WO2012070445A1 - 光学ユニットおよび撮像装置 - Google Patents

光学ユニットおよび撮像装置 Download PDF

Info

Publication number
WO2012070445A1
WO2012070445A1 PCT/JP2011/076402 JP2011076402W WO2012070445A1 WO 2012070445 A1 WO2012070445 A1 WO 2012070445A1 JP 2011076402 W JP2011076402 W JP 2011076402W WO 2012070445 A1 WO2012070445 A1 WO 2012070445A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
lens element
object side
optical unit
Prior art date
Application number
PCT/JP2011/076402
Other languages
English (en)
French (fr)
Inventor
馬場 友彦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201180055564.XA priority Critical patent/CN103221867B/zh
Priority to KR1020137011914A priority patent/KR101925647B1/ko
Priority to EP11842644.4A priority patent/EP2645144A4/en
Priority to US13/988,356 priority patent/US8922917B2/en
Publication of WO2012070445A1 publication Critical patent/WO2012070445A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only

Definitions

  • the present disclosure relates to an optical unit and an imaging apparatus that are applied to, for example, an on-vehicle or monitoring imaging apparatus.
  • Patent Document 1 A wide-angle lens technique disclosed in Patent Document 1 is known as a prior art of a lens system for in-vehicle or surveillance applications having a horizontal angle of view of about 90 degrees.
  • This wide-angle lens is composed of three groups, the first lens is composed of a glass lens, and the second and third lenses are composed of an aspheric mold, and can be used for in-vehicle or monitoring applications.
  • Patent Document 2 As another example of such a wide-angle lens composed of three groups, a technique disclosed in Patent Document 2 is known.
  • the wide-angle lens disclosed in Patent Document 1 has a large optical distortion and the smallest of the three embodiments is about 15%. This is because the aberration cannot be completely removed because the first lens is spherical.
  • the first lens is formed of an aspherical surface, and the optical distortion is suppressed within 5 [%].
  • the first lens is made of plastic, a cover glass that separately protects the front surface is required when used for in-vehicle or monitoring applications.
  • the present disclosure is to provide an optical unit and an imaging apparatus that can suppress optical distortion with three groups of wide-angle lenses, have good optical characteristics, and can withstand reflow.
  • An optical unit includes a first lens group, a second lens group, and a third lens group, which are sequentially arranged from the object side toward the image plane side, and
  • the first lens group includes a first lens element
  • the second lens group is disposed in order from the object side to the image plane side, the second lens element, the first transparent body, and the third lens.
  • the third lens group includes a fourth lens element, a second transparent body, and a fifth lens element that are arranged in order from the object side to the image plane side.
  • An image pickup apparatus includes an image pickup element and an optical unit that forms a subject image on the image pickup element, and the optical unit sequentially from the object side toward the image plane side.
  • the second lens element, the first transparent body, and the third lens element, which are sequentially arranged toward the image plane side, include the third lens group in order from the object side toward the image plane side. 4th lens element, 2nd transparent body, and 5th lens element which are arrange
  • the optical distortion can be kept low with the three groups of wide-angle lenses, the optical characteristics are good, and it can withstand reflow.
  • Example 2 It is a figure showing an example of composition of an imaging lens concerning a 1st embodiment of this indication. It is a figure which shows the surface number provided with respect to each lens which comprises each lens group of the imaging lens which concerns on 1st Embodiment, a board
  • Example 1 it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration. It is a figure which shows the structural example of the imaging lens which concerns on 2nd Embodiment of this indication. It is a figure which shows the surface number provided with respect to each lens which comprises each lens group of the imaging lens which concerns on 2nd Embodiment, a board
  • Example 2 it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration. It is a block diagram which shows the structural example of the imaging device by which the imaging lens which concerns on this embodiment is employ
  • FIG. 1 is a diagram illustrating a configuration example of an imaging lens employing the optical unit according to the first embodiment of the present disclosure.
  • the imaging lens 100 includes a first lens group 110, a second lens group 120, and a third lens, which are sequentially arranged from the object side OBJS toward the image plane side. It has a group 130, a cover glass 140, and an image plane 150.
  • the imaging lens 100 is formed as a single focus lens.
  • the first lens group 110, the second lens group 120, and the third lens group 130 form an optical unit.
  • the second lens group 120 and the third lens group 130 are formed of a joined body including a plurality of lens elements arranged with a transparent body interposed therebetween.
  • the first lens group 110 is formed by only one first lens element 111.
  • the first lens group 110 is constituted by a first lens element 111 of a glass spherical lens equivalent to a shot company BK7 of negative power with a concave shape facing the image surface side.
  • the second lens group 120 is formed by a cemented body including the second lens element 121, the first transparent body 122, and the third lens element 123, which are sequentially arranged from the object side OBJS toward the image plane 150 side.
  • the third lens group 130 is formed by a joined body including the fourth lens element 131, the second transparent body 132, and the fifth lens element 133, which are sequentially arranged from the object side OBJS toward the image plane 150 side. Yes.
  • the second lens group 120 and the third lens group 130 are configured as follows.
  • the second lens group 120 has a convex flat shape made of a UV curable resin as a glass material and a second lens element 121 having an Abbe number of 29.6 attached to the object side of a glass plate equivalent to BK7 manufactured by Schott.
  • a third lens element 123 having a plano-convex shape using UV curable resin as a glass material and having an Abbe number of 57.1 is attached to the opposite side on the image surface side.
  • the diaphragm is realized by previously attaching a material such as a chromium film that hardly transmits to the object side of the glass substrate.
  • An infrared (IR) cut filter is also provided on the same surface.
  • a fourth lens element 131 having a concave flat shape made of UV curable resin as a glass material and having an Abbe number of 29.6 is attached to the object side of a glass plate equivalent to BK7 manufactured by Schott.
  • a fifth lens element 133 having a plano-convex shape using UV curable resin as a glass material and an Abbe number of 57.1 is attached to the image surface side.
  • the second lens group 120 and the third lens group 130 preferably have a process of simultaneously producing a large number of lenses using a UV resin on a wafer-like glass substrate. The process is performed by the second lens element 121 to the fifth lens element 133. It is possible to manufacture lenses efficiently. Next, it is desirable to bond the glass wafers of the second lens group 120 and the third lens group 130, and then dice them into individual pieces. It is desirable that the second lens group 120, the third lens group 130, and the first lens element 111 of the first lens group 110 thus completed are assembled in a lens barrel.
  • the first lens group 110, the second lens group 120, and the third lens group 130 are specifically configured as follows.
  • the first lens group 110 is composed of a strong negative power lens having a focal length of -2.92 [mm].
  • the advantage is that the peripheral light quantity is prevented from deteriorating and the entrance pupil position is moved to the object side. By moving the entrance pupil position to the object side, an effect of suppressing the incident angle of the principal ray of the ambient light incident on the image sensor and an advantage that the back focus becomes long are produced, and desirable characteristics can be obtained in the digital camera.
  • the second lens group 120 has a strong positive power with a combined focal length of 1.38 [mm]. As a result, optical distortion and asymmetrical aberration generated by the first lens group 110 having a strong negative power are corrected.
  • the third lens group 130 is configured with a small Abbe number with negative power on the incident side and a large Abbe number with positive power on the output side, and well corrects various aberrations including chromatic aberration. As a result, the lens has a high resolution with a horizontal field angle of 90 degrees and an optical distortion of -5.7 [%].
  • the image plane 150 is assumed to be an imaging plane (image receiving plane) of a solid-state imaging device such as a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor. is doing. Between the image surface side surface of the fifth lens element 133 and the image surface 150, a cover glass 140 formed of resin or glass is disposed, and an optical member is disposed in addition to an infrared cut filter, a low-pass filter, and the like. It may be. In the present embodiment, in FIG. 1, the left side is the object side (front), and the right side is the image plane side (rear). A light beam incident from the object side is imaged on the image plane 150.
  • a solid-state imaging device such as a CCD (Charge Coupled Device) sensor or a CMOS (Complementary Metal Oxide Semiconductor) sensor.
  • a cover glass 140 formed of resin or glass is disposed, and an optical member is disposed in addition to an infrared cut filter
  • the imaging lens 100 of the present embodiment which is a single focus lens, is configured to satisfy the following conditional expressions (1) to (5).
  • Conditional expression (1) is an expression related to the focal length fL1 of the first lens group 110.
  • Equation 1 ⁇ 10 ⁇ fL1 / f ⁇ ⁇ 0.2 (1)
  • f represents the focal length of the entire optical system (lens system).
  • the amount of peripheral light is degraded by the cosine fourth power law.
  • the back focus becomes very short and mounting becomes difficult.
  • the angle of light incident on the image sensor becomes very large, and it is hardly used in digital cameras using CCD and CMOS sensors.
  • Wide-angle lenses starting with the negative group are common.
  • the advantage is that the peripheral light quantity is prevented from deteriorating and the entrance pupil position is moved to the object side. By moving the entrance pupil position to the object side, an effect of suppressing the incident angle of the principal ray of the ambient light incident on the image sensor and an advantage that the back focus becomes long are produced, and desirable characteristics can be obtained in the digital camera.
  • Conditional expression (1) is necessary due to these circumstances. If the lower limit is exceeded, the negative power becomes small and these advantages cannot be obtained. Therefore, this lower limit is necessary. If the upper limit is exceeded, the negative power becomes stronger, and the power of the succeeding rear group that corrects the negative power becomes stronger. As a result, the manufacturing tolerance becomes very small and the manufacturing becomes impossible practically. Therefore, this is the upper limit.
  • Conditional expression (2) is an expression relating to the focal length fL2 of the second lens group 120.
  • Equation 2 0.8 ⁇ fL2 / f ⁇ 5 (2)
  • f represents the focal length of the entire optical system (lens system).
  • the second lens group 120 has a positive power.
  • Conditional expression (2) is necessary for the above reason. If the lower limit is exceeded, the positive power becomes strong, the manufacturing tolerance becomes very small, and it becomes impossible to manufacture practically. Therefore, this is the lower limit. If the upper limit is exceeded, optical distortion and asymmetric aberration cannot be corrected, and desirable camera characteristics cannot be obtained, so this upper limit is necessary. Since the first lens group 110 and the second lens group 120 play a role of eliminating various aberrations as described above, it is desirable that the third lens group 130 basically has a configuration in which chromatic aberration is eliminated.
  • Conditional expression (3) relates to the Abbe number ⁇ dE4 of the fourth lens element 131 of the third lens group 130.
  • Conditional expression (3) is necessary for the following reason. Since the fourth lens element 131 of the third lens group 130 has negative power, the smaller the Abbe number is, the achromatic condition is.
  • the lower limit is determined by the physical property value. At present, there is no report of glass materials having an Abbe number of 24 or less, and the maximum realistic value is the lower limit. Further, the upper limit deteriorates the camera characteristics because chromatic aberration is produced without being achromatic. This is the upper limit.
  • Conditional expression (4) relates to the Abbe number ⁇ dE5 of the fifth lens element 133 of the third lens group 130.
  • Conditional expression (4) is necessary for the following reason. Since the fifth lens element 133 in the third lens group 130 has a positive power, the larger the Abbe number is, the more achromatic condition is. The lower limit deteriorates the camera characteristics because it causes chromatic aberration without being achromatic. This is the lower limit.
  • the upper limit is determined by physical property values. At present, there is no report of glass materials having an Abbe number of 66 or more, and the upper limit is the most realistic.
  • Conditional expression (5) relates to the angle of view.
  • Conditional expression (5) is necessary for the following reason.
  • the lower limit is close to the standard angle of view even with a wide-angle lens, and the negative group start is not optimal. Therefore, this is the lower limit.
  • conditional expressions (1) to (5) are common to the first and second embodiments, which will be described below, and by adopting them as necessary, more preferable results suitable for individual imaging elements or imaging apparatuses. Image performance and a compact optical system are realized.
  • the aspherical shape of the lens is as follows when the direction from the object side to the image plane side is positive, k is a conical coefficient, A, B, C, and D are aspherical coefficients, and r is a central radius of curvature. It is represented by y represents the height of the light beam from the optical axis, and c represents the reciprocal (1 / r) of the central curvature radius r.
  • X is the distance from the tangent plane to the aspheric vertex
  • A is the fourth-order aspheric coefficient
  • B is the sixth-order aspheric coefficient
  • C is the eighth-order aspheric coefficient
  • D is the tenth-order aspheric coefficient. Each aspheric coefficient is shown.
  • FIG. 2 shows lens numbers constituting each lens group of the imaging lens according to the first embodiment, a substrate (transparent body), a cover glass constituting the imaging unit, and surface numbers given to the image plane.
  • the surface number L1S1 is assigned to the object side surface (convex surface) of the first lens element 111 of the first lens group 110, and the surface number L1S2 is assigned to the image surface side surface of the first lens element 111.
  • the surface number L2S1 is given to the object side surface of the second lens element 121 of the second lens group 120, and the surface number GS1S1 is given to the boundary surface (joint surface) between the second lens element 121 and the object side surface of the first transparent body 122.
  • the surface number GS1S2 is assigned to the boundary surface (joint surface) between the image surface side surface of the first transparent body 122 and the object side surface of the third lens element 123, and the surface number L2S2 is assigned to the image surface side surface of the third lens element 123.
  • the surface number L3S1 is assigned to the object side surface of the fourth lens element 131 of the third lens group 130, and the surface number GS2S1 is assigned to the boundary surface (joint surface) between the fourth lens element 131 and the object side surface of the second transparent body 132. Has been.
  • the surface number GS2S2 is assigned to the boundary surface (bonding surface) between the image surface side surface of the second transparent body 132 and the object side surface of the fifth lens element 133, and the surface number L3S2 is assigned to the image surface side surface of the fifth lens element 133. ing.
  • the cover glass 140 is assigned a surface number CG, and the image surface 150 is assigned a surface number T1.
  • the center curvature radius of the object side surface L1S1 of the first lens element 111 of the first lens group 110 is set to R1.
  • the central radius of curvature of the image plane side surface L1S2 of the first lens element 111 is set to R2.
  • the center curvature radius of the object side surface L2S1 of the second lens element 121 of the second lens group 120 is set to R3, and the boundary surface (bonding surface) between the image surface side surface of the second lens element 121 and the object side surface of the first transparent body 122 is set.
  • the central radius of curvature of GS1S1 is set to R4.
  • the central radius of curvature of the boundary surface (joint surface) GS1S1 between the image surface side surface of the first transparent body 122 and the object side surface of the third lens element 123 is set to R5.
  • the central radius of curvature of the image plane side surface L2S2 of the third lens element 123 is set to R6.
  • the center curvature radius of the object side surface L3S1 of the fourth lens element 131 of the third lens group 130 is set to R7, and the boundary surface (bonding surface) between the image surface side surface of the fourth lens element 131 and the object side surface of the third transparent body 132 is set.
  • the central radius of curvature of GS2S1 is set to R8.
  • the central radius of curvature of the boundary surface (bonding surface) GS2S2 between the image surface side surface of the second transparent body 132 and the object side surface of the fifth lens element 133 is set to R9.
  • the center curvature radius of the image surface side surface L3S2 of the fifth lens element 133 is set to R10.
  • the central radii of curvature R4, R5, R8, and R9 of the surfaces GS1S1, GS1S2, GS2S1, and GS2S2 are infinite (INFINITY).
  • the distance on the optical axis OX between the surface L1S1 and the surface L1S2 that is the thickness of the first lens element 111 of the first lens group 110 is set to d1.
  • the distance on the optical axis OX between the image side surface L1S2 of the first lens element 111 and the object side surface L2S1 of the second lens element 121 of the second lens group 120 is set to d2.
  • the distance on the optical axis OX between the surface L2S1 and the surface GS1S1, which is the thickness of the second lens element 121, is set to d3.
  • the distance on the optical axis OX between the surface GS1S1 and the surface GS1S2 that is the thickness of the first transparent body 122 is set to d4.
  • the distance on the optical axis OX between the surface GS1S2 and the surface L2S2, which is the thickness of the third lens element 123, is set to d5.
  • the distance on the optical axis OX between the image side surface L2S2 of the third lens element 123 and the object side surface L3S1 of the fourth lens element 131 of the third lens group 130 is set to d6.
  • the distance on the optical axis OX between the surface L3S1 and the surface GS2S1, which is the thickness of the fourth lens element 131, is set to d7.
  • the distance on the optical axis OX between the surface GS2S1 and the surface GS2S2, which is the thickness of the second transparent body 132, is set to d8.
  • the distance on the optical axis OX between the surface GS2S2 and the surface L3S2 that is the thickness of the fifth lens element 133 is set to d9.
  • Example 1 according to specific numerical values of the imaging lens is shown below.
  • surface numbers as shown in FIG. 2 are given to the lens elements of the imaging lens 100 and the glass substrate (transparent body).
  • Example 1 Table 1, Table 2, Table 3, and Table 4 show the numerical values of Example 1. Each numerical value in the first embodiment corresponds to the imaging lens 100 in FIG.
  • the first embodiment is a design example for a 1/4 size CCD or CMOS imager.
  • Table 1 shows each lens element corresponding to each surface number of the imaging lens in Example 1, a radius of curvature (R: mm), an interval (d: mm), a refractive index (nd), and the like of a glass substrate (transparent body). And the dispersion value ( ⁇ d).
  • Table 2 shows the fourth order of the surface L2S1 of the second lens element 121 including the aspherical surface in Example 1, the surface L2S2 of the third lens element 123, the surface L3S1 of the fourth lens element 131, and the surface L3S2 of the fifth lens element 133. , 6th, 8th and 10th order aspherical coefficients.
  • K is the conic constant
  • A is the fourth-order aspheric coefficient
  • B is the sixth-order aspheric coefficient
  • C is the eighth-order aspheric coefficient
  • D is the tenth-order aspheric coefficient. Represents.
  • Table 3 specifically shows the focal length f, the numerical aperture F, the half angle of view ⁇ , and the lens length H of the imaging lens 100 according to the first embodiment.
  • the focal length f is set to 1.85 [mm]
  • the numerical aperture F is set to 2.8
  • the half angle of view ⁇ is set to 52.5 deg
  • the lens length H is set to 9.07 [mm].
  • Table 4 shows that, in Example 1, the above conditional expressions (1) to (5) are satisfied.
  • Example 1 the value (fL1 / f) regarding the focal length of the first lens group 110 is set to ⁇ 1.58, which satisfies the condition defined by the conditional expression (1). Yes.
  • a value (fL2 / f) related to the focal length of the first lens group 110 is set to 0.74, which satisfies the condition defined by the conditional expression (2).
  • the Abbe number ⁇ dE4 of the fourth lens element 131 of the third lens group 130 is set to 29.6, which satisfies the condition defined by the conditional expression (3).
  • the Abbe number ⁇ dE5 of the fifth lens element 133 of the third lens group 130 is set to 57.1, which satisfies the condition defined by the conditional expression (4).
  • the angle of view 2 ⁇ is set to 90, which satisfies the condition defined by conditional expression (5).
  • FIG. 3 is an aberration diagram showing spherical aberration (chromatic aberration), astigmatism, and distortion in Example 1.
  • 3A shows spherical aberration (chromatic aberration)
  • FIG. 3B shows astigmatism
  • FIG. 3C shows distortion.
  • an imaging lens including an optical unit excellent in imaging performance can be obtained in which various spherical, astigmatism, and distortion aberrations are well corrected.
  • FIG. 4 is a diagram illustrating a configuration example of an imaging lens according to the second embodiment of the present disclosure.
  • An imaging lens 100A according to the second embodiment shown in FIG. 4 basically has three groups of a first lens group 110A, a second lens group 120A, and a third lens group 130A, as in the first embodiment. It is comprised by. Also in the second embodiment, the second lens group 120A and the third lens group 130A are formed of a joined body including a plurality of lens elements arranged with a transparent body interposed therebetween. The first lens group 110 ⁇ / b> A is formed by only one first lens element 111.
  • the first lens group 110A is constituted by a first lens element 111 of a glass spherical lens equivalent to a shot company BK7 of negative power having a concave shape directed to the image surface side.
  • the second lens group 120A is formed by a joined body including the second lens element 121, the first transparent body 122, and the third lens element 123, which are sequentially arranged from the object side OBJS toward the image plane 150 side.
  • the third lens group 130A is formed of a joined body including a fourth lens element 131, a second transparent body 132, and a fifth lens element 133, which are sequentially arranged from the object side OBJS toward the image plane 150 side. Yes.
  • the second lens group 120A and the third lens group 130A are configured as follows.
  • the second lens group 120A has a convex flat shape made of UV curable resin as a glass material and a second lens element 121 having an Abbe number of 29.6, which is attached to the object side of a glass plate equivalent to BK7 manufactured by Schott.
  • a third lens element 123 having a plano-convex shape using UV curable resin as a glass material and having an Abbe number of 57.1 is attached to the opposite side on the image surface side.
  • the diaphragm is realized by previously attaching a material such as a chromium film that hardly transmits to the object side of the glass substrate.
  • An infrared (IR) cut filter is also provided on the same surface.
  • a fourth lens element 131 having a concave flat shape made of UV curable resin as a glass material and having an Abbe number of 29.6 is attached to the object side of a glass plate equivalent to BK7 manufactured by Schott.
  • a fifth lens element 133 having a plano-convex shape using UV curable resin as a glass material and an Abbe number of 57.1 is attached to the image surface side.
  • the second lens group 120A and the third lens group 130A preferably have a process of simultaneously producing a large number of lenses using a UV resin on a wafer-like glass substrate. The process is performed by the second lens element 121 to the fifth lens element 133. It is possible to manufacture lenses efficiently. Next, it is desirable to bond the glass wafers of the second lens group 120A and the third lens group 130A, and then dice them into individual pieces. It is desirable that the second lens group 120A, the third lens group 130A, and the first lens element 111 of the first lens group 110 thus completed are assembled in a lens barrel.
  • the first lens group 110A, the second lens group 120A, and the third lens group 130A are specifically configured as follows.
  • the first lens group 110A is composed of a strong negative power lens having a focal length of -4.08 [mm].
  • the advantage is that the peripheral light quantity is prevented from deteriorating and the entrance pupil position is moved to the object side. By moving the entrance pupil position to the object side, an effect of suppressing the incident angle of the principal ray of the ambient light incident on the image sensor and an advantage that the back focus becomes long are produced, and desirable characteristics can be obtained in the digital camera.
  • the second lens group 120A has a strong positive power with a combined focal length of 1.96 [mm].
  • the third lens group 130A is configured with a small Abbe number with negative power on the incident side and a large Abbe number with positive power on the output side, and well corrects various aberrations including chromatic aberration.
  • the lens is a high-resolution lens in which the optical distortion is suppressed to ⁇ 6.2 [%] at a horizontal field angle of 70 degrees.
  • Example 2 according to specific numerical values of the imaging lens is shown below.
  • the lens element glass substrate (transparent body) of the imaging lens 100A, the cover glass 140 constituting the imaging unit, and the imaging surface 150 are the same as in FIG. 2, as shown in FIG. The surface number is given.
  • Example 2 Table 5, Table 6, Table 7, and Table 8 show the numerical values of Example 2. Each numerical value of Example 2 corresponds to the imaging lens 100A of FIG.
  • the second embodiment is a design example for a 1/4 size CCD or CMOS imager.
  • Table 5 shows each lens element corresponding to each surface number of the imaging lens in Example 2, a radius of curvature (R: mm), a distance (d: mm), a refractive index (nd), and the like of a glass substrate (transparent body), And the dispersion value ( ⁇ d).
  • Table 6 shows the fourth order of the surface L2S1 of the second lens element 121 including the aspherical surface, the surface L2S2 of the third lens element 123, the surface L3S1 of the fourth lens element 131, and the surface L3S2 of the fifth lens element 133 in Example 2. , 6th, 8th and 10th order aspherical coefficients.
  • K is a conic constant
  • A is a fourth-order aspheric coefficient
  • B is a sixth-order aspheric coefficient
  • C is an eighth-order aspheric coefficient
  • D is a tenth-order aspheric coefficient. Represents.
  • Table 7 specifically shows the focal length f, the numerical aperture F, the half angle of view ⁇ , and the lens length H of the imaging lens 100 according to the second embodiment.
  • the focal length f is set to 2.69 [mm]
  • the numerical aperture F is set to 2.8
  • the half angle of view ⁇ is set to 42.0 deg
  • the lens length H is set to 11.0 [mm].
  • Table 8 shows that, in Example 2, the above conditional expressions (1) to (5) are satisfied.
  • the value (fL1 / f) regarding the focal length of the first lens group 110 is set to ⁇ 1.52, which satisfies the condition defined by the conditional expression (1). Yes.
  • a value (fL2 / f) related to the focal length of the first lens group 110 is set to 0.72, which satisfies the condition defined by the conditional expression (2).
  • the Abbe number ⁇ dE4 of the fourth lens element 131 of the third lens group 130 is set to 29.6, which satisfies the condition defined by the conditional expression (3).
  • the Abbe number ⁇ dE5 of the fifth lens element 133 of the third lens group 130 is set to 57.1, which satisfies the condition defined by the conditional expression (4).
  • the angle of view 2 ⁇ is set to 70, which satisfies the condition defined by conditional expression (5).
  • FIG. 6 is an aberration diagram showing spherical aberration (chromatic aberration), astigmatism, and distortion in Example 2.
  • 6A shows spherical aberration (chromatic aberration)
  • FIG. 6B shows astigmatism
  • FIG. 6C shows distortion.
  • an imaging lens including an optical unit in which various aberrations such as spherical surface, astigmatism, and distortion are well corrected and excellent in imaging performance.
  • a compact and compact wide-angle lens ideal for CCD and CMOS sensors Since the first lens group is formed of a glass spherical surface, it is optimal for in-vehicle use and monitoring applications. Moreover, it can be composed of a reflowable glass material, and can realize high heat resistance and high durability. A lens having good optical characteristics can be realized by suppressing the optical distortion to about 6%.
  • the second lens group and the third lens group can be realized by a wafer level camera called a hybrid lens, so that the diaphragm can be built in the hybrid lens and the second lens group and the third lens group are integrated. Because it can be made, high productivity and high reliability can be realized.
  • the third lens group can be made of glass materials having different Abbe numbers on the incident side and the outgoing side, and various aberrations including chromatic aberration can be further suppressed.
  • the on-axis thickness of the first lens group can be made very thick, and a structure that is hard to break even if stones fly in in-vehicle use can be taken. Long back focus and easy assembly. According to the present embodiment, it is possible to mass-produce a small, compact and inexpensive camera with high heat resistance, reliability, and cost for use in a vehicle or monitoring.
  • the imaging lenses 100 and 100A having the characteristics as described above can be applied as digital cameras using imaging elements such as CCDs and CMOS sensors, particularly as camera lenses mounted on small electronic devices such as mobile phones. .
  • FIG. 7 is a block diagram illustrating a configuration example of an imaging apparatus in which an imaging lens including the optical unit according to the present embodiment is employed.
  • the imaging apparatus 200 includes an optical system 210 to which the imaging lenses 100 and 100A according to the present embodiment are applied, and an imaging device 220 to which a CCD or a CMOS image sensor (solid-state imaging device) can be applied.
  • the optical system 210 guides incident light to an imaging surface including a pixel region of the imaging device 220 and forms a subject image.
  • the imaging apparatus 200 further includes a drive circuit (DRV) 230 that drives the imaging device 220 and a signal processing circuit (PRC) 240 that processes an output signal of the imaging device 220.
  • DDV drive circuit
  • PRC signal processing circuit
  • the drive circuit 230 includes a timing generator (not shown) that generates various timing signals including a start pulse and a clock pulse that drive a circuit in the imaging device 220, and drives the imaging device 220 with a predetermined timing signal. .
  • the signal processing circuit 240 performs predetermined signal processing on the output signal of the imaging device 220.
  • the image signal processed by the signal processing circuit 240 is recorded on a recording medium such as a memory.
  • the image information recorded on the recording medium is hard copied by a printer or the like. Further, the image signal processed by the signal processing circuit 240 is displayed as a moving image on a monitor including a liquid crystal display or the like.
  • the above-described imaging lenses 100 and 100A are mounted as the optical system 210, thereby realizing a highly accurate camera with low power consumption.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 3群の広角レンズで構成され、光学ディストーションを低く抑えることができ、光学特性が良好で、リフローにも耐えることができる光学ユニットおよび撮像装置を提供する。光学ユニット100は、物体側から像面側に向かって順番に配置された、第1レンズ群110と、第2レンズ群120と、第3レンズ群130と、を有し、第1レンズ群110は、第1レンズエレメント111を含み、第2レンズ群120は、物体側から像面側に向かって順番に配置された、第2レンズエレメント121と、第1透明体122と、第3レンズエレメント123と、を含み、第3レンズ群130は、物体側から像面側に向かって順番に配置された、第4レンズエレメント131と、第2透明体132と、第5レンズエレメント33と、を含む。

Description

光学ユニットおよび撮像装置
 本開示は、たとえば車載や監視用途の撮像機器に適用される光学ユニットおよび撮像装置に関するものである。
 水平画角90度程度の車載や監視用途のレンズ系の先行技術として、特許文献1に開示された広角レンズの技術が知られている。
 この広角レンズは、3群で構成されており、第1レンズがガラスレンズ、第2、第3レンズが非球面モールドで構成されており、車載や監視用途に使用可能である。
 このような3群で構成された広角レンズのその他の例として、特許文献2に開示された技術が知られている。
特開2005-181596号公報 特開2007-133324号公報
 ところが、特許文献1に開示された広角レンズでは、光学ディストーションが大きく3つの実施例の一番小さいものでも15[%]ほどある。
 これは、第1レンズが球面であるため収差がとりきれないためである。
 特許文献2に開示された広角レンズでは、前例と違い、第1レンズが非球面で構成されており、光学ディストーションが5[%]以内に抑えられている。
 ところが、第1レンズがプラスチックで構成されているため、車載や監視用途で使う場合は、別途前面を保護するカバーガラスが必要となる。
 本開示は、3群の広角レンズで、光学ディストーションを低く抑えることができ、光学特性が良好で、リフローにも耐えることができる光学ユニットおよび撮像装置を提供することにある。
 本開示の第1の観点の光学ユニットは、物体側から像面側に向かって順番に配置された、第1レンズ群と、第2レンズ群と、第3レンズ群と、を有し、上記第1レンズ群は、第1レンズエレメントを含み、上記第2レンズ群は、物体側から像面側に向かって順番に配置された、第2レンズエレメントと、第1透明体と、第3レンズエレメントと、を含み、上記第3レンズ群は、物体側から像面側に向かって順番に配置された、第4レンズエレメントと、第2透明体と、第5レンズエレメントと、を含む。
 本開示の第2の観点の撮像装置は、撮像素子と、上記撮像素子に被写体像を結像する光学ユニットと、を有し、上記光学ユニットは、物体側から像面側に向かって順番に配置された、第1レンズ群と、第2レンズ群と、第3レンズ群と、を有し、上記第1レンズ群は、第1レンズエレメントを含み、上記第2レンズ群は、物体側から像面側に向かって順番に配置された、第2レンズエレメントと、第1透明体と、第3レンズエレメントと、を含み、上記第3レンズ群は、物体側から像面側に向かって順番に配置された、第4レンズエレメントと、第2透明体と、第5レンズエレメントと、を含む。
 本開示によれば、3群の広角レンズで、光学ディストーションを低く抑えることができ、光学特性が良好で、リフローにも耐えることができる。
本開示の第1の実施形態に係る撮像レンズの構成例を示す図である。 第1の実施形態に係る撮像レンズの各レンズ群を構成する各レンズ、基板、並びに撮像部を構成するカバーガラスに対して付与した面番号を示す図である。 実施例1において、球面収差、非点収差、および歪曲収差を示す収差図である。 本開示の第2の実施形態に係る撮像レンズの構成例を示す図である。 第2の実施形態に係る撮像レンズの各レンズ群を構成する各レンズ、基板、並びに撮像部を構成するカバーガラスに対して付与した面番号を示す図である。 実施例2において、球面収差、非点収差、および歪曲収差を示す収差図である。 本実施形態に係る撮像レンズが採用される撮像装置の構成例を示すブロック図である。
 以下、本開示の実施形態を添付図面に関連付けて説明する。
 なお、説明は以下の順序で行う。
1.第1の実施形態(光学ユニットを採用した撮像レンズの第1の構成例)
2.第2の実施形態(光学ユニットを採用した撮像レンズの第2の構成例)
3.第3の実施形態(撮像装置の構成例)
<1.第1の実施形態>
 図1は、本開示の第1の実施形態に係る光学ユニットを採用した撮像レンズの構成例を示す図である。
 本第1の実施形態の撮像レンズ100は、図1に示すように、物体側OBJSから像面側に向かって順番に配置された、第1レンズ群110、第2レンズ群120、第3レンズ群130、カバーガラス140、および像面150を有する。
 この撮像レンズ100は、単焦点レンズとして形成されている。そして、第1レンズ群110、第2レンズ群120、および第3レンズ群130により光学ユニットが形成される。
 第1の実施形態においては、第2レンズ群120および第3レンズ群130は、透明体を挟んで配置された複数のレンズエレメントを含む接合体により形成されている。
 第1レンズ群110は、ひとつの第1レンズエレメント111のみで形成されている。 
 第1レンズ群110は、像面側に凹形状を向けた負のパワーのショット社BK7相当のガラス球面レンズの第1レンズエレメント111により構成されている。
 第2レンズ群120は、物体側OBJSから像面150側に向かって順番に配置された、第2レンズエレメント121、第1透明体122、および第3レンズエレメント123を含む接合体により形成されている。
 第3レンズ群130は、物体側OBJSから像面150側に向かって順番に配置された、第4レンズエレメント131、第2透明体132、および第5レンズエレメント133を含む接合体により形成されている。
 第2レンズ群120および第3レンズ群130は次のように構成される。
 第2レンズ群120は、UV硬化樹脂を硝材とする凸平形状でアッベ数29.6の第2レンズエレメント121がショット社製BK7相当のガラス板の物体側に貼り付けられている。第2レンズ群120は、像面側にはUV硬化樹脂を硝材とする平凸形状でアッベ数57.1の第3レンズエレメント123が反対側に貼り付けられている。
 ここで絞りは、ガラス基板の物体側にクロム膜等の透過がほとんど無い物質をあらかじめ付けて実現される。また、赤外(IR)カットフィルタも同じ面に付けられている。
 第3レンズ130群は、UV硬化樹脂を硝材とする凹平形状でアッベ数29.6の第4レンズエレメント131がショット社製BK7相当のガラス板の物体側に貼り付けられている。第3レンズ群130は、像面側にはUV硬化樹脂を硝材とする平凸形状でアッベ数57.1の第5レンズエレメント133が貼り付けられている。
 第2レンズ群120と第3レンズ群130はウエハー状のガラス基板上にUV樹脂を使い多数個のレンズを同時に作製する行程が望ましく、その行程を第2レンズエレメント121から第5レンズエレメント133で行いレンズを効率よく製作できる。
 次に、第2レンズ群120と第3レンズ群130のガラスウエハーを接着し、それからダイシングを行い個片化することが望ましい。
 これにより出来上がった第2レンズ群120と第3レンズ群130と第1レンズ群110の第1レンズエレメント111をレンズ鏡筒に組み上げて構成されることが望ましい。
 本第1の実施形態においては、第1レンズ群110、第2レンズ群120、および第3レンズ群130は、具体的に以下のように構成される。
 第1レンズ群110は、焦点距離-2.92[mm]の強い負のパワーのレンズで構成される。
 その利点は、周辺光量の劣化を防ぐことと、入射瞳位置を物体側に移動させることにある。入射瞳位置が物体側に移動することにより、撮像素子に入射する周辺光の主光線の入射角を小さく抑える作用と、バックフォーカスが長くなるという利点が生まれデジタルカメラでは望ましい特性が得られる。
 第2レンズ群120は,合成焦点距離1.38[mm]の強い正のパワーを有している。このことにより第1レンズ群110が強い負のパワーであることにより発生した、光学ディストーションや非対称収差を補正する。
 第3レンズ群130は、入射側が負のパワーで小さいアッベ数、出射側が正のパワーで大きいアッベ数により構成されており、色収差をはじめとして諸収差をよく補正する。
 これにより、水平画角90度で光学ディストーションが-5.7[%]に抑えられた、高解像度なレンズとなる。
 単焦点レンズである撮像レンズ100において、像面150は、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサ等の固体撮像素子の撮像面(受像面)が配置されることを想定している。
 第5レンズエレメント133の像面側面と像面150との間には、樹脂またはガラスで形成されるカバーガラス140が配置され、また赤外カットフィルタやローパスフィルタなどの他、光学部材が配置されていてもよい。
 なお、本実施形態では、図1において、左側が物体側(前方)であり、右側が像面側(後方)である。
 そして、物体側から入射した光束は像面150上に結像される。
 以下、本実施形態の広角レンズである撮像レンズの構成とその作用について説明する。
単焦点レンズである本実施形態の撮像レンズ100は、以下の条件式(1)~(5)を満足するように構成されている。
 条件式(1)は第1レンズ群110の焦点距離fL1に関する式である。
[数1]
  -10 ≦ fL1/f ≦ -0.2     (1)
 ここで、fは光学系(レンズ系)全体の焦点距離を示している。
 一般的に広角レンズの場合、コサイン4乗則によって周辺光量が劣化する。また、正のパワーで始まる対象型のレンズの場合、バックフォーカスが非常に短くなり実装が困難になる。
 また、撮像素子に入射する光線角度が非常に大きくなり、CCD,CMOSセンサを使うデジタルカメラでは、ほとんど使われていない。負群で始まる広角レンズが一般的である。その利点は、周辺光量の劣化を防ぐことと、入射瞳位置を物体側に移動させることにある。
 入射瞳位置が物体側に移動することにより、撮像素子に入射する周辺光の主光線の入射角を小さく抑える作用と、バックフォーカスが長くなるという利点が生まれデジタルカメラでは望ましい特性が得られる。
 条件式(1)はこれらの事情により必要となり、下限を超えると負のパワーが小さくなりこれらの利点が得られなくなる。よってこの下限が必要になる。
 上限を超えると負のパワーが強くなり、それを補正するこれに続く後群のパワーが強くなり、結果的に非常に製造公差が小さくなり現実的に製造できなくなる。よってこの上限となる。
 条件式(2)は第2レンズ群120の焦点距離fL2に関する式である。
[数2]
  0.8 ≦ fL2/f ≦ 5       (2)
 ここで、fは光学系(レンズ系)全体の焦点距離を示している。
 強い負のパワーのレンズを第1レンズ群110に持ってくると、上記のような利点があることを述べたが、これによって、光学ディストーションや非対称収差も発生する。これを補正するのに、第2レンズ群120は正のパワーにすることが望ましい。
 条件式(2)は上記の理由で必要となる。下限を超えると正のパワーが強くなり、非常に製造公差が小さくなり現実的に製造できなくなる。よってこの下限となる。
 上限を超えると、光学ディストーションや非対称収差を補正できなくなり、望ましいカメラ特性が取れなくなるので、本上限が必要となる。
 第1レンズ群110と第2レンズ群120で上述のような諸収差を消す役割を果たしているため、第3レンズ群130は、基本的に色収差を消した構成であることが望ましい。 
 条件式(3)は第3レンズ群130の第4レンズエレメント131のアッベ数νdE4に関するものである。
[数3]
  24 ≦ νdE4 ≦ 45           (3)
 条件式(3)は以下の理由で必要となる。
 第3レンズ群130の第4レンズエレメント131は負のパワーを持っているため、アッベ数が小さいほうが色消し条件となる。
 下限は、物性値で決まる。現状、アッベ数24以下の硝材の報告が無く、最大現実的なのが本下限となる。
 また、上限は、色消しにならずに色収差を出してしまうためにカメラ特性を落とす。このことにより本上限となる。
 条件式(4)は第3レンズ群130の第5レンズエレメント133のアッベ数νdE5に関するものである。
[数4]
  42 ≦ νdE5 ≦ 66           (4)
 条件式(4)は以下の理由で必要となる。
 第3レンズ130群の第5レンズエレメント133は正のパワーを持っているため、アッベ数が大きいほうが色消し条件となる。
 下限は、色消しにならずに色収差を出してしまうためにカメラ特性を落とす。このことにより本下限となる。
 上限は物性値で決まる。現状、アッベ数66以上の硝材の報告が無く、最大現実的なのが本上限となる。
 条件式(5)は画角に関するものである。
[数5]
  65 ≦ 2ω ≦ 140  単位:[°]      (5)
 ωは半水平画角を示す。
 条件式(5)は以下の理由で必要となる。
 下限は、広角レンズでも標準画角に近くなり、負群始まりが最適にならない。よって本下限となる。
 また、水平画角140度以上を3群構成で特性を得るのは極めて困難である。このことにより本上限となる。
 上記の条件式(1)~(5)は、以下で取り扱う実施例1,2に共通するものであり、必要に応じて適宜採用することで、個々の撮像素子または撮像装置に適したより好ましい結像性能とコンパクトな光学系が実現される。
 なお、レンズの非球面の形状は、物体側から像面側へ向かう方向を正とし、kを円錐係数、A、B、C、Dを非球面係数、rを中心曲率半径としたとき次式で表される。yは光軸からの光線の高さ、cは中心曲率半径rの逆数(1/r)をそれぞれ表している。
 ただし、Xは非球面頂点に対する接平面からの距離を、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。
Figure JPOXMLDOC01-appb-M000001
 図2は、本第1の実施形態に係る撮像レンズの各レンズ群を構成する各レンズ、基板(透明体)、並びに撮像部を構成するカバーガラス、像面に対して付与した面番号を示す図である。
 具体的には、第1レンズ群110の第1レンズエレメント111の物体側面(凸面)に面番号L1S1が付与され、第1レンズエレメント111の像面側面に面番号L1S2が付与されている。
 第2レンズ群120の第2レンズエレメント121の物体側面に面番号L2S1が付与され、第2レンズエレメント121と第1透明体122の物体側面との境界面(接合面)に面番号GS1S1が付与されている。
 第1透明体122の像面側面と第3レンズエレメント123の物体側面との境界面(接合面)に面番号GS1S2が付与され、第3レンズエレメント123の像面側面に面番号L2S2が付与されている。
 第3レンズ群130の第4レンズエレメント131の物体側面に面番号L3S1が付与され、第4レンズエレメント131と第2透明体132の物体側面との境界面(接合面)に面番号GS2S1が付与されている。
 第2透明体132の像面側面と第5レンズエレメント133の物体側面との境界面(接合面)に面番号GS2S2が付与され、第5レンズエレメント133の像面側面に面番号L3S2が付与されている。
 また、カバーガラス140には面番号CGが付与され、像面150には面番号T1が付与されている。
 また、図2に示すように、本実施形態の撮像レンズ100において、第1レンズ群110の第1レンズエレメント111の物体側面L1S1の中心曲率半径はR1に設定される。第1レンズエレメント111の像面側面L1S2の中心曲率半径はR2に設定される。
 第2レンズ群120の第2レンズエレメント121の物体側面L2S1の中心曲率半径はR3に設定され、第2レンズエレメント121の像面側面と第1透明体122の物体側面との境界面(接合面)GS1S1の中心曲率半径はR4に設定される。
 第1透明体122の像面側面と第3レンズエレメント123の物体側面との境界面(接合面)GS1S1の中心曲率半径はR5に設定される。
 第3レンズエレメント123の像面側面L2S2の中心曲率半径はR6に設定される。
 第3レンズ群130の第4レンズエレメント131の物体側面L3S1の中心曲率半径はR7に設定され、第4レンズエレメント131の像面側面と第3透明体132の物体側面との境界面(接合面)GS2S1の中心曲率半径はR8に設定される。
 第2透明体132の像面側面と第5レンズエレメント133の物体側面との境界面(接合面)GS2S2の中心曲率半径はR9に設定される。
 第5レンズエレメント133の像面側面L3S2の中心曲率半径はR10に設定される。
 なお、面GS1S1,GS1S2,GS2S1,GS2S2の中心曲率半径R4,R5,R8,R9は無限(INFINITY)である。
  また、図2に示すように、第1レンズ群110の第1レンズエレメント111の厚さとなる面L1S1と面L1S2間の光軸OX上の距離がd1に設定される。
 第1レンズエレメント111の像面側面L1S2と第2レンズ群120の第2レンズエレメント121の物体側面L2S1間の光軸OX上の距離がd2に設定される。
 第2レンズエレメント121の厚さとなる面L2S1と面GS1S1間の光軸OX上の距離がd3に設定される。
 第1透明体122の厚さとなる面GS1S1と面GS1S2間の光軸OX上の距離がd4に設定される。
 第3レンズエレメント123の厚さとなる面GS1S2と面L2S2間の光軸OX上の距離がd5に設定される。第3レンズエレメント123の像面側面L2S2と第3レンズ群130の第4レンズエレメント131の物体側面L3S1間の光軸OX上の距離がd6に設定される。
 第4レンズエレメント131の厚さとなる面L3S1と面GS2S1間の光軸OX上の距離がd7に設定される。
 第2透明体132の厚さとなる面GS2S1と面GS2S2間の光軸OX上の距離がd8に設定される。
 第5レンズエレメント133の厚さとなる面GS2S2と面L3S2間の光軸OX上の距離がd9に設定される。
 以下に、撮像レンズの具体的な数値による実施例1を示す。なお、実施例1においては、撮像レンズ100の各レンズエレメント、ガラス基板(透明体)に対して、図2に示すような面番号が付与されている。
[実施例1]
 表1、表2、表3、および表4に実施例1の各数値が示されている。実施例1の各数値は図1の撮像レンズ100に対応している。
 実施例1は、1/4サイズのCCDもしくはCMOSイメージャ用の設計例である。
 表1は、実施例1における撮像レンズの各面番号に対応した各レンズエレメント、ガラス基板(透明体)等の曲率半径(R:mm),間隔(d:mm)、屈折率(nd)、および分散値(νd)を示している。
Figure JPOXMLDOC01-appb-T000002
 表2は、実施例1における非球面を含む第2レンズエレメント121の面L2S1、第3レンズエレメント123の面L2S2、第4レンズエレメント131の面L3S1、第5レンズエレメント133の面L3S2の4次、6次、8次、10次の非球面係数を示す。
 表2において、Kは円錐定数を、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。
Figure JPOXMLDOC01-appb-T000003
 表3は、実施例1における撮像レンズ100の焦点距離f、開口数F、半画角ω、レンズ長Hが具体的に示されている。
 ここで、焦点距離fは1.85[mm]に、開口数Fは2.8に、半画角ωは52.5degに、レンズ長Hは9.07[mm]に設定されている。
Figure JPOXMLDOC01-appb-T000004
 表4は、実施例1においては、上記各条件式(1)~(5)を満足することを示す。
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、実施例1では、第1レンズ群110の焦点距離に関する値(fL1/f)が-1.58に設定され、条件式(1)で規定される条件を満足している。
 第1レンズ群110の焦点距離に関する値(fL2/f)が0.74に設定され、条件式(2)で規定される条件を満足している。
 第3レンズ群130の第4レンズエレメント131のアッベ数νdE4が29.6に設定され、条件式(3)で規定される条件を満足している。
 第3レンズ群130の第5レンズエレメント133のアッベ数νdE5が57.1に設定され、条件式(4)で規定される条件を満足している。
 画角2ωが90に設定され、条件式(5)で規定される条件を満足している。
 図3は、実施例1において、球面収差(色収差)、非点収差、および歪曲収差を示す収差図である。図3(A)が球面収差(色収差)、図3(B)が非点収差を、図3(C)が歪曲収差をそれぞれ示している。
 図3からわかるように、実施例1によれば、球面、非点、歪曲の諸収差が良好に補正され、結像性能に優れた光学ユニットを含む撮像レンズが得られる。
<2.第2の実施形態>
 図4は、本開示の第2の実施形態に係る撮像レンズの構成例を示す図である。
 図4に示す第2の実施形態に係る撮像レンズ100Aは、基本的に、第1の実施形態と同様に、第1レンズ群110A、第2レンズ群120A、および第3レンズ群130Aの3群により構成されている。
 第2の実施形態においても、第2レンズ群120Aおよび第3レンズ群130Aは、透明体を挟んで配置された複数のレンズエレメントを含む接合体により形成されている。
 第1レンズ群110Aは、ひとつの第1レンズエレメント111のみで形成されている。
 第1レンズ群110Aは、像面側に凹形状を向けた負のパワーのショット社BK7相当のガラス球面レンズの第1レンズエレメント111により構成されている。
 第2レンズ群120Aは、物体側OBJSから像面150側に向かって順番に配置された、第2レンズエレメント121、第1透明体122、および第3レンズエレメント123を含む接合体により形成されている。
 第3レンズ群130Aは、物体側OBJSから像面150側に向かって順番に配置された、第4レンズエレメント131、第2透明体132、および第5レンズエレメント133を含む接合体により形成されている。
 第2レンズ群120Aおよび第3レンズ群130Aは次のように構成される。
 第2レンズ群120Aは、UV硬化樹脂を硝材とする凸平形状でアッベ数29.6の第2レンズエレメント121がショット社製BK7相当のガラス板の物体側に貼り付けられている。第2レンズ群120Aは、像面側にはUV硬化樹脂を硝材とする平凸形状でアッベ数57.1の第3レンズエレメント123が反対側に貼り付けられている。
 ここで絞りは、ガラス基板の物体側にクロム膜等の透過がほとんど無い物質をあらかじめ付けて実現される。また、赤外(IR)カットフィルタも同じ面に付けられている。
 第3レンズ群130Aは、UV硬化樹脂を硝材とする凹平形状でアッベ数29.6の第4レンズエレメント131がショット社製BK7相当のガラス板の物体側に貼り付けられている。第3レンズ群130Aは、像面側にはUV硬化樹脂を硝材とする平凸形状でアッベ数57.1の第5レンズエレメント133が貼り付けられている。
 第2レンズ群120Aと第3レンズ群130Aはウエハー状のガラス基板上にUV樹脂を使い多数個のレンズを同時に作製する行程が望ましく、その行程を第2レンズエレメント121から第5レンズエレメント133で行いレンズを効率よく製作できる。
 次に、第2レンズ群120Aと第3レンズ群130Aのガラスウエハーを接着し、それからダイシングを行い個片化することが望ましい。
 これにより出来上がった第2レンズ群120Aと第3レンズ群130Aと第1レンズ群110の第1レンズエレメント111をレンズ鏡筒に組み上げて構成されることが望ましい。
 本第2の実施形態においては、第1レンズ群110A、第2レンズ群120A、および第3レンズ群130Aは、具体的に以下のように構成される。
 第1レンズ群110Aは、焦点距離-4.08[mm]の強い負のパワーのレンズで構成される。
 その利点は、周辺光量の劣化を防ぐことと、入射瞳位置を物体側に移動させることにある。入射瞳位置が物体側に移動することにより、撮像素子に入射する周辺光の主光線の入射角を小さく抑える作用と、バックフォーカスが長くなるという利点が生まれデジタルカメラでは望ましい特性が得られる。
 第2レンズ群120Aは、合成焦点距離1.96[mm]の強い正のパワーを有している。このことにより第1レンズ群110Aが強い負のパワーであることにより発生した、光学ディストーションや非対称収差を補正する。
 第3レンズ群130Aは、入射側が負のパワーで小さいアッベ数、出射側が正のパワーで大きいアッベ数により構成されており、色収差をはじめとして諸収差をよく補正する。
 これより、水平画角70度で光学ディストーションが-6.2[%]に抑えられた、高解像度なレンズとなる。
 以下に、撮像レンズの具体的な数値による実施例2を示す。なお、実施例2においては、撮像レンズ100Aの各レンズエレメントガラス基板(透明体)、撮像部を構成するカバーガラス140、撮像面150に対しては、図5に示すように、図2と同様の面番号が付与されている。
[実施例2]
 表5、表6、表7、および表8に実施例2の各数値が示されている。実施例2の各数値は図4の撮像レンズ100Aに対応している。
 実施例2は、1/4サイズのCCDもしくはCMOSイメージャ用の設計例である。
 表5は、実施例2における撮像レンズの各面番号に対応した各レンズエレメント、ガラス基板(透明体)等の曲率半径(R:mm),間隔(d:mm)、屈折率(nd)、および分散値(νd)を示している。
Figure JPOXMLDOC01-appb-T000006
 表6は、実施例2における非球面を含む第2レンズエレメント121の面L2S1、第3レンズエレメント123の面L2S2、第4レンズエレメント131の面L3S1、第5レンズエレメント133の面L3S2の4次、6次、8次、10次の非球面係数を示す。
 表6において、Kは円錐定数を、Aは4次の非球面係数を、Bは6次の非球面係数を、Cは8次の非球面係数を、Dは10次の非球面係数をそれぞれ表している。
Figure JPOXMLDOC01-appb-T000007
 表7は、実施例2における撮像レンズ100の焦点距離f、開口数F、半画角ω、レンズ長Hが具体的に示されている。
 ここで、焦点距離fは2.69[mm]に、開口数Fは2.8に、半画角ωは42.0degに、レンズ長Hは11.0[mm]に設定されている。
Figure JPOXMLDOC01-appb-T000008
 表8は、実施例2においては、上記各条件式(1)~(5)を満足することを示す。
Figure JPOXMLDOC01-appb-T000009
 表8に示すように、実施例2では、第1レンズ群110の焦点距離に関する値(fL1/f)が-1.52に設定され、条件式(1)で規定される条件を満足している。
 第1レンズ群110の焦点距離に関する値(fL2/f)が0.72に設定され、条件式(2)で規定される条件を満足している。
 第3レンズ群130の第4レンズエレメント131のアッベ数νdE4が29.6に設定され、条件式(3)で規定される条件を満足している。
 第3レンズ群130の第5レンズエレメント133のアッベ数νdE5が57.1に設定され、条件式(4)で規定される条件を満足している。
 画角2ωが70に設定され、条件式(5)で規定される条件を満足している。
 図6は、実施例2において、球面収差(色収差)、非点収差、および歪曲収差を示す収差図である。図6(A)が球面収差(色収差)、図6(B)が非点収差を、図6(C)が歪曲収差をそれぞれ示している。
 図6からわかるように、実施例2によれば、球面、非点、歪曲の諸収差が良好に補正され、結像性能に優れた光学ユニットを含む撮像レンズが得られる。
 以上説明した本実施形態によれば、以下の効果を得ることができる。
 小型コンパクトでCCDやCMOSセンサに最適な、広角レンズを実現できる。
 第1レンズ群がガラス球面で構成されているため、車載や監視用途に最適である。
 また、リフロー可能硝材で構成可能であり、高耐熱高耐久性が実現できる。
 光学ディストーションを6[%]程度に抑えて光学特性が良好なレンズを実現できる。
 3群構成のうち第2レンズ群と第3レンズ群をハイブリッドレンズと呼ばれるウエハーレベルカメラで実現できるため、絞りをハイブリッドレンズの中に内蔵でき、かつ第2レンズ群と第3レンズ群を一体で作ることができるために高生産性、高信頼性を実現できる。
 ハイブリッドレンズを採用することにより、第3レンズ群の入射側と出射側で異なるアッベ数の硝材で構成することができ、色収差を初めとする諸収差をより抑えることができる。
 第1レンズ群の軸上厚みを非常に厚くでき、車載用途で使って石が飛んできても割れにくい構造を取れる。
 バックフォーカスが長く組立が容易である。
 本実施形態により、小型コンパクトで安価な車載や監視用途の高耐熱で信頼性、コストに優れたカメラを量産することができる。
 以上説明したような特徴を有する撮像レンズ100,100Aは、CCDやCMOSセンサ等の撮像素子を用いたデジタルカメラ、特に、携帯電話等の小型電子機器に搭載されるカメラ用レンズとして適用可能である。
<3.第3の実施形態>
 図7は、本実施形態に係る光学ユニットを含む撮像レンズが採用される撮像装置の構成例を示すブロック図である。
 本撮像装置200は、図7に示すように、本実施形態に係る撮像レンズ100,100Aが適用される光学系210、およびCCDやCMOSイメージセンサ(固体撮像素子)が適用可能な撮像デバイス220を有する。
 光学系210は、撮像デバイス220の画素領域を含む撮像面に入射光を導き、被写体像を結像する。
 撮像装置200は、さらに、撮像デバイス220を駆動する駆動回路(DRV)230、および撮像デバイス220の出力信号を処理する信号処理回路(PRC)240を有する。
 駆動回路230は、撮像デバイス220内の回路を駆動するスタートパルスやクロックパルスを含む各種のタイミング信号を生成するタイミングジェネレータ(図示せず)を有し、所定のタイミング信号で撮像デバイス220を駆動する。
 また、信号処理回路240は、撮像デバイス220の出力信号に対して所定の信号処理を施す。
 信号処理回路240で処理された画像信号は、たとえばメモリなどの記録媒体に記録される。記録媒体に記録された画像情報は、プリンタなどによってハードコピーされる。また、信号処理回路240で処理された画像信号を液晶ディスプレイ等からなるモニターに動画として映し出される。
 上述したように、デジタルスチルカメラ等の撮像装置において、光学系210として、先述した撮像レンズ100,100Aを搭載することで、低消費電力で、高精度なカメラが実現できる。

Claims (7)

  1.  物体側から像面側に向かって順番に配置された、
     第1レンズ群と、
     第2レンズ群と、
     第3レンズ群と、を有し、
     上記第1レンズ群は、
      第1レンズエレメントを含み、
     上記第2レンズ群は、物体側から像面側に向かって順番に配置された、
      第2レンズエレメントと、
      第1透明体と、
      第3レンズエレメントと、を含み、
     上記第3レンズ群は、物体側から像面側に向かって順番に配置された、
      第4レンズエレメントと、
      第2透明体と、
      第5レンズエレメントと、を含む
     光学ユニット。
  2.  上記第1レンズ群の焦点距離fL1および上記第2レンズ群の焦点距離fL2が下記の条件式を満足する
     請求項1記載の光学ユニット。
      -10 ≦ fL1/f ≦ -2
      0.8 ≦ fL2/f ≦ 5
        f : 光学系全体の焦点距離
  3.  上記第3レンズ群の上記第4レンズエレメントが物体側に凹形状を含む凹平形状を有し、
     上記第3レンズ群の上記第5レンズエレメントが、像面側に凸形状を含む凸平形状を有する
     請求項1または2記載の光学ユニット。
  4.  上記第4レンズエレメントのアッベ数νdE4および上記第5レンズエレメントのアッベ数νdE5が下記の条件式を満足する
      請求項1から3のいずれか一に記載の光学ユニット。
      24 ≦ νdE4 ≦ 45
      42 ≦ νdE5 ≦ 66
  5.  上記第2レンズ群および上記第3レンズ群が、ウエハー状で多数個作られ、それから切り出されて個片化されている
     請求項1から4のいずれか一に記載の光学ユニット。
  6.  画角が下記この条件式を満足する
     請求項1から5のいずれか一に記載の光学ユニット。
      65 ≦ 2ω ≦ 140  単位:[°]
        ω:半水平画角
  7.  撮像素子と、
     上記撮像素子に被写体像を結像する光学ユニットと、を有し、
     上記光学ユニットは、
      物体側から像面側に向かって順番に配置された、
       第1レンズ群と、
      第2レンズ群と、
      第3レンズ群と、を有し、
      上記第1レンズ群は、
       第1レンズエレメントを含み、
      上記第2レンズ群は、物体側から像面側に向かって順番に配置された、
       第2レンズエレメントと、
       第1透明体と、
       第3レンズエレメントと、を含み、
      上記第3レンズ群は、物体側から像面側に向かって順番に配置された、
       第4レンズエレメントと、
       第2透明体と、
       第5レンズエレメントと、を含む
     撮像装置。
     
PCT/JP2011/076402 2010-11-25 2011-11-16 光学ユニットおよび撮像装置 WO2012070445A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180055564.XA CN103221867B (zh) 2010-11-25 2011-11-16 光学单元和图像拾取设备
KR1020137011914A KR101925647B1 (ko) 2010-11-25 2011-11-16 광학 유닛 및 촬상 장치
EP11842644.4A EP2645144A4 (en) 2010-11-25 2011-11-16 OPTICAL UNIT AND IMAGE RECORDING DEVICE
US13/988,356 US8922917B2 (en) 2010-11-25 2011-11-16 Optical unit and image pickup apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010262563A JP5664172B2 (ja) 2010-11-25 2010-11-25 光学ユニットおよび撮像装置
JP2010-262563 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070445A1 true WO2012070445A1 (ja) 2012-05-31

Family

ID=46145791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076402 WO2012070445A1 (ja) 2010-11-25 2011-11-16 光学ユニットおよび撮像装置

Country Status (7)

Country Link
US (1) US8922917B2 (ja)
EP (1) EP2645144A4 (ja)
JP (1) JP5664172B2 (ja)
KR (1) KR101925647B1 (ja)
CN (1) CN103221867B (ja)
TW (1) TWI459028B (ja)
WO (1) WO2012070445A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140218535A1 (en) 2011-09-21 2014-08-07 Magna Electronics Inc. Vehicle vision system using image data transmission and power supply via a coaxial cable
WO2013081985A1 (en) * 2011-11-28 2013-06-06 Magna Electronics, Inc. Vision system for vehicle
JP6210494B2 (ja) 2013-03-28 2017-10-11 俊博 笹谷 撮像光学系及び撮像装置
CN104570276B (zh) * 2013-10-09 2017-08-01 睿励科学仪器(上海)有限公司 一种图像识别系统的管镜以及具有该管镜的图像识别系统
US9366848B2 (en) * 2014-07-03 2016-06-14 Omnivision Technologies, Inc. Wafer-level lens systems and methods for manufacturing the same
US9804368B2 (en) * 2015-10-05 2017-10-31 Omnivision Technologies, Inc. Near-infrared hybrid lens systems with wide field of view
TWI766975B (zh) 2018-03-30 2022-06-11 光芒光學股份有限公司 鏡頭及其製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098438A (ja) * 2001-09-26 2003-04-03 Nikon Corp 顕微鏡対物レンズ
JP2005181596A (ja) 2003-12-18 2005-07-07 Nagano Kogaku Kenkyusho:Kk 広角レンズ
JP2007133324A (ja) 2005-11-14 2007-05-31 Sony Corp レンズユニット
JP2007256712A (ja) * 2006-03-24 2007-10-04 Brother Ind Ltd 投写用広角レンズ及びこれを備えたプロジェクタ
JP2008287181A (ja) * 2007-05-21 2008-11-27 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
JP2009301046A (ja) * 2007-02-19 2009-12-24 Konica Minolta Opto Inc 撮像レンズ、撮像装置、携帯端末、および撮像レンズの製造方法
WO2010010891A1 (ja) * 2008-07-25 2010-01-28 コニカミノルタオプト株式会社 撮像レンズ、撮像装置及び携帯端末

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070096020A (ko) * 2002-09-17 2007-10-01 앤터온 비.브이. 카메라 디바이스, 카메라 디바이스 제조 방법, 웨이퍼스케일 패키지 및 광학 어셈블리
JP4022246B1 (ja) * 2007-05-09 2007-12-12 マイルストーン株式会社 撮像レンズ
WO2009004966A1 (ja) * 2007-07-04 2009-01-08 Konica Minolta Opto, Inc. 撮像レンズ及び撮像装置並びに携帯端末
JP5346507B2 (ja) * 2008-06-30 2013-11-20 公益財団法人東京都医学総合研究所 抗体複合体、抗原検出方法、及び抗体複合体製造方法
EP2654144A4 (en) * 2010-12-13 2014-12-24 Seonho Kim INTELLIGENT BINDING PROCESS FOR EQUIPMENT WITH A REMOTE CONTROL PANEL AND REMOTE CONTROL PANEL WITH A METAL HOUSING FOR UNDERWORTHROOM HEADS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098438A (ja) * 2001-09-26 2003-04-03 Nikon Corp 顕微鏡対物レンズ
JP2005181596A (ja) 2003-12-18 2005-07-07 Nagano Kogaku Kenkyusho:Kk 広角レンズ
JP2007133324A (ja) 2005-11-14 2007-05-31 Sony Corp レンズユニット
JP2007256712A (ja) * 2006-03-24 2007-10-04 Brother Ind Ltd 投写用広角レンズ及びこれを備えたプロジェクタ
JP2009301046A (ja) * 2007-02-19 2009-12-24 Konica Minolta Opto Inc 撮像レンズ、撮像装置、携帯端末、および撮像レンズの製造方法
JP2008287181A (ja) * 2007-05-21 2008-11-27 Fujinon Corp 投写レンズおよびこれを用いた投写型表示装置
WO2010010891A1 (ja) * 2008-07-25 2010-01-28 コニカミノルタオプト株式会社 撮像レンズ、撮像装置及び携帯端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2645144A4 *

Also Published As

Publication number Publication date
CN103221867A (zh) 2013-07-24
EP2645144A1 (en) 2013-10-02
EP2645144A4 (en) 2016-02-24
CN103221867B (zh) 2016-08-03
US20130242413A1 (en) 2013-09-19
TW201232023A (en) 2012-08-01
KR20130141517A (ko) 2013-12-26
JP2012113149A (ja) 2012-06-14
KR101925647B1 (ko) 2018-12-05
US8922917B2 (en) 2014-12-30
TWI459028B (zh) 2014-11-01
JP5664172B2 (ja) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5560699B2 (ja) 光学ユニットおよび撮像装置
JP5434457B2 (ja) 光学ユニットおよび撮像装置
JP6209308B2 (ja) 撮像装置および電子機器
JP5636713B2 (ja) 光学ユニットおよび撮像装置
WO2011043023A1 (ja) 光学ユニットおよび撮像装置
KR101863379B1 (ko) 광학 유닛 및 촬상 장치
JP2011133600A (ja) 光学ユニットおよび撮像装置
JP5699636B2 (ja) 光学ユニットおよび撮像装置
JP5664172B2 (ja) 光学ユニットおよび撮像装置
JP5519198B2 (ja) 光学ユニットおよび撮像装置
JP5589509B2 (ja) 光学ユニットおよび撮像装置
JP5434450B2 (ja) 光学ユニットおよび撮像装置
JP6288168B2 (ja) 撮像装置および電子機器
US20100208125A1 (en) Optical unit and imaging apparatus
US8427571B2 (en) Optical unit and imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011842644

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137011914

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13988356

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE