WO2012071865A1 - 一种低压降纳微结构化填料旋转床超重力装置及应用 - Google Patents
一种低压降纳微结构化填料旋转床超重力装置及应用 Download PDFInfo
- Publication number
- WO2012071865A1 WO2012071865A1 PCT/CN2011/074733 CN2011074733W WO2012071865A1 WO 2012071865 A1 WO2012071865 A1 WO 2012071865A1 CN 2011074733 W CN2011074733 W CN 2011074733W WO 2012071865 A1 WO2012071865 A1 WO 2012071865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- liquid
- rotor
- supergravity
- rotating bed
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/24—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
- B01J8/38—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
- B01J8/382—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it with a rotatable device only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/81—Solid phase processes
- B01D53/83—Solid phase processes with moving reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8603—Removing sulfur compounds
- B01D53/8609—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20707—Titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/02—Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
- B01J2208/023—Details
- B01J2208/024—Particulate material
- B01J2208/026—Particulate material comprising nanocatalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/304—Composition or microstructure of the elements
- B01J2219/30416—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/304—Composition or microstructure of the elements
- B01J2219/30483—Fibrous materials
Definitions
- the invention relates to a supergravity device for removing corrosive harmful gases in industrial exhaust gas and an application thereof, and particularly relates to a nano microstructured rotating bed supergravity device used in the process of removing harmful gases, and is particularly suitable for requiring low pressure
- the deep removal of sulfur dioxide in industrial tail gas such as sulfuric acid is a field of supergravity technology. Background technique
- Industrial tail gas such as sulfuric acid, chemical fertilizer, and smelting often contains acidic or NH 3 , volatile organic amines and other alkaline corrosive harmful gases such as sulfur dioxide, hydrogen sulfide, and HC1.
- sulfuric acid As an example, the sulfur dioxide produced in the exhaust gas has become one of the main pollutants of the air, and the acid rain caused by the sulfur dioxide emission is also more frequent, which seriously jeopardizes the living environment of buildings, soils and humans. Therefore, countries around the world have lowered their sulfur dioxide emissions targets to further limit the emission of sulfur dioxide from flue gases such as automobile exhaust and industrial exhaust.
- the desulfurization technology can be divided into wet method, dry method and semi-dry and semi-wet method; according to the type of desulfurizer, It is divided into the following five methods: calcium method based on CaC0 3 (limestone), magnesium method based on MgO, sodium method based on Na 2 S0 3 , ammonia method based on NH 3 , organic alkali Based on the organic alkali method.
- the commercial technology commonly used in the world is the chemical absorption method.
- the sulfur dioxide emission index of industrial tail gas such as sulfuric acid in China is 800-1200mg/m 3 .
- the national environmental protection department is considering further reducing the sulfur dioxide emission index to 400mg/m 3 (equivalent to ⁇ 140ppm).
- the allowable pressure drop of the existing industrial exhaust gas is very low (generally less than 2000 Pa), it is urgent to develop a low-pressure drop deep desulfurization device and process.
- Most of the existing desulfurization devices are towers. Equipment, traditional tower equipment has problems such as huge equipment, high operation and maintenance costs, low mass transfer efficiency, and large pressure drop.
- tower equipment needs more anti-corrosion metal materials and high cost, which makes it difficult.
- the pressure of the desulfurization device is reduced, the space occupied is small, and the cost is low.
- the supergravity technology developed in recent years is a new technology to enhance mass transfer, mixing and chemical reactions.
- This technology uses the centrifugal force generated by the rotation of the inner rotor of a supergravity rotating bed to simulate the hypergravity environment to enhance the transfer and reaction process.
- Increasing the efficiency of the transfer and reaction process as disclosed in the earlier patents on the supergravity device (see Chinese Patent No. 91109255.2, 9111 1028.3, ZL95215430.7, etc.).
- the technology has been extended to physical fields such as separation and desorption, and has been extended to many fields such as chemical reaction and ultrafine particle preparation (see Chinese Patent No. 92102061, 93104828.1 95105344.2, 2004100378859, etc.).
- the rotating bed device mainly comprises a closed casing with a rotating rotor and an annular packing layer on the rotor. Different fluids flow from the corresponding inlet of the casing into the rotating bed, under the centrifugal force field in the rotating packing layer (ie super Gravity environment) The mass transfer rate is increased by 1 to 3 orders of magnitude compared to conventional towers.
- a general understanding of the principle of enhanced mass transfer in a rotating bed is: The fluid is torn into fine droplets, liquid filaments or liquid membranes in a centrifugal field environment, producing a large number of rapidly renewed surface areas, greatly enhancing mass transfer and mixing processes.
- the object of the present invention is to provide a rotating bed supergravity device with a low-pressure drop, a nano-structure, and a new process for removing harmful gases, in order to deeply remove the harmful gas in the industrial exhaust gas to meet the requirements of low pressure drop and high efficiency of the equipment.
- the core is to replace the disordered random mesh filler or baffled orifice with structured SiC, sintered ceramic, powder sintered titanium-based alloy filler, so that the fluid flows in the structure controllable rectifier channel to reduce the flow resistance, minus Small pressure drop.
- the micro-structure of the convex and concave micro-structures is formed on the surface of the filler by sintering, etc., and the specific surface area is further improved to enhance the mass transfer and achieve the purpose of efficiently removing deep harmful gases.
- the utility model provides a structured packing rotating bed supergravity device with a low pressure drop and a nano-structure on the surface of a harmful exhaust gas for deep removal of industrial exhaust gas, which comprises a rotating component composed of a rotor and a filler, and a shell, which are arranged in a closed book housing.
- the body and the upper cover are provided with a liquid inlet and outlet, and a gas inlet and outlet.
- the liquid inlet is provided with a liquid distributor extending into the central cavity of the rotor, wherein the filler in the rotating component of the device adopts nano micron.
- Structured structured SiC sintered ceramics, powder sintered titanium-based alloy filler, structured filler flow path diameter 0.1 ⁇ 5mm, porosity 55 ⁇ 97%, filler surface with 0.01 ⁇ 3 /m convex-concave nano-structure, specific surface area 200 ⁇ 2000m 2 /m 3 .
- gas-liquid cocurrent operation can be used.
- the exhausting type blade is mounted on the rotating component, and is coaxially mounted in the rotor center cavity coaxially with the rotor, and gas-liquid countercurrent operation can also be used.
- a drafting blade is mounted coaxially with the rotor, the blade extending into the central gas outlet conduit.
- the exhaust type blade is of a back bend type and is coaxially mounted with the rotor in the inner central cavity of the rotor.
- the draft type vane is of an axial flow type, coaxially mounted to the rotor and extended to the central gas outlet duct.
- the invention provides a process for deep removal of harmful gases of industrial exhaust gas by using a rotating bed supergravity device, which means that the exhaust gas and the absorption liquid are countercurrently flowed in a rotating bed supergravity device equipped with a nano-structured packing or Parallel flow contact removes harmful gases from the exhaust.
- the absorption liquid for treating the acid harmful gas is an alkaline solution commonly used in the industry, such as ammonia water, organic amine, ammonium sulfite, ammonium sulfate, sodium sulfite, citric acid/sodium citrate, sodium hydroxide, etc.
- the absorption liquid of harmful gas is an acidic solution such as dilute sulfuric acid or dilute nitric acid which is commonly used in industry, and can be selected according to specific process and user requirements.
- the pressure of the system during absorption may be atmospheric pressure, the temperature of the system is 30 to 85 ° C, and the rotational speed of the rotating bed is 50-3000 rpm, preferably 80-1000 rpm. It is said that after the absorption liquid and the exhaust gas pass through the nano-structured packing rotating bed supergravity device, the harmful gas content of the exhaust gas is lower than 20 to 120 ppm, and the pressure is lowered to 500 to 2000 Pa.
- the gas volume flow rate to the liquid volume flow ratio is 300 to 1500:1, preferably 400 to 1000:1.
- the present invention reduces the pressure drop by using a structured packing to allow fluid to flow in a structurally controlled gauge flow path.
- the use of the nano-structure of the surface of the filler to achieve deep removal of harmful gases in the industrial exhaust gas.
- Providing a rotating bed supergravity device with higher mass transfer efficiency and lower gas phase pressure drop and a process method for removing harmful gases in industrial exhaust gas by using the device for low pressure drop deep removal of harmful gases in industrial exhaust gas The pressure drop of the packed rotating bed supergravity device is reduced by 40-80%, and the harmful gas content after treatment is less than 20-100ppm.
- the equipment has the characteristics of low cost, large operation flexibility and small floor space, especially suitable for upgrading and upgrading the existing industrial exhaust gas harmful gas treatment device.
- Figure 1 is a schematic view showing the structure of a cocurrent rotating bed of the present invention
- FIG. 2 is a schematic structural view of a counterflow type rotating bed of the present invention
- Figure 3 is a photograph of a structured structured packing
- Figure 4 is a photomicrograph of the surface of the structured structured packing
- Figure 5 is a schematic view showing the structure of the exhaust type blade
- Figure 6 is a schematic view showing the structure of the draft type blade
- Figure 7 is a flow chart of the parallel flow process of the present invention.
- FIG. 8 is a flow chart of the counterflow process of the present invention
- FIG. 1 is a schematic view showing the structure of a parallel flow type rotating bed.
- a rotor 14 driven by a shaft 9.
- a mechanical seal 15 is arranged between the shaft 9 and the outer casing 4 to separate the inside and outside of the casing.
- a liquid outlet 3 is opened in the lower part of the casing, and a gas outlet 5 is opened in the upper part.
- the shaft 9 is mounted on the bearing housing 2, and the lower end of the shaft has a driven pulley 1, which is connected by a shaft 19, a driving pulley 18 and a shaft of the motor 17, to constitute a transmission system.
- An air-distributing blade 12 coaxial with the rotor is fixed in the inner central cavity of the upper end of the shaft by a bolt 11.
- the upper cover 6 is provided on the upper part of the casing, and the gas inlet 10 is opened in the center of the upper cover, and the upper cover 6 and the rotor 14 are A gas seal 13 is provided between them.
- the upper cover also has a liquid inlet 7, and the other end of the liquid inlet is provided with a liquid distributor 8 extending into the central cavity of the rotor, and the liquid material is sprayed into the rotor by the liquid distributor.
- the layer flows outward under the action of centrifugal force.
- the filler 16 in the rotor provides a high specific surface area. In this way, the liquid disperses the liquid into a large number of tiny droplets during the flow from the inside to the outside, exposing a large and rapidly renewed surface area, which is beneficial to the gas-liquid reaction and mass transfer process.
- FIG. 2 is a schematic diagram of a structure of a counter-flow type rotating bed, which is basically the same as the above-mentioned parallel-flow type rotating bed structure. The difference is that the center of the upper cover is a gas outlet 20, and the upper part of the casing is a gas inlet 25, and the gas outlet pipe is fixed in the gas outlet pipe.
- FIG. 3 is a photograph of a structured structured filler 16 in a rotating bed
- Figure 4 is a photograph of the nanostructure of the filler surface
- Figure 5 is a schematic view showing the structure of the exhaust type blade used in the cocurrent rotating bed
- Fig. 6 is a schematic view showing the structure of the draft type vane used in the counterflow type rotating bed.
- FIG. 1 This includes pumping the absorbing liquid from the storage tank 31 into the nano-structured packing rotating bed super-gravity apparatus as shown in Fig. 1.
- the flow rate of the liquid is adjusted by the flow regulating valve 34 and is measured by the flow meter 35.
- the gas After the gas is metered by the flow meter 36, it enters the rotating bed through the gas inlet, and is in parallel contact with the liquid in the packing of the rotor.
- the desulfurized gas is discharged from the gas outlet, and the liquid enters the storage tank from the liquid outlet, and the pump outlet line is adjusted.
- the liquid recovery valve 33 can quantitatively extract the absorption liquid, and the corresponding fresh absorption liquid can be quantitatively supplemented by adjusting the liquid replenishing valve 37.
- the level in the tank is monitored by a level gauge 38 mounted on it.
- FIG. 1 A schematic flow chart of countercurrent desulfurization using the rotating bed of the present invention is shown in FIG. This includes the use of pump 42 to deliver the absorbing liquid from tank 41 to a nano-structured packing rotating bed supergravity apparatus as shown in Figure 2 for liquid inlet.
- the flow rate of the liquid is adjusted by the flow regulating valve 44 and is metered by the flow meter 45.
- the gas is metered by the flow meter 46, it enters the rotating bed through the gas inlet, and is in countercurrent contact with the liquid in the packing of the rotor.
- the desulfurized gas is discharged from the gas outlet, and the liquid enters the storage tank from the liquid outlet, and the liquid is adjusted through the outlet line of the pump.
- the liquid recovery valve 43 can quantitatively extract the absorption liquid, and can be quantitatively supplemented by adjusting the liquid supply width 47. Description
- the level in the tank is monitored by a level gauge 48 mounted on it.
- the harmful gas in the raw material gas is sulfur dioxide, the content is 1960 ppm, and the absorption liquid is an aqueous ammonia solution.
- the system temperature for the absorption process was 50 °C.
- the rotating bed speed N is 500r/min, and the filling type is sintered ceramic filler with a specific surface area of 900m 2 /m 3 , gas-liquid countercurrent, and induced draft blades with a gas-liquid flow ratio of 800:1.
- the harmful gas in the rotary bed outlet gas has a sulfur dioxide content of 50 ppm and an inlet and outlet pressure drop of 1200 Pa.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
Description
一种低压降纳微结构化填料旋转床超重力装置及应用 技术领域
本发明涉及一种脱除工业尾气中腐蚀性有害气体的超重力装置及其应用, 具体涉及一种纳微结构化旋转床超重力装置在脱除有害气体工艺中的应用, 特 别适合于要求低压降的硫酸等工业尾气中二氧化硫深度脱除, 属于超重力技术 领域。 背景技术
说
在硫酸、 化肥、 冶炼等工业尾气中往往包含二氧化硫、 硫化氢、 HC1、 HF 等酸性或 NH3、挥发性有机胺等碱性腐蚀性书有害气体。随着环保压力以及资源回 收有效利用的要求的日益提高, 有害气体的深度脱除受到了高度的重视。 以硫 酸工业为例, 尾气中产生的二氧化硫己成为了空气的主要污染物之一, 由二氧 化硫排放所带来的酸雨也更加频繁, 严重危害到了建筑物、 土壤和人类的生存 环境。 因此, 世界各国纷纷降低二氧化硫的排放指标, 以进一步限制汽车尾气 和工业尾气等烟气中二氧化硫的排放。 目前烟气脱硫技术种类达几十种, 按吸 收剂及脱硫产物在脱硫过程中的干湿状态可将脱硫技术分为湿法、 干法和半干 半湿法; 按脱硫剂的种类, 可分为以下五种方法: 以 CaC03 (石灰石)为基础的 钙法, 以 MgO为基础的镁法, 以 Na2S03为基础的钠法, 以 NH3为基础的氨法, 以有机碱为基础的有机碱法。 世界上普遍使用的商业化技术是化学吸收法。 目前, 我国硫酸等工业尾气二氧化硫排放指标为 800-1200mg/m3。为了满足 国家对于环境保护的要求, 国家环保部门正在考虑将二氧化硫排放指标进一步 降低至 400mg/m3 (折合为〜 140ppm)以下。为此,需要在原有技术和工艺上增加二 氧化硫超低排放、 深度脱硫装置, 由于现有工业尾气允许的压降很低 (一般小 于 2000Pa), 因此急需开发低压降深度脱硫装置及工艺。现有的脱硫装置多为塔
设备, 传统塔设备存在着设备庞大、 运行维护费用高、 传质效率低、 压降大等 问题, 尤其是对于具有腐蚀性的工业尾气, 塔设备需要防腐金属材料多, 造价 高昂, 导致其难以满足工厂现有脱硫技术改造对脱硫装置压降低、 占地空间小、 成本低的需求。
近年来发展起来的超重力技术是一项强化传质、 混合和化学反应的新技术, 该技术利用超重力旋转床内部转子旋转产生的离心力模拟超重力环境来强化传 递和反应过程, 大幅度地提高传递与反应过程的效率, 关于超重力装置在早期 的专利 (详见中国专利 91109255.2, 9111 1028.3 , ZL95215430.7等)已经公开。 目 前该技术从最初应用于分离、 解吸等物理过程已经扩展应用到化学反应、 超微 颗粒制备等诸多领域(详见中国专利 92102061, 93104828.1 95105344.2、 2004100378859 等)。 旋转床装置主要包括密闭的壳体, 内有一个旋转的转子, 转子上有环形填料层, 不同的流体从壳体相应的入口流入旋转床, 在旋转的填 料层中的离心力场下 (即超重力环境)进行传质过程,传质速率比传统的塔器中提 高 1〜3个数量级。 对旋转床强化传质过程原理的一般认识是: 流体在离心力场 环境下被撕裂成细小的液滴、 液丝或液膜, 产生大量的快速更新的表面积, 大 大强化传质和混合过程。
虽然与塔器设备相比, 旋转床超重力装置己经具有被认可的明显优势。 但 是, 现有结构的旋转床超重力装置采用转子内装丝网填料作为核心结构, 由于 填料的无规整性, 仍然存在压降较大等缺点, 导致其也难以满足工厂深度脱硫 技术改造时所面临的低压降的需求。 浙江工业大学等提出的折流式孔板 (旋转 部件无填料) 旋转床超重力装置 (申请号: 01268009、 200510049145 ) 的气相 压降更大, 更难以满足低压降深度脱硫的要求。
发明内容
本发明的目的是针对深度脱除工业尾气中有害气体对设备低压降、 高效率 的要求, 提供了一种低压降、 填料具有纳微结构的旋转床超重力装置及脱除有 害气体的新工艺, 其核心是采用结构化 SiC、烧结陶瓷、 粉末烧结钛基合金填料 替代杂乱无规的丝网填料或折流式孔板, 使流体在结构可控的规整流道中流动 以降低流动阻力, 减小压降。 同时, 在填料表面通过烧结等方法构筑了微观上 凸凹形的纳微结构, 进一步提高比表面积, 以强化传质, 实现高效深度脱除有 害气体的目的。 说
本发明提供的工业尾气有害气体深度脱除用低压降、 表面具有纳微结构的 结构化填料旋转床超重力装置, 包括在密书闭的壳体中安装有由转子和填料组成 转动部件, 壳体及上盖上开有液体进、 出口及气体进、 出口, 液体进口设有延 伸到转子中心空腔中的液体分布器, 其特征在于, 上述装置中转动部件中的填 料采用了具有纳微结构的结构化 SiC、 烧结陶瓷、 粉末烧结钛基合金填料, 结构 化填料流道直径 0.1〜5mm, 孔隙率 55〜97%, 填料表面具有 0.01〜3 /m凸凹形 纳微结构, 其比表面积 200〜2000m2/m3。
对于上述旋转床超重力装置, 可采用气液并流操作, 此时转动部件上安装 排风型叶片, 与转子同轴安装在转子中心空腔中 ·, 也可采用气液逆流操, 此时 与转子同轴安装引风型叶片, 叶片延伸至中央的气体出口管道中。
对于上述旋转床超重力装置, 排风型叶片为后弯式, 与转子同轴安装于转 子内部中心空腔中。
对于上述旋转床超重力装置, 引风型叶片为轴流式, 与转子同轴安装并延 伸至中央的气体出口管道中。
本发明提供的利用旋转床超重力装置深度脱除工业尾气有害气体的工艺方 法是指将尾气与吸收液在装有纳微结构化填料旋转床超重力装置中进行逆流或
并流接触脱除尾气中的有害气体。
对于上述工艺方法中, 处理酸性有害气体的吸收液为工业上常用的氨水、 有机胺、 亚硫酸铵、 硫酸铵、 亚硫酸钠、 柠檬酸 /柠檬酸钠、 氢氧化钠等碱性溶 液, 处理碱性有害气体的吸收液为工业上常用的稀硫酸、 稀硝酸等酸性溶液, 可根据具体工艺过程和用户要求选定。
吸收时系统的压力可为常压, 系统的温度 30〜85 °C , 旋转床的转速为 50-3000rpm, 优选 80-1000rpm。 说吸收液与尾气在经过纳微结构化填料旋转床超 重力装置后, 尾气有害气体的含量低于 20〜120ppm, 压降低于 500〜2000Pa。
对于上述利用旋转床装置深度脱除工业书尾气二氧化硫的工艺方法, 气体体 积流量与液体体积流量比为 300〜 1500: 1 , 优选 400〜 1000: 1。
发明效果:
本发明通过采用结构化填料使流体在结构可控的规整流道中流动以降低压 降。 同时, 利用填料表面凸凹形的纳微结构实现深度脱除工业尾气中有害气体。 为工业尾气中有害气体低压降深度脱除提供了一种传质效率更高、 气相压降更 低的旋转床超重力装置及利用该装置脱除工业尾气中有害气体的工艺方法, 比 杂乱无规的填料旋转床超重力装置的压降降低 40-80%, 处理后有害气体含量低 于 20-100ppm。 同时, 设备具有造价低、 操作弹性大、 占地面积小特点, 尤其适 合现有工业尾气有害气体处理装置的升级改造。
附图说明
图 1是本发明并流型旋转床结构示意图;
1从动皮带轮、 2轴承箱、 3液体出口、 4外壳、 5气体出口、 6上盖、 7液 体进口、 8液体分布器、 9轴、 10气体进口、 11螺栓、 12排风型叶片、 13气体 密封、 14转子、 15机械密封、 16填料、 17电机、 18主动皮带轮、 19皮带
说 明 书
图 2是本发明逆流型旋转床结构示意图;
20气体出口、 22引风型叶片、 25气体进口; 液体补充阀 37、
图 3是结构化规整填料照片;
图 4是结构化规整填料表面纳微结构照片;
图 5是排风型叶片结构示意图;
图 6是引风型叶片结构示意图;
图 7是本发明并流工艺流程图;
31储罐、 32泵、 33采出阀、 34调节阀、 35流量计、 36流量计、 38液位计; 图 8是本发明逆流工艺流程图
41储罐、 42泵、 43采出阀、 44调节阔、 45流量计、 46气体流量计、 47液 体补充阀、 48液位计。
具体实施方式
本发明低压降纳微结构化旋转床超重力装置可以是采用现有的超重力装置 (如申请号 91 109255.2、 91111028.3、 200520100685.3、 01268009.5、 02114174.6、 200510032296.6 等专利中公幵的超重力旋转装置) 进行改进。 优选方式是对立 式超重力装置的改进。如图 1所示为并流型旋转床结构示意图, 在密闭的壳体 4 中有一个由轴 9带动的转子 14,轴 9与外壳 4之间设有机械密封 15来使壳体内 外分隔开, 壳体下部开有液体出口 3, 上部开有气体出口 5。 轴 9安装于轴承箱 2上, 轴的下端有从动皮带轮 1, 通过皮带 19、 主动皮带轮 18和电机 17的轴相 连接, 构成传动系统。 轴的上端转子内部中心空腔中通过螺栓 11固定有与转子 同轴的排风型叶片 12, 在壳体上部有上盖 6, 上盖中央开有气体进口 10, 上盖 6与转子 14之间设有气体密封 13。 上盖上还有液体进口 7, 液体进口的另一端 设有延伸到转子中心空腔中的液体分布器 8,液体物料由液体分布器喷到转子内
层, 在离心力的作用下向外流动。 转子中的填料 16提供高比表面积。 这样, 液 体在由内向外的流动过程中填料将液体分散为大量微小的液滴, 暴露出大量且 快速更新的表面积, 有利于气液反应与传质过程。
如图 2所示为逆流型旋转床结构示意图, 与上述并流型旋转床结构基本相 同, 不同的是上盖中央为气体出口 20, 壳体上部为气体进口 25, 气体出口管内 安装有固定在转轴上端的引风型叶片 22。
图 3为旋转床中结构化规整填说料 16的照片; 图 4为填料表面纳微结构的照 片。 图 5为并流型旋转床中所用的排风型叶片结构示意图。 图 6为逆流型旋转 床中所用的引风型叶片结构示意图。 书 利用本发明旋转床进行并流脱除工业尾气有害气体的流程示意图如图 7所 示。 包括利用泵 32将储罐 31 中的吸收液送入纳微结构化填料旋转床超重力装 置如图 1的液体进口。 通过流量调节阀 34来调节液体流量, 由流量计 35来计 量。 气体经流量计 36计量后, 经气体进口进入旋转床, 与液体在转子的填料中 进行并流接触, 脱硫后的气体由气体出口排出, 液体由液体出口进入储罐, 通 过调节泵出口管线上的液体采出阀 33可以定量的采出吸收液, 通过调节液体补 充阀 37可以定量的补充相应的新鲜吸收液。储罐中的液位通过其上安装的液位 计 38来监测。
利用本发明旋转床进行逆流脱硫的流程示意图如图 8所示。 包括利用泵 42 将储罐 41中的吸收液送入纳微结构化填料旋转床超重力装置如图 2液体进口。 通过流量调节阀 44来调节液体流量, 由流量计 45来计量。 气体经流量计 46计 量后, 经气体进口进入旋转床, 与液体在转子的填料中进行逆流接触, 脱硫后 的气体由气体出口排出, 液体由液体出口进入储罐, 通过调节泵出口管线上的 液体采出阀 43可以定量的采出吸收液, 通过调节液体补充阔 47可以定量的补
说 明 书
充相应的新鲜吸收液。 储罐中的液位通过其上安装的液位计 48来监测。
下面结合实施例对本发明的实施方案进一步说明。 但是本发明不限于所列 出的实施例。
实施例 1
原料气中有害气体为二氧化硫, 含量 为 1960ppm, 吸收液为氨水溶液。吸收过 程的系统温度 为 50°C。 旋转床转速 N为 500r/min, 填料类型为烧结陶瓷填料 比表面积 ς为 900m2/m3, 气液逆流, 引风型叶片, 气液流量比 为 800: 1。 旋转 床出口气体中有害气体二氧化硫的含量 为 50ppm, 进出口压降 为 1200Pa。 实施例 2-21
工艺流程及步骤同实施例 1, 各实施例的工艺条件和操作条件以及相应的实 验结果详见表 1。
表 1 各实施例的工艺条件及实验结果
说 明 书
实施 ^害气 A , 、 r m MrM 流动力'
例 体 ^ (PPm) ( c) 吸收剂 式 η 叶片类型 jV(rpm)填料类型 ς ( m2/m3) φ0 (ppm) Ap (Pa) 硫硫硫硫硫硫硫硫硫硫氧硫硫硫硫氧氧氧氧硫硫硫硫硫氧氧氧氧氧 ¾氧硫氧氧氧氧氧氧«
化
1980 50 氨水溶液 逆流 800 引风型 800 900 29.5 1600 化
1975 50 氨水溶液 逆流 800 引风型 200 900 63.7 980 化
1925 50 氨水溶液 逆流 800 无叶片 200 900 67.9 1100 化
1985 50 氨水溶液 并流 800 排风型 500 900 86.5 830 化
1990 50 氨水溶液 并流 800 排风型 800 900 65.5 630 化
1960 50 氨水溶液 并流 800 排风型 200 900 101.2 890 化
1970 50 氨水溶液 并流 800 无叶片 200 900 100.5 960 化
1990 50 氨水溶液 逆流 500 引风型 500 900 32.5 980 化
1980 50 氨水溶液 逆流 1000 引风型 500 900 58.8 1230 化
1975 50 i水溶液 逆流 800 引风型 800 300 114.1 1560 化
1975 50 氨水溶液 逆流 800 引风型 800 600 74.6 1630 化
1960 50 氨水溶液 逆流 800 引风型 800 烧烧烧钛金钛金烧烧烧烧瓷瓷瓷瓷烧烧烧烧烧烧烧烧烧烧瓷瓷瓷瓷瓷瓷瓷瓷瓷瓷瓷瓷烧 1600 23.8 1680
¾¾基基结结¾瓷结结结结结结结结结结结结结结结结
化 陶合陶陶陶陶陶陶陶陶陶陶陶陶陶陶陶陶陶
1990 50 亚硫酸胺溶液 逆流 800 引风型 500 900 63 1345 化
1350 50 亚硫酸胺溶液 逆流 800 引风型 500 900 42 1280 化
2185 50 亚硫酸胺溶液 逆流 450 引风型 500 900 52.8 860 化
860 50 亚硫酸胺溶液 逆流 1200 引风型 500 900 20.3 1460 化
1970 50 有机胺溶液 逆流 800 引风型 500 900 86.5 1260 化
1980 50 亚硫酸钠溶液 逆流 1200 引风型 500 900 109.2 1380 化
20 1980 35 氨水溶液 逆流 800 引风型 500 900 43.1 1530 化 柠檬酸 /柠檬酸钠
21 1965 75 逆流 800 引风型 500 900 113.8 1250 溶液
硫化氢 13000 50 二乙醇胺 逆流 600 引风型 500 600 19.5 960 硫化氢 800 45 碳酸钠 逆流 400 引风型 500 900 9.8 930 硫化氢 500 45 碳酸钠 逆流 400 引风型 500 600 15.3 910 注: 系统温度: Γ , 原料气中^害气休含量 φ,. , 气液比 7 旋转床转速 N , 吸收后有害气休含量 填料比表 Ifti枳
Claims
权 利 要 求 书 、 一种低压降纳微结构化填料旋转床超重力装置, 包括在密闭的壳体中安装 有由转子和填料组成转动部件,壳体及上盖上开有液体进、出口及气体进、 出口, 液体进口设有延伸到转子中心空腔中的液体分布器, 其特征在于, 上述装置中转动部件中的填料采用了具有纳微结构的结构化 SiC、 烧结陶 瓷、粉末烧结钛基合金填料,结构化填料流道直径 0. 1〜5mm,孔隙率 55〜 97%, 填料表面具有 0.01〜3 ^凸凹形纳微结构, 其比表面积 200〜 2000m2/m
、 按照权利要求 1的超重力装置,其特征在于,转动部件上安装排风型叶片, 与转子同轴安装在转子中心空腔中。
、 按照权利要求 2的超重力装置, 其特征在于, 排风型叶片为后弯式 、 按照权利要求 1的超重力装置,其特征在于,转动部件上安装引风型叶片, 与转子同轴安装, 叶片延伸至中央的气体出口管道中。
、 按照权利要求 4的超重力装置, 其特征在于, 引风型叶片为轴流式。
、 利用权利要求 1的旋转床超重力装置脱除工业尾气有害气体的工艺方法, 其特征在于, 将尾气与吸收液在装有纳微结构化填料旋转床超重力装置中 进行逆流或并流接触脱除尾气中的有害气体, 吸收时系统的压力可为常 压, 系统的温度 30〜85 °C, 旋转床的转速为 50-3000rpm。
、 按照权利要求 6的工艺方法,其特征在于,旋转床的转速优选 80-1000rpm。 、 按照权利要求 7的工艺方法, 其特征在于, 脱除工业尾气二氧化硫, 气体 体积流量与液体体积流量比为 300〜1500: 1。
、 按照权利要求 8的工艺方法, 其特征在于, 气体体积流量与液体体积流量 比为 400〜1000: 1。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010579829A CN102120172B (zh) | 2010-12-03 | 2010-12-03 | 一种低压降纳微结构化填料旋转床超重力装置及应用 |
CN201010579829.3 | 2010-12-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012071865A1 true WO2012071865A1 (zh) | 2012-06-07 |
Family
ID=44248890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/074733 WO2012071865A1 (zh) | 2010-12-03 | 2011-05-26 | 一种低压降纳微结构化填料旋转床超重力装置及应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102120172B (zh) |
WO (1) | WO2012071865A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106621793A (zh) * | 2017-02-15 | 2017-05-10 | 河北科技大学 | 一种脱除硫化氢生产硫磺的生物滴滤塔及其方法 |
CN111974181A (zh) * | 2020-08-31 | 2020-11-24 | 杭州易佑农业生产资料有限公司 | 一种沥青车间的烟气处理装置 |
CN113732279A (zh) * | 2021-08-03 | 2021-12-03 | 北京化工大学 | 一种作为电镜显影剂的纳米金颗粒的制备方法及所得纳米金颗粒 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102764627A (zh) * | 2012-08-11 | 2012-11-07 | 侯晓峰 | 旋转填料床反应设备 |
CN103463936B (zh) * | 2013-09-07 | 2015-10-21 | 中北大学 | 脱除废气中二氧化硫的装置及方法 |
CN104511235A (zh) * | 2013-09-29 | 2015-04-15 | 北京化工大学 | 自增压、具有整体结构化填料的旋转填充床装置及其应用 |
CN103756743B (zh) * | 2013-12-24 | 2016-01-06 | 北京化工大学 | 海上平台脱除低含量硫化氢原料气中的硫化氢的方法 |
CN104569034A (zh) * | 2015-01-28 | 2015-04-29 | 武汉科技大学 | 一种用于金属材料的超重力场凝固实验装置 |
CN106268575B (zh) * | 2015-06-04 | 2018-10-30 | 北京化工大学 | 一种反应与分离耦合的超重力旋转床装置及其应用 |
CN105771572B (zh) * | 2016-05-20 | 2019-09-03 | 江苏奥利思特环保科技有限公司 | 一种重力旋转脱硫设备 |
CN108722130B (zh) * | 2017-04-18 | 2020-05-19 | 北京化工大学 | 气相氧化/分解和吸收一体化装置及其应用 |
CN107019988A (zh) * | 2017-05-24 | 2017-08-08 | 北京化工大学苏州(相城)研究院 | 烟气脱硫系统和方法、以及硫磺回收尾气焚烧炉的应用 |
CN109701377B (zh) * | 2019-02-25 | 2023-12-12 | 萍乡学院 | 超重力旋转床 |
CN113072984B (zh) * | 2021-04-21 | 2021-09-10 | 济南冶金化工设备有限公司 | 焦炉煤气超重力脱硫设备转子及设备 |
CN113877513B (zh) * | 2021-11-15 | 2023-06-27 | 成都阿利特建材有限公司 | 一种超重力膜间反应釜 |
CN115106040A (zh) * | 2022-04-26 | 2022-09-27 | 临沂巨达科技环保工程有限公司 | 一种微泡射流超重力膜间反应釜 |
CN116159374A (zh) * | 2023-01-04 | 2023-05-26 | 中国神华煤制油化工有限公司 | 一种含硫尾气的脱硫系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1566067A (zh) * | 2003-06-13 | 2005-01-19 | 财团法人工业技术研究院 | 利用旋转填充床由酯类产物混合物中去除未反应的醇类的方法 |
US20080171889A1 (en) * | 2007-01-16 | 2008-07-17 | National Kaohsiunh University Of Applied Sciences | Method of increasing transesterification of oils |
CN101549274A (zh) * | 2008-04-01 | 2009-10-07 | 北京化工大学 | 一种超重力旋转床装置及在二氧化碳捕集纯化工艺的应用 |
CN101856583A (zh) * | 2009-04-09 | 2010-10-13 | 上海华谊集团上硫化工有限公司 | 一种脱除气体中低浓度二氧化硫的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1325144C (zh) * | 2005-02-04 | 2007-07-11 | 华南理工大学 | 一种超重力液体吸收除湿与再生系统 |
CN101798381B (zh) * | 2009-02-09 | 2012-01-11 | 财团法人工业技术研究院 | 聚丁二酸丁酯的制造方法 |
-
2010
- 2010-12-03 CN CN201010579829A patent/CN102120172B/zh not_active Expired - Fee Related
-
2011
- 2011-05-26 WO PCT/CN2011/074733 patent/WO2012071865A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1566067A (zh) * | 2003-06-13 | 2005-01-19 | 财团法人工业技术研究院 | 利用旋转填充床由酯类产物混合物中去除未反应的醇类的方法 |
US20080171889A1 (en) * | 2007-01-16 | 2008-07-17 | National Kaohsiunh University Of Applied Sciences | Method of increasing transesterification of oils |
CN101549274A (zh) * | 2008-04-01 | 2009-10-07 | 北京化工大学 | 一种超重力旋转床装置及在二氧化碳捕集纯化工艺的应用 |
CN101856583A (zh) * | 2009-04-09 | 2010-10-13 | 上海华谊集团上硫化工有限公司 | 一种脱除气体中低浓度二氧化硫的方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106621793A (zh) * | 2017-02-15 | 2017-05-10 | 河北科技大学 | 一种脱除硫化氢生产硫磺的生物滴滤塔及其方法 |
CN111974181A (zh) * | 2020-08-31 | 2020-11-24 | 杭州易佑农业生产资料有限公司 | 一种沥青车间的烟气处理装置 |
CN113732279A (zh) * | 2021-08-03 | 2021-12-03 | 北京化工大学 | 一种作为电镜显影剂的纳米金颗粒的制备方法及所得纳米金颗粒 |
CN113732279B (zh) * | 2021-08-03 | 2024-02-06 | 北京化工大学 | 一种作为电镜显影剂的纳米金颗粒的制备方法及所得纳米金颗粒 |
Also Published As
Publication number | Publication date |
---|---|
CN102120172A (zh) | 2011-07-13 |
CN102120172B (zh) | 2012-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012071865A1 (zh) | 一种低压降纳微结构化填料旋转床超重力装置及应用 | |
Guo et al. | Applications of high-gravity technologies in gas purifications: A review | |
CN106693858B (zh) | 一种防堵型超重力旋转床及含有该防堵型超重力旋转床的系统装置及应用 | |
Jiang et al. | Absorption of sulphur dioxide with sodium citrate buffer solution in a rotating packed bed | |
CN208436558U (zh) | 一种碳酸锂工艺中的锂矿焙烧烟气处理装置 | |
CN101549274B (zh) | 一种超重力旋转床装置及在二氧化碳捕集纯化工艺的应用 | |
CN102451610B (zh) | 一种工业生产窑炉氮氧化物尾气的治理方法和装置 | |
CN106902625B (zh) | 一种超重力克劳斯尾气脱硫系统装置及应用 | |
CN104474996A (zh) | 一种多级错流旋转填料床传质与反应设备 | |
CN101422693A (zh) | 硫酸尾气深度脱硫方法 | |
Bai et al. | SO2 removal in a pilot scale rotating packed bed | |
CN103170218B (zh) | 沼气净化方法及系统 | |
JPS6050486B2 (ja) | ガス流を処理する方法 | |
CN103252234B (zh) | 一种核壳结构纳米催化剂及其制备方法和应用 | |
CN204637948U (zh) | 燃烧烟气脱硝脱硫除尘的装置 | |
CN103977654A (zh) | 一种高效湿式除尘脱硫脱硝设备及工艺方法 | |
CN211245955U (zh) | 一种尿素水解反应器出口除雾装置 | |
CN204522731U (zh) | 塔外除雾湿法烟气脱硫装置 | |
Lin et al. | Removal of carbon dioxide from indoor air using a cross-flow rotating packed bed | |
CN207986979U (zh) | 一种生产废水高效处理系统 | |
CN207445965U (zh) | 一种石灰石—石膏湿法烟气脱硫用除雾装置 | |
CN206897151U (zh) | 一种氧化铝焙烧复合sncr‑scr烟气脱硝工艺 | |
CN107913591A (zh) | 一种用于生物制药车间的空气净化装置 | |
JP7120424B1 (ja) | 硫化水素の精製方法、硫化リチウムの製造方法、硫化水素精製装置および硫化リチウム製造装置 | |
CN108588842A (zh) | Co2矿化制备碳酸钙晶须装置及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11844707 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11844707 Country of ref document: EP Kind code of ref document: A1 |