WO2012072850A2 - Compuestos para el tratamiento de daños cardiacos tras isquemia/reperfusión - Google Patents

Compuestos para el tratamiento de daños cardiacos tras isquemia/reperfusión Download PDF

Info

Publication number
WO2012072850A2
WO2012072850A2 PCT/ES2011/070832 ES2011070832W WO2012072850A2 WO 2012072850 A2 WO2012072850 A2 WO 2012072850A2 ES 2011070832 W ES2011070832 W ES 2011070832W WO 2012072850 A2 WO2012072850 A2 WO 2012072850A2
Authority
WO
WIPO (PCT)
Prior art keywords
emmprin
inhibitor
reperfusion
group
use according
Prior art date
Application number
PCT/ES2011/070832
Other languages
English (en)
French (fr)
Other versions
WO2012072850A3 (es
Inventor
Carlos ZARAGOZA SÁNCHEZ
Mónica GÓMEZ PARRIZAS
Begoña LAVÍN PLAZA
Carlos TARÍN CEREZO
Original Assignee
Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii (Cnic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii (Cnic) filed Critical Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii (Cnic)
Priority to US14/110,805 priority Critical patent/US9644019B2/en
Priority to ES11845312.5T priority patent/ES2626674T3/es
Priority to EP11845312.5A priority patent/EP2668960B1/en
Publication of WO2012072850A2 publication Critical patent/WO2012072850A2/es
Publication of WO2012072850A3 publication Critical patent/WO2012072850A3/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the invention relates to the use of an EMMPRIN inhibitor for the prevention and / or treatment of cardiac damage produced after an ischemia process followed by reperfusion.
  • Ischemic heart disease or myocardial ischemia is characterized by a significant decrease in blood supply to the heart muscle, thus reducing the necessary levels of oxygen and nutrients.
  • the most frequent cause of myocardial ischemia is due to occlusion of the coronary arteries, as a consequence of an atherosclerotic process, whose risk increases with age, in smokers, in subjects with hypercholesterolemia, diabetes and hypertension and is more frequent in male subjects .
  • Coronary occlusion results in the occurrence of ischemic necrosis or myocardial infarction, whose incidence is directly related to the degree of oxygen and nutrient deprivation in the tissue.
  • subsequent reperfusion of the myocardium is directly associated with an extension of myocardial necrosis called lethal cell damage due to reperfusion.
  • MCT-1 and MCT-4 lactate transporters
  • CD147 also called Basigin or EMMPRIN (Extracellular Matrix Metalloproteinase Inducer)
  • EMMPRIN Extracellular Matrix Metalloproteinase Inducer
  • nitric oxide could also be used as a cardioprotective agent, since its efficacy has been verified through its incidence by different mechanisms (West MB et al. Circulation. 2008; 118: 1970-8. Lin J, et al, Circulation 2009; 120: 245-54), including the use of substances such as propofol, which increase its production in ischemia followed by reperfusion (Sun Hai-yan et al. Chin. Med. J 2009; 122: 3048-54).
  • the NO has a dual effect, due to its significant implication in oxidative stress associated with cardiac damage that occurs during myocardial infarction (Liu YH et al.
  • ischemic preconditioning a phenomenon that consists in the occurrence of repeated short-term ischemia processes, thanks to which the heart is able to successfully tolerate following processes of prolonged ischemia after reperfusion.
  • NO is one of them, having proven its effectiveness in the cardioprotective process (Xuan YT et al. Circulation. 2007; 116: 535-44; West MB, et al. Circulation 2008; 118: 1970-8), and although several candidates associated with the production of NO in the process, it is necessary to continue progressing in the deep knowledge of the cardioprotection exerted by this factor.
  • the invention relates to the use of an EMMPRIN inhibitor or an inhibitor of a functionally equivalent variant of EMMPRIN for the preparation of a medicament for the prevention and / or treatment of cardiac damage produced after ischemia followed by reperfusion BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 describes that the absence of NO increases myocardial damage during ischemia / reperfusion.
  • A left: iNOS WT and iNOS-deficient mice were subjected to 30 minutes of coronary ischemia, followed by 24h of reperfusion, then evaluating the levels of iNOS (and GAPDH as load control) in a Western-blot.
  • IR Ischemia followed by reperfusion.
  • FIG. 2 describes that NO inhibits the expression of EMMPRIN and MMP-9 in ischemia / reperfusion.
  • A left: After 30 minutes of ischemia and 24 hours of reperfusion, the expression of MMP-9, MMP-2, EMMPRIN, and GAPDH was evaluated by immunoblotting with specific antibodies.
  • A right: Additionally, the presence of MMP-2 and MMP-9 was also evaluated by zymograph in gels with gelatin.
  • B Expression of EMMPRIN (left panels) in wild mice (iNOS WT), mice deficient for iNOS (iNOS KO), and in mice in which iNOS activity was pharmacologically inhibited with compound 1400W (iNOS WT 1400W).
  • Figure 3 shows that the absence of iNOS increases levels of EMMPRIN mRNA in cardiomyocytes.
  • Figure 4 shows that NO regulates EMMPRIN transcriptionally in cardiomyocytes through the cGMP / PKG pathway.
  • Figure 6 shows that the administration of anti-EMMPRIN antibodies partially restores cardiac function and inhibits the expression of MMP-9.
  • FIG. 7 represents the nanoparticles loaded with the AP-9 peptide.
  • the nanoparticles were synthesized with phospholipids-PEG, fluorescent lipids and a nano-crystal core of iron oxide, subsequently the AP-9 peptide bound to the surface.
  • Figure 8 shows a scheme of the synthesis of nanoparticles.
  • the nanoparticles were synthesized with PEG-lipids, fluorescent lipids and an iron oxide nanocrystal as the core.
  • the AP-9 peptide was then bound to the surface. Nanoparticles without the bound AP-9 peptide were used as a control.
  • FIG. 9 shows that the AP-9 peptide binds to EMMPRIN in mouse aortic endothelial cells (MAEC).
  • MAEC cells were incubated overnight with the nitric oxide donor (DETA-NO) ( ⁇ ) to induce EMMPRIN expression (right panel).
  • MAEC cells without DETA-NO were used as a control (left panel).
  • MAEC cells were fixed with 4% PFA and incubated with 0.08 mg / ml AP-9 peptide.
  • EMMPRIN expression was detected using an anti-EMMPRIN antibody (1: 1000), observing that both signals co-localize (right panel, right box above). The nuclei were stained with DAPI.
  • FIG 10 shows that the AP-9 peptide blocks the expression of MMP-9 induced by EMMPRIN.
  • MAEC cells were incubated with ⁇ of DETA-NO to induce EMMPRIN (B, D) expression.
  • MAEC cells without DETA-NO were used as control (A, C).
  • the MAEC cells were incubated overnight with the AP-9 peptide (0.08mg / ml) (C, D) or with PBS (A, B).
  • MAEC cells were fixed with 4% PFA and MMP-9 expression was detected using an anti-MMP-9 antibody (1: 1000).
  • MAEC cells incubated with the AP-9 peptide showed inhibition of MMP-9 expression induced by EMMPRIN.
  • the nuclei were stained with DAPI.
  • Figure 11 shows the internalization of AP-9 nanoparticles by MAEC cells.
  • MAEC cells were incubated overnight with the AP-9 nanoparticles (NP-AP-9) (20 ⁇ g / ml) (right panel) or with non-charged nanoparticles (NP-NT) (left panel).
  • MAEC cells were fixed and EMMPRIN expression was detected using an anti-EMMPRIN antibody.
  • NP-AP-9 right panel
  • NP-NT non-charged nanoparticles
  • FIG. 12 shows that MAEC cells internalized AP-9 nanoparticles in a dose-dependent manner.
  • MAEC cells were cultured in a 96-well black plate and incubated with different concentrations of nanoparticles loaded with AP-9 overnight (NP-AP9) or without AP-9 (NP-NT). Fluorescence was measured using an IVIS imaging system. The graph on the right represents the intensity of the fluorescence signal of the image on the left.
  • EMMPRIN expression is elevated in subjects undergoing ischemia / reperfusion and have shown that an EMMPRIN inhibitor is capable of decreasing cardiac damage caused after ischemia followed by reperfusion.
  • an EMMPRIN inhibitor is capable of decreasing cardiac damage caused after ischemia followed by reperfusion.
  • the invention relates to the use of an EMMPRIN inhibitor or an inhibitor of a functionally equivalent variant of said protein, for the preparation of a medicament for the prevention and / or treatment of cardiac damage. produced after ischemia followed by reperfusion.
  • the invention relates to an EMMPRIN inhibitor or an inhibitor of a Functionally equivalent variant of EMMPRIN for use in the prevention and / or treatment of cardiac damage produced after ischemia followed by reperfusion.
  • the invention relates to a method for the prevention and / or treatment in a subject of cardiac damage produced after ischemia followed by reperfusion comprising the administration to said subject of an EMMPRIN inhibitor or an inhibitor of a variant functionally equivalent of EMMPRIN.
  • EMMPRIN refers to an inducer of an extracellular matrix metalloprotease ("Extracellular Matrix Metalloprotein Inducer”), a member of the immunoglobulin (Ig) superfamily. and product of the bsg gene.
  • Extracellular matrix metalloprotease Extracellular Matrix Metalloprotein Inducer
  • Ig immunoglobulin
  • CD147 product of the bsg gene.
  • EMMPRIN protein iso form II, whose accession number in the NCBI database of the human protein is NP-940991 (SEQ ID NO: l) (July 18, 2010 version) is a 269 amino acid length polypeptide transmembrane, highly glycosylated (it has three conserved N-glycosylation sites that are glycosylated in a variable way).
  • EMMPRIN is a tropic pleio molecule that plays an important role in fetal development, retinal function and in the maturation of T cells. It has been shown to act as a receptor on the cell surface for the philine cycles.
  • EMMPRIN stimulates the production of VEGF and is capable of inducing the expression of several matrix collagenases or metalloproteinases (MMPs), such as MMP1, MMP2, MMP3, MMP9 and MMP11.
  • MMPs matrix collagenases or metalloproteinases
  • the invention contemplates the use of inhibitors of functionally equivalent variants of said proteins.
  • functionally equivalent variant is meant all those polypeptides derived from the EMMPRIN sequence by modification, insertion and / or deletion of one or more amino acids, provided that the function of the EMMPRIN protein is substantially maintained.
  • the functionally equivalent variant of EMMPRIN retains at least one function related to the induction of the different MMPs (Schmidt R et al. Cited ad supra) or with the ability to promote cardiac damage in ischemia after reperfusion by increasing its concentration (Castejón B. CNEM Magazine, no. 2009).
  • Functionally equivalent variants of EMMPRIN include those that show at least 25%, at least 40%, at least 60%>, at least 70%>, at least 80%>, at least 90%), at least 95%, at at least 96%>, at least 97%, at least 98%> or at least 99% sequence identity with respect to the EMMPRIN sequences indicated above.
  • the degree of identity between two amino acid sequences can be determined by conventional methods, for example, by standard sequence alignment algorithms known in the state of the art, such as, for example, BLAST (Altschul SF et al. Basic local alignment search tool J Mol Biol. 1990; 215 (3): 403-10).
  • BLAST Altschul SF et al. Basic local alignment search tool J Mol Biol. 1990; 215 (3): 403-10.
  • the person skilled in the art will understand that the amino acid sequences referred to in this description can be chemically modified, for example, by chemical modifications that are physiologically relevant, such as phosphorylations, acetylations, etc.
  • EMMPRIN inhibitor or “inhibitors of a functionally equivalent variant of EMMPRIN”, as used in the present invention, refers to any compound that specifically binds EMMPRIN (or the functionally equivalent variant thereof) and that upon joining it is capable of causing a decrease in the activity of said protein or of decreasing the levels of mRNA or EMMPRIN protein.
  • EMMPRIN inhibitors that act by inhibiting the function of said protein include, but are not limited to, (a) inhibition of the induction of MMPs by EMMPRIN, for example by inhibiting glycosylation or the interaction between MMPs and EMMPRIN (Toóle 2003; Curr Top Dev Biol; 54: 371-89), inhibiting intracellular signaling through the p38 MAP kinase pathway or arachidonic acid metabolism (Taylor et al. Oncogene. 2002; 21 (37): 5765-72); (b) inhibition of MMP-14-mediated EMMPRIN processing (Egawa et al. J Biol. Chem.
  • the invention contemplates inhibitors of the EMMPRIN protein of human origin, as defined in the NCBI database with accession number NP940991 (SEQ ID NO: 1) (July 18, 2010 version).
  • NP940991 SEQ ID NO: 1
  • the expert will appreciate that it is possible to use homologues of other mammalian species, including, but not limited to, mouse EMMPRIN (Mus musculus) corresponding to the protein described in NCBI with access number NP033898 (July 18 version 2010), rat EMMPRIN (Rattus norvegicus) corresponding to the protein described in the NCBI database with access number NP036915 (July 18, 2010 version), as well as chickens, pigs, bovine species, etc.
  • Suitable methods for the determination of those compounds that are EMMPRIN inhibitors comprise both the methods based on the determination of the levels of EMMPRIN or mRNA encoding EMMPRIN in endothelial cells, and those based on the ability to reduce cardiac damage.
  • Suitable methods for determining EMMPRIN inhibition include, for example, the method described in Example 4 of the present invention and shown in Figure 3, where EMMPRIN mRNA expression levels are measured.
  • EMMPRIN expression levels are determined by measuring the mRNA expression levels encoding the EMMPRIN protein.
  • the biological sample can be treated to physically or mechanically disintegrate the structure of the tissue or cell, to release the intracellular components in an aqueous or organic solution to prepare the nucleic acids for further analysis.
  • Nucleic acids are extracted from the sample by methods known to those skilled in the art and commercially available.
  • the AR m is then extracted from frozen or fresh samples by any of the typical methods in the art, for example Sambrook, J., et al., 2001 Molecular Cloning, a Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, NY, Vol. 1-3.
  • all known advances are provided to prevent AR degradation during the extraction process.
  • the amount of mRNA encoding EMMPRIN can be determined, for example, by hybridization or amplification assays that include, without limitation, Northern and Southern Blot assays and polymerase chain reaction (PCR).
  • a method for the detection of the mRNA specific for EMMPRIN includes the use of probes that are capable of hybridizing specifically with the mRNA or cDNA of EMMPRIN.
  • the probe can be a full chain cDNA or a fragment thereof, such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length capable of hybridizing with the mRNA or target cDNA under conditions of strict.
  • the detection of the mRNA is carried out after the amplification of the cDNA obtained from the mRNA using known amplification techniques, such as polymerase chain reaction (PCR), real time polymerase chain reaction (“RT -PCR “), ligase chain reaction (“ LCR “), self-sustained sequence replication (“ 3SR ”) also known as nucleic acid sequence amplification (“NASBA “), QB-Replicase amplification, amplification by rolling circle (“RCA”), transcription-mediated amplification (“TMA”), linker-assisted amplification (“LADA”), multiple displacement amplification (“MDA”), chain and invader displacement amplification (“SDA “).
  • PCR polymerase chain reaction
  • RT -PCR real time polymerase chain reaction
  • LCR ligase chain reaction
  • 3SR self-sustained sequence replication
  • NASBA nucleic acid sequence amplification
  • RCA transcription-mediated amplification
  • LADA linker-assisted amplification
  • MDA multiple displacement amplification
  • the level of the EMMPRIN protein can be quantified by any conventional method that allows detecting and quantifying said protein in a sample of a subject.
  • the levels of said protein can be quantified, for example, by the use of antibodies capable of join EMMPRIN (or fragments thereof containing an antigenic determinant) and the subsequent quantification of the complexes formed.
  • the antibodies used in these assays may or may not be labeled.
  • markers that can be used include radioactive isotopes, enzymes, fluorophores, chemiluminescent reagents, enzyme substrates or cofactors, enzyme inhibitors, particles, dyes, etc.
  • Immunoblotting is based on the detection of proteins previously separated by gel electrophoresis under denaturing and immobilized conditions in a membrane, usually nitrocellulose or PVDF (Polyvinylidene fluoride), by incubation with a specific antibody and a developing system (for example, luminescence chemo) .
  • Immuno fluorescence analysis requires the use of an antibody specific for the target protein for expression analysis.
  • the ELISA is based on the use of enzyme-labeled antigens or antibodies so that the conjugates formed between the target antigen and the labeled antibody result in the formation of enzymatically active complexes.
  • the antigen-antibody complexes are immobilized on the support and thus, can be detected by the addition of a substrate that is converted by the enzyme in a product that is detectable by, for example, spectrophotometry or fluorometry.
  • any antibody or reagent that is known to bind EMMPRIN with a sufficiently high affinity can be used to Detect the amount of target proteins.
  • an antibody is preferred, for example polyclonal sera, hybridoma supernatants or monoclonal antibodies, antibody fragments, Fv, Fab, Fab 'and F (ab') 2, scFv, diabodies, triabodies, tetrabodies and antibodies humanized
  • the determination of protein expression levels can be carried out by immunohistochemical techniques well known in the state of the art.
  • the sample may be a fresh sample, frozen and embedded in plastic material, or fresh embedded in paraffin and fixed using a formalin-type protective agent.
  • the sample is stained with an antibody specific for EMMPRIN and the amount of cells that have been stained and the intensity of staining are determined.
  • the sample is assigned an indicative value of the total expression and is calculated based on the frequency of stained cells (value that varies between 0 and 4) and the intensity in each of the stained cells (variable value between 0 and 4).
  • immunohistochemical detection is carried out in parallel with cell samples that serve as a positive marker and as a negative marker. It is also common to use a background control.
  • tissue microarrays Tissue Microarrays or TMA
  • Samples that are part of the microarrays can be analyzed in different ways including immunohistochemistry, in situ hybridization, in situ PCR, RNA or DNA analysis, morphological inspection and combinations of any of the above.
  • Methods for processing tissue microarrays have been described, for example, in Konenen, J. et al., (Nat. Med. 1987, 4: 844-7).
  • Tissue microarrays are prepared from cylindrical cores 0.6 to 2 mm in diameter from tissue samples embedded in paraffin and returned to Embed in a single receiver block. In this way, the tissue from multiple samples can be inserted into a single paraffin block.
  • levels of AR m or decreased EMMPRIN protein in relation to mRNA or protein levels in a reference sample, it is understood, according to the present invention, a decrease in mRNA or protein levels of at least 1.1 times, 1.5 times, 5 times, 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, 100 times or even more with respect to the control sample of the subject.
  • reference or control levels according to the present invention, the levels of EMMPRIN mRNA or protein that the subject presents before administering EMMPRIN inhibitors or to which control inhibitors that do not inhibit EMMPRIN are administered are understood.
  • ischemia refers to an ischemic heart disease or myocardial ischemia, characterized by a minor supply of blood to the heart muscle, thereby decreasing the necessary levels of oxygen and nutrients.
  • a fairly common cause of myocardial ischemia is coronary artery atherosclerosis, which causes blockage in the coronary arteries that water the heart muscle.
  • the deprivation of oxygen and nutrients causes cells, tissues and organs to begin a degradative process, which ends with cell death.
  • the absence of oxygen and nutrients from the blood creates a condition in which the restoration of blood circulation results in inflammation and damage by induction of oxidative stress.
  • ischemia followed by reperfusion is used interchangeably with “ischemia / reperfusion” throughout the present specification.
  • cardiac damage after ischemia followed by reperfusion refers to damage to the cardiac tissue if restoration of blood flow occurs in the region of the tissue that was deprived of the blood supply.
  • the EMMPRIN inhibitor makes it possible to reduce or minimize the extent and / or severity of said damage caused to the heart during the ischemia / reperfusion event, in particular as regards the size of infarction and cardiac remodeling.
  • Examples of "cardiac damage following ischemia followed by reperfusion” include, without limitation, ischemic necrosis or infarction, cardiac remodeling adverse, permanent damage to cardiac tissue, permanent coronary occlusion, acute cell death, impaired ventricular function, etc.
  • the EMMPRIN inhibitor can be used prophylactically to prevent myocardial damage in a subject that presents a risk of developing damage due to myocardial ischemia, for example, due to myocardial infarction, including reduction of cell death and / or presence of myocardial edema and / or myocardial infarctions.
  • Other conditions that may place a subject at risk of heart damage associated with ischemia include genetic predisposition to myocardial infarction or a condition that is understood to increase the likelihood of myocardial ischemia, such as atherosclerosis, a previous myocardial infarction or seizures. previous transient ischemic diabetes mellitus, hypertension, hypercholesterolemia or smoking.
  • damage to cardiac tissue after ischemia / reperfusion can be determined using imaging techniques such as echocardiography, nuclear magnetic resonance imaging (MRI), cardiac computed tomography (CT) and cardiac nuclear scanners . Additionally, cardiac damage leads to the elevation of one or more markers, including troponin, CK-MB (creatine kinase MB) and CPK (creatine phosphokinase), which are indicative of myocardial death and can also be measured to check for cardiac damage.
  • imaging techniques such as echocardiography, nuclear magnetic resonance imaging (MRI), cardiac computed tomography (CT) and cardiac nuclear scanners .
  • MRI nuclear magnetic resonance imaging
  • CT cardiac computed tomography
  • cardiac damage leads to the elevation of one or more markers, including troponin, CK-MB (creatine kinase MB) and CPK (creatine phosphokinase), which are indicative of myocardial death and can also be measured to check for cardiac damage.
  • CK-MB CK-MB
  • CPK creatine
  • the EMMPRIN inhibitor is administered to a subject, either in isolation or in combination with other compounds, and comprises a therapeutically effective amount of said inhibitor.
  • therapeutically effective amount refers to the amount of EMMPRIN inhibitor, calculated to produce the desired effect and, in general, will be determined, among other causes, by the characteristics of said inhibitor and the therapeutic effect to be achieved.
  • the amount administered and the duration of treatment are effective to minimize the size and / or severity of cardiac damage in the subject, measured, for example, as an increase in ejection fraction in the heart, lower cell death in the myocardium or reduction in myocardial edema associated with ischemia.
  • the amount and duration of treatment are determined by one skilled in the art.
  • the EMMPRIN inhibitor can be administered during the ischemia process. Alternatively it can be administered after ischemia has occurred, but before reperfusion occurs or alternatively after ischemia and during reperfusion or after ischemia and after reperfusion.
  • EMMPRIN inhibitors can be administered by any appropriate route, including, without limitation, orally, by inhalation, rectally, subcutaneously, intradermally, intravenously, intramuscularly, intrarterially, intramedullaryly, intrathecally, intraventricularly, by percutaneous transluminal coronary angioplasty (with a balloon or ATCP), via an implant (stent), transdermal, subcutaneous, intraperitoneal or intranasal.
  • percutaneous transluminal coronary angioplasty with a balloon or ATCP
  • stent transdermal, subcutaneous, intraperitoneal or intranasal.
  • the invention relates to the use of an EMMPRIN inhibitor, wherein said inhibitor is selected from the group consisting of an anti-EMMPRIN antibody, a siRNA, a glycosylation modulator, a peptide inhibitor, an inhibitor of the binding between the philine cycle and EMMPRIN, a statin, a p53 activator, a PPAR-alpha antagonist, an antisense oligonucleotide, a ribozyme, an aptamer, and a spiemer.
  • an anti-EMMPRIN antibody e.g., a siRNA, a glycosylation modulator, a peptide inhibitor, an inhibitor of the binding between the philine cycle and EMMPRIN, a statin, a p53 activator, a PPAR-alpha antagonist, an antisense oligonucleotide, a ribozyme, an aptamer, and a spiemer.
  • EMMPRIN expression inhibiting agents suitable for use in the present invention are, for example, cynaropicrin (Cas number 35730-78-0), which modulates nitric oxide production, as described by Cho et to the. (Biophysical Research Communications, 2004; 313: 954-961), polynucleotides with "decoy” activity, that is, with the ability to specifically bind a transcription factor important for gene expression, so that gene expression of interest, in this case EMMPRIN is inhibited, and organic molecules that bind to EMMPRIN inhibiting its activity, etc.
  • the invention contemplates the use of an EMMPRIN inhibitor in combination with a therapy directed to the treatment of ischemia / reperfusion damage, which will be determined by one skilled in the art.
  • Treatments that can be combined with the use of the EMMPRIN inhibitor are, without limitation, administration of hydrogen sulfide (Elrod JW et al. Circulation 2006; 114: 1172), thrombolytic therapy, percutaneous coronary intervention, "by-pass" surgery, administration of platelet antiaggregant agents, anticoagulant agents, etc. (Cannon RO. Nat Clin Pract Cardiovasc Med 2005; 2:88).
  • anti-EMMPRIN antibody is meant in the context of the present invention all that antibody that is capable of binding EMMPRIN specifically causing the inhibition of one or more EMMPRIN functions. It is also all that antibody that is capable of binding EMMPRIN specifically and blocking the oligomerization of EMMPRIN or the binding sites of EMMPRIN with other proteins.
  • Anti-EMMPRIN antibodies are specifically directed against essential protein epitopes to perform their function or against the complete protein.
  • Antibodies can be prepared using any of the methods that are known to the person skilled in the art. Thus, polyclonal antibodies are prepared by immunization of an animal with the protein to be inhibited. Monoclonal antibodies are prepared using the method described by Kohler, Milstein et al.
  • Suitable antibodies in the context of the present invention include intact antibodies comprising a variable region of antigen binding and a constant region, "Fab", “F (ab ' ) 2"and' ab ' "fragments, Fv, scFv, diabodies and bispecific antibodies. Any antibody directed against the EMMPRIN protein can be used as an inhibitor. In a particular embodiment, the antibody specifically recognizes the N-terminal end of EMMPRIN, which corresponds to the extracellular domain. Even more preferred embodiment, the anti-EMMPRIN antibody has been generated against the N-terminal end of EMMPRIN.
  • the anti-EMMPRIN antibody has been generated using the third Ig-like domain, as described by Hanna, SM et al. (BMC Biochemistry, 2003 4: 17) formed, in the case of CD147 of human origin, by the sequence
  • HBJ127 antibody described by Itoh et al. (Jpn. J. Cancer Res., 2001, 92: 1313-1321); the antibody described in WO2010036460A2; the monoclonal murine antibodies described in Ellis et al. (Cancer Res 1989; 49: 3385-91) and the MEM-M6 / 6 antibody described in Koch, et al. 1999; Internat. Immunol 11: 777-786; a murine monoclonal antibody IgM, CBLl (Billings et al. Hybridoma 1: 303-311, 1982, US. Pat Nos.
  • Anti-EMMPRIN antibodies also include commercial antibodies, such as from Santa Cruz Biotechnology (G19 and TI 8), which are polyclonal antibodies directed to mouse EMMPRIN and generated in goat; E-bioscience antibody, clone RL73.2 (Renno et al. J Immunol.
  • EMMPRIN is a highly glycosylated protein, being able to generate different variants of the protein according to the level of glycosylation.
  • the induction of MMPs mediated by EMMPRIN is dependent on glycosylation (Sun et al. Cancer Res. 2001; 61: 2276-2281) and therefore, glycosylation inhibition prevents EMMPRIN from inducing the activity of MMPs and does not lead to perform its function properly (Tang et al. Mol Biol Cell. 2004; 9: 4043-4050).
  • glycosylation inhibitors include, but are not limited to, tunicamycin (N-glycosylation inhibitor), UCHL-1, etc.
  • glycosylation can be modulated through different types of endoglycosidases, which cause the breakdown of EMMPRIN oligosaccharides, once it is glycosylated.
  • endoglucosidases include, but are not limited to, endoglucosidase D, endoglucosidase F, endoglucosidase Fl, endoglucosidase F2 and endoglucosidase H. Modulation of glycosylation in EMMPRIN can be verified by Western blotting, since once glycosylation is eliminated, Glycosylated forms of EMMPRIN disappear, appearing a single protein band corresponding to the non-glycosylated form.
  • EMMPRIN inhibitor peptides include, but are not limited to, endoglucosidase D, endoglucosidase F, endoglucosidase Fl, endoglucosidase F2 and endoglucosidase H. Modulation of
  • the invention contemplates the use of EMMPRIN inhibitor peptides for the prevention and / or reduction of cardiac damage after ischemia followed by reperfusion.
  • the functional peptide or analogue or derivative of said inhibitor peptide is capable of binding to the EMMPRIN protein by inhibiting its function.
  • the AP-9 antagonist peptide or a functional analogue or derivative thereof is one of the peptides that can be used as an EMMPRIN inhibitor, its function being described in the literature (Zhou et al. BMC Cell Biology 2005, 6:25).
  • the AP-9 peptide sequence corresponds to the YKLPGHHHHYRP amino acid sequence (SEQ ID NO: 2). It is believed that the AP-9 peptide can inhibit EMMPRIN dimerization and between EMMPRIN and MMPs (Yang et al. Rheumatology 2008, 47: 1299-1310).
  • a functional analogue or derivative of said inhibitor peptide has an amino acid sequence that has been altered, so that the functional properties of the sequence are essentially the same, although it may have a different level of inhibition.
  • Valid tests to know if an analogue or derivative of the inhibitor peptide is capable of inhibiting the EMMPRIN protein are those in which a decrease of said protein, or of any of its targets, such as MMPs in this case, is observed, by techniques that allow a quantification process to be carried out, such as Western blotting, but those techniques based on determining the ability to reduce cardiac damage by the inhibitor tested will also be valid.
  • the analogue or derivative can have conservative amino acid substitutions, so that one amino acid is replaced by another with similar characteristics (size, hydrophobicity, etc.) without the general function being seriously affected, that is, it retains the ability to inhibit EMMPRIN.
  • peptidomimetic compounds can be designed, so that they look functionally or structurally, taking the original peptide as a starting point. However, it is usually desirable to improve a specific function.
  • a derivative can come from a systematic improvement of at least one property of said amino acid sequence. For example, by means of the "Ala-scanning" technique, multiple peptides can be generated, based on the original amino acid sequence, each containing the substitution of at least one amino acid. In this way, peptides with enhanced function can be designed.
  • Derivatives or analogs of the inhibitor peptides can be generated by substituting an amino acid residue in L-amino acid form for the same amino acid in the form of D-amino acid, and the properties of the peptide can be improved.
  • One skilled in the art will be able to generate analog compounds of the amino acid sequence of the inhibitor peptide, for example, from a search in a peptide library.
  • the inhibitor peptide can be found in a circular form, be in tandem form or repeated configuration, conjugated or linked to "carriers" known in the state of the art.
  • the invention contemplates the use of a binding inhibitor between EMMPRIN and cyclophilin.
  • Cyclophilins are members of the immunophilin family of isomerases. They have been described as regulators of EMMPRIN expression on the surface of the cells, specifically, it has been described that cyclophilin binds to EMMPRIN through the transmembrane region, the rest of Prolina in position 211 being essential for such interaction ( Yurchenko et al. 2005. J Biol Chem 280: 17013-19) and that could act as a chaperone (Pushkarsky et al. The Journal of Biological Chemistry, 280: 27866-27871).
  • cyclophilin-EMMPRIN binding inhibitors include, but are not limited to, cyclosporin A, its analogue Should 025 or alisporivir (CAS No. 254435-95-5), the non-immunosuppressive cyclosporin A analogs SCY635 and NIM811 , antibodies directed against cyclophilin, organic cyclophilin inhibitor molecules, etc.
  • statins are capable of inhibiting the expression of EMMPRIN (Abe N et al. Life Sci 2006; 78: 1021-8).
  • statins that can be used for the inhibition of EMMPRIN in the present invention include, but are not limited to, fluvastatin (CAS registry number 93957-54-1), atorvastatin (CAS registry number 134523-03-8), cerivastatin ( CAS registration number 145599-86-6), lovastatin (CAS registration number 75330-75-5), mevastatin (CAS registration number 73573-88-3), pitavastatin (CAS registration number 147511-69-1), pravastatin (Registration number CAS 81093-37-0), rosuvastatin (CAS registry number 287714-41-4), simvastatin (CAS registry number 79902-63-9), and derivatives thereof.
  • the invention contemplates the use of a p53 activator as an EMMPRIN inhibitor.
  • the activity of p53 has been inversely related to the amount of EMMPRIN expressed in cells (Zhu H et al. Cancer Biol Ther. 2009; 8 (18): 1722-8). Therefore, an increase in p53 activity would imply a decrease in EMMPRIN, which allows compounds that increase p53 activity as EMMPRIN inhibitors to be used in the present invention.
  • p53 activators include, but are not limited to, Nutlin (Roche, CAS registry number 548472-68-0), phosphorylating proteins p53, such as DNA-dependent protein kinase (DNA-PK) or ATM kinase, the ARF protein, any compound that increases the activity of p53, either directly or indirectly, as well as expression vectors known to those skilled in the art that express p53, etc.
  • Nutlin Roche, CAS registry number 548472-68-0
  • phosphorylating proteins p53 such as DNA-dependent protein kinase (DNA-PK) or ATM kinase
  • ARF protein any compound that increases the activity of p53, either directly or indirectly, as well as expression vectors known to those skilled in the art that express p53, etc.
  • PPAR-alpha agonists as EMMPRIN inhibitors. It is known that in macrophages and in foam cells, PPAR alpha agonists inhibit EMMPRIN expression (Zhang J et a, Int J Cardiol. 2007 117: 373-80). Therefore, PPAR-alpha activators or agonists are useful for the present invention. Such activators can act directly or indirectly on PPAR-alpha, so that the activity of PPAR-alpha increases considerably. Examples of PPAR-alpha agonists include, without limitation, gemfibrozil, fenofibrate, bezafibrate, clofibrate, ciprofibrate, fenofibrate, etc.
  • PPAR-alpha antagonists as EMMPRIN inhibitors. It is known that activation of the peroxisome proliferator-activated alpha receptor (PPAR-alpha) increases levels of EMMPRIN mRNA (Kónig B et al. Mol Nutr Food Res. 2010; 54: 1248-56). Therefore, PPAR-alpha inhibitors or antagonists are useful for the present invention. Such inhibitors can act directly or indirectly on PPAR-alpha, so that the activity of PPAR-alpha decreases considerably. Examples of such antagonists include, without limitation, phosphorylation inhibitors of PPAR-alpha, 2-chloro-5-nitro-N- (pyridyl) benzamide, etc.
  • caveolin-1 is a negative regulator of the association of EMMPRIN with other EMMPRIN molecules and therefore inhibits the induction activity of MMPs (Tang et al. Mol Biol Cell. 2004; 9: 4043-4050).
  • siRNAs Small interference RNAs or siRNAs (siRNAs in their English name) are agents that are capable of inhibiting the expression of a target gene by RNA interference.
  • a siRNA can be chemically synthesized, can be obtained by In vitro transcription or can be synthesized in vivo in the target cell.
  • siRNAs consist of a double strand of RNA between 15 and 40 nucleotides in length and which may contain a 3 'and / or 5' protruding region of 1 to 6 nucleotides. The length of the protuberant region is independent of the total length of the siRNA molecule.
  • SiRNAs act by degradation or post-transcriptional silencing of the target messenger.
  • the siRNAs can be called shRNA (short hairpin RNA) characterized in that the antiparallel chains that form the siRNA are connected by a loop or hairpin region. These siRNAs are composed of a short antisense sequence (from 19 to 25 nucleotides), followed by a loop of between 5 and 9 nucleotides followed by the sense chain.
  • the shRNAs may be encoded by plasmids or viruses, and be under the control of promoters such as the U6 promoter of RNA polymerase III.
  • the siRNAs of the invention are substantially homologous to the EMMPRIN mRNA or to the genomic sequence encoding said protein.
  • substantially homologous is meant that they have a sequence that is sufficiently complementary or similar to the target mRNA so that the siRNA is capable of causing degradation of the latter by RNA interference.
  • Suitable siRNAs to cause such interference include siRNAs formed by RNA, as well as siRNAs containing different chemical modifications such as:
  • RNA chain conjugates with a functional reagent such as a fluorophore.
  • Nucleotides with modified sugars such as O-alkylated moieties in 2 'position such as 2'-0-methylribose-p-2'-0-fluorosibose.
  • Nucleotides with modified bases such as halogenated bases (for example 5- bromouracil and 5-iodouracil), alkylated bases (for example 7-methylguanosine).
  • siRNAs and siRNAs of the invention can be obtained using a series of techniques known to the person skilled in the art.
  • the siRNA can be chemically synthesized from ribonucleosides protected with forsphoramidites in a conventional DNA / RNA synthesizer.
  • siRNAs can be produced recombinantly from plasmid and viral vectors in which case the region encoding the chain, or chains, that form the siRNAs are under operational control of RNA polymerase III promoters.
  • Dicer RNase processes shRNAs in functional siRNAs.
  • the EMMPRIN region that is taken as the basis for designing siRNAs is not limiting and may contain a region of the coding sequence (between the initiation codon and the termination codon) or, alternatively, may contain sequences from the non-translated region. 'or 3', is preferably between 25 and 50 nucleotides in length and in any position in 3 'position with respect to the initiation codon.
  • One way to design an siRNA involves the identification of the AA (N19) TT motifs where N can be any nucleotide in the EMMPRIN sequence and selecting those that have a high G / C content. If this motif is not found, it is possible to identify the motif NA (N21), where N can be any nucleotide.
  • the EMMPRIN-specific siRNAs that can be used include any siRNA specifically directed to the EMMPRIN protein of the species to be inhibited.
  • Examples of siRNA include, but are not limited to, siRNAs synthesized by the "Silencer siRNA construction kit” kit from Ambion Research Inc., such as the 5 'sequence siRNA AAGACCTTGGCTCCAAGATACCCTGTCTC 3'- AAGTATCTTGGAGCCAAGGTCCCTGTCTCTC (Kulandaivelu Che et al. .
  • sequence siRNA 5 * - GUUCUUCGUGAGUUCCUCdTdT-3 * - 3 'dTdTCAAGAAGCACUCAAGGAG 5' (Chen et al. Cancer Letters 278 (2009) 113-121)
  • sequence siRNA 5 'GGUUCUUCGUGAGUUCCUCtt 3' - 3 'GAGGAACUCACGAAGAACCtg 5' (Qian et al.
  • the invention contemplates the use of other siRNAs such as the following, synthesized by Qiagen:
  • Sense r (GGG AAU GCU CCA AAC GAC A) dTdT.
  • Antisense r (UGU CGU UUG GAG CAU UCC QdTdT.
  • a further aspect of the invention relates to the use of "antisense" nucleic acids to inhibit expression, for example by inhibiting the transcription and / or translation of a nucleic acid encoding EMMPRIN and whose activity it is desired to inhibit.
  • Antisense nucleic acids can be linked to the potential target of the drug by conventional base complementarity, or, for example, in the case of binding to double stranded DNA, through specific interactions in the major groove of the double helix. In general, these methods refer to the range of techniques generally employed in the art and include any method that is based on specific binding to oligonucleotide sequences.
  • an antisense construct of the present invention can be distributed, for example, as an expression plasmid which, when transcribed in the cell, produces RNA that is complementary to at least a single part of the cellular mRNA encoding EMMPRIN.
  • the antisense construct is an oligonucleotide probe that is generated ex vivo and that, when introduced into the cell, produces inhibition of gene expression hybridizing with mRNA and / or genomic sequences of a target nucleic acid.
  • Such oligonucleotide probes are preferably modified oligonucleotides, which are resistant to endogenous nucleases, for example, exonucleases and / or endonucleases, and which are therefore stable in vivo.
  • nucleic acid molecules for use as antisense oligonucleotides are DNA analogs of phosphoramidate, phosphothionate and methylphosphonate (see also U.S. Patent Nos. 5176996; 5264564; and 5256775). Additionally, the general approaches to construct or link useful in antisense therapy have been reviewed, for example, in Van der Krol et al, BioTechniques 6: 958-976, 1988; and Stein et al, Cancer Res 48: 2659-2668, 1988.
  • oligodeoxyribonucleotide regions derived from the translation initiation site are preferred, for example, between -10 and +10 of the target gene.
  • Antisense approaches involve the design of oligonucleotides (either DNA, or RNA) that are complementary to the mRNA encoding the target polypeptide. Antisense oligonucleotides will bind to mRNA transcripts and prevent translation.
  • the antisense oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single chain or double chain.
  • the oligonucleotide can be modified in the base group, the sugar group or the phosphate skeleton, for example, to improve the stability of the molecule, its hybridization capacity etc.
  • the oligonucleotide may include other bound groups, such as peptides (for example, to direct them to host cell receptors) or agents to facilitate transport across the cell membrane (see, for example, Letsinger et al, Proc. Nati. Acad Sci. USA 86: 6553-6556, 1989; Lemaitre et al, Proc. Nati. Acad. Sci.
  • the oligonucleotide may be conjugated to another molecule, for example, a peptide, a transport agent, hybridization triggered cutting agent, etc.
  • antisense oligonucleotides complementary to the coding region of the EMMPRIN mRNA target sequence can be used, as well as those complementary to the transcribed region not translated.
  • An example of antisense oligonucleotides that can be used, without limitation, is the antisense oligonucleotide described in US2005026841A, whose sequence is 5 'GAGCTACACATTGAGAACCTG 3'.
  • a further aspect of the invention relates to the use of DNA enzymes to inhibit the expression of the gene encoding the EMMPRIN protein.
  • DNA enzymes incorporate some of the mechanistic characteristics of both antisense and ribozyme technologies. DNA enzymes are designed to recognize a particular nucleic acid target sequence, similar to the antisense oligonucleotide and similar to the ribozyme in that they are catalytic and specifically digest the target nucleic acid. Examples of DNA enzymes specifically directed to inhibit EMMPRIN include, but are not limited to, the following DNA sequences described in WO2006039343:
  • Ribozyme molecules designed to catalytically cut transcripts of a target mRNA to prevent the translation of mRNAs encoding EMMPRIN and whose activity it is desired to inhibit.
  • Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cut of RNA (see, Rossi, Current Biology 4: 469-471, 1994).
  • the mechanism of action of ribozyme involves sequence-specific hybridization of the ribozyme molecule to a complementary target RNA, followed by an endonucleolytic sheath event.
  • composition of the ribozyme molecules preferably includes one or more sequences complementary to the target mRNA, and the well-known sequence responsible for mRNA cutting or a functionally equivalent sequence (see, for example, U.S. Patent No. 5093246) .
  • Ribozymes used in the compositions of the present invention include hammerhead ribozymes, endoribonuclease RNAs (Cech type) (Zaug et al., Science 224: 574-578, 1984). Ribozymes may be composed of modified oligonucleotides (for example to improve stability, targeting, etc.) and should be distributed to cells expressing the target gene in vivo. A preferred method of distribution involves using a DNA construct that "encodes" the ribozyme under the control of a strong constitutive promoter of pol III or pol II, so that the transfected cells will produce sufficient amounts of the ribozyme to destroy the endogenous target messengers. and inhibit translation. Since ribozymes, contrary to other antisense molecules, are catalytic, a lower intracellular concentration is required for their effectiveness.
  • aptamers and spheromers are single or double stranded D or L nucleic acids that specifically bind to the protein, resulting in a modification of its biological activity.
  • the aptamers and spheromers have a length of between 15 and 80 nucleotides and, preferably, between 20 and 50 nucleotides.
  • the invention in another aspect, relates to a nanoparticle, hereinafter nanoparticle of the invention, which comprises on its surface a molecule with EMMPRIN binding capacity.
  • nanoparticle refers to any particle that has at least one of its dimensions smaller than about 1000 nm. The person skilled in the art is able to obtain nanoparticles according to the needs.
  • the diameter of the nanoparticles can be about 5 nm or 10 nm or 20 nm or 30 nm or 40 nm or 50 nm or 60 nm or 70 nm or 80 nm or 90 nm or 100 nm or 200 nm or even larger .
  • the nanoparticles according to the invention comprise a biocompatible outer shell and on its surface a molecule with EMMPRIN binding capacity.
  • components of the biocompatible outer shell include, but are not limited to any biodegradable polymer, such as those described in US12 / 519590 (for example aliphatic polyesters, poly (glycolic acid), polyvinyl pyrrolidone, polyethylene glycol (PEG), poly (acid lactic acid), polyalkylene succinate, polyhydroxybutyrate, polyhydroxivalerate, polycaprolactone, poly n-butyl methacrylate), poly (lactic-co-glycolic acid) and co-polymers derived from them, phospholipids, dextrans, silica and natural virus or lipoprotein shells.
  • the outer shell comprises a phospholipid layer.
  • Phospholipids suitable for use in the nanoparticles of the invention include, without limitation, phosphatidylserine (PS), dipalmitoyl and diestearoyl phosphatidic acid (DPPA, DSPA), dipalmitoyl and diesteroyl phosphatidylserine (DPPS, DSPS), dipalmitoyl, diesteroyl phosphatidyl Glycerol DPPGG ), phosphatidylglycerol, phosphatidylinositol, cardiolipin, sphingolipids (cermides-1-phosphate, glycosylated phosphatidylethanolamine; sulfatides (hydroxylated or not); gangliosides), phosphatidylinositolfosphates and phosphatidic acid.
  • PS phosphatidylserine
  • DPPA dipalmitoyl and diestearoyl phosphatidic acid
  • DPPS dipalmitoy
  • the phospholipid layer is formed by phosphatidylcholine where the acid grades can be any long aliphatic chain acid (alkanoic acids) of variable chain length, from about C 12 to C 22 , which contain no , one or more unsaturations.
  • acid grades can be any long aliphatic chain acid (alkanoic acids) of variable chain length, from about C 12 to C 22 , which contain no , one or more unsaturations.
  • the fatty acid is selected from the group of stearic acid (18: 0 or octadecanoic acid), oleic acid (18: 1 cis-9 or (9Z) -octadec-9-enoic acid), palmitic acid (16: 0 or hexadecanoic acid), linoeic acid (18: 2 ( ⁇ -6) or cis acid, cis-9, 12-octadecadiene ico), arachidonic acid (20: 4 ( ⁇ -6) or all cis-5,8 acid, ll , 14-eicosatetranoic acid), docosohexanoic acid (22: 6 (n-3 or 4Z, 7Z, 10Z, 13Z, 16Z, 19Z) -docosa-4,7,10,13,16,19-hexanoic acid).
  • stearic acid 18: 0 or octadecanoic acid
  • oleic acid 18: 1 cis-9 or (9
  • the nanoparticles comprise distearyolphosphatidylcholine (DSPC).
  • DSPC distearyolphosphatidylcholine
  • part or all of the phospholipid molecules that form the nanoparticle are modified by binding a molecule with EMMPRIN binding capacity.
  • molecule with EMMPRIN binding capacity refers to a molecule that has an affinity for EMMPRIN, so that the nanoparticles specifically target EMMPRIN.
  • the EMMPRIN-binding molecule is selected from the group consisting of an EMMPRIN inhibitor peptide and an anti-EMMPRIN antibody. If the molecule with EMMPRIN binding capacity is an anti-EMMPRIN antibody, said antibody is directed to the extracellular domain of EMMPRIN. In a particular embodiment the anti-EMMPRIN antibody is generated against the N-terminal end of EMMPRIN.
  • the molecule with EMMPRIN binding capacity is the EMMPRIN AP-9 inhibitor peptide, the sequence of which corresponds to SEQ ID NO: 2.
  • the link between the phospholipid molecules and the EMMPRIN-binding molecule is carried out by incorporation into the modified phospholipid nanoparticles by functional groups that can be conjugated with reactive moieties present in the EMMPRIN-binding molecule.
  • Functional groups as understood in the present invention, refer to a group of specific atoms in a molecule that are responsible for a characteristic chemical reaction of said molecule.
  • Examples of functional groups include, without limitation, hydroxy, aldehyde, alkyl, alkenyl, alkynyl, amide, carboxamide, primary, secondary, tertiary and quaternary amines, aminoxy, azide, azo (diimide), benzyl, carbonate, ester, ether, glyoxyl.
  • haloalkyl haloformyl, imine, imide, ketone, maleimide, isocyanide, isocyanate, carbonyl, nitrate, nitrite, nitro, nitrous, peroxide, phenyl, phenyl, phosphino, phosphate, phosphono, pyridyl, sulfide, sulfonyl, sulfyl, thioester, thiol and oxidized 3,4-dihydroxy phenylalanine (DOPA) groups.
  • DOPA 3,4-dihydroxy phenylalanine
  • the molecule with EMMPRIN binding capacity is a protein or peptide
  • DOPA Oxidized 3,4-dihydroxy-phenylalanine
  • the phospholipid and the EMMPRIN-binding molecule are separated by the use of a linker or spacer group.
  • Linker groups suitable for use in the present invention include, without limitation, modified or unmodified nucleotides, nucleosides, polymers, sugars, carbohydrates, polyalkylenes, such as polyethylene glycols and polypropylene glycols, polyalcohols, polypropylenes, mixtures of ethylene- and propylene glycols. , polyalkylamines, polyamines such as polylysine and spermidine, polyesters such as poly (ethyl acrylate), polyphosphodiesters, aliphatic and alkylenes of the appropriate length.
  • the spacer group is polyethylene glycol.
  • the polyethylene glycol is a PEG2000.
  • the nanoparticles of the invention comprise as an outer shell a lipid monolayer and at least one molecule with EMMPRIN binding capacity in which the phospholipid molecules and the EMMPRIN binding molecule are connected through a rest of polyethylene glycol.
  • said nanoparticles comprise as an outer shell a lipid monolayer and at least one molecule with EMMPRIN binding capacity, wherein the phospholipid molecules and the EMMPRIN binding capacity molecule are connected through a polyethylene glycol moiety and, additionally, an agent for detecting said nanoparticles (a fluorophore and / or a paramagnetic / superparamagnetic core).
  • an agent for detecting said nanoparticles a fluorophore and / or a paramagnetic / superparamagnetic core.
  • the agents for the detection of the nanoparticles must be suitable for visualizing said nanoparticles.
  • Illustrative examples of such agents include, but are not limited to fluorescent, radioactive, paramagnetic and superparamagnetic agents. Such agents allow nanoparticles to be detected by nuclear magnetic resonance imaging, by fluorescence or by other techniques, depending on the detection agent used.
  • paramagnetic and superparamagnetic contrast agents that can be used in the invention include, but are not limited to gadolinium derivatives, iron oxide (FeO, Fe 2 0 3 , Fe 3 C "4), platinum oxide (FePt ), derived from gold and bismuth
  • the paramagnetic core is FeO and is located in the nucleus of the nanoparticle
  • a fluorophore inserted into the monolayer is added phospholipids, so that the nanoparticles are visible by confocal microscopy or by molecular fluorescence tomography (FMT).
  • FMT molecular fluorescence tomography
  • Suitable fluorescent agents for the detection of nanoparticles include, without limitation, Alexa Fluor (eg, AlexaFluor 555), fluorescein, fluorescein isothiocyanate (FITC), Oregon Green; rhodamine, Texas red, tetrarodamine isothiocyanate (TRITC), a CyDye (eg, Cy2, Cy3, Cy5) and the like.
  • Alexa Fluor eg, AlexaFluor 555
  • fluorescein fluorescein isothiocyanate
  • FITC fluorescein isothiocyanate
  • TRITC tetrarodamine isothiocyanate
  • CyDye eg, Cy2, Cy3, Cy5
  • the nanoparticles of the invention can be used in the prevention and / or treatment of a pathology in which EMMPRIN is overexpressed.
  • pathologies include, but are not limited to, any cardiac damage, cardiac damage produced after ischemia followed by reperfusion, heart infarction, adverse ventricular myocardial remodeling, various types of cancer (cervical cancer, prostate cancer, etc.), ulcerated corneas, rheumatoid arthritis, etc.
  • the nanoparticle is used for the prevention and / or treatment of cardiac damage produced after ischemia followed by reperfusion.
  • said nanoparticles comprise in addition to the elements mentioned above, a compound of modulating therapeutic interest. of the activity of EMMPRIN.
  • a compound of modulating therapeutic interest of the activity of EMMPRIN.
  • the agents for the detection of nanoparticles are not necessary in case the nanoparticles of the invention are used for therapeutic purposes, although they can be used.
  • the compound of therapeutic interest modulating the activity of EMMPRIN is preferably attached to the outer shell, although it can also be included in the central core of the nanoparticle.
  • Illustrative examples of compounds of therapeutic interest comprised in the nanoparticle include, but are not limited to an EMMPRIN inhibitor peptide, such as the AP-9 peptide, an anti-EMMPRIN antibody, a glycosylation modulator, a p53 activator, an antagonist.
  • EMMPRIN inhibitor peptide such as the AP-9 peptide
  • an anti-EMMPRIN antibody such as the AP-9 peptide
  • a glycosylation modulator such as the AP-9 peptide
  • a p53 activator an antagonist.
  • PPAR-alpha a siRNA, a cyclophilin ligand, a statin, an antisense oligonucleotide specific for EMMPRIN, a ribozyme specific for EMMPRIN, an aptamer and a specific spiemer for EMMPRIN.
  • the nanoparticles of the invention can be used for the diagnosis of a pathology in which EMMPRIN is overexpressed.
  • pathology include, but are not limited to, any cardiac damage, cardiac damage produced after ischemia followed by reperfusion, heart infarction, adverse ventricular myocardial remodeling, various types of cancer (cervical cancer, prostate cancer, etc.), ulcerated corneas, rheumatoid arthritis, etc.
  • Cell culture reagents were from BD Biosciences (Spain), fetal serum from Bio Whittaker (Verviers, Belgium), culture media and antibiotics were from Sigma (St. Louis, MO, USA). Conjugated secondary antibodies were from GE Health Care (Spain). The protease inhibitor cocktail was from Roche (Spain). The Optimem medium and the Lipofectamine from GIBCO-BRL (BD), DETA-NO, SNAP and 1400W were from Alexis (Alexis Biochemicals, USA). The Rp-8-Br-PET-cGMPs of Biolog (Germany).
  • anti-MMP-9 and anti-MMP-2 antibodies were from BD Transduction Laboratories (BD Biosciences, Spain), while the anti-EMMPRIN antibody (rat-anti-mouse-EMMPRIN, clone 0X114) and anti-EMMPRIN control were from Serotec.
  • mice deficient for the iNOS gene and their corresponding wild controls were purchased from The Jackson Laboratories (Bar Harbor, ME, USA), not having detected differences in size or weight in them. All animals were housed in our animal farm in isolated rooms and free of microbiological contamination. This research has been conducted according to the guidelines for care and use of laboratory animals, published by the NIH (NIH Publication No. 85-23, revised 1996).
  • the HL1 cardiomyocyte cell line was donated by Dr. Antonio Bernad and cultured as described [Ruiz-Meana M et al. Cardiovascular research 2006; 71: 715-724].
  • the RAW 274 murine macrophage line was cultured as described [Tar ⁇ n C et al. Arteriesclerosis, thrombosis, and vascular biology 2009; 29: 27-32].
  • Ischemia was induced by ligation of the coronary artery as follows: twelve-week-old mice were anesthetized intraperitoneally using ketamine / xylazine (100mg / kg / 10 mg / kg, respectively), tubed with a lmm steel tube, and ventilated (2 mi, 80 beats / minute). After this process the thorax of the mice was opened between the second and third ribs, being maintained by means of a mouse retractor. Then we proceed to the opening of the pericardium to subsequently proceed with the temporary ligation of the left coronary artery in a region near its bifurcation, using a 6-0 silk suture thread, and for a period of 30 minutes .
  • EMMPRIN For in vivo neutralization of EMMPRIN, a dose of administration of anti-EMMPRIN antibody or IgG control administered by intravenous injection was performed.
  • the effective dose of anti-EMMPPJN used finally turned out to be 250 micromol / L / kg, this being the dose at which a reduction of MMP-9 greater than 50% is observed compared to the IgG control.
  • intravenous administration of the antibodies was carried out for four days before the surgical procedure, after which time the size of the infarction, cardiac function and the expression of EMMPRIN and MMP-9 were evaluated.
  • nitrite concentration in the samples was determined by a modification of the Griess test as previously described [Zaragoza C et al. J Clin Invest 1997; 100: 1760-1767]. Briefly, 50 ⁇ of sample and nitrite standards were incubated at the same volume with Griess reagent (1% sulfanilamide, 0.1% naphthyl ethylene diamine and 2.5% H 3 PO 4 ), for 10 minutes at room temperature, time after which the absorbance of each sample was evaluated at a wavelength of 540 nm in a microplate reader.
  • Griess reagent 1% sulfanilamide, 0.1% naphthyl ethylene diamine and 2.5% H 3 PO 4
  • mice The hearts of the mice were visualized by echocardiography over time, through the use of high frequency micro-ultrasound equipment (Vevo 770, Visual Sonics, Toronto, Canada). For this, the animals were anesthetized by using isofluorane gas (1.5%), resulting in a heart rate of about 300 beats / minute.
  • the mice were deposited on a table coupled to a rail system, in which the temperature at which the experiment is performed is also controlled and regulated. Mouse hair is removed to prevent artifact images and echocardiographic transmission gel is applied for imaging.
  • the heart of the animals was included in parafma for subsequent obtaining sections of 4 microns thick as previously described [Tar ⁇ n et al. cited ad supra].
  • Heart morphology was visualized by staining with eosin-hematoxylin, while collagen deposition was monitored by Masson's trichrome staining.
  • the samples were incubated with the corresponding primary antibodies and visualized by confocal microscopy after incubation with the corresponding secondary antibodies conjugated with the fluorescent reagents as previously described [Lopez- Rivera E et al. Proc Nati Acad Sci U S A 2005; 102: 3685-3690].
  • the commercial chromosome BAC CH29-603O5 (which contains part of the murine chromosome 10), from CHORI (Childrens Hospital Oakland Research Institute), was used as a template in PCR reactions with the following oligonucleotides: Direct-5 -CGGGGTACCAGCACTCCATCCAAAGGCAGA-3 ' (SEQ ID NO: 3).
  • pEMMPRIN-WT luciferase reporter gene
  • pEMMPRIN was used as a template in PCR reactions in order to create serial deletions of the promoter as detailed:
  • pl000 pEMMPRIN-WT.
  • p500 plasmid containing the first 500 bp of the EMMPRIN promoter.
  • p250 plasmid containing the first 250 bp of the EMMPRIN promoter.
  • plOOO-500 plasmid containing the distal 500 bp of the EMMPRIN promoter.
  • plOOO-750 plasmid containing the distal 250 bp of the EMMPRIN promoter.
  • p875-750 plasmid containing the distal region of the EMMPRIN promoter comprised between bases 750 and 875 thereof.
  • a mutant for the binding site to the transcription factor E2F, located at the -790 position of the EMMPRIN promoter was carried out by using the Stratagene company directed mutagenesis kit, according to the instructions provided by the manufacturer, and using the following oligonucleotides (with the substitution mutations indicated in lowercase letters) in PCR reactions.
  • the oligonucleotides used for this are the following:
  • the DNA transfection experiments were transiently carried out using the Lipofectamine 2000 reagent in the manner previously described by the manufacturer. In the transfected cells the luciferase content was measured as previously described [Zaragoza C et al. Molecular pharmacology 2002; 62: 927-935].
  • the cells were transiently transfected with 1 microgram of DNA and 10 ⁇ of Lipofectamine 2000 in OptiMEM culture medium, for 4 hours, after which time they were washed and incubated with fresh culture medium (MEM / 10% FCS) for 16 hours
  • the cells were co-transfected with a plasmid containing the constitutively active promoter of the cytomegalovirus fused with the R-Luciferase (Renilla) gene, used as a control.
  • Each sample was therefore evaluated for the content in both P (“firefly”) and R-luciferase.
  • P-luciferase is a substrate of the reporter gene product anchored to the promoter to be evaluated and R-luciferase is a substrate of the gene product of the co-transfected control plasmid reporter gene. The results were normalized for the content in R-Luciferase.
  • RNA isolation was performed from the different experimental times and for both EMMPRIN and GAPDH (as a control), their mRNAs were evaluated by quantitative real-time RT-PCR.
  • Systolic volume DS Diastolic volume.
  • SV Systolediástole volume difference.
  • EF Ejection fraction.
  • FS Shortening fraction.
  • EMMPRIN expression is induced in mice deficient for iNOS
  • MMPs are significantly involved in the digestion of the cardiac extracellular matrix during myocardial infarction and its EMMPRIN inducer, has been similarly involved in the induction of MMPs in cardiac cells [Schmidt R et al. Circulation 2006; 113: 834-841].
  • the authors of the present investigation detected that in animals deficient for iNOS the levels of EMMPRIN are significantly increased, and myocardial infarction tends to increase even more with respect to Wild phenotype animals, process detected by immunoblot.
  • MMP-9 and MMP-2 two of the most representative MMPs present during infarction and targets of EMMPRIN, are also overexpressed in mice deficient for iNOS, detected both by immunoblot (Fig. 2A left), and by zymography (Fig .2 right).
  • EXAMPLE 3 Inhibition of iNOS involves increased cardiac damage and expression of EMMPRIN in wild mice for iNOS
  • the authors of the invention found that in wild mice for iNOS, the administration of the iNOS 1400W pharmacological inhibitor tends to significantly increase the size of the infarction (Fig. 2C, table) , together with the increase in EMMPRIN levels (Fig. 2B lower panels on the left) and MMP-9 with respect to control mice (Fig. 2B lower panels on the right, WT 1400WC vs WT 1400W), rescuing the same phenotype detected in animals deficient for iNOS.
  • mice deficient for iNOS the sodium nitroprusside donor (20 micrograms / kg / day) was administered intravenously, two days before ischemia / reperfusion (I / R NO) , detecting a significant reduction in EMMPRIN levels compared to control (I / R) mice (Fig. 2D, left). Additionally, the detection of nitration was carried out by using anti-3- Nitrotyrosine in isolated sections of those same animals, confirming that the NO provided exogenously was present in the hearts of the animals treated during the time of experimentation (Fig. 2D, right). All these results suggest that EMMPRIN inhibition may become a signaling pathway used by NO in its cardioprotective effect.
  • EMMPRIN mRNA in wild and deficient mice for iNOS was evaluated by quantitative RT-PCR, detecting how ischemia / reperfusion induces a significant increase in mRNA. in mice deficient for iNOS, when compared with that of wild mice (Fig. 3A). Additionally, it was possible to detect how mRNA levels were significantly reduced in cardiomyocytes in culture in the presence of the NO DETA-NO donor (Fig. 3B), while in the RAW macrophage cell line, NO did not induce an effect. significant on the gene expression of EMMPRIN (Fig. 3C), thus suggesting a role for NO in the transcription of EMMPRIN in cardiomyocytes.
  • NO was further verified, by incubating transfected cells in the presence of two additional NO donors such as SNitroso-N- acetyl-D, L-penicillamide (SNAP) and (Z) -lN- [3-aminopropyl] -N- [4- (3- aminopropylammonium) butyral] -amino ⁇ -diazen- 1 -ium- 1, 2-diolate (Spermine-NONOate), obtaining results similar to those generated with DETA-NO.
  • two additional NO donors such as SNitroso-N- acetyl-D, L-penicillamide (SNAP) and (Z) -lN- [3-aminopropyl] -N- [4- (3- aminopropylammonium) butyral] -amino ⁇ -diazen- 1 -ium- 1, 2-diolate (Spermine-NONOate), obtaining results similar to those generated with DETA-NO
  • MAEC cells (mouse aortic endothelial cells) were used for in vitro assays. Said cells were incubated overnight with the nitric oxide donor (DETA-NO) ( ⁇ ) to induce EMMPRIN expression. MAEC cells without DETA-NO were used as a control. MAEC cells were fixed with 4% PFA and incubated with 0.08 mg / ml AP-9 peptide. Subsequently, EMMPRIN expression was detected using an anti-EMMPRIN antibody (1: 1000). In Figure 9 it can be seen that the AP-9 peptide and EMMPRIN signals co-localize, so it is concluded that the AP-9 peptide specifically binds EMMPRIN.
  • DETA-NO nitric oxide donor
  • MAEC cells without DETA-NO were used as a control.
  • MAEC cells were fixed with 4% PFA and incubated with 0.08 mg / ml AP-9 peptide. Subsequently, EMMPRIN expression was detected using
  • MAEC cells were incubated with ⁇ of DETA-NO to induce the expression of EMMPRIN. After 3 hours of treatment with DETA-NO, the MAEC cells were incubated overnight with the AP-9 peptide (0.08mg / ml) or with PBS as a control without peptide. MAEC cells without DETA-NO were used as control. Finally, MAEC cells were fixed with 4% PFA and MMP-9 expression was detected using an anti-MMP-9 antibody (1: 1000). As can be seen in Figure 10, MAEC cells incubated with the AP-9 peptide showed inhibition of EMMPRIN-induced MMP-9 expression.
  • the synthesis of the AP-9 peptide was carried out in two different ways: a form labeled with a fluorochrome for its detection by immunohistochemical techniques and by the non-invasive approach of fluorescence tomography and a second form of Biotinylated AP-9, in order to be able to be fixed and to perform "pulse down" tests in order to evaluate the existence of molecules that interact with EMMPRIN on which to influence with a possible modulating effect of their activity.
  • AP-9 AP-9 peptide
  • pilot administration tests were initially carried out in order to determine the stability and half-life of AP-9 in animals over time.
  • the administration of AP-9 was carried out intravenously at the following concentrations: 10 ng / kg, 100 ng / kg 1 ⁇ g / kg, 10 ⁇ g / kg, 100 ⁇ g / kg, 1 mg / kg, 10 mg / kg
  • concentrations 10 ng / kg, 100 ng / kg 1 ⁇ g / kg, 10 ⁇ g / kg, 100 ⁇ g / kg, 1 mg / kg, 10 mg / kg
  • Each group consisted of 9 animals, which were used in groups of 3 for non-invasive fluorescent visualization of the peptide by tomography on a daily basis, and each day a group of 3 animals was sacrificed to perform an immunohistofluorescent analysis in the isolated hearts of the animals.
  • mice were needed in total for the test, when the tests were performed in triplicate. Once the optimal concentration of administration was determined, the optimal dose of AP-9 was injected intravenously into five groups of mice undergoing ischemia / reperfusion:
  • the progression of the damage was evaluated by ultrasound in all mice, determining cardiac parameters on a daily basis for three consecutive days. Likewise, the animals were also subjected to fluorescence tomography analysis to visualize the presence of AP-9 in the hearts, at which end the animals were sacrificed to carry out the histological and immunohistochemical analysis in order to evaluate the expression of enzymes. MMP-2 and MMP-9 proteolytics.
  • NIR664-DSPE dissolved in chloroform: methanol 2.
  • the mixture was added dropwise to 4-10 ml of deionized water at 80 ° C, allowing to cool later.
  • the AP-9 peptide was incubated with the deacetylation solution (0.5M hydroxylamine, 1M HEPES, 32mM EDTA, pH 7.0) for 1 hour.
  • the molar ratio of Maleimide PEG and AP-9 peptide was 1: 1, 137 ⁇ of the peptide, 363 ⁇ of PBS and 50 ⁇ of deacetylation solution were added.
  • the activated AP-9 peptide was added to the mixture with the ferric oxide nanoparticles. This mixture is incubated overnight at 4 ° C.
  • the synthesized nanoparticles consist of the following structure, which can be seen in Figure 7 and Figure 8:
  • Iron oxide core visible by nuclear magnetic resonance imaging (MRI).
  • Lipid monolayer with a fluorochrome confocal microscopy, fluorescent tomography, FMT
  • nanoparticles The main purpose of the use of nanoparticles was to have a vehicle, multimodal and effector visualization tool on EMMPRIN activity and the possible regression of myocardial damage.
  • the nanoparticles containing AP-9 have a therapeutic value, since EMMPRIN is inhibited and tissue damage is reduced due to the activation of proteolytic enzymes.
  • FIGs 11 it is observed that the nanoparticles have been internalized in mouse aortic endothelial cells and that they are viable in the cell interior, the AP-9 peptide joining EMMPRIN.
  • Figure 12 it is observed that said internalization occurs in a dose-dependent manner, observing how the fluorescent signal increases with increasing peptide concentration.
  • the AP-9 conjugated nanoparticle (N-AP-9) was administered intravenously at the following concentrations: 10 ⁇ g / kg, 100 ⁇ g / kg, 1 mg / kg and 10 mg / kg.
  • Each group consisted of 9 animals, which were used in groups of 3 for non-invasive fluorescent visualization by fluorescent tomography (FMT) and nuclear magnetic resonance imaging (MRI) on a daily basis, and each day a group of 3 animals was sacrificed to perform an immunohistofluorescent analysis in the isolated hearts of animals, with the purpose of validating the results of non-dormant image.
  • FMT fluorescent tomography
  • MRI nuclear magnetic resonance imaging
  • 96 mice were needed in total for the test, when the tests were performed in triplicate.
  • NP-AP-9 intravenously in the following 5 groups of animals:
  • NP-AP-9 "scramble” nanoparticle with a conjugated peptide of the same composition but different order of amino acids as AP-9

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Toxicology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

La presente invención se relaciona con el uso de un inhibidor de EMMPRIN para la prevención y/o tratamiento de daños cardiacos producidos tras un proceso de isquemia seguida de reperfusión. Los autores de la presente invención han observado que la expresión de EMMPRIN se encuentra elevada en sujetos sometidos a isquemia/reperfusión y han comprobado que un inhibidor de EMMPRIN es capaz de disminuir los daños cardiacos causados tras isquemia seguida de reperfusión, tanto in vitro como in vivo.

Description

COMPUESTOS PARA EL TRATAMIENTO DE DAÑOS CARDIACOS TRAS
ISQUEMIA/REPERFUSIÓN
CAMPO DE LA INVENCIÓN
La invención se relaciona con el uso de un inhibidor de EMMPRIN para la prevención y/o tratamiento de daños cardiacos producidos tras un proceso de isquemia seguida de reperfusión.
ANTECEDENTES DE LA INVENCIÓN
La enfermedad isquémica del corazón o isquemia miocárdica se caracteriza por un descenso significativo del aporte sanguíneo al músculo cardiaco, disminuyendo así los niveles necesarios de oxígeno y nutrientes. La causa más frecuente de isquemia miocárdica es debida la oclusión de las arterias coronarias, como consecuencia de un proceso aterosclerótico, cuyo riesgo aumenta con la edad, en fumadores, en sujetos con hipercolesterolemia, diabetes e hipertensión y es más frecuente en sujetos de sexo masculino.
La oclusión coronaria tiene como consecuencia la ocurrencia de necrosis isquémica o infarto de miocardio, cuya incidencia se relaciona directamente con el grado de privación de oxígeno y nutrientes en el tejido. En el caso de isquemia transitoria, la posterior reperfusión del miocardio se asocia directamente con una extensión de la necrosis miocárdica denominada daño celular letal por reperfusión
Bajo la condición de hipoxia, los cardiomiocitos son dependientes de la glucolisis como metabolismo energético. El transporte de ácido láctico producido como subproducto de la glucolisis, es necesario para el mantenimiento de la viabilidad celular y se lleva a cabo a través de los transportadores de lactato denominados MCT-1 y MCT-4, habiéndose descrito la asociación de estos con la proteína denominada CD147 (también llamada Basigina o EMMPRIN (Extracellular Matrix Metalloproteinase Inducer)) (Halestrap et al. 1999. Biochem J; 343: 281-299). Tanto MCT como EMMPRIN están sobre- expresados en condiciones de isquemia en células neuronales y cardiacas (Zhang et al. 2005; J. Neurosc. Res. 79: 139-145). En el caso de los MCTs la sobreexpresión está relacionada con un efecto protector frente a la acumulación de lactato. En el caso de EMMPRIN el efecto es aún desconocido debido a su interacción con otras proteínas, siendo el proceso de una gran complejidad. Existen compuestos descritos en la bibliografía con la capacidad de disminuir los daños causados por isquemia cardiaca. Se ha descrito la utilización de nitratos (Pfister M et al. Heart 80 (4): 365-9), de compuestos beta-bloqueantes (O'Rourke ST. Am J Pharm Educ, 2007; 71 (5): 95) (acebutolol or metoprolol) y agentes que disminuyen la hipertensión. Asimismo, el óxido nítrico también se podría utilizar como agente cardioprotector, ya que se ha constatado su eficacia a través de su incidencia por distintos mecanismos (West MB et al. Circulation. 2008; 118: 1970-8. Lin J, et al, Circulation 2009; 120:245-54), incluyendo el uso de sustancias como el propofol, que aumentan su producción en isquemia seguida de reperfusión (Sun Hai-yan et al. Chin. Med. J 2009; 122: 3048-54). Sin embargo, el NO presenta un efecto dual, por el hecho de su implicación significativa en el estrés oxidativo asociado con el daño cardiaco que tiene lugar durante el infarto de miocardio (Liu YH et al. American journal of physiology 2005; 289:H2616-2623), así como por haberse detectado un incremento significativo de su producción asociada con un incremento del daño cardiaco en humanos (Mungrue IN et al. J Clin Invest 2002; 109:735-743), mientras que el uso de inhibidores de la NOS como es el caso del L- ÑAME, han sido evaluados en diversos estudios con resultados aunque no concluyentes, al menos prometedores (Cotter G et al. European heart journal 2003; 24: 1287-1295), sugiriendo que el efecto del NO en el corazón pueda estar relacionado con el tiempo y la dosis en el cual este factor es producido. En relación con el efecto del NO como agente cardioprotector, es importante destacar el efecto del denominado precondicionamiento isquémico, fenómeno que consiste en la ocurrencia de repetidos procesos de isquemia de corta duración, gracias a los cuales el corazón es capaz de tolerar con éxito siguientes procesos de isquemia prolongada tras la reperfusión. De entre los distintos factores que inducen el proceso de precondicionamiento, el NO es uno de ellos, habiendo sido demostrada su eficacia en el proceso cardioprotector (Xuan YT et al. Circulation. 2007; 116: 535-44; West MB, et al. Circulation. 2008; 118: 1970-8), y aunque se han descrito diversos candidatos asociados a la producción de NO en el proceso, es necesario seguir progresando en el conocimiento profundo de la cardioprotección ejercida por este factor.
A pesar de que se han descrito compuestos para la prevención o tratamiento de los síntomas asociados con isquemia/reperfusión, existe la necesidad de desarrollar nuevos compuestos para la reducción de daños cardiacos tras isquemia seguida de reperfusión y que sean más eficientes que los descritos en el estado de la técnica.
COMPENDIO DE LA INVENCIÓN
En un aspecto, la invención se relaciona con el uso de un inhibidor de EMMPRIN o de un inhibidor de una variante funcionalmente equivalente de EMMPRIN para la preparación de un medicamento para la prevención y/o el tratamiento de los daños cardiacos producidos tras isquemia seguida de reperfusión. BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 describe que la ausencia de NO aumenta el daño en el miocardio durante isquemia/reperfusión. (A) izquierda: los ratones iNOS WT y deficientes para iNOS fueron sometidos a 30 minutos de isquemia coronaria, seguidos de 24h de reperfusión, evaluando después los niveles de iNOS (y de GAPDH como control de carga) en un Western-blot. (A) derecha: producción de NO, (n=6, ratones por triplicado, media ± SD; p<0,05 iNOS WT+ vs iNOS WT-). (B) Tamaño de infartos (n=6, ratones por triplicado, p<0,05 iNOS WT vs iNOS knockout). (C) Valores de la fracción de eyección (n=6, ratones por triplicado, media ± SD; p<0,05 iNOS WT IR vs iNOS knockout IR). IR: Isquemia seguida de reperfusión.
La Figura 2 describe que el NO inhibe la expresión de EMMPRIN y MMP-9 en isquemia/reperfusión. (A) izquierda: Tras 30 minutos de isquemia y 24 horas de reperfusión, se procedió a evaluar la expresión de MMP-9, MMP-2, EMMPRIN, y GAPDH por inmunoblot con anticuerpos específicos. (A) derecha: De forma adicional, la presencia de MMP-2 y MMP-9 fue también evaluada por zimografta en geles con gelatina. (B) Expresión de EMMPRIN (paneles de la izquierda) en ratones salvajes (iNOS WT), ratones deficientes para iNOS (iNOS KO), y en ratones en los que la actividad de iNOS fue inhibida farmacológicamente con el compuesto 1400W (iNOS WT 1400W). Un grupo de animales control de 1400W también fue evaluado (iNOS WT 1400WC). A la derecha se representa un análisis densitométrico correspondiente al conjunto de la señal obtenida en cada uno de los grupos (n= 10 ratones por triplicado, media ± SD; *p<0.05 iNOS WT vs iNOS KO; # p<0.05 iNOS WT 1400WC vs iNOS WT 1400W). Expresión de MMP-9 (paneles de la derecha) en los mismos animales. (C) Efecto de la inhibición farmacológica de iNOS en los tamaños de infarto en ratones salvajes (n= 6 ratones por triplicado. * p<0.05). (D) Expresión de EMMPRIN en ratones deficientes para iNOS: operados control (C), sujetos a isquemia/reperfusión (I/R), y sujetos a isquemia/reperfusión a los que se les ha administrado el donador de NO nitroprusiato sódico (20 microgramos/kg/día) de forma intravenosa durante 2 días previos al procedimiento. Para verificar la presencia del NO en el corazón del los ratones se llevaron a cabo ensayos de microscopía confocal en secciones de corazones de estos animales con anti-3-nitro-tirosina (n= 6 ratones).
La Figura 3 muestra que la ausencia de iNOS incrementa los niveles del ARNm de EMMPRIN en cardiomiocitos. (A) RT-PCR cuantitativa a tiempo real mostrando la expresión de EMMPRIN en los corazones de animales salvajes y deficientes para iNOS tras isquemia/reperfusión (n=3 por triplicado, media ± SD *p<0.05 vs iNOS nuil-). (B) RT-PCR cuantitativa a tiempo real mostrando la expresión de EMMPRIN en cardiomiocitos HL1 en respuesta a la administración exógena de 100 μΜ DETA-NO (n=3, media ± SD *p<0.05). (C) RT-PCR cuantitativa a tiempo real mostrando la expresión de EMMPRIN en macró fagos RAW 247.6 en cultivo en respuesta a la administración exógena de 100 μΜ de DETA-NO, la producción endógena de NO (50 μΜ LPS), o la inhibición de iNOS mediante la adición de 100 μΜ 1400W (n=3 media ± SD). (D) Ensayo de estabilidad del ARNm de EMMPRIN en cardiomiocitos HL-1 (izquierda) y en macrófagos RAW 247.6 (derecha) (n=3, media ± SD *p<0.05).
La Figura 4 muestra que el NO regula EMMPRIN de forma transcripcional en cardiomiocitos a través de la ruta cGMP/PKG. (A) Dosis respuesta del donador de NO DETA-NO sobre la actividad transcripcional del promotor de EMMPRIN en cardiomiocitos transitoriamente transfectados con pEMMPRIN-WT (n=10, media ± SD *p<0.05 vs 0). (B) Dosis respuesta del análogo del cGMP, 8-Br-cGMP, sobre la actividad transcripcional del promotor de EMMPRIN en cardiomiocitos transitoriamente transfectados con pEMMPRIN-WT (n= 10, media ± SD *p<0.05 vs 0). (C) Efecto de PKG sobre la actividad transcripcional del promotor de EMMPRIN en cardiomiocitos transitoriamente transfectados con pEMMPRIN-WT, y co-transfectados con el dominante positivo de PKG-1 alfa (fGlAC), o tratados con el inhibidor farmacológico de PKG PET, en presencia o ausencia de 100 μΜ DETA-NO (n=3, media ± SD *p<0.05 vs transfectadas en reposo (-). (D) Efecto de la adición exógena de 100 μΜ DETA-NO, la producción endógena de NO con LPS, y la inhibición farmacológica de iNOS (100 μΜ 1400W) en la actividad transcripcional del promotor de EMMPRIN en células transitoriamente transfectadas RAW 247.6 con pEMMPRIN-WT (n=3 media, ± SD). La Figura 5 describe que la represión transcripcional del NO sobre el promotor de EMMPRIN está mediada a través del factor E2F en cardiomiocitos. (A) Efecto del NO en la actividad transcripcional del promotor de EMMPRIN en cardiomiocitos transitoriamente transfectados con pEMMPRIN-WT (plOOO), y con deleciones seriadas del promotor. Zona superior: actividad transcripcional de plOOO y p500 (n=3, media ± SD *p<0.05 vs plOOO). Zona central: actividad transcripcional de plOOO y p250 (n=3, media ± SD *p<0.05 pl000+DETA-NO vs plOOO. #p<0.05 vs plOOO). Zona inferior: Actividad transcripcional de plOOO-500 y plOOO-750, construcción que contiene las 250 pb distales de 1000 (n=3, media ± SD. *p<0.05 vs plOOO-500. # p<0.05 vs plOOO-750). (B) Actividad transcripcional de p875-750 y de la variante p875-750 en la cual se ha inducido la mutación puntual del sitio de unión al factor de transcripción E2F (n=3, media ± SD. *p<0.05 p875-750 vs p875-750 + NO).
La Figura 6 muestra que la administración de anticuerpos anti-EMMPRIN restaura de forma parcial la función cardiaca e inhibe la expresión de MMP-9. (A) Detección de MMP-9 mediante inmunoblot en ratones control (NOS2 C), en ratones sometidos a isquemia/reperfusión (NOS2 IR), en ratones a los que se les ha administrado de forma intravenosa IgG durante 4 días y posteriormente sometidos a isquemia/reperfusión (NOS2 IgG) y en ratones a los que se les ha administrado de forma intravenosa anti- EMMPRIN durante 4 días y posteriormente sometidos a isquemia/reperfusión (NOS2 EMMPRIN) (n=6 por grupo, media ± SD. *p<0.05 vs NOS2C). (B) Detección de EMMPRIN en los mismos ratones mediante microscopía confocal. (C) Valores de fracción de eyección en ratones deficientes para iNOS (NOS2) y en ratones salvajes (WT) (n=6 por grupo, media ± SD. *p<0.05 NOS2 IR vs NOS2-EMMPRIN y NOS2 IgG vs NOS2 EMMPRIN) La Figura 7 representa las nanopartículas cargadas con el péptido AP-9. Las nanopartículas fueron sintetizadas con fosfolípidos-PEG, lípidos fluorescentes y un núcleo de nanocristal de óxido de hierro, posteriormente el péptido AP-9 se unió a la superficie.
La Figura 8 muestra un esquema de la síntesis de las nanopartículas. Las nanopartículas se sintetizaron con lípidos-PEG, lípidos fluorescentes y un nanocristal de óxido de hierro como núcleo central. El péptido AP-9 fue entonces unido a la superficie. Nanopartículas sin el péptido AP-9 unido se utilizaron como control.
La Figura 9 muestra que el péptido AP-9 se une a EMMPRIN en células endoteliales aórticas de ratón (MAEC). Las células MAEC se incubaron durante toda la noche con el donador de óxido nítrico (DETA-NO) (ΙΟΟμΜ) para inducir la expresión de EMMPRIN (panel derecho). Las células MAEC sin DETA-NO se utilizaron como control (panel izquierdo). Las células MAEC se fijaron con 4% PFA y se incubaron con 0,08 mg/ml del péptido AP-9. La expresión de EMMPRIN se detectó utilizando un anticuerpo anti- EMMPRIN (1 : 1000), observando que ambas señales co-localizan (panel derecho, recuadro derecho arriba). Los núcleos se tiñeron con DAPI.
La Figura 10 muestra que el péptido AP-9 bloquea la expresión de MMP-9 inducida por EMMPRIN. Células MAEC se incubaron con ΙΟΟμΜ de DETA-NO para inducir la expresión de EMMPRIN (B, D). Células MAEC sin DETA-NO se utilizaron como control (A, C). Después de 3 horas de tratamiento con DETA-NO las células MAEC se incubaron durante toda la noche con el péptido AP-9 (0,08mg/ml) (C, D) o con PBS (A, B). Las células MAEC se fijaron con 4% PFA y la expresión de MMP-9 se detectó utilizando un anticuerpo anti- MMP-9 (1 : 1000). Las células MAEC incubadas con el péptido AP-9 mostraron inhibición de la expresión de MMP-9 inducida por EMMPRIN. Los núcleos se tiñeron con DAPI.
La Figura 11 muestra la internalización de las nanopartículas AP-9 por las células MAEC. Las células MAEC se incubaron durante toda la noche con las nanopartículas AP-9 (NP-AP-9) (20 μg/ml) (panel derecho) o con nanopartículas no cargadas (NP-NT) (panel izquierdo). Las células MAEC se fijaron y la expresión de EMMPRIN se detectó utilizando un anticuerpo anti-EMMPRIN. En células MAEC tratadas con NP-AP-9 (panel derecho) se encontró una co-localización entre la señal de NP-AP-9 y la señal de EMMPRIN, que no se encontró en las nanopartículas control. Los núcleos se tiñeron con DAPI.
La Figura 12 muestra que las células MAEC internalizaron las nanopartículas AP-9 de una manera dósis-dependiente. Las células MAEC se cultivaron en una placa negra de 96 pocilios y se incubó con diferentes concentraciones de las nanopartículas cargadas con AP-9 durante toda la noche (NP-AP9) o sin AP-9 (NP-NT). La fluorescencia se midió utilizando un sistema de imagen IVIS. La gráfica de la derecha representa la intensidad de la señal de fluorescencia de la imagen de la izquierda. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Los autores de la presente invención han observado que la expresión de EMMPRIN se encuentra elevada en sujetos sometidos a isquemia/reperfusión y han comprobado que un inhibidor de EMMPRIN es capaz de disminuir los daños cardiacos causados tras isquemia seguida de reperfusión. Así, tal y como se ilustra en el Ejemplo 6, en donde se reproduce isquemia/reperfusión en ratones, la administración de anticuerpos anti- EMMPRIN produjo una disminución significativa de EMMPRIN y la recuperación de la función cardiaca (fracción de eyección), hasta llegar a niveles similares a los controles.
Hasta el momento, la presencia de la proteína EMMPRIN nunca había sido asociada con eventos relacionados con la reperfusión de las arterias coronarias. Otros investigadores han detectado cómo la isquemia, pero no la reperfusión, de las arterias coronarias supone la ocurrencia del infarto agudo de miocardio, detectando incrementos en la expresión de EMMPRIN y MMPs asociadas a EMMPRIN en monocitos infiltrados (Schmidt R et al. Circulation 2006; 113:834-841). No obstante, estos documentos no mencionan el posible papel de EMMPRIN en isquemia/reperfusión o su papel como diana para reducir o prevenir las lesiones causadas por isquemia/reperfusión.
Así, en un primer aspecto, la invención se relaciona con el uso de un inhibidor de EMMPRIN o de un inhibidor de una variante funcionalmente equivalente de dicha proteína, para la preparación de un medicamento para la prevención y/o el tratamiento de los daños cardiacos producidos tras isquemia seguida de reperfusión. Alternativamente, la invención se relaciona con un inhibidor de EMMPRIN o de un inhibidor de una variante funcionalmente equivalente de EMMPRIN para su uso en la prevención y/o el tratamiento de los daños cardiacos producidos tras isquemia seguida de reperfusión. Alternativamente, la invención se relaciona con un método para la prevención y/o el tratamiento en un sujeto de los daños cardiacos producidos tras isquemia seguida de reperfusión que comprende la administración a dicho sujeto de un inhibidor de EMMPRIN o de un inhibidor de una variante funcionalmente equivalente de EMMPRIN. El término "EMMPRIN", según se usa en la presente invención, se refiere a un inductor de una metaloproteasa de matriz extracelular (de su nombre en inglés, "Extracellular Matrix Metalloprotein Inducer"), miembro de la superfamilia de las inmunoglobulinas (Ig) y producto del gen bsg. Los nombres "basigina", "EMMPRIN" y "CD147" se utilizarán en la presente memoria de manera intercambiable. La proteína EMMPRIN, iso forma II, cuyo número de acceso en la base de datos NCBI de la proteína humana es NP-940991 (SEQ ID NO: l) (versión del 18 de julio de 2010) es un polipéptido de 269 aminoácidos de longitud transmembrana, altamente glicosilado (presenta tres sitios conservados de N-glicosilación que se glicosilan de manera variable). EMMPRIN es una molécula pleio trópica que juega un papel importante en el desarrollo fetal, la función retinal y en la maduración de las células T. Se ha demostrado que actúa como receptor en la superficie celular para las ciclo filinas. Se expresa en áreas de remodelación tisular, tal como tumores, endometrio, placenta, piel y regiones que presentan angiogénesis (Iacono et al. 2007. Exp Mol. Path 83:283-295). Por otro lado, EMMPRIN estimula la producción de VEGF y es capaz de de inducir la expresión de varias colagenasas o metaloproteinasas de matriz (MMPs), tal como MMP1, MMP2, MMP3, MMP9 y MMP11. Con respecto a la estructura de EMMPRIN, la proteína contiene dos dominios Ig extracelulares de tipo C2, un dominio transmembrana y un dominio citoplasmático (Miyauchi T et al. J Biochem. 1991; 110:770-4). La mayoría de las diferencias entre especies están dentro de los dominios extracelulares. Parece ser que el dominio Ig N- terminal se requiere para la estimulación de la producción de MMP por EMMPRIN (Biswas C et al. Cáncer Res 1995; 55:434-9) y que es necesario y suficiente para su oligomerización, probablemente a través de interacciones hidrofóbicas (Tang W et al. Mol Biol Cell 2004; 15:4043-50). Asimismo, la invención contempla el uso de inhibidores de variantes funcionalmente equivalentes de dichas proteínas. Por "variante funcionalmente equivalente" se entiende todos aquellos polipéptidos derivados de la secuencia de EMMPRIN mediante modificación, inserción y/o deleción de uno o más aminoácidos, siempre y cuando se mantenga sustancialmente la función de la proteína EMMPRIN. En concreto, la variante funcionalmente equivalente de EMMPRIN conserva al menos una función relacionada con la inducción de las diferentes MMPs (Schmidt R et al. citado ad supra) o con la capacidad de promover daños cardiacos en isquemia tras reperfusión al aumentar su concentración (Castejón B. Revista CNEM, n°l . 2009).
Variantes funcionalmente equivalentes de EMMPRIN incluyen aquellas que muestran al menos un 25%, al menos 40%, al menos 60%>, al menos 70%>, al menos 80%>, al menos 90%), al menos 95%, al menos 96%>, al menos 97%, al menos 98%> o al menos 99% de identidad de secuencia con respecto a las secuencias de EMMPRIN indicadas anteriormente. El grado de identidad entre dos secuencias de aminoácidos puede determinarse por métodos convencionales, por ejemplo, mediante algoritmos estándar de alineamiento de secuencias conocidos en el estado de la técnica, tales como, por ejemplo BLAST (Altschul S.F. et al. Basic local alignment search tool. J Mol Biol. 1990; 215(3):403-10). El experto en la materia entenderá que las secuencias de aminoácidos a las que se hace referencia en esta descripción pueden estar modificadas químicamente, por ejemplo, mediante modificaciones químicas que son fisiológicamente relevantes, tales como, fosforilaciones, acetilaciones, etc.
El término "inhibidor de EMMPRIN" o "inhibidores de una variante funcionalmente equivalente de EMMPRIN", según se usa en la presente invención, se refiere a cualquier compuesto que se une específicamente a EMMPRIN (o a la variante funcionalmente equivalente de la misma) y que al unirse es capaz de causar una disminución de la actividad de dicha proteína o bien de disminuir los niveles de ARNm o de proteína EMMPRIN. Los inhibidores de EMMPRIN que actúan inhibiendo la función de dicha proteína incluyen, aunque no se limitan, (a) inhibición de la inducción de MMPs por parte de EMMPRIN, por ejemplo inhibiendo la glicosilación o la interacción entre MMPs y EMMPRIN (Toóle 2003; Curr Top Dev Biol; 54:371-89), inhibiendo la señalización intracelular a través de la ruta de MAP quinasa p38 o el metabolismo de ácido araquidónico (Taylor et al. Oncogene. 2002; 21(37):5765-72); (b) inhibición del procesamiento de EMMPRIN mediado por MMP-14 (Egawa et al. J Biol. Chem. 2006; 281(49):37576-85); (c) inhibición de la unión de EMMPRIN a ciclofilina (Gwinn et al. J Immunol. 2006; 177(7):4870-9); (d) inhibición de la expresión de EMMPRIN (Curtin et al. Glia. 2007; 55(15): 1542-53); (e) inhibición de la unión de EMMPRIN al transportador monocarboxilato (MCT-1) en astrocitos (Korn et al. Glia. 2005; 49(1 ):73- 83). El experto en la materia apreciará que es posible usar inhibidores de EMMPRIN específicos para proteínas de distintas especies, dependiendo de la especie en la que se quiera utilizar el inhibidor de EMMPRIN. Así, la invención contempla inhibidores de la proteína EMMPRIN de origen humano, tal como se define en la base de datos NCBI con número de acceso NP940991 (SEQ ID NO: l) (versión 18 de Julio de 2010). Sin embargo, el experto apreciará que es posible utilizar homólogos de otras especies de mamíferos, entre las que se incluyen, sin limitar, EMMPRIN de ratón (Mus musculus) correspondiente a la proteína descrita en NCBI con número de acceso NP033898 (versión 18 de Julio de 2010), EMMPRIN de rata (Rattus norvegicus) correspondiente a la proteína descrita en la base de datos NCBI con número de acceso NP036915 (versión de 18 de Julio de 2010), así como gallinas, cerdos, especie bovina, etc.
Métodos adecuados para la determinación de aquellos compuestos que son inhibidores de EMMPRIN comprenden tanto los métodos basados en la determinación de los niveles de EMMPRIN o de ARNm que codifica EMMPRIN en células endoteliales, como aquellos basados en la capacidad de reducir los daños cardiacos. Métodos adecuados para determinar la inhibición de EMMPRIN incluyen, por ejemplo, el método descrito en el Ejemplo 4 de la presente invención y mostrado en la Figura 3, en donde se miden los niveles de expresión del ARNm de EMMPRIN. Así, en una forma de realización particular de la invención, los niveles de expresión de EMMPRIN se determinan midiendo los niveles de expresión del ARNm que codifican para la proteína EMMPRIN. Para este fin, la muestra biológica se puede tratar para disgregar de forma física o mecánica la estructura del tejido o célula, para liberar los componentes intracelulares en una solución acuosa u orgánica para preparar los ácidos nucleicos para análisis adicionales. Los ácidos nucleicos se extraen de la muestra mediante procedimientos conocidos para el experto en la materia y disponibles comercialmente. El AR m se extrae después a partir de muestras congeladas o recientes mediante cualquiera de los métodos típicos en la técnica, por ejemplo Sambrook, J., et al., 2001 Molecular Cloning, a Laboratory Manual, 3a ed., Cold Spring Harbor Laboratory Press, N.Y., Vol. 1-3. Preferiblemente, se aportan todos los avances conocidos para evitar la degradación del AR durante el proceso de extracción.
La cantidad de ARNm que codifica EMMPRIN puede ser determinada, por ejemplo, mediante ensayos de hibridación o de amplificación que incluyen, sin limitación, ensayos de Northern y Southern Blot y reacción en cadena de polimerasa (PCR). Un método para la detección del ARNm específico para EMMPRIN incluye el uso de sondas que son capaces de hibridar específicamente con el ARNm o ADNc de EMMPRIN. La sonda puede ser un ADNc de cadena completa o un fragmento del mismo, como por ejemplo un oligonucleótido de al menos 7, 15, 30, 50, 100, 250 o 500 nucleótidos de longitud capaz de hibridar con el ARNm o ADNc diana en condiciones de estrictas. Preferiblemente, la detección del ARNm se lleva a cabo tras la amplificación del ADNc obtenido a partir del ARNm usando técnicas de amplificación conocidas, tales como la reacción en cadena de la polimerasa (PCR), reacción en cadena de polimerasa en tiempo real ("RT-PCR"), reacción en cadena de ligasa ("LCR"), replicación de secuencias auto- sostenida ("3SR") también conocida como amplificación basada en secuencias de ácidos nucleicos ("NASBA"), amplificación Q-B-Replicasa, amplificación por círculo rodante ("RCA"), amplificación mediada por transcripción ("TMA"), amplificación asistida por enlazadores ("LADA"), amplificación por desplazamiento múltiple ("MDA"), amplificación por desplazamiento de la cadena y del invasor ("SDA").
Por otro lado, el nivel de la proteína EMMPRIN puede ser cuantificado mediante cualquier método convencional que permita detectar y cuantificar dicha proteína en una muestra de un sujeto. A modo ilustrativo, no limitativo, los niveles de dicha proteína pueden cuantificarse, por ejemplo, mediante el empleo de anticuerpos con capacidad de unirse a EMMPRIN (o a fragmentos de la misma que contengan un determinante antigénico) y la posterior cuantificación de los complejos formados. Los anticuerpos que se emplean en estos ensayos pueden estar marcados o no. Ejemplos ilustrativos de marcadores que se pueden utilizar incluyen isótopos radiactivos, enzimas, fluoróforos, reactivos quimioluminiscentes, sustratos enzimáticos o cofactores, inhibidores enzimáticos, partículas, colorantes, etc. Existe una amplia variedad de ensayos conocidos que se pueden utilizar en la presente invención, que utilizan anticuerpos no marcados (anticuerpo primario) y anticuerpos marcados (anticuerpo secundario); entre estas técnicas se incluyen el Western blot o transferencia Western, ELISA (ensayo inmunoabsorbente ligado a enzima), RIA (radio inmunoensayo), EIA competitivo (inmunoensayo enzimático competitivo), DAS-ELISA (ELISA sandwich con doble anticuerpo), técnicas inmunocitoquímicas e inmunohistoquímicas, técnicas basadas en el empleo de biochips o microarrays de proteínas que incluyan anticuerpos específicos o ensayos basados en precipitación coloidal en formatos tales como dipsticks. Otras maneras para detectar y cuantificar dicha proteína EMMPRIN, incluyen técnicas de cromatografía de afinidad, ensayos de unión a ligando, etc.
La inmunotransferencia se basa en la detección de proteínas previamente separadas mediante electroforesis en gel en condiciones desnaturalizantes e inmovilizadas en una membrana, generalmente nitrocelulosa o PVDF (Polivinilidenofluoruro), mediante incubación con un anticuerpo específico y un sistema de revelado (por ejemplo, quimio luminiscencia). El análisis mediante inmuno fluorescencia requiere el uso de un anticuerpo específico para la proteína diana para el análisis de la expresión. El ELISA está basado en el uso de antígenos o anticuerpos marcados con enzimas de modo que los conjugados formados entre el antígeno diana y el anticuerpo marcado dan como resultado la formación de complejos enzimáticamente activos. Puesto que uno de los componentes (el antígeno o el anticuerpo marcado) están inmovilizados sobre un soporte, los complejos antígeno-anticuerpo están inmovilizados sobre el soporte y de esta manera, se pueden detectar mediante la adición de un sustrato que es convertido por la enzima en un producto que es detectable mediante, por ejemplo, espectrofotometría o fluorometría.
Cuando se usa un método inmunológico, se puede usar cualquier anticuerpo o reactivo que se sabe se une a EMMPRIN con una afinidad suficientemente elevada como para detectar la cantidad de proteínas diana. Sin embargo, se prefiere el uso de un anticuerpo, por ejemplo sueros policlonales, sobrenadantes de hibridomas o anticuerpos monoclonales, fragmentos de anticuerpos, Fv, Fab, Fab' y F(ab')2, scFv, diacuerpos, triacuerpos, tetracuerpos y anticuerpos humanizados.
Por otra parte, la determinación de los niveles de expresión de proteínas se puede llevar a cabo mediante técnicas de inmunohistoquímica bien conocidas en el estado de la técnica. Para llevar a cabo la determinación mediante inmunohistoquímica, la muestra puede ser una muestra fresca, congelada y embebida en material plástico, o fresca embebida en parafina y fijada usando un agente protector del tipo de la formalina. Para la determinación inmunohistoquímica, la muestra se tiñe con un anticuerpo específico para EMMPRIN y se determina la cantidad de células que se han teñido y la intensidad de la tinción. Típicamente, se asigna a la muestra un valor indicativo de la expresión total y que se calcula en función de la frecuencia de células teñidas (valor que varía entre 0 y 4) y de la intensidad en cada una de las células teñidas (valor variable entre 0 y 4). Criterios típicos para asignar valores de expresión a las muestras se han descrito en detalle, por ejemplo, en Handbook of Immunohistochemistry e In Situ Hybridization in Human Carcinomas, M. Hayat Ed., 2004, Academic Press. Preferiblemente, la detección inmunohistoquímica se lleva a cabo en paralelo con muestras de células que sirven como marcador positivo y como marcador negativo. También es frecuente usar un control de fondo.
En aquellos casos en los que se desee analizar un elevado número de muestras, es posible la utilización de formatos matriciales y/o procedimientos automatizados. En una forma de realización, es posible el uso de micromatrices de tejidos (Tissue Microarrays o TMA) que pueden ser obtenidos usando distintas técnicas. Las muestras que forman parte de las micromatrices pueden ser analizadas de distinta manera incluyendo inmunohistoquímica, hibridación in situ, PCR in situ, análisis de ARN o de ADN, inspección morfológica y combinaciones de cualquiera de las anteriores. Métodos para el procesamiento de micromatrices de tejido han sido descritos, por ejemplo, en Konenen, J. et al., (Nat. Med. 1987, 4:844-7). Las micromatrices de tejido se preparan a partir de núcleos cilindricos de 0,6 a 2 mm de diámetro a partir de muestras de tejido embebidas en parafina y vueltas a embeber en un único bloque receptor. De esta forma, el tejido procedente de múltiples muestras puede ser insertado en un único bloque de parafma.
Por "niveles de AR m o proteína EMMPRIN disminuidos" en relación con los niveles de ARNm o proteína en una muestra de referencia, se entiende, según la presente invención, una disminución en los niveles de ARNm o proteína de al menos 1,1 veces, 1,5 veces, 5 veces, 10 veces, 20 veces, 30 veces, 40 veces, 50 veces, 60 veces, 70 veces, 80 veces, 90 veces, 100 veces o incluso más con respecto a la muestra control del sujeto. Por "niveles de referencia o control", según la presente invención, se entienden los niveles de ARNm o proteína de EMMPRIN que presenta el sujeto antes de administrarle los inhibidores de EMMPRIN o al que se le administran inhibidores controles que no inhiben EMMPRIN.
Tal como se usa en la presente invención, el término "isquemia" se refiere a una enfermedad isquémica en corazón o isquemia miocárdica, caracterizada por un aporte menor de sangre al músculo del corazón, disminuyendo así los niveles necesarios de oxígeno y nutrientes. Una causa bastante común de isquemia miocárdica es la aterosclerosis de arterias coronarias, que causa bloqueo en las arterias coronarias que riegan el músculo cardiaco. Tras la isquemia, la privación de oxígeno y nutrientes hace que células, tejidos y órganos comiencen un proceso degradativo, que finaliza con la muerte celular. La ausencia de oxígeno y de nutrientes de la sangre crea una condición en la que la restauración de la circulación sanguínea resulta en inflamación y daños por inducción de estrés oxidativo. El término "isquemia seguida por reperfusión" se usa de manera intercambiable con "isquemia/reperfusión" a lo largo de la presente memoria. El término "daños cardiacos tras isquemia seguida por reperfusión" se refiere a daños en el tejido cardiaco si se produce la restauración del flujo sanguíneo en la región del tejido que fue privado del aporte de sangre. El inhibidor de EMMPRIN permite reducir o minimizar el alcance y/o severidad de dichos daños causados en el corazón durante el evento de isquemia/reperfusión, en concreto en lo referido al tamaño de infarto y la remodelación cardiaca. Ejemplos de "daños cardiacos tras isquemia seguida por reperfusión" incluyen, sin limitarse, necrosis isquémica o infarto, remodelación cardiaca adversa, daños permanentes del tejido cardiaco, oclusión coronaria permanente, muerte celular aguda, deterioro de la función ventricular, etc.
Asimismo, el inhibidor de EMMPRIN se puede utilizar de manera profiláctica para prevenir el daño miocárdico en un sujeto que presenta un riesgo de desarrollar daños debidos a isquemia miocárdica, por ejemplo, debidos a un infarto de miocardio, incluyendo la reducción de muerte celular y/o presencia de edema miocárdico y/o infartos miocárdicos. Otras condiciones que pueden situar a un sujeto en riesgo de sufrir daños cardiacos asociados con isquemia incluye predisposición genética a infarto miocárdico o una condición que se entiende que aumenta la probabilidad de isquemia de miocardio, tal como la aterosclerosis, un infarto de miocardio previo o ataques isquémicos transitorios previos, diabetes mellitus, hipertensión, hipercolesterolemia o ser fumador. Tal como apreciará un experto en la materia, los daños causados en el tejido cardiaco tras isquemia/reperfusión se pueden determinar utilizando técnicas de imagen como una ecocardiografía, imagen por resonancia magnética nuclear (MRI), tomografía computerizada cardiaca (CT) y escáneres nucleares cardiacos. Adicionalmente, los daños cardiacos llevan a la elevación de uno o más marcadores, incluyendo troponina, CK-MB (creatina quinasa MB) y CPK (creatina fosfoquinasa), que son indicativos de muerte miocárdica y también pueden ser medidos para comprobar los daños cardiacos.
En el contexto de la presente invención, cuando se utiliza "reducción o tratamiento de los daños cardiacos" se refiere a una reducción de dichos daños en un 5%, 10%, 20%, 30%>, 40%), o incluso un 50%> de reducción de los daños cardiacos provocados por isquemia/reperfusión. Alternativamente la disminución o reducción puede ser de un 60%>, 70% u 80%.
El inhibidor de EMMPRIN se administra a un sujeto, bien de manera aislada o en combinación con otros compuestos, y comprende una cantidad terapéuticamente efectiva de dicho inhibidor. En el sentido utilizado en esta memoria, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de inhibidor de EMMPRIN, calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de dicho inhibidor y el efecto terapéutico a conseguir. Así, la cantidad administrada y la duración del tratamiento son efectivas para minimizar el tamaño y/o la severidad del daño cardiaco en el sujeto, medido, por ejemplo, como un aumento de la fracción de eyección en el corazón, menor muerte celular en el miocardio o reducción en el edema miocárdico asociado a isquemia. La cantidad y la duración del tratamiento son determinadas por un experto en la materia. El inhibidor de EMMPRIN se puede administrar durante el proceso de isquemia. Alternativamente se puede administrar después de que se haya producido la isquemia, pero antes de que se produzca la reperfusión o alternativamente tras la isquemia y durante la reperfusión o bien tras la isquemia y tras la reperfusión.
Los inhibidores de EMMPRIN pueden ser administrados por cualquier ruta apropiada, incluyendo, sin ser limitante, oralmente, por inhalación, rectalmente, por vía subcutánea, intradermal, intravenosa, intramuscular, intrarterial, intramedular, intratecal, intraventricular, mediante angioplastia coronaria transluminal percutánea (con un balón o ATCP), vía un implante (stent), transdérmica, subcutánea, intraperitoneal o intranasal. Una revisión de las distintas formas de administración, puede encontrarse en el Tratado de Farmacia Galénica, C. Faulí i Trillo, Luzán 5, S.A. de Ediciones, 1993. En una realización particular, la invención se relaciona con el uso de un inhibidor de EMMPRIN, en donde dicho inhibidor se selecciona del grupo formado por un anticuerpo anti-EMMPRIN, un siRNA, un modulador de la glicosilación, un péptido inhibidor, un inhibidor de la unión entre ciclo filina y EMMPRIN, una estatina, un activador de p53, un antagonista de PPAR-alfa, un oligonucleótido antisentido, una ribozima, un aptámero y un espiegélmero.
Otros agentes inhibidores de la expresión de EMMPRIN adecuados para su uso en la presente invención son, por ejemplo, la cinaropicrina (Cas number 35730-78-0), que modula la producción de óxido nítrico, tal y como ha sido descrito por Cho et al. (Biophysical Research Communications, 2004; 313:954-961), polinucleótidos con actividad "decoy", es decir, con capacidad para unirse específicamente a un factor de transcripción importante para la expresión del gen, de manera que la expresión del gen de interés, en este caso EMMPRIN sea inhibida, y moléculas orgánicas que se unan a EMMPRIN inhibiendo su actividad, etc.
En una realización particular, la invención contempla el uso de un inhibidor de EMMPRIN en combinación con una terapia dirigida al tratamiento de los daños producidos por isquemia/reperfusión, que será determinada por un experto en la materia. Tratamientos que se pueden combinar con el uso del inhibidor de EMMPRIN son, sin limitación, administración de sulfuro de hidrógeno (Elrod J.W et al. Circulation 2006; 114: 1172), terapia trombolítica, intervención coronaria percutánea, cirugía "by-pass", administración de agentes antiagregantes plaquetarios, agentes anticoagulantes, etc. (Cannon RO. Nat Clin Pract Cardiovasc Med 2005; 2:88).
Anticuerpos anti-EMMPRIN
Por "anticuerpo anti-EMMPRIN" se entiende en el contexto de la presente invención todo aquel anticuerpo que es capaz de unirse a EMMPRIN de manera específica provocando la inhibición de una o más funciones de EMMPRIN. Es también todo aquel anticuerpo que es capaz de unirse a EMMPRIN de manera específica y bloquear la oligomerización de EMMPRIN o los sitios de unión de EMMPRIN con otras proteínas. Los anticuerpos anti-EMMPRIN están dirigidos específicamente contra epítopos de la proteína esenciales para desempeñar su función o contra la proteína completa. Los anticuerpos pueden ser preparados usando cualquiera de los métodos que son conocidos para el experto en la materia. Así, los anticuerpos policlonales se preparan mediante inmunización de un animal con la proteína que se desea inhibir. Los anticuerpos monoclonales se preparan usando el método descrito por Kohler, Milstein y col. (Nature, 1975, 256: 495). Anticuerpos adecuados en el contexto de la presente invención incluyen anticuerpos intactos que comprende una región variable de unión a antígeno y una región constante, fragmentos "Fab", "F(ab')2" y ' ab'", Fv, scFv, diabodies y anticuerpos biespecíficos. Cualquier anticuerpo dirigido contra la proteína EMMPRIN se puede utilizar como inhibidor. En una realización particular, el anticuerpo reconoce de manera específica el extremo N-terminal de EMMPRIN, que corresponde al dominio extracelular. En una forma de realización aún más preferida, el anticuerpo anti-EMMPRIN se ha generado contra el extremo N-terminal de EMMPRIN. En una forma de realización aún más preferida, el anticuerpo anti-EMMPRIN se ha generado usando el tercer dominio similar a Ig, tal y como ha sido descrito por Hanna, S.M. et al. (BMC Biochemistry, 2003 4: 17) formado, en el caso de CD147 de origen humano, por la secuencia
1 AGFVQAPLSQ QRWVGGSVEL HCEAVGSPVP EIQWWFEGQG PNDTCSQLWD GARLDRVHIH 61 ATYHQHAAST ISIDTLVEED TGTYECRASN DPDRNHLTRA PRVKWVRAQA WLVLEPGT o un anticuerpo generado contra el primer y/o contra el segundo dominio similar a Ig.
Otros anticuerpos con capacidad de inhibir la actividad de EMMPRIN incluyen, sin limitación, el anticuerpo HBJ127 descrito por Itoh et al. (Jpn. J. Cáncer Res., 2001, 92: 1313-1321); el anticuerpo descrito en WO2010036460A2; los anticuerpos murinos monoclonales descritos en Ellis et al. (Cáncer Res 1989; 49:3385-91) y el anticuerpo MEM-M6/6 descrito en Koch, et al. 1999; Internat. Immunol. 11 : 777-786; un anticuerpo murino monoclonal IgM, CBLl (Billings et al. Hybridoma 1 :303-311, 1982, US. Pat Nos. 5330896 y 5643740); anticuerpo dirigido al dominio transmembrana del dominio extracelular (US2007048305A1). Anticuerpos específicos anti-EMMPRIN incluyen también anticuerpos comerciales, tal como de Santa Cruz Biotechnology (G19 y TI 8), que son anticuerpos policlonales dirigidos a EMMPRIN de ratón y generados en cabra; el anticuerpo de E-bioscience, clon RL73.2 (Renno et al. J Immunol. 2002; 168(10):4946-50); el anticuerpo monoclonal derivado del clon UM-8D6 dirigido contra EMMPRIN humana y disponible comercialmente de Ancell; el anticuerpo monoclonal gavilimonab (ABX-CBL) de Abgenix y el anticuerpo ziralimunab de Abgenix, ambos dirigidos a EMMPRIN humana, etc.
Moduladores de glicosilación
EMMPRIN es una proteína altamente glicosilada, pudiéndose generar diferentes variantes de la proteína según el nivel de glicosilación. La inducción de MMPs mediada por EMMPRIN es dependiente de la glicosilación (Sun et al. Cáncer Res. 2001; 61 :2276-2281) y por tanto, la inhibición de la glicosilación evita que EMMPRIN induzca la actividad de las MMPs y no lleve a cabo su función adecuadamente (Tang et al. Mol Biol Cell. 2004; 9:4043-4050). Ejemplos de inhibidores de la glicosilación incluyen, aunque no se limitan a ellos, la tunicamicina (inhibidor de la N-glucosilación), UCHL-1, etc. Asimismo, la glicosilación se puede modular a través de diferentes tipos de endoglicosidasas, que provocan la ruptura de oligosacáridos de EMMPRIN, una vez que está glicosilada. Ejemplos de endoglucosidasas incluyen, aunque no se limitan, endoglucosidasa D, endoglucosidasa F, endoglucosidasa Fl, endoglucosidasa F2 y endoglucosidasa H. La modulación de la glicosilación en EMMPRIN se puede comprobar mediante un Western-blot, ya que una vez eliminada la glicosilación, las formas glicosiladas de EMMPRIN desaparecen, apareciendo una única banda proteica correspondiente a la forma no glicosilada. Péptidos inhibidores de EMMPRIN
En una realización particular, la invención contempla el uso de péptidos inhibidores de EMMPRIN para la prevención y/o reducción de daños cardiacos tras isquemia seguida de reperfusión. El péptido o análogo funcional o derivado de dicho péptido inhibidor es capaz de unirse a la proteína EMMPRIN inhibiendo su función. El péptido antagonista AP-9 o un análogo funcional o derivado de éste es uno de los péptidos que se puede utilizar como inhibidor de EMMPRIN, estando descrita su función en la bibliografía (Zhou et al. BMC Cell Biology 2005, 6:25). La secuencia del péptido AP-9 corresponde a la secuencia de aminoácidos YKLPGHHHHYRP (SEQ ID NO:2). Se cree que el péptido AP-9 puede inhibir la dimerización de EMMPRIN y entre EMMPRIN y las MMPs (Yang et al. Rheumatology 2008, 47: 1299-1310).
Un análogo funcional o derivado de dicho péptido inhibidor presenta una secuencia de aminoácidos que ha sido alterada, de manera que las propiedades funcionales de la secuencia son esencialmente las mismas, aunque puede presentar diferente nivel de inhibición. Ensayos válidos para conocer si un análogo o derivado del péptido inhibidor es capaz de inhibir la proteína EMMPRIN son aquellos en los que se observa una disminución de dicha proteína, o de alguna de sus dianas, como son las MMPs en este caso, mediante técnicas que permitan llevar a cabo un proceso de cuantificación, tales como Western-blot, pero también serán válidas aquellas técnicas basadas en determinar la capacidad de reducir los daños cardiacos por parte del inhibidor ensayado. El análogo o derivado puede presentar sustituciones conservativas de aminoácidos, de manera que un aminoácido se sustituya por otro con características similares (tamaño, hidrofobicidad, etc.) sin que la función general se vea seriamente afectada, es decir, conserva la capacidad de inhibición de EMMPRIN. Asimismo, se pueden diseñar compuestos peptidomiméticos, de manera que se parezcan f ncionalmente o estructuralmente, tomando como punto de partida al péptido original. Sin embargo, normalmente es deseable mejorar una función específica. Un derivado puede provenir de una mejora sistemática de al menos una propiedad de dicha secuencia de aminoácidos. Por ejemplo, mediante la técnica "Ala-scanning" se pueden generar múltiples péptidos, basados en la secuencia original de aminoácidos, cada uno conteniendo la sustitución de al menos un aminoácido. De esta manera, se pueden diseñar péptidos con la función mejorada. Derivados o análogos de los péptidos inhibidores pueden generarse por sustitución de un residuo de aminoácido en forma L-aminoácido por el mismo aminoácido en forma de D-aminoácido, pudiendo mejorar las propiedades del péptido. Un experto en la materia será capaz de generar compuestos análogos de la secuencia de aminoácidos del péptido inhibidor, por ejemplo, a partir de una búsqueda en una biblioteca de péptidos. Asimismo, el péptido inhibidor se puede encontrar en forma circular, estar en forma de tándem o configuración repetida, conjugado o unido a "carriers" conocidos en el estado de la técnica.
Inhibidores de unión entre EMMPRIN y ciclofilina
En una realización particular, la invención contempla el uso de un inhibidor de la unión entre EMMPRIN y ciclofilina. Las ciclofilinas son miembros de la familia inmunofilina de isomerasas. Se han descrito como reguladores de la expresión de EMMPRIN en la superficie de las células, en concreto, se ha descrito que la ciclofilina se une a EMMPRIN a través de la región transmembrana, siendo el resto de Prolina en posición 211 esencial para dicha interacción (Yurchenko et al. 2005. J Biol Chem 280: 17013-19) y que podría actuar como chaperona (Pushkarsky et al. The Journal of Biological Chemistry, 280: 27866-27871). Por tanto, una molécula que se una a la ciclofilina, impidiendo que la ciclofilina interaccione con EMMPRIN, evitaría el correcto plegamiento de EMMPRIN, con la consiguiente pérdida de actividad de EMMPRIN. Ejemplos de inhibidores de la unión entre ciclofilina y EMMPRIN, incluyen, aunque no se limitan, ciclosporina A, su análogo Debió 025 o alisporivir (N° registro CAS 254435- 95-5), los análogos de la ciclosporina A no inmunosupresores SCY635 y NIM811, anticuerpos dirigidos contra ciclofilina, moléculas orgánicas inhibidoras de ciclofilina, etc.
Estatinas
Otro aspecto de la invención contempla el uso de estatinas como inhibidores de EMMPRIN. Las estatinas son capaces de inhibir la expresión de EMMPRIN (Abe N et al. Life Sci 2006; 78: 1021-8). Ejemplos de estatinas que se pueden utilizar para la inhibición de EMMPRIN en la presente invención se incluyen, aunque no se limitan, fluvastatina (Número registro CAS 93957-54-1), atorvastatina (Número registro CAS 134523-03-8), cerivastatina (Número registro CAS 145599-86-6), lovastatina (Número registro CAS 75330-75-5), mevastatina (Número registro CAS 73573-88-3), pitavastatina (Número registro CAS 147511-69-1), pravastatina (Número registro CAS 81093-37-0), rosuvastatina (Número registro CAS 287714-41-4), simvastatina (Número registro CAS 79902-63-9), y derivados de éstos.
Activadores de p53
En una realización particular, la invención contempla el uso de un activador de p53 como inhibidor de EMMPRIN. Se ha relacionado inversamente la actividad de p53 con la cantidad de EMMPRIN expresada en células (Zhu H et al. Cáncer Biol Ther. 2009; 8(18): 1722-8). Por tanto, un aumento de la actividad de p53, implicaría una disminución de EMMPRIN, lo que permite utilizar en la presente invención compuestos que aumenten la actividad de p53 como inhibidores de EMMPRIN. Ejemplos de activadores de p53 incluyen, aunque no se limitan, Nutlin (Roche, número registro CAS 548472-68- 0), proteínas que fosforilan p53, tal como la proteín quinasa dependiente de DNA (DNA- PK) o la quinasa ATM, la proteína ARF, cualquier compuesto que aumente la actividad de p53, ya sea directa o indirectamente, así como vectores de expresión conocidos por el experto en la materia que expresen p53, etc.
Agonistas de PPAR-alfa
En otro aspecto de la invención, se contempla el uso de agonistas de PPAR-alfa como inhibidores de EMMPRIN. Se conoce que en macrófagos y en células espumosas, los agonistas de PPAR alfa inhiben la expresión de EMMPRIN (Zhang J et a, Int J Cardiol. 2007 117:373-80). Por tanto, para la presente invención son útiles activadores o agonistas de PPAR-alfa. Dichos activadores pueden actuar directa o indirectamente sobre PPAR-alfa, de manera que la actividad de PPAR-alfa aumente considerablemente. Ejemplos de agonistas de PPAR-alfa incluyen, sin limitación, gemfibrozil, fenofibrato, bezafibrato, clofibrato, ciprofibrato, fenofibrato, etc.
Antagonistas de PPAR-alfa
En otro aspecto de la invención, se contempla el uso de antagonistas de PPAR-alfa como inhibidores de EMMPRIN. Se conoce que la activación del receptor de peroxisoma- proliferador-activado alfa (PPAR-alfa) aumenta los niveles de ARNm de EMMPRIN (Kónig B et al. Mol Nutr Food Res. 2010; 54: 1248-56). Por tanto, para la presente invención son útiles inhibidores o antagonistas de PPAR-alfa. Dichos inhibidores pueden actuar directa o indirectamente sobre PPAR-alfa, de manera que la actividad de PPAR- alfa disminuya considerablemente. Ejemplos de dichos antagonistas incluyen, sin limitación, inhibidores de la fosforilación de PPAR-alfa, 2-cloro-5-nitro-N- (piridil)benzamida, etc.
Otros inhibidores de EMMPRIN
Uno de los inhibidores descritos para EMMPRIN es la caveolina-1, que está asociada a EMMPRIN en múltiples tipos celulares, incluyendo células endoteliales y células del músculo liso. Se conoce que la caveolina-1 es un regulador negativo de la asociación de EMMPRIN con otras moléculas de EMMPRIN y por tanto inhibe la actividad de inducción de MMPs (Tang et al. Mol Biol Cell. 2004; 9: 4043-4050). Por otro lado, es posible inhibir la interacción homofílica de EMMPRIN mediante el uso de EMMPRIN soluble que compite por el sitio de unión de la otra molécula de EMMPRIN (Sun et al. Cáncer Res. 2001; 61 :2276-2281). siRNA de la invención
Los ARN de interferencia pequeños o ARNip (siRNA en su denominación en inglés) son agentes que son capaces de inhibir la expresión de un gen diana mediante interferencia del ARN. Un ARNip se puede sintetizar químicamente, se puede obtener mediante transcripción in vitro o se puede sintetizar in vivo en la célula diana. Típicamente, los ARNip consisten en una cadena doble de ARN de entre 15 y 40 nucleótidos de longitud y que puede contener una región protuberante 3' y/o 5' de 1 a 6 nucleótidos. La longitud de la región protuberante es independiente de la longitud total de la molécula de ARNip. Los ARNip actúan mediante la degradación o el silenciamiento post-transcripcional del mensajero diana.
Los ARNip pueden ser los llamados shRNA (short hairpin RNA) caracterizados porque las cadenas antiparalelas que forman el ARNip están conectadas por una región bucle u horquilla. Estos ARNip están compuestos de una secuencia antisentido corta (de 19 a 25 nucleótidos), seguida de un bucle de entre 5 y 9 nucleótidos a la que sigue la cadena sentido. Los shRNAs pueden estar codificados por plásmidos o virus, y estar bajo el control de promotores tales como el promotor U6 de la ARN polimerasa III. Los ARNip de la invención son sustancialmente homólogos al ARNm de EMMPRIN o a la secuencia genómica que codifica dicha proteína. Por "sustancialmente homólogos" se entiende que tienen una secuencia que es suficientemente complementaria o similar al ARNm diana de forma que el ARNip sea capaz de provocar la degradación de éste por interferencia de ARN. Los ARNip adecuados para provocar dicha interferencia incluyen ARNip formados por ARN, así como ARNip que contienen distintas modificaciones químicas tales como:
• ARNip en los que los enlaces entre los nucleótidos son distintos a los que aparecen en la naturaleza, tales como enlaces fosforotioato.
· conjugados de la cadena de ARN con un reactivo funcional, tal como un fluoróforo.
• Modificaciones de los extremos de las cadenas de ARN, en particular el extremo 3' mediante la modificación con distintos grupos funcionales del hidroxilo en posición 2'.
· Nucleótidos con azúcares modificados tales como restos O-alquilados en posición 2' tales como 2'-0-metilribosa-p-2'-0-fluorosibosa. • Nucleótidos con bases modificadas tales como bases halogenadas (por ejemplo 5- bromouracilo y 5-iodouracilo), bases alquiladas (por ejemplo 7-metilguanosina).
Los ARNip y ARNsh de la invención se pueden obtener usando una serie de técnicas conocidas para el experto en la materia. Por ejemplo, el ARNip puede ser sintetizado químicamente a partir de ribonucleósidos protegidos con forsforamiditas en un sintetizador de ADN/ARN convencional. Alternativamente, los ARNip pueden ser producidos de forma recombinante a partir de vectores plasmídicos y virales en cuyo caso la región que codifica la cadena, o cadenas, que forman los ARNip se encuentran bajo control operativo de promotores de ARN polimerasa III. En las células, la ARNasa Dicer procesa los ARNsh en ARNip funcionales.
La región de EMMPRIN que se toma como base para diseñar los ARNip no es limitante y puede contener una región de la secuencia codificante (entre el codón de iniciación y el codón de terminación) o, alternativamente, puede contener secuencias de la región no traducida 5' o 3', es preferentemente de entre 25 y 50 nucleótidos de longitud y en cualquier posición en posición 3 ' con respecto al codon de iniciación. Una forma de diseñar un ARNip implica la identificación de los motivos AA(N19)TT en donde N puede ser cualquier nucleótido en la secuencia de EMMPRIN y seleccionando aquellos que presenten un alto contenido en G/C. Si no se encuentra dicho motivo, es posible identificar el motivo NA(N21), en donde N puede ser cualquier nucleótido.
Los ARNip específicos para EMMPRIN que se pueden utilizar incluyen cualquier ARNip dirigido específicamente a la proteína EMMPRIN de la especie que se desea inhibir. Ejemplos de ARNip incluyen, aunque no de manera limitante, los siRNA sintetizados mediante el kit "Silencer siRNA construction kit" de Ambion Research Inc., tal como el siRNA de secuencia 5' AAGACCTTGGCTCCAAGATACCCTGTCTC 3'- AAGTATCTTGGAGCCAAGGTCCCTGTCTC (Kulandaivelu et al. J Biol Chem. 2008; 283(28): 19489-19498), el siRNA de secuencia 5*- GUUCUUCGUGAGUUCCUCdTdT-3*- 3' dTdTCAAGAAGCACUCAAGGAG 5 ' (Chen et al. Cáncer Letters 278 (2009) 113-121), el siRNA de secuencia 5' GGUUCUUCGUGAGUUCCUCtt 3' - 3' GAGGAACUCACGAAGAACCtg 5' (Qian et al. Journal of Experimental & Clinical Cáncer Research 2008, 27:50), siRNAs de secuencia 5' GUAGGACCGGCGAGGAAUA 3 ', 5' GACCUUGGCUCCAAGAUAC 3', 5' GUCGUCAGAACACAUCAAC 3', 5' GAUCACUGACUCUGAGGAC 3', 5' UGACAAAGGCAAGAACGUC 3', 5' GUUGGGUUUUCUCCAUUCA 3', descritos en la solicitud de patente WO06039343A, etc. La invención contempla el uso de otros siRNA tal como los siguientes, sintetizados por Qiagen:
(1) : Sense: r(GGG AAU GCU CCA AAC GAC A)dTdT. Antisense: r(UGU CGU UUG GAG CAU UCC QdTdT.
(2) Sense: r(GGA UCA AGG UCG GAA AGA A)dTdT. Antisense: r(UUU UUU CCG ACC UUG AUC QdTdT.
(3) Sense r(GAG CCU UAC CUU ACA GAA A)dTdT. Antisense: r(UUU CUG UAA GGU AAG GCU QdTdT
(4) Sense r(GCA GUG ACC CAG ACC GCA A)dTdT. Antisense: r(UUG CGG UCU GGG UCA CUG QdTdT
Oligonucleótidos antisentido
Un aspecto adicional de la invención se refiere al uso de ácidos nucleicos "antisentido" para inhibir la expresión, por ejemplo inhibiendo la transcripción y/o traducción de un ácido nucleico que codifica EMMPRIN y cuya actividad se desea inhibir. Los ácidos nucleicos antisentido se pueden unir a la diana potencial de la droga mediante complementariedad de bases convencional, o, por ejemplo, en el caso de unirse a ADN bicatenario, a través de interacciones específicas en el surco mayor de la doble hélice. En general, estos métodos se refieren al rango de técnicas generalmente empleadas en la técnica e incluyen cualquier método que se basa en la unión específica a secuencias de oligonucleótidos.
Una construcción antisentido de la presente invención se puede distribuir, por ejemplo, como un plásmido de expresión que, cuando se transcribe en la célula, produce ARN que es complementario a al menos una parte única del ARNm celular que codifica EMMPRIN. De forma alternativa, la construcción antisentido es una sonda de oligonucleótidos que se genera ex vivo y que, cuando se introduce en la célula, produce inhibición de la expresión génica hibridando con el ARNm y/o secuencias genómicas de un ácido nucleico diana. Tales sondas de oligonucleótidos son preferiblemente oligonucleótidos modificados, que son resistentes a las nucleasas endógenas, por ejemplo, exonucleasas y/o endonucleasas, y que son por lo tanto estables in vivo. Moléculas de ácidos nucleicos ejemplares para su uso como oligonucleótidos antisentido son análogas de ADN de fosforamidato, fosfotionato y metilfosfonato (ver también las patentes de EE.UU. Nos. 5176996; 5264564; y 5256775). Adicionalmente, se han revisado las aproximaciones generales para construir o ligó meros útiles en la terapia antisentido, por ejemplo, en Van der Krol et al, BioTechniques 6: 958-976, 1988; y Stein et al, Cáncer Res 48: 2659-2668, 1988.
Respecto al oligonucleótido antisentido, son preferidas las regiones de oligodesoxirribonucleótidos derivadas del sitio de inicio de la traducción, por ejemplo, entre -10 y +10 del gen diana. Las aproximaciones antisentido implican el diseño de oligonucleótidos (bien ADN, bien ARN) que son complementarios al ARNm que codifica el polipéptido diana. Los oligonucleótidos antisentido se unirán a los transcritos de ARNm y prevendrán la traducción.
Los oligonucleótidos antisentido pueden ser de ADN o ARN o mezclas quiméricas o derivados o versiones modificadas de los mismos, de cadena sencilla o de cadena doble. El oligonucleótido se puede modificar en el grupo de la base, el grupo del azúcar o el esqueleto de fosfato, por ejemplo, para mejorar la estabilidad de la molécula, su capacidad de hibridación etc. El oligonucleótido puede incluir otros grupos unidos, tales como péptidos (por ejemplo, para dirigirlos a receptores de células huésped) o agentes para facilitar el transporte a través de la membrana celular (ver, por ejemplo, Letsinger et al, Proc. Nati. Acad. Sci. U.S.A. 86:6553-6556, 1989; Lemaitre et al, Proc. Nati. Acad. Sci. 84:648-652, 1987; Publicación de PCT No. WO88/09810), agentes intercalantes (ver, por ejemplo, Zon, Pharm. Res. 5 : 539-549, 1988). Para este fin, el oligonucleótido puede estar conjugado a otra molécula, por ejemplo, un péptido, un agente transportador, agente de corte desencadenado por hibridación, etc.
Para la realización de la invención, se pueden usar oligonucleótidos antisentido complementarios a la región codificante de la secuencia diana de ARNm de EMMPRIN, así como aquellos complementarios a la región transcrita no traducida. Un ejemplo de oligonucleótidos antisentido que se pueden utilizar, sin limitación, es el oligonucleótido antisentido descrito en US2005026841A, cuya secuencia es 5 ' GAGCTACACATTGAGAACCTG 3'.
Enzimas de ADN
Un aspecto más de la invención se refiere al uso de enzimas de ADN para inhibir la expresión del gen que codifica la proteína EMMPRIN. Las enzimas de ADN incorporan algunas de las características mecanísticas tanto de las tecnologías de antisentido como de las de ribozimas. Las enzimas de ADN se diseñan de modo que reconozcan una secuencia diana de ácido nucleico particular, parecido al oligonucleótido antisentido y similar a la ribozima en que son catalíticas y digieren específicamente el ácido nucleico diana. Ejemplos de enzimas de ADN dirigidas específicamente para inhibir EMMPRIN incluyen, aunque no se limitan, las siguientes secuencias de ADN descritas en WO2006039343:
TGAT TCCTAGGCTAGCTACAACGATCCTCGCCG ,
CAGCGCGAAGGCTAGCTACAACGACCCAGCAGC ,
TGAGGAGTAGGCTAGCTACAACGACT TGGAGCC ,
TGATCACCAGGCTAGCTACAACGAGCCCCCCT T ,
GGAGCTGGAGGCTAGCTACAACGAGT TGGCCG ,
CCTCGT TGAGGCTAGCTACAACGAGTGT TCTGA,
AGTCAGTGAGGCTAGCTACAACGACT TGTACCA,
CGGCCTCCAGGCTAGCTACAACGAGT TCAGGT T ,
GGAGCGTGAGGCTAGCTACAACGAGATGGCCTG ,
GCACCAGCAGGCTAGCTACAACGACTCAGCCAC ,
CCT T TGTCAGGCTAGCTACAACGATCTGGTGC .
Ribozimas
Otro aspecto de la invención contempla el uso de moléculas de ribozimas diseñadas para cortar de forma catalítica transcritos de un ARNm diana para prevenir la traducción de los ARNms que codifican EMMPRIN y cuya actividad se desea inhibir. Las ribozimas son moléculas enzimáticas de ARN capaces de catalizar el corte específico de ARN (ver, Rossi, Current Biology 4:469-471, 1994). El mecanismo de acción de la ribozima implica hibridación específica de secuencia de la molécula de ribozima a un ARN diana complementario, seguido por un suceso de corte endonucleolítico. La composición de las moléculas de ribozima preferiblemente incluye una o más secuencias complementarias al ARNm diana, y a la bien conocida secuencia responsable del corte del ARNm o una secuencia funcionalmente equivalente (ver, por ejemplo, la patente de EE.UU. No. 5093246).
Las ribozimas usadas en las composiciones de la presente invención incluyen las ribozimas de cabeza de martillo, las ARN endorribonucleasa (tipo Cech) (Zaug et al., Science 224:574-578, 1984). Las ribozimas pueden estar compuestas de oligonucleótidos modificados (por ejemplo para mejorar la estabilidad, direccionamiento, etc.) y se deberían distribuir a células que expresan el gen diana in vivo. Un método preferido de distribución implica usar una construcción de ADN que "codifica" la ribozima bajo el control de un promotor constitutivo fuerte de pol III ó pol II, de modo que las células transfectadas producirán cantidades suficientes de la ribozima para destruir los mensajeros diana endógenos e inhibir la traducción. Puesto que las ribozimas, contrariamente a otras moléculas antisentido, son catalíticas, se requiere una concentración intracelular menor para su eficacia.
Aptámeros y espiegélmeros
Otros compuestos con capacidad de inhibición de la expresión de EMMPRIN son aptámeros y espiegélmeros, que son ácidos nucleicos D o L de cadena sencilla o doble que se unen específicamente a la proteína, lo que resulta en una modificación de la actividad biológica de ésta. Los aptámeros y espiegélmeros tienen una longitud de entre 15 y 80 nucleótidos y, preferiblemente, de entre 20 y 50 nucleótidos.
Nanopartículas de la invención
En otro aspecto, la invención se relaciona con una nanopartícula, en adelante nanopartícula de la invención, que comprende en su superficie una molécula con capacidad de unión a EMMPRIN. El término "nanopartícula", tal como se usa en la presente invención, se refiere a cualquier partícula que presenta al menos una de sus dimensiones menor de alrededor de 1000 nm. El experto en la materia es capaz de obtener nanopartículas según las necesidades. El diámetro de las nanopartículas puede ser de alrededor de 5 nm ó 10 nm ó 20 nm ó 30 nm ó 40 nm ó 50 nm ó 60 nm ó 70 nm ó 80 nm ó 90 nm ó 100 nm ó 200 nm o incluso de mayor tamaño.
Las nanopartículas de acuerdo a la la invención comprenden una cubierta exterior biocompatible y en su superficie una molécula con capacidad de unión a EMMPRIN. Ejemplos ilustrativos de componentes de la cubierta exterior biocompatible incluyen, aunque no se limitan a cualquier polímero biodegradable, tal como los descritos en US12/519590 (por ejemplo poliésteres alifáticos, poli (ácido glicólico), polivinilpirrolidona, polietilenglicol (PEG), poli (ácido láctico), polialquilen succinato, polihidroxibutirato, polihidroxivalerato, policaprolactona, poli n-butyl metacrilato), poli (ácido láctico-co-glicólico) y co-polímeros derivados de éstos, fosfolípidos, dextranos, sílice y cubiertas naturales de virus o lipoproteínas. En una realización preferida la cubierta exterior comprende una capa de fosfolípidos.
Fosfolípidos adecuados para su uso en las nanopartículas de la invención incluyen, sin limitación, fosfatidilserina (PS), dipalmitoil y diestearoil ácido fosfatídico (DPPA, DSPA), dipalmitoil y diesteroil fosfatidilserina (DPPS, DSPS), dipalmitoil, diesteroil fosfatidilglicerol (DPPG, DSPG), fosfatidilglicerol, fosfatidilinositol, cardiolipina, esfingolípidos (cermidas-1 -fosfato, fosfatidiletanolamina glicosilada; sulfatidos (hidroxilados o no); gangliósidos), fosfatidilinositolfosfatos y ácido fosfatídico. En una realización aún más preferida, la capa de fosfolípidos está formada por fosfatidilcolina en donde los ácidos grados pueden ser cualquier ácido de cadena alifática larga (ácidos alcanoicos) de longitud variable de cadena, desde alrededor de C12 hasta C22, que contienen ninguna, una o más insaturaciones. Preferiblemente, el ácido graso se selecciona del grupo de ácido esteárico (18:0 o ácido octadecanoico), ácido oleico (18: 1 cis-9 o ácido (9Z)-octadec-9-enoico), ácido palmítico (16:0 o ácido hexadecanoico), ácido linoeico (18:2 (ω-6) o ácido cis, cis-9, 12-octadecadieno ico), ácido araquidónico (20:4 (ω-6) o ácido todo cis-5,8,l l,14-eicosatetranoico), ácido docosohexanoico (22:6 (n-3 o ácido 4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexanoico). En una forma preferida de realización, las nanopartículas comprenden diestearolifosfatidilcolina (DSPC por sus iniciales en inglés). En una realización aún más preferida, parte o la totalidad de las moléculas de fosfolípidos que forman la nanopartícula se encuentran modificadas mediante la unión de una molécula con capacidad de unión a EMMPRIN.
La expresión "molécula con capacidad de unión a EMMPRIN", tal como se usa en la presente invención, se refiere a una molécula que presenta afinidad por EMMPRIN, de manera que las nanopartículas se dirigen específicamente a EMMPRIN. En una realización particular, la molécula con capacidad de unión a EMMPRIN se selecciona del grupo formado por un péptido inhibidor de EMMPRIN y un anticuerpo anti- EMMPRIN. Si la molécula con capacidad de unión a EMMPRIN es un anticuerpo anti- EMMPRIN, dicho anticuerpo está dirigido al dominio extracelular de EMMPRIN. En una realización particular el anticuerpo anti-EMMPRIN está generado contra el extremo N-terminal de EMMPRIN. En una realización preferida la molécula con capacidad de unión a EMMPRIN es el péptido inhibidor de EMMPRIN AP-9, cuya secuencia corresponde a la SEQ ID NO:2.
El enlace entre las moléculas de fosfolípidos y la molécula con capacidad de unión a EMMPRIN se lleva a cabo mediante la incorporación en las nanopartículas de fosfolípidos modificados mediante grupos funcionales que pueden ser conjugados con restos reactivos presentes en la molécula con capacidad de unión a EMMPRIN. Grupos funcionales, según se entiende en la presente invención, se refiere a un grupo de átomos específicos en una molécula que son responsables de una reacción química característica de dicha molécula. Ejemplos de grupos funcionales incluyen, sin limitación, hidroxi, aldehido, alquilo, alquenilo, alquinilo, amida, carboxamida, aminas primarias, secundarias, terciarias y cuaternarias, aminoxi, azida, azo (diimida), bencilo, carbonato, ester, ether, glioxili, haloalquil, haloformil, imina, imida, cetona, maleimida, isocianida, isocianato, carbonilo, nitrato, nitrito, nitro, nitroso, peróxido, fenilo, fenilo, fosfino, fosfato, fosfono, piridilo, sulfuro, sulfonilo, sulfmilo, tioester, tiol y grupos 3,4-dihidroxi fenilalanina (DOPA) oxidados.
En el caso concreto en el que la molécula con capacidad de unión a EMMPRIN es una proteína o péptido, es preferible el uso de grupos del tipo maleimida o glioxilil que reaccionan de forma específica con grupos tioles en la molécula con capacidad de unión a EMMPRIN y grupos 3,4-dihidroxi-fenilalanina (DOPA) oxidados que reaccionan con grupos aminos primarios en la molécula con capacidad de unión a EMMPRIN. En una forma preferida de realización, el fosfolípido y la molécula con capacidad de unión a EMMPRIN se encuentran separados mediante el uso de un grupo enlazador o espaciador. Los grupos enlazadores adecuados para su uso en la presente invención incluyen, sin limitación, nucleótidos modificados o sin modificar, nucleósidos, polímeros, azúcares, hidratos de carbono, polialquilenos, tales como polietilenglicoles y polipropilenglicoles, polialcoholes, polipropilenos, mezclas de etilen- y propilenglicoles, polialquilaminas, poliaminas tales como polilisina y espermidina, poliésteres tales como poli(acrilato de etilo), polifosfodiésteres, alifáticos y alquílenos de la longitud apropiada. En una forma preferida de realización, el grupo espaciador es polietilenglicol. En una forma de realización aún más preferida, el polietilenglicol es un PEG2000.
En una realización preferida, las nanopartículas de la invención comprenden como cubierta exterior una monocapa lipídica y al menos una molécula con capacidad de unión a EMMPRIN en donde las moléculas de fosfolípido y la molécula con capacidad de unión a EMMPRIN se encuentran conectadas a través de un resto de polietilenglicol.
En una realización aún más preferida, dichas nanopartículas comprenden como cubierta exterior una monocapa lipídica y al menos una molécula con capacidad de unión a EMMPRIN, en donde las moléculas de fosfolípido y la molécula con capacidad de unión a EMMPRIN se encuentran conectadas a través de un resto de polietilenglicol y, adicionalmente, un agente para detección de dichas nanopartículas (un fluoróforo y/o un núcleo paramagnético/ superparamagnético) . Los agentes para la detección de las nanopartículas tienen que ser adecuados para visualizar dichas nanopartículas. Ejemplos ilustrativos de dichos agentes incluyen, aunque no se limitan a agentes fluorescentes, radiactivos, paramagnéticos y superparamagnéticos. Dichos agentes permiten que las nanopartículas se detecten mediante resonancia magnética nuclear de imagen, por fluorescencia o bien mediante otras técnicas, según el agente de detección utilizado. Ejemplos ilustrativos de agentes de contraste paramagnéticos y superparamagnéticos que se pueden utilizar en la invención incluyen, aunque no se limitan a derivados de gadolinio, óxido de hierro (FeO, Fe203, Fe3C"4), óxido de platino (FePt), derivados de oro y de bismuto. En una realización preferida el núcleo paramagnético es FeO y se localiza en el núcleo de la nanopartícula. En una realización preferida, si se desea visualizar las nanopartículas mediante fluorescencia, se añade un fluoróforo insertado en la monocapa de fosfolípidos, de manera que las nanopartículas sean visibles mediante microscopía confocal o por tomografía molecular por fluorescencia (FMT).
Agentes fluorescentes adecuados para la detección de las nanopartículas incluyen, sin limitación, Alexa Fluor (por ejemplo, AlexaFluor 555), fluoresceína, isotiocianato de fluoresceína (FITC), Verde de Oregon; rodamina, rojo Texas, isotiocianato de tetrarodamina (TRITC), un CyDye (por ejemplo, Cy2, Cy3, Cy5) y semejantes.
Las nanopartículas de la invención se pueden utilizar en la prevención y/o tratamiento de una patología en la que EMMPRIN se encuentre sobre-expresado. Ejemplos ilustrativos de dichas patologías incluyen, aunque no se limitan, a cualquier daño cardiaco, daños cardiacos producidos tras isquemia seguida de reperfusión, infarto de corazón, remodelación miocárdica ventricular adversa, varios tipos de cáncer (cáncer cervical, cáncer de próstata, etc), córneas ulceradas, artritis reumatoide, etc. En una realización preferida, la nanopartícula se utiliza para la prevención y/o tratamiento de los daños cardiacos producidos tras isquemia seguida de reperfusión. Si se desea utilizar las nanopartículas para tratamiento de alguna patología en la que EMMPRIN está sobre-expresado, dichas nanopartículas comprenden además de los elementos mencionados anteriormente, un compuesto de interés terapéutico modulador de la actividad de EMMPRIN. Un experto en la materia entenderá que el/los agentes para la detección de las nanopartículas no son necesarios en el caso de que las nanopartículas de la invención se utilicen con fines terapéuticos, aunque se puede hacer uso de ellos. El compuesto de interés terapéutico modulador de la actividad de EMMPRIN está preferiblemente unido a la cubierta exterior, aunque también puede estar incluido en el núcleo central de la nanopartícula. Ejemplos ilustrativos de compuestos de interés terapéutico comprendidos en la nanopartícula incluyen, aunque no se limitan a un péptido inhibidor de EMMPRIN, tal como el péptido AP-9, un anticuerpo anti- EMMPRIN, un modulador de glicosilación, un activador de p53, un antagonista de PPAR-alfa, un siRNA, un ligando de ciclofilina, una estatina, un oligonucleótido antisentido específico para EMMPRIN, una ribozima específica para EMMPRIN, un aptámero y un espiegélmero específicos para EMMPRIN.
Asimismo, las nanopartículas de la invención se pueden utilizar para el diagnóstico de una patología en la que EMMPRIN se encuentre sobre-expresado. Ejemplos ilustrativos de dicha patología incluyen, aunque no se limitan, a cualquier daño cardiaco, daños cardiacos producidos tras isquemia seguida de reperfusión, infarto de corazón, remodelación miocárdica ventricular adversa, varios tipos de cáncer (cáncer cervical, cáncer de próstata, etc), córneas ulceradas, artritis reumatoide, etc.
Los siguientes ejemplos sirven para ilustrar la invención y no deben ser considerados como limitativos del alcance de la misma.
EJEMPLOS MATERIALES Y MÉTODOS
Reactivos
Los reactivos de cultivo celular fueron de BD Biosciences (España), el suero fetal de Bio Whittaker (Verviers, Bélgica), los medios de cultivo y los antibióticos fueron de Sigma (St. Louis, MO, USA). Los anticuerpos secundarios conjugados fueron de GE Health Care (España). El cóctel de inhibidores de proteasas fue de Roche (España). El medio Optimem y la Lipofectamina de GIBCO-BRL (BD), el DETA-NO, el SNAP y el 1400W fueron de Alexis (Alexis Biochemicals, USA). El Rp-8-Br-PET-cGMPs de Biolog (Germany). Los anticuerpos anti-MMP-9 y anti-MMP-2 fueron de BD Transduction Laboratories (BD Biosciences, Spain), mientras que el anticuerpo anti-EMMPRIN (rat- anti-mouse-EMMPRIN, clon 0X114) y anti-EMMPRIN control fueron de Serotec.
Ratones
Los ratones deficientes para el gen iNOS y sus correspondientes controles salvajes se compraron a The Jackson Laboratories (Bar Harbor, ME, USA), no habiendo detectado diferencias ni de tamaño ni de peso en los mismos. Todos los animales fueron estabulados en nuestro animalario en habitaciones aisladas y libres de contaminación microbiológica. Esta investigación se ha realizado de acuerdo a las guías de cuidado y uso de animales de laboratorio, publicadas por el NIH (NIH Publication No. 85-23, revised 1996).
Células
La línea celular de cardiomiocitos HL1 fue donada por el Dr. Antonio Bernad y cultivada como se describió [Ruiz-Meana M et al. Cardiovascular research 2006; 71 :715-724]. La línea de macrófagos murina RAW 274 fue cultivada como se describió [Tarín C et al. Arteriesclerosis, thrombosis, and vascular biology 2009; 29:27-32].
Isquemia/reperfusión de la arteria coronaria
La isquemia se indujo mediante la ligadura de la arteria coronaria de la forma que se detalla a continuación: ratones de doce semanas fueron anestesiados de forma intraperitoneal mediante el uso de ketamina/xilazina (100mg/kg /10 mg/kg, respectivamente), entubados con un tubo de lmm de acero, y ventilados (2 mi, 80 pulsaciones/minuto). Tras este proceso el tórax de los ratones se abrió entre la segunda y tercera costillas, manteniéndose mediante la ayuda de un retractor de ratones. A continuación procedimos a la apertura del pericardio para posteriormente proceder con la ligadura temporal de la arteria coronaria izquierda en una región cercana a su bifurcación, mediante el uso de un hilo de sutura de seda de 6-0, y por un periodo de 30 minutos. La evidencia de la oclusión coronaria se puso de manifiesto mediante la decoloración del ventrículo izquierdo tras el ligamiento arterial. Al cabo de los 30 minutos, la ligadura se elimina, el tórax se cierra y la piel se sutura. De forma adicional, un grupo de animales control (sham) se incluyeron en los ensayos, en los cuales se llevó a cabo el mismo procedimiento con excepción de la oclusión de la arteria coronaria. Para llevar a cabo la inhibición de iNOS in vivo, a los ratones salvajes para iNOS se les inyectó en la vena de la cola 2 mg/kg/día del inhibidor farmacológico de iNOS, 1400W, 30 minutos antes de la isquemia y 24 horas después de la isquemia/reperfusión. Para la neutralización in vivo de EMMPRIN, se llevó a cabo una dosis respuesta de administración de anticuerpo anti-EMMPRIN o control IgG, administrados por inyección intravenosa. La dosis efectiva de anti-EMMPPJN utilizada finalmente resultó ser de 250 micromol/L/kg, siendo esta la dosis a la que se observa una reducción de MMP-9 superior al 50% en comparación al control de IgG. Para evaluar el efecto de anti- EMMPRIN en el proceso de isquemia/reperfusión, se llevó a cabo la administración intravenosa de los anticuerpos durante cuatro días antes del procedimiento quirúrgico, tiempo después del cual el tamaño del infarto, la función cardiaca y la expresión de EMMPRIN y MMP-9 fueron evaluadas. Ensayo de Nitritos
La concentración de nitritos en las muestras fue determinada mediante una modificación del ensayo de Griess como previamente fue descrita [Zaragoza C et al. J Clin Invest 1997; 100: 1760-1767]. De forma breve, 50 μΐ de muestra y de estándares de nitritos se incubaron a igual volumen con el reactivo de Griess (1% sulfanilamida, 0,1% naftil etilen diamina y 2,5% H3PO4), durante 10 minutos a temperatura ambiente, tiempo tras el cual se evaluó la absorbancia de cada muestra a una longitud de onda de 540 nm en un lector de microplacas.
Ecocardiografía
Los corazones de los ratones se visualizaron mediante ecocardiografía a lo largo del tiempo, mediante el uso de un equipo de micro -ultrasonido de alta frecuencia (Vevo 770, Visual Sonics, Toronto, Canadá). Para ello, los animales se anestesiaron mediante el uso de gas isofluorano (1,5%), resultando en una frecuencia cardiaca de unos 300 latidos/minuto. Los ratones se depositaron en una tabla acoplada a un sistema de raíles, en la cual además se controla y regula la temperatura a la que se realiza el experimento. El vello del ratón se elimina para evitar imágenes artefactuales y para la toma de imágenes se aplica gel de transmisión ecocardiográfica. Cada animal de experimentación se utilizó para la obtención de imágenes cardiacas del eje corto parasternal en modo B a una frecuencia de 30 MHz, lo cual permitió obtener imágenes en modo M para determinar de esta forma el diámetro y el volumen del ventrículo izquierdo al final de la diástole, la fracción de eyección y la fracción de acortamiento cardiaco, gracias al uso del software de análisis cardiaco suministrado en el equipo.
Histología e inmunohistoquímica
El corazón de los animales se incluyó en parafma para la posterior obtención de secciones de 4 mieras de grosor como fue descrito previamente [Tarín et al. citado ad supra]. La morfología del corazón se visualizó mediante tinción con eosina- hemato xilina, mientras que la deposición de colágeno se monitorizó mediante tinción de tricrómico de Masson. Para la detección inmunohistoquímica de EMMPRIN, MMP-9 y MMP-2, las muestras se incubaron con los correspondientes anticuerpos primarios y fueron visualizadas mediante microscopía confocal tras su incubación con los correspondientes anticuerpos secundarios conjugados con los reactivos fluorescentes como previamente fue descrito [Lopez-Rivera E et al. Proc Nati Acad Sci U S A 2005; 102:3685-3690].
Zimo grafía en gelatina
Para evaluar la presencia de MMPs en los lisados celulares, estos se resolvieron en geles SDS-PAGE al 8,5-10% en presencia de 1 mg/ml de gelatina. Los geles se incubaron en tampón de renaturalización durante 30 minutos (2,5% Tritón X-100), y posteriormente incubados 16 horas en tampón de revelado (50 mM Tris-HCl (pH 7,5), 200 mM NaCl, 10 mM CaC12, 0,02%> Brj35). Posteriormente, los geles se incubaron en presencia de azul de Coomassie durante 1 hora y la actividad gelatinolítica se detectó tras la incubación con solución de aclarado (metanol: ácido acético: agua. 50: 10:4).
Clonación de la región reguladora de EMPRIN murino
Para la clonación del promotor de EMMPRIN de ratón, se utilizó el cromosoma comercial BAC CH29-603O5 (el cual contiene parte del cromosoma 10 murino), proveniente de CHORI (Childrens Hospital Oakland Research Institute), como molde en reacciones de PCR con los siguientes oligonucleótidos: Directo-5 -CGGGGTACCAGCACTCCATCCAAAGGCAGA-3 ' (SEQ ID NO:3).
Inverso-5 -GGAAGATCTGTCGCCTCGTCCAGGAGC-3 ' (SEQ ID NO:4).
El fragmento de PCR resultante se clonó en el vector pGL3-Basic (Promega) en posición 5' al gen reportador luciferasa (a partir de ahora se denomina pEMMPRIN- WT).
Mutagénesis del promotor de EMMPRIN
Con el objeto de llevar a cabo la mutación de los residuos específicos del promotor, pEMMPRIN fue usado como molde en reacciones de PCR para de esta forma crear deleciones seriadas del promotor de la forma en que se detalla:
pl000=pEMMPRIN-WT.
p500: plásmido que contiene las primeras 500 pb del promotor de EMMPRIN.
p250: plásmido que contiene las primeras 250 pb del promotor de EMMPRIN.
plOOO-500: plásmido que contiene las 500 pb distales del promotor de EMMPRIN. plOOO-750: plásmido que contiene las 250 pb distales del promotor de EMMPRIN. p875-750: plásmido que contiene la región distal del promotor de EMMPRIN comprendida entre las bases 750 y 875 del mismo.
De forma adicional se llevó a cabo la generación de un muíante para el sitio de unión al factor de transcripción E2F, localizado en la posición -790 del promotor de EMMPRIN, mediante el uso del kit de mutagénesis dirigida de la compañía Stratagene, de acuerdo con las instrucciones aportadas por el fabricante, y utilizando los siguientes oligonucleótidos (con las mutaciones de sustitución indicadas en letra minúscula) en reacciones de PCR. Los oligonucleótidos utilizados para ello son los siguientes:
Directo: 5 -GGGGTTAGAAGCCTtCtCtACAGTGCACGACCTTCAAA-3 ' (SEQ ID NO:5)
Inverso: 5 -TTTGAAGGTCGTGCACTGTaGaGaAGGCTTCTAACCCC-3 (SEQ ID NO:6)
Transfección transitoria
Los experimentos de transfección de DNA de forma transitoria fueron llevados a cabo mediante el uso del reactivo Lipofectamina 2000 de la forma previamente descrita por el fabricante. En las células transfectadas el contenido de luciferasa se midió de la forma descrita previamente [Zaragoza C et al. Molecular pharmacology 2002; 62:927-935]. De forma breve, las células fueron transitoriamente transfectadas con 1 microgramo de DNA y 10 μΐ de Lipofectamina 2000 en medio de cultivo OptiMEM, durante 4 horas, tiempo tras el cual fueron lavadas e incubadas con medio fresco de cultivo (MEM/ 10% FCS) durante 16 horas. Además, como control, las células fueron co-transfectadas con un plásmido que contiene el promotor constitutivamente activo del citomegalovirus fusionado con el gen R-Luciferasa (Renilla), utilizado como control. Cada muestra fue por tanto evaluada para el contenido tanto en P ("firefly") como en R-luciferasa. La P- luciferasa es sustrato del producto del gen reportador anclado al promotor a evaluar y R- luciferasa es sustrato del producto génico del gen reportador del plásmido control co- transfectado. Los resultados fueron normalizados para el contenido en R-Luciferasa.
Ensayo de estabilidad del RNAm
Para este ensayo se incubaron células en pocilios de 2 mm de diámetro y se incubaron en presencia de 10 μΜ de actinomicina D durante 16 horas, tiempo tras el cual, las células se trataron con dietilenetriamina-NO (DETA-NO) a distintos tiempos. Se llevó a cabo el aislamiento del RNA de los distintos tiempos de experimentación y tanto para EMMPRIN como para GAPDH (como control), fueron evaluados sus ARNm mediante RT-PCR cuantitativa a tiempo real.
Análisis estadístico
Los datos han sido expresados como el valor medio ± la desviación estándar de la muestra. Los ensayos de cultivos celulares fueron llevados a cabo 3 veces, y cada una de las condiciones fue evaluada por duplicado o triplicado. En el caso de la experimentación animal, esta fue realizada por triplicado y el número de animales/réplica fue especificado en el texto. En el caso de comparaciones llevadas a cabo con un control común, las comparaciones se llevaron a cabo mediante análisis de varianza seguido de la modificación Dunnett del test de T-Student. El nivel de significación estadística se definió como p<0,05. Las barras de error representan ±SD. EJEMPLO 1
El infarto de miocardio es superior en ratones deficientes para iNOS
La relevancia de iNOS en cardioprotección se evidenció mediante su detección en ensayos de isquemia/reperfusión coronaria, por inmunoblot y por la medida de los niveles de NO en los corazones de animales salvajes (WT) (Fig. 1A), junto con la observación de un descenso en el tamaño de los infartos (Fig. IB) y fracción de eyección (Fig. 1C), cuando fueron comparados con los respectivos valores obtenidos en los animales deficientes para iNOS. Destacar no obstante, que la contribución de eNOS en el fenómeno no puede ser excluida, debido a que otros investigadores también han podido encontrar los niveles de eNOS significativamente elevados como consecuencia del infarto (de Waard MC et al. J Mol Cell Cardiol. 2010; 48: 1041-9 y Yin C et al. Circ Res 2009; 104:572-575), y los niveles de NO detectados en la presente investigación no excluyen la posible implicación de eNOS en este contexto. El resumen de los parámetros evaluados en estos ensayos se encuentra reflejado en la Tabla 1.
WT Control WT IR iNOS iNOS IR
Control
LVDS (mm) 3.07±0.3 3.50±0.6 3.06±0.28 4.10±0,12
LVDD (mm) 4.17±0.40 4.66±0.11 4.24±0.29 5.56±0.49
VS (ul) 37.24±3.07 53.00±6.91 34.43±6.94 59.78±3.82
VD (ul) 57.43±2.08 68.63±4.81 59.45il0.42 88.60±15.28*
SV (ul) 20.19±4.01 15.63±6.47 25.02±3.62 28.82±6.39*
EF (%) 51.26±3.70 42.49±4.62 51,9±4.15 30.53±3.35*
FS (%) 25.55±2.21 20.66±4.81 26.30il .98 14.94±2.51 *
Latido cardiaco 326Ü 1.77 339±23,33 355±8.98 343±60.80
(bpm)
Peso (mg) 120±6.59 132±6.12 110±9.09 165Ü9.25 Tabla 1. Parámetros de ultrasonidos. LVDS: Diámetro del ventrículo izquierdo sistólico. LVDD: Diámetro del ventrículo izquierdo diastólico. VS:
Volumen sistólico. DS: Volumen diastólico. SV: Diferencia de volumen sístolediástole. EF: Fracción de eyección. FS: Fracción de acortamiento.
*p<0.05WT IR vs iNOS IR.
EJEMPLO 2
La expresión de EMMPRIN se ve inducida en ratones deficientes para iNOS
Las MMPs se encuentran implicadas de forma significativa en la digestión de la matriz extracelular cardiaca durante el infarto de miocardio y su inductor EMMPRIN, se ha visto de forma semejante involucrado en la inducción de MMPs in células cardiacas [Schmidt R et al. Circulation 2006; 113:834-841]. Con el objeto de evaluar la contribución de iNOS en este contexto, los autores de la presente investigación detectaron que en animales deficientes para iNOS los niveles de EMMPRIN se encuentran significativamente aumentados, y el infarto de miocardio tiende a incrementar más aun los mismos con respecto a los animales de fenotipo salvaje, proceso detectado mediante inmunoblot. Tanto MMP-9 como MMP-2, dos de las MMPs más representativas presentes durante el infarto y dianas de EMMPRIN, se encuentran también sobreexpresadas en ratones deficientes para iNOS, detectado tanto mediante inmunoblot (Fig. 2A izquierda), como mediante zimografía (Fig. 2A derecha).
EJEMPLO 3 La inhibición de iNOS supone un incremento del daño cardiaco y la expresión de EMMPRIN en ratones salvajes para iNOS
Para profundizar en el efecto de iNOS en el corazón, los autores de la invención encontraron que en ratones salvajes para iNOS, la administración del inhibidor farmacológico de iNOS 1400W, tiende a incrementar de forma significativa el tamaño del infarto (Fig. 2C, cuadro), junto con el incremento de los niveles de EMMPRIN (Fig. 2B paneles inferiores de la izquierda) y MMP-9 respecto ratones control (Fig. 2B paneles inferiores de la derecha, WT 1400WC vs WT 1400W), rescatando el mismo fenotipo detectado en los animales deficientes para iNOS. Para evaluar en mayor grado este efecto del NO, en ratones deficientes para iNOS, se administró el donador de NO nitroprusiato sódico (20 microgramos/kg/día) de forma intravenosa, dos días antes de la isquemia/reperfusión (I/R NO), detectando una reducción significativa en los niveles de EMMPRIN en comparación con ratones control (I/R) (Fig. 2D, izquierda). De forma adicional, se llevó a cabo la detección de nitración mediante el uso de anti-3- Nitrotirosina en secciones aisladas de esos mismos animales, confirmando que el NO aportado de forma exógena se encontraba presente en los corazones de los animales tratados durante el tiempo de la experimentación (Fig. 2D, derecha). Todos estos resultados sugieren que la inhibición de EMMPRIN puede llegar a ser una vía de señalización utilizada por el NO en su efecto cardioprotector.
EJEMPLO 4 iNOS regula la transcripción de EMMPRIN en cardiomiocitos
Con el objeto de investigar la capacidad del NO para regular EMMPRIN en los corazones murinos, se evaluó la expresión del ARNm de EMMPRIN en ratones salvajes y deficientes para iNOS mediante RT-PCR cuantitativa, detectando cómo la isquemia/reperfusión induce un incremento significativo del ARNm en los ratones deficientes para iNOS, cuando fue comparado con el de ratones salvajes (Fig. 3A). De manera adicional, se pudo detectar cómo los niveles de ARNm fueron significativamente reducidos en cardiomiocitos en cultivo en presencia del donador de NO DETA-NO (Fig. 3B), mientras que en la línea celular de macrófagos RAW, el NO no indujo un efecto significativo sobre la expresión génica de EMMPRIN (Fig. 3C), sugiriendo de esta forma un papel para el NO en la trascripción de EMMPRIN en cardiomiocitos. Para investigar con más detalle el efecto de iNOS en la expresión de EMMPRIN, se llevó a cabo la inhibición de la síntesis de novo del RNA en la línea celular de cardiomiocitos mediante el uso de actinomicina D. En este contexto, se evaluaron los niveles del ARNm de EMMPRIN mediante RT-PCR cuantitativa a lo largo del tiempo, siendo capaces de esta forma de detectar una reducción significativa en la estabilidad del ARNm por parte del NO (Fig. 3D, izquierda). Por el contrario, al igual que sucede con la expresión del ARNm, el NO no resultó tener ningún efecto en la estabilidad en macrófagos (Fig. 3D, derecha).
A la vista de los resultados obtenidos, todo ello indica la relación existente entre el NO y EMMPRIN en los cardiomiocitos de ratón, sugiriendo que la reducción detectada en los niveles del ARNm de esta proteína pude ser uno de los mecanismos moleculares llevados a cabo por el NO, que contribuyen a su efecto cardioprotector.
EJEMPLO 5
El NO induce la represión transcripcional del promotor de EMMPRIN en cardiomiocitos
Para analizar en profundidad el efecto represor del NO sobre la transcripción de EMMPRIN, se llevó a cabo la clonación de las primeras 1000 pb de la región reguladora del gen de EMMPRIN, fusionado al gen reportador de luciferasa (pEMMPRIN- WT) . Mediante la transfección transitoria de cardiomiocitos con esta construcción, se pudo detectar el efecto negativo que el NO presenta sobre la transcripción génica de forma dosis dependiente (Fig. 4A) y cGMP dependiente (Fig. 4B), debido a que el análogo soluble del cGMP, 8-Br-cGMP, causó el mismo efecto que el donador de NO empleado en los ensayos de transfección. Para explorar este efecto con mayor detalle, se pudo detectar cómo la inhibición farmacológica de la quinasa dependiente del cGMP, PKG, mediante la adición del inhibidor Rp-8-Br-PET-cGMPS (PET), produjo un incremento significativo de la actividad del promotor de EMMPRIN (PET, Fig. 4C), mientras que en combinación con el NO, el inhibidor PET fue capaz de restaurar parcialmente el efecto negativo del NO sobre la actividad del promotor (PET+NO, Fig. 4C). De forma adicional, la sobre-expresión del dominante positivo de la iso forma alfa de la quinasa dependiente del cGMP PKGl-alfa (fGlAC) [14] en cardiomiocitos transfectados con el promotor de EMMPRIN (pEMMPRIN- WT), supuso una reducción significativa de la actividad transcripcional del promotor (Fig. 4C, fGlAC).
El efecto del NO fue verificado de forma adicional, mediante la incubación de células transfectadas en presencia de dos donadores adicionales del NO como son SNitroso-N- acetil-D,L-penicilamida (SNAP) y (Z)-l-N-[3-aminopropil]-N-[4-(3- aminopropilamonio) butiral]-amino} -diazen- 1 -ium- 1 ,2-diolato (Espermina-NONOato), obteniendo resultados similares a los generados con el DETA-NO. Por último, tanto la administración exógena de NO, como la inducción de la producción endógena mediante la incubación con LPS, no indujo ninguna diferencia significativa en cuanto a la actividad del promotor de EMMPRIN en macrófagos murinos (Fig. 4D). Teniendo en cuenta los resultados obtenidos, dichos resultados permiten sugerir acerca de la capacidad del NO para regular la transcripción de EMMPRIN a través de la ruta del cGMP/PKG, en cardiomiocitos. Con el ánimo de caracterizar de forma completa la localización específica del efecto del NO sobre el promotor de EMMPRIN, llevamos a cabo ensayos de transfección transitoria de cardiomiocitos con construcciones que contienen deleciones seriadas del promotor. Con ello, los autores de la invención fueron capaces de determinar que el efecto represor del NO se encuentra localizado en la región promotora comprendida entre las bases -875 y -750 (Fig. 5 A), y de forma adicional, mediante un análisis detallado de esta región pudieron determinar la existencia de distintos sitios de unión para factores de transcripción, incluyendo un sitio para la unión al factor E2F, el cual de forma previa había sido caracterizado su efecto inhibidor de la transcripción para distintos genes [Agromayor M et al. Mol Cell Biol 2006; 26:4448- 4461].
Para explorar si el NO ejerce su efecto represor a través de E2F, se llevó a cabo la deleción puntual del dominio de unión en el promotor de EMMPRIN, detectando que en células transfectadas con esta construcción, el NO careció de efecto represor sobre la actividad promotora, indicando de esta manera que muy probablemente, éste sea al menos uno de los mecanismos de acción del NO sobre la actividad transcripcional de EMMPRIN en cardiomiocitos (Fig. 5B).
EJEMPLO 6
La inhibición de EMMPRIN en ratones deficientes para iNOS restaura el fenotipo salvaje en isquemia/reperfusión Con objeto de evaluar el efecto potencial de la regulación de EMMPRIN in vivo, se llevó a cabo la administración de anticuerpos anti-EMMPRIN (generados con un epítopo correspondiente al extremo N-terminal en la región extracelular), o IgGl murino como control. Cuatro días después de la administración intravenosa del anticuerpo, se procedió a inducir la isquemia/reperfusión coronaria en los ratones salvajes y deficientes para iNOS, detectando una inhibición significativa en la expresión de MMP-9 tras la administración del anticuerpo específico contra EMMPRIN, en comparación con los ratones a los que les fue inyectado IgGl o no se les inyectó ninguna inmunoglobulina (Fig. 6A). De forma interesante, se pudo observar a su vez como los niveles endógenos de EMMPRIN resultaron también reducidos como consecuencia de la administración del anticuerpo que lo reconoce de forma específica (Fig.6B). En lo referente a la función cardiaca, se pudo constatar que la administración de anti-EMMPRIN supuso un incremento significativo de los valores de la fracción de eyección en los corazones de animales deficientes para iNOS, comparados con los obtenidos en ratones control y en ratones inyectados con IgGl (Fig. 6C, izquierda). En lo que respecta a los ratones salvajes, los anticuerpos anti-EMMPRIN también resultaron positivos para mejorar la contracción cardiaca (Fig. 6C derecha), indicando que EMMPRIN pudiera ser una diana del NO durante el proceso de cardioprotección.
EJEMPLO 7
Inhibición de EMMPRIN en ratones por la administración del péptido AP-9
Para los ensayos in vitro se utilizaron células MAEC (células endoteliales aórticas de ratón). Se incubaron durante toda la noche dichas células con el donador de óxido nítrico (DETA-NO) (ΙΟΟμΜ) para inducir la expresión de EMMPRIN. Las células MAEC sin DETA-NO se utilizaron como control. Las células MAEC se fijaron con 4% PFA y se incubaron con 0,08 mg/ml del péptido AP-9. Posteriormente se detectó la expresión de EMMPRIN utilizando un anticuerpo anti-EMMPRIN (1 : 1000). En la Figura 9 se puede observar que las señales del péptido AP-9 y de EMMPRIN co-localizan, por lo que se concluye que el péptido AP-9 se une específicamente a EMMPRIN. Asimismo, con el fin de comprobar si el péptido AP-9 inhibía la expresión de MMP-9 inducida por EMMPRIN, se incubaron células MAEC con ΙΟΟμΜ de DETA-NO para inducir la expresión de EMMPRIN. Después de 3 horas de tratamiento con DETA-NO las células MAEC se incubaron durante toda la noche con el péptido AP-9 (0,08mg/ml) o con PBS como control sin péptido. Se utilizaron células MAEC sin DETA-NO como control. Finalmente, las células MAEC se fijaron con 4% PFA y se detectó la expresión de MMP-9 utilizando un anticuerpo anti-MMP-9 (1 : 1000). Tal como se puede ver en la Figura 10, las células MAEC incubadas con el péptido AP-9 mostraron inhibición de la expresión de MMP-9 inducida por EMMPRIN.
Para los ensayos in vivo, la síntesis del péptido AP-9 se llevó a cabo de dos formas distintas: una forma marcada con un fluorocromo para su detección mediante técnicas de inmunohistoquímica y mediante el abordaje no invasivo de tomografía de fluorescencia y una segunda forma de AP-9 biotinilado, con el objeto de poder ser fijado y realizar ensayos de "pulí down" con el fin de evaluar la existencia de moléculas que interaccionen con EMMPRIN sobre las cuales poder incidir con un posible efecto modulador de su actividad.
Para evaluar el efecto del péptido AP-9, se llevaron a cabo inicialmente ensayos piloto de administración del mismo y poder así determinar la estabilidad y la vida media de AP-9 en los animales largo del tiempo. Para ello, se llevó a cabo la administración de AP-9 de forma intravenosa a las siguientes concentraciones: 10 ng/kg, 100 ng/kg 1 μg/kg, 10 μg/kg, 100 μg/kg, 1 mg/kg, 10 mg/kg. Cada grupo constaba de 9 animales, los cuales fueron utilizados en grupos de 3 para la visualización fluorescente no invasiva del péptido mediante tomografía de forma diaria, y cada día un grupo de 3 animales se sacrificaba para realizar un análisis inmunohistofluorescente en los corazones aislados de los animales. De acuerdo con el diseño experimental, fueron necesarios 189 ratones en total para el ensayo, al realizarse los ensayos por triplicado. Una vez determinada la concentración óptima de administración se procedió a inyectar de forma intravenosa la dosis óptima de AP-9 en cinco grupos de ratones sometidos a isquemia/reperfusión:
Grupo 1. Administración de AP-9, 1 hora antes de isquemia.
Grupo 2. Administración de AP-9, durante el proceso de isquemia.
Grupo 3. Administración de AP-9, 1 hora posterior a la isquemia, durante el periodo de reperfusion.
Grupo 4. Administración de AP-9 "scramble" (péptido con los mismos aminoácidos que AP-9, de secuencia aleatoria) a ratones sometidos a isquemia/reperfusion.
Grupo 5. Animales sometidos a isquemia/reperfusión.
La progresión del daño fue evaluada mediante ecografía en todos los ratones, determinando parámetros cardiacos de forma diaria durante tres días consecutivos. Asimismo, los animales fueron también objeto de análisis de tomografía por fluorescencia para visualizar la presencia de AP-9 en los corazones, a cuyo término los animales fueron sacrificados para llevar a cabo el análisis histológico e inmunohistoquímico con el objeto de evaluar la expresión de enzimas proteolíticos MMP-2 y MMP-9.
EJEMPLO 8
Inhibición de EMMPRIN mediante la utilización de nanopartículas conteniendo el péptido AP-9
I. MATERIALES Y MÉTODOS
Con el fin de conjugar el péptido AP-9 a las nanopartículas se siguió el siguiente protocolo:
1. Se disolvieron en una mezcla de cloroformo :metanol (6: 1):
- 10 mg de nanocristales de óxido de hierro de 20 nm en cloroformo,
- 47.5 mg (95%) de DSPC-PEG2000
- 2.5 mg (5%) de Maleimida PEG
- 0.5 mg (1%) de NIR664-DSPE disuelto en cloroformo :metanol 2. Se añadió la mezcla gota a gota a 4-10 mi de agua desionizada a 80°C, dejando enfriar posteriormente.
3. Para la activación del péptido se incubó el péptido AP-9 con la solución de desacetilación (0.5M hidroxilamine, 1M HEPES, 32mM EDTA, pH 7.0) durante 1 hora. La razón molar de Maleimida PEG y péptido AP-9 fue de 1 : 1, para ello se añadieron 137 μΐ del péptido, 363 μΐ de PBS y 50 μΐ de solución de desacetilación.
4. Se añadió el péptido AP-9 activado a la mezcla con las nanopartículas de óxido férrico. Se incuba dicha mezcla durante toda la noche a 4°C.
5. Se centrifugó durante 1 hora a 8000 rpm, eliminando el sobrenadante. Se añadió PBS para lavar el pellet, centrifugando de nuevo durante lh a 8000 rpm y repitiendo el proceso dos veces para purificar las nanopartículas.
Las nanopartículas sintetizadas constan de la siguiente estructura, que se puede observar en la Figura 7 y Figura 8:
1. Núcleo central de óxido de hierro, visible por Resonancia magnética nuclear de imagen (MRI).
2. Monocapa lipídica con un fluorocromo (microscopía confocal, tomografía fluorescente, FMT)
3. Péptido AP-9 (diana EMMPRIN). II. RESULTADOS
El objeto principal de la utilización de nanopartículas fue poder disponer de una herramienta de vehiculización, visualización multimodal y efectora sobre la actividad de EMMPRIN y la posible regresión del daño en el miocardio. Las nanopartículas que contienen AP-9 presentan un valor terapéutico, ya que se inhibe EMMPRIN y se reduce el daño del tejido debido a la activación de enzimas proteolíticos. Tal como se muestra en las Figuras 11 , se observa que se ha conseguido internalizar las nanopartículas en células endoteliales aórticas de ratón y que son viables en el interior celular, uniéndose el péptido AP-9 a EMMPRIN. Asimismo, en la Figura 12 se observa que dicha internalización se produce de una manera dosis-dependiente, observando cómo aumenta la señal fluorescente al aumentar la concentración de péptido. Por otro lado, al igual que en el caso anterior donde se administraba el péptido AP-9, se realizaron inicialmente ensayos piloto de administración de las nanopartículas y poder así determinar su estabilidad y la vida media en los animales a lo largo del tiempo. Para ello, se administró la nanopartícula conjugada con AP-9 (N-AP-9) de forma intravenosa a las siguientes concentraciones: 10 μg/kg, 100 μg/kg, 1 mg/kg y 10 mg/kg.
Cada grupo consistía en 9 animales, los cuales fueron utilizados en grupos de 3 para la visualización fluorescente no invasiva mediante tomografía fluorescente (FMT) y resonancia magnética nuclear (MRI) de forma diaria, y cada día un grupo de 3 animales fue sacrificado para realizar un análisis inmunohistofluorescente en los corazones aislados de los animales, con el propósito de validar los resultados de imagen no inavsiva. De acuerdo con este diseño experimental fueron necesarios 96 ratones en total para el ensayo, al realizarse los ensayos por triplicado.
Una vez obtenidos los parámetros óptimos de concentración mínima en la que se pudo obtener la mejor visualización de AP-9 mediante fluorescencia y MRI, se llevó a cabo la administración de NP-AP-9 por vía intravenosa en los siguientes 5 grupos de animales:
Grupo 1. Administración de NP-AP-9, 1 hora antes de isquemia.
- Grupo 2. Administración de NP-AP-9, durante el proceso de isquemia.
Grupo 3. Administración de NP-AP-9, 1 hora posterior a la isquemia, durante el periodo de reperfusion.
Grupo 4. Administración de NP-AP-9 "scramble" (nanopartícula con un péptido conjugado de igual composición pero distinto orden de aminoácidos que AP-9) a ratones sometidos a isquemia/reperfusión.
- Grupo 5. Animales sometidos a isquemia/reperfusión.
Gracias a este tipo de tecnología se obtuvo una herramienta que permitió:
1- Visualizar de forma no invasiva el corazón infartado mediante resonancia/ fluorescencia.
2- Unir NP-AP-9 a EMMPRIN para poder visualizar EMMPRIN mediante imagen molecular no invasiva. 3- Inducir la regresión del daño cardiaco al inhibir el efecto de enzimas proteolíticas del tipo metaloproteinasas.
Al igual que en casos anteriores, la progresión del daño fue evaluada mediante ecografía en todos los ratones, determinando parámetros cardiacos de forma diaria durante tres días consecutivos. Asimismo, los animales fueron también objeto de análisis de tomografía por fluorescencia (FMT) y MRI para visualizar la presencia de EMMPRIN en los corazones, a cuyo término los animales fueron sacrificados para llevar a cabo el análisis histológico e inmunohistoquímico con el objeto de evaluar la expresión de enzimas proteo líticos MMP-2 y MMP-9 y calcular de esta manera, junto con los datos de ecografía, la posible regresión inducida por la nanopartícula.

Claims

REIVINDICACIONES
1. Uso de al menos un inhibidor de EMMPRIN o de un inhibidor de una variante f ncionalmente equivalente de EMMPRIN para la preparación de un medicamento para la prevención y/o el tratamiento de los daños cardiacos producidos tras isquemia seguida de reperfusión.
2. Uso según la reivindicación 1, en donde el inhibidor de EMMPRIN se selecciona del grupo formado por un anticuerpo anti-EMMPRIN, un siRNA específico para EMMPRIN, un modulador de la glicosilación, un péptido inhibidor, un ligando de ciclofilina, una estatina, un activador de p53, un antagonista de PPAR-alfa, un agonista de PPAR-alfa, un oligonucleótido antisentido específico para EMMPRIN, una ribozima específica para EMMPRIN, un aptámero específico para EMMPRIN y un espiegélmero específico para EMMPRIN.
3. Uso según la reivindicación 2, en donde el anticuerpo anti-EMMPRIN está dirigido contra el dominio extracelular de EMMPRIN.
4. Uso según la reivindicación 3, en donde el anticuerpo anti-EMMPRIN es un anticuerpo generado contra el extremo N-terminal de EMMPRIN.
5. Uso según la reivindicación 2, en donde el inhibidor de EMMPRIN es el péptido inhibidor AP-9, cuya secuencia es SEQ ID NO: 2.
6. Uso según la reivindicación 2, en donde el inhibidor de EMMPRIN es un modulador de la glicosilación y se selecciona del grupo formado por un inhibidor de glicosilación y una endoglucosidasa.
7. Uso según la reivindicación 7, en donde el inhibidor de glicosilación se selecciona del grupo formado por tunicamicina, caveolina-1 y UCHL-1.
8. Uso según la reivindicación 7, en donde la endoglucosidasa se selecciona del grupo formado por endoglucosidasa D, endoglucosidasa F, endoglucosidasa Fl, endoglucosidasa F2 y endoglucosidasa H.
9. Uso según la reivindicación 2, en donde el inhibidor de EMMPRIN es una molécula que impide la unión entre la ciclofilina y EMMPRIN y se selecciona del grupo formado por ciclosporina A, Debió 025, SCY635, NIM811, anticuerpos dirigidos contra ciclofilina y moléculas orgánicas inhibidoras de ciclofilina.
10. Uso según la reivindicación 2, en donde el inhibidor de EMMPRIN es una estatina y se selecciona del grupo formado por fluvastatina, atorvastatina, cerivastatina, lovastatina, mevastatina, pitavastatina, pravastatina, rosuvastatina, simvastatina y derivados de estos.
11. Uso según la reivindicación 2, en donde el inhibidor de EMMPRIN es un activador de p53 y se selecciona del grupo formado por nutlin-3, proteínas quinasas y la proteína ARF.
12. Uso según la reivindicación 12, en donde la proteína quinasa se selecciona del grupo formado por la proteín quinasa dependiente de DNA (DNA-PK) y la quinasa ATM.
13. Uso según la reivindicación 2, en donde el inhibidor de EMMPRIN es un antagonista de PPAR-alfa y se selecciona del grupo formado por inhibidores de la fosforilación de PPAR-alfa y 2-cloro-5-nitro-N-(piridil)benzamida.
14. Uso según la reivindicación 2, en donde el inhibidor de EMMPRIN es un agonista de PPAR-alfa y se selecciona del grupo formado por gemfibrozil, fenofibrato, bezafibrato, clofibrato, ciprofibrato y fenofibrato.
15. Una nanopartícula que comprende en su superficie una molécula con capacidad de unión a EMMPRIN.
16. Nanopartícula según la reivindicación 15 en donde la molécula con capacidad de unión a EMMPRIN se selecciona del grupo formado por un péptido inhibidor de EMMPRIN y un anticuerpo anti-EMMPRIN.
17. Nanopartícula según la reivindicación 16 en donde el anticuerpo anti-EMMPRIN es un anticuerpo generado contra el extremo N-terminal de EMMPRIN.
18. Nanopartícula según la reivindicación 16 en donde el péptido inhibidor de EMMPRIN es el péptido inhibidor AP-9, cuya secuencia es SEQ ID NO: 2.
19. Nanopartícula según cualquiera de las reivindicaciones 15 a 18 que comprende una cubierta externa de fosfolípidos.
20. Nanopartícula según la reivindicación 19 en donde la cubierta de fosfolípidos está modificada con polietilenglicol.
21. Nanopartícula según cualquiera de las reivindicaciones 15 a 20 que comprende en su interior un inhibidor de EMMPRIN.
22. Nanopartícula según cualquiera de las reivindicaciones 15 a 21 en donde la cubierta de fosfolípidos está modificada con un fluoróforo.
23. Nanopartícula según cualquiera de las reivindicaciones 15 a 22 en donde el núcleo de la nanopartícula comprende óxido de hierro.
24. Uso de la nanopartícula según cualquiera de las reivindicaciones 15 a 23 para la prevención y/o el tratamiento de los daños cardiacos producidos tras isquemia seguida de reperfusión.
25. Uso de la nanopartícula según cualquiera de las reivindicaciones 15 a 23 para el diagnóstico de una patología en la que EMMPRIN se encuentre sobre-expresado.
26. Uso según la reivindicación 25 en donde la patología en la que EMMPRIN se encuentre sobre-expresado es el daño de miocardio.
PCT/ES2011/070832 2010-12-02 2011-12-01 Compuestos para el tratamiento de daños cardiacos tras isquemia/reperfusión WO2012072850A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/110,805 US9644019B2 (en) 2010-12-02 2011-12-01 Compounds for treating cardiac damage after ischaemia/reperfusion
ES11845312.5T ES2626674T3 (es) 2010-12-02 2011-12-01 Péptido AP-9 para su uso en el tratamiento de daños cardíacos tras isquemia/reperfusión
EP11845312.5A EP2668960B1 (en) 2010-12-02 2011-12-01 Ap-9 peptide for use in treating cardiac damage after ischaemia/reperfusion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201031794 2010-12-02
ESP201031794 2010-12-02

Publications (2)

Publication Number Publication Date
WO2012072850A2 true WO2012072850A2 (es) 2012-06-07
WO2012072850A3 WO2012072850A3 (es) 2012-08-02

Family

ID=46172320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070832 WO2012072850A2 (es) 2010-12-02 2011-12-01 Compuestos para el tratamiento de daños cardiacos tras isquemia/reperfusión

Country Status (4)

Country Link
US (1) US9644019B2 (es)
EP (1) EP2668960B1 (es)
ES (1) ES2626674T3 (es)
WO (1) WO2012072850A2 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105707A1 (en) * 2011-01-31 2012-08-09 Tokyo University Of Science Educational Foundation Administrative Organization Method of treating ischemia/reperfusion injury
EP3463388B1 (en) * 2016-05-24 2024-09-11 Emory University Particles with rna cleaving nucleobase polymers and uses for managing inflammatory disorders

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009810A1 (en) 1987-06-11 1988-12-15 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5093246A (en) 1986-12-03 1992-03-03 University Patents, Inc. Rna ribozyme polymerases, dephosphorylases, restriction endoribo-nucleases and methods
US5176996A (en) 1988-12-20 1993-01-05 Baylor College Of Medicine Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5330896A (en) 1983-02-24 1994-07-19 Billing Ronald J Monoclonal antibodies to an autocrine growth factor antigen that binds to activated lymphocytes and cancer cells
US5643740A (en) 1983-02-24 1997-07-01 Ronald J. Billing Monoclonal antibody specific for activated lymphocytes and monocytes
US20050026841A1 (en) 2001-05-25 2005-02-03 Zhinan Chen Hab18g/cd147 its antagonist and application
WO2006039343A2 (en) 2004-09-30 2006-04-13 Centocor, Inc. Emmprin antagonists and uses thereof
US20070048305A1 (en) 1998-03-03 2007-03-01 Abgenix, Inc. CD147 binding molecules as therapeutics
WO2010036460A2 (en) 2008-09-29 2010-04-01 Centocor Ortho Biotech Inc. Anti-cd147 antibodies, methods, and uses

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007028053A2 (en) 2005-09-02 2007-03-08 X-Cell Medical Incorporated Methods of treating and preventing cardiac disorders

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330896A (en) 1983-02-24 1994-07-19 Billing Ronald J Monoclonal antibodies to an autocrine growth factor antigen that binds to activated lymphocytes and cancer cells
US5643740A (en) 1983-02-24 1997-07-01 Ronald J. Billing Monoclonal antibody specific for activated lymphocytes and monocytes
US5093246A (en) 1986-12-03 1992-03-03 University Patents, Inc. Rna ribozyme polymerases, dephosphorylases, restriction endoribo-nucleases and methods
WO1988009810A1 (en) 1987-06-11 1988-12-15 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5176996A (en) 1988-12-20 1993-01-05 Baylor College Of Medicine Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US20070048305A1 (en) 1998-03-03 2007-03-01 Abgenix, Inc. CD147 binding molecules as therapeutics
US20050026841A1 (en) 2001-05-25 2005-02-03 Zhinan Chen Hab18g/cd147 its antagonist and application
WO2006039343A2 (en) 2004-09-30 2006-04-13 Centocor, Inc. Emmprin antagonists and uses thereof
WO2010036460A2 (en) 2008-09-29 2010-04-01 Centocor Ortho Biotech Inc. Anti-cd147 antibodies, methods, and uses

Non-Patent Citations (66)

* Cited by examiner, † Cited by third party
Title
"guides for the care and use of laboratory animals", 1996, NIH PUBLICATION NO. 85-23
"Situ Hybridization in Human Carcinomas", 2004, ACADEMIC PRESS
ABE N ET AL., LIFE SCI, vol. 78, 2006, pages 1021 - 8
AGROMAYOR M ET AL., MOL CELL BIOL, vol. 26, 2006, pages 4448 - 4461
ALTSCHUL S.F. ET AL.: "Basic local alignment search tool", J MOL BIOL., vol. 215, no. 3, 1990, pages 403 - 10, XP002949123, DOI: doi:10.1006/jmbi.1990.9999
BILLINGS ET AL., HYBRIDOMA, vol. 1, 1982, pages 303 - 311
BISWAS C ET AL., CANCER RES, vol. 55, 1995, pages 434 - 9
C. FAULI I TRILLO, TRATADO DE FARMACIA GALENICA, 1993
CANNON RO, NAT CLIN PRACT CARDIOVASC MED, vol. 2, 2005, pages 88
CASTEJ6N B., REVISTA CNEM, 2009
CHEN ET AL., CANCER LETTERS, vol. 278, 2009, pages 113 - 121
CHO ET AL., BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 313, 2004, pages 954 - 961
COTTER G ET AL., EUROPEAN HEART JOURNAL, vol. 24, 2003, pages 1287 - 1295
CURTIN ET AL., GLIA, vol. 55, no. 15, 2007, pages 1542 - 53
DE WAARD MC ET AL., J MOL CELL CARDIOL., vol. 48, 2010, pages 1041 - 9
EGAWA ET AL., J BIOL. CHEM., vol. 281, no. 49, 2006, pages 37576 - 85
ELLIS ET AL., CANCER RES, vol. 49, 1989, pages 3385 - 91
ELROD J.W ET AL., CIRCULATION, vol. 114, 2006, pages 1172
GWINN ET AL., J IMMUNOL., vol. 177, no. 7, 2006, pages 4870 - 9
HALESTRAP ET AL., BIOCHEM J, vol. 343, 1999, pages 281 - 299
HANNA, S.M. ET AL., BMC BIOCHEMISTRY, vol. 4, 2003, pages 17
IACONO ET AL., EXP MOL. PATH, vol. 83, 2007, pages 283 - 295
ITOH ET AL., JPN. J. CANCER RES., vol. 92, 2001, pages 1313 - 1321
KOCH ET AL., INTERNAT. IMMUNOL., vol. 11, 1999, pages 777 - 786
KOHLER, MILSTEIN ET AL., NATURE, vol. 256, 1975, pages 495
KONENEN, J. ET AL., NAT., vol. 4, 1987, pages 844 - 7
KONIG B ET AL., MOL NUTR FOOD RES., vol. 54, 2010, pages 1248 - 56
KORN ET AL., GLIA, vol. 49, no. 1, 2005, pages 73 - 83
KULANDAIVELU ET AL., J BIOL CHEM., vol. 283, no. 28, 2008, pages 19489 - 19498
LEMAITRE ET AL., PROC. NATL. ACAD. SCI., vol. 84, 1987, pages 648 - 652
LETSINGER ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 86, 1989, pages 6553 - 6556
LIN J ET AL., CIRCULATION, vol. 120, 2009, pages 245 - 54
LIU YH ET AL., AMERICAN JOURNAL OF PHYSIOLOGY, vol. 289, 2005, pages H2616 - 2623
LOPEZ-RIVERA E ET AL., PROC NATL ACAD SCI 0 S A, vol. 102, 2005, pages 3685 - 3690
MIYAUCHI T ET AL., J BIOCHEM., vol. 110, 1991, pages 770 - 774
MUNGRUE IN ET AL., J CLIN INVEST, vol. 109, 2002, pages 735 - 743
O'ROURKE ST., AM J PHARM EDUC, vol. 71, no. 5, 2007, pages 95
PFISTER M ET AL., HEART, vol. 80, no. 4, pages 365 - 9
PUSHKARSKY ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, pages 27866 - 27871
RENNO ET AL., J IMMUNOL., vol. 168, no. 10, 2002, pages 4946 - 50
ROSSI, CURRENT BIOLOGY, vol. 4, 1994, pages 469 - 471
RUIZ-MEANA M ET AL., CARDIOVASCULAR RESEARCH, vol. 71, 2006, pages 715 - 724
SAMBROOK, J. ET AL.: "Molecular Cloning, a Laboratory Manual", vol. 1-3, 2001, COLD SPRING HARBOR LABORATORY PRESS
SCHMIDT R ET AL., CIRCULATION, vol. 113, 2006, pages 834 - 841
See also references of EP2668960A4
STEIN ET AL., CANCER RES, vol. 48, 1988, pages 2659 - 2668
SUN ET AL., CANCER RES., vol. 61, 2001, pages 2276 - 2281
SUN HAI-YAN ET AL., CHIN. MED. J, vol. 122, 2009, pages 3048 - 54
TANG ET AL., MOL BIOL CELL, vol. 9, 2004, pages 4043 - 4050
TANG W ET AL., MOL BIOL CELL, vol. 15, 2004, pages 4043 - 50
TARIN C ET AL., ARTERIOSCLEROSIS, THROMBOSIS, AND VASCULAR BIOLOGY, vol. 29, 2009, pages 27 - 32
TAYLOR ET AL., ONCOGENE, vol. 21, no. 37, 2002, pages 5765 - 72
TOOLE, CURR TOP DEV BIOL., vol. 54, 2003, pages 371 - 89
VAN DER KROL ET AL., BIOTECHNIQUES, vol. 6, 1988, pages 958 - 976
WEST MB ET AL., CIRCULATION, vol. 118, 2008, pages 1970 - 8
XUAN YT ET AL., CIRCULATION, vol. 116, 2007, pages 535 - 44
YANG ET AL., RHEUMATOLOGY, vol. 47, 2008, pages 1299 - 1310
YIN C ET AL., CIRC RES, vol. 104, 2009, pages 572 - 575
YURCHENKO ET AL., J BIOL CHEM, vol. 280, 2005, pages 17013 - 19
ZARAGOZA C ET AL., J CLIN INVEST, vol. 100, 1997, pages 1760 - 1767
ZAUG ET AL., SCIENCE, vol. 224, 1984, pages 574 - 578
ZHANG ET AL., J. NEUROSC. RES., vol. 79, 2005, pages 139 - 145
ZHANG J ET AL., INT J CARDIOL., vol. 117, 2007, pages 373 - 80
ZHOU ET AL., BMC CELL BIOLOGY, vol. 6, 2005, pages 25
ZHU H ET AL., CANCER BIOL THER., vol. 8, no. 18, 2009, pages 1722 - 8
ZON, PHARM. RES., vol. 5, 1988, pages 539 - 549

Also Published As

Publication number Publication date
US9644019B2 (en) 2017-05-09
EP2668960B1 (en) 2017-03-22
WO2012072850A3 (es) 2012-08-02
EP2668960A2 (en) 2013-12-04
US20140148396A1 (en) 2014-05-29
ES2626674T3 (es) 2017-07-25
EP2668960A4 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP6437946B2 (ja) 線維症の検出および処置
Jaber et al. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer
CN106794216B (zh) 阻断异粘蛋白-snd1相互作用的肽作为癌症治疗的用途
MX2012009565A (es) Uso de la secuencia lider de pten largo para la liberacion de moleculas transmembrana.
JP2016196486A (ja) 脳腫瘍を治療するための分枝鎖アミノトランスフェラーゼ1(bcat1)の阻害剤
JP5186632B2 (ja) 血管形成を誘導するための組成物および方法
JP4767019B2 (ja) 動脈硬化の予防・治療用医薬
JPWO2005097204A1 (ja) 癌の予防・治療剤
JP2010536365A (ja) 前立腺癌の治療及び診断の標的遺伝子のための、pkib及びnaaladl2
WO2011031944A1 (en) Toll-like receptor 4 deficiency and downstream effectors cause pulmonary emphysema
WO2012072850A2 (es) Compuestos para el tratamiento de daños cardiacos tras isquemia/reperfusión
US7595158B2 (en) Bcl2L12 polypeptide activators and inhibitors
JP2005511770A (ja) Hmgbタンパク質およびhmgbタンパク質をコードする核酸の使用方法
US20140243387A1 (en) Methods for improving cardiac contractility
WO2015036643A2 (es) Marcador para predecir metástasis del cancer de mama
Dukinfield et al. Repurposing an anti‐cancer agent for the treatment of hypertrophic heart disease
JP2024500035A (ja) 心血管疾患の治療
JP6081995B2 (ja) 癌の処置における治療抗体の標的としてのFrizzled2
US20150212086A1 (en) Diagnosis and Treatment of Brain Tumor
KR102270926B1 (ko) Banf1, plod3 또는 sf3b4의 억제제를 유효성분으로 포함하는 간암의 예방 및 치료용 조성물
KR102563931B1 (ko) 스플라이스좀 관련 단백질인 IK의 용도로서 ATM 키나아제 pre-mRNA의 스플라이싱을 조절하는 방법
JPWO2005061704A1 (ja) 癌の予防・治療剤
JP2020147555A (ja) 抗がん剤抵抗性改善作用を有するクローディン−2結合性短鎖ペプチドの開発
JP2005281140A (ja) Sccaによるjnk−1キナーゼ活性の抑制方法
JP2019137633A (ja) がん転移抑制ペプチド内包リポソーム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011845312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011845312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14110805

Country of ref document: US