control unit 20 may include a data processing unit 33.
  • Each functional block of the control unit 20 described above is stored in a storage device (storage unit 21) in which a CPU (central processing unit) is realized by ROM (read only memory), NVRAM (non-Volatile random access memory), or the like. This can be realized by reading the program stored in a temporary storage unit (not shown) (such as RAM (random access memory)) and executing it.
  • a CPU central processing unit
  • ROM read only memory
  • NVRAM non-Volatile random access memory
  • the power amount storage unit 40 stores the power consumption d1 acquired from the wattmeter 2 by the communication unit 22.
  • the wattmeter 2 measures the power consumption of the drying furnace 6 at predetermined time intervals. Therefore, in the power storage unit 40, the power consumption of the drying furnace 6 is accumulated along with the passage of time along with the information on the time when the power is consumed. Yes.
  • the power consumption may be stored at different time intervals from those measured by the wattmeter 2. For example, the power consumption measured by the wattmeter 2 at intervals of 1 second may be accumulated at intervals of 1 minute and the power consumption per minute may be stored.
  • the temperature information storage unit 41 stores the in-layer temperature information d2 acquired by the communication unit 22 from the thermometer 7 (production control device 3).
  • the detected temperature may be accumulated in real time together with information on the time detected by the thermometer 7. Or the average value of the temperature calculated for every area by dividing
  • the production pulse storage unit 42 stores the production pulse signal d3 acquired from the pulse counter 4 by the communication unit 22.
  • the detection signal output from the sensor 12 may be stored as it is over time.
  • the result of the pulse counter 4 analyzing the production pulse signal d3 (for example, “number of input workpieces” per unit time) may be accumulated.
  • the production pulse signal d3 output from the sensor 12 may be stored in the production pulse storage unit 42 as it is, and the production management apparatus 1 may perform pulse analysis (counting).
  • the condition storage unit 43 stores determination (discrimination) conditions for the production management device 1 to execute state determination processing or power determination processing.
  • the production management device 1 can determine the state of the drying furnace 6 or sort the power by referring to the conditions stored in the condition storage unit 43.
  • the state determination unit 30 executes a state determination process of the production management device 1.
  • the state determination unit 30 determines the state of the drying furnace 6 by referring to the production pulse signal d3 stored in the production pulse storage unit 42 in addition to the in-layer temperature information d2. May be. More specifically, according to the determination conditions stored in the condition storage unit 43, the state determination unit 30 is based on the temperature in the layer of the drying furnace 6 and the number of workpieces input per unit time. The state of is determined.
  • the power discriminating unit 31 executes the power discriminating process of the production management device 1. In the present embodiment, specifically, it is determined whether or not the power consumption of the drying furnace 6 per unit time accumulated in the power amount storage unit 40 is wasteful power consumption.
  • the power discriminating unit 31 can discriminate whether or not the power consumed by the drying furnace 6 at that time was wasted according to the state of the drying furnace 6 at that time determined by the state determining unit 30.
  • the wasteful (necessary) power consumption refers to the power consumed by the drying furnace 6 when the drying furnace 6 is in an operation that contributes to the production activity for the workpiece 14. Wasted power consumption refers to the power consumed by the drying furnace 6 when the drying furnace 6 is not in an operation that contributes to production activities.
  • the result graph generation unit 32 generates a result graph representing the result of the state determination process by the state determination unit 30, the result of the power determination process by the power determination unit 31, or both.
  • the result graph generated by the result graph generation unit 32 is output to the display unit 23.
  • the user can easily confirm in what time zone the drying furnace 6 was in what state. Furthermore, the user can check how much power is consumed in which time zone by checking the graph of the power discrimination process, and easily classify whether or not the power consumption is wasted. It becomes possible.
  • the data processing unit 33 is stored in various data (power consumption d1, in-layer temperature information d2, production pulse signal d3, etc.) acquired from the outside of the production management device 1 or in each storage unit of the storage unit 21. Processes various data.
  • the data processing unit 33 may accumulate and store the power consumption at different time intervals from those measured by the wattmeter 2. Further, the data processing unit 33 may calculate a temperature average value at regular time intervals from the temperature information detected by the thermometer 7 or extract temperature information at regular time intervals. Furthermore, the data processing unit 33 may calculate the number of input workpieces per unit time based on the number of pulses counted by the pulse counter 4. Alternatively, the data processing unit 33 itself may analyze the production pulse signal d3 and count the number of pulses.
  • Such data processing may be executed according to a user instruction input from an operation unit (not shown), or may be executed according to an application program stored in advance.
  • FIG. 3 is a diagram illustrating an example of the state determination condition stored in the condition storage unit 43.
  • the state determination condition has the following data structure. That is, the assumed state of the drying furnace 6 is associated with each combination of the temperature condition in the drying layer 9 of the drying furnace 6 in the predetermined time zone and the condition of the number of workpieces input in the same time zone. It is remembered. Note that the data structure of the state determination condition shown in FIG. 3 is an example, and the data structure of the state determination condition in the present invention is not intended to be limited to this.
  • the appropriate temperature in the dry layer 9 for producing the workpiece 14 is predetermined as 180 to 200 ° C.
  • the state determination part 30 determines the state of the drying furnace 6 based on the temperature in the layer of the drying furnace 6 and the number of workpieces input per unit time in accordance with the state determination condition shown in FIG. Can do.
  • the state determination unit 30 acquires the in-layer temperature information d2 measured in a predetermined time zone (for example, 9:00 to 9:10) from the temperature information storage unit 41. Then, the state determination unit 30 acquires the number of workpieces input in the same time zone from the production pulse storage unit 42.
  • a predetermined time zone for example, 9:00 to 9:10
  • the state determination unit 30 determines the state determination condition shown in FIG. Accordingly, it is determined that the drying furnace 6 in the time zone from 9:00 to 9:10 is in the “0: start-up” state.
  • the “start-up” state refers to a state from when the drying furnace 6 (the electric heater 8 thereof) is operated until the temperature in the drying layer 9 reaches the proper production temperature (180 ° C.) from the normal temperature. ing. During this period, the drying furnace 6 is in operation, but has not yet reached the proper production temperature, so that the workpiece cannot be input. However, this is a state necessary for causing the drying furnace 6 to reach the proper production temperature (180 ° C.).
  • the state determination unit 30 sets the drying furnace 6 in the above time zone to “ 1: It is determined that the state is “normal standby”. During this time, the drying furnace 6 is in a state in which the workpiece is not input (not produced) even though the production activity can be performed because the dry layer 9 has reached the proper production temperature. Although the drying furnace 6 is in a state where it can be produced, it is preferable that the state of non-production is small from the viewpoint of production efficiency and waste of power.
  • the state determination unit 30 determines that the drying furnace 6 in the above time zone is in the “4: normal production” state. To do. During this time, the drying furnace 6 is in a state in which the dry layer 9 is maintained at a proper production temperature and the workpiece 14 is normally produced.
  • the drying furnace 6 sets “3: abnormal production” or “5: abnormal”. It is determined that the state is “production”. The work 14 produced by the drying furnace 6 when determined in this way by the state determination unit 30 is discarded as a defective product. Therefore, the abnormal production state is preferably close to zero from the viewpoint of production efficiency and from the viewpoint of waste of electric power (and other resources).
  • the state determination unit 30 determines that the drying furnace 6 is in the “2: abnormal standby” state. During this time, the drying furnace 6 does not generate a defective product because the work 14 is not input, but the temperature in the drying layer 9 is higher than the proper production temperature, and more resources (electric power) are used than necessary. It is thought that it is in the state of consuming.
  • the state determination unit 30 acquires the temperature information and the number of workpieces input for each predetermined time interval, and executes the state determination process of the drying furnace 6.
  • the state determination unit 30 outputs the result of the state determination process (any one of the states “0” to “5”) determined based on the temperature information and the number of workpieces input to the power determination unit 31.
  • FIG. 4 is a diagram illustrating an example of the power determination condition stored in the condition storage unit 43.
  • the power discrimination condition has the following data structure. That is, for each of the states assumed in the drying furnace 6 (determined by the state determination unit 30), a flag indicating whether or not the power consumed in that state is wasted is stored in association with each other. ing. Further, a label indicating the positioning of power consumed in each state is associated with each state and stored. Furthermore, with respect to items classified as not being necessary consumption (in the example shown in FIG. 4, the states “1”, “2”, “3”, and “5”), how much is wasted An index (useless level) indicating whether or not there is associated may be stored. Note that the data structure of the power determination condition shown in FIG. 4 is an example, and the data structure of the power determination condition in the present invention is not intended to be limited to this.
  • the electric power determination part 31 can determine the waste of the power consumption in the drying furnace 6 based on the state of the drying furnace 6 determined by the state determination part 30 according to the electric power determination condition shown in FIG. .
  • the power determination unit 31 determines that the power consumed when the drying furnace 6 is in the “0: start-up” state is not wasteful.
  • the state of “0: start-up” of the drying furnace 6 is a state (process) necessary for causing the drying furnace 6 to reach the proper production temperature (180 ° C.) as described above.
  • the power determination unit 31 can determine that the power in the startup state is not wasted even when the drying furnace 6 is in a non-production state.
  • the power discriminating unit 31 can discriminate that the power consumption in this state is not useless.
  • the power discriminating label is given to further subdivide and sort the power consumed by the drying furnace 6 from the viewpoint of extracting waste.
  • the state of “0: Start-up” is a process necessary for production although it does not contribute directly to production as described above.
  • the power consumed in this state is determined as “indirectly produced power” because it is indirectly contributed to production.
  • the state of “4: normal production” is a state where production is performed at an appropriate production temperature (180 to 200 ° C.) and the workpiece 14 is normally discharged.
  • the electric power consumed in this state is determined as “directly produced electric power” because it is directly contributed to production.
  • the states of “1: normal standby” and “2: abnormal standby” are states in which production is not performed even though the temperature has reached or exceeded the appropriate production temperature (180 ° C.).
  • the electric power consumed in this state does not contribute directly or indirectly to the production, and is determined as “non-productive electric power” based on the wasteful consumption.
  • the states of “3: Abnormal production” and “5: Abnormal production” are states in which defective products are discharged because production has been performed at a temperature other than the proper production temperature (180 to 200 ° C.). The power consumed in this state is determined as “abnormal power consumption” not only because it did not contribute to production but also because it contributed to the loss of discharging defective products.
  • the temperature in the dry layer 9 exceeds 200 ° C. and more power is consumed than in the states “1” and “3”. it is conceivable that. Then, it is considered that the states “3” and “5” in which defective products are discharged have a larger loss than the states “1” and “2”.
  • the waste level of power consumption in the state of “1: normal standby” is set to “Lv1”
  • the waste level of “2: abnormal standby” is set to “Lv2” higher than “1: normal standby”.
  • the waste level of “3: abnormal production” may be set to “Lv3” higher than “1” and “2”
  • the waste level of “5: abnormal production” is the highest “Lv4”. May be set.
  • the power discriminating unit 31 discriminates the positioning of the power consumption based on the determined state of the drying furnace 6 for each predetermined time interval.
  • the power discriminating unit 31 outputs the result of the power discriminating process (a flag indicating whether it is useless, one of the above-described labels, or a use level) to the result graph generating unit 32.
  • FIG. 5 is a flowchart showing a flow of state determination processing executed by the state determination unit 30.
  • the state determination unit 30 acquires the production pulse signal d3 (or the number of workpieces input) from the production pulse storage unit 42, and the in-layer temperature information d2 (hereinafter, temperature information) from the temperature information storage unit 41 (S101 and S102). It is assumed that the data on the number of workpieces and the temperature information acquired here are data indicating the transition of the number of workpieces and the temperature information between 9:00 and 15:00 on a certain day.
  • the state determination unit 30 divides the time zone from 9:00 to 15:00 into fixed time intervals (for example, every 10 minutes), and the drying furnace 6 at that time is divided into divided intervals. The state judgment is performed.
  • the state determination unit 30 performs the determination as follows according to the state determination condition shown in FIG.
  • the state determination unit 30 determines whether or not the temperature information of the acquired section (for example, 9:00 to 9:10) is below an appropriate lower limit value (for example, 180 ° C.) (S103).
  • the state determination unit 30 next determines whether the number of workpieces input in the same section (time zone) is 0 or more than 0. (S104). When the number of workpieces input is greater than zero, that is, when workpieces are input during that time period (YES in S104), the state determination unit 30 determines that the drying oven in that time period (9:00 to 9:10) The state of 6 is determined as “3: abnormal production” (S105).
  • the state determination unit 30 determines the state of the drying furnace 6 in the above time zone as “ “0: Start-up” is determined (S106).
  • the state determination unit 30 indicates that the temperature information of the section is within the production appropriate range (180 to 200 ° C.). It is determined whether or not (S107).
  • the state determination unit 30 determines whether the number of workpieces input in the section is 0 or more than 0 (S108). When the workpiece is input (YES in S108), the state determination unit 30 determines that the state of the drying furnace 6 in the section (9:00 to 9:10) is “4: normal production” (S109). . On the other hand, when the workpiece has not been put in that time zone (NO in S108), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “1: normal standby” (S110).
  • the state determination unit 30 determines that the number of workpieces input in the section is Whether 0 or more than 0 is determined (S111). If a workpiece has been input (YES in S111), the state determination unit 30 determines that the state of the drying furnace 6 in the section (9:00 to 9:10) is “5: abnormal production” (S112). . On the other hand, when the workpiece has not been put in that time zone (NO in S111), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “2: abnormal standby” (S113).
  • state determination unit 30 When state determination is executed for all sections (9:00 to 15:00) (YES in S114), state determination unit 30 outputs the result of the state determination process for all sections to power determination unit 31. The state determination process ends.
  • FIG. 6 is a flowchart showing the flow of the power determination process executed by the power determination unit 31.
  • the power determination unit 31 acquires the result of the state determination process for all the sections output by the state determination unit 30 for each section (S201). And the electric power discrimination
  • the state determination by the state determination unit 30 is performed every 10 minutes, it is preferable to acquire the power consumption by accumulation every 10 minutes so as to correspond to this.
  • the power determination unit 31 determines waste of power consumption according to the necessary consumption flag among the power determination conditions illustrated in FIG. 4.
  • the power determination unit 31 consumes power in that section according to the power determination condition. Is determined as necessary power consumption (not wasteful) (S204). On the other hand, when the state of the drying furnace 6 in the acquired section is “1” to “3” or “5” (NO in S203), it is determined that the power consumption in that section is wasteful power consumption. (S205).
  • power discrimination section 31 When power discrimination is executed for all sections (9:00 to 15:00) (YES in S206), power discrimination section 31 outputs the result of power discrimination processing for all sections to result graph generation section 32. . Based on the result of the power discriminating process output from the power discriminating unit 31, the result graph generating unit 32 generates a result graph and displays it on the display unit 23 (S207), and the power discriminating process ends.
  • FIG. 7 is a flowchart showing the flow of another power determination process executed by the power determination unit 31.
  • the power determination unit 31 acquires the result of the state determination process for all sections from the state determination unit 30 for each section (S301), and the power consumption for all sections from the power storage unit 40. The amount is acquired for each section (S302).
  • the power discriminating unit 31 discriminates the positioning of the power consumption according to the power discriminating label among the power discriminating conditions shown in FIG.
  • the power determination unit 31 determines the power consumption in that section as “indirectly produced power” according to the power determination condition. (S304). Then, when the state of the drying furnace 6 is “4: normal production” (NO in S303, YES in S305), the power determination unit 31 determines the power consumption in that section as “direct production power” ( S306). When the state of the drying furnace 6 is “1: normal standby” or “2: abnormal standby” (NO in S303, NO in S305, YES in S307), the power determination unit 31 uses the power consumption in that section. Is determined as “non-production power” (S308).
  • the power determination unit 31 uses the power consumption in that section. Is determined as “abnormal power consumption” (S309).
  • power discrimination section 31 When power discrimination is executed for all sections (9:00 to 15:00) (YES in S310), power discrimination section 31 outputs the result of power discrimination processing for all sections to result graph generation section 32. . Based on the result of the power discriminating process output from the power discriminating unit 31, the result graph generating unit 32 generates a result graph and displays it on the display unit 23 (S311), and the power discriminating process ends.
  • FIG. 8 is a diagram illustrating an example of a result graph generated by the result graph generation unit 32.
  • the result graph is output from the result graph generation unit 32 and displayed on the display unit 23.
  • the upper graph is a graph showing the transition of the number of workpieces input based on the production pulse signal d3 as reference information.
  • the lower graph is a graph (bar graph) showing the transition of the power consumption of the drying furnace 6 and the discrimination result of the power consumption. You may plot the graph (line graph) which shows transition of the temperature in the dry layer 9 in the lower graph.
  • the horizontal axis represents time in common with the upper and lower graphs.
  • the time display interval is preferably common to all graphs. Thereby, the passage of time and the transition of all values along the passage can be confirmed at a glance, and the convenience for the user is improved.
  • the vertical axis represents the number of workpieces input per minute.
  • the time zone in which the number of workpieces input is greater than 0 (10:00 to 10:30, 10:50 to 12:00, 12:50 to 13:40, 13:50 to 14: 20) is a time zone in which the drying furnace 6 is in production.
  • the vertical axis represents the temperature in the dry layer 9 (° C.) and the power consumption (kWh / min).
  • one bar represents the cumulative power consumption for 10 minutes.
  • the user is labeled as “indirect production power” for the power consumption of about 1.8 kWh / min consumed in this time zone.
  • the result of the state determination process may be plotted. Then, the user can understand that the state of the drying furnace 6 was “0: start-up” in the time period from 9:00 to 9:10.
  • the temperature in the dry layer 9 does not reach the appropriate temperature even though the work is being loaded.
  • the bar graph in this section is color-coded to indicate “abnormal power consumption”.
  • the user can confirm at a glance the state of the drying furnace 6 in all sections (9:00 to 15:00) and the determination result of the power consumption of the drying furnace 6. can do.
  • Embodiment 2 Another embodiment of the present invention will be described below with reference to FIGS.
  • the drying furnace 6 has a plurality of drying layers 9 having different production proper temperatures.
  • the state determination function and the power determination function of the production management apparatus 1 corresponding to the above case will be described.
  • FIG. 9 is a diagram showing an outline of the production management system 200 in one embodiment of the present invention.
  • the production management system 200 in this embodiment is different from the production management system 100 (FIG. 2) in the first embodiment in that the drying furnace 6 includes a plurality of drying layers 9a and drying layers 9b having different production appropriate temperatures. It is a point.
  • thermometer 7a measures the temperature of the dry layer 9a, and outputs first layer temperature information d2a as data of the measurement result to the production control device 3.
  • thermometer 7 b measures the temperature of the dry layer 9 b and outputs the second layer temperature information d ⁇ b> 2 b to the production control device 3.
  • the proper production temperature of the dry layer 9a is 180 to 200 ° C. and the proper production temperature of the dry layer 9b is 120 to 130 ° C.
  • the state determination condition has the following data structure. That is, the assumed state of the drying furnace 6 for each combination of the condition of the number of workpieces, the condition of the first temperature in the drying layer 9a, and the condition of the second temperature in the drying layer 9b. Are stored in association with each other.
  • the data structure of the state determination condition shown in FIG. 10 is an example, and the data structure of the state determination condition in the present invention is not intended to be limited to this.
  • the state determination unit 30 can determine such a state of the entire drying furnace 6 as “01: waiting for start-up”. it can.
  • the state determination unit 30 is configured to determine that the state in which only one of the dry layers 9 has not reached the appropriate temperature is “waiting for start-up” while no workpiece is input. A condition is set for. Moreover, the state determination part 30 is the structure determined as "waiting for a workpiece
  • the state determination unit 30 is configured to determine “abnormal production” when either one of the workpieces is out of the proper production temperature while the workpiece is being put in, and the conditions are set as such. Moreover, the state determination part 30 is the structure determined as "normal production” only when both the dry layers 9 are in appropriate temperature, and the conditions are set in that way.
  • the structure of the production management apparatus 1 in this embodiment is also expressed as follows.
  • the state determination part 30 is the structure which determines the state of each layer single-piece
  • the state determination unit 30 refers to the state determination condition shown in FIG. 10A, and first performs the state determination for each layer as in the first embodiment. And the state determination part 30 can determine the state of the whole drying furnace 6 corresponding to this combination based on the combination of the state of two layers.
  • the state determination unit 30 sets the state of the first dry layer 9a to “0: start up”, and sets the state of the second dry layer 9b to “1: normal standby”. Is determined. In this case, “0” and “1” are combined, and the state of the entire drying furnace 6 is determined as “01: waiting for start-up”.
  • FIG. 11 is a diagram illustrating an example of the power determination condition stored in the condition storage unit 43 of the present embodiment.
  • the power discrimination condition has the following data structure. That is, for each of the states assumed in the drying furnace 6 (determined by the state determination unit 30), a flag (necessary consumption flag) indicating whether or not the power consumed in that state is wasted. It is stored in association. Further, for each state, a label (power discrimination label) indicating the position of power consumed in that state is stored in association with each other. Although not shown, a waste level may be stored in association with an item classified as not necessary consumption (other than the states “00” and “44” in FIG. 11). Note that the data structure of the power determination condition shown in FIG. 11 is an example, and the data structure of the power determination condition in the present invention is not intended to be limited to this.
  • the power discriminating unit 31 wastes power consumption in the drying furnace 6 having a plurality of drying layers based on the state of the drying furnace 6 determined by the state determining unit 30 according to the power discriminating condition shown in FIG. Can be determined in more detail. Specifically, it is as follows.
  • the drying furnace 6 When all the drying layers 9 are below the appropriate temperature, the drying furnace 6 is in a “00: start-up” state. This is a process necessary for all the dry layers 9 to reach an appropriate temperature. Therefore, the power discriminating unit 31 discriminates the power consumed in this state as “indirectly produced power”.
  • the dry layer 9 that has reached the appropriate temperature is the dry layer being started up.
  • Such a state is determined as “waiting for start-up” (states “01, 02, 10, 20”). Part of the power consumed at this time is “indirectly produced power” for startup, and part of it is “non-produced power” during standby. Therefore, the power discriminating unit 31 discriminates the power consumed in this state as “semi-non-production power”.
  • the start-up period of each layer is considered complete. If the start-up is completed, the work should be input immediately and production should start. In this state, a state in which no workpiece is input and no production activity is performed is determined as “work waiting”. The power determination unit 31 determines the power consumed in this state as “non-production power”.
  • the power determination unit 31 determines the power consumed in this state as “abnormal power consumption”.
  • ⁇ Normal production is not performed until all the dry layers 9 are within the proper temperature range. In this case, the state of the drying furnace 6 is determined as “normal production”. Therefore, the power discriminating unit 31 discriminates the power consumed in this state as “directly produced power”.
  • FIGState determination processing flow] 12A to 12C are flowcharts showing the flow of state determination processing executed by the state determination unit 30 of this embodiment.
  • the state determination unit 30 acquires the production pulse signal d3 (or the number of workpieces input) from the production pulse storage unit 42 (S401). Then, the first layer temperature information d2a (hereinafter, temperature information 1) of the dry layer 9a and the second layer temperature information d2b (hereinafter, temperature information 2) of the dry layer 9b are acquired from the temperature information storage unit 41. (S402). The order of obtaining the number of workpieces and the temperature information may be switched.
  • the state determination unit 30 divides the time zone from 9:00 to 10:30 every 5 minutes, and determines the state of the drying furnace 6 at that time for each divided section.
  • the state determination unit 30 performs the determination as follows in accordance with the state determination conditions shown in FIGS.
  • the state determination unit 30 determines whether or not the temperature information 1 of the acquired section is below an appropriate lower limit value (such as 180 ° C.) (S403).
  • state determination unit 30 next determines whether temperature information 2 in the same section is below the appropriate lower limit (such as 120 ° C.). Is determined (S404).
  • the state determination unit 30 determines that the temperature information 2 of the section is within the production appropriate range (120 to 130 ° C.). It is determined whether or not there is (S408).
  • the state determination unit 30 determines whether the number of workpieces input in the section is 0 or more than 0 (S409). When the workpiece has been input (YES in S409), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “34: abnormal production” (S410). On the other hand, when the workpiece is not put into the section (NO in S409), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “01: Waiting for start-up” (S411).
  • the state determination unit 30 determines that the number of workpieces input in the section is Whether 0 or more than 0 is determined (S412).
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “35: abnormal production” (S413).
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “02: Waiting for start-up” (S414).
  • the above S404 to S414 are the process flow when the temperature information 1 of the dry layer 9a is below the lower limit value.
  • the state determination unit 30 determines that the temperature information 1 is within the appropriate range (180 to 200 ° C.) as shown in FIG. 12B. ) Is determined (S415).
  • state determination unit 30 determines whether or not temperature information 2 of dry layer 9b is below the appropriate lower limit (120 ° C.) ( S416).
  • the state determination unit 30 next determines whether the number of workpieces input in the same section is 0 or greater than 0 (S417). .
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “43: Abnormal production” ( S418).
  • the state determination unit 30 changes the state of the drying furnace 6 in the section to “10: Waiting for startup”. Is determined (S419).
  • the state determination unit 30 determines that the temperature information 2 of the section is within the production appropriate range (120 to 130 ° C.). It is determined whether or not there is (S420).
  • the state determination unit 30 determines whether the number of workpieces input in the section is 0 or more than 0 (S421). When the workpiece is input (YES in S421), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “44: normal production” (S422). On the other hand, when the work is not put into the section (NO in S421), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “11: Waiting for work” (S423).
  • the state determination unit 30 determines that the number of workpieces input in the section is Whether 0 or more than 0 is determined (S424).
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “45: abnormal production” (S425).
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “12: waiting for work” (S426).
  • the above S416 to S426 are the flow of processing when the temperature information 1 of the dry layer 9a is within an appropriate range.
  • the state determination unit 30 displays the state determination unit 30 in FIG. As shown, it is determined whether or not the temperature information 2 of the dry layer 9b is below the appropriate lower limit (120 ° C.) (S427).
  • the state determination unit 30 next determines whether the number of workpieces input in the same section is 0 or more than 0 ( S428).
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “53: Abnormal production” ( S429).
  • the state determination unit 30 sets the state of the drying furnace 6 in the section to “20: Waiting for startup”. Is determined (S430).
  • the state determination unit 30 determines that the temperature information 2 of the section is within the production appropriate range (120 to 130 ° C.). It is determined whether or not there is (S431).
  • the state determination unit 30 determines whether the number of workpieces input in the section is 0 or more than 0 (S432). When the workpiece is input (YES in S432), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “54: Abnormal production” (S433). On the other hand, when the work is not put into the section (NO in S432), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “21: Waiting for work” (S434).
  • the state determination unit 30 inputs the workpiece in the above section. It is determined whether the number is 0 or more than 0 (S435). When the workpiece has been input (YES in S435), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “55: Abnormal production” (S436). On the other hand, when a work is not put in the section (NO in S435), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “22: Waiting for work” (S437).
  • the above S427 to S437 are the flow of processing when the temperature information 1 of the dry layer 9a exceeds the appropriate upper limit value.
  • state determination unit 30 repeats the processes of S403 to S437 for the next section.
  • state determination unit 30 outputs the result of the state determination for all the sections to power determination unit 31, and ends the state determination process. .
  • FIG. 13 is a flowchart illustrating the flow of the power determination process executed by the power determination unit 31 of the present embodiment.
  • the power determination unit 31 acquires the result of the state determination process for all sections from the state determination unit 30 for each section (S501), and the power consumption for all sections from the power storage unit 40. The amount is acquired for each section (S502).
  • the power determination unit 31 determines the power determination condition illustrated in FIG. Accordingly, the power consumption of the section is determined as “indirect production power” (S504).
  • the power determination unit 31 determines the power consumption in that section as “direct production power” ( S506).
  • the power determination unit 31 determines the power consumption of the section as “ “Semi-non-production power” is determined (S508).
  • the power determination unit 31 uses the power consumption in that section. Is determined as “non-production power” (S510).
  • the power determination unit 31 uses the power consumption of the section. Is determined as “abnormal power consumption” (S511).
  • the power discrimination section 31 sends the result of power discrimination processing for all sections to the result graph generation section 32. Output. Based on the result of the power discriminating process output from the power discriminating unit 31, the result graph generating unit 32 generates a result graph and displays it on the display unit 23 (S513), and the power discriminating process ends.
  • the power determination process it is possible to correctly determine the power consumption from the viewpoint of determining waste of power consumption according to the state of the drying furnace 6, and the user knows the result of the power determination process. It becomes possible to present easily. Furthermore, according to the power discrimination processing according to the present embodiment, even when there are a plurality of drying layers 9 having different appropriate temperatures in the drying furnace 6 or when there are a plurality of production apparatuses to be monitored such as the drying furnace 6, these It is possible to determine the waste of power consumption.
  • FIG. 14 is a diagram illustrating an example of a result graph generated by the result graph generation unit 32 of the present embodiment.
  • the upper two-dimensional graph is a graph showing the time and the transition of the number of workpieces input.
  • the lower two-dimensional graph (bar graph) is a graph representing time and transition of power consumption of the drying furnace 6.
  • the bar graph is also a graph (bar graph) representing the determination result of power consumption.
  • a different point from that in FIG. 8 is that a line graph showing a temperature transition is plotted for each of the plurality of dry layers 9 having different appropriate temperatures.
  • the thin line represents the temperature of the dry layer 9a
  • the thick line represents the temperature of the dry layer 9b.
  • bars are displayed in different colors for each power discriminating label for each 5-minute bin representing the amount of power used.
  • the drying furnace 6 is in the “start-up” state while the drying layer 9 does not reach an appropriate temperature (the time zone from 9:00 to 9:20). It can be seen that the generated power is “indirectly produced power”.
  • the dry layer 9b waits for the rising of the dry layer 9a. "Waiting for launch” state. During this time, the power consumed for the dry layer 9b is wasted. Therefore, the smaller the “semi-non-produced power”, the better. That is, the shorter the time period from 9:20 to 9:35, the better. Looking at the result graph of FIG. 14, the user immediately determines that the period of this “waiting for start-up” state can be shortened (or zero) by starting the dry layer 9 a 15 minutes earlier. Is possible.
  • the result graph generated by the result graph generation unit 32 greatly contributes to presenting the problems and improvements of the current production management system to the user in an easy-to-understand manner.
  • FIG. 15 is a graph showing the relationship between the temperature fluctuation to be monitored and the threshold value (management temperature) for specifying the appropriate temperature range.
  • thermometer 7 when the temperature measured by the thermometer 7 (thermometers 7a and 7b) changes greatly at extremely short intervals (for example, several seconds, 0.3 seconds, etc.), Whether or not the internal temperature exceeds a threshold value changes rapidly.
  • the state determination process and the power determination process are performed in association with an extremely short interval, the processing load of the production management apparatus 1 increases, and the processing efficiency for deriving the result significantly decreases. is there.
  • the temperature may be too low (too high) by chance compared to the surrounding time point. There is a problem that the result cannot be derived.
  • the period (T1 to T5) during which the temperature in the furnace changes around the threshold (control temperature) is Since the conditions of the drying furnace 6 alternately change in extremely short periods of T1 to T2, T2 to T3, T3 to T4, and T4 to T5, there is a possibility that problems may occur in processing efficiency and processing accuracy. .
  • the data processing unit 33 of the production management apparatus 1 obtains a temperature average value of the section for each relatively long fixed period, and a polygonal line passing through the plotted points (or an approximate curve as shown in FIG. 15). (Gray thick line)) may be derived and stored in the temperature information storage unit 41.
  • the process of the state determination unit 30 is simplified, and the state determination unit 30 can efficiently perform the state determination process with a low load.
  • the state determination unit 30 is configured to perform the state determination process considering only the temperature in the layer as information obtained from the in-layer temperature information d2 (d2a, d2b).
  • the configuration of the state determination unit 30 of the present invention is not limited to this.
  • the configuration may be such that the state determination process is performed in consideration of other information obtained by statistically processing the in-layer temperature information d2.
  • the state determination unit 30 can determine whether or not the drying furnace 6 is in a startup state according to the temperature increase rate.
  • FIG. 16 is a diagram illustrating an example of a state determination condition stored in the condition storage unit 43 of the production management device 1 in the present modification.
  • the drying furnace 6 has one layer, but the present modification may be applied when the drying furnace 6 has a plurality of layers.
  • the state determination condition may have the following data structure. That is, (1) the condition of the temperature in the dry layer 9 in a predetermined time zone, (2) the condition of the number of workpieces added, and (3) the temperature of the predetermined time zone compared with the temperature of the immediately preceding time zone.
  • the assumed state of the drying furnace 6 is stored in association with each of the combinations with the temperature rise condition.
  • the state determination unit 30 does not refer to the temperature condition of (1) under the condition that the temperature rise is 2.0 ° C. or higher, and (2) only in combination with the condition of the number of workpieces input, the drying furnace The structure which can determine the state of 6 may be sufficient. Therefore, in the example illustrated in FIG. 16, the state determination condition has a structure in which a combination of (2) the number of workpieces input and (3) the temperature increase condition is associated with “state”.
  • the condition “A: start up” is stored in association with the condition where the workpiece is not input.
  • the condition that the workpiece is input it is abnormal that a rapid temperature rise occurs during production, and the state of “I: Abnormal production” is stored in association.
  • the state determination unit 30 can correctly determine the state of the drying furnace 6 based on the temperature rise, the production pulse, and the temperature without depending only on the production pulse. Become.
  • FIG. 17 is a diagram illustrating an example of the power determination condition stored in the condition storage unit 43 of the production management apparatus 1 in the present modification.
  • the power determination condition stores a necessary consumption flag and a power determination label in association with each “state” determined by the state determination unit 30 according to the state determination condition shown in FIG. 17. Data structure.
  • a waste level may be further stored in association with the example shown in FIG.
  • the electric power determination part 31 can determine the waste of the power consumption in the drying furnace 6 based on the state of the drying furnace 6 determined by the state determination part 30 according to the electric power determination condition shown in FIG. .
  • FIG. 18 is a flowchart illustrating the flow of the state determination process performed by the state determination unit 30 and the power determination process performed by the power determination unit 31.
  • the state determination unit 30 acquires the production pulse signal d3 (or the number of workpieces input) from the production pulse storage unit 42, and the in-layer temperature information d2 (hereinafter, temperature information) from the temperature information storage unit 41 (S601 and S602).
  • determination part 31 divide
  • the state determination unit 30 performs determination and determination as follows according to the state determination condition shown in FIG. 16, and the power determination unit 31 according to the power determination condition shown in FIG.
  • the state determination unit 30 compares the temperature information of the section immediately before the acquired section (in the case of the first time, for example, 0 ° C. or room temperature of the equipment) with the temperature information of the acquired section (S603). ).
  • the state determination unit 30 next determines whether the number of workpieces input in the acquired section is 0 or more than 0. (S605).
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “I: abnormal production” ( S606).
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “A: start up”. (S608). And the electric power discrimination
  • the state determination unit 30 determines that the temperature information of the section is within the production appropriate range (180 to 200). It is judged whether it is (degree C) (S610).
  • the state determination unit 30 determines whether the number of workpieces input in the section is 0 or greater than 0 (S611). When the workpiece has been input (YES in S611), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “O: normal production” (S612). And the electric power discrimination
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “C: normal standby” (S614). And the electric power discrimination
  • the state determination unit 30 determines whether the number of workpieces input in the section is 0 or more than 0 (S616). When the workpiece has been input (YES in S616), the state determination unit 30 determines that the state of the drying furnace 6 in the section is “F: Abnormal production” (S617). And the electric power discrimination
  • the state determination unit 30 determines that the state of the drying furnace 6 in the section is “D: Abnormal standby” (S619). And the electric power discrimination
  • the state determination unit 30 When the state determination is executed for all the sections (YES in S621), the state determination unit 30 indicates the result of the state determination process for all the sections, and the power determination unit 31 indicates the result of the power determination process for all the sections.
  • the result is output to the result graph generation unit 32.
  • the result graph generation unit 32 generates a result graph based on the result of the state determination process and the result of the power determination process, and displays the result graph on the display unit 23 (S622). Thereby, the state determination process and the power determination process are completed.
  • the production management apparatus 1 adds the “temperature” to the “temperature rise width” 2 obtained by statistically processing the temperature information in addition to “temperature” from one in-layer temperature information d2. It is possible to extract one parameter and determine the state of the drying furnace 6.
  • the state determination unit 30 determines the production / non-production of the drying furnace 6 based on the production pulse acquired by the sensor 12 monitoring the number of workpieces input to the drying furnace 6.
  • the state determination process is performed with reference to production / non-production information.
  • the configuration of the state determination unit 30 of the present invention is not limited to this.
  • the sensor 12 may be made to monitor other movements other than the number of workpieces input, and production / non-production may be determined by a method different from that described above.
  • FIG. 19 is a diagram showing an overview of a production management system 300 according to another embodiment of the present invention.
  • the drying furnace 6 has an input port 10 composed of a door that also serves as an input port and an exhaust port.
  • the workpiece 14 is taken in and out from the loading port 10 (a workpiece 14a before loading, a workpiece 14e after discharging, etc.). This loading / unloading may be performed automatically by a machine or manually.
  • the drying furnace 6 is a structure by which a door (input 10) is closed only when it operates for production of the workpiece
  • FIG. In other words, when the discharge and input of the workpiece 14 are completed and the production workpieces 14b to 14d are arranged in the dry layer 9, the input port 10 is closed, and the electric heater 8 is operated for the first time. When drying is completed and the workpiece 14 is taken out, the electric heater 8 is deactivated, and then the inlet 10 is opened. That is, it can be considered that the drying furnace 6 is in production when the input port 10 is closed and is not in production when the input port 10 is open.
  • the senor 12 can be configured as a sensor that detects the opening and closing of a door (inlet 10) for taking in and out the workpiece 14.
  • the sensor 12 detects a state in which the door is closed, and a pulse counter indicates a production pulse signal d3 in which this state is represented by a close signal (for example, an ON signal) and the state in which the door is open is represented by an OFF signal. 4 is output.
  • a close signal for example, an ON signal
  • the pulse counter 4 associates the ON / OFF signal (production pulse signal d3) acquired from the sensor 12 with the time information and supplies it to the production management apparatus 1. If the production management device 1 has the function of the pulse counter 4, the production management device 1 may acquire the production pulse signal d 3 directly from the sensor 12.
  • FIG. 20 is a diagram illustrating an example of a state determination condition stored in the condition storage unit 43 of the production management device 1 in the present modification.
  • the condition determination conditions are (1) a combination of conditions for opening and closing the door of the drying furnace 6 in a predetermined time zone, and (2) a condition for the temperature in the drying layer 9 in the predetermined time zone.
  • the assumed state of the drying furnace 6 is associated and stored.
  • the state determination condition has a structure in which the “door: open” condition is associated with the “key: standby” state.
  • the state determination condition is a structure in which the state of “K: startup” is associated with the combination of the condition “door: closed” and the condition “temperature information is below the appropriate lower limit”. It has become. Further, a combination of the condition “temperature information is within an appropriate range” and the state “K: normal production” are associated with each other. The combination with the condition “exceeding the appropriate upper limit value” is associated with “co: abnormal production”.
  • FIG. 21 is a diagram illustrating an example of the power determination condition stored in the condition storage unit 43 of the production management apparatus 1 in the present modification.
  • the power determination condition is stored in association with each “state” determined by the state determination unit 30 according to the state determination condition illustrated in FIG. 20, and a necessary consumption flag and a power determination label are stored. Data structure.
  • a waste level may be further stored in association with the example shown in FIG.
  • the electric power determination part 31 can determine the waste of the power consumption in the drying furnace 6 based on the state of the drying furnace 6 determined by the state determination part 30 according to the electric power determination condition shown in FIG. .
  • the power discriminating unit 31 discriminates the power consumed by the drying furnace 6 in the “ki: standby” state as “non-production power”, and the drying furnace 6 in the “ku: start-up” state. Is determined as “indirect production power”, the power consumed by the drying furnace 6 in the “normal: normal production” state is determined as “direct production power”, and “co: abnormal production” is determined. The power consumed by the drying furnace 6 in this state is determined as “abnormal power consumption”.
  • thermometer 7 is provided in the drying layer 9 of the drying furnace 6, and the state determination unit 30 determines the state of the drying furnace 6 according to the temperature information in the drying layer 9. It was.
  • the configuration of the state determination unit 30 is not limited to this.
  • the production management device 1 of the present invention can extract waste by monitoring the consumption of resources of not only the drying furnace 6 but also any production device.
  • the production equipment consumes consumption resources (electric power, gas, water, gasoline, etc.), environmental change physical quantities (temperature, atmospheric pressure, vapor pressure, pressure, humidity, oxygen saturation, density of other specific substances, etc.)
  • the production management apparatus 1 of the present invention can monitor the environmental change physical quantity of the production apparatus and determine the waste of the resource consumption if the production environment is of a property of producing a product by changing the production environment. it can.
  • an example of the production management apparatus 1 that monitors a sterilization sterilization apparatus that sterilizes and sterilizes a workpiece (food, medical instrument, etc.) with a constant vapor pressure (and high temperature). explain.
  • FIG. 22 is a diagram showing an overview of a production management system 400 according to another embodiment of the present invention.
  • the production management system 400 includes a sterilization apparatus 6a instead of the drying furnace 6 as a production apparatus.
  • the sterilization sterilization apparatus 6a is a production apparatus for sterilizing or sterilizing various germs adhering to the workpiece.
  • the sterilization apparatus 6a includes a pressure gauge 7c, an electric heater 8c, a sterilization sterilization tank 9c, and an operation button unit 16.
  • the sterilization sterilization tank 9c provides a space to be filled with high-temperature steam, and is composed of heat resistant and heat insulating materials.
  • the sterilization and sterilization tank 9 c has a heat-resistant partition 15 that allows water vapor to pass therethrough. Water is applied to the lower space of the partition 15, and high-temperature water vapor is fed into the upper space of the partition 15.
  • a work 14 is disposed in the upper space of the partition 15 and is sterilized (or sterilized) by high-temperature steam filling the upper space.
  • a sprinkler for spraying a medicine or the like in the upper space may be provided in the sterilization sterilization tank 9c.
  • the electric heater 8c is for warming and evaporating water stretched in the lower space of the sterilization sterilization tank 9c at a high temperature.
  • the pressure gauge 7c measures the pressure (vapor pressure) inside the sterilization sterilization tank 9c.
  • the vapor pressure information d2c measured by the pressure gauge 7c is output to the production control device 3 and supplied from the production control device 3 to the production management device 1.
  • the proper vapor pressure range in the sterilization sterilization tank 9c during the sterilization operation is defined as Xl to Xu (kPa).
  • the vapor pressure information d2c may be directly supplied from the pressure gauge 7c to the production management device 1.
  • the operation button unit 16 is composed of a plurality of buttons for operating the sterilization apparatus 6a.
  • the operation button unit 16 includes at least a start button 16a for instructing the start of a sterilization operation.
  • the production flow is as follows. First, before placing the work 14 in the sterilization sterilization tank 9c, the electric heater 8c of the sterilization sterilization apparatus 6a is operated to reach the predetermined vapor pressure (and temperature) in the sterilization sterilization tank 9c. When the sterilization sterilization tank 9c reaches an appropriate vapor pressure, the workpiece 14 is automatically arranged in the sterilization sterilization tank 9c from the standby position. The state up to here can be regarded as “start-up”.
  • “production” is started. That is, when the start button 16a is pressed, the production control device 3 starts measuring time, monitors the pressure gauge 7c, controls the electric heater 8c, and controls the steam inside the sterilization sterilization tank 9c in advance. The pressure is maintained and this is continued for a predetermined time.
  • This state can be regarded as a sterilization operation in the sterilization apparatus 6a, that is, “production”.
  • the production control device 3 controls the sterilization and sterilization device 6a to deactivate the electric heater 8c, discharge the production completed work 14 (from the work 14c to the work 14d), and wait.
  • the inside work 14b is placed in the sterilization and sterilization tank 9c. During this time, the operator may perform an operation of putting the workpiece 14a before being thrown into a standby place in the sterilization sterilizer 6a.
  • the operation button unit 16 may further include an emergency stop button 16b so that the sterilization apparatus 6a can be stopped urgently even during sterilization work.
  • the operation button unit 16 is connected to the pulse counter 4 and outputs the pressed state of each button by the operator's button operation to the pulse counter 4 as a production pulse signal d3.
  • the operation button unit 16 is turned on while the sterilization operation is continued for a predetermined time after the start button 16a is pressed, while the work 14 is being charged and discharged after the predetermined time has elapsed.
  • a production pulse signal d3 that represents an OFF signal during an emergency stop is output to the pulse counter 4.
  • FIG. 23 is a diagram illustrating an example of state determination conditions stored in the condition storage unit 43 of the production management device 1 in the present modification.
  • the condition determination conditions are (1) a condition as to whether or not the sterilization apparatus 6a is performing a sterilization operation in a predetermined time zone, and (2) a vapor pressure condition in the sterilization sterilization tank 9c in the predetermined time zone.
  • the assumed state of the sterilization apparatus 6a is stored in association with each other.
  • the sterilization operation period is a relatively short time zone. This is because the vapor pressure does not fluctuate significantly. Therefore, under the condition of the sterilization operation (ON signal), it is possible to uniquely determine the state of the sterilization sterilizer 6a as normal production without referring to the condition of the pressure information. Therefore, in the example shown in FIG. 23, the state determination condition has a structure in which the state “SE: normal production” is associated with the condition “SIGNAL: ON (during sterilization)”.
  • the state determination condition is “sa: start-up”. It has a structure to be associated. Further, the combination of the condition “pressure information is within an appropriate range” and the state “S: normal standby” are associated with each other. The combination with the condition “exceeding the appropriate upper limit value” is associated with “S: Abnormal standby”.
  • FIG. 24 is a diagram illustrating an example of the power determination condition stored in the condition storage unit 43 of the production management device 1 in the present modification.
  • the power determination condition is stored in association with each “state” determined by the state determination unit 30 according to the state determination condition shown in FIG. 23, and a necessary consumption flag and a power determination label are stored. Data structure.
  • a waste level may be further stored in association with the example shown in FIG.
  • determination part 31 discriminate
  • the power discriminating unit 31 discriminates the power consumed by the sterilization sterilization apparatus 6a in the “sa: start-up” state as “indirectly produced power” and sterilizes in the “si: normal standby” state.
  • the power consumed by the sterilizer 6a is determined as “non-productive power”
  • the power consumed by the sterilizer 6a in the “Su: Abnormal standby” state is determined as “non-produced power”
  • the power consumed by the sterilization sterilizer 6a in the “normal production” state is determined as “direct production power”.
  • FIG. 25 is a diagram illustrating an example of a result graph generated by the result graph generation unit 32.
  • the result graph generation unit 32 can output two two-dimensional graphs to the display unit 23.
  • the horizontal axes of the upper and lower graphs represent the passage of time, and both time and scale are common.
  • the upper two-dimensional graph is a graph showing the occurrence of the sterilization work and the time period of occurrence thereof.
  • the time zone in which the signal is ON indicates that the sterilization operation is in progress (production), and the time zone in which the signal is OFF indicates that the sterilization preparation is in progress (non-production).
  • the lower two-dimensional graph is a graph showing the time and the transition of the power consumption of the sterilization apparatus 6a. Furthermore, the bar graph is also a graph (bar graph) representing the determination result of power consumption. Further, a graph (a line graph or an approximate curve graph) showing the transition of the vapor pressure in the sterilization sterilization tank 9c may be plotted on the lower two-dimensional graph.
  • the sterilization sterilization tank 9c is started up (the vapor pressure is allowed to reach an appropriate range).
  • This “start-up” state is seen in a section where the production pulse is OFF and the vapor pressure is below the appropriate lower limit value Xl.
  • the bar graph of power consumed in this section is given a label (colored) of “indirectly produced power”.
  • it is necessary to prepare for sterilization such as placing the workpiece 14 waiting in the sterilization sterilization apparatus 6a at an appropriate position in the sterilization sterilization tank 9c.
  • This “standby” state is seen in a section where the production pulse is OFF and the vapor pressure is not less than the appropriate lower limit value X1.
  • the bar graph of power consumed in this section is given a label (colored) of “non-production power”.
  • the sterilization apparatus 6a starts the sterilization work.
  • the bar graph of power consumed in this section is given a label (colored) of “directly produced power”.
  • the bar graph representing the power consumption is displayed with the color classification corresponding to the power discrimination label.
  • the result graph it is possible to reduce waste by performing the following analysis.
  • start-up and “normal production” time zones are always constant with no variation. It can be understood that no matter how and where anyone goes, it usually takes this much time.
  • the period of “standby (preparing for sterilization)” varies. It can be seen that the longer this waiting time (specifically, the time from when the previous work is taken out until the next work is ready for sterilization), the more power is wasted. .
  • the result graph generated by the result graph generation unit 32 greatly contributes to presenting the problems and improvements of the current production management system to the user in an easy-to-understand manner.
  • each block of the production management device 1, in particular, the state determination unit 30, the power determination unit 31, the result graph generation unit 32, and the data processing unit 33 may be configured by hardware logic. Thus, it may be realized by software using a CPU.
  • the production management apparatus 1 includes a CPU (central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, and a RAM (random access memory) that expands the program. And a storage device (recording medium) such as a memory for storing the program and various data.
  • An object of the present invention is a recording medium on which a program code (execution format program, intermediate code program, source program) of a control program of the production management apparatus 1 which is software for realizing the functions described above is recorded so as to be readable by a computer. This can also be achieved by supplying the production management apparatus 1 and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
  • the production management apparatus 1 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth (Registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • the state determination means is configured to set a normal state of the production apparatus during a period from when the production apparatus starts consuming resources until the environment change physical quantity changed by the production apparatus reaches an appropriate production range. It can be determined that it is a start-up state that means a state necessary for production behavior.
  • the process until the environmental change physical quantity reaches the appropriate production range although it is the stage before the production device actually starts the production action that is, the non-production state in which no product is produced.
  • the production management device includes a consumption physical quantity acquisition unit that acquires a physical quantity of a resource consumed by the production device as a consumption physical quantity, and a period in which the production apparatus is in the state according to the state determined by the state determination unit. It is preferable that the apparatus includes resource determining means for determining whether the consumed physical quantity of the consumed resource is wastefully consumed.
  • the resource determination unit determines waste of the resource consumed in that state.
  • resources consumed when the production equipment is in an activity that contributes to production are determined as necessary consumption, and conversely, resources that are consumed when it does not contribute to production are determined as wasted consumption. can do. Furthermore, since the consumed physical quantity acquisition means acquires the consumed physical quantity of the consumed resource, it is possible to determine how much waste (or necessary) the production apparatus consumed the resource in what state.
  • the production management device of the present invention can be clarified.
  • the production apparatus during the period from when the production apparatus starts consuming resources until the environmental change physical quantity changed by the production apparatus reaches the appropriate production range is determined by the state determination unit of the production management apparatus. If it is determined that the state is a start-up state that means a state necessary for normal production behavior, the resource discriminating means determines the amount of the resource consumed during the period in which the production apparatus is in the start-up state. It is possible to determine that the physical quantity consumed is not a wasteful consumption.
  • the production management device of the present invention includes a detection unit that detects whether the production device is performing a production action on the work target by changing a physical quantity of the production environment, and the state determination unit includes: The state of the production apparatus during the period from when the environmental change physical quantity changed by the production apparatus reaches the appropriate production range until the detection unit detects the execution of the production action can be implemented. However, it may be determined that the standby state means an unnecessary state where production is not performed.
  • the production / non-production information detected by the detection unit is further taken into consideration, so that “production is not performed even though normal production behavior can be performed. ”Can be identified.
  • the production device is in the state according to the state determined by the state determination unit and the consumption physical amount acquisition unit that acquires the physical amount of the resource consumed by the production device as the consumption physical amount.
  • Resource discriminating means for discriminating whether the consumed physical quantity of the resource consumed in the period is wastefully consumed, and the state determining means determines that the state of the production apparatus is the standby state.
  • the resource determination unit can determine that the physical consumption amount of the resource consumed during the period in which the production apparatus is in a standby state is wasted.
  • the production / non-production information detected by the detection unit is further taken into consideration, so that “production is not performed even though normal production behavior can be performed. ”Can be identified.
  • the state determination means of the production management device is a period in which the environmental change physical quantity changed by the production apparatus reaches a production appropriate range, and a period in which the detection unit detects execution of the production action. It may be determined that the state of the production apparatus is a production state meaning a necessary state of production.
  • the resource determination unit determines whether or not the consumption physical quantity of the resource consumed during the period in which the production apparatus was in the state is wasted,
  • the state determination unit is configured to set a normal state of the production apparatus during a period from when the production apparatus starts consuming resources until the environment change physical quantity changed by the production apparatus reaches an appropriate production range.
  • the resource discriminating means indirectly determines the consumption physical quantity of the resource consumed during the period in which the production apparatus is in the startup state.
  • Indirect production consumption which means that it has contributed to non-production consumption, which means that it has not contributed to production
  • the physical consumption of the resource that was consumed during the period when the production device is in a standby state and the above Consumption physical quantity of the resource produced device has consumed during a production state, it may be determined that the direct production consumption means that contributed directly to production.
  • the state determination unit first considers the environmental change physical quantity, so that the environmental change physical quantity that the production apparatus changes after the production apparatus starts consuming the resource is first produced.
  • the state of the production apparatus in the period until reaching the appropriate range can be identified as a “start-up state” that means a preparation stage necessary for normal production behavior.
  • the production / non-production information detected by the detection unit is taken into consideration, so that production is not performed even though normal production behavior can be implemented. Can be identified.
  • the state of the production apparatus during the period in which the environmental change physical quantity acquired by the production apparatus has reached the production appropriate range, and the detection unit detects the execution of the production action It can be identified as “production state” as directly contributing to production.
  • the resource determination unit determines whether or not the physical consumption amount of the resource consumed during the period in which the production apparatus was in the state is wasted. Is determined.
  • the physical quantity of the resource consumed during the period when the production device is in the “start-up state” means “indirect production consumption”, which means that the production device has indirectly contributed to production, "Non-production consumption”, which means that the consumption physical quantity of the resource consumed in the "standby state” period did not contribute to production, and the above-mentioned consumption of the production apparatus in the "production state” period
  • the physical consumption amount of the resource can be determined as “direct production consumption amount” which means that it has directly contributed to production.
  • the production apparatus has a plurality of mechanisms with different appropriate ranges of environmental change physical quantities, the environmental change physical quantity acquisition means acquires respective environmental change physical quantities from a plurality of mechanisms, and the state determination means The state of the production apparatus may be determined according to a combination of a plurality of environmental change physical quantities acquired by the environment change physical quantity acquisition unit from each mechanism.
  • the state varies depending on each mechanism. Specifically, normal production cannot be achieved unless all the mechanisms reach the production appropriate range, but all the mechanisms do not necessarily reach the production appropriate range at the same time. That is, in one mechanism, even if the environmental change physical quantity has reached the proper production range, the other mechanism can reach the proper production range.
  • the state determination means acquires the environmental change physical quantity from each mechanism, combines the environmental change physical quantities of the respective mechanisms, and comprehensively determines the state of the production apparatus.
  • the state of the production apparatus is appropriately determined without depending on the operation / non-operation (or only operation / non-operation) of the production apparatus. It becomes possible to correctly determine waste.
  • the state determination means may be determined to be a startup state that means a state necessary for normal production behavior.
  • the environmental change physical quantity of the production equipment has a large change in a relatively short period from the physical quantity before operation to the appropriate production range at the time of start-up, and then the environmental change physical quantity reaches the appropriate production range. Is generally stable for a long period of time in order to maintain the proper production range.
  • the environmental change physical quantity acquisition means may acquire temperature information as an environmental change physical quantity that is changed by the production apparatus.
  • the production apparatus has a mechanism for producing a product by acquiring a high temperature or low temperature environment compared to normal temperature by consuming resources, the state of the production apparatus It is possible to correctly determine the waste of the consumed resources by appropriately determining.
  • the production device is a device that consumes electric power to acquire a high temperature or low temperature environment and performs production, based on temperature information of a mechanism that is operating in the production device,
  • the state of the production apparatus can be determined. Furthermore, it is possible to determine the waste of power consumed by the production apparatus according to the state determined as such.
  • the production management system includes a consumption physical quantity measuring unit that measures a physical quantity of a resource consumed by the production apparatus as a consumption physical quantity, and the production management apparatus is configured to perform the production apparatus according to the determined state of the production apparatus. It may be determined whether or not the physical consumption amount of the resource consumed during the period in which the state is in this state is a wasteful consumption.
  • the production management system further includes a detection unit that detects whether the production apparatus is performing a production action on a work target by changing a physical quantity of a production environment, and the production management apparatus includes: You may determine the state of the said production apparatus according to the environmental change physical quantity which the said environmental change physical quantity measurement part acquired, and the presence or absence of the production action of the said production apparatus which the said detection part detected.
  • the present invention is used to measure an environmental change physical quantity that is changed by operating a production apparatus that consumes resources to perform production, and to determine waste of the consumed physical quantity consumed by the production apparatus.
  • the production management apparatus of the present invention includes a drying furnace, a sterilization apparatus, a washing machine, a compressor, a cooling apparatus, or other numerically controlled machine tool (NC: Numeral Control machine) as a production apparatus. Is in operation and changes physical quantities such as temperature, atmospheric pressure, vapor pressure, pressure, humidity, oxygen saturation, density of other specific substances, etc. It is possible to determine waste of consumption of physical quantities consumed (physical quantities such as electric power, water, gas, and gasoline).

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 本発明に係る生産管理装置(1)は、資源(電力など)を消費することにより生産環境の物理量(温度など)を変化させて生産を行う生産装置(6、6a)の状態を監視する生産管理装置(1)において、上記生産装置(6、6a)が上記資源を消費することにより変化させた生産環境の物理量を環境変化物理量(d2、d2a、d2b、d2c)として取得し、取得した環境変化物理量(d2、d2a、d2b、d2c)に応じて、上記生産装置(6、6a)の状態を判定する状態判定部(30)を備えていることを特徴としている。

Description

生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体
 本発明は、生産装置を監視して生産装置の状態を判定する生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体に関するものである。
 従来、生産装置(設備)の稼動状態を監視して、生産装置の異常を検知したり、生産装置あるいは生産ライン全体の無駄を抽出したりする生産管理が行われている。
 こうした生産管理技術により、異常を察知して事故を未然に防いだり、不良品の排出を抑えたり、無駄を排除して生産効率を高めたりすることができる。このように生産管理技術は、生産ラインを運用する者にとって、安全性および生産性を向上させる上で欠く事ができない重要な要素であり、これまでに様々な工夫がなされてきた。
 例えば、特許文献1には、工作機械の電力使用量を監視することにより、工作機械の稼動状態(停止状態、運転状態など)を判定したり、工作機械の異常を検知したりする方法が開示されている。
 また近年、地球環境の保全と経済性の観点から、生産装置の消費資源(電力などのエネルギー)を把握して、資源消費の無駄を抽出することも行われている。
日本国公開特許公報「特開2002-304207号公報(2002年10月18日公開)」
 上記従来の技術では、使用電力量に基づいて生産装置における稼動または非稼動の状態の判定する構成である。また、従来、生産装置に投入されるワーク(作業対象物)や、それに対して発生する作業を検知して、生産装置の生産または非生産の状態を判定することも行われている。
 しかしながら、これらの状態判定結果を利用しても、無駄を抽出する観点で消費資源の位置付けを正しく判別できないという問題がある。
 無駄を抽出する観点での消費資源の位置付けとは、その資源の「消費」が、物の生産に貢献したか否かという観点で、資源消費を判別することである。例えば、その資源の消費が生産に貢献した(物を生産する上で必要な、必然的な消費である)場合には、その資源消費は無駄ではないと判断し、その資源の消費が生産に貢献しなかった(正常な生産に影響を与えない、不必要な消費である、逆に損害を与える)場合には、その資源消費は無駄であると判断されなければならない。
 より具体的には、稼動(生産)状態であっても、実際にワークが投入されていないことも考えられるし、不良品を生産していることも考えられる。このような場合、生産時の消費であっても、無駄を抽出する観点では、「この資源消費は無駄である」と判断されなければならない。反対に、非稼動(非生産)状態であっても、生産装置が正常に物を生産できる状態を維持するために資源を消費しなければならないこともある。このような場合、非生産時の消費であっても、無駄を抽出する観点では、「この資源消費は必要である(無駄ではない)」と判断されなければならない。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、生産装置の稼動/非稼動に(あるいは、稼動/非稼動のみに)頼ることなく、生産装置の状態を適正に判定することにより、消費資源の無駄を正しく判別することを可能にする生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体を実現することにある。
 本発明に係る生産管理装置は、上記課題を解決するために、資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置の状態を監視する生産管理装置において、上記生産装置が上記資源を消費することにより変化させた生産環境の物理量を環境変化物理量として取得する環境変化物理量取得手段と、上記環境変化物理量取得手段が取得した環境変化物理量に応じて、上記生産装置の状態を判定する状態判定手段とを備えていることを特徴としている。
 上記構成によれば、生産装置において消費資源と引き換えに獲得される環境変化物理量を監視し、上記環境変化物理量取得手段によって取得された上記環境変化物理量に応じて、状態判定手段が、生産装置の状態を判定する。
 これにより、生産装置が作業対象物に対して、実際に生産行動を実施しているか否かではなく、消費された資源と引き換えに得られる環境変化物理量に拠って生産装置の状態を判定することができる。
 上述のような状態判定によれば、生産装置の稼動/非稼動に拠る状態判定よりも、消費資源の無駄抽出の観点から生産装置の状態を適正に判定することできる。
 生産装置の状態を適正に判定できれば、生産装置が消費した資源が無駄であったか否かを適正に判別することができる。
 以上のとおり、本発明の生産管理装置によれば、生産装置の稼動/非稼動に(あるいは、稼動/非稼動のみに)頼ることなく、生産装置の状態を適正に判定することにより、消費資源の無駄を正しく判別することが可能になるという効果を奏する。
 本発明の生産管理装置を含んで構成される、以下のような生産管理システムも本発明の範疇に入る。すなわち、本発明の生産管理システムは、上記課題を解決するために、資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置と、上記生産装置の状態を監視する生産管理装置と、上記生産装置が上記資源を消費することにより変化させる物理量を環境変化物理量として計測する環境変化物理量計測部とを含み、上記生産管理装置は、上記環境変化物理量計測部が取得した環境変化物理量に応じて、上記生産装置の状態を判定することを特徴としている。
 本発明の生産管理装置の制御方法は、上記課題を解決するために、資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置の状態を監視する生産管理装置の制御方法であって、上記生産装置が上記資源を消費することにより変化させた生産環境の物理量を環境変化物理量として取得する環境変化物理量取得ステップと、上記環境変化物理量取得ステップにて取得した環境変化物理量に応じて、上記生産装置の状態を判定する状態判定ステップとを含むことを特徴としている。
 なお、上記生産管理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記各手段として動作させることにより上記生産管理装置をコンピュータにて実現させる生産管理装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明に係る生産管理装置は、上記課題を解決するために、資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置の状態を監視する生産管理装置において、上記生産装置が上記資源を消費することにより変化させた生産環境の物理量を環境変化物理量として取得する環境変化物理量取得手段と、上記環境変化物理量取得手段が取得した環境変化物理量に応じて、上記生産装置の状態を判定する状態判定手段とを備えていることを特徴としている。
 本発明の生産管理システムは、上記課題を解決するために、資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置と、上記生産装置の状態を監視する生産管理装置と、上記生産装置が上記資源を消費することにより変化させる物理量を環境変化物理量として計測する環境変化物理量計測部とを含み、上記生産管理装置は、上記環境変化物理量計測部が取得した環境変化物理量に応じて、上記生産装置の状態を判定することを特徴としている。
 本発明の生産管理装置の制御方法は、上記課題を解決するために、資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置の状態を監視する生産管理装置の制御方法であって、上記生産装置が上記資源を消費することにより変化させた生産環境の物理量を環境変化物理量として取得する環境変化物理量取得ステップと、上記環境変化物理量取得ステップにて取得した環境変化物理量に応じて、上記生産装置の状態を判定する状態判定ステップとを含むことを特徴としている。
 したがって、生産装置の稼動/非稼動に(あるいは、稼動/非稼動のみに)頼ることなく、生産装置の状態を適正に判定することにより、消費資源の無駄を正しく判別することを可能にするという効果を奏する。
本発明の一実施形態における生産管理装置の要部構成を示すブロック図である。 本発明の一実施形態における生産管理システムの概要を示す図である。 生産管理装置の条件記憶部に記憶されている状態判定条件の一例を示す図である。 生産管理装置の条件記憶部に記憶されている電力判別条件の一例を示す図である。 生産管理装置の状態判定部が実行する状態判定処理の流れを示すフローチャートである。 生産管理装置の電力判別部が実行する電力判別処理の流れを示すフローチャートである。 生産管理装置の電力判別部が実行する他の例の電力判別処理の流れを示すフローチャートである。 生産管理装置の結果グラフ生成部によって生成された結果グラフの一例を示す図である。 本発明の他の実施形態における生産管理システムの概要を示す図である。 (a)および(b)は、他の実施形態における生産管理装置の条件記憶部に記憶されている状態判定条件の一例を示す図である。 生産管理装置の条件記憶部に記憶されている電力判別条件の一例を示す図である。 他の実施形態における生産管理装置の状態判定部が実行する状態判定処理の流れを示すフローチャートである。 他の実施形態における生産管理装置の状態判定部が実行する状態判定処理の流れを示すフローチャートである。 他の実施形態における生産管理装置の状態判定部が実行する状態判定処理の流れを示すフローチャートである。 他の実施形態における生産管理装置の電力判別部が実行する電力判別処理の流れを示すフローチャートである。 他の実施形態における生産管理装置の結果グラフ生成部によって生成された結果グラフの一例を示す図である。 監視する温度のゆらぎと、温度適正範囲を特定するための閾値(管理温度)との関係を示すグラフである。 本発明の変形例において、生産管理装置の条件記憶部に記憶される状態判定条件の一例を示す図である。 本発明の変形例において、生産管理装置の条件記憶部に記憶される電力判別条件の一例を示す図である。 本発明の変形例において、生産管理装置の状態判定部が実行する状態判定処理および電力判別部が実行する電力判別処理の流れを示すフローチャートである。 本発明の変形例における生産管理システムの概要を示す図である。 本発明の変形例において、生産管理装置の条件記憶部に記憶される状態判定条件の一例を示す図である。 本発明の変形例において、生産管理装置の条件記憶部に記憶される電力判別条件の一例を示す図である。 本発明の変形例における生産管理システムの概要を示す図である。 本発明の変形例において、生産管理装置の条件記憶部に記憶される状態判定条件の一例を示す図である。 本発明の変形例において、生産管理装置の条件記憶部に記憶される電力判別条件の一例を示す図である。 本発明の変形例において、生産管理装置の結果グラフ生成部によって生成された結果グラフの一例を示す図である。
 ≪実施形態1≫
 本発明の実施形態について、図1~8に基づいて説明すると以下の通りである。
 以下で説明する実施形態では、一例として、生産装置としての乾燥炉が、電力(資源、消費物理量)を消費して製品の生産を行う場合の、消費電力の無駄を正しく判別するための生産管理装置、および、それらが属する生産管理システムについて説明する。
 なお、以降の各図において、各構成要素に付された符号に関し、同じ符号は、同じ構成要素を示している。したがって、各実施形態の説明において、既に説明した構成要素についての重複する説明は省略する。
 〔生産管理システムの概要〕
 図2は、本発明の一実施形態における生産管理システム100の概要を示す図である。図2に示すとおり、生産管理システム100は、生産管理装置1、電力計2、生産制御装置3、パルスカウンタ4、電源5、および、生産装置としての乾燥炉6を含む。
 乾燥炉6は、炉内の被乾燥物を乾燥させることにより、物を生産する生産設備である。
本実施形態では、乾燥炉6は、耐熱材および断熱材で構成された乾燥層9内に、電気ヒータ8を備え、乾燥層9内を高温にして被乾燥物に含有される水分を除去するが、これは乾燥炉6の構成の一例であって、本発明の生産装置の構成を限定するものではない。図示しないが、乾燥層9は、吸気口および排気口と、ファンとを備え、炉内の温度を下げることなく(一定に保ちながら)、乾燥層9に充満する多湿の空気を効率よく排出することが可能である。乾燥層9内には、電気ヒータ8に代えて、熱風や温風を送る熱風式ヒータが設けられてもよい。
 乾燥炉6は、ローラコンベア13と接続されており、被乾燥物であるワーク14(14a~14e)は、ローラコンベア13によって運搬される。ワーク14は、投入口10から乾燥層9内へと投入されて、一定時間をかけて乾燥層9内を通過し、排出口11から、先入れ先出し方式にて順次排出される。
 図2に示す例では、2重線矢印に示すとおり、ワーク14は、左から右へと一定時間かけて運搬される。ワーク14aは投入前のワークを、ワーク14bは、乾燥層9内に投入中のワークを、ワーク14c、dは乾燥中、すなわち、生産中のワークを、ワーク14eは排出後のワークを、それぞれ示している。このように、一定の温度に保たれた乾燥層9内を、一定時間かけて通過させることにより、ワーク14を傷めることなく、ワーク14の含有水分を除去することができる。排出後のワーク14eは、次の生産工程に搬送されたり、完成製品として梱包されたりする。
 乾燥層9内には、温度計7が設けられており、炉内の温度(環境変化物理量)を監視することができる構成である。温度計7は、検知した層内温度情報を示すアナログ信号、または、デジタル信号を、乾燥炉6を制御する生産制御装置3に供給する。生産制御装置3は、アナログ入力器を備えていてもよく、層内温度情報d2がアナログ信号である場合には、アナログ入力器がこれをA/D変換し、生産制御装置3が、層内温度情報d2のデータを生産管理装置1に供給してもよい。あるいは、生産管理装置1がアナログ入力器を備え、温度計7から直接層内温度情報d2を取得してもよい。温度計7から供給される層内温度情報d2がデジタル信号である場合には、温度計7から直接または生産制御装置3を介して層内温度情報d2のデータが生産管理装置1に供給される。
 電源5は、乾燥炉6に必要電力を供給するものである。本実施形態では、乾燥炉6は、電力を、乾燥層9内を高温に維持するための熱量に変える。つまり、乾燥炉6は「電力」という消費資源を消費して、「温度」という生産環境を変化させる。生産環境の変化量(ここでは、温度の変化量)は、「環境変化物理量」と表現し得る。乾燥炉6は、消費資源を消費して、環境変化物理量を獲得して生産を行う生産装置であると言える。
 電力計2は、乾燥炉6が消費する電力量を計測するものである。例えば、所定の間隔(1秒、10秒、1分、・・・など)で、乾燥炉6の消費電力を計測する。電力計2は、取得した消費電力のデータ(消費電力d1)を生産管理装置1に供給する。
 生産制御装置3は、乾燥炉6を制御するものである。乾燥炉6は、例えば、数値制御工作機械(NC;Numeral Controlマシン)である。生産制御装置3は、目的の温度を示す数値を指示信号として乾燥炉6に送信することにより、乾燥炉6が乾燥層9内を目的の温度で維持するように制御することが可能である。また、生産制御装置3は、温度計7から取得した層内温度情報d2を生産管理装置1に供給する。
 パルスカウンタ4は、乾燥炉6の動作を監視するセンサ12と通信し、センサ12が出力する生産パルス信号d3を取得して、生産管理装置1に供給するものである。
 センサ12は、例えば光電センサであって、入力端子を介して有線で、あるいは、無線でパルスカウンタ4と接続する。センサ12は、例えば、投入口10に設けられ、ローラコンベア13上を流れるワーク14が、投入口10が通過中である場合に、これを検知してON信号として出力する。この場合、OFF信号からON信号への切り換わり時点からON信号からOFF信号への切り換わり時点までの1パルスを、1個のワークの投入として認識することができる。パルスカウンタ4は、生産パルス信号d3からワーク14が通過したことを示すパルスをカウントし、単位時間あたりのワーク投入数を算出して、生産管理装置1に伝達してもよい。あるいは、パルスカウンタ4は、生産管理装置1に内蔵され、生産管理装置1が、センサ12から生産パルス信号d3を直接取得する構成でもよい。
 なお、電力計2およびパルスカウンタ4は、これらの機能を兼ね備える1台の装置で実現されてもよい。
 また、センサ12およびパルスカウンタ4の構成は上述の例に限定されない。乾燥炉6の動作を監視するための公知のあらゆる技術を適宜採用することが可能である。例えば、ワーク14にICタグが埋め込まれており、投入口10に設けられたタグリーダが、ワーク14が投入口10を通過するときに読み取る構成とすることができる。この場合、ICタグを読み取った時点をパルスとして認識可能な生産パルス信号d3が、タグリーダからパルスカウンタ4へ供給されれば、ワーク14の通過個数をカウントすることが可能である。あるいは、ワーク14に添付されたバーコードを読み取る構成でも通過個数をカウントすることができる。
 なお、生産管理装置1と、電力計2、生産制御装置3およびパルスカウンタ4とは、有線または無線通信手段を介して互いに通信可能に接続されている。
 本発明の生産管理装置1は、環境変化物理量(層内温度情報d2)を考慮することにより、消費資源(電力)の無駄を抽出するという観点で、乾燥炉6の動作状態を判定することが可能である。生産管理装置1のこの処理(機能)を、以下では、状態判定処理(機能)と称する。さらに、本発明の生産管理装置1は、層内温度情報d2に加えて、パルスカウンタ4から供給された生産パルス信号d3を用いることにより、乾燥炉6の状態判定処理を、より正確に実施することができる。
 また、生産管理装置1は、上述の電力計2から供給された消費物理量(消費電力d1)を、状態判定処理の結果にしたがって、仕分けすることが可能である。つまり、生産装置(乾燥炉6)の消費電力(資源)を、無駄であるか否かという観点で仕分けすることが可能である。生産管理装置1のこの処理(機能)を、以下では、電力判別処理(機能)と称する。
 これより、状態判定機能および電力判別機能を備える生産管理装置1の構成について詳細に説明する。
 〔生産管理装置の構成〕
 図1は、本発明の一実施形態における生産管理装置1の要部構成を示すブロック図である。図1に示すとおり、本実施形態における生産管理装置1は、制御部20、記憶部21、通信部22、および、表示部23を備える構成となっている。なお、図示しないが、生産管理装置1は、ユーザが生産管理装置1に指示信号を入力するための操作部が備えられていてもよい。操作部は、例えば、キーボード、マウス、ボタン(十字キー、決定キー、文字入力キーなど)、タッチパネル、タッチセンサ、タッチペンなどの適宜の入力装置で構成される。
 通信部22は、外部の装置と通信を行うものである。通信部22は、例えば、構内LANを介して、構内の生産管理システム100の各装置(電力計2、生産制御装置3、パルスカウンタ4)とデータの送受信を行う。あるいは、生産管理装置1は、電力計2、生産制御装置3およびパルスカウンタ4のそれぞれと、1対1の関係で、有線または無線によって接続されていてもかまわない。この場合、通信部22は、電力計2、生産制御装置3およびパルスカウンタ4のそれぞれを識別し、どの装置と通信しているのかを把握できる構成となっている。
 表示部23は、生産管理装置1が、外部から取得したデータを分析して得た分析結果を表示するものである。例えば、生産管理装置1が状態判定処理を行った結果や、電力判別処理を行った結果をグラフなどにプロットして表示することが想定される。表示部23は、例えば、LCD(液晶ディスプレイ)などの適宜の表示装置で構成される。
 記憶部21は、制御部20が実行する(1)制御プログラム、(2)OSプログラム、(3)制御部20が、生産管理装置1が有する各種機能を実行するためのアプリケーションプログラム、および、(4)該アプリケーションプログラムを実行するときに読み出す各種データを記憶するものである。特に、記憶部21は、生産管理装置1が実行する状態判定機能および電力判別機能を実行する際に読み出す各種プログラム、データを記憶する。具体的には、記憶部21には、電力量記憶部40、温度情報記憶部41、生産パルス記憶部42、条件記憶部43が含まれる。図示しないが、生産管理装置1が状態判定処理、または、電力判別処理を実行した結果得られた結果グラフを記憶する結果記憶部が含まれていてもよい。
 また、生産管理装置1は、図示しない一時記憶部を備えている。一時記憶部は、生産管理装置1が実行する各種処理の過程で、演算に使用するデータおよび演算結果等を一時的に記憶するいわゆるワーキングメモリであり、RAMなどで構成される。
 制御部20は、生産管理装置1が備える各部を統括制御するものであり、機能ブロックとして、少なくとも、状態判定部30、電力判別部31および結果グラフ生成部32を備えている。さらに、制御部20は、データ処理部33を備えていてもよい。
 上述した制御部20の各機能ブロックは、CPU(central processing unit)が、ROM(read only memory)、NVRAM(non-Volatile random access memory)等で実現された記憶装置(記憶部21)に記憶されているプログラムを不図示の一時記憶部(RAM(random access memory)等)に読み出して実行することで実現できる。
 電力量記憶部40は、通信部22が電力計2から取得した消費電力d1を記憶するものである。電力計2は、所定時間間隔で、乾燥炉6の消費電力量を測定する。そこで、電力量記憶部40においては、乾燥炉6の消費電力量は、その電力が消費されたときの時刻の情報とともに、時間の経過に沿って、単位時間あたりの消費電力量が蓄積されている。
 また、電力計2が計測したのとは、異なる時間間隔で消費電力量を記憶しておいてもよい。例えば、電力計2が1秒間隔で計測した消費電力を、1分間隔で累積して1分ごとの消費電力量を記憶しておいてもよい。
 温度情報記憶部41は、通信部22が温度計7(生産制御装置3)から取得した層内温度情報d2を記憶するものである。温度情報記憶部41においては、温度計7が検知した時刻の情報とともに、検知された温度がリアルタイムで蓄積されてもよい。あるいは、リアルタイムで蓄積された温度を一定の時間間隔で区切って区間ごとに算出した温度の平均値が蓄積されてもよい。あるいは、温度計7によって一定の時間間隔で検知された温度が蓄積されてもよい。
 生産パルス記憶部42は、通信部22がパルスカウンタ4から取得した生産パルス信号d3を記憶するものである。生産パルス記憶部42には、センサ12が出力した検知信号がそのまま時間の経過とともに蓄積されてもよい。あるいは、パルスカウンタ4が生産パルス信号d3を分析した結果(例えば、単位時間あたりの「投入ワーク数」など)が蓄積されてもよい。なお、センサ12が出力した生産パルス信号d3がそのまま生産パルス記憶部42に記憶されて、生産管理装置1においてパルスの分析(カウント)が行われてもよい。
 条件記憶部43は、生産管理装置1が、状態判定処理または電力判別処理を実行するための、判定(判別)条件を記憶するものである。生産管理装置1は、条件記憶部43に記憶されている条件を参照することにより、乾燥炉6の状態を判定したり、電力の仕分けを行ったりすることが可能である。
 状態判定部30は、生産管理装置1の状態判定処理を実行するものである。本実施形態では、具体的には、温度情報記憶部41に記憶されている層内温度情報d2に基づいて、電力の無駄を抽出するという観点で、乾燥炉6の動作状態を判定するものである。また、本実施形態では、状態判定部30は、層内温度情報d2に加えて、生産パルス記憶部42に記憶されている生産パルス信号d3を参照することにより、乾燥炉6の状態を判定してもよい。より詳細には、状態判定部30は、条件記憶部43に記憶されている判定条件にしたがって、乾燥炉6の層内の温度と、単位時間あたりのワーク投入数とに基づいて、乾燥炉6の状態を判定する。
 電力判別部31は、生産管理装置1の電力判別処理を実行するものである。本実施形態では、具体的には、電力量記憶部40に蓄積された単位時間あたりの乾燥炉6の消費電力が、無駄に消費された電力か否かを判別する。電力判別部31は、状態判定部30によって判定された、その時々の乾燥炉6の状態に応じて、その時々に乾燥炉6が消費した電力が無駄であったか否かを判別することができる。ここで、無駄でない(必要な)消費電力とは、乾燥炉6がワーク14に対する生産活動に貢献する動作を行っている状態のときに、乾燥炉6によって消費された電力を指す。無駄な消費電力とは、乾燥炉6が生産活動に貢献する動作を行っていない状態のときに、乾燥炉6によって消費された電力を指す。
 電力判別部31は、条件記憶部43に記憶されている判別条件にしたがって、状態判定部30が判定した乾燥炉6の状態に基づいて、乾燥炉6による消費電力を、無駄か否かという観点で判別する。
 結果グラフ生成部32は、状態判定部30による状態判定処理の結果、または、電力判別部31による電力判別処理の結果、もしくは、その両方を表す結果グラフを生成するものである。結果グラフ生成部32によって生成された結果グラフは、表示部23に出力される。
 表示部23に表示された状態判定処理の結果グラフを確認することにより、ユーザは、どの時間帯に乾燥炉6がどのような状態にあったかを容易に確認することができる。さらに、ユーザは、電力判別処理の結果グラフを確認することにより、どの時間帯にどれだけの電力が消費されたのかを確認するとともに、その消費電力が無駄であったか否かを容易に仕分けることが可能となる。
 データ処理部33は、生産管理装置1の外部から取得された各種データ(消費電力d1、層内温度情報d2、生産パルス信号d3など)、あるいは、記憶部21の各記憶部に記憶されている各種データを処理するものである。
 上述したとおり、データ処理部33は、電力計2が計測したのとは、異なる時間間隔で消費電力量を累積して記憶してもよい。また、データ処理部33は、温度計7が検知した温度情報から、一定の時間間隔ごとに温度平均値を算出したり、一定の時間間隔で温度情報を抽出したりしてもよい。さらに、データ処理部33は、パルスカウンタ4によってカウントされたパルス数に基づいて、単位時間あたりの投入ワーク数を算出したりしてもよい。あるいは、データ処理部33自身が生産パルス信号d3を分析して、パルス数をカウントしたりしてもよい。
 このようなデータ処理は、図示しない操作部から入力されたユーザ指示にしたがって実行されてもよいし、予め記憶されているアプリケーションプログラムにしたがって実行されてもよい。
 〔状態判定条件〕
 図3は、条件記憶部43に記憶されている状態判定条件の一例を示す図である。
 図3に示すとおり、本実施形態では、状態判定条件は、以下のようなデータ構造を有する。すなわち、所定時間帯における乾燥炉6の乾燥層9内の温度の条件と、同じ時間帯のワーク投入数の条件との組合せのそれぞれに対して、想定される乾燥炉6の状態が対応付けて記憶されている。なお、図3に示す状態判定条件のデータ構造は一例であって、本発明における状態判定条件のデータ構造をこれに限定する意図はない。
 図3に示す例では、生産管理システム100において、ワーク14を生産するための、乾燥層9内の適正温度は、180~200℃と予め定まっている。
 これにより、状態判定部30は、図3に示す状態判定条件にしたがって、乾燥炉6の層内の温度と、単位時間あたりのワーク投入数とに基づいて、乾燥炉6の状態を判定することができる。
 より具体的には、状態判定部30は、所定の時間帯(例えば、9:00~9:10)に計測された層内温度情報d2を、温度情報記憶部41から取得する。そして、状態判定部30は、同じ時間帯におけるワーク投入数を生産パルス記憶部42から取得する。
 ここで、例えば、取得した温度情報が、170℃(180℃未満)であって、ワーク投入数が0個(個/分)である場合、状態判定部30は、図3に示す状態判定条件にしたがって、9:00~9:10の時間帯の乾燥炉6を「0:立ち上げ」の状態であると判定する。
 「立ち上げ」の状態とは、乾燥炉6(の電気ヒータ8)が稼動してから、乾燥層9内の温度が常温から生産適正温度(180℃)に到達するまでの間の状態を指している。この間の乾燥炉6の状態は、稼動はしているが、まだ生産適正温度に到達していないためワークが投入できない状態である。しかしながら、乾燥炉6を生産適正温度(180℃)に到達させるために必要な状態である。
 一方、取得した温度情報が生産適正温度(180~200℃)であって、ワーク投入数が0個(個/分)である場合、状態判定部30は、上記時間帯の乾燥炉6を「1:正常待機」の状態であると判定する。この間の乾燥炉6は、乾燥層9が生産適正温度に到達しているので、生産活動を行うことできるにもかかわらず、ワークが投入されていない(生産していない)状態である。乾燥炉6が生産可能な状態であるにも拘わらず、非生産であるという状態は、生産効率の観点からも、電力の無駄という観点からも少ない方が好ましい。
 あるいは、取得した温度情報が生産適正温度であって、ワーク投入数が0個より多い場合、状態判定部30は、上記時間帯の乾燥炉6を「4:正常生産」の状態であると判定する。この間、乾燥炉6は、乾燥層9を生産適正温度に維持して、正常にワーク14を生産している状態になる。
 反対に、乾燥層9の下限値180℃を下回る温度、または、上限値200℃を超える温度でワーク14が生産された場合には、乾燥炉6は「3:異常生産」または「5:異常生産」の状態であると判定される。状態判定部30によってこのように判定されたときの乾燥炉6が生産したワーク14は、不良品として廃棄されることになる。したがって、異常生産の状態は、生産効率の観点からも、電力(およびその他資源)の無駄という観点からもかぎりなくゼロに近いことが好ましい。
 なお、ワーク投入数が0の時に、乾燥層9の温度が上限値200℃を超えるとき、状態判定部30は、乾燥炉6が「2:異常待機」の状態であると判定する。この間の乾燥炉6は、ワーク14が投入されていないので、不良品を発生させていないが、生産適正温度以上に乾燥層9内の温度が高くなっており、必要以上に資源(電力)を消費している状態であると考えられる。
 このようにして、状態判定部30は、一定時間区分ごとに、温度情報とワーク投入数とを取得して、乾燥炉6の状態判定処理を実行する。状態判定部30は、温度情報とワーク投入数とに基づいて判定した状態判定処理の結果(状態「0」~「5」のいずれか)を、電力判別部31に出力する。
 〔電力判別条件〕
 図4は、条件記憶部43に記憶されている電力判別条件の一例を示す図である。
 図4に示すとおり、本実施形態では、電力判別条件は、以下のようなデータ構造を有する。すなわち、乾燥炉6において想定される(状態判定部30によって判定される)状態のそれぞれに対して、その状態の時に消費される電力が無駄であるか否かを示すフラグが対応付けて記憶されている。また、状態のそれぞれに対して、その状態の時に消費される電力の位置付けを示すラベルが対応付けて記憶されている。さらに、必要な消費ではないと分類されている項目(図4に示す例では、状態「1」、「2」、「3」および「5」)に対して、その無駄がどの程度の無駄であるのかを示す指標(無駄レベル)が対応付けて記憶されていてもよい。なお、図4に示す電力判別条件のデータ構造は一例であって、本発明における電力判別条件のデータ構造をこれに限定する意図はない。
 これにより、電力判別部31は、図4に示す電力判別条件にしたがって、状態判定部30によって判定された乾燥炉6の状態に基づいて、乾燥炉6における消費電力の無駄を判別することができる。
 より具体的には、必要消費のフラグは、「○」が必要な電力(無駄でない)を表し、したがって、空欄が無駄な電力を表している。電力判別部31は、乾燥炉6が「0:立ち上げ」状態のときに消費された電力を、無駄でないと判別する。
 乾燥炉6の「0:立ち上げ」の状態は、上述したとおり、乾燥炉6を生産適正温度(180℃)に到達させるために必要な状態(工程)である。上記の電力判別条件にしたがうことによって、電力判別部31は、乾燥炉6が非生産の状態であっても、立ち上げ時の状態の電力を無駄でないと判別することができる。
 乾燥炉6の「4:正常生産」の状態は、直接的に生産に貢献しているので、電力判別部31は、この状態のときの消費電力を無駄でないと判別することができる。
 そして、これ以外の状態のときに消費された電力だけを無駄と判別することができる。
 電力判別ラベルは、乾燥炉6によって消費された電力を、無駄を抽出するという観点からさらに細分化して仕分けるために付与される。
 「0:立ち上げ」の状態は、上述したとおり、生産に直接的に貢献はしていないが、生産する上で必要な工程である。この状態のときに消費された電力は、間接的に生産に貢献したという位置付けで「間接生産電力」と判別される。
 「4:正常生産」の状態は、生産適正温度(180~200℃)にて生産を行い、正常にワーク14を排出した状態である。この状態のときに消費された電力は、直接的に生産に貢献したという位置付けで「直接生産電力」と判別される。
 「1:正常待機」および「2:異常待機」の状態は、生産適正温度(180℃)以上に到達しているにもかかわらず、生産を行っていない状態である。この状態のときに消費された電力は、直接的にも間接的にも生産に貢献せず、無駄に消費されたという位置付けで「非生産電力」と判別される。
 「3:異常生産」および「5:異常生産」の状態は、生産適正温度(180~200℃)以外のときに生産を行ってしまったために、不良品を排出した状態である。この状態のときに消費された電力は、生産に貢献しなかったばかりか、不良品を排出するという損失に加担したという位置付けで「異常消費電力」と判別される。
 さらに、状態「1」、「3」よりも、状態「2」、「5」の状態のときの方が、乾燥層9内の温度が200℃を超えて、余分に電力を消費していると考えられる。そして、不良品を排出した状態「3」、「5」の方が、状態「1」、「2」よりも損失が大きいと考えられる。
 よって、「1:正常待機」の状態の消費電力の無駄レベルを「Lv1」と設定し、「2:異常待機」の無駄レベルを、「1:正常待機」よりも高い「Lv2」と設定してもよい。また、「3:異常生産」の無駄レベルを、「1」、「2」よりも高い「Lv3」と設定してもよいし、「5:異常生産」の無駄レベルを、最も高い「Lv4」と設定してもよい。
 このようにして、電力判別部31は、一定時間区分ごとに、判定された乾燥炉6の状態に基づいて、消費電力の位置付けを判別する。電力判別部31は、電力判別処理の結果(無駄か否かのフラグ、上述のいずれかのラベル、あるいは、無駄レベルなど)を、結果グラフ生成部32に出力する。
 〔状態判定処理フロー〕
 図5は、状態判定部30が実行する状態判定処理の流れを示すフローチャートである。
 まず、状態判定部30は、生産パルス信号d3(あるいは、ワーク投入数)を生産パルス記憶部42から、層内温度情報d2(以下、温度情報)を温度情報記憶部41から取得する(S101およびS102)。ここで取得されたワーク投入数および温度情報のデータは、ある日の9:00~15:00の間のワーク投入数および温度情報のそれぞれの推移を示すデータであるとする。
 そして、本実施形態では、状態判定部30は、9:00~15:00の時間帯を、一定時間間隔(例えば、10分ごと)に区切り、区切った区間ごとに、そのときの乾燥炉6の状態判定を実施する。状態判定部30は、図3に示す状態判定条件にしたがって、判定を以下のとおり実施する。
 まず、状態判定部30は、取得した区間(例えば、9:00~9:10)の温度情報が、適正下限値(例えば、180℃)を下回るか否かを判定する(S103)。
 乾燥層9内の温度が適正下限値を下回る場合(S103においてYES)、状態判定部30は、次に、同じ区間(時間帯)のワーク投入数が、0個か0個より多いかを判定する(S104)。ワーク投入数が0個より多い場合、すなわち、その時間帯にワークが投入されていた場合(S104においてYES)、状態判定部30は、当該時間帯(9:00~9:10)の乾燥炉6の状態を、「3:異常生産」と判定する(S105)。反対に、ワーク投入数が0個の場合、すなわち、その時間帯にワークが投入されていなかった場合(S104においてNO)、状態判定部30は、上記時間帯の乾燥炉6の状態を、「0:立ち上げ」と判定する(S106)。
 一方、乾燥層9内の温度が適正下限値以上である場合(S103においてNO)、次に、状態判定部30は、上記区間の温度情報が、生産適正範囲内(180~200℃)であるか否かを判定する(S107)。
 乾燥層9内の温度が適正範囲内である場合(S107においてYES)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S108)。ワークが投入されていた場合(S108においてYES)、状態判定部30は、上記区間(9:00~9:10)の乾燥炉6の状態を、「4:正常生産」と判定する(S109)。反対に、その時間帯にワークが投入されていなかった場合(S108においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「1:正常待機」と判定する(S110)。
 一方、乾燥層9内の温度が適正範囲内でない場合、すなわち、炉内温度が適正上限値(200℃)を超える場合(S107においてNO)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S111)。ワークが投入されていた場合(S111においてYES)、状態判定部30は、上記区間(9:00~9:10)の乾燥炉6の状態を、「5:異常生産」と判定する(S112)。反対に、その時間帯にワークが投入されていなかった場合(S111においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「2:異常待機」と判定する(S113)。
 上記区間について「0」~「5」のいずれかの状態が判定された後、状態判定が未処理の区間が残っていれば(S114においてNO)、次の区間(例えば、9:10~9:20)の温度情報とワーク投入数とを取得し、S103~S113の処理を繰り返す。
 全区間(9:00~15:00)について、状態判定が実行されると(S114においてYES)、状態判定部30は、全区間についての状態判定処理の結果を電力判別部31に出力して、状態判定処理を終了する。
 〔電力判別処理フロー〕
 図6は、電力判別部31が実行する電力判別処理の流れを示すフローチャートである。
 まず、電力判別部31は、状態判定部30が出力した全区間についての状態判定処理の結果を区間ごとに取得する(S201)。そして、電力判別部31は、消費電力d1を電力量記憶部40から取得する(S202)。ここで、状態判定部30による状態判定が10分の区間ごとに行われた場合、これに対応するように、消費電力量を、10分ごとの累積で取得することが好ましい。
 図6に示す例では、電力判別部31は、図4に示す電力判別条件のうち、必要消費のフラグにしたがって、消費電力の無駄を判別する。
 電力判別部31は、取得した区間の乾燥炉6の状態が、「0:立ち上げ」または「4:正常生産」である場合(S203においてYES)、電力判別条件にしたがって、その区間の消費電力は必要な消費電力(無駄ではない)と判別する(S204)。一方、取得した区間の乾燥炉6の状態が、「1」~「3」、または、「5」である場合(S203においてNO)、その区間の消費電力は無駄な消費電力であると判別する(S205)。
 上記区間について電力判別が行われた後、電力判別が未処理の区間が残っていれば(S206においてNO)、次の区間(例えば、9:10~9:20)の状態判定処理の結果を取得して、S203~S205の処理を繰り返す。
 全区間(9:00~15:00)について、電力判別が実行されると(S206においてYES)、電力判別部31は、全区間についての電力判別処理の結果を結果グラフ生成部32に出力する。電力判別部31が出力した電力判別処理の結果に基づいて、結果グラフ生成部32が結果グラフを生成し、表示部23に表示して(S207)、電力判別処理が終了する。
 〔電力判別処理フロー〕
 図7は、電力判別部31が実行する他の電力判別処理の流れを示すフローチャートである。
 図6と同様、まず、電力判別部31は、状態判定部30から、全区間についての状態判定処理の結果を区間ごとに取得し(S301)、電力量記憶部40から、全区間について消費電力量を区間ごとに取得する(S302)。
 図7に示す例では、電力判別部31は、図4に示す電力判別条件のうち、電力判別のラベルにしたがって、消費電力の位置付けを判別する。
 電力判別部31は、取得した区間の乾燥炉6の状態が、「0:立ち上げ」である場合(S303においてYES)、電力判別条件にしたがって、その区間の消費電力を、「間接生産電力」と判別する(S304)。そして、乾燥炉6の状態が、「4:正常生産」である場合(S303においてNO、S305においてYES)、電力判別部31は、その区間の消費電力を、「直接生産電力」と判別する(S306)。そして、乾燥炉6の状態が、「1:正常待機」または「2:異常待機」である場合(S303においてNO、S305においてNO、S307においてYES)、電力判別部31は、その区間の消費電力を、「非生産電力」と判別する(S308)。そして、乾燥炉6の状態が、「3:異常生産」または「5:異常生産」である場合(S303においてNO、S305においてNO、S307においてNO)、電力判別部31は、その区間の消費電力を、「異常消費電力」と判別する(S309)。
 上記区間について電力判別が行われた後、電力判別が未処理の区間が残っていれば(S310においてNO)、次の区間(例えば、9:10~9:20)の状態判定処理の結果を取得して、S303~S309の処理を繰り返す。
 全区間(9:00~15:00)について、電力判別が実行されると(S310においてYES)、電力判別部31は、全区間についての電力判別処理の結果を結果グラフ生成部32に出力する。電力判別部31が出力した電力判別処理の結果に基づいて、結果グラフ生成部32が結果グラフを生成し、表示部23に表示して(S311)、電力判別処理が終了する。
 上述の電力判別処理によれば、乾燥炉6の状態に応じて、消費電力の無駄を判別するという観点で、消費電力を正しく判別することができるとともに、その電力判別処理の結果をユーザに分かり易く提示することが可能となる。
 〔結果グラフ〕
 図8は、結果グラフ生成部32によって生成された結果グラフの一例を示す図である。この結果グラフは、結果グラフ生成部32から出力され、表示部23に表示される。
 図8に示す例では、これに限定されないが、上下に2つの2次元グラフが表示されている。上のグラフは、参考情報としての、生産パルス信号d3に基づくワーク投入数の推移を表すグラフである。下のグラフは、乾燥炉6の消費電力量の推移および消費電力の判別結果を表すグラフ(棒グラフ)である。下のグラフには、乾燥層9内の温度の推移を示すグラフ(折れ線グラフ)をプロットしてもよい。
 横軸は上下のグラフともに共通で時刻を表している。時刻の表示間隔は、全グラフで共通とすることが好ましい。これにより、時刻の経過と、経過に沿ったすべての値の推移を一目で確認することができ、ユーザにとって利便性が向上する。
 上のグラフにおいて、縦軸は、1分あたりの投入されたワークの個数を表している。このグラフによれば、ワーク投入数が0個より多くなっている時間帯(10:00~10:30、10:50~12:00、12:50~13:40、13:50~14:20)が、乾燥炉6が生産活動をしている時間帯となる。
 下のグラフにおいて、縦軸は、乾燥層9内の温度(℃)、および、消費電力量(kWh/分)を表している。
 棒グラフにおいて、1本の棒が、10分間の累積消費電力量を表している。例えば、9:00~9:10に対応する棒が色分けされていることによって、ユーザは、この時間帯に消費された約1.8kWh/分の消費電力は、「間接生産電力」とラベリングされたものと理解できる。さらに、状態判定処理の結果もプロットしてもよい。そうすれば、ユーザは、9:00~9:10の時間帯において、乾燥炉6の状態は「0:立ち上げ」であったと理解することができる。
 またある別の区間(10:10~10:20)では、ワークが投入されているにもかかわらず、乾燥層9内の温度が適正温度に達していない。この区間の棒グラフには、「異常消費電力」を示す色分けが施される。
 このように、結果グラフを表示部23にすることによって、ユーザは、全区間(9:00~15:00)における乾燥炉6の状態と、乾燥炉6の消費電力の判別結果を一目で確認することができる。
 ≪実施形態2≫
 本発明の他の実施形態について、図9~14に基づいて説明すると以下の通りである。
 本実施形態では、乾燥炉6が、生産適正温度の異なる複数の乾燥層9を有している。以下では、上記の場合に対応した、生産管理装置1の状態判定機能、および、電力判別機能について説明する。
 〔生産管理システムの概要〕
 図9は、本発明の一実施形態における生産管理システム200の概要を示す図である。本実施形態における生産管理システム200が、実施形態1の生産管理システム100(図2)と異なる点は、乾燥炉6が、生産適正温度の異なる複数の乾燥層9aと、乾燥層9bとを備えている点である。
 これに伴って、温度計も、乾燥層9ごとに設けられている。温度計7aは、乾燥層9aの温度を計測し、計測結果のデータとしての第1層内温度情報d2aを生産制御装置3に対して出力する。温度計7bは、乾燥層9bの温度を計測し、第2層内温度情報d2bを生産制御装置3に対して出力する。
 本実施形態では、一例として、乾燥層9aの生産適正温度は、180~200℃、乾燥層9bの生産適正温度は、120~130℃であると予め定められているものとする。
 〔状態判定条件〕
 図10の(a)および(b)は、本実施形態の条件記憶部43に記憶されている状態判定条件の一例を示す図である。
 図10の(b)に示すとおり、本実施形態では、状態判定条件は、以下のようなデータ構造を有する。すなわち、ワーク投入数の条件と、乾燥層9a内の第1の温度の条件と、乾燥層9b内の第2の温度の条件との組合せのそれぞれに対して、想定される乾燥炉6の状態が対応付けて記憶されている。なお、図10に示す状態判定条件のデータ構造は一例であって、本発明における状態判定条件のデータ構造をこれに限定する意図はない。
 図10の(b)の状態判定条件にしたがえば、例えば、ある区間において、ワーク投入数が0個で、乾燥層9aの温度が170℃、乾燥層9bの温度が125℃であれば、乾燥層9aが適正温度になるのを、乾燥層9bが待つという状態となるので、状態判定部30は、このような乾燥炉6全体の状態を「01:立ち上げ待ち」と判定することができる。
 つまり、状態判定部30は、ワークが投入されていない間で、かつ、どちらか一方の乾燥層9だけが適正温度に達していない状態を「立ち上げ待ち」と判定する構成であり、そのように条件が設定されている。また、状態判定部30は、両方の乾燥層9が適正温度以上であれば、「ワーク待ち」と判定する構成であり、そのように条件が設定されている。
 一方、状態判定部30は、ワークが投入されている間は、どちらか一方でも生産適正温度の外れていたら「異常生産」と判定する構成であり、そのように条件が設定されている。また、状態判定部30は、両方の乾燥層9が適正温度内である場合にだけ「正常生産」と判定する構成であり、そのように条件が設定されている。
 なお、本実施形態における生産管理装置1の構成は、以下のようにも表現される。
 すなわち、状態判定部30は、各層単体の状態を判定し、それらの状態の組合せによって、乾燥炉6全体の状態を判定する構成である。
 状態判定部30は、図10の(a)に示す状態判定条件を参照して、実施形態1と同様にして、まず、各層単体の状態判定を行う。そして、状態判定部30は、2つの層の状態の組合せに基づいて、該組合せに対応する乾燥炉6全体の状態を判定することができる。
 例えば、実施形態1と同様の手順で、状態判定部30が、1つ目の乾燥層9aの状態を「0:立ち上げ」、2つ目の乾燥層9bの状態を「1:正常待機」と判定したとする。この場合、「0」と「1」とを組み合わせて、乾燥炉6全体の状態を「01:立ち上げ待ち」と判定する。
 〔電力判別条件〕
 図11は、本実施形態の条件記憶部43に記憶されている電力判別条件の一例を示す図である。
 図11に示すとおり、本実施形態では、電力判別条件は、以下のようなデータ構造を有する。すなわち、乾燥炉6において想定される(状態判定部30によって判定される)状態のそれぞれに対して、その状態の時に消費される電力が無駄であるか否かを示すフラグ(必要消費フラグ)が対応付けて記憶されている。また、状態のそれぞれに対して、その状態の時に消費される電力の位置付けを示すラベル(電力判別ラベル)が対応付けて記憶されている。図示しないが、さらに、必要な消費ではないと分類されている項目(図11の状態「00」と「44」以外)に対して、無駄レベルが対応付けて記憶されていてもよい。なお、図11に示す電力判別条件のデータ構造は一例であって、本発明における電力判別条件のデータ構造をこれに限定する意図はない。
 これにより、電力判別部31は、図11に示す電力判別条件にしたがって、状態判定部30によって判定された乾燥炉6の状態に基づいて、複数の乾燥層を有する乾燥炉6における消費電力の無駄をより詳細に判別することができる。具体的には以下のとおりである。
 すべての乾燥層9が適正温度を下回る場合、乾燥炉6は「00:立ち上げ」の状態である。これは、すべての乾燥層9が適正温度に達するまでに必要な工程である。そこで、電力判別部31は、この状態のときに消費された電力を「間接生産電力」と判別する。
 いずれかの乾燥層9が適正温度に達している一方、別のいずれかの乾燥層9が立ち上げ中である場合、適正温度に達している方の乾燥層9は、立ち上げ中の乾燥層9の準備が完了するまで生産を待たなければならない。このような状態は、「立ち上げ待ち」(状態「01、02、10、20」)と判定される。このときに消費された電力は、一部は、立ち上げのための「間接生産電力」であり、一部は、待機中の「非生産電力」である。そこで、電力判別部31は、この状態のときに消費された電力を「半非生産電力」と判別する。
 すべての乾燥層9が適正温度以上である場合、各層の立ち上げ期間は完了していると考えられる。立ち上げが完了したのであれば、速やかにワークが投入され生産が開始されるべきである。この状態で、ワークが投入されず生産活動が行われていない状態は、「ワーク待ち」と判定される。電力判別部31は、この状態のときに消費された電力を「非生産電力」と判別する。
 乾燥層9のいずれか1つでも適正温度範囲外の乾燥層9があれば、正常に生産できず、不良品を排出するおそれがある。この間にワークが投入されている場合は、乾燥炉6の状態は「異常生産」と判定される。そこで、電力判別部31は、この状態のときに消費された電力を「異常消費電力」と判別する。
 すべての乾燥層9が適正温度範囲内のときにワークが投入されてはじめて正常生産が行われる。この場合、乾燥炉6の状態は「正常生産」と判定される。そこで、電力判別部31は、この状態のときに消費された電力を「直接生産電力」と判別する。
 〔状態判定処理フロー〕
 図12A~Cは、本実施形態の状態判定部30が実行する状態判定処理の流れを示すフローチャートである。
 図12Aに示すとおり、まず、状態判定部30は、生産パルス信号d3(あるいは、ワーク投入数)を生産パルス記憶部42から取得する(S401)。そして、乾燥層9aの第1層内温度情報d2a(以下、温度情報1)、および、乾燥層9bの第2層内温度情報d2b(以下、温度情報2)を温度情報記憶部41から取得する(S402)。ワーク投入数と温度情報とを取得する順番は、入れ替わってもよい。
 本実施形態では、状態判定部30は、9:00~10:30の時間帯を、5分ごとに区切り、区切った区間ごとに、そのときの乾燥炉6の状態を判定する。状態判定部30は、図10の(a)および(b)に示す状態判定条件にしたがって、判定を以下のように実施する。
 まず、状態判定部30は、取得した区間の温度情報1が、適正下限値(180℃など)を下回るか否かを判定する(S403)。
 乾燥層9a内の温度情報1が適正下限値を下回る場合(S403においてYES)、状態判定部30は、次に、同じ区間の温度情報2が、適正下限値(120℃など)を下回るか否かを判定する(S404)。
 乾燥層9b内の温度情報2が適正下限値を下回る場合(S404においてYES)、状態判定部30は、次に、同じ区間のワーク投入数が、0個か0個より多いかを判定する(S405)。上記区間(時間帯)にワークが投入されていた(ワーク投入数>0の)場合(S405においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「33:異常生産」と判定する(S406)。反対に、上記区間にワークが投入されていなかった(ワーク投入数=0の)場合(S405においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「00:立ち上げ」と判定する(S407)。
 一方、乾燥層9b内の温度が適正下限値以上である場合(S404においてNO)、次に、状態判定部30は、上記区間の温度情報2が、生産適正範囲内(120~130℃)であるか否かを判定する(S408)。
 乾燥層9b内の温度が適正範囲内である場合(S408においてYES)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S409)。ワークが投入されていた場合(S409においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「34:異常生産」と判定する(S410)。反対に、上記区間にワークが投入されていなかった場合(S409においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「01:立ち上げ待ち」と判定する(S411)。
 一方、乾燥層9b内の温度が適正範囲内でない場合、すなわち、炉内温度が適正上限値(130℃)を超える場合(S408においてNO)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S412)。ワークが投入されていた場合(S412においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「35:異常生産」と判定する(S413)。反対に、その区間にワークが投入されていなかった場合(S412においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「02:立ち上げ待ち」と判定する(S414)。
 以上のS404~S414は、乾燥層9aの温度情報1が下限値を下回る場合の処理の流れである。ここで、S403において、温度情報1が適正下限値以上である場合(S403においてNO)、次に、状態判定部30は、図12Bに示すとおり、温度情報1が適正範囲内(180~200℃)であるか否かを判定する(S415)。
 温度情報1が適正範囲内である場合(S415においてYES)、次に、状態判定部30は、乾燥層9bの温度情報2が、適正下限値(120℃)を下回るか否かを判定する(S416)。
 乾燥層9b内の温度が適正下限値を下回る場合(S416においてYES)、状態判定部30は、次に、同じ区間のワーク投入数が、0個か0個より多いかを判定する(S417)。その区間にワークが投入されていた(ワーク投入数>0の)場合(S417においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「43:異常生産」と判定する(S418)。反対に、上記区間にワークが投入されていなかった(ワーク投入数=0の)場合(S417においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「10:立ち上げ待ち」と判定する(S419)。
 一方、乾燥層9b内の温度が適正下限値以上である場合(S416においてNO)、次に、状態判定部30は、上記区間の温度情報2が、生産適正範囲内(120~130℃)であるか否かを判定する(S420)。
 乾燥層9b内の温度が適正範囲内である場合(S420においてYES)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S421)。ワークが投入されていた場合(S421においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「44:正常生産」と判定する(S422)。反対に、上記区間にワークが投入されていなかった場合(S421においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「11:ワーク待ち」と判定する(S423)。
 一方、乾燥層9b内の温度が適正範囲内でない場合、すなわち、炉内温度が適正上限値(130℃)を超える場合(S420においてNO)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S424)。ワークが投入されていた場合(S424においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「45:異常生産」と判定する(S425)。反対に、その区間にワークが投入されていなかった場合(S424においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「12:ワーク待ち」と判定する(S426)。
 以上のS416~S426は、乾燥層9aの温度情報1が適正範囲内である場合の処理の流れである。ここで、S415において、温度情報1が適正範囲内でない場合、すなわち、炉内温度が適正上限値(200℃)を超える場合(S415においてNO)、次に、状態判定部30は、図12Cに示すとおり、乾燥層9bの温度情報2が、適正下限値(120℃)を下回るか否かを判定する(S427)。
 乾燥層9b内の温度情報2が適正下限値を下回る場合(S427においてYES)、状態判定部30は、次に、同じ区間のワーク投入数が、0個か0個より多いかを判定する(S428)。その区間にワークが投入されていた(ワーク投入数>0の)場合(S428においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「53:異常生産」と判定する(S429)。反対に、上記区間にワークが投入されていなかった(ワーク投入数=0の)場合(S428においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「20:立ち上げ待ち」と判定する(S430)。
 一方、乾燥層9b内の温度が適正下限値以上である場合(S427においてNO)、次に、状態判定部30は、上記区間の温度情報2が、生産適正範囲内(120~130℃)であるか否かを判定する(S431)。
 乾燥層9b内の温度情報2が適正範囲内である場合(S431においてYES)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S432)。ワークが投入されていた場合(S432においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「54:異常生産」と判定する(S433)。反対に、上記区間にワークが投入されていなかった場合(S432においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「21:ワーク待ち」と判定する(S434)。
 一方、乾燥層9b内の温度情報2が適正範囲内でない場合、すなわち、炉内温度が適正上限値(130℃)を超える場合(S431においてNO)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S435)。ワークが投入されていた場合(S435においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「55:異常生産」と判定する(S436)。反対に、その区間にワークが投入されていなかった場合(S435においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「22:ワーク待ち」と判定する(S437)。
 以上のS427~S437は、乾燥層9aの温度情報1が適正上限値を超える場合の処理の流れである。
 上述のようにして、1つの区間についての乾燥炉6の状態が、図10の(b)に示す18通りのうちのいずれかに決定された後、状態判定が未処理の区間が残っていれば(図12AのS438においてNO)、状態判定部30は、次の区間について、S403~S437の処理を繰り返す。
 一方、全ての区間について状態判定を完了させた場合は(S438においてYES)、状態判定部30は、全区間についての状態判定の結果を電力判別部31に出力して、状態判定処理を終了する。
 〔電力判別処理フロー〕
 図13は、本実施形態の電力判別部31が実行する電力判別処理の流れを示すフローチャートである。
 図7と同様、まず、電力判別部31は、状態判定部30から、全区間についての状態判定処理の結果を区間ごとに取得し(S501)、電力量記憶部40から、全区間について消費電力量を区間ごとに取得する(S502)。
 電力判別部31は、取得した区間(例えば、9:00~9:05)の乾燥炉6の状態が、「00:立ち上げ」である場合(S503においてYES)、図11に示す電力判別条件にしたがって、その区間の消費電力を、「間接生産電力」と判別する(S504)。あるいは、乾燥炉6の状態が、「44:正常生産」である場合(S503においてNO、S505においてYES)、電力判別部31は、その区間の消費電力を、「直接生産電力」と判別する(S506)。あるいは、上記区間の乾燥炉6の状態が、「立ち上げ待ち」の状態である場合(S503においてNO、S505においてNO、S507においてYES)、電力判別部31は、その区間の消費電力を、「半非生産電力」と判別する(S508)。あるいは、上記区間の乾燥炉6の状態が、「ワーク待ち」の状態である場合(S503においてNO、S505においてNO、S507においてNO、S509においてYES)、電力判別部31は、その区間の消費電力を、「非生産電力」と判別する(S510)。あるいは、上記区間の乾燥炉6の状態が、「異常生産」の状態である場合(S503においてNO、S505においてNO、S507においてNO、S509においてNO)、電力判別部31は、その区間の消費電力を、「異常消費電力」と判別する(S511)。
 上記区間について電力判別が行われた後、電力判別が未処理の区間が残っていれば(S512においてNO)、次の区間(例えば、9:05~9:10)の状態判定処理の結果を取得して、S503~S511の処理を繰り返す。
 全区間(例えば、9:00~10:30)について、電力判別が実行されると(S512においてYES)、電力判別部31は、全区間についての電力判別処理の結果を結果グラフ生成部32に出力する。電力判別部31が出力した電力判別処理の結果に基づいて、結果グラフ生成部32が結果グラフを生成し、表示部23に表示して(S513)、電力判別処理が終了する。
 上述の電力判別処理によれば、乾燥炉6の状態に応じて、消費電力の無駄を判別するという観点で、消費電力を正しく判別することができるとともに、その電力判別処理の結果をユーザに分かり易く提示することが可能となる。さらに、本実施形態にかかる電力判別処理によれば、乾燥炉6に適正温度が異なる複数の乾燥層9がある場合、あるいは、乾燥炉6などの監視対象の生産装置が複数ある場合でも、これらの消費電力の無駄を判別することが可能となる。
 〔結果グラフ〕
 図14は、本実施形態の結果グラフ生成部32によって生成された結果グラフの一例を示す図である。
 図8と同様に、上段の2次元グラフは、時刻とワーク投入数の推移とを表すグラフである。下段の2次元グラフ(棒グラフ)は、時刻と乾燥炉6の消費電力量の推移とを表すグラフである。さらに、棒グラフは、消費電力の判別結果を表すグラフ(棒グラフ)でもある。また、下段の2次元グラフには、乾燥層9aおよび乾燥層9b内のそれぞれの温度の推移を示すグラフ(折れ線グラフ)をプロットしてもよい。
 図14に示す結果グラフにおいて、図8のそれと異なる点は、適正温度の異なる複数の乾燥層9ごとに、温度の推移を示す折れ線グラフがプロットされている点である。下段のグラフのうち細い線は、乾燥層9aの温度、太い線は、乾燥層9bの温度を表す。
 図14に示す結果グラフによれば、使用電力量を表す5分間隔のビンごとに、電力判別ラベルごとに、棒が色分けされて表示されている。これにより、表示部23からこの結果グラフを確認することにより、ユーザは、一目で、使用電力の無駄を確認することができる。
 例えば、電源が投入されてから、各乾燥層9が適正温度に達しない間(9:00~9:20の時間帯)は、乾燥炉6は「立ち上げ」状態であり、このときに消費された電力は、「間接生産電力」であることが分かる。
 また、乾燥層9bが適正温度に達してから、乾燥層9aが適正温度に達するまでの間(9:20~9:35の時間帯)は、乾燥層9bが、乾燥層9aの立ち上がりを待つという「立ち上げ待ち」状態である。この間、乾燥層9bのために消費された電力は無駄になる。よって、「半非生産電力」は、少なければ少ないほどよい。すなわち、9:20~9:35の時間帯は、短ければ短いほどよい。図14の結果グラフをみれば、ユーザは、15分早く乾燥層9aを立ち上げることで、この「立ち上げ待ち」状態の期間を短く(あるいはゼロに)することができると即時に判断することが可能である。このように、結果グラフ生成部32が生成する結果グラフは、ユーザに対して、現行の生産管理システムの問題点、改善点を分かりやすく提示することに大きく貢献する。
 〔変形例〕
 図15は、監視する温度のゆらぎと、温度適正範囲を特定するための閾値(管理温度)との関係を示すグラフである。
 例えば、上述の各実施形態において、温度計7(温度計7a、b)で計測される温度が極端に短い間隔(例えば、数秒、0.数秒など)で大きく変化する場合、短い期間に、炉内の温度が、閾値を超えたか否かが目まぐるしく変化してしまう。このように、極端に短い間隔に併せて、状態判定処理と電力判別処理とを行うと、生産管理装置1の処理負荷が増大し、結果を導出するための処理効率が著しく低下するという問題がある。また、特定の時点を間引きしてピックアップし状態判定処理と電力判別処理とを行うと、その時点は、周囲の時点と比べてたまたま温度が低すぎた(高すぎた)可能性もあり、正しい結果を導出できないという問題がある。
 例えば、特に、炉内の温度が閾値(管理温度)付近で、推移する期間(T1~T5)は、
T1~T2、T2~T3、T3~T4、T4~T5という極端に短い期間で、交互に、乾燥炉6の状況が変化するため、処理効率や処理の正確性に問題が発生するおそれがある。
 そこで、生産管理装置1のデータ処理部33は、比較的長めの一定の期間ごとにその区間の温度平均値を求め、それらをプロットした点を通る折れ線(あるいは、図15に示すように近似曲線(グレー太線))を導出して、これを、温度情報記憶部41に記憶してもよい。
 これにより、状態判定部30の処理が簡素化され、状態判定部30は、状態判定処理を低負荷で効率よく実施することが可能となる。
 〔変形例2〕
 上述の各実施形態では、状態判定部30は、層内温度情報d2(d2a、d2b)から得られる情報として、層内の温度のみを考慮して、状態判定処理を実施する構成であった。しかし、本発明の状態判定部30の構成は、これに限定されない。
 層内温度情報d2を統計処理して得られる他の情報を考慮して、状態判定処理を実施する構成であってもよい。
 例えば、上述の生産管理システム100(200)において、乾燥炉6の乾燥層9が立ち上げの状態にあるときには、層内の温度が短期間で急激に上昇する傾向がある。この傾向を考慮して状態判定条件を定めれば、状態判定部30は、温度上昇率に応じて、乾燥炉6が立ち上げ状態か否かを判断することができる。
  (状態判定条件)
 図16は、本変形例において、生産管理装置1の条件記憶部43に記憶される状態判定条件の一例を示す図である。図16に示す例では、乾燥炉6は、1層である場合を想定しているが、乾燥炉6が複数層を有する場合に本変形例を適用してもよい。
 図16に示すとおり、状態判定条件は、以下のようなデータ構造を有していてもよい。すなわち、(1)所定時間帯における乾燥層9内の温度の条件と、(2)ワーク投入数の条件と、さらに、(3)直前の時間帯の温度と比較して、上記所定時間帯の温度上昇幅の条件との組合せのそれぞれに対して、想定される乾燥炉6の状態が対応付けて記憶されている。
 なお、状態判定部30は、温度上昇が2.0℃以上ある条件下では、(1)の温度の条件を参照せずに、(2)ワーク投入数の条件との組合せだけで、乾燥炉6の状態を判定できる構成でもよい。したがって、図16に示す例では、状態判定条件は、(2)ワーク投入数の条件と、(3)温度上昇の条件との組合せを、「状態」に対応付けておく構造となっている。
 具体的には、温度上昇が2.0℃以上ある条件下では、ワークが投入されていない条件には、「ア:立ち上げ」の状態が関連付けて記憶されている。反対に、ワークが投入されている条件では、生産中に急激な温度上昇が発生するのは異常であるとして「イ:異常生産」の状態が関連付けて記憶されている。
 図16に示すとおり、温度上昇が2.0℃未満で、層内温度が安定している条件下では、ワークが投入されているか否か、および、層内温度が適正範囲内か否かに応じて、「ウ:正常待機」、「エ:異常待機」、「オ:正常生産」、「カ:異常生産」の状態がそれぞれ関連付けて記憶されている。
 上述の状態判定条件に従えば、状態判定部30は、温度上昇と、生産パルスと、温度とに基づいて、生産パルスのみに依らずに、乾燥炉6の状態を正しく判定することが可能となる。
  (電力判別条件)
 図17は、本変形例において、生産管理装置1の条件記憶部43に記憶される電力判別条件の一例を示す図である。
 図17に示すとおり、電力判別条件は、状態判定部30が図17に示す状態判定条件にしたがって判定する「状態」のそれぞれに対応付けて、必要消費フラグ、および、電力判別ラベルが記憶されているデータ構造となっている。
 なお、図示していないが、図4に示す例と同様に、さらに、無駄レベルが対応付けて記憶されていてもよい。
 これにより、電力判別部31は、図17に示す電力判別条件にしたがって、状態判定部30によって判定された乾燥炉6の状態に基づいて、乾燥炉6における消費電力の無駄を判別することができる。
  (状態判定および電力判別処理フロー)
 図18は、状態判定部30が実行する状態判定処理および電力判別部31が実行する電力判別処理の流れを示すフローチャートである。
 まず、状態判定部30は、生産パルス信号d3(あるいは、ワーク投入数)を生産パルス記憶部42から、層内温度情報d2(以下、温度情報)を温度情報記憶部41から取得する(S601およびS602)。
 そして、状態判定部30および電力判別部31は、取得した情報の全体の時間帯を、一定時間間隔(例えば、5分、10分など)に区切り、区切った区間ごとに、そのときの乾燥炉6の状態判定および電力判別を実施する。状態判定部30は、図16に示す状態判定条件にしたがって、また、電力判別部31は、図17に示す電力判別条件にしたがって、判定および判別を以下のとおり実施する。
 まず、状態判定部30は、取得した区間の直前の区間の温度情報(これが初回の場合には、例えば、0℃あるいはその設備の常温)と、取得した区間の温度情報とを比較する(S603)。
 そして、温度上昇幅ΔTが2.0℃以上であるか否かを判定する(S604)。
 乾燥層9内の温度上昇が2.0℃以上である場合(S604においてYES)、状態判定部30は、次に、取得した区間のワーク投入数が、0個か0個より多いかを判定する(S605)。上記区間にワークが投入されていた(ワーク投入数>0の)場合(S605においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「イ:異常生産」と判定する(S606)。そして、電力判別部31は、S606で判定された状態判定の結果に基づいて、上記区間の乾燥炉6の消費電力を「異常消費電力」と判別する(S607)。反対に、ワークが投入されていなかった(ワーク投入数=0の)場合(S605においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「ア:立ち上げ」と判定する(S608)。そして、電力判別部31は、S608で判定された結果に基づいて、上記区間の消費電力を「間接生産電力」と判別する(S609)。
 一方、乾燥層9内の温度上昇幅ΔTが2.0℃未満である場合(S604においてNO)、次に、状態判定部30は、上記区間の温度情報が、生産適正範囲内(180~200℃)であるか否かを判定する(S610)。
 乾燥層9内の温度が適正範囲内である場合(S610においてYES)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S611)。ワークが投入されていた場合(S611においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「オ:正常生産」と判定する(S612)。そして、電力判別部31は、S612での状態判定の結果に基づいて、上記区間の消費電力を「直接生産電力」と判別する(S613)。反対に、上記区間にワークが投入されていなかった場合(S611においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「ウ:正常待機」と判定する(S614)。そして、電力判別部31は、S614での状態判定の結果に基づいて、上記区間の消費電力を「非生産電力」と判別する(S615)。
 一方、乾燥層9内の温度が適正範囲内でない場合、すなわち、炉内温度が適正下限値(180℃)を下回るか、あるいは、適正上限値(200℃)を超える場合(S610においてNO)、状態判定部30は、上記区間のワーク投入数が、0個か0個より多いかを判定する(S616)。ワークが投入されていた場合(S616においてYES)、状態判定部30は、上記区間の乾燥炉6の状態を、「カ:異常生産」と判定する(S617)。そして、電力判別部31は、S617での状態判定の結果に基づいて、上記区間の消費電力を「異常消費電力」と判別する(S618)。反対に、上記区間にワークが投入されていなかった場合(S616においてNO)、状態判定部30は、上記区間の乾燥炉6の状態を、「エ:異常待機」と判定する(S619)。そして、電力判別部31は、S619での状態判定の結果に基づいて、上記区間の消費電力を「非生産電力」と判別する(S620)。
 上記区間について「ア」~「カ」のいずれかの状態と判定され、また、電力判別が行われた後、状態判定および電力判定が未処理の区間が残っていれば(S621においてNO)、次の区間の温度情報とワーク投入数とを取得し、S603~S620の処理を繰り返す。
 全区間について、状態判定が実行されると(S621においてYES)、状態判定部30は、全区間についての状態判定処理の結果を、電力判別部31は、全区間についての電力判別処理の結果を結果グラフ生成部32に出力する。結果グラフ生成部32は、状態判定処理の結果および電力判別処理の結果に基づいて、結果グラフを生成し、表示部23に表示する(S622)。これにより、状態判定処理および電力判別処理が終了する。
 以上の方法によれば、生産管理装置1は、1つの層内温度情報d2から、「温度」に加えて、その温度の情報を統計処理することによって得られた「温度の上昇幅」という2つのパラメータを抽出して、乾燥炉6の状態判定を行うことが可能となる。
 〔変形例3〕
 上述の各実施形態では、センサ12が乾燥炉6に投入されるワーク数を監視することにより取得した生産パルスに基づいて、状態判定部30が乾燥炉6の生産/非生産を判定し、この生産/非生産の情報を参考にして、状態判定処理を実施する構成であった。しかし、本発明の状態判定部30の構成は、これに限定されない。
 センサ12に、ワーク投入数以外の別の動きを監視させて、上述とは別の方法で生産/非生産を判定してもよい。
  (生産管理システムの概要)
 図19は、本発明の他の実施形態における生産管理システム300の概要を示す図である。
 図19に示すとおり、乾燥炉6は、投入口および排出口を兼ねた扉で構成された投入口10を有している。生産管理システム300においては、ワーク14は、投入口10から出し入れされる(投入前ワーク14a、排出後ワーク14eなど)。この出し入れは、機械によって自動で行われてもよいし、人手によって行われてもよい。
 そして、乾燥炉6は、ワーク14の生産のために稼動するときのみ扉(投入口10)が閉められる構成である。つまり、ワーク14の排出および投入が完了して、生産対象のワーク14b~dが乾燥層9内に配置されると、投入口10が閉められて、はじめて電気ヒータ8が稼動する。乾燥が完了してワーク14を取り出すときは、電気ヒータ8が非稼動となり、それから、投入口10が開かれる。すなわち、投入口10が閉まっているときは乾燥炉6は生産中、投入口10が開いているときは非生産中と考えることができる。
 そこで、例えば、本変形例では、センサ12を、ワーク14を出し入れするための扉(投入口10)の開閉を検知するセンサとして構成することができる。
 そして、センサ12は、扉が閉まっている状態を検知して、この状態を閉信号(例えば、ON信号)、そして、扉が開いている状態をOFF信号で表した生産パルス信号d3をパルスカウンタ4に出力する。
 パルスカウンタ4は、センサ12から取得したON/OFF信号(生産パルス信号d3)と時刻情報とを関連付けて生産管理装置1に供給する。なお、生産管理装置1がパルスカウンタ4の機能を備えている場合には、生産管理装置1がセンサ12から直接生産パルス信号d3を取得してもよい。
  (状態判定条件)
 図20は、本変形例において、生産管理装置1の条件記憶部43に記憶される状態判定条件の一例を示す図である。
 図20に示すとおり、状態判定条件は、(1)所定時間帯における乾燥炉6の扉の開閉の条件と、(2)所定時間帯における乾燥層9内の温度の条件との組合せのそれぞれに対して、想定される乾燥炉6の状態が対応付けて記憶されている。
 なお、扉が開いている条件下では、上述のとおり、ワークの出し入れ待ち(非生産)の状態であることが確定している。そのため、扉が開いている条件下では、温度の条件を参照せずとも、一意に、乾燥炉6の状態を「待機」と判定できる構成でもよい。したがって、図20に示す例では、状態判定条件は、「扉:開」の条件に対しては、「キ:待機」の状態に対応付けておく構造となっている。
 そして、扉が閉まっている条件下では、乾燥炉6の乾燥層9内にはワーク14が投入されており、電気ヒータ8が稼動している状態であることが確定している。そこで、状態判定条件は、「扉:閉」の条件と、「温度情報が適正下限値を下回る」という条件との組合せに対しては、「ク:立ち上げ」の状態を対応付けておく構造となっている。また、「温度情報が適正範囲内」という条件との組合せに対しては、「ケ:正常生産」の状態を対応付けておく構造となっている。また、「適正上限値を超える」という条件との組合せに対しては、「コ:異常生産」を対応付けておく構造となっている。
  (電力判別条件)
 図21は、本変形例において、生産管理装置1の条件記憶部43に記憶される電力判別条件の一例を示す図である。
 図21に示すとおり、電力判別条件は、状態判定部30が図20に示す状態判定条件にしたがって判定する「状態」のそれぞれに対応付けて、必要消費フラグ、および、電力判別ラベルが記憶されているデータ構造となっている。
 なお、図示していないが、図4に示す例と同様に、さらに、無駄レベルが対応付けて記憶されていてもよい。
 これにより、電力判別部31は、図21に示す電力判別条件にしたがって、状態判定部30によって判定された乾燥炉6の状態に基づいて、乾燥炉6における消費電力の無駄を判別することができる。
 具体的には、電力判別部31は、「キ:待機」の状態の乾燥炉6によって消費された電力を、「非生産電力」と判別し、「ク:立ち上げ」の状態の乾燥炉6によって消費された電力を、「間接生産電力」と判別し、「ケ:正常生産」の状態の乾燥炉6によって消費された電力を、「直接生産電力」と判別し、「コ:異常生産」の状態の乾燥炉6によって消費された電力を、「異常消費電力」と判別する。
 〔変形例4〕
 上述の各実施形態では、乾燥炉6の乾燥層9内に温度計7を設けて、乾燥層9内の温度情報に応じて、状態判定部30が乾燥炉6の状態を判定する構成であった。しかし、状態判定部30の構成は、これに限定されない。
 本発明の生産管理装置1は、乾燥炉6に限らずあらゆる生産装置の資源の消費を監視して無駄を抽出することが可能である。つまり、生産装置が、消費資源(電力、ガス、水道、ガソリンなど)を消費したことにより、環境変化物理量(温度、気圧、蒸気圧、圧力、湿度、酸素飽和度、その他特定物質の密度などの生産環境)を変化させて、物を生産するという性質のものであれば、本発明の生産管理装置1は、上記生産装置の環境変化物理量を監視して資源の消費の無駄を判別することができる。
 本発明の他の例として、本変形例では、一定の蒸気圧(と高温)によってワーク(食料品、医療器具など)の殺菌や滅菌を行う殺菌滅菌装置を監視する生産管理装置1の例について説明する。
  (生産管理システムの概要)
 図22は、本発明の他の実施形態における生産管理システム400の概要を示す図である。
 図22に示すとおり、生産管理システム400は、生産装置として、乾燥炉6の代わりに殺菌滅菌装置6aを含む構成である。
 殺菌滅菌装置6aは、ワークに付着する雑菌などを滅菌あるいは殺菌するための生産装置である。殺菌滅菌装置6aは、圧力計7cと、電気ヒータ8cと、殺菌滅菌槽9cと、操作ボタン部16とを備える構成である。
 殺菌滅菌槽9cは、高温の水蒸気を充満させる空間を提供するものであり、耐熱および断熱材で構成される。殺菌滅菌槽9cは、水蒸気を通過させる耐熱性の仕切り15を有し、仕切り15の下部空間に水を張り、仕切り15の上部空間へと高温の水蒸気を送り込むようになっている。仕切り15の上部空間には、ワーク14が配置され、上部空間に充満する高温の水蒸気によって滅菌(あるいは殺菌)作業が施される。なお、ここでは図示しないが、上部空間に薬剤等を散布するためのスプリンクラーが殺菌滅菌槽9c内に設けられていてもよい。
 電気ヒータ8cは、殺菌滅菌槽9cの下部空間に張られた水を高温で温めて蒸発させるものである。
 圧力計7cは、殺菌滅菌槽9c内部の圧力(蒸気圧)を計測するものである。圧力計7cが計測した、蒸気圧情報d2cは、生産制御装置3に出力され、生産制御装置3から生産管理装置1に供給される。なお、本変形例では、滅菌作業中における殺菌滅菌槽9c内の適正蒸気圧範囲は、Xl~Xu(kPa)と定められているものとする。蒸気圧情報d2cは、圧力計7cから直接生産管理装置1に供給されてもよい。
 操作ボタン部16は、殺菌滅菌装置6aを操作するための複数のボタンで構成される。操作ボタン部16は、少なくとも、滅菌(殺菌)作業の開始を指示するための開始ボタン16aが含まれている。
 生産の流れは以下のとおりである。まず、ワーク14を殺菌滅菌槽9c内に配置するまえに、殺菌滅菌装置6aの電気ヒータ8cを稼動させて、殺菌滅菌槽9c内を所定の蒸気圧(および温度)まで到達させる。そして、殺菌滅菌槽9cが適正蒸気圧に達すると、ワーク14が待機位置から殺菌滅菌槽9c内に自動で配置される。ここまでの状態を「立ち上げ」と捉えることができる。
 続いて、滅菌作業が可能な条件が整ったことを確認して、作業者が、開始ボタン16aを押下する。これにより、「生産」が開始される。つまり、開始ボタン16aが押下されると、生産制御装置3は、時間の計測を開始し、圧力計7cを監視し、電気ヒータ8cを制御して、殺菌滅菌槽9c内を予め定められた蒸気圧で維持し、これを、所定の時間継続させる。この状態を、殺菌滅菌装置6aにおける滅菌作業中、すなわち、「生産」と捉えることができる。
 また、所定の時間が経過すると、生産制御装置3は、殺菌滅菌装置6aを制御して、電気ヒータ8cを非稼動にし、生産完了のワーク14の排出(ワーク14cからワーク14dへ)と、待機中のワーク14bの殺菌滅菌槽9c内への配置とを実施する。この間、作業者は、投入前のワーク14aを、殺菌滅菌装置6a内の待機場所に投入する作業を行ってもよい。
 このように、人手または機械によって、ワーク14の投入または排出の作業が行われている状態を、滅菌準備中、すなわち、「非生産」と捉えることができる。
 なお、操作ボタン部16は、さらに、滅菌作業中でも殺菌滅菌装置6aを緊急停止させることができるように緊急停止ボタン16bを備えていてもよい。
 操作ボタン部16は、パルスカウンタ4と接続されており、作業者のボタン操作による各ボタンの押下状況を生産パルス信号d3としてパルスカウンタ4に出力する。本変形例では、操作ボタン部16は、開始ボタン16aが押下されて所定時間滅菌作業が継続している間をON信号、所定時間が経過してワーク14の投入、排出が行われている間または緊急停止している間をOFF信号として表す生産パルス信号d3をパルスカウンタ4に対して出力する。
  (状態判定条件)
 図23は、本変形例において、生産管理装置1の条件記憶部43に記憶される状態判定条件の一例を示す図である。
 図23に示すとおり、状態判定条件は、(1)所定時間帯において殺菌滅菌装置6aが滅菌作業中か否かの条件と、(2)所定時間帯における殺菌滅菌槽9c内の蒸気圧の条件との組合せのそれぞれに対して、想定される殺菌滅菌装置6aの状態が対応付けて記憶されている。
 なお、滅菌作業中の条件下では、殺菌滅菌槽9c内は蒸気圧が適正範囲内であることが確定している。殺菌滅菌槽9c内が適正範囲内でなければ開始ボタン16aは押せない構成となっており、滅菌作業期間は比較的短い時間帯であるので、一度、蒸気圧が適正範囲内で安定したら、短期間で蒸気圧が大幅にゆらぐことはないからである。そのため、滅菌作業中(ON信号)の条件下では、圧力情報の条件を参照せずとも、一意に、殺菌滅菌装置6aの状態を正常生産と判定できる構成でもよい。したがって、図23に示す例では、状態判定条件は、「信号:ON(滅菌作業中)」の条件に対しては、「セ:正常生産」の状態に対応付けておく構造となっている。
 そして、滅菌準備中(OFF信号)の条件下では、立ち上げ、ワーク14の投入などが実施されている。そこで、状態判定条件は、「信号:OFF(滅菌準備中)」の条件と、「圧力情報が適正下限値を下回る」という条件との組合せに対しては、「サ:立ち上げ」の状態を対応付けておく構造となっている。また、「圧力情報が適正範囲内」という条件との組合せに対しては、「シ:正常待機」の状態を対応付けておく構造となっている。また、「適正上限値を超える」という条件との組合せに対しては、「ス:異常待機」を対応付けておく構造となっている。
  (電力判別条件)
 図24は、本変形例において、生産管理装置1の条件記憶部43に記憶される電力判別条件の一例を示す図である。
 図24に示すとおり、電力判別条件は、状態判定部30が図23に示す状態判定条件にしたがって判定する「状態」のそれぞれに対応付けて、必要消費フラグ、および、電力判別ラベルが記憶されているデータ構造となっている。
 なお、図示していないが、図4に示す例と同様に、さらに、無駄レベルが対応付けて記憶されていてもよい。
 これにより、電力判別部31は、図23に示す電力判別条件にしたがって、状態判定部30によって判定された殺菌滅菌装置6aの状態に基づいて、殺菌滅菌装置6aにおける消費電力の無駄を判別することができる。
 具体的には、電力判別部31は、「サ:立ち上げ」の状態の殺菌滅菌装置6aによって消費された電力を、「間接生産電力」と判別し、「シ:正常待機」の状態の殺菌滅菌装置6aによって消費された電力を、「非生産電力」と判別し、「ス:異常待機」の状態の殺菌滅菌装置6aによって消費された電力を、「非生産電力」と判別し、「セ:正常生産」の状態の殺菌滅菌装置6aによって消費された電力を、「直接生産電力」と判別する。
  (結果グラフ)
 図25は、結果グラフ生成部32によって生成された結果グラフの一例を示す図である。
 図25に示すとおり、一例として、結果グラフ生成部32は、表示部23に対して2つの2次元グラフを出力することができる。上段、下段の2つのグラフの横軸は、時刻の経過を表しており、時刻も尺度も共通である。
 上段の2次元グラフは、滅菌作業の発生とその発生時間帯とを表すグラフである。信号がONの時間帯が、滅菌作業中(生産)を表し、OFFの時間帯が滅菌準備中(非生産)を表している。
 下段の2次元グラフ(棒グラフ)は、時刻と殺菌滅菌装置6aの消費電力量の推移とを表すグラフである。さらに、棒グラフは、消費電力の判別結果を表すグラフ(棒グラフ)でもある。また、下段の2次元グラフには、殺菌滅菌槽9c内の蒸気圧の推移を示すグラフ(折れ線グラフあるいは近似曲線のグラフ)をプロットしてもよい。
 生産管理システム400では、滅菌作業を実施する前に、まず、殺菌滅菌槽9cの立ち上げ(蒸気圧を適正範囲に到達させる)ことを行う。この「立ち上げ」の状態は、生産パルスがOFFであって、蒸気圧が適正下限値Xlを下回る区間にみられる。この区間に消費された電力の棒グラフは、「間接生産電力」のラベル(色づけ)が付与されている。続いて、殺菌滅菌装置6a内で待機させていたワーク14を、殺菌滅菌槽9cの適切な位置へ配置するなどの滅菌準備を実施しなければならない。この「待機」の状態は、生産パルスがOFFであって、蒸気圧が適正下限値Xl以上の区間に見られる。この区間に消費された電力の棒グラフは、「非生産電力」のラベル(色づけ)が付与されている。ここで、ワーク14の配置が完了し、作業者が開始ボタン16aを押下すると、殺菌滅菌装置6aは、滅菌作業を開始する。この区間に消費された電力の棒グラフは、「直接生産電力」のラベル(色づけ)が付与されている。所定の時間が経過すると、滅菌作業が終了し、殺菌滅菌槽9cからワーク14が取り出される。本実施形態では、このワーク取り出しのための殺菌滅菌槽9cの開放時間帯に、一時的に蒸気圧が下限値より下まで低下する環境となっている。このため、ワークの取り出しが完了すると、次のワークを投入する前に、滅菌作業のための立ち上げが再び開始される。以上の生産サイクルを繰り返す。
 図25に示す結果グラフによれば、使用電力量を表す棒グラフに、電力判別ラベルと対応する色分けが施されて表示される。これにより、表示部23からこの結果グラフを確認することにより、ユーザは、一目で、使用電力の無駄を確認することができる。
 また、結果グラフを用いれば、以下のような分析を行って、無駄の削減を実施することが可能である。例えば、「立ち上げ」および「正常生産」の時間帯は、ばらつきがなく常に一定である。これは、誰がどのように行っても、大抵これくらいの時間は必要であるというように理解できる。一方、「待機(滅菌準備中)」の期間には、ばらつきがある。そして、この待機の時間(具体的には、前のワークが取り出されてから、次のワークの滅菌作業の準備が整うまでの時間)が長くなればなるほど、電力の無駄が発生することが分かる。
 よって、この生産管理システム400において、もっとも効果的に電力の無駄を削減するためには、「待機(滅菌準備中)」の期間に注目して、作業内容を見直し、改善を行えばよいことが容易に理解される。
 このように、結果グラフ生成部32が生成する結果グラフは、ユーザに対して、現行の生産管理システムの問題点、改善点を分かりやすく提示することに大きく貢献する。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 最後に、生産管理装置1の各ブロック、特に、状態判定部30、電力判別部31、結果グラフ生成部32、および、データ処理部33は、ハードウェアロジックによって構成してもよいし、次のようにCPUを用いてソフトウェアによって実現してもよい。
 すなわち、生産管理装置1は、各機能を実現する制御プログラムの命令を実行するCPU(central processing unit)、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである生産管理装置1の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記生産管理装置1に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。
 また、生産管理装置1を通信ネットワークと接続可能に構成し、上記プログラムコードを、通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
 以下の構成も本発明の範疇に入る。
 上記状態判定手段は、上記生産装置が資源の消費を開始してから、該生産装置が変化させる上記環境変化物理量が生産適正範囲に到達するまでの期間における、該生産装置の状態を、正常な生産行動のために必要な状態を意味する立ち上げ状態であると判定することができる。
 上記構成によれば、生産装置が生産行動を実際に開始する前の段階(つまり、物を生産していない非生産の状態)ではあるが、環境変化物理量を生産適正範囲に到達させるまでの過程は、正常な生産のために必要な準備段階であると位置付けて、これを、単なる無駄な非生産の状態とは区別して、必要な「立ち上げ」状態と位置付けることができる。
 これにより、稼動/非稼動、あるいは、生産/非生産の観点では、無駄と判断される虞のある消費資源を、必要な消費資源であったと正しく判別することが可能となる。
 上記生産管理装置は、上記生産装置が消費する資源の物理量を消費物理量として取得する消費物理量取得手段と、上記状態判定手段が判定した状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別する資源判別手段とを備えていることが好ましい。
 上記構成によれば、上記状態判定手段が、無駄を抽出するという観点で判定した生産装置の状態に応じて、資源判別手段は、その状態のときに消費された資源の無駄を判別する。
 具体的には、生産装置が生産に貢献する活動を行っている状態のときに消費した資源を、必要な消費、反対に、生産に貢献しない状態のときに消費した資源を無駄な消費と判別することができる。さらに、消費物理量取得手段は、消費された資源の消費物理量を取得しているので、生産装置が、資源を、どの状態のときに、どのくらいの量を無駄に(あるいは必要に)消費したのかを、本発明の生産管理装置が明らかにすることができる。
 さらに、生産管理装置の上記状態判定手段が、上記生産装置が資源の消費を開始してから、該生産装置が変化させる上記環境変化物理量が生産適正範囲に到達するまでの期間における、該生産装置の状態を、正常な生産行動のために必要な状態を意味する立ち上げ状態であると判定した場合に、上記資源判別手段は、上記生産装置が立ち上げ状態である期間に消費した上記資源の消費物理量を、無駄に消費されたものではないと判別することができる。
 これにより、稼動/非稼動、あるいは、生産/非生産の観点では、無駄と判断される虞のある消費資源を、必要な消費資源であったと正しく判別することが可能となる。
 本発明の生産管理装置は、上記生産装置が、生産環境の物理量を変化させて作業対象物に対して生産行動を実施しているか否かを検知する検知部を備え、上記状態判定手段は、上記生産装置が変化させる上記環境変化物理量が生産適正範囲に到達してから、上記検知部が上記生産行動の実施を検知するまでの期間における、該生産装置の状態を、生産行動を実施できるにもかかわらず生産を行っていない不要な状態を意味する待機状態であると判定してもよい。
 上記構成によれば、環境変化物理量に加えて、さらに、検知部によって検知された生産/非生産の情報を考慮することにより、「正常な生産行動を実施できるにもかかわらず生産を行っていない」という待機状態を識別することが可能となる。
 上記待機状態が識別されることにより、このときに消費された資源の無駄を判別することができる。
 本発明の生産管理装置は、上記生産装置が消費する資源の物理量を消費物理量として取得する消費物理量取得手段と、上記状態判定手段が判定した状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別する資源判別手段とを備え、上記状態判定手段が、上記生産装置の状態を、上記待機状態であると判定した場合に、上記資源判別手段は、上記生産装置が待機状態である期間に消費した上記資源の消費物理量を、無駄に消費されたものであると判別することができる。
 上記構成によれば、環境変化物理量に加えて、さらに、検知部によって検知された生産/非生産の情報を考慮することにより、「正常な生産行動を実施できるにもかかわらず生産を行っていない」という待機状態を識別することが可能となる。
 そして、上記待機状態が識別されることにより、このときに消費された資源を、無駄な消費であると判別することができるとともに、その無駄に消費された消費物理量を明らかにすることができる。
 上記生産管理装置の上記状態判定手段は、上記生産装置が変化させる上記環境変化物理量が生産適正範囲に到達している期間であって、上記検知部が上記生産行動の実施を検知している期間における、該生産装置の状態を、生産を行っている必要な状態を意味する生産状態であると判定してもよい。
 上記構成によれば、正常に生産活動を行っている、すなわち、生産の直接的に貢献している生産装置の状態を「生産状態」として識別することができる。この生産状態に基づいて消費資源の無駄を正しく判別することが可能となる。
 上記状態判定手段が判定した状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別する資源判別手段を備え、上記状態判定手段は、上記生産装置が資源の消費を開始してから、該生産装置が変化させる上記環境変化物理量が生産適正範囲に到達するまでの期間における、該生産装置の状態を、正常な生産行動のために必要な状態を意味する立ち上げ状態であると判定し、上記資源判別手段は、上記生産装置が立ち上げ状態である期間に消費した上記資源の消費物理量を、間接的に生産に貢献したことを意味する間接生産消費量、上記生産装置が待機状態である期間に消費した上記資源の消費物理量を、生産に貢献しなかったことを意味する非生産消費量、および、上記生産装置が生産状態である期間に消費した上記資源の消費物理量を、直接的に生産に貢献したことを意味する直接生産消費量と判別してもよい。
 上記構成によれば、上記状態判定手段は、環境変化物理量を考慮することによって、第1に、上記生産装置が資源の消費を開始してから、該生産装置が変化させる上記環境変化物理量が生産適正範囲に到達するまでの期間における、該生産装置の状態を、正常な生産行動のために必要な準備段階を意味する「立ち上げ状態」として識別することができる。第2に、上記環境変化物理量に加えて、さらに、検知部によって検知された生産/非生産の情報を考慮することにより、正常な生産行動を実施できるにもかかわらず生産を行っていないということを意味する「待機状態」を識別することができる。第3に、上記生産装置が獲得する上記環境変化物理量が生産適正範囲に到達している期間であって、上記検知部が上記生産行動の実施を検知している期間の生産装置の状態を、生産に直接的に貢献しているとして「生産状態」として識別することができる。
 続いて、上記資源判別手段は、上記状態判定手段が判定した状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別する。
 具体的には、上記生産装置が「立ち上げ状態」である期間に消費した上記資源の消費物理量を、間接的に生産に貢献したことを意味する「間接生産消費量」、上記生産装置が「待機状態」である期間に消費した上記資源の消費物理量を、生産に貢献しなかったことを意味する「非生産消費量」、および、上記生産装置が「生産状態」である期間に消費した上記資源の消費物理量を、直接的に生産に貢献したことを意味する「直接生産消費量」と判別することができる。
 これにより、どのくらいの量の資源が、どのように消費されたのかを明らかにすることができる。どのように消費されたのかを明らかにすることとは、具体的には、その資源の消費が無駄であったか否かを判別することである。あるいは、その資源の消費が、直接的に生産に貢献したか(必要な消費であるか)、間接的に生産に貢献したか(必要な消費であるか)、または、生産に貢献しなかったか(無駄な消費であるか)を判別することであってもよい。
 上記生産装置は、環境変化物理量の適正範囲がそれぞれ異なる複数の機構を有し、上記環境変化物理量取得手段は、複数の機構から、それぞれの環境変化物理量を取得し、上記状態判定手段は、上記環境変化物理量取得手段がそれぞれの機構から取得した複数の環境変化物理量の組合せに応じて、上記生産装置の状態を判定してもよい。
 生産装置が複数の機構を有する場合、それぞれの機構によって状態がばらつく。具体的には、すべての機構が生産適正範囲に到達していなければ正常な生産が成り立たないが、すべての機構が同時に生産適正範囲に到達するとは限らない。つまり、一方の機構では、環境変化物理量が生産適正範囲に到達していても、他方の機構では生産適正範囲に到達しているということが起こり得る。
 上記構成によれば、上記状態判定手段は、それぞれの機構から環境変化物理量を取得して、それぞれの機構の環境変化物理量を組み合わせて、総合して生産装置の状態を判定する。
 したがって、生産装置が複数の機構を有する場合でも、生産装置の稼動/非稼動に(あるいは、稼動/非稼動のみに)頼ることなく、生産装置の状態を適正に判定することにより、消費資源の無駄を正しく判別することが可能になる。
 上記状態判定手段は、上記環境変化物理量取得手段が取得した環境変化物理量に基づいて求めた、所定期間の環境変化物理量の変化率が所定閾値よりも大きい場合に、当該期間における、上記生産装置の状態を、正常な生産行動のために必要な状態を意味する立ち上げ状態であると判定してもよい。
 生産装置の環境変化物理量は、立ち上がり時に、稼動前の物理量から生産適正範囲に到達するまでの間の比較的短い期間に大きな変化があり、その後、環境変化物理量は、生産適正範囲に到達してからは、その生産適正範囲を維持するために長期間安定するのが一般的である。
 そこで、上記構成により、比較的短い期間の大きな物理量の変化を認識して、当該期間を立ち上げ状態と判定することができる。
 上記環境変化物理量取得手段は、生産装置が変化させる環境変化物理量として、温度情報を取得してもよい。
 上記構成によれば、上記生産装置が、資源を消費することにより、常温と比較して高温、あるいは、低温の環境を獲得して物の生産を行う機構を有する場合に、該生産装置の状態を適正に判定することにより、消費資源の無駄を正しく判別することが可能になる。
 より具体的には、例えば、生産装置が、電力を消費して高温、あるいは、低温の環境を獲得して生産を行う装置である場合、生産装置において稼動中の機構の温度情報に基づいて、生産装置の状態を判定することができる。さらに、そのように判定された状態に応じて、生産装置が消費した電力の無駄を判別することが可能となる。
 さらに、上記生産管理システムは、上記生産装置が消費する資源の物理量を消費物理量として計測する消費物理量計測部を含み、上記生産管理装置は、判定した上記生産装置の状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別してもよい。上記生産管理システムは、さらに、上記生産装置が、生産環境の物理量を変化させて作業対象物に対して生産行動を実施しているか否かを検知する検知部を含み、上記生産管理装置は、上記環境変化物理量計測部が取得した環境変化物理量と、上記検知部が検知した上記生産装置の生産行動の有無とに応じて、上記生産装置の状態を判定してもよい。
 本発明は、資源を消費して生産を行う生産装置が稼動して変化させる環境変化物理量を計測し、当該生産装置が消費する消費物理量の無駄を判別するのに用いられる。具体的には、例えば、本発明の生産管理装置は、生産装置としての乾燥炉、殺菌滅菌装置、洗浄機、コンプレッサ、冷却装置、あるいは、他の数値制御工作機械(NC;Numeral Controlマシン)などが稼動して、環境変化物理量として、温度、気圧、蒸気圧、圧力、湿度、酸素飽和度、その他特定物質の密度などの物理量を変化させる場合にその物理量(変化量)計測し、当該生産装置が消費する消費物理量(電力、水道、ガス、ガソリンなどの物理量)の消費の無駄を判別することができる。
1 生産管理装置
2 電力計(消費物理量取得手段/消費物理量計測部)
3 生産制御装置(環境変化物理量取得手段)
4 パルスカウンタ
5 電源
6 乾燥炉(生産装置)
6a 殺菌滅菌装置(生産装置)
7 温度計(環境変化物理量取得手段/環境変化物理量計測部)
7a 温度計(環境変化物理量取得手段/環境変化物理量計測部)
7b 温度計(環境変化物理量取得手段/環境変化物理量計測部)
7c 圧力計(環境変化物理量取得手段/環境変化物理量計測部)
8 電気ヒータ
8c 電気ヒータ
9 乾燥層
9a 乾燥層
9b 乾燥層
9c 殺菌滅菌槽
10 投入口
11 排出口
12 センサ(検知部)
13 ローラコンベア
14a~e ワーク(作業対象物)
15 仕切り
16 操作ボタン部
16a 開始ボタン
16b 緊急停止ボタン
20 制御部
21 記憶部
22 通信部
23 表示部
30 状態判定部(環境変化物理量取得手段/消費物理量取得手段/状態判定手段)
31 電力判別部(資源判別手段)
32 結果グラフ生成部
33 データ処理部
40 電力量記憶部
41 温度情報記憶部
42 生産パルス記憶部
43 条件記憶部
100 生産管理システム
200 生産管理システム
300 生産管理システム
400 生産管理システム
d1 消費電力
d2 層内温度情報
d2a 第1層内温度情報
d2b 第2層内温度情報
d2c 蒸気圧情報
d3 生産パルス信号

Claims (17)

  1.  資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置の状態を監視する生産管理装置において、
     上記生産装置が上記資源を消費することにより変化させた生産環境の物理量を環境変化物理量として取得する環境変化物理量取得手段と、
     上記環境変化物理量取得手段が取得した環境変化物理量に応じて、上記生産装置の状態を判定する状態判定手段とを備えていることを特徴とする生産管理装置。
  2.  上記状態判定手段は、
     上記生産装置が資源の消費を開始してから、該生産装置が変化させる上記環境変化物理量が生産適正範囲に到達するまでの期間における、該生産装置の状態を、正常な生産行動のために必要な状態を意味する立ち上げ状態であると判定することを特徴とする請求項1に記載の生産管理装置。
  3.  上記生産装置が消費する資源の物理量を消費物理量として取得する消費物理量取得手段と、
     上記状態判定手段が判定した状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別する資源判別手段とを備えていることを特徴とする請求項1または2に記載の生産管理装置。
  4.  上記状態判定手段が、
     上記生産装置が資源の消費を開始してから、該生産装置が変化させる上記環境変化物理量が生産適正範囲に到達するまでの期間における、該生産装置の状態を、正常な生産行動のために必要な状態を意味する立ち上げ状態であると判定した場合に、
     上記資源判別手段は、
     上記生産装置が立ち上げ状態である期間に消費した上記資源の消費物理量を、無駄に消費されたものではないと判別することを特徴とする請求項3に記載の生産管理装置。
  5.  上記生産装置が、生産環境の物理量を変化させて作業対象物に対して生産行動を実施しているか否かを検知する検知部を備え、
     上記状態判定手段は、
     上記生産装置が変化させる上記環境変化物理量が生産適正範囲に到達してから、上記検知部が上記生産行動の実施を検知するまでの期間における、該生産装置の状態を、生産行動を実施できるにもかかわらず生産を行っていない不要な状態を意味する待機状態であると判定することを特徴とする請求項1から4までのいずれか1項に記載の生産管理装置。
  6.  上記生産装置が消費する資源の物理量を消費物理量として取得する消費物理量取得手段と、
     上記状態判定手段が判定した状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別する資源判別手段とを備え、
     上記状態判定手段が、上記生産装置の状態を、上記待機状態であると判定した場合に、
     上記資源判別手段は、
     上記生産装置が待機状態である期間に消費した上記資源の消費物理量を、無駄に消費されたものであると判別することを特徴とする請求項5に記載の生産管理装置。
  7.  上記状態判定手段は、
     上記生産装置が変化させる上記環境変化物理量が生産適正範囲に到達している期間であって、上記検知部が上記生産行動の実施を検知している期間における、該生産装置の状態を、生産を行っている必要な状態を意味する生産状態であると判定することを特徴とする請求項5に記載の生産管理装置。
  8.  上記状態判定手段が判定した状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別する資源判別手段を備え、
     上記状態判定手段は、
     上記生産装置が資源の消費を開始してから、該生産装置が変化させる上記環境変化物理量が生産適正範囲に到達するまでの期間における、該生産装置の状態を、正常な生産行動のために必要な状態を意味する立ち上げ状態であると判定し、
     上記資源判別手段は、
     上記生産装置が立ち上げ状態である期間に消費した上記資源の消費物理量を、間接的に生産に貢献したことを意味する間接生産消費量、
     上記生産装置が待機状態である期間に消費した上記資源の消費物理量を、生産に貢献しなかったことを意味する非生産消費量、および、
     上記生産装置が生産状態である期間に消費した上記資源の消費物理量を、直接的に生産に貢献したことを意味する直接生産消費量と判別することを特徴とする請求項7に記載の生産管理装置。
  9.  上記生産装置は、環境変化物理量の適正範囲がそれぞれ異なる複数の機構を有し、
     上記環境変化物理量取得手段は、複数の機構から、それぞれの環境変化物理量を取得し、
     上記状態判定手段は、
     上記環境変化物理量取得手段がそれぞれの機構から取得した複数の環境変化物理量の組合せに応じて、上記生産装置の状態を判定することを特徴とする請求項1から8までのいずれか1項に記載の生産管理装置。
  10.  上記状態判定手段は、
     上記環境変化物理量取得手段が取得した環境変化物理量に基づいて求めた、所定期間の環境変化物理量の変化率が所定閾値よりも大きい場合に、当該期間における、上記生産装置の状態を、正常な生産行動のために必要な状態を意味する立ち上げ状態であると判定することを特徴とする請求項1に記載の生産管理装置。
  11.  上記環境変化物理量取得手段は、
     生産装置が変化させる環境変化物理量として、温度情報を取得することを特徴とする請求項1から10までのいずれか1項に記載の生産管理装置。
  12.  資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置と、
     上記生産装置の状態を監視する生産管理装置と、
     上記生産装置が上記資源を消費することにより変化させる物理量を環境変化物理量として計測する環境変化物理量計測部とを含み、
     上記生産管理装置は、
     上記環境変化物理量計測部が取得した環境変化物理量に応じて、上記生産装置の状態を判定することを特徴とする生産管理システム。
  13.  さらに、
     上記生産装置が消費する資源の物理量を消費物理量として計測する消費物理量計測部を含み、
     上記生産管理装置は、
     判定した上記生産装置の状態に応じて、上記生産装置が該状態であった期間に消費した上記資源の消費物理量が、無駄に消費されたものか否かを判別することを特徴とする請求項12に記載の生産管理システム。
  14.  さらに、
     上記生産装置が、生産環境の物理量を変化させて作業対象物に対して生産行動を実施しているか否かを検知する検知部を含み、
     上記生産管理装置は、
     上記環境変化物理量計測部が取得した環境変化物理量と、上記検知部が検知した上記生産装置の生産行動の有無とに応じて、上記生産装置の状態を判定することを特徴とする請求項12または13に記載の生産管理システム。
  15.  資源を消費することにより生産環境の物理量を変化させて生産を行う生産装置の状態を監視する生産管理装置の制御方法であって、
     上記生産装置が上記資源を消費することにより変化させた生産環境の物理量を環境変化物理量として取得する環境変化物理量取得ステップと、
     上記環境変化物理量取得ステップにて取得した環境変化物理量に応じて、上記生産装置の状態を判定する状態判定ステップとを含むことを特徴とする生産管理装置の制御方法。
  16.  コンピュータを、請求項1から11までのいずれか1項に記載の生産管理装置の各手段として機能させるための制御プログラム。
  17.  請求項16に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2011/056898 2010-11-29 2011-03-23 生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体 WO2012073536A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180055441.6A CN103221892B (zh) 2010-11-29 2011-03-23 生产管理装置、生产管理系统、生产管理装置的控制方法
US13/884,757 US20130282415A1 (en) 2010-11-29 2011-03-23 Production management device, production management system, method of controlling production management device, control program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010265505A JP5381965B2 (ja) 2010-11-29 2010-11-29 生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体
JP2010-265505 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012073536A1 true WO2012073536A1 (ja) 2012-06-07

Family

ID=46171495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056898 WO2012073536A1 (ja) 2010-11-29 2011-03-23 生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体

Country Status (4)

Country Link
US (1) US20130282415A1 (ja)
JP (1) JP5381965B2 (ja)
CN (1) CN103221892B (ja)
WO (1) WO2012073536A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014095938A1 (de) * 2012-12-17 2014-06-26 Krones Ag Verfahren zur ermittlung einer ressourceneffizienz einer anlage zum herstellen von getränkebehältnissen
US20210350296A1 (en) * 2020-05-08 2021-11-11 Hitachi, Ltd. Productivity improvement support system and productivity improvement support method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10726362B2 (en) 2011-01-31 2020-07-28 X-Act Science Inc. Predictive deconstruction of dynamic complexity
DE112014006728B4 (de) * 2014-06-06 2018-08-30 Mitsubishi Electric Corporation Verfahren zum Steuern eines Sensorsystems
DE102014219771A1 (de) * 2014-09-30 2016-03-31 Siemens Aktiengesellschaft Verfahren zum Ermitteln des Energiebedarfs einer Produktionsmaschine oder eines aus mehreren Produktionsmaschinen bestehenden Produktionssystems sowie zur Durchführung des Verfahrens geeignetes Messgerät
CN108139738A (zh) * 2015-09-28 2018-06-08 富士通株式会社 管理系统、管理方法以及管理程序
CN109143876A (zh) * 2018-07-13 2019-01-04 华东师范大学 一种复杂工业控制系统
CN112650186A (zh) * 2021-01-11 2021-04-13 伟创力电子技术(苏州)有限公司 一种回流炉前轨道自动下板的控制方法
CN117236799B (zh) * 2023-11-14 2024-02-09 山东焱鑫矿用材料加工有限公司 一种中空注浆锚索的生产质量控制系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097128A (ja) * 2006-10-06 2008-04-24 Cimx Kk 管理装置、解析装置、及びプログラム
JP2010262627A (ja) * 2009-04-10 2010-11-18 Omron Corp 設備運転状態計測装置、設備運転状態計測方法、および制御プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769420B2 (ja) * 1999-08-05 2006-04-26 株式会社日立産機システム 設備稼働状態計測装置
WO2008039759A2 (en) * 2006-09-25 2008-04-03 Intelligent Management Systems Corporation System and method for resource management
US20090138321A1 (en) * 2007-11-21 2009-05-28 Henby Gary L Method and system for process improvement in the production of products
JP2009164738A (ja) * 2007-12-28 2009-07-23 Omron Corp 遠隔監視システム、遠隔監視端末、および遠隔監視端末制御プログラム
JP5099066B2 (ja) * 2009-04-10 2012-12-12 オムロン株式会社 エネルギー監視装置およびその制御方法、ならびにエネルギー監視プログラム
JP2010250383A (ja) * 2009-04-10 2010-11-04 Omron Corp 原単位算出装置、原単位算出装置の制御方法、および制御プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097128A (ja) * 2006-10-06 2008-04-24 Cimx Kk 管理装置、解析装置、及びプログラム
JP2010262627A (ja) * 2009-04-10 2010-11-18 Omron Corp 設備運転状態計測装置、設備運転状態計測方法、および制御プログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014095938A1 (de) * 2012-12-17 2014-06-26 Krones Ag Verfahren zur ermittlung einer ressourceneffizienz einer anlage zum herstellen von getränkebehältnissen
CN104937507A (zh) * 2012-12-17 2015-09-23 克隆尼斯股份有限公司 确定用于生产饮料容器的生产设备的资源效率的方法
EP2932336B1 (de) 2012-12-17 2020-05-06 Krones AG Verfahren zur ermittlung einer ressourceneffizienz einer anlage zum herstellen von getränkebehältnissen
US10936977B2 (en) 2012-12-17 2021-03-02 Krones Ag Method for determining an efficiency of resources of a plant for producing beverage containers
US20210350296A1 (en) * 2020-05-08 2021-11-11 Hitachi, Ltd. Productivity improvement support system and productivity improvement support method
US11514384B2 (en) * 2020-05-08 2022-11-29 Hitachi, Ltd. Productivity improvement support system and productivity improvement support method

Also Published As

Publication number Publication date
CN103221892B (zh) 2015-10-21
US20130282415A1 (en) 2013-10-24
JP5381965B2 (ja) 2014-01-08
JP2012118614A (ja) 2012-06-21
CN103221892A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5381965B2 (ja) 生産管理装置、生産管理システム、生産管理装置の制御方法、制御プログラム、および、記録媒体
CN107850891B (zh) 管理系统及非易失性的计算机可读记录介质
US8201028B2 (en) Systems and methods for computer equipment management
CN104583887B (zh) 监视装置、以及监视方法
WO2008140212A1 (en) Ubiquitous sensor network-based system and method for automatically managing food sanitation
US9772641B2 (en) Control device including power supply controller, control method of controlling power supply of machine, and recording medium in which program for controlling power supply of machine is stored
US20130323824A1 (en) Control device for a food waste disposal apparatus
TWI756628B (zh) 營運評估裝置、營運評估方法、及程式
JP6372654B2 (ja) 穀物乾燥機
JP6431434B2 (ja) 温度管理装置および温度管理システム
CN103010645A (zh) 锡膏管制装置
CN212375416U (zh) 电镀系统
KR20130061532A (ko) 청각 알림 기능을 가지는 rfid 센서 태그 및 그 처리 방법
KR20100116486A (ko) 축산물 유통단계 haccp 관리방법
TW201616360A (zh) 複雜資料集的預測分析以及包含其之系統和方法
JP4390493B2 (ja) 手術用器材管理システム
JP2013225258A (ja) 作業者管理システム及び作業者管理方法
JP4457621B2 (ja) 食品の製造履歴情報管理方法およびシステム
CN115667943A (zh) 状态判定装置、状态判定系统、生产系统、工序管理装置、以及状态判定方法
JP2011018738A (ja) 生産管理システム
JP2022041444A (ja) 情報処理装置、情報処理方法、情報処理プログラム及び情報処理システム
JP2020056569A (ja) 穀物乾燥機の遠隔管理システム
CN117952480B (zh) 一种食品包装车间生产线管理方法及系统
JP7295676B2 (ja) 情報処理装置及びプログラム
Manavizadeh et al. A new approach in joint optimization of maintenance planning, process quality and production scheduling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13884757

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11844046

Country of ref document: EP

Kind code of ref document: A1