WO2012073454A1 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
WO2012073454A1
WO2012073454A1 PCT/JP2011/006513 JP2011006513W WO2012073454A1 WO 2012073454 A1 WO2012073454 A1 WO 2012073454A1 JP 2011006513 W JP2011006513 W JP 2011006513W WO 2012073454 A1 WO2012073454 A1 WO 2012073454A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
port portion
battery pack
discharge port
battery module
Prior art date
Application number
PCT/JP2011/006513
Other languages
English (en)
French (fr)
Inventor
裕史 高崎
安井 俊介
下司 真也
貴嗣 中川
圭亮 内藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012516425A priority Critical patent/JP5474187B2/ja
Priority to KR1020127020195A priority patent/KR101314454B1/ko
Priority to US13/577,377 priority patent/US20130040174A1/en
Priority to CN201180010084.1A priority patent/CN102770982B/zh
Publication of WO2012073454A1 publication Critical patent/WO2012073454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack configured by arranging a plurality of battery modules.
  • a secondary battery (unit cell) is electrically connected to form a battery module, and that this battery module is used as a power source.
  • the exhaust duct is isolated from the battery chamber. Therefore, even when high-temperature gas is discharged from the unit cell, the high-temperature gas is normal. Contact with the battery can be avoided.
  • Battery packs may be configured by electrically connecting battery modules. In this case, if the discharge ports of the exhaust duct of the battery module are connected to each other using an external connection pipe, the energy density of the battery pack is reduced.
  • the present invention has been made in view of such points, and an object of the present invention is to provide a battery pack excellent in safety without being accompanied by a decrease in energy density.
  • the battery pack according to the present invention includes a plurality of battery modules arranged, and each battery module includes a plurality of unit cells housed in a module case.
  • Each module case is partitioned into a battery chamber and an exhaust chamber, and the module case has a discharge port portion and an introduction port portion.
  • the discharge port portion is opened perpendicular to the arrangement direction of the unit cells, and the introduction port portion is formed on the case side surface located on the opposite side to the case side surface where the discharge port portion is formed.
  • the battery modules are arranged side by side in the opening direction of the discharge port portion, and the discharge port portion is communicated with the introduction port portion of the adjacent battery module via a hollow communication member.
  • the length of the battery pack in the arrangement direction of the battery modules is only slightly longer. Therefore, it is possible to suppress a decrease in energy density caused by providing the exhaust path in the battery pack.
  • the unit cells may be arranged in a row or two-dimensionally.
  • the unit cells are arranged two-dimensionally, there are two directions of “unit cell arrangement direction”.
  • the “unit cell arrangement direction” is a direction in which the number of unit cells is larger in two directions.
  • the “unit direction of unit cells” may be either of two directions.
  • FIG. 4 is a sectional view taken along line IV-IV shown in FIG. 3. It is sectional drawing of the battery pack which concerns on another embodiment of this invention.
  • A) is an exploded plan view of a part of a battery pack according to still another embodiment of the present invention, and (b) is a cross-sectional view taken along line VIB-VIB shown in FIG. 6 (a).
  • FIG. 6 is an exploded plan view of a part of a battery pack according to another embodiment of the present invention. It is sectional drawing of the battery pack which concerns on another embodiment of this invention. (A) And (b) is respectively the top view and sectional drawing of the battery pack which concern on another embodiment of this invention.
  • the battery pack according to the embodiment of the present invention is configured by arranging a plurality of battery modules, and each battery module is configured by arranging a plurality of unit cells.
  • each battery module is configured by arranging a plurality of unit cells.
  • FIG. 1 is a longitudinal sectional view of a unit cell in the present embodiment.
  • the unit cell 1 in the present embodiment is, for example, a lithium ion secondary battery, and is configured such that the opening of the battery case 3 is sealed with a sealing plate 7 via a gasket 5 as shown in FIG.
  • an electrode group is accommodated together with a nonaqueous electrolyte, and the electrode group is configured by winding a positive electrode plate 11 and a negative electrode plate 13 via a separator 15.
  • the positive electrode plate 11 is connected to the sealing plate 7 via a positive electrode lead 11L
  • the negative electrode plate 13 is connected to the battery case 3 via a negative electrode lead 13L.
  • the opening 7a is formed in the sealing plate 7.
  • the open part 7a is an opening for exhausting hot gas out of the battery case 3 when the unit cell is in an abnormal state.
  • FIG. 2 is a plan view showing the internal structure of the battery module 21 in the present embodiment.
  • Each battery chamber 27 is formed by the inner surface 25 ⁇ / b> A of the partition plate 25, the separator plate 24, and the inner surface of the module case 23.
  • Each battery chamber 27 accommodates the unit cell 1.
  • the sealing plate 7 of the unit cell 1 is disposed on the partition plate 25 side (exhaust duct 29 side, opposite to the separator plate 24), and therefore the bottom surface of the battery case 3 of the unit cell 1 in one battery chamber 27. (The side opposite to the open portion 7 a) faces the bottom surface of the battery case 3 of the unit cell 1 in the other battery chamber 27.
  • a plurality of through holes 25a are formed in the partition plate 25 in a portion extending in the arrangement direction of the unit cells so as to be spaced from each other, and the sealing plate of the unit cell 1 is formed from each of the through holes 25a of each partition plate 25. 7 is exposed. Thereby, the discharge port 7 a of the unit cell 1 is communicated with the exhaust duct 29. Further, each of the peripheral portions of the through holes 25a of each partition plate 25 is in contact with the shoulder 4 (see FIG. 1) of the unit cell 1. Therefore, it is possible to prevent the gas discharged from the unit cell 1 (hereinafter also referred to as “exhaust gas” or “hot gas”) from flowing back into or flowing into the battery chamber 27. Therefore, the high temperature gas can be prevented from coming into contact with the normal unit cell 1, and the battery module 21 having excellent safety can be provided.
  • exhaust gas gas discharged from the unit cell 1
  • the exhaust duct 29 is a space formed by the outer surfaces 25B, 25B of the partition plates 25, 25 and the inner surface of the module case 23, and includes a first exhaust duct portion 31 and a second exhaust duct portion 33. Yes.
  • the first exhaust duct portion 31 extends in the arrangement direction of the unit cells.
  • the second exhaust duct portion 33 communicates with the first exhaust duct portion 31 and extends in the direction perpendicular to the arrangement direction of the unit cells and in the axial direction of the unit cells 1.
  • a first discharge port portion (discharge port portion) 35 and a first introduction port portion (introduction port portion, see FIG. 3, etc.) 37 are formed.
  • Each of the first discharge ports 35 is an opening for discharging exhaust gas to the outside of the module case 23, and is formed on the lower surface of the module case 23.
  • the first discharge port 35 is perpendicular to the arrangement direction of the unit cells. Is open.
  • Each first introduction port 37 is an opening into which gas discharged from the first discharge port 35 of the battery module 21 located adjacent to the battery pack 51 is introduced, and the upper surface (discharge) of the module case 23.
  • the case side surface located on the opposite side of the case side surface where the outlet portion is formed.
  • FIG. 3 is an exploded perspective view of the battery pack 51 according to the present embodiment. 4 is a cross-sectional view taken along line IV-IV shown in FIG.
  • the battery pack 51 includes a plurality of battery modules 21 and a pack case (the pack case includes an iron housing member 53 and an iron lid 55). Yes.
  • the plurality of battery modules 21 are stacked and housed in the recess 53a of the housing member 53, and the lid 55 is disposed on the uppermost battery module 21A and closes the opening of the recess 53a.
  • the plurality of battery modules 21 are arranged in the opening direction of the first discharge port portion 35 and the first introduction port portion 37, and each battery module 21 has the first discharge port portion 35 as the first introduction port. It arrange
  • the exhaust duct 29 of the battery module 21 communicates with each other in the arrangement direction of the battery modules to configure the exhaust path of the battery pack 51.
  • each first discharge port 35 of the uppermost battery module 21 ⁇ / b> A is connected to the first introduction port 37 of the middle battery module 21 ⁇ / b> B via a communication member 57.
  • the first discharge ports 35 of the middle battery module 21B are communicated with the first introduction ports 37 of the lowermost battery module 21C via the communication member 57.
  • Each communication member 57 is a tube made of, for example, polybutylene terephthalate (PBT), and is fixed to each peripheral portion of the first discharge port portion 35 and the first introduction port portion 37.
  • the first discharge port 35 of the lowermost battery module 21C only needs to communicate with a discharge port (not shown) formed in the pack case.
  • the unit cell 1 falls into an abnormal state (for example, when an internal short circuit or an external short circuit occurs in the unit cell 1), high-temperature gas may be discharged from the opening 7 a of the sealing plate 7 of the unit cell 1. is there.
  • high-temperature gas is discharged from the unit cell 1 of the uppermost battery module 21A (unit cell 1 indicated as NG in FIG. 2).
  • the discharged gas escapes from the open portion 7 a (see FIG. 1) into the first exhaust duct portion 31 of the exhaust duct 29, and extends along the longitudinal direction of the first exhaust duct portion 31. flow to collide with the inner surface of the module case 23 (near the point a 1).
  • the exhaust gas changes in the flow direction and escapes along the longitudinal direction of the second exhaust duct portion 33, and is discharged from the first discharge port portion 35.
  • the exhaust gas is discharged from the first discharge port portion 35 on the front side in the discharge direction (upper side in the case shown in FIG. 2), but a part of the exhaust gas is on the back side in the discharge direction (shown in FIG. 2). In some cases, it may be discharged from the first discharge port portion 35 on the lower side.
  • the gas discharged from the first discharge port portion 35 of the uppermost battery module 21 ⁇ / b> A is introduced into the first introduction port portion 37 of the middle battery module 21 ⁇ / b> B through the communication member 57.
  • the battery module 21B is discharged from the first discharge port 35.
  • the gas is then introduced through the communication member 57 into the first introduction port 37 of the lowermost battery module 21C, discharged from the first discharge port 35 of the battery module 21C, and formed in the pack case. It is discharged from the battery outlet 51 to the outside of the battery pack 51.
  • the first introduction port portion 37 of the uppermost battery module 21 ⁇ / b> A is preferably closed by a cap 59.
  • a cap 59 thereby, most of the exhaust gas can escape along the direction of the arrow shown in FIG. That is, the path through which the exhaust gas passes can be controlled. Moreover, it can prevent that a foreign material mixes in the uppermost battery module 21A.
  • the material of the cap 59 is not particularly limited, but may be made of PBT or the like.
  • an exhaust path can be formed in the battery pack even if the exhaust duct outlets are connected to each other using a connecting pipe or the like.
  • the connecting pipe and the like are located outside the module case in plan view. For this reason, the dead space of the battery pack (the space where the unit cell 1 is not provided) is expanded, and thus the energy density is reduced.
  • the plurality of battery modules 21 are arranged in the opening direction of the first discharge port portion 35, and the first discharge port portion 35 is adjacent to each other via the communication member 57.
  • the battery module 21 is located in communication with the first introduction port 37. Therefore, the communication member 57 is located inside the module case 23 in a plan view.
  • the length in the arrangement direction of the battery modules is merely increased by the length of the communication member 57, and the energy density resulting from the formation of the exhaust path in the battery pack. Can be prevented.
  • the length of the communication member 57 between the adjacent battery modules 21 and 21 is 10 mm or less, for example, 4 mm.
  • the battery module 21 can be cooled by flowing a coolant through the gap between the battery modules 21 and 21 formed by arranging the communication member 57. Therefore, the gap can be used effectively. In this case, it is preferable to provide a spacer between the adjacent battery modules 21 and 21. Thereby, the space where a refrigerant flows can be secured. Further, the battery module 21 can be stably disposed at a predetermined position.
  • the communication member 57 does not extend from the upstream side to the downstream side of the exhaust gas, but the first discharge port portions of the battery modules 21 and 21 adjacent to each other. 35 and the first inlet 37 are communicated with each other. Therefore, even when the position of the first discharge port portion 35 or the first introduction port portion 37 in the module case 23 varies, the battery pack 51 can be manufactured.
  • the exhaust gas escapes along the arrangement direction of the battery modules, and thus is cooled using the arrangement height of the battery modules 21.
  • the present inventors have a point A 1 in the battery module 21 (hereinafter referred to as “abnormal battery module”) 21 from which the gas is discharged from the unit cell 1 . If the distance from the first discharge port 35 of the lowermost battery module 21 is 220 mm or more, the temperature of the gas discharged from the first discharge port 35 of the lowermost battery module 21 is 100 ° C. or less. Confirm that it will be.
  • the inventors of the present invention also consider the temperature of the reactive gas when discharged from the battery pack 51 even when a gas (reactive gas) that easily reacts with oxygen in the air is discharged from the unit cell 1. It has been confirmed that if the temperature is 400 ° C. or lower, a violent reaction between the reactive gas and oxygen in the air can be prevented. Therefore, in the present embodiment, the gas discharged from the battery pack 51 can be prevented from reacting violently with oxygen in the air, and the battery pack 51 excellent in safety can be provided.
  • a gas reactive gas
  • the first discharge port 35 opens in a direction perpendicular to the arrangement direction of the unit cells. Therefore, in the abnormal battery module 21, the hot gas is discharged from the first discharge port 35 after colliding with the inner surface of the module case 23 at least once.
  • the present inventors have confirmed that the temperature of the gas discharged from the battery pack becomes lower as the exhaust gas collides with the inner surface of the module case 23 or the inner surface of the pack case. Therefore, in the present embodiment, the exhaust duct 29 is discharged from the battery module 21 without making the entire length of the exhaust duct 29 (the total length of the first exhaust duct portion 31 and the second exhaust duct portion 33) so long.
  • the gas temperature can be lowered to about 300 to 400 ° C.
  • the temperature of the gas discharged from the abnormal battery module 21 is about 400 ° C. Therefore, the temperature of the gas discharged from the battery pack 51 is 400 ° C. or lower, and it is possible to prevent the gas discharged from the battery pack 51 from reacting violently with oxygen in the air. Further, if the distance between the discharge port formed in a point A 1 and the pack case in the abnormal battery module 21 is 220mm or more (e.g., from unit cells 1 constituting the upstream battery modules are hot gas discharged ), The temperature of the gas discharged from the battery pack 51 becomes 100 ° C. or less.
  • each module case 23 and the pack case are made of iron, the exhaust gas can be efficiently cooled.
  • the exhaust path can be concentrated on one side (front side in FIG. 3). Therefore, if the electric system such as the signal line is arranged on the side opposite to the exhaust path, the exhaust path and the electric system can be separated. Therefore, it is possible to prevent the electric system from being exposed to a high-temperature gas.
  • the battery chamber 27 is isolated from the exhaust duct 29 via the partition plate 25. Therefore, it is possible to prevent the hot gas discharged from the unit cell 1 from flowing back or flowing into the battery chamber 27. Therefore, since the normal unit cell 1 can be prevented from being exposed to a high-temperature gas, the safety of the battery module 21 is improved.
  • the cross-sectional area of the exhaust path becomes smaller, the exhaust gas becomes more difficult to escape, which causes pressure loss. When pressure loss occurs, exhaust gas may flow backward. In addition, the battery pack 51 or the battery module 21 may be damaged, and this damage causes the unit cell 1 to be damaged. From the above, it is preferable that the cross-sectional area of the exhaust path is large.
  • the cross-sectional area of the exhaust path increases, the ratio of exhaust gas that contacts the inner surface of the exhaust path decreases. Therefore, the exhaust gas is difficult to be cooled.
  • the cross-sectional area of the exhaust path is increased, the battery module or the battery pack is increased in size, and the energy density of the battery pack is decreased.
  • the length of the exhaust path of the battery pack can be further increased. Further, even when the configuration of the battery module is the configuration shown in FIGS. 8 to 9, the above effect can be obtained. Hereinafter, it demonstrates in order.
  • the battery pack 151 is configured by arranging battery modules 121 (when the position of the battery module in the battery pack 151 is not specified, the reference numeral of the battery module is “121”). Not only the first discharge port portions 35 and 35 but also the second discharge port portions 135 and 135 are formed on the case lower surface of the module case 123 of each battery module 121. Similarly, not only the first introduction port portions 37 and 37 but also the second introduction port portions 137 and 137 are formed on the case upper surface of each module case 123. Each first introduction port portion 37 is formed on the side opposite to the first discharge port portion 35, and each second introduction port portion 137 is formed on the side opposite to the second discharge port portion 135. Has been.
  • each first discharge port portion 35 faces the first introduction port portion 37 of the battery module 121 located next to each other, and each second discharge port portion 135 is located next to each other. It faces the second inlet 137 of the battery module 121.
  • the first discharge port portion 35 and the first introduction port portion 37 are communicated via the communication member 57.
  • the second discharge port portion 135 and the second introduction port portion 137 are communicated with each other via the communication member 57.
  • abnormal battery module is the uppermost battery module 121A
  • the hot gas discharged from the unit cell 1 escape to the point A 1, as shown in FIG. 2, changing the flow direction at the point A 1.
  • the hot gas escapes from the first discharge port portion 35 of the uppermost battery module 121A through the communication member 57 to the first introduction port portion 37 of the middle battery module 121B.
  • the first outlet 35 of the middle battery module 121B is sealed with a cap 59, while the second outlet 135 of the battery module 121B is open.
  • the exhaust gas escapes from the second discharge port portion 135 of the middle battery module 121B through the communication member 57 to the second introduction port portion 137 of the lowermost battery module 121C.
  • the second outlet 135 of the lowermost battery module 121C is sealed with a cap 59, while the first outlet 35 of the battery module 121C is open. Therefore, the exhaust gas escapes from the first outlet 35 of the lowermost battery module 121C to the outside of the battery pack 151.
  • Each battery module 121 may have a third discharge port portion, a fourth discharge port portion,..., An nth discharge port portion.
  • the length of the discharge path in the battery pack 151 can be earned as the number n increases. However, when the number n increases, the number of sealed outlets and inlets increases, leading to a decrease in battery pack productivity and an increase in battery pack cost. In addition, the strength of the module case may be reduced. In consideration of these, it is preferable to determine the number of n.
  • the size of the length L is not particularly limited.
  • the length L may be determined while ensuring the length of the exhaust path, the strength of the module case, and the like, and considering the productivity of the module case.
  • the second discharge port portion 135 and the second introduction port portion 137 communicate with each other via the communication member 57
  • the middle battery In the module 121B and the lowermost battery module 121C the first discharge port portion 35 and the first introduction port portion 37 may be communicated with each other via the communication member 57.
  • FIG. 6 is an exploded plan view of a part of the battery pack 251 according to the second modified example
  • FIG. 6B is a cross-sectional view taken along the line VIB-VIB shown in FIG.
  • the internal structure of the battery module 21D is indicated by a solid line
  • a part of the internal structure of the battery module 21E is indicated by a broken line.
  • the battery pack 51 and the battery pack 251 have different communication member configurations. Hereinafter, differences from the battery pack 51 will be mainly described.
  • the communication member 253 is formed of two sheet-like members 254 and 256 sandwiching the hollow portion 255 as shown in FIG.
  • the hollow portion 255 is formed in a curved shape in a plan view, two upstream openings 257 and 257 are formed on one end side of the hollow portion 255, and on the other end side of the hollow portion 255, Two downstream openings 259 and 259 are formed.
  • Each upstream opening portion 257 is formed on the upper surface of the communication member 253 and communicates with the hollow portion 255, and the first battery module (upstream battery module) 21 ⁇ / b> D located upstream of the communication member 253. 1 is connected to one discharge port 35.
  • Each downstream opening 259 is formed on the lower surface of the communication member 253 and communicates with the hollow portion 255, and is connected to the battery module (downstream battery module) 21 ⁇ / b> E located downstream of the communication member 253. 1 communication port 37.
  • Each upstream opening 257 preferably communicates with the first discharge port 35 of the upstream battery module 21D via a short communication pipe (not shown) or the like. The same applies to the downstream opening 259.
  • the gas discharged from the first discharge port portion 35 of the upstream battery module 21 ⁇ / b> D is introduced into the upstream opening portion 257 and flows along the longitudinal direction of the hollow portion 255. Then, it is discharged from the downstream opening 259 to the first introduction port 37 of the battery module 21E on the downstream side.
  • the hollow portion 255 is formed in a curved shape in a plan view as shown in FIG. 6A, and the upstream side opening portion 257 is formed on one end side in the longitudinal direction of the hollow portion 255, and the downstream side The opening 259 is formed on the other end side in the longitudinal direction of the hollow portion 255.
  • the length of the exhaust path of the battery pack 251 is longer than that of the battery pack 51 by the length in the longitudinal direction of the hollow portion 255. Accordingly, the gas discharged from the battery pack 251 is at a lower temperature than the gas discharged from the battery pack 51.
  • the communication member 253 As the communication member, it is preferable to use the communication member 253 as the communication member.
  • the communication member 253 when used as the communication member, a member for connecting the communication member 253 and the battery module 21 is separately required. Therefore, the battery pack productivity may be reduced, or the battery pack may be expensive. In consideration of the safety of the battery pack and the productivity and cost of the battery pack, it may be selected which of the communication member 57 and the communication member 253 is used as the communication member.
  • the communication member 253 is preferably disposed on the downstream side. Therefore, even if it is a case where high temperature gas is discharged
  • an even number of communication members 253 may be arranged between adjacent battery modules 21 and 21.
  • the 1st discharge port part 35 and the 1st inlet port part 37 can be arrange
  • planar shape of the hollow portion 255 is not limited to the shape shown in FIG.
  • the planar shape of the hollow portion 255 may be a linear shape, or may be a curved shape other than the curved shape shown in FIG.
  • the exhaust gas flows in the longitudinal direction of the hollow portion 255 while colliding with the inner surface of the hollow portion 255.
  • the length of the hollow portion 255 can be increased in a limited space.
  • the planar shape of the hollow portion 255 is preferably a curved shape, and more preferably meandering as shown in FIG. This can be said also about the 2nd hollow part 355 in below-mentioned FIG.
  • the positions of the upstream opening 257 and the downstream opening 259 are not limited to the positions shown in FIG. If the upstream opening 257 and the downstream opening 259 are formed at different positions in the longitudinal direction of the hollow portion 255, the length of the exhaust path of the battery pack 251 can be made longer than that of the battery pack 51. However, if the upstream opening 257 is formed at one end in the longitudinal direction of the hollow portion 255 and the downstream opening 259 is formed at the other longitudinal end of the hollow portion 255, the exhaust path of the battery pack 251. You can earn as much as possible. This also applies to an opening (first opening) 357 and a discharge end (second opening) 359 in FIG. 7 described later.
  • the material of the sheet-like members 254 and 256 is not particularly limited, but may be made of, for example, a galvanized steel plate.
  • a galvanized steel plate As the galvanized steel sheet, it is more preferable to use electrogalvanization (SECC).
  • FIG. 7 is an exploded plan view of a part of the battery pack 351 according to the third modification.
  • the battery pack 351 according to this modification further includes a lower panel 353.
  • differences from the battery pack 51 will be mainly described.
  • the lower panel 353 is provided between the lowermost battery module 21 ⁇ / b> C and the bottom surface of the housing member 53, and two sheet-like members (not shown) are formed with the second hollow portion 355 interposed therebetween. (See FIG. 6B).
  • the second hollow portion 355 is formed in a curved shape in plan view, and two openings 357 and 357 are formed on one end side of the second hollow portion 355, and the second hollow portion 355 is formed.
  • a discharge end 359 is formed on the other end side.
  • Each opening portion 357 is formed on the upper surface of the lower panel 353 and communicates with the second hollow portion 355, and also communicates with the first discharge port portion 35 of the lowermost battery module 21C.
  • the discharge end 359 communicates with the second hollow portion 355 and communicates with a discharge port formed in the pack case.
  • the gas discharged from each first discharge port portion 35 of the lowermost battery module 21 ⁇ / b> C is introduced into the opening portion 357 and flows along the longitudinal direction of the second hollow portion 355. Then, it is discharged from the discharge end 359. Therefore, the length of the exhaust path of the battery pack 351 is longer than that of the battery pack 51 by the length in the longitudinal direction of the second hollow portion 355. Therefore, the gas discharged from the battery pack 351 is at a lower temperature than the gas discharged from the battery pack 51. For example, even when a high-temperature gas is discharged from the unit cell 1 constituting the lowermost battery module 21C, the temperature of the gas discharged from the battery pack 351 can be set to 100 ° C. or lower.
  • the lower panel 353 From the viewpoint of increasing the length of the exhaust path of the battery pack, it is preferable to provide the lower panel 353, and it is preferable that the number of the lower panels 353 is larger.
  • the lower panel 353 when the lower panel 353 is provided, a separate member for connecting the lower panel 353 and the lowermost battery module 21C is required. Therefore, the battery pack productivity may be reduced, or the battery pack may be expensive. Further, when the number of the lower panels 353 increases, the energy density of the battery pack is reduced. Based on the above, whether to provide the lower panel 353 or the number of the lower panels 353 may be determined.
  • FIG. 8 is a cross-sectional view of a battery pack 451 according to a fourth modification.
  • the outer shape of the unit cell 1 is shown.
  • differences between the battery module 21 and the battery pack 51 will be mainly described.
  • the first discharge port portion 35 is formed on the case front surface of the module case 223, and the first introduction port portion 37 is formed on the case back surface of the module case 223.
  • the battery pack 451 is configured by arranging battery modules 221 in the opening direction of the first discharge port portion 35.
  • the gas discharged from the unit cell (unit cell marked “NG” in FIG. 8) 1 escapes from the open portion 7 a to the first exhaust duct unit 31, and the first It flows along the longitudinal direction of the exhaust duct portion 31 and collides with the inner surface of the module case 223. Due to this collision, the exhaust gas changes the flow direction and flows along the longitudinal direction of the second exhaust duct portion 33, is discharged from the first discharge port portion 35, and is discharged from the adjacent battery module 221. 1 is introduced into the first inlet 37. Therefore, the battery pack 451 can obtain substantially the same effect as the battery pack 51 shown in FIG.
  • FIGS. 9A and 9B are a plan view and a cross-sectional view of a battery pack 551 according to a fifth modification.
  • FIG. 9A the internal structure of the battery module 321 is shown.
  • FIG.9 (b) in order to simplify drawing, the external shape is written about the unit cell 1.
  • FIG. hereinafter, differences between the battery module 21 and the battery pack 51 will be mainly described.
  • the module case 323 of each battery module 321 is partitioned into one battery chamber 27 and a long exhaust duct 29.
  • the first discharge port portion 35 is formed on the upper surface of the case of the module case 323, and the first introduction port portion 37 is formed on the lower surface of the case of the module case 323.
  • the battery pack 551 is configured by arranging battery modules 321 in the opening direction of the first discharge port portion 35.
  • the gas discharged from the unit cell 1 escapes from the open portion 7a to the exhaust duct 29, flows along the longitudinal direction of the exhaust duct 29, and collides with the inner surface of the module case 323. Due to this collision, the exhaust gas is discharged from the first discharge port portion 35 while changing the flow direction, and is introduced into the first introduction port portion 37 of the battery module 321 located adjacent thereto. Therefore, the battery pack 551 can obtain substantially the same effect as the battery pack 51 shown in FIG.
  • the present embodiment may have the following configuration.
  • Each of the battery packs shown in FIGS. 6 to 9 may have an exhaust path shown in FIG.
  • Each of the battery packs shown in FIGS. 5 and 7 to 9 may include a communication member 253 shown in FIG. 6 instead of the communication member 57.
  • Each of the battery packs shown in FIGS. 5 to 6 and FIGS. 8 to 9 may include the lower panel 353 shown in FIG. In any case, since the length of the exhaust path of the battery pack can be increased, the safety of the battery pack is further improved.
  • the first discharge port portion may be opened in the arrangement direction of the unit cells. However, if the first discharge port portion is opened perpendicular to the arrangement direction of the unit cells, the number of times the exhaust gas collides with the inner surface of the module case can be increased. Therefore, the temperature of the gas discharged from the abnormal battery module can be lowered to about 400 ° C.
  • the arrangement of the battery chamber and the exhaust duct in the module case may be other than the arrangement shown in FIGS. If the arrangement of the battery chamber and the exhaust duct in the module case is as shown in FIG. 2, not only the battery pack shown in FIG. 4 but also the battery pack shown in FIG. 8 can be produced. it can.
  • the first discharge port portion may be formed at the center in the longitudinal direction of the second exhaust duct portion. Thereby, since the moving distance of the exhaust gas in the battery module becomes long, the temperature of the gas discharged from the abnormal battery module is further lowered.
  • each module case may be formed with two first discharge ports, or may be formed with one first discharge port.
  • the first discharge port portion and the first introduction port portion communicated with each other via the communication member may be formed at positions facing each other (the former) or formed at a position deviating from the position facing each other. (The latter).
  • the former is preferable in view of ease of fixing the communication member or reduction of pressure loss in the communication member. However, the latter may be used as long as the positional deviation is about the manufacturing variation. The same can be said for the second discharge port portion and the second introduction port portion communicated with each other via the communication member.
  • the first discharge port portion may be formed at a position deviating from the position facing the first introduction port portion. Considering that the gas introduced from the first inlet port without causing a significant pressure loss is discharged to the first outlet port, the first outlet port faces the first inlet port. It is preferable that it is formed at a position. However, the first discharge port portion may be formed at a position deviating from the position facing the first introduction port portion as long as the positional deviation is about the manufacturing variation. The same can be said for the second outlet.
  • the method for fixing the communication member to the periphery of the first discharge port or the like is not particularly limited.
  • the communication member is made of a resin such as PBT, caulking and fixing can be given as an example of the method of fixing the communication member.
  • the opening shape of the first discharge port is not limited to the shape shown in FIG. 3 and the like, and the number of the first discharge ports is not limited to the above number. These also apply to the first inlet port, the second outlet port, the second inlet port, the upstream opening, the downstream opening, the opening, and the discharge end.
  • the configuration of the pack case is not limited to the configuration shown in FIG. Moreover, the structure of a module case is not specifically limited, You may form substantially the same as the pack case shown in FIG.
  • a structure composed of a hollow frame may be used.
  • the discharge port portion of the battery module located on the downstream side is communicated with the hollow portion of the frame body, the length of the exhaust path of the battery pack can be further increased without reducing the energy density of the battery pack. Can do.
  • the pack case may be made of resin or may be made of a material having excellent thermal conductivity (metal material such as iron or copper). However, if the pack case is made of a material having excellent thermal conductivity, a part of the heat of the exhaust gas can be released to the pack case. Therefore, the pack case is preferably made of a material having excellent thermal conductivity. Furthermore, if the pack case is made of iron, the weight of the pack case can be reduced. The same is true for module cases.
  • ⁇ Separator may not be provided. However, it is said that when high-temperature gas is discharged from a unit cell, the temperature of the unit cell rises to about 300 to 600 ° C. Therefore, if the separator is provided, the abnormal heat of the unit cell can be prevented from being transmitted to the unit cell in the other battery chamber, particularly if the separator having excellent thermal conductivity is provided. For the same reason, it is preferable that the plurality of unit cells be held in a module case while being held by a holder made of a material having excellent thermal conductivity (for example, aluminum).
  • the number of battery modules constituting the battery pack is not limited to the number shown in FIG. Moreover, a battery pack may be formed by stacking battery modules, or a battery pack may be formed by arranging battery modules side by side. In the battery pack, the battery modules may be connected in parallel to each other or may be connected in series to each other. The configuration for electrically connecting the plurality of battery modules to each other is not particularly limited.
  • the number of unit cells constituting the battery module is not limited to the number shown in FIG.
  • the plurality of unit cells may be arranged in a line or two-dimensionally in the module case. If a plurality of unit cells are arranged, for example, in a staggered pattern, an increase in the volume of the battery module due to an increase in the number of unit cells can be suppressed.
  • the plurality of unit cells may be connected in series or in parallel in the module case.
  • the structure for electrically connecting a plurality of unit cells to each other is not particularly limited.
  • the partition plate may serve as a positive electrode bus bar, a negative electrode bus bar, or a bipolar bus bar.
  • the unit cell may be a prismatic battery.
  • the positive electrode plate and the negative electrode plate may be laminated via a separator to constitute an electrode group.
  • a positive electrode current collector plate may be used instead of the positive electrode lead, or a negative electrode current collector plate may be used instead of the negative electrode lead. Thereby, the current collection resistance in the unit cell is reduced.
  • the configuration of the positive electrode plate and the negative electrode plate may be any configuration known as the configuration of the positive electrode plate and the negative electrode plate of a secondary battery (for example, a lithium ion secondary battery).
  • the materials for the battery case, gasket, sealing plate, positive electrode lead, and negative electrode lead may be materials known as materials for the battery case, gasket, sealing plate, positive electrode lead, and negative electrode lead of the secondary battery, respectively.
  • the open portion may be formed in a portion of the sealing plate that extends in the axial direction of the battery case. Even in this case, the battery module shown in FIG. 2 and the like can be configured, and the gas discharged from the unit cell can be released to the exhaust duct.
  • the present invention is useful for, for example, a vehicle power source or a heat storage power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

 モジュールケース23には、第1の排出口部35と第1の導入口部37とが互いに反対側に位置するケース側面に形成されている。複数の電池モジュール21は、第1の排出口部35の開口方向に並んで配置されている。電池モジュール21の第1の排出口部35は、連通部材57を介して、隣りに位置する電池モジュール21の第1の導入口部37に連結されている。

Description

電池パック
 本発明は、複数の電池モジュールが配列されて構成された電池パックに関する。
 近年、省資源又は省エネルギーの観点から、繰り返し使用できる二次電池を携帯型電子機器又は移動体通信機器等の電源として使用している。また、化石燃料の使用量の削減又は二酸化炭素の排出量の削減等の観点から、このような二次電池を車両又は蓄熱等の電源として使用することが検討されている。
 具体的には、二次電池(素電池)を電気的に接続して電池モジュールを構成し、この電池モジュールを電源として使用することが検討されている。例えば特許文献1又は2に示された電池モジュールでは、排気ダクトが電池室から隔離しており、よって、高温なガスが素電池から排出された場合であってもその高温なガスが正常な素電池に接触することを回避できる。
特開2002-151025号公報 特開2006-244981号公報
 電池モジュールを電気的に接続して電池パックを構成する場合がある。この場合、外付けの連結管を用いて電池モジュールの排気ダクトの排出口同士を互いに連結すると、電池パックのエネルギー密度の低下を招く。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、エネルギー密度の低下を伴うことなく安全性に優れた電池パックを提供することにある。
 本発明に係る電池パックは、複数の電池モジュールが配列されて構成されており、各電池モジュールは、複数の素電池がモジュールケースに収容されて構成されている。各モジュールケースは、電池室と排気室とに区画されており、モジュールケースには、排出口部と導入口部とが形成されている。排出口部は、素電池の配列方向に対して垂直に開口しており、導入口部は、排出口部が形成されたケース側面とは反対側に位置するケース側面に形成されている。電池モジュールは、排出口部の開口方向に並んで配列されており、排出口部は、中空の連通部材を介して、隣りに位置する電池モジュールの導入口部に連通されている。
 このような電池パックでは、電池モジュールの配列方向における電池パックの長さが若干長くなるに過ぎない。よって、排気経路を電池パックに設けたことに起因するエネルギー密度の低下を抑制できる。
 なお、電池モジュールでは、素電池は、一列に配置されていても良いし、二次元的に配置されていても良い。素電池が二次元的に配置されている場合、「素電池の配列方向」は二方向存在する。一方の方向における素電池の配列数が他方の方向における素電池の配列数よりも多い場合、「素電池の配列方向」は、二方向のうち素電池の配列数が多い方向である。一方の方向における素電池の配列数が他方の方向における素電池の配列数と同じである場合、「素電池の配列方向」は、二方向のうちどちらでも良い。
 本発明によれば、エネルギー密度の低下を伴うことなく安全性に優れた電池パックを提供できる。
本発明の一実施形態における素電池の縦断面図である。 本発明の一実施形態における電池モジュールの内部構造を示す平面図である。 本発明の一実施形態に係る電池パックの分解斜視図である。 図3に示すIV-IV線における断面図である。 本発明の別の実施形態に係る電池パックの断面図である。 (a)は本発明のまた別の実施形態に係る電池パックの一部分の分解平面図であり、(b)は図6(a)に示すVIB-VIB線における断面図である。 本発明のまた別の実施形態に係る電池パックの一部分の分解平面図である。 本発明のまた別の実施形態に係る電池パックの断面図である。 (a)及び(b)は、それぞれ、本発明のまた別の実施形態に係る電池パックの平面図及び断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下に示す実施形態に限定されない。
 本発明の実施形態に係る電池パックは、複数の電池モジュールが配列されて構成されており、各電池モジュールは、複数の素電池が配列されて構成されている。以下では、素電池、電池モジュール及び電池パックの順に構成等を説明する。
 図1は、本実施形態における素電池の縦断面図である。
 本実施形態における素電池1は、例えばリチウムイオン二次電池であり、図1に示すように、電池ケース3の開口部がガスケット5を介して封口板7で封止されて構成されている。電池ケース3内には、非水電解質と共に電極群が収容されており、電極群は、正極板11と負極板13とがセパレータ15を介して捲回されて構成されている。正極板11は、正極リード11Lを介して封口板7に接続されており、負極板13は、負極リード13Lを介して電池ケース3に接続されている。
 封口板7には、開放部7aが形成されている。開放部7aは、素電池が異常状態に陥ったときに、高温なガスを電池ケース3の外へ排気するための開口部である。
 図2は、本実施形態における電池モジュール21の内部構造を示す平面図である。
 本実施形態における電池モジュール21は、図2に示すように、複数の素電池1が配列されて鉄製のモジュールケース(ケース)23内に収容されて構成されている。モジュールケース23は、平面視L字状の仕切り板25,25を介して2つの電池室27,27と排気ダクト29とに区画されている。一方の電池室27と他方の電池室27とは隔離板24を隔てて配置されており、排気ダクト29は隔離板24を隔てて配置された電池室27,27の三方を囲んでいる。
 各電池室27は、仕切り板25の内面25Aと隔離板24とモジュールケース23の内面とで形成されている。各電池室27は、素電池1を収容している。素電池1の封口板7は仕切り板25側(排気ダクト29側,隔離板24とは反対側)に配置されており、よって、一方の電池室27内の素電池1の電池ケース3の底面(開放部7aとは反対側)は他方の電池室27内の素電池1の電池ケース3の底面に対向している。各仕切り板25のうち素電池の配列方向に延びる部分には複数の貫通孔25aが互いに間隔を開けて形成されており、各仕切り板25の貫通孔25aの各々からは素電池1の封口板7が露出している。これにより、素電池1の排出口部7aが排気ダクト29に連通される。また、各仕切り板25の貫通孔25aの周縁部分の各々は、素電池1の肩部4(図1参照)に当接している。よって、素電池1から排出されたガス(以下では「排気ガス」又は「高温なガス」と記すこともある)が電池室27に逆流又は流入することを防止できる。従って、高温なガスが正常な素電池1に接触することを防止でき、安全性に優れた電池モジュール21を提供できる。
 排気ダクト29は、仕切り板25,25の外面25B,25Bとモジュールケース23の内面とで形成される空間であり、第1の排気ダクト部31と第2の排気ダクト部33とを有している。第1の排気ダクト部31は、素電池の配列方向に延びている。第2の排気ダクト部33は、第1の排気ダクト部31に連通されており、素電池の配列方向に対して垂直な方向であって素電池1の軸方向に延びている。
 第2の排気ダクト部33の長手方向の各端には、第1の排出口部(排出口部)35と第1の導入口部(導入口部,図3等参照)37とが形成されている。各第1の排出口部35は、排気ガスをモジュールケース23の外へ排出するための開口部であり、モジュールケース23の下面に形成されており、素電池の配列方向に対して垂直な方向に開口している。各第1の導入口部37は、電池パック51において隣りに位置する電池モジュール21の第1の排出口部35から排出されたガスが導入される開口部であり、モジュールケース23の上面(排出口部が形成されたケース側面とは反対側に位置するケース側面)に形成されている。
 図3は、本実施形態に係る電池パック51の分解斜視図である。図4は、図3に示すIV-IV線における断面図である。
 本実施形態に係る電池パック51は、図3に示すように複数の電池モジュール21とパックケース(パックケースは鉄製の収容部材53と鉄製の蓋体55とで構成されている)とを備えている。複数の電池モジュール21は、積層されて収容部材53の凹部53a内に収容されており、蓋体55は、最上段の電池モジュール21Aの上に配置されて凹部53aの開口を塞いでいる。
 複数の電池モジュール21は、第1の排出口部35及び第1の導入口部37の開口方向に配列されており、各電池モジュール21は、第1の排出口部35が第1の導入口部37よりも図3における下側(排気ガスの下流側)に位置するように配置されている。そのため、電池モジュールの配列方向では、最上段の電池モジュール21Aの各第1の排出口部35は中段の電池モジュール21Bの第1の導入口部37に対向しており、中段の電池モジュール21Bの各第1の排出口部35は最下段の電池モジュール21Cの第1の導入口部37に対向している。
 電池モジュール21の排気ダクト29は、電池モジュールの配列方向において互いに連通されて電池パック51の排気経路を構成している。具体的には、図3及び図4に示すように、最上段の電池モジュール21Aの各第1の排出口部35は連通部材57を介して中段の電池モジュール21Bの第1の導入口部37に連通されており、中段の電池モジュール21Bの各第1の排出口部35は連通部材57を介して最下段の電池モジュール21Cの第1の導入口部37に連通されている。各連通部材57は、例えばポリブチレンテレフタレート(PBT(polybutylene terephthalate))等からなる管であり、第1の排出口部35及び第1の導入口部37の各周縁部に固定されている。なお、最下段の電池モジュール21Cの第1の排出口部35は、パックケースに形成された排出口(不図示)に連通されていれば良い。
 ところで、素電池1が異常な状態に陥ると(例えば素電池1において内部短絡又は外部短絡が発生すると)、高温なガスがその素電池1の封口板7の開放部7aから排出されることがある。例えば、最上段の電池モジュール21Aの素電池1(図2においてNGと記された素電池1)から高温なガスが排出された場合を考える。排出されたガスは、図2に示すように、開放部7a(図1参照)から排気ダクト29の第1の排気ダクト部31内へ逃げ、第1の排気ダクト部31の長手方向に沿って流動してモジュールケース23の内側面に衝突する(地点A付近)。この衝突により、排気ガスは、流動方向を変えて第2の排気ダクト部33の長手方向に沿って逃げ、第1の排出口部35から排出される。ここで、排気ガスは排出方向手前側(図2に示す場合では上側)の第1の排出口部35から排出されると考えられるが、排気ガスの一部分が排出方向奥側(図2に示す場合では下側)の第1の排出口部35から排出されることもある。
 最上段の電池モジュール21Aの第1の排出口部35から排出されたガスは、図4に示すように、連通部材57を通って中段の電池モジュール21Bの第1の導入口部37へ導入され、同電池モジュール21Bの第1の排出口部35から排出される。ガスは、その後、連通部材57を通って最下段の電池モジュール21Cの第1の導入口部37へ導入され、同電池モジュール21Cの第1の排出口部35から排出され、パックケースに形成された排出口から電池パック51の外へ排出される。
 なお、図4に示すように、最上段の電池モジュール21Aの第1の導入口部37はキャップ59により塞がれていることが好ましい。これにより、排気ガスの大部分を図4に示す矢印の方向に沿って逃がすことができる。つまり、排気ガスが通る経路を制御できる。また、異物が最上段の電池モジュール21Aに混入することを防止できる。キャップ59の材料は、特に限定されないが、PBT等からなれば良い。
 以上説明したように、本実施形態では、電池パック51に排気経路を形成したことに起因するエネルギー密度の低下を防止できる。詳細には、連結管等を用いて排気ダクトの排出口を互いに連結しても、電池パックに排気経路を形成できる。しかし、この場合、連結管等は、平面視においてモジュールケースの外側に位置する。そのため、電池パックのデッドスペース(素電池1が設けられていない空間)の拡大を招き、よって、エネルギー密度の低下を引き起こす。
 また、電池パック用の排気ダクトを別途形成し、電池モジュールの排出口をその排気ダクトに連通させることも考えられる。しかし、この場合、電池モジュールにおける排出口の位置等がばらつくと、排出口と電池パック用の排気ダクトとの連通が困難となる。そのため、電池パックの生産性の低下を招く。
 一方、本実施形態に係る電池パック51では、複数の電池モジュール21は第1の排出口部35の開口方向に配列されており、第1の排出口部35は連通部材57を介して隣りに位置する電池モジュール21の第1の導入口部37に連通されている。よって、連通部材57は、平面視においてモジュールケース23よりも内側に位置している。このように、本実施形態に係る電池パック51では、電池モジュールの配列方向における長さが連通部材57の長さ分長くなるに過ぎず、電池パックに排気経路を形成したことに起因するエネルギー密度の低下を防止できる。なお、隣り合う電池モジュール21,21間における連通部材57の長さは、10mm以下であり、例えば4mmである。
 更に、連通部材57を配置したことにより形成された電池モジュール21,21間の隙間に冷媒を流せば、電池モジュール21を冷却できる。よって、上記隙間を有効に利用できる。なお、この場合、隣り合う電池モジュール21,21の間にスペーサを設けることが好ましい。これにより、冷媒が流れるスペースを確保できる。また、電池モジュール21を安定して所定の位置に配置できる。
 また、本実施形態に係る電池パック51では、連通部材57は、排気ガスの上流側から下流側へ向かって延びているのではなく、互いに隣り合う電池モジュール21,21の第1の排出口部35と第1の導入口部37とを連通している。よって、モジュールケース23における第1の排出口部35又は第1の導入口部37の位置がばらついた場合であっても、電池パック51を作製可能である。
 本実施形態に係る電池パック51では、排気ガスは、電池モジュールの配列方向に沿って逃げるため、電池モジュール21の配列高さを利用して冷却される。電池パック51の排気経路の長さが長ければ長いほど、電池パック51から排出されるガスの温度は低くなる。本発明者らは、1000℃以上のガスが素電池1から排出された場合、ガスが素電池1から排出された電池モジュール(以下では「異常な電池モジュール」と記す)21における地点Aと最下段の電池モジュール21の第1の排出口部35との距離が220mm以上であれば、最下段の電池モジュール21の第1の排出口部35から排出されるガスの温度が100℃以下になることを確認している。また、本発明者らは、空気中の酸素と反応し易いガス(反応性ガス)が素電池1から排出された場合であっても、電池パック51から排出される際の反応性ガスの温度が400℃以下であれば、その反応性ガスと空気中の酸素との激しい反応を防止できることを確認している。従って、本実施形態では、電池パック51から排出されたガスが空気中の酸素と激しく反応することを防止でき、安全性に優れた電池パック51を提供できる。
 更に、本実施形態における各電池モジュール21では、第1の排出口部35は、素電池の配列方向に対して垂直な方向に開口している。そのため、異常な電池モジュール21では、高温なガスは、モジュールケース23の内面に1回以上衝突してから、第1の排出口部35から排出される。本発明者らは、排気ガスがモジュールケース23の内側面又はパックケースの内側面に衝突する回数が多ければ多いほど、電池パックから排出されるガスの温度が低くなることを確認している。よって、本実施形態では、排気ダクト29の全長(第1の排気ダクト部31の長さと第2の排気ダクト部33の長さとの合計)をそれほど長くしなくても、電池モジュール21から排出されるガスの温度を300~400℃程度にまで低下させることができる。従って、電池モジュール21のエネルギー密度の低下を伴うことなく電池モジュール21から排出されるガスの温度を低下させることができる。例えば、排気ダクトを長尺な管で構成した場合、管の長さを2~3mにしなければ、1000℃以上の排気ガスの温度を300~400℃程度にまで低下させることができない。しかし、排気ダクトを本実施形態における排気ダクト29で構成すれば、排気ダクト29の全長が2m未満であっても1000℃以上の排気ガスの温度を300~400℃程度にまで低下させることができる。
 つまり、本実施形態では、1000℃以上のガスが素電池1から排出されたとき、異常な電池モジュール21から排出されるガスの温度は400℃程度である。よって、電池パック51から排出されるガスの温度は400℃以下となり、電池パック51から排出されるガスと空気中の酸素とが激しく反応することを防止できる。また、異常な電池モジュール21における地点Aとパックケースに形成された排出口との距離が220mm以上であれば(例えば、上流側電池モジュールを構成する素電池1から高温なガスが排出されたとき)、電池パック51から排出されるガスの温度が100℃以下となる。
 その上、各モジュールケース23及びパックケースは鉄からなるため、排気ガスを効率良く冷却できる。
 また、本実施形態に係る電池パック51では、排気経路を片側(図3では手前側)に集約させることができる。よって、信号線等の電気系統を排気経路とは反対側に配置すれば、排気経路と電気系統とを離隔できる。従って、電気系統が高温なガスに曝されることを防止できる。
 また、本実施形態における各電池モジュール21では、電池室27は仕切り板25を介して排気ダクト29から隔離されている。よって、素電池1から排出された高温なガスが電池室27内に逆流又は流入することを防止できる。従って、正常な素電池1が高温なガスに曝されることを防止できるので、電池モジュール21の安全性が向上する。
 ここで、電池パック51の排気経路の横断面積について説明する。
 排気経路の横断面積が小さくなるにつれ、排気ガスは逃げ難くなり、そのため、圧力損失の発生を招く。圧力損失が発生すると、排気ガスが逆流する恐れがある。また、電池パック51又は電池モジュール21が破損する恐れがあり、この破損により素電池1の破損を招く。以上のことから、排気経路の横断面積は大きい方が好ましい。
 一方、排気経路の横断面積が大きくなると、排気経路の内面に接触する排気ガスの割合が低下する。そのため、排気ガスは、冷却され難くなる。それだけでなく、排気経路の横断面積が大きくなると、電池モジュール又は電池パックの大型化を招き、電池パックのエネルギー密度の低下を招来する。
 以上を考慮して排気経路の横断面積を決定することが好ましい。本発明者らは、排気経路の横断面積が400mm以上500mm以下であれば、圧力損失を招くことなく排気ガスの冷却を図ることができる,と考えている。つまり、第1の排気ダクト部31、第2の排気ダクト部33及び連通部材57の各横断面積が400mm以上500mm以下であることが好ましい。
 電池パックの構成が例えば図5~図7に示す構成であれば、電池パックの排気経路の長さを更に稼ぐことができる。また、電池モジュールの構成が図8~図9に示す構成であっても、上記効果を得ることができる。以下、順に説明する。
 図5は、第1の変形例に係る電池パック151の断面図である。電池パック51と電池パック151とでは、電池モジュールの配列方向における排気経路の構成が異なる。以下では、電池パック51との相違点を主に説明する。
 電池パック151は、電池モジュール121(電池パック151における電池モジュールの位置を特定しないときは、電池モジュールの符号を「121」とする)が配列されて構成されている。各電池モジュール121のモジュールケース123のケース下面には、第1の排出口部35,35だけでなく、第2の排出口部135,135も形成されている。同じく、各モジュールケース123のケース上面には、第1の導入口部37,37だけでなく、第2の導入口部137,137も形成されている。各第1の導入口部37は、第1の排出口部35とは反対側に形成されており、各第2の導入口部137は、第2の排出口部135とは反対側に形成されている。
 電池パック151では、各第1の排出口部35は、隣りに位置する電池モジュール121の第1の導入口部37に対向しており、各第2の排出口部135は、隣りに位置する電池モジュール121の第2の導入口部137に対向している。そして、図5に示すように、最上段の電池モジュール121Aと中段の電池モジュール121Bとでは、第1の排出口部35と第1の導入口部37とが連通部材57を介して連通されている。また、中段の電池モジュール121Bと最下段の電池モジュール121Cとでは、第2の排出口部135と第2の導入口部137とが連通部材57を介して連通されている。
 なお、最上段の電池モジュール121Aの第2の排出口部135、第1の導入口部37及び第2の導入口部137と、中段の電池モジュール121Bの第1の排出口部35及び第2の導入口部137と、最下段の電池モジュール121Cの第1の導入口部37及び第2の排出口部135とは、キャップ59で蓋されていることが好ましい。これにより、排気ガスが通る経路を制御できる。また、異物等の混入を防止できる。
 異常な電池モジュールが最上段の電池モジュール121Aである場合、素電池1から排出された高温なガスは、図2に示すように地点Aまで逃げ、地点Aにおいて流動方向を変える。その後、高温なガスは、連通部材57を通って最上段の電池モジュール121Aの第1の排出口部35から中段の電池モジュール121Bの第1の導入口部37へ逃げる。ここで、中段の電池モジュール121Bの第1の排出口部35はキャップ59で封止されている一方、同電池モジュール121Bの第2の排出口部135は開放されている。よって、排気ガスは、中段の電池モジュール121Bの第2の排出口部135から、連通部材57を通って、最下段の電池モジュール121Cの第2の導入口部137へ逃げる。ここで、最下段の電池モジュール121Cの第2の排出口部135はキャップ59で封止されている一方、同電池モジュール121Cの第1の排出口部35は開放されている。よって、排気ガスは、最下段の電池モジュール121Cの第1の排出口部35から、電池パック151の外部へ逃げる。
 このように、電池パック151の排出経路は、電池パック51の排出経路よりも約2L長くなる。ここで、長さLは、第1の排出口部35の開口における中心点と第2の排出口部135の開口における中心点との距離である。よって、電池パック151から排出されるガスの温度は、電池パック51から排出されるガスの温度よりも低くなる。一方、電池パック51と電池パック151とでは全体積は殆ど変わらない。これらのことから、電池パック151では、電池パック51に比べて、エネルギー密度の低下を殆ど招くことなく安全性の向上を図ることができる。
 なお、各電池モジュール121には、第3の排出口部、第4の排出口部、…、第nの排出口部が形成されていても良い。nの数が大きくなるほど、電池パック151における排出経路の長さを稼ぐことができる。しかし、nの数が大きくなると、封止される排出口部及び導入口部の個数が増加するため、電池パックの生産性の低下を招き、更には、電池パックのコスト高を招く。それだけでなく、モジュールケースの強度低下を招くこともある。これらを考慮して、nの数を決めることが好ましい。
 また、長さLの大きさは特に限定されない。排気経路の長さ及びモジュールケースの強度等を確保しつつ、また、モジュールケースの生産性を考慮しながら、長さLを決めれば良い。
 また、最上段の電池モジュール121Aと中段の電池モジュール121Bとでは、第2の排出口部135と第2の導入口部137とが連通部材57を介して連通されており、且つ、中段の電池モジュール121Bと最下段の電池モジュール121Cとでは、第1の排出口部35と第1の導入口部37とが連通部材57を介して連通されていても良い。
 図6は、第2の変形例に係る電池パック251の一部分の分解平面図であり、図6(b)は、図6(a)に示すVIB-VIB線における断面図である。図6(a)では、電池モジュール21Dについては内部構造を実線で記している一方、電池モジュール21Eについては内部構造の一部分を破線で記している。電池パック51と電池パック251とでは連通部材の構成が異なる。以下では、電池パック51との相違点を主に説明する。
 電池パック251では、連通部材253は、図6(b)に示すように、2枚のシート状部材254,256が中空部255を挟んで形成されたものである。中空部255は、平面視において曲線状に形成されており、中空部255の一端側には、2つの上流側開口部257,257が形成されており、中空部255の他端側には、2つの下流側開口部259,259が形成されている。各上流側開口部257は、連通部材253の上面に形成されて中空部255に連通されており、また、連通部材253よりも上流側に位置する電池モジュール(上流側の電池モジュール)21Dの第1の排出口部35に連通されている。各下流側開口部259は、連通部材253の下面に形成されて中空部255に連通されており、また、連通部材253よりも下流側に位置する電池モジュール(下流側の電池モジュール)21Eの第1の導入口部37に連通されている。なお、各上流側開口部257は、短尺な連通管(不図示)等を介して上流側の電池モジュール21Dの第1の排出口部35に連通されていることが好ましい。下流側開口部259についても同様である。
 このような電池パック251では、上流側の電池モジュール21Dの第1の排出口部35から排出されたガスは、上流側開口部257へ導入され、中空部255の長手方向に沿って流動して、下流側開口部259から下流側の電池モジュール21Eの第1の導入口部37へ排出される。ここで、中空部255は、図6(a)に示すように平面視において曲線状に形成されており、上流側開口部257は中空部255の長手方向一端側に形成されており、下流側開口部259は中空部255の長手方向他端側に形成されている。よって、電池パック251の排気経路の長さは、中空部255の長手方向における長さ分、電池パック51よりも長くなる。従って、電池パック251から排出されるガスは電池パック51から排出されるガスよりも低温となる。
 電池パックの排気経路の長さを稼ぐという観点では、連通部材として連通部材253を用いることが好ましい。しかし、連通部材として連通部材253を用いると、連通部材253と電池モジュール21とを連通させるための部材が別途必要となる。よって、電池パックの生産性の低下、又は、電池パックのコスト高を招く恐れがある。電池パックの安全性と電池パックの生産性及びコストとを考慮して、連通部材として連通部材57又は連通部材253のどちらを用いるのかを選択すれば良い。
 例えば、連通部材253は下流側に配置されていることが好ましい。これにより、下流側の電池モジュール21を構成する素電池1から高温なガスが排出された場合であっても、電池パック251から排出されるガスの温度が100℃以下となる。
 また、隣り合う電池モジュール21,21の間に偶数枚の連通部材253を配置しても良い。これにより、電池パック251において第1の排出口部35及び第1の導入口部37を同じ側に配置できる。よって、電池パック251においても、ガスの排気経路と配線等の電気経路とを離隔できる。
 なお、中空部255の平面形状は、図6(a)に示す形状に限定されない。例えば、中空部255の平面形状は、直線形状であっても良いし、図6(a)に示す曲線形状以外の曲線形状であっても良い。しかし、中空部255の平面形状が曲線形状であれば、排気ガスは中空部255の内面に衝突しながら中空部255の長手方向に流動する。また、限られた空間内において中空部255の長尺化を図ることができる。これらのことから、中空部255の平面形状は、曲線形状であることが好ましく、図6(a)に示すように蛇行していれば更に好ましい。このことは、後述の図7における第2の中空部355についても言える。
 また、上流側開口部257及び下流側開口部259の各位置は図6(a)に示す位置に限定されない。上流側開口部257と下流側開口部259とが中空部255の長手方向において相異なる位置に形成されていれば、電池パック251の排気経路の長さを電池パック51よりも稼ぐことができる。しかし、上流側開口部257が中空部255の長手方向一端に形成されており、且つ、下流側開口部259が中空部255の長手方向他端に形成されていれば、電池パック251の排気経路の長さを最大限、稼ぐことができる。このことは、後述の図7における開口部(第1の開口部)357及び排出端(第2の開口部)359についても言える。
 また、連通部材253の構成は、図6(b)に示す構成に限定されない。例えば、シート状部材256にも凹凸が形成されており、そのシート状部材256と図6(b)に示すシート状部材254とを接着することにより中空部255が形成されても良い。このことは、後述の図7における下側パネル(パネル)353についても言える。
 また、シート状部材254,256の材料は、特に限定されないが、例えば、亜鉛めっき鋼板等からなれば良い。亜鉛めっき鋼板としては、電気亜鉛めっき(SECC)を用いることがより好ましい。
 図7は、第3の変形例に係る電池パック351の一部分の分解平面図である。図7では、最下段の電池モジュール21Cの内部構造を記している。本変形例に係る電池パック351は、下側パネル353を更に備えている。以下では、電池パック51との相違点を主に説明する。
 下側パネル353は、最下段の電池モジュール21Cと収容部材53の底面との間に設けられており、2枚のシート状部材(不図示)が第2の中空部355を挟んで形成されたものである(図6(b)参照)。第2の中空部355は、平面視において曲線状に形成されており、第2の中空部355の一端側には、2つの開口部357,357が形成されており、第2の中空部355の他端側には、排出端359が形成されている。各開口部357は、下側パネル353の上面に形成されて第2の中空部355に連通されており、また、最下段の電池モジュール21Cの第1の排出口部35に連通されている。排出端359は、第2の中空部355に連通されており、また、パックケースに形成された排出口に連通されている。
 このような電池パック351では、最下段の電池モジュール21Cの各第1の排出口部35から排出されたガスは、開口部357へ導入され、第2の中空部355の長手方向に沿って流動して排出端359から排出される。よって、電池パック351の排気経路の長さは、第2の中空部355の長手方向における長さ分、電池パック51よりも長くなる。従って、電池パック351から排出されるガスは電池パック51から排出されるガスよりも低温となる。例えば、最下段の電池モジュール21Cを構成する素電池1から高温なガスが排出された場合であっても、電池パック351から排出されるガスの温度を100℃以下にできる。
 電池パックの排気経路の長さを稼ぐという観点では、下側パネル353を設けることが好ましく、下側パネル353の枚数は多い方が好ましい。しかし、下側パネル353を設けると、下側パネル353と最下段の電池モジュール21Cとを連通させるための部材が別途必要となる。よって、電池パックの生産性の低下、又は、電池パックのコスト高を招く恐れがある。また、下側パネル353の枚数が多くなると、電池パックのエネルギー密度の低下を招く。以上を踏まえて、下側パネル353を設けるか否か、又は、下側パネル353の枚数を決定すれば良い。
 図8は、第4の変形例に係る電池パック451の断面図である。なお、図8では、図面を簡略化するために、素電池1についてはその外形を記している。以下では、電池モジュール21及び電池パック51との相違点を主に説明する。
 各電池モジュール221では、第1の排出口部35は、モジュールケース223のケース正面に形成されており、第1の導入口部37は、モジュールケース223のケース背面に形成されている。電池パック451は、電池モジュール221が第1の排出口部35の開口方向に配列されて構成されている。
 このような電池パック451では、素電池(図8中において「NG」と記された素電池)1から排出されたガスは、開放部7aから第1の排気ダクト部31へ逃げ、第1の排気ダクト部31の長手方向に沿って流動してモジュールケース223の内側面に衝突する。この衝突により、排気ガスは、流動方向を変えて第2の排気ダクト部33の長手方向に沿って流動し、第1の排出口部35から排出されて、隣りに位置する電池モジュール221の第1の導入口部37へ導入される。よって、電池パック451は、図3等に示す電池パック51と略同一の効果を得ることができる。
 図9(a)及び(b)は、第5の変形例に係る電池パック551の平面図及び断面図である。なお、図9(a)では、電池モジュール321の内部構造を記している。また、図9(b)では、図面を簡略化するために、素電池1についてはその外形を記している。以下では、電池モジュール21及び電池パック51との相違点を主に説明する。
 各電池モジュール321のモジュールケース323は、1つの電池室27と長尺な排気ダクト29とに区画されている。第1の排出口部35は、モジュールケース323のケース上面に形成されており、第1の導入口部37は、モジュールケース323のケース下面に形成されている。電池パック551は、電池モジュール321が第1の排出口部35の開口方向に配列されて構成されている。
 このような電池パック551では、素電池1から排出されたガスは、開放部7aから排気ダクト29へ逃げ、排気ダクト29の長手方向に沿って流動してモジュールケース323の内側面に衝突する。この衝突により、排気ガスは、流動方向を変えて第1の排出口部35から排出され、隣りに位置する電池モジュール321の第1の導入口部37へ導入される。よって、電池パック551は、図3等に示す電池パック51と略同一の効果を得ることができる。
 本実施形態は、以下に示す構成を有していても良い。
 図6~図9に示す各電池パックは、図5に示す排気経路を備えていても良い。また、図5及び図7~図9に示す各電池パックは、連通部材57の代わりに図6に示す連通部材253を備えていても良い。また、図5~図6及び図8~図9に示す各電池パックは、図7に示す下側パネル353を備えていても良い。何れの場合であっても、電池パックの排気経路の長尺化を図ることができるので、電池パックの安全性が更に向上する。
 第1の排出口部は、素電池の配列方向に開口していても良い。しかし、第1の排出口部が素電池の配列方向に対して垂直に開口していれば、排気ガスがモジュールケースの内側面に衝突する回数を増やすことができる。よって、異常な電池モジュールから排出されるガスの温度を400℃程度にまで下げることができる。
 モジュールケース内における電池室と排気ダクトとの配置は、図2及び図9に示す配置以外の配置であっても良い。モジュールケース内における電池室と排気ダクトとの配置が図2に示す配置であれば、図4に示す電池パックだけでなく図8に示す電池パックも作製できるので、バリエーションに富んだ電池パックを提供できる。
 図2に示す電池モジュールでは、第1の排出口部は、第2の排気ダクト部の長手方向中央に形成されていても良い。これにより、電池モジュール内における排気ガスの移動距離が長くなるため、異常な電池モジュールから排出されるガスの温度が更に低くなる。この場合、各モジュールケースには、2つの第1の排出口部が形成されていても良いし、1つの第1の排出口部が形成されていても良い。
 連通部材を介して互いに連通される第1の排出口部と第1の導入口部とは、対向する位置に形成されていても良いし(前者)、対向する位置から外れる位置に形成されていても良い(後者)。連通部材の固定のし易さ、又は、連通部材における圧力損失の低減等を考慮すれば、前者の方が好ましい。しかし、製造ばらつき程度の位置ずれであれば、後者であっても良い。連通部材を介して互いに連通される第2の排出口部と第2の導入口部とについても同様のことが言える。
 同様に、電池モジュールでは、第1の排出口部は、第1の導入口部に対向する位置から外れた位置に形成されていても良い。圧力損失をそれほど伴うことなく第1の導入口部から導入されたガスを第1の排出口部へ排出させることを考慮すれば、第1の排出口部は第1の導入口部に対向する位置に形成されていることが好ましい。しかし、製造ばらつき程度の位置ズレであれば、第1の排出口部は、第1の導入口部に対向する位置から外れた位置に形成されていても良い。第2の排出口部についても同様のことが言える。
 連通部材を第1の排出口部等の周縁に固定する方法は特に限定されない。連通部材がPBT等の樹脂からなる場合には、連通部材の固定方法の一例としてかしめ固定を挙げることができる。
 第1の排出口部の開口形状は図3等に示す形状に限定されず、第1の排出口部の個数は上記個数に限定されない。これらのことは、第1の導入口部、第2の排出口部、第2の導入口部、上流側開口部、下流側開口部、開口部及び排出端についても言える。
 パックケースの構成は、図3に示す構成に限定されない。また、モジュールケースの構成は、特に限定されず、図3に示すパックケースと略同一に形成されていても良い。
 パックケースの代わりに、中空の枠体で構成された構造体を用いても良い。この場合、下流側に位置する電池モジュールの排出口部が枠体の中空部に連通されていれば、電池パックのエネルギー密度の低下を伴うことなく電池パックの排気経路の長さを更に稼ぐことができる。
 パックケースは、樹脂からなっても良いし、熱伝導性に優れた材料(鉄又は銅等の金属材料)からなっても良い。しかし、パックケースが熱伝導性に優れた材料からなれば、排気ガスの熱の一部をパックケースに逃がすことができる。よって、パックケースは、熱伝導性に優れた材料からなることが好ましい。更に、パックケースが鉄からなれば、パックケースの軽量化を図ることができる。モジュールケースについても同様のことが言える。
 隔離板は設けられていなくても良い。しかし、素電池から高温なガスが排出されたとき、その素電池の温度は300~600℃程度にまで上昇する,と言われている。そのため、隔離板が設けられていれば、特に熱伝導性に優れた隔離板が設けられていれば、素電池の異常な熱が他方の電池室内の素電池へ伝わることを防止できる。同様の理由から、複数の素電池は、熱伝導性に優れた材料(例えばアルミニウム)からなるホルダーに保持されてモジュールケース内に収容されていることが好ましい。
 電池パックを構成する電池モジュールの個数は、図3等に示す個数に限定されない。また、電池モジュールを積層させて電池パックを構成しても良いし、電池モジュールを横に並べて電池パックを構成しても良い。また、電池パックでは、電池モジュールは、互いに並列接続されていても良いし、互いに直列接続されていても良い。複数の電池モジュールを互いに電気的に接続するための構成は、特に限定されない。
 同様に、電池モジュールを構成する素電池の個数は、図2等に示す個数に限定されない。また、複数の素電池は、モジュールケース内において、一列に配置されていても良いし、二次元的に配置されていても良い。複数の素電池を例えば千鳥格子状に配置すれば、素電池の個数が増加したことに起因する電池モジュールの体積増加を抑制できる。また、複数の素電池は、モジュールケース内において、直列接続されていても良いし、並列接続されていても良い。また、複数の素電池を互いに電気的に接続するための構成は、特に限定されない。例えば、仕切り板が、正極バスバー、負極バスバー又は両極のバスバーを兼ねていても良い。
 素電池は、角型電池であっても良い。
 正極板と負極板とはセパレータを介して積層されて電極群を構成していても良い。
 正極リードの代わりに正極集電板が用いられていても良いし、負極リードの代わりに負極集電板が用いられていても良い。これにより、素電池における集電抵抗が低減する。
 正極板及び負極板の構成は、それぞれ、二次電池(例えばリチウムイオン二次電池)の正極板及び負極板の構成として公知の構成であれば良い。また、電池ケース、ガスケット、封口板、正極リード及び負極リードの材料は、それぞれ、二次電池の電池ケース、ガスケット、封口板、正極リード及び負極リードの材料として公知の材料であれば良い。
 開放部は、封口板のうち電池ケースの軸方向に延びる部分に形成されていても良い。この場合であっても、図2等に示す電池モジュールを構成でき、素電池から排出されたガスを排気ダクトへ逃がすことができる。
 以上説明したように、本発明は、例えば車両用電源又は蓄熱用電源等に有用である。
  1   素電池 
  21   電池モジュール 
  23   モジュールケース 
  27   電池室 
  29   排気ダクト 
  31   第1の排気ダクト部 
  33   第2の排気ダクト部 
  35   第1の排出口部(排出口部) 
  37   第1の導入口部(導入口部) 
  51   電池パック 
  57   連通部材 
  135   第2の排出口部 
  137   第2の導入口部 
  253   連通部材(板) 
  255   中空部 
  257   上流側開口部 
  259   下流側開口部 
  353   下側パネル(パネル) 
  355   第2の中空部 
  357   開口部(第1の開口部) 
  359   排出端(第2の開口部)

Claims (9)

  1.  複数の電池モジュールが配列されて構成された電池パックであって、
     前記電池モジュールは、それぞれ、複数の素電池がケース内に配列されて構成されており、
     前記ケースは、それぞれ、前記複数の素電池が収容される電池室と、前記素電池からの排気ガスを排出口部から前記ケースの外へ排出する排気ダクトとに区画されており、
     前記排出口部は、前記ケースの側面に形成されており、
     前記電池モジュールは、前記排出口部の開口方向に配列されており、
     前記排出口部が形成されたケース側面とは反対側に位置するケース側面には、隣りに位置する前記電池モジュールの前記排出口部から排出された排気ガスが導入される導入口部が形成されており、
     前記排出口部は、中空の連通部材を介して、隣りに位置する前記電池モジュールの前記導入口部に連通されている電池パック。
  2.  請求項1に記載の電池パックであって、
     第1の電池モジュール、第2の電池モジュール及び第3の電池モジュールの順に配列されて構成されており、
     前記第1の電池モジュール、前記第2の電池モジュール及び前記第3の電池モジュールのそれぞれでは、
      前記排出口部が形成されたケース側面に、前記排出口部とは異なる第2の排出口部が形成されており、
      前記導入口部が形成されたケース側面に、前記導入口部とは異なる第2の導入口部が形成されており、
      前記導入口部は、前記排出口部とは反対側に形成されており、
      前記第2の導入口部は、前記第2の排出口部とは反対側に形成されており、
     前記第1の電池モジュールの前記排出口部は、前記連通部材を介して、前記第2の電池モジュールの前記導入口部に連通されており、
     前記第2の電池モジュールの前記第2の排出口部は、前記連通部材を介して、前記第3の電池モジュールの前記第2の導入口部に連通されている電池パック。
  3.  請求項2に記載の電池パックであって、
     前記第1の電池モジュールの前記第2の排出口部、前記第2の電池モジュールの前記第2の導入口部及び前記第2の電池モジュールの前記排出口部は封止されている電池パック。
  4.  請求項1から3の何れか1つに記載の電池パックであって、
     前記連通部材は、管である電池パック。
  5.  請求項1から3の何れか1つに記載の電池パックであって、
     前記連通部材は、中空部を有する板であり、
     前記中空部は、平面視において直線状又は曲線状に形成されており、
     前記中空部には、前記連通部材よりも前記排気ガスの排出方向の上流側に位置する電池モジュールの前記排出口部に連通される上流側開口部と、前記連通部材よりも前記排気ガスの排出方向の下流側に位置する電池モジュールの前記導入口部に連通される下流側開口部とが形成されており、
     前記上流側開口部は、前記中空部の長手方向において、前記下流側開口部とは異なる位置に形成されている電池パック。
  6.  請求項1から5の何れか1つに記載の電池パックであって、
     前記排気ガスの排出方向の下流側に位置する下流側電池モジュールの前記排出口部には、パネルに形成された第2の中空部が連通されており、
     前記第2の中空部は、平面視において直線状又は曲線状に形成されており、
     前記第2の中空部には、前記下流側電池モジュールの前記排出口部に連通される第1の開口部と、前記第1の開口部に導入された排気ガスを排出する第2の開口部とが形成されており、
     前記第1の開口部は、前記第2の中空部の長手方向において、前記第2の開口部とは異なる位置に形成されている電池パック。
  7.  請求項1から6の何れか1つに記載の電池パックであって、
     前記排気ガスの排出方向の最上流に位置する電池モジュールの前記導入口部は封止されている電池パック。
  8.  請求項1から7の何れか1つに記載の電池パックであって、
     前記排出口部は、前記素電池の配列方向に対して垂直な方向に開口している電池パック。
  9.  請求項1から8の何れか1つに記載の電池パックであって、
     前記電池モジュールは、積層されている電池パック。
PCT/JP2011/006513 2010-11-30 2011-11-22 電池パック WO2012073454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012516425A JP5474187B2 (ja) 2010-11-30 2011-11-22 電池パック
KR1020127020195A KR101314454B1 (ko) 2010-11-30 2011-11-22 전지 팩
US13/577,377 US20130040174A1 (en) 2010-11-30 2011-11-22 Battery pack
CN201180010084.1A CN102770982B (zh) 2010-11-30 2011-11-22 电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010267211 2010-11-30
JP2010-267211 2010-11-30

Publications (1)

Publication Number Publication Date
WO2012073454A1 true WO2012073454A1 (ja) 2012-06-07

Family

ID=46171428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006513 WO2012073454A1 (ja) 2010-11-30 2011-11-22 電池パック

Country Status (5)

Country Link
US (1) US20130040174A1 (ja)
JP (1) JP5474187B2 (ja)
KR (1) KR101314454B1 (ja)
CN (1) CN102770982B (ja)
WO (1) WO2012073454A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227120A (ja) * 2011-04-05 2012-11-15 Denso Corp 組電池
JP2013105723A (ja) * 2011-11-16 2013-05-30 Panasonic Corp 蓄電装置
WO2014038184A1 (ja) * 2012-09-05 2014-03-13 パナソニック株式会社 電池モジュール
JP2015128015A (ja) * 2013-12-27 2015-07-09 株式会社Gsユアサ 蓄電装置
JP2015176783A (ja) * 2014-03-17 2015-10-05 株式会社Gsユアサ 電源モジュール
JP2018527704A (ja) * 2015-10-15 2018-09-20 エルジー・ケム・リミテッド バッテリーパック
WO2020152992A1 (ja) * 2019-01-25 2020-07-30 三洋電機株式会社 パック電池
CN113632298A (zh) * 2019-03-27 2021-11-09 三洋电机株式会社 电池组
WO2022024894A1 (ja) * 2020-07-31 2022-02-03 パナソニックIpマネジメント株式会社 電池パック、及び電池ケース
CN114300804A (zh) * 2021-12-24 2022-04-08 重庆长安新能源汽车科技有限公司 一种新能源汽车电池的烟气过滤机构及新能源汽车电池

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435974B1 (ko) * 2013-02-05 2014-09-02 한국에너지기술연구원 평관형 고체 산화물 전지 및 이를 위한 밀봉 장치
US10193113B2 (en) 2013-07-25 2019-01-29 Johnson Controls Techology Company Vent adapter for lead-acid battery systems
JP6284085B2 (ja) * 2013-09-30 2018-02-28 パナソニックIpマネジメント株式会社 電池固定用フレーム部材、電池固定部材及び蓄電装置
US9614210B2 (en) 2014-09-30 2017-04-04 Johnson Controls Technology Company Battery module vent system and method
US10141554B2 (en) * 2015-02-10 2018-11-27 Vertiv Energy Systems, Inc. Enclosures and methods for removing hydrogen gas from enclosures
CN106469791A (zh) * 2015-08-18 2017-03-01 有量科技股份有限公司 锂电池模块
KR102490604B1 (ko) * 2015-10-29 2023-01-19 현대모비스 주식회사 배터리모듈 조립체
KR102490605B1 (ko) * 2015-11-12 2023-01-19 현대모비스 주식회사 고전압 배터리 서브모듈
KR102065103B1 (ko) * 2016-11-04 2020-01-10 주식회사 엘지화학 배터리 팩
USD886060S1 (en) 2018-01-19 2020-06-02 Cps Technology Holdings, Llc Battery vent adapter
KR102330378B1 (ko) * 2018-04-20 2021-11-22 주식회사 엘지에너지솔루션 디개싱 유로를 구비한 배터리 팩
JP7233020B2 (ja) * 2019-01-31 2023-03-06 パナソニックIpマネジメント株式会社 蓄電池モジュール
WO2020189424A1 (ja) * 2019-03-18 2020-09-24 パナソニックIpマネジメント株式会社 支持体および蓄電池モジュール
KR20210117632A (ko) * 2020-03-19 2021-09-29 주식회사 엘지에너지솔루션 이동 및 조립의 편의성이 증대된 구조 및 안전성이 향상된 구조를 갖는 배터리 팩, 및 이를 포함하는 ess
KR20240042920A (ko) * 2022-09-26 2024-04-02 에스케이온 주식회사 배터리 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255735A (ja) * 1997-03-11 1998-09-25 Toyota Motor Corp 電池保持装置
JP2007027011A (ja) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
JP2009224228A (ja) * 2008-03-17 2009-10-01 Toshiba Corp 電池モジュール及び電池パック
JP2009231131A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 組み電池装置
JP2011171052A (ja) * 2010-02-17 2011-09-01 Denso Corp ラミネートセル電池構造体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362321B2 (ja) * 2003-06-13 2009-11-11 パナソニック株式会社 組電池
JP4781071B2 (ja) * 2005-09-28 2011-09-28 三洋電機株式会社 電源装置と電池の冷却方法
JP5030500B2 (ja) * 2006-07-31 2012-09-19 三洋電機株式会社 電源装置
JP2010251019A (ja) * 2009-04-13 2010-11-04 Sanyo Electric Co Ltd バッテリシステム
JP5436924B2 (ja) * 2009-05-08 2014-03-05 三洋電機株式会社 バッテリシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255735A (ja) * 1997-03-11 1998-09-25 Toyota Motor Corp 電池保持装置
JP2007027011A (ja) * 2005-07-20 2007-02-01 Sanyo Electric Co Ltd 電源装置
JP2009224228A (ja) * 2008-03-17 2009-10-01 Toshiba Corp 電池モジュール及び電池パック
JP2009231131A (ja) * 2008-03-24 2009-10-08 Toshiba Corp 組み電池装置
JP2011171052A (ja) * 2010-02-17 2011-09-01 Denso Corp ラミネートセル電池構造体

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227120A (ja) * 2011-04-05 2012-11-15 Denso Corp 組電池
JP2013105723A (ja) * 2011-11-16 2013-05-30 Panasonic Corp 蓄電装置
WO2014038184A1 (ja) * 2012-09-05 2014-03-13 パナソニック株式会社 電池モジュール
JPWO2014038184A1 (ja) * 2012-09-05 2016-08-08 パナソニックIpマネジメント株式会社 電池モジュール
JP2015128015A (ja) * 2013-12-27 2015-07-09 株式会社Gsユアサ 蓄電装置
JP2015176783A (ja) * 2014-03-17 2015-10-05 株式会社Gsユアサ 電源モジュール
JP2018527704A (ja) * 2015-10-15 2018-09-20 エルジー・ケム・リミテッド バッテリーパック
WO2020152992A1 (ja) * 2019-01-25 2020-07-30 三洋電機株式会社 パック電池
JP7401467B2 (ja) 2019-01-25 2023-12-19 パナソニックエナジー株式会社 パック電池
CN113632298A (zh) * 2019-03-27 2021-11-09 三洋电机株式会社 电池组
CN113632298B (zh) * 2019-03-27 2023-12-05 松下新能源株式会社 电池组
WO2022024894A1 (ja) * 2020-07-31 2022-02-03 パナソニックIpマネジメント株式会社 電池パック、及び電池ケース
CN114300804A (zh) * 2021-12-24 2022-04-08 重庆长安新能源汽车科技有限公司 一种新能源汽车电池的烟气过滤机构及新能源汽车电池
CN114300804B (zh) * 2021-12-24 2023-05-23 重庆长安新能源汽车科技有限公司 一种新能源汽车电池的烟气过滤机构及新能源汽车电池

Also Published As

Publication number Publication date
JP5474187B2 (ja) 2014-04-16
CN102770982A (zh) 2012-11-07
KR20120112694A (ko) 2012-10-11
KR101314454B1 (ko) 2013-10-07
CN102770982B (zh) 2015-11-25
JPWO2012073454A1 (ja) 2014-05-19
US20130040174A1 (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5474187B2 (ja) 電池パック
JP5914828B2 (ja) 電池パック
EP2631985B1 (en) Battery pack having excellent cooling efficiency
KR101403930B1 (ko) 콤팩트한 구조의 전지팩
JP5594592B2 (ja) 電池モジュール及び組電池
US9184477B2 (en) Battery pack of excellent cooling efficiency
US20130011719A1 (en) Battery module and battery assembly used therein
US20130288099A1 (en) Battery module
WO2014156314A1 (ja) 燃料電池
KR20110055371A (ko) 배터리 팩, 상기 배터리 팩 제조방법 및 이동수단
JP2012113874A (ja) 組電池装置
US10454125B2 (en) Vehicle fuel cell stack
KR101026745B1 (ko) 중대형 전지팩
CN108569126B (zh) 燃料电池搭载车辆
KR20120081198A (ko) 전지 모듈
US9373857B2 (en) Fuel cell apparatus
JP2003197222A (ja) 燃料電池
JP5518496B2 (ja) 燃料電池スタックおよび燃料電池自動車
JP5119727B2 (ja) ラミネート電池パックの冷却装置
US20240039111A1 (en) Battery module and battery pack
US20110111282A1 (en) Power storage apparatus
JP2014154401A (ja) 電池モジュール、電池ユニット
KR20130124848A (ko) 연료전지 스택용 매니폴드 블록
CN215527825U (zh) 一种电池模组及电池包
US10396390B2 (en) Fuel cell stack for vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010084.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012516425

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11845813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127020195

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13577377

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11845813

Country of ref document: EP

Kind code of ref document: A1